arc/gas: Accept, but ignore, dummy arguments.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
a14ed312 1609static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
c906108c 1612
fae299cd
DC
1613static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
801e3a5b
JB
1617static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
a14ed312 1620static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1621 struct dwarf2_cu *);
c906108c 1622
a14ed312 1623static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1624 struct type *, struct dwarf2_cu *);
c906108c 1625
a14ed312 1626static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1627 struct die_info *, struct type *,
e7c27a73 1628 struct dwarf2_cu *);
c906108c 1629
a14ed312 1630static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1631 struct type *,
1632 struct dwarf2_cu *);
c906108c 1633
134d01f1 1634static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1635
e7c27a73 1636static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1637
e7c27a73 1638static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1639
5d7cb8df
JK
1640static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
22cee43f
PMR
1642static struct using_direct **using_directives (enum language);
1643
27aa8d6a
SW
1644static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
74921315
KS
1646static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
f55ee35c
JK
1648static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
38d518c9 1651static const char *namespace_name (struct die_info *die,
e142c38c 1652 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1653
134d01f1 1654static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1655
e7c27a73 1656static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1657
6e70227d 1658static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1659 struct dwarf2_cu *);
1660
bf6af496 1661static struct die_info *read_die_and_siblings_1
d521ce57 1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1663 struct die_info *);
639d11d3 1664
dee91e82 1665static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
639d11d3
DC
1668 struct die_info *parent);
1669
d521ce57
TT
1670static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
3019eac3 1673
d521ce57
TT
1674static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
93311388 1677
e7c27a73 1678static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1679
15d034d0
TT
1680static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
71c25dea 1682
15d034d0 1683static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1684
15d034d0 1685static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
ca69b9e6
DE
1689static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
e142c38c 1692static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1693 struct dwarf2_cu **);
9219021c 1694
f39c6ffd 1695static const char *dwarf_tag_name (unsigned int);
c906108c 1696
f39c6ffd 1697static const char *dwarf_attr_name (unsigned int);
c906108c 1698
f39c6ffd 1699static const char *dwarf_form_name (unsigned int);
c906108c 1700
a14ed312 1701static char *dwarf_bool_name (unsigned int);
c906108c 1702
f39c6ffd 1703static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1704
f9aca02d 1705static struct die_info *sibling_die (struct die_info *);
c906108c 1706
d97bc12b
DE
1707static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709static void dump_die_for_error (struct die_info *);
1710
1711static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
c906108c 1713
d97bc12b 1714/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1715
51545339 1716static void store_in_ref_table (struct die_info *,
10b3939b 1717 struct dwarf2_cu *);
c906108c 1718
ff39bb5e 1719static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1720
ff39bb5e 1721static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1722
348e048f 1723static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1724 const struct attribute *,
348e048f
DE
1725 struct dwarf2_cu **);
1726
10b3939b 1727static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1728 const struct attribute *,
f2f0e013 1729 struct dwarf2_cu **);
c906108c 1730
348e048f 1731static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1732 const struct attribute *,
348e048f
DE
1733 struct dwarf2_cu **);
1734
ac9ec31b
DE
1735static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1739 const struct attribute *,
ac9ec31b
DE
1740 struct dwarf2_cu *);
1741
e5fe5e75 1742static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1743
52dc124a 1744static void read_signatured_type (struct signatured_type *);
348e048f 1745
63e43d3a
PMR
1746static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
c906108c
SS
1750/* memory allocation interface */
1751
7b5a2f43 1752static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1753
b60c80d6 1754static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1755
43f3e411 1756static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1757
6e5a29e1 1758static int attr_form_is_block (const struct attribute *);
8e19ed76 1759
6e5a29e1 1760static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1761
6e5a29e1 1762static int attr_form_is_constant (const struct attribute *);
3690dd37 1763
6e5a29e1 1764static int attr_form_is_ref (const struct attribute *);
7771576e 1765
8cf6f0b1
TT
1766static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
ff39bb5e 1768 const struct attribute *attr);
8cf6f0b1 1769
ff39bb5e 1770static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1771 struct symbol *sym,
f1e6e072
TT
1772 struct dwarf2_cu *cu,
1773 int is_block);
4c2df51b 1774
d521ce57
TT
1775static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
4bb7a0a7 1778
72bf9492
DJ
1779static void free_stack_comp_unit (void *);
1780
72bf9492
DJ
1781static hashval_t partial_die_hash (const void *item);
1782
1783static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
ae038cb0 1785static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1787
9816fde3 1788static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1789 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1790
1791static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
93311388 1794
68dc6402 1795static void free_heap_comp_unit (void *);
ae038cb0
DJ
1796
1797static void free_cached_comp_units (void *);
1798
1799static void age_cached_comp_units (void);
1800
dee91e82 1801static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1802
f792889a
DJ
1803static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1c379e20 1805
ae038cb0
DJ
1806static void create_all_comp_units (struct objfile *);
1807
0e50663e 1808static int create_all_type_units (struct objfile *);
1fd400ff 1809
95554aad
TT
1810static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
10b3939b 1812
95554aad
TT
1813static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
10b3939b 1815
f4dc4d17
DE
1816static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
10b3939b
DJ
1819static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
ae038cb0
DJ
1822static void dwarf2_mark (struct dwarf2_cu *);
1823
1824static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
b64f50a1 1826static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1827 struct dwarf2_per_cu_data *);
673bfd45 1828
f792889a 1829static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1830
9291a0cd
TT
1831static void dwarf2_release_queue (void *dummy);
1832
95554aad
TT
1833static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
a0f42c21 1836static void process_queue (void);
9291a0cd
TT
1837
1838static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
15d034d0 1840 const char **name, const char **comp_dir);
9291a0cd
TT
1841
1842static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
d521ce57 1845static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
d521ce57 1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1849 int is_debug_types_section);
1850
fd820528 1851static void init_cutu_and_read_dies
f4dc4d17
DE
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
3019eac3
DE
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
dee91e82
DE
1856static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1859
673bfd45 1860static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1861
3019eac3
DE
1862static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
57d63ce2
DE
1864static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1867
1868static struct dwp_file *get_dwp_file (void);
1869
3019eac3 1870static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1872
1873static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1874 (struct signatured_type *, const char *, const char *);
3019eac3 1875
89e63ee4
DE
1876static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
3019eac3
DE
1878static void free_dwo_file_cleanup (void *);
1879
95554aad
TT
1880static void process_cu_includes (void);
1881
1b80a9fa 1882static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1883
1884static void free_line_header_voidp (void *arg);
4390d890
DE
1885\f
1886/* Various complaints about symbol reading that don't abort the process. */
1887
1888static void
1889dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893}
1894
1895static void
1896dwarf2_debug_line_missing_file_complaint (void)
1897{
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900}
1901
1902static void
1903dwarf2_debug_line_missing_end_sequence_complaint (void)
1904{
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908}
1909
1910static void
1911dwarf2_complex_location_expr_complaint (void)
1912{
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914}
1915
1916static void
1917dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919{
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923}
1924
1925static void
1926dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927{
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
a32a8923
DE
1931 get_section_name (section),
1932 get_section_file_name (section));
4390d890 1933}
1b80a9fa 1934
4390d890
DE
1935static void
1936dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937{
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942}
1943
1944static void
1945dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946{
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950}
527f3840
JK
1951
1952/* Hash function for line_header_hash. */
1953
1954static hashval_t
1955line_header_hash (const struct line_header *ofs)
1956{
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958}
1959
1960/* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962static hashval_t
1963line_header_hash_voidp (const void *item)
1964{
9a3c8263 1965 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1966
1967 return line_header_hash (ofs);
1968}
1969
1970/* Equality function for line_header_hash. */
1971
1972static int
1973line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974{
9a3c8263
SM
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980}
1981
4390d890 1982\f
9291a0cd
TT
1983#if WORDS_BIGENDIAN
1984
1985/* Convert VALUE between big- and little-endian. */
1986static offset_type
1987byte_swap (offset_type value)
1988{
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996}
1997
1998#define MAYBE_SWAP(V) byte_swap (V)
1999
2000#else
2001#define MAYBE_SWAP(V) (V)
2002#endif /* WORDS_BIGENDIAN */
2003
31aa7e4e
JB
2004/* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007static CORE_ADDR
2008attr_value_as_address (struct attribute *attr)
2009{
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032}
2033
9291a0cd
TT
2034/* The suffix for an index file. */
2035#define INDEX_SUFFIX ".gdb-index"
2036
c906108c 2037/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
c906108c
SS
2041
2042int
251d32d9
TG
2043dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
c906108c 2045{
9a3c8263
SM
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
8d749320 2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2053
be391dca
TT
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
6502dd73 2057
251d32d9
TG
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
be391dca
TT
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
73869dc2 2062 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2063 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2064 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2066}
2067
2068/* Return the containing section of virtual section SECTION. */
2069
2070static struct dwarf2_section_info *
2071get_containing_section (const struct dwarf2_section_info *section)
2072{
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
c906108c
SS
2075}
2076
a32a8923
DE
2077/* Return the bfd owner of SECTION. */
2078
2079static struct bfd *
2080get_section_bfd_owner (const struct dwarf2_section_info *section)
2081{
73869dc2
DE
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
049412e3 2087 return section->s.section->owner;
a32a8923
DE
2088}
2089
2090/* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093static asection *
2094get_section_bfd_section (const struct dwarf2_section_info *section)
2095{
73869dc2
DE
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
049412e3 2101 return section->s.section;
a32a8923
DE
2102}
2103
2104/* Return the name of SECTION. */
2105
2106static const char *
2107get_section_name (const struct dwarf2_section_info *section)
2108{
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113}
2114
2115/* Return the name of the file SECTION is in. */
2116
2117static const char *
2118get_section_file_name (const struct dwarf2_section_info *section)
2119{
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123}
2124
2125/* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128static int
2129get_section_id (const struct dwarf2_section_info *section)
2130{
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136}
2137
2138/* Return the flags of SECTION.
73869dc2 2139 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2140
2141static int
2142get_section_flags (const struct dwarf2_section_info *section)
2143{
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148}
2149
251d32d9
TG
2150/* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
233a11ab
CS
2152
2153static int
251d32d9
TG
2154section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
233a11ab 2156{
251d32d9
TG
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
233a11ab
CS
2164}
2165
c906108c
SS
2166/* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170static void
251d32d9 2171dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2172{
251d32d9 2173 const struct dwarf2_debug_sections *names;
dc7650b8 2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
dc7650b8
JK
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
c906108c 2185 {
049412e3 2186 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2188 }
251d32d9 2189 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2190 {
049412e3 2191 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2193 }
251d32d9 2194 else if (section_is_p (sectp->name, &names->line))
c906108c 2195 {
049412e3 2196 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2198 }
251d32d9 2199 else if (section_is_p (sectp->name, &names->loc))
c906108c 2200 {
049412e3 2201 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2203 }
251d32d9 2204 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2205 {
049412e3 2206 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2208 }
cf2c3c16
TT
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
049412e3 2211 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
251d32d9 2214 else if (section_is_p (sectp->name, &names->str))
c906108c 2215 {
049412e3 2216 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2218 }
3019eac3
DE
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
049412e3 2221 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
251d32d9 2224 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2225 {
049412e3 2226 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2228 }
251d32d9 2229 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2230 {
049412e3 2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2233 }
251d32d9 2234 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2235 {
049412e3 2236 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2238 }
251d32d9 2239 else if (section_is_p (sectp->name, &names->types))
348e048f 2240 {
8b70b953
TT
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
049412e3 2244 type_section.s.section = sectp;
8b70b953
TT
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
348e048f 2249 }
251d32d9 2250 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2251 {
049412e3 2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
dce234bc 2255
b4e1fd61 2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2259}
2260
fceca515
DE
2261/* A helper function that decides whether a section is empty,
2262 or not present. */
9e0ac564
TT
2263
2264static int
19ac8c2e 2265dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2266{
73869dc2
DE
2267 if (section->is_virtual)
2268 return section->size == 0;
049412e3 2269 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2270}
2271
3019eac3
DE
2272/* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
dce234bc 2276 If the section is compressed, uncompress it before returning. */
c906108c 2277
dce234bc
PP
2278static void
2279dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2280{
a32a8923 2281 asection *sectp;
3019eac3 2282 bfd *abfd;
dce234bc 2283 gdb_byte *buf, *retbuf;
c906108c 2284
be391dca
TT
2285 if (info->readin)
2286 return;
dce234bc 2287 info->buffer = NULL;
be391dca 2288 info->readin = 1;
188dd5d6 2289
9e0ac564 2290 if (dwarf2_section_empty_p (info))
dce234bc 2291 return;
c906108c 2292
a32a8923 2293 sectp = get_section_bfd_section (info);
3019eac3 2294
73869dc2
DE
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
4bf44c1c
TT
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2323 {
d521ce57 2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2325 return;
dce234bc 2326 }
dce234bc 2327
224c3ddb 2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2329 info->buffer = buf;
dce234bc
PP
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
ac8035ab 2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
a32a8923
DE
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
dce234bc
PP
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
dce234bc
PP
2352}
2353
9e0ac564
TT
2354/* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361static bfd_size_type
2362dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364{
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368}
2369
dce234bc 2370/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2371 SECTION_NAME. */
af34e669 2372
dce234bc 2373void
3017a003
TG
2374dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
d521ce57 2376 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2377 bfd_size_type *sizep)
2378{
2379 struct dwarf2_per_objfile *data
9a3c8263
SM
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
dce234bc 2382 struct dwarf2_section_info *info;
a3b2a86b
TT
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
3017a003
TG
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
dce234bc 2404
9e0ac564 2405 dwarf2_read_section (objfile, info);
dce234bc 2406
a32a8923 2407 *sectp = get_section_bfd_section (info);
dce234bc
PP
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410}
2411
36586728
TT
2412/* A helper function to find the sections for a .dwz file. */
2413
2414static void
2415locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416{
9a3c8263 2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
049412e3 2423 dwz_file->abbrev.s.section = sectp;
36586728
TT
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
049412e3 2428 dwz_file->info.s.section = sectp;
36586728
TT
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
049412e3 2433 dwz_file->str.s.section = sectp;
36586728
TT
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
049412e3 2438 dwz_file->line.s.section = sectp;
36586728
TT
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
049412e3 2443 dwz_file->macro.s.section = sectp;
36586728
TT
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2ec9a5e0
TT
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
049412e3 2448 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
36586728
TT
2451}
2452
4db1a1dc
TT
2453/* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
36586728
TT
2456
2457static struct dwz_file *
2458dwarf2_get_dwz_file (void)
2459{
4db1a1dc
TT
2460 bfd *dwz_bfd;
2461 char *data;
36586728
TT
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
acd13123 2465 bfd_size_type buildid_len_arg;
dc294be5
TT
2466 size_t buildid_len;
2467 bfd_byte *buildid;
36586728
TT
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
4db1a1dc
TT
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2474 &buildid_len_arg, &buildid);
4db1a1dc
TT
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
36586728 2482 cleanup = make_cleanup (xfree, data);
dc294be5 2483 make_cleanup (xfree, buildid);
36586728 2484
acd13123
TT
2485 buildid_len = (size_t) buildid_len_arg;
2486
f9d83a0b 2487 filename = (const char *) data;
36586728
TT
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
4262abfb 2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
dc294be5
TT
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
36586728 2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2505 if (dwz_bfd != NULL)
36586728 2506 {
dc294be5
TT
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
36586728
TT
2512 }
2513
dc294be5
TT
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
36586728
TT
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
13aaf454 2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2530 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2531 return result;
2532}
9291a0cd 2533\f
7b9f3c50
DE
2534/* DWARF quick_symbols_functions support. */
2535
2536/* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541struct quick_file_names
2542{
094b34ac
DE
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
7b9f3c50
DE
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556};
2557
2558/* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561struct dwarf2_per_cu_quick_data
2562{
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
43f3e411 2570 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579};
2580
094b34ac
DE
2581/* Utility hash function for a stmt_list_hash. */
2582
2583static hashval_t
2584hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585{
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592}
2593
2594/* Utility equality function for a stmt_list_hash. */
2595
2596static int
2597eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599{
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607}
2608
7b9f3c50
DE
2609/* Hash function for a quick_file_names. */
2610
2611static hashval_t
2612hash_file_name_entry (const void *e)
2613{
9a3c8263
SM
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
7b9f3c50 2616
094b34ac 2617 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2618}
2619
2620/* Equality function for a quick_file_names. */
2621
2622static int
2623eq_file_name_entry (const void *a, const void *b)
2624{
9a3c8263
SM
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2627
094b34ac 2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2629}
2630
2631/* Delete function for a quick_file_names. */
2632
2633static void
2634delete_file_name_entry (void *e)
2635{
9a3c8263 2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648}
2649
2650/* Create a quick_file_names hash table. */
2651
2652static htab_t
2653create_quick_file_names_table (unsigned int nr_initial_entries)
2654{
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658}
9291a0cd 2659
918dd910
JK
2660/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664static void
2665load_cu (struct dwarf2_per_cu_data *per_cu)
2666{
3019eac3 2667 if (per_cu->is_debug_types)
e5fe5e75 2668 load_full_type_unit (per_cu);
918dd910 2669 else
95554aad 2670 load_full_comp_unit (per_cu, language_minimal);
918dd910 2671
cc12ce38
DE
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2dc860c0
DE
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2676}
2677
a0f42c21 2678/* Read in the symbols for PER_CU. */
2fdf6df6 2679
9291a0cd 2680static void
a0f42c21 2681dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2682{
2683 struct cleanup *back_to;
2684
f4dc4d17
DE
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
9291a0cd
TT
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
95554aad 2692 if (dwarf2_per_objfile->using_index
43f3e411 2693 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
89e63ee4
DE
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
cc12ce38 2703 && per_cu->cu != NULL
89e63ee4
DE
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
95554aad 2710 }
9291a0cd 2711
a0f42c21 2712 process_queue ();
9291a0cd
TT
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719}
2720
2721/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2fdf6df6 2724
43f3e411 2725static struct compunit_symtab *
a0f42c21 2726dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2727{
95554aad 2728 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2729 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
a0f42c21 2733 dw2_do_instantiate_symtab (per_cu);
95554aad 2734 process_cu_includes ();
9291a0cd
TT
2735 do_cleanups (back_to);
2736 }
f194fefb 2737
43f3e411 2738 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2739}
2740
8832e7e3 2741/* Return the CU/TU given its index.
f4dc4d17
DE
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
8832e7e3 2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2749
2750 ...;
2751 }
2752*/
2fdf6df6 2753
1fd400ff 2754static struct dwarf2_per_cu_data *
8832e7e3 2755dw2_get_cutu (int index)
1fd400ff
TT
2756{
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
f4dc4d17 2759 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765}
2766
8832e7e3
DE
2767/* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
f4dc4d17
DE
2770
2771static struct dwarf2_per_cu_data *
8832e7e3 2772dw2_get_cu (int index)
f4dc4d17 2773{
8832e7e3 2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2775
1fd400ff
TT
2776 return dwarf2_per_objfile->all_comp_units[index];
2777}
2778
2ec9a5e0
TT
2779/* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2fdf6df6 2781
74a0d9f6 2782static void
2ec9a5e0
TT
2783create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
9291a0cd
TT
2788{
2789 offset_type i;
9291a0cd 2790
2ec9a5e0 2791 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
74a0d9f6
JK
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
b64f50a1 2803 the_cu->offset.sect_off = offset;
9291a0cd
TT
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
8a0459fd 2806 the_cu->section = section;
9291a0cd
TT
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2811 }
9291a0cd
TT
2812}
2813
2ec9a5e0 2814/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2815 the CU objects for this objfile. */
2ec9a5e0 2816
74a0d9f6 2817static void
2ec9a5e0
TT
2818create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821{
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2828
74a0d9f6
JK
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2831
2832 if (dwz_elements == 0)
74a0d9f6 2833 return;
2ec9a5e0
TT
2834
2835 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2ec9a5e0
TT
2838}
2839
1fd400ff 2840/* Create the signatured type hash table from the index. */
673bfd45 2841
74a0d9f6 2842static void
673bfd45 2843create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2844 struct dwarf2_section_info *section,
673bfd45
DE
2845 const gdb_byte *bytes,
2846 offset_type elements)
1fd400ff
TT
2847{
2848 offset_type i;
673bfd45 2849 htab_t sig_types_hash;
1fd400ff 2850
6aa5f3a6
DE
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
8d749320
SM
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2856
673bfd45 2857 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
52dc124a
DE
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2863 void **slot;
2864
74a0d9f6
JK
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
52dc124a 2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2873 struct signatured_type);
52dc124a 2874 sig_type->signature = signature;
3019eac3
DE
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2877 sig_type->per_cu.section = section;
52dc124a
DE
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
1fd400ff
TT
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
52dc124a
DE
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
1fd400ff 2886
b4dd5633 2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2888 }
2889
673bfd45 2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2891}
2892
9291a0cd
TT
2893/* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2895
9291a0cd
TT
2896static void
2897create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898{
3e29f34a 2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
f652bce2 2924
24a55014 2925 if (lo > hi)
f652bce2 2926 {
24a55014
DE
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2929 hex_string (lo), hex_string (hi));
24a55014 2930 continue;
f652bce2 2931 }
24a55014
DE
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
24a55014 2938 continue;
f652bce2 2939 }
24a55014 2940
3e29f34a
MR
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949}
2950
59d7bcaf
JK
2951/* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2958
9291a0cd 2959static hashval_t
559a7a62 2960mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2961{
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
559a7a62
JK
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
9291a0cd
TT
2972
2973 return r;
2974}
2975
2976/* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2979
9291a0cd
TT
2980static int
2981find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983{
0cf03b49
JK
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
9291a0cd 2986 offset_type slot, step;
559a7a62 2987 int (*cmp) (const char *, const char *);
9291a0cd 2988
0cf03b49
JK
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
45280282
IB
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
0cf03b49
JK
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
a8719064 2996
72998fb3 2997 if (strchr (name, '(') != NULL)
0cf03b49 2998 {
72998fb3 2999 char *without_params = cp_remove_params (name);
0cf03b49 3000
72998fb3
DE
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
0cf03b49
JK
3006 }
3007 }
3008
559a7a62 3009 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3010 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3876f04e
DE
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3876f04e 3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
9291a0cd 3031
3876f04e 3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3033 if (!cmp (name, str))
9291a0cd
TT
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3037 do_cleanups (back_to);
9291a0cd
TT
3038 return 1;
3039 }
3040
3876f04e 3041 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3042 }
3043}
3044
2ec9a5e0
TT
3045/* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3055
9291a0cd 3056static int
2ec9a5e0
TT
3057read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
9291a0cd 3066{
948f8e3d 3067 const gdb_byte *addr;
2ec9a5e0 3068 offset_type version;
b3b272e1 3069 offset_type *metadata;
1fd400ff 3070 int i;
9291a0cd 3071
2ec9a5e0 3072 if (dwarf2_section_empty_p (section))
9291a0cd 3073 return 0;
82430852
JK
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
a32a8923 3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3078 return 0;
3079
2ec9a5e0 3080 dwarf2_read_section (objfile, section);
9291a0cd 3081
2ec9a5e0 3082 addr = section->buffer;
9291a0cd 3083 /* Version check. */
1fd400ff 3084 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3086 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3087 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3088 indices. */
831adc1f 3089 if (version < 4)
481860b3
GB
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3095 filename);
481860b3
GB
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
2ec9a5e0 3108 if (version < 6 && !deprecated_ok)
481860b3
GB
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
e615022a
DE
3113 warning (_("\
3114Skipping deprecated .gdb_index section in %s.\n\
3115Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116to use the section anyway."),
2ec9a5e0 3117 filename);
481860b3
GB
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
796a7ff8 3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3129
481860b3 3130 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3131 longer backward compatible. */
796a7ff8 3132 if (version > 8)
594e8718 3133 return 0;
9291a0cd 3134
559a7a62 3135 map->version = version;
2ec9a5e0 3136 map->total_size = section->size;
9291a0cd
TT
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3139
3140 i = 0;
2ec9a5e0
TT
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
1fd400ff
TT
3144 ++i;
3145
2ec9a5e0
TT
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
987d643c 3150 ++i;
1fd400ff
TT
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3876f04e
DE
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
1fd400ff 3161 ++i;
9291a0cd 3162
f9d83a0b 3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3164
2ec9a5e0
TT
3165 return 1;
3166}
3167
3168
3169/* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172static int
3173dwarf2_read_index (struct objfile *objfile)
3174{
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3178 struct dwz_file *dwz;
2ec9a5e0 3179
4262abfb 3180 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
0fefef59 3187 /* Don't use the index if it's empty. */
2ec9a5e0 3188 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3189 return 0;
3190
2ec9a5e0
TT
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
4db1a1dc
TT
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
2ec9a5e0 3195 {
2ec9a5e0
TT
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
74a0d9f6
JK
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
1fd400ff 3215
8b70b953
TT
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
74a0d9f6
JK
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
8b70b953 3230 }
9291a0cd 3231
2ec9a5e0
TT
3232 create_addrmap_from_index (objfile, &local_map);
3233
8d749320 3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3235 *map = local_map;
9291a0cd
TT
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3241
3242 return 1;
3243}
3244
3245/* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3247
9291a0cd
TT
3248static void
3249dw2_setup (struct objfile *objfile)
3250{
9a3c8263
SM
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3253 gdb_assert (dwarf2_per_objfile);
3254}
3255
dee91e82 3256/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3257
dee91e82
DE
3258static void
3259dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3260 const gdb_byte *info_ptr,
dee91e82
DE
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
9291a0cd 3264{
dee91e82
DE
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3268 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3269 struct line_header *lh;
9291a0cd 3270 struct attribute *attr;
dee91e82 3271 int i;
15d034d0 3272 const char *name, *comp_dir;
7b9f3c50
DE
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
9291a0cd 3276
0186c6a7
DE
3277 gdb_assert (! this_cu->is_debug_types);
3278
07261596
TT
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
0186c6a7 3287 lh_cu = this_cu;
7b9f3c50
DE
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
dee91e82
DE
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3293 if (attr)
3294 {
7b9f3c50
DE
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
094b34ac
DE
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
9a3c8263 3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3308 return;
7b9f3c50
DE
3309 }
3310
3019eac3 3311 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3312 }
3313 if (lh == NULL)
3314 {
094b34ac 3315 lh_cu->v.quick->no_file_data = 1;
dee91e82 3316 return;
9291a0cd
TT
3317 }
3318
8d749320 3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
9291a0cd 3324
dee91e82 3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3326
7b9f3c50 3327 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3330 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
9291a0cd 3333
7b9f3c50 3334 free_line_header (lh);
7b9f3c50 3335
094b34ac 3336 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3337}
3338
3339/* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342static struct quick_file_names *
e4a48d9d 3343dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3344{
0186c6a7
DE
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3349
dee91e82
DE
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
0186c6a7 3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
9291a0cd
TT
3361}
3362
3363/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3364 real path for a given file name from the line table. */
2fdf6df6 3365
9291a0cd 3366static const char *
7b9f3c50
DE
3367dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
9291a0cd 3369{
7b9f3c50
DE
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3372 qfn->num_file_names, const char *);
9291a0cd 3373
7b9f3c50
DE
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3376
7b9f3c50 3377 return qfn->real_names[index];
9291a0cd
TT
3378}
3379
3380static struct symtab *
3381dw2_find_last_source_symtab (struct objfile *objfile)
3382{
43f3e411 3383 struct compunit_symtab *cust;
9291a0cd 3384 int index;
ae2de4f8 3385
9291a0cd
TT
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
9291a0cd
TT
3392}
3393
7b9f3c50
DE
3394/* Traversal function for dw2_forget_cached_source_info. */
3395
3396static int
3397dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3398{
7b9f3c50 3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3400
7b9f3c50 3401 if (file_data->real_names)
9291a0cd 3402 {
7b9f3c50 3403 int i;
9291a0cd 3404
7b9f3c50 3405 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3406 {
7b9f3c50
DE
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
9291a0cd
TT
3409 }
3410 }
7b9f3c50
DE
3411
3412 return 1;
3413}
3414
3415static void
3416dw2_forget_cached_source_info (struct objfile *objfile)
3417{
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3422}
3423
f8eba3c6
TT
3424/* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427static int
3428dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3430 const char *name, const char *real_path,
f8eba3c6
TT
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433{
43f3e411 3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3435
3436 /* Don't visit already-expanded CUs. */
43f3e411 3437 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
a0f42c21 3442 dw2_instantiate_symtab (per_cu);
f8eba3c6 3443
f5b95b50 3444 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3445 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3446}
3447
3448/* Implementation of the map_symtabs_matching_filename method. */
3449
9291a0cd 3450static int
f8eba3c6 3451dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3452 const char *real_path,
f8eba3c6
TT
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
9291a0cd
TT
3455{
3456 int i;
c011a4f4 3457 const char *name_basename = lbasename (name);
9291a0cd
TT
3458
3459 dw2_setup (objfile);
ae2de4f8 3460
848e3e78
DE
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
f4dc4d17 3463
848e3e78 3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3465 {
3466 int j;
8832e7e3 3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3468 struct quick_file_names *file_data;
9291a0cd 3469
3d7bb9d9 3470 /* We only need to look at symtabs not already expanded. */
43f3e411 3471 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3472 continue;
3473
e4a48d9d 3474 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3475 if (file_data == NULL)
9291a0cd
TT
3476 continue;
3477
7b9f3c50 3478 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3479 {
7b9f3c50 3480 const char *this_name = file_data->file_names[j];
da235a7c 3481 const char *this_real_name;
9291a0cd 3482
af529f8f 3483 if (compare_filenames_for_search (this_name, name))
9291a0cd 3484 {
f5b95b50 3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3486 callback, data))
3487 return 1;
288e77a7 3488 continue;
4aac40c8 3489 }
9291a0cd 3490
c011a4f4
DE
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
da235a7c
JK
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3499 {
da235a7c
JK
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
288e77a7 3503 continue;
da235a7c 3504 }
9291a0cd 3505
da235a7c
JK
3506 if (real_path != NULL)
3507 {
af529f8f
JK
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3510 if (this_real_name != NULL
af529f8f 3511 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3512 {
f5b95b50 3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3514 callback, data))
3515 return 1;
288e77a7 3516 continue;
9291a0cd
TT
3517 }
3518 }
3519 }
3520 }
3521
9291a0cd
TT
3522 return 0;
3523}
3524
da51c347
DE
3525/* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527struct dw2_symtab_iterator
9291a0cd 3528{
da51c347
DE
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
8943b874
DE
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
da51c347 3550};
9291a0cd 3551
da51c347
DE
3552/* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3555
9291a0cd 3556static void
da51c347
DE
3557dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563{
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
8943b874 3569 iter->global_seen = 0;
da51c347
DE
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578}
3579
3580/* Return the next matching CU or NULL if there are no more. */
3581
3582static struct dwarf2_per_cu_data *
3583dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584{
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3590 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3190f0c6
DE
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
4262abfb
JK
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3612 continue;
3613 }
3614
8832e7e3 3615 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3616
da51c347 3617 /* Skip if already read in. */
43f3e411 3618 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3619 continue;
3620
8943b874
DE
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
da51c347
DE
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664}
3665
43f3e411 3666static struct compunit_symtab *
da51c347
DE
3667dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
9291a0cd 3669{
43f3e411 3670 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3671 struct mapped_index *index;
3672
9291a0cd
TT
3673 dw2_setup (objfile);
3674
156942c7
DE
3675 index = dwarf2_per_objfile->index_table;
3676
da51c347 3677 /* index is NULL if OBJF_READNOW. */
156942c7 3678 if (index)
9291a0cd 3679 {
da51c347
DE
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3684
da51c347 3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3686 {
b2e2f908 3687 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3691
b2e2f908
DE
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
da51c347
DE
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
da51c347 3699
b2e2f908
DE
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
da51c347
DE
3706
3707 /* Keep looking through other CUs. */
9291a0cd
TT
3708 }
3709 }
9291a0cd 3710
da51c347 3711 return stab_best;
9291a0cd
TT
3712}
3713
3714static void
3715dw2_print_stats (struct objfile *objfile)
3716{
e4a48d9d 3717 int i, total, count;
9291a0cd
TT
3718
3719 dw2_setup (objfile);
e4a48d9d 3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3721 count = 0;
e4a48d9d 3722 for (i = 0; i < total; ++i)
9291a0cd 3723 {
8832e7e3 3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3725
43f3e411 3726 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3727 ++count;
3728 }
e4a48d9d 3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731}
3732
779bd270
DE
3733/* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
9291a0cd
TT
3738static void
3739dw2_dump (struct objfile *objfile)
3740{
779bd270
DE
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
9291a0cd
TT
3752}
3753
3754static void
3189cb12
DE
3755dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
9291a0cd
TT
3758{
3759 /* There's nothing to relocate here. */
3760}
3761
3762static void
3763dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765{
da51c347
DE
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
9291a0cd
TT
3785}
3786
3787static void
3788dw2_expand_all_symtabs (struct objfile *objfile)
3789{
3790 int i;
3791
3792 dw2_setup (objfile);
1fd400ff
TT
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3795 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3796 {
8832e7e3 3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3798
a0f42c21 3799 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3800 }
3801}
3802
3803static void
652a8996
JK
3804dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
9291a0cd
TT
3806{
3807 int i;
3808
3809 dw2_setup (objfile);
d4637a04
DE
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3817 {
3818 int j;
8832e7e3 3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3820 struct quick_file_names *file_data;
9291a0cd 3821
3d7bb9d9 3822 /* We only need to look at symtabs not already expanded. */
43f3e411 3823 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3824 continue;
3825
e4a48d9d 3826 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3827 if (file_data == NULL)
9291a0cd
TT
3828 continue;
3829
7b9f3c50 3830 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3831 {
652a8996
JK
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3835 {
a0f42c21 3836 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3837 break;
3838 }
3839 }
3840 }
3841}
3842
9291a0cd 3843static void
ade7ed9e 3844dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3845 const char * name, domain_enum domain,
ade7ed9e 3846 int global,
40658b94
PH
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
2edb89d3
JK
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
9291a0cd 3851{
40658b94 3852 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3855}
3856
3857static void
f8eba3c6
TT
3858dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
206f2a57
DE
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3862 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3863 enum search_domain kind,
3864 void *data)
9291a0cd
TT
3865{
3866 int i;
3867 offset_type iter;
4b5246aa 3868 struct mapped_index *index;
9291a0cd
TT
3869
3870 dw2_setup (objfile);
ae2de4f8
DE
3871
3872 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
4b5246aa 3875 index = dwarf2_per_objfile->index_table;
9291a0cd 3876
7b08b9eb 3877 if (file_matcher != NULL)
24c79950
TT
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
848e3e78
DE
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3895 {
3896 int j;
8832e7e3 3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3898 struct quick_file_names *file_data;
3899 void **slot;
7b08b9eb 3900
61d96d7e
DE
3901 QUIT;
3902
24c79950 3903 per_cu->v.quick->mark = 0;
3d7bb9d9 3904
24c79950 3905 /* We only need to look at symtabs not already expanded. */
43f3e411 3906 if (per_cu->v.quick->compunit_symtab)
24c79950 3907 continue;
7b08b9eb 3908
e4a48d9d 3909 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3910 if (file_data == NULL)
3911 continue;
7b08b9eb 3912
24c79950
TT
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
da235a7c
JK
3923 const char *this_real_name;
3924
fbd9ab74 3925 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
da235a7c
JK
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
24c79950
TT
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
9291a0cd 3955
3876f04e 3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
8943b874 3961 int global_seen = 0;
9291a0cd 3962
61d96d7e
DE
3963 QUIT;
3964
3876f04e 3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3966 continue;
3967
3876f04e 3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3969
206f2a57 3970 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
4b5246aa 3975 vec = (offset_type *) (index->constant_pool
3876f04e 3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
e254ef6a 3980 struct dwarf2_per_cu_data *per_cu;
156942c7 3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
8943b874
DE
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
3190f0c6
DE
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
156942c7
DE
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
3190f0c6
DE
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4262abfb 4032 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4033 continue;
4034 }
4035
8832e7e3 4036 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4037 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
9291a0cd
TT
4052 }
4053 }
4054}
4055
43f3e411 4056/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4057 symtab. */
4058
43f3e411
DE
4059static struct compunit_symtab *
4060recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
9703b513
TT
4062{
4063 int i;
4064
43f3e411
DE
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
9703b513 4068
43f3e411 4069 if (cust->includes == NULL)
a3ec0bb1
DE
4070 return NULL;
4071
43f3e411 4072 for (i = 0; cust->includes[i]; ++i)
9703b513 4073 {
43f3e411 4074 struct compunit_symtab *s = cust->includes[i];
9703b513 4075
43f3e411 4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082}
4083
43f3e411
DE
4084static struct compunit_symtab *
4085dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
9291a0cd
TT
4090{
4091 struct dwarf2_per_cu_data *data;
43f3e411 4092 struct compunit_symtab *result;
9291a0cd
TT
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
9a3c8263
SM
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
9291a0cd
TT
4101 if (!data)
4102 return NULL;
4103
43f3e411 4104 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4106 paddress (get_objfile_arch (objfile), pc));
4107
43f3e411
DE
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
9703b513
TT
4111 gdb_assert (result != NULL);
4112 return result;
9291a0cd
TT
4113}
4114
9291a0cd 4115static void
44b13c5a 4116dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4117 void *data, int need_fullname)
9291a0cd
TT
4118{
4119 int i;
24c79950
TT
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
9291a0cd 4123
24c79950 4124 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4125 dw2_setup (objfile);
ae2de4f8 4126
848e3e78
DE
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4130
848e3e78 4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4132 {
8832e7e3 4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4134
43f3e411 4135 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
848e3e78 4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4145 {
4146 int j;
8832e7e3 4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4148 struct quick_file_names *file_data;
24c79950 4149 void **slot;
9291a0cd 4150
3d7bb9d9 4151 /* We only need to look at symtabs not already expanded. */
43f3e411 4152 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4153 continue;
4154
e4a48d9d 4155 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4156 if (file_data == NULL)
9291a0cd
TT
4157 continue;
4158
24c79950
TT
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
7b9f3c50 4167 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4168 {
74e2f255
DE
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
7b9f3c50 4175 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4176 }
4177 }
24c79950
TT
4178
4179 do_cleanups (cleanup);
9291a0cd
TT
4180}
4181
4182static int
4183dw2_has_symbols (struct objfile *objfile)
4184{
4185 return 1;
4186}
4187
4188const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189{
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
f8eba3c6 4193 dw2_map_symtabs_matching_filename,
9291a0cd 4194 dw2_lookup_symbol,
9291a0cd
TT
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
652a8996 4200 dw2_expand_symtabs_with_fullname,
40658b94 4201 dw2_map_matching_symbols,
9291a0cd 4202 dw2_expand_symtabs_matching,
43f3e411 4203 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4204 dw2_map_symbol_filenames
4205};
4206
4207/* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210int
4211dwarf2_initialize_objfile (struct objfile *objfile)
4212{
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
0e50663e 4223 create_all_type_units (objfile);
7b9f3c50
DE
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4226
1fd400ff 4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4228 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4229 {
8832e7e3 4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4231
e254ef6a
DE
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
9291a0cd
TT
4245 return 0;
4246}
4247
4248\f
4249
dce234bc
PP
4250/* Build a partial symbol table. */
4251
4252void
f29dff0a 4253dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4254{
c9bf0622 4255
f29dff0a 4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
492d29ea 4261 TRY
c9bf0622
TT
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
492d29ea
PA
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
c906108c 4276}
c906108c 4277
1ce1cefd
DE
4278/* Return the total length of the CU described by HEADER. */
4279
4280static unsigned int
4281get_cu_length (const struct comp_unit_head *header)
4282{
4283 return header->initial_length_size + header->length;
4284}
4285
45452591
DE
4286/* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288static inline int
b64f50a1 4289offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4290{
b64f50a1 4291 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4293
b64f50a1 4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4295}
4296
3b80fe9b
DE
4297/* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303static void
4304dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305{
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
31aa7e4e 4314 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
31aa7e4e 4322 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4323 cu->base_known = 1;
4324 }
4325 }
4326}
4327
93311388
DE
4328/* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
107d2387 4331
d521ce57 4332static const gdb_byte *
107d2387 4333read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4334 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4335{
4336 int signed_addr;
891d2f0b 4337 unsigned int bytes_read;
c764a876
DE
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4342 info_ptr += bytes_read;
107d2387
AC
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
b64f50a1
JK
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
613e1657 4347 info_ptr += bytes_read;
107d2387
AC
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
8e65ff28 4352 internal_error (__FILE__, __LINE__,
e2e0b3e5 4353 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4354 cu_header->signed_addr_p = signed_addr;
c764a876 4355
107d2387
AC
4356 return info_ptr;
4357}
4358
36586728
TT
4359/* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362static struct dwarf2_section_info *
4363get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364{
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373}
4374
9ff913ba
DE
4375/* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379static void
4380error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
9ff913ba 4383{
a32a8923
DE
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
9ff913ba
DE
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
b64f50a1 4392 if (header->abbrev_offset.sect_off
36586728 4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
1ce1cefd 4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4405 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4406 filename);
4407}
4408
4409/* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
adabb602 4412
d521ce57 4413static const gdb_byte *
9ff913ba
DE
4414read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4bdcc0c1 4416 struct dwarf2_section_info *abbrev_section,
d521ce57 4417 const gdb_byte *info_ptr,
9ff913ba 4418 int is_debug_types_section)
72bf9492 4419{
d521ce57 4420 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4421 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4422
b64f50a1 4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4424
72bf9492
DJ
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
460c1c54
CC
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
b0df02fd 4429 if (is_debug_types_section)
460c1c54
CC
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
b64f50a1 4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4433
4bdcc0c1 4434 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4435
4436 return info_ptr;
4437}
4438
348e048f
DE
4439/* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
d521ce57 4442static const gdb_byte *
9ff913ba
DE
4443read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4bdcc0c1 4445 struct dwarf2_section_info *abbrev_section,
d521ce57 4446 const gdb_byte *info_ptr,
dee91e82
DE
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
348e048f 4449{
d521ce57 4450 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4451 bfd *abfd = get_section_bfd_owner (section);
348e048f 4452
b64f50a1 4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4454
9ff913ba 4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4456
9ff913ba
DE
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
dee91e82
DE
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
9ff913ba
DE
4465 info_ptr += header->offset_size;
4466
b64f50a1 4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4468
4bdcc0c1 4469 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4470
4471 return info_ptr;
348e048f
DE
4472}
4473
f4dc4d17
DE
4474/* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476static sect_offset
4477read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479{
a32a8923 4480 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4481 const gdb_byte *info_ptr;
f4dc4d17
DE
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492}
4493
aaa75496
JB
4494/* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497static void
d521ce57 4498dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4499 struct objfile *objfile)
4500{
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
fbd9ab74
JK
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
aaa75496
JB
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
8d749320
SM
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
43f3e411 4521 subpst->compunit_symtab = NULL;
aaa75496
JB
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
10b3939b 4527 the regular ones. */
58a9656e 4528 subpst->read_symtab_private = NULL;
aaa75496
JB
4529}
4530
4531/* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
d85a05f0 4533 partial symtab for each of these included files. */
aaa75496
JB
4534
4535static void
4536dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4537 struct die_info *die,
4538 struct partial_symtab *pst)
aaa75496 4539{
d85a05f0
DJ
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
aaa75496 4542
d85a05f0
DJ
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
3019eac3 4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
c6da4cef 4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4551
4552 free_line_header (lh);
4553}
4554
348e048f 4555static hashval_t
52dc124a 4556hash_signatured_type (const void *item)
348e048f 4557{
9a3c8263
SM
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
9a619af0 4560
348e048f 4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4562 return sig_type->signature;
348e048f
DE
4563}
4564
4565static int
52dc124a 4566eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4567{
9a3c8263
SM
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4570
348e048f
DE
4571 return lhs->signature == rhs->signature;
4572}
4573
1fd400ff
TT
4574/* Allocate a hash table for signatured types. */
4575
4576static htab_t
673bfd45 4577allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4578{
4579 return htab_create_alloc_ex (41,
52dc124a
DE
4580 hash_signatured_type,
4581 eq_signatured_type,
1fd400ff
TT
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586}
4587
d467dd73 4588/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4589
4590static int
d467dd73 4591add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4592{
9a3c8263
SM
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4595
b4dd5633 4596 **datap = sigt;
1fd400ff
TT
4597 ++*datap;
4598
4599 return 1;
4600}
4601
c88ee1f0
DE
4602/* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
348e048f 4610
3019eac3
DE
4611static htab_t
4612create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
348e048f 4614{
3019eac3 4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4616 htab_t types_htab = NULL;
8b70b953
TT
4617 int ix;
4618 struct dwarf2_section_info *section;
4bdcc0c1 4619 struct dwarf2_section_info *abbrev_section;
348e048f 4620
3019eac3
DE
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
348e048f 4623
4bdcc0c1
DE
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
b4f54984 4628 if (dwarf_read_debug)
09406207
DE
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
a32a8923 4631 get_section_file_name (abbrev_section));
09406207 4632
8b70b953 4633 for (ix = 0;
3019eac3 4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4635 ++ix)
4636 {
3019eac3 4637 bfd *abfd;
d521ce57 4638 const gdb_byte *info_ptr, *end_ptr;
348e048f 4639
8b70b953
TT
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
348e048f 4642
8b70b953
TT
4643 if (info_ptr == NULL)
4644 continue;
348e048f 4645
3019eac3 4646 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
3019eac3 4649
dee91e82
DE
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
8b70b953
TT
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
b64f50a1 4657 sect_offset offset;
3019eac3 4658 cu_offset type_offset_in_tu;
8b70b953 4659 ULONGEST signature;
52dc124a 4660 struct signatured_type *sig_type;
3019eac3 4661 struct dwo_unit *dwo_tu;
8b70b953 4662 void **slot;
d521ce57 4663 const gdb_byte *ptr = info_ptr;
9ff913ba 4664 struct comp_unit_head header;
dee91e82 4665 unsigned int length;
348e048f 4666
b64f50a1 4667 offset.sect_off = ptr - section->buffer;
348e048f 4668
8b70b953 4669 /* We need to read the type's signature in order to build the hash
9ff913ba 4670 table, but we don't need anything else just yet. */
348e048f 4671
4bdcc0c1
DE
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
3019eac3 4674 &signature, &type_offset_in_tu);
6caca83c 4675
1ce1cefd 4676 length = get_cu_length (&header);
dee91e82 4677
6caca83c 4678 /* Skip dummy type units. */
dee91e82
DE
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4681 {
1ce1cefd 4682 info_ptr += length;
6caca83c
CC
4683 continue;
4684 }
8b70b953 4685
0349ea22
DE
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
3019eac3
DE
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4702 dwo_tu->section = section;
3019eac3
DE
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4717 sig_type->per_cu.section = section;
3019eac3
DE
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
8b70b953 4721
3019eac3
DE
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
8b70b953
TT
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
3019eac3
DE
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
9a3c8263
SM
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
3019eac3
DE
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
9a3c8263
SM
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
3019eac3
DE
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
b3c8eb43 4744
8b70b953 4745 complaint (&symfile_complaints,
c88ee1f0 4746 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4747 " the entry at offset 0x%x, signature %s"),
3019eac3 4748 offset.sect_off, dup_offset.sect_off,
4031ecc5 4749 hex_string (signature));
8b70b953 4750 }
3019eac3 4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4752
b4f54984 4753 if (dwarf_read_debug > 1)
4031ecc5 4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4755 offset.sect_off,
4031ecc5 4756 hex_string (signature));
348e048f 4757
dee91e82 4758 info_ptr += length;
8b70b953 4759 }
348e048f
DE
4760 }
4761
3019eac3
DE
4762 return types_htab;
4763}
4764
4765/* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770static int
4771create_all_type_units (struct objfile *objfile)
4772{
4773 htab_t types_htab;
b4dd5633 4774 struct signatured_type **iter;
3019eac3
DE
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
348e048f
DE
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
6aa5f3a6
DE
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
8d749320
SM
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
1fd400ff 4794
348e048f
DE
4795 return 1;
4796}
4797
6aa5f3a6
DE
4798/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802static struct signatured_type *
4803add_type_unit (ULONGEST sig, void **slot)
4804{
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845}
4846
a2ce51a0
DE
4847/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850static void
4851fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854{
7ee85ab1 4855 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877}
4878
4879/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
a2ce51a0
DE
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891static struct signatured_type *
4892lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893{
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4898 void **slot;
a2ce51a0
DE
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
6aa5f3a6
DE
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
a2ce51a0
DE
4909
4910 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
a2ce51a0 4915
a2ce51a0 4916 find_sig_entry.signature = sig;
6aa5f3a6
DE
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
9a3c8263 4919 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4920
4921 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4931 return sig_entry;
4932
6aa5f3a6
DE
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
a2ce51a0
DE
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
9a3c8263 4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
6aa5f3a6
DE
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
a2ce51a0 4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4950 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4951 return sig_entry;
4952}
4953
a2ce51a0
DE
4954/* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
a2ce51a0
DE
4958
4959static struct signatured_type *
4960lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961{
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4966 void **slot;
a2ce51a0
DE
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
6aa5f3a6
DE
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4974 {
6aa5f3a6
DE
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4977 }
4978
6aa5f3a6
DE
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
9a3c8263 4982 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
a2ce51a0
DE
4990 if (dwp_file->tus == NULL)
4991 return NULL;
57d63ce2
DE
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
6aa5f3a6 4997 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
a2ce51a0
DE
5000 return sig_entry;
5001}
5002
380bca97 5003/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
348e048f
DE
5006
5007static struct signatured_type *
a2ce51a0 5008lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5009{
a2ce51a0
DE
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
348e048f 5023
a2ce51a0
DE
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
9a3c8263
SM
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5029 return entry;
5030 }
348e048f 5031}
42e7ad6c
DE
5032\f
5033/* Low level DIE reading support. */
348e048f 5034
d85a05f0
DJ
5035/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037static void
5038init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5039 struct dwarf2_cu *cu,
3019eac3
DE
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
d85a05f0 5042{
fceca515 5043 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5044 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5045 reader->cu = cu;
3019eac3 5046 reader->dwo_file = dwo_file;
dee91e82
DE
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
f664829e 5049 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5050 reader->comp_dir = NULL;
d85a05f0
DJ
5051}
5052
b0c7bfa9
DE
5053/* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070static int
5071read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
a2ce51a0 5075 const char *stub_comp_dir,
b0c7bfa9 5076 struct die_reader_specs *result_reader,
d521ce57 5077 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080{
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
d521ce57 5085 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
b0aeadb3
DE
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5095
b0c7bfa9
DE
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
b0c7bfa9
DE
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
a2ce51a0
DE
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
b0c7bfa9
DE
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
a32a8923 5149 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
a2ce51a0
DE
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
b0c7bfa9
DE
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
02142a6c
DE
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5204 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5211 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
b4f54984 5241 if (dwarf_die_debug)
bf6af496
DE
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
a32a8923 5245 get_section_name (section),
bf6af496
DE
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
b4f54984 5248 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5249 }
5250
a2ce51a0
DE
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
b0c7bfa9
DE
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265}
5266
5267/* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5269 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5270
5271static struct dwo_unit *
5272lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274{
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
a2ce51a0
DE
5281 gdb_assert (cu != NULL);
5282
b0c7bfa9 5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
4262abfb 5305 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
b0c7bfa9
DE
5311 return dwo_unit;
5312}
5313
a2ce51a0 5314/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
a2ce51a0
DE
5322
5323static void
6aa5f3a6
DE
5324init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
a2ce51a0
DE
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328{
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
6aa5f3a6 5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
6aa5f3a6
DE
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
8d749320 5356 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
a2ce51a0
DE
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
6aa5f3a6 5381 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5385 if (free_cu_cleanup != NULL)
a2ce51a0 5386 {
6aa5f3a6
DE
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
a2ce51a0 5392
6aa5f3a6
DE
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
a2ce51a0 5396
6aa5f3a6
DE
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
a2ce51a0 5403 }
a2ce51a0
DE
5404
5405 do_cleanups (cleanups);
5406}
5407
fd820528 5408/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5409 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5410
f4dc4d17
DE
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
dee91e82
DE
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5422 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5423
70221824 5424static void
fd820528 5425init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5426 struct abbrev_table *abbrev_table,
fd820528
DE
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
c906108c 5430{
dee91e82 5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5432 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5433 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5434 struct dwarf2_cu *cu;
d521ce57 5435 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5436 struct die_reader_specs reader;
d85a05f0 5437 struct die_info *comp_unit_die;
dee91e82 5438 int has_children;
d85a05f0 5439 struct attribute *attr;
365156ad 5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5441 struct signatured_type *sig_type = NULL;
4bdcc0c1 5442 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5446 int rereading_dwo_cu = 0;
c906108c 5447
b4f54984 5448 if (dwarf_die_debug)
09406207
DE
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
dee91e82
DE
5453 if (use_existing_cu)
5454 gdb_assert (keep);
23745b47 5455
a2ce51a0
DE
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
a2ce51a0
DE
5465 return;
5466 }
5467
dee91e82
DE
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
42e7ad6c
DE
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
dee91e82
DE
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
8d749320 5493 cu = XNEW (struct dwarf2_cu);
dee91e82 5494 init_one_comp_unit (cu, this_cu);
dee91e82 5495 /* If an error occurs while loading, release our storage. */
365156ad 5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5497 }
dee91e82 5498
b0c7bfa9 5499 /* Get the header. */
42e7ad6c
DE
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
3019eac3 5507 if (this_cu->is_debug_types)
dee91e82
DE
5508 {
5509 ULONGEST signature;
42e7ad6c 5510 cu_offset type_offset_in_tu;
dee91e82 5511
4bdcc0c1
DE
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
42e7ad6c
DE
5514 &signature,
5515 &type_offset_in_tu);
dee91e82 5516
42e7ad6c
DE
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
dee91e82
DE
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
42e7ad6c
DE
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
1ce1cefd 5527 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5532 }
5533 else
5534 {
4bdcc0c1
DE
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
dee91e82
DE
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5541 }
5542 }
10b3939b 5543
6caca83c 5544 /* Skip dummy compilation units. */
dee91e82 5545 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
dee91e82 5548 do_cleanups (cleanups);
21b2bd31 5549 return;
6caca83c
CC
5550 }
5551
433df2d4
DE
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
f4dc4d17
DE
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
dee91e82 5565 {
4bdcc0c1 5566 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
42e7ad6c
DE
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
af703f96 5574
dee91e82 5575 /* Read the top level CU/TU die. */
3019eac3 5576 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5578
b0c7bfa9
DE
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
3019eac3 5586 struct dwo_unit *dwo_unit;
b0c7bfa9 5587 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5588
5589 if (has_children)
6a506a2d
DE
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
b0c7bfa9 5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5597 if (dwo_unit != NULL)
3019eac3 5598 {
6a506a2d
DE
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
a2ce51a0 5601 comp_unit_die, NULL,
6a506a2d
DE
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
3019eac3
DE
5618 }
5619 }
5620
b0c7bfa9 5621 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
b0c7bfa9 5624 /* Done, clean up. */
365156ad 5625 if (free_cu_cleanup != NULL)
348e048f 5626 {
365156ad
TT
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
dee91e82 5632
365156ad
TT
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
dee91e82 5636
365156ad
TT
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
348e048f 5643 }
365156ad
TT
5644
5645 do_cleanups (cleanups);
dee91e82
DE
5646}
5647
33e80786
DE
5648/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
dee91e82
DE
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5653 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
3019eac3
DE
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5663
5664static void
5665init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5666 struct dwo_file *dwo_file,
dee91e82
DE
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669{
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5671 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5672 bfd *abfd = get_section_bfd_owner (section);
33e80786 5673 struct dwarf2_section_info *abbrev_section;
dee91e82 5674 struct dwarf2_cu cu;
d521ce57 5675 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
b4f54984 5681 if (dwarf_die_debug)
09406207
DE
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
dee91e82
DE
5686 gdb_assert (this_cu->cu == NULL);
5687
33e80786
DE
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
dee91e82
DE
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
3019eac3 5702 this_cu->is_debug_types);
dee91e82 5703
1ce1cefd 5704 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5709 {
dee91e82 5710 do_cleanups (cleanups);
21b2bd31 5711 return;
93311388 5712 }
72bf9492 5713
dee91e82
DE
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
3019eac3 5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723}
5724
3019eac3
DE
5725/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
dee91e82
DE
5728
5729 THIS_CU->cu is always freed when done.
3019eac3
DE
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5733
5734static void
5735init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738{
33e80786 5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5740}
0018ea6f
DE
5741\f
5742/* Type Unit Groups.
dee91e82 5743
0018ea6f
DE
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
ff013f42 5749
f4dc4d17
DE
5750static hashval_t
5751hash_type_unit_group (const void *item)
5752{
9a3c8263
SM
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
f4dc4d17 5755
094b34ac 5756 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5757}
348e048f
DE
5758
5759static int
f4dc4d17 5760eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5761{
9a3c8263
SM
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5764
094b34ac 5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5766}
348e048f 5767
f4dc4d17
DE
5768/* Allocate a hash table for type unit groups. */
5769
5770static htab_t
5771allocate_type_unit_groups_table (void)
5772{
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780}
dee91e82 5781
f4dc4d17
DE
5782/* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5787
094b34ac 5788/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791static struct type_unit_group *
094b34ac 5792create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5793{
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5795 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5796 struct type_unit_group *tu_group;
f4dc4d17
DE
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
094b34ac 5800 per_cu = &tu_group->per_cu;
f4dc4d17 5801 per_cu->objfile = objfile;
f4dc4d17 5802
094b34ac
DE
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
f4dc4d17 5823
094b34ac
DE
5824 xfree (name);
5825 }
f4dc4d17 5826
094b34ac
DE
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5829
5830 return tu_group;
5831}
5832
094b34ac
DE
5833/* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5835
5836static struct type_unit_group *
ff39bb5e 5837get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5838{
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
094b34ac
DE
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
9a3c8263 5877 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
094b34ac 5885 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891}
0018ea6f
DE
5892\f
5893/* Partial symbol tables. */
5894
5895/* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900static struct partial_symtab *
5901create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902{
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
18a94d75 5906 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918}
5919
b93601f3
TT
5920/* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923struct process_psymtab_comp_unit_data
5924{
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933};
5934
0018ea6f
DE
5935/* die_reader_func for process_psymtab_comp_unit. */
5936
5937static void
5938process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5939 const gdb_byte *info_ptr,
0018ea6f
DE
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943{
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
3e29f34a 5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
9a3c8263
SM
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5955
b93601f3 5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
b93601f3 5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
0018ea6f 5968 filename = "";
0018ea6f
DE
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
0018ea6f
DE
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
3e29f34a
MR
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6024
8763cede 6025 end_psymtab_common (objfile, pst);
0018ea6f
DE
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
8d749320
SM
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
b4f54984 6051 if (dwarf_read_debug)
0018ea6f
DE
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064}
6065
6066/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069static void
6070process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6071 int want_partial_unit,
6072 enum language pretend_language)
0018ea6f 6073{
b93601f3
TT
6074 struct process_psymtab_comp_unit_data info;
6075
0018ea6f
DE
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
0018ea6f
DE
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
b93601f3 6089 &info);
0018ea6f
DE
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093}
f4dc4d17
DE
6094
6095/* Reader function for build_type_psymtabs. */
6096
6097static void
6098build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6099 const gdb_byte *info_ptr,
f4dc4d17
DE
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103{
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6107 struct signatured_type *sig_type;
f4dc4d17
DE
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
0186c6a7
DE
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6122 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6123
0186c6a7 6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
8763cede 6137 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6138}
6139
73051182
DE
6140/* Struct used to sort TUs by their abbreviation table offset. */
6141
6142struct tu_abbrev_offset
6143{
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146};
6147
6148/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150static int
6151sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152{
9a3c8263
SM
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161}
6162
6163/* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181static void
6182build_type_psymtabs_1 (void)
6183{
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
b4f54984 6218 if (dwarf_read_debug)
73051182
DE
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
73051182 6268 do_cleanups (cleanups);
6aa5f3a6 6269}
73051182 6270
6aa5f3a6
DE
6271/* Print collected type unit statistics. */
6272
6273static void
6274print_tu_stats (void)
6275{
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6291}
6292
f4dc4d17
DE
6293/* Traversal function for build_type_psymtabs. */
6294
6295static int
6296build_type_psymtab_dependencies (void **slot, void *info)
6297{
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6301 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
f4dc4d17
DE
6304 int i;
6305
6306 gdb_assert (len > 0);
0186c6a7 6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6308
6309 pst->number_of_dependencies = len;
8d749320
SM
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6312 for (i = 0;
0186c6a7 6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6314 ++i)
6315 {
0186c6a7
DE
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6318 iter->type_unit_group = tu_group;
f4dc4d17
DE
6319 }
6320
0186c6a7 6321 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6322
6323 return 1;
6324}
6325
6326/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329static void
6330build_type_psymtabs (struct objfile *objfile)
6331{
0e50663e 6332 if (! create_all_type_units (objfile))
348e048f
DE
6333 return;
6334
73051182 6335 build_type_psymtabs_1 ();
6aa5f3a6 6336}
f4dc4d17 6337
6aa5f3a6
DE
6338/* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341static int
6342process_skeletonless_type_unit (void **slot, void *info)
6343{
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6345 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375}
6376
6377/* Traversal function for process_skeletonless_type_units. */
6378
6379static int
6380process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381{
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391}
6392
6393/* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397static void
6398process_skeletonless_type_units (struct objfile *objfile)
6399{
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
348e048f
DE
6408}
6409
60606b2c
TT
6410/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412static void
6413psymtabs_addrmap_cleanup (void *o)
6414{
9a3c8263 6415 struct objfile *objfile = (struct objfile *) o;
ec61707d 6416
60606b2c
TT
6417 objfile->psymtabs_addrmap = NULL;
6418}
6419
95554aad
TT
6420/* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422static void
6423set_partial_user (struct objfile *objfile)
6424{
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
8832e7e3 6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
36586728
TT
6433 if (pst == NULL)
6434 continue;
6435
95554aad
TT
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443}
6444
93311388
DE
6445/* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
72bf9492 6447
93311388 6448static void
c67a9c90 6449dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6450{
60606b2c
TT
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
21b2bd31 6453 int i;
93311388 6454
b4f54984 6455 if (dwarf_read_debug)
45cfd468
DE
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6458 objfile_name (objfile));
45cfd468
DE
6459 }
6460
98bfdba5
PA
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
be391dca 6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6464
93311388
DE
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6468
348e048f
DE
6469 build_type_psymtabs (objfile);
6470
93311388 6471 create_all_comp_units (objfile);
c906108c 6472
60606b2c
TT
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6479
21b2bd31 6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6481 {
8832e7e3 6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6483
b93601f3 6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6485 }
ff013f42 6486
6aa5f3a6
DE
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
b4f54984 6497 if (dwarf_read_debug)
6aa5f3a6
DE
6498 print_tu_stats ();
6499
95554aad
TT
6500 set_partial_user (objfile);
6501
ff013f42
JK
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
60606b2c 6504 discard_cleanups (addrmap_cleanup);
ff013f42 6505
ae038cb0 6506 do_cleanups (back_to);
45cfd468 6507
b4f54984 6508 if (dwarf_read_debug)
45cfd468 6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6510 objfile_name (objfile));
ae038cb0
DJ
6511}
6512
3019eac3 6513/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6514
6515static void
dee91e82 6516load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6517 const gdb_byte *info_ptr,
dee91e82
DE
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
ae038cb0 6521{
dee91e82 6522 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6523
95554aad 6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6525
ae038cb0
DJ
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6528 If not, there's no more debug_info for this comp unit. */
d85a05f0 6529 if (has_children)
dee91e82
DE
6530 load_partial_dies (reader, info_ptr, 0);
6531}
98bfdba5 6532
dee91e82
DE
6533/* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6535
dee91e82
DE
6536static void
6537load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538{
f4dc4d17
DE
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6541}
6542
ae038cb0 6543static void
36586728
TT
6544read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6550{
d521ce57 6551 const gdb_byte *info_ptr;
a32a8923 6552 bfd *abfd = get_section_bfd_owner (section);
be391dca 6553
b4f54984 6554 if (dwarf_read_debug)
bf6af496 6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6556 get_section_name (section),
6557 get_section_file_name (section));
bf6af496 6558
36586728 6559 dwarf2_read_section (objfile, section);
ae038cb0 6560
36586728 6561 info_ptr = section->buffer;
6e70227d 6562
36586728 6563 while (info_ptr < section->buffer + section->size)
ae038cb0 6564 {
c764a876 6565 unsigned int length, initial_length_size;
ae038cb0 6566 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6567 sect_offset offset;
ae038cb0 6568
36586728 6569 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
36586728 6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6574
6575 /* Save the compilation unit for later lookup. */
8d749320 6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
c764a876 6579 this_cu->length = length + initial_length_size;
36586728 6580 this_cu->is_dwz = is_dwz;
9291a0cd 6581 this_cu->objfile = objfile;
8a0459fd 6582 this_cu->section = section;
ae038cb0 6583
36586728 6584 if (*n_comp_units == *n_allocated)
ae038cb0 6585 {
36586728 6586 *n_allocated *= 2;
224c3ddb
SM
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
ae038cb0 6589 }
36586728
TT
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
ae038cb0
DJ
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
36586728
TT
6595}
6596
6597/* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600static void
6601create_all_comp_units (struct objfile *objfile)
6602{
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6606 struct dwz_file *dwz;
36586728
TT
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
8d749320 6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
4db1a1dc
TT
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
ae038cb0 6620
8d749320
SM
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
ae038cb0
DJ
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6628}
6629
5734ee8b 6630/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6635
72bf9492
DJ
6636static void
6637scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
c906108c 6640{
72bf9492 6641 struct partial_die_info *pdi;
c906108c 6642
91c24f0a
DC
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
c906108c 6646
72bf9492 6647 pdi = first_die;
91c24f0a 6648
72bf9492
DJ
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
c906108c 6652
f55ee35c 6653 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
933c6fe4 6656
72bf9492 6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
c906108c 6660 {
72bf9492 6661 switch (pdi->tag)
c906108c
SS
6662 {
6663 case DW_TAG_subprogram:
cdc07690 6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6665 break;
72929c62 6666 case DW_TAG_constant:
c906108c
SS
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
91c24f0a 6669 case DW_TAG_union_type:
72bf9492 6670 if (!pdi->is_declaration)
63d06c5c 6671 {
72bf9492 6672 add_partial_symbol (pdi, cu);
63d06c5c
DC
6673 }
6674 break;
c906108c 6675 case DW_TAG_class_type:
680b30c7 6676 case DW_TAG_interface_type:
c906108c 6677 case DW_TAG_structure_type:
72bf9492 6678 if (!pdi->is_declaration)
c906108c 6679 {
72bf9492 6680 add_partial_symbol (pdi, cu);
c906108c
SS
6681 }
6682 break;
91c24f0a 6683 case DW_TAG_enumeration_type:
72bf9492
DJ
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
c906108c
SS
6686 break;
6687 case DW_TAG_base_type:
a02abb62 6688 case DW_TAG_subrange_type:
c906108c 6689 /* File scope base type definitions are added to the partial
c5aa993b 6690 symbol table. */
72bf9492 6691 add_partial_symbol (pdi, cu);
c906108c 6692 break;
d9fa45fe 6693 case DW_TAG_namespace:
cdc07690 6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6695 break;
5d7cb8df 6696 case DW_TAG_module:
cdc07690 6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6698 break;
95554aad
TT
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
f4dc4d17
DE
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
4262abfb 6708 objfile_name (cu->objfile));
f4dc4d17
DE
6709 }
6710
95554aad 6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6712 pdi->is_dwz,
95554aad
TT
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
b93601f3 6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6718
f4dc4d17 6719 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6720 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6721 }
6722 break;
74921315
KS
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
c906108c
SS
6726 default:
6727 break;
6728 }
6729 }
6730
72bf9492
DJ
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735}
6736
6737/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6738
72bf9492 6739 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
91c24f0a 6745
72bf9492
DJ
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757/* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
15d034d0 6761static const char *
72bf9492
DJ
6762partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764{
15d034d0 6765 const char *grandparent_scope;
72bf9492 6766 struct partial_die_info *parent, *real_pdi;
91c24f0a 6767
72bf9492
DJ
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
72bf9492 6772 while (real_pdi->has_specification)
36586728
TT
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
10b3939b 6785 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6786
acebe513
UW
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6e70227d 6791 && parent->tag == DW_TAG_namespace
acebe513
UW
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
9c6c53f7
SA
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
f55ee35c 6804 || parent->tag == DW_TAG_module
72bf9492
DJ
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
680b30c7 6807 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
3e43a32a
MS
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
f55ee35c 6816 parent->name, 0, cu);
72bf9492 6817 }
72bf9492
DJ
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
e2e0b3e5 6824 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6825 parent->tag, pdi->offset.sect_off);
72bf9492 6826 parent->scope = grandparent_scope;
c906108c
SS
6827 }
6828
72bf9492
DJ
6829 parent->scope_set = 1;
6830 return parent->scope;
6831}
6832
6833/* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
4568ecf9 6835
72bf9492
DJ
6836static char *
6837partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839{
15d034d0 6840 const char *parent_scope;
72bf9492 6841
98bfdba5
PA
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
b64f50a1 6856 /* DW_FORM_ref_addr is using section offset. */
b4069958 6857 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6858 attr.form = DW_FORM_ref_addr;
4568ecf9 6859 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
72bf9492
DJ
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
f55ee35c 6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6871}
6872
6873static void
72bf9492 6874add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6875{
e7c27a73 6876 struct objfile *objfile = cu->objfile;
3e29f34a 6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6878 CORE_ADDR addr = 0;
15d034d0 6879 const char *actual_name = NULL;
e142c38c 6880 CORE_ADDR baseaddr;
15d034d0 6881 char *built_actual_name;
e142c38c
DJ
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6884
15d034d0
TT
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
63d06c5c 6888
72bf9492
DJ
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
c906108c
SS
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
3e29f34a 6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6896 if (pdi->is_external || cu->language == language_ada)
c906108c 6897 {
2cfa0c8d
JB
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
f47fb265 6902 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6903 built_actual_name != NULL,
f47fb265
MS
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
1762568f 6906 addr, cu->language, objfile);
c906108c
SS
6907 }
6908 else
6909 {
f47fb265 6910 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6911 built_actual_name != NULL,
f47fb265
MS
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
1762568f 6914 addr, cu->language, objfile);
c906108c
SS
6915 }
6916 break;
72929c62
JB
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
f47fb265 6925 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6927 list, 0, cu->language, objfile);
72929c62
JB
6928 }
6929 break;
c906108c 6930 case DW_TAG_variable:
95554aad
TT
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6933
95554aad 6934 if (pdi->d.locdesc
caac4577
JG
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
c906108c
SS
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
95554aad 6958 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6959 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6960 built_actual_name != NULL,
f47fb265
MS
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
1762568f 6963 addr + baseaddr,
f47fb265 6964 cu->language, objfile);
c906108c
SS
6965 }
6966 else
6967 {
ff908ebf
AW
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
decbce07 6973 {
15d034d0 6974 xfree (built_actual_name);
decbce07
MS
6975 return;
6976 }
ff908ebf 6977
f47fb265 6978 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6979 built_actual_name != NULL,
f47fb265
MS
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
ff908ebf 6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6983 cu->language, objfile);
c906108c
SS
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
a02abb62 6988 case DW_TAG_subrange_type:
38d518c9 6989 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6990 built_actual_name != NULL,
176620f1 6991 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6992 &objfile->static_psymbols,
1762568f 6993 0, cu->language, objfile);
c906108c 6994 break;
74921315 6995 case DW_TAG_imported_declaration:
72bf9492
DJ
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6998 built_actual_name != NULL,
72bf9492
DJ
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
1762568f 7001 0, cu->language, objfile);
72bf9492 7002 break;
530e8392
KB
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
1762568f 7008 0, cu->language, objfile);
530e8392 7009 break;
c906108c 7010 case DW_TAG_class_type:
680b30c7 7011 case DW_TAG_interface_type:
c906108c
SS
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
fa4028e9
JB
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7021 {
15d034d0 7022 xfree (built_actual_name);
decbce07
MS
7023 return;
7024 }
fa4028e9 7025
63d06c5c
DC
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
38d518c9 7028 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7029 built_actual_name != NULL,
176620f1 7030 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
63d06c5c
DC
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
1762568f 7035 0, cu->language, objfile);
c906108c 7036
c906108c
SS
7037 break;
7038 case DW_TAG_enumerator:
38d518c9 7039 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7040 built_actual_name != NULL,
176620f1 7041 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
f6fe98ef
DJ
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
1762568f 7046 0, cu->language, objfile);
c906108c
SS
7047 break;
7048 default:
7049 break;
7050 }
5c4e30ca 7051
15d034d0 7052 xfree (built_actual_name);
c906108c
SS
7053}
7054
5c4e30ca
DC
7055/* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
91c24f0a 7058
72bf9492
DJ
7059static void
7060add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7062 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7063{
72bf9492 7064 /* Add a symbol for the namespace. */
e7c27a73 7065
72bf9492 7066 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7067
7068 /* Now scan partial symbols in that namespace. */
7069
91c24f0a 7070 if (pdi->has_children)
cdc07690 7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7072}
7073
5d7cb8df
JK
7074/* Read a partial die corresponding to a Fortran module. */
7075
7076static void
7077add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7079{
530e8392
KB
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
f55ee35c 7084 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7085
7086 if (pdi->has_children)
cdc07690 7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7088}
7089
bc30ff58
JB
7090/* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
cdc07690 7093 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
6e70227d 7096
cdc07690
YQ
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102static void
7103add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7105 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7106{
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
cdc07690 7115 if (set_addrmap)
5734ee8b 7116 {
5734ee8b 7117 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
5734ee8b
DJ
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7130 cu->per_cu->v.psymtab);
5734ee8b 7131 }
481860b3
GB
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
bc30ff58 7136 if (!pdi->is_declaration)
e8d05480
JB
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
bc30ff58
JB
7142 }
7143 }
6e70227d 7144
bc30ff58
JB
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160}
7161
91c24f0a
DC
7162/* Read a partial die corresponding to an enumeration type. */
7163
72bf9492
DJ
7164static void
7165add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
91c24f0a 7167{
72bf9492 7168 struct partial_die_info *pdi;
91c24f0a
DC
7169
7170 if (enum_pdi->name != NULL)
72bf9492
DJ
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
91c24f0a 7175 {
72bf9492 7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7178 else
72bf9492
DJ
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
91c24f0a 7181 }
91c24f0a
DC
7182}
7183
6caca83c
CC
7184/* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186static unsigned int
d521ce57 7187peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7188{
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192}
7193
4bb7a0a7
DJ
7194/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199static struct abbrev_info *
d521ce57 7200peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7201 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7202{
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
433df2d4 7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7213 if (!abbrev)
7214 {
422b9917
DE
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7219 }
7220
7221 return abbrev;
7222}
7223
93311388
DE
7224/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
d521ce57
TT
7228static const gdb_byte *
7229skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7230{
dee91e82 7231 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
dee91e82 7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7242 }
7243}
7244
93311388
DE
7245/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
d521ce57
TT
7251static const gdb_byte *
7252skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7253 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7254{
7255 unsigned int bytes_read;
7256 struct attribute attr;
dee91e82
DE
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
d521ce57 7259 const gdb_byte *buffer = reader->buffer;
f664829e 7260 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7261 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
dee91e82 7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7270 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7273 else
b9502d3f
WN
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
22869d73
KS
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7283 else
7284 return sibling_ptr;
7285 }
4bb7a0a7
DJ
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
4bb7a0a7 7293 case DW_FORM_ref_addr:
ae411497
TT
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
36586728
TT
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
ae411497 7304 case DW_FORM_addr:
4bb7a0a7
DJ
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
2dc7f7b3
TT
7312 case DW_FORM_flag_present:
7313 break;
4bb7a0a7
DJ
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
55f1336d 7324 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
9b1c24c8 7328 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7329 info_ptr += bytes_read;
7330 break;
2dc7f7b3 7331 case DW_FORM_sec_offset:
4bb7a0a7 7332 case DW_FORM_strp:
36586728 7333 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7334 info_ptr += cu->header.offset_size;
7335 break;
2dc7f7b3 7336 case DW_FORM_exprloc:
4bb7a0a7
DJ
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
3019eac3
DE
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
d521ce57 7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
3e43a32a
MS
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
dee91e82 7373 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7374 else
7375 return info_ptr;
7376}
7377
93311388 7378/* Locate ORIG_PDI's sibling.
dee91e82 7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7380
d521ce57 7381static const gdb_byte *
dee91e82
DE
7382locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
d521ce57 7384 const gdb_byte *info_ptr)
91c24f0a
DC
7385{
7386 /* Do we know the sibling already? */
72bf9492 7387
91c24f0a
DC
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
4bb7a0a7 7396 /* Skip the children the long way. */
91c24f0a 7397
dee91e82 7398 return skip_children (reader, info_ptr);
91c24f0a
DC
7399}
7400
257e7a09 7401/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7402 not NULL. */
c906108c
SS
7403
7404static void
257e7a09
YQ
7405dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
c906108c 7407{
257e7a09 7408 if (self->readin)
c906108c 7409 {
442e4d9c 7410 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7411 self->filename);
442e4d9c
YQ
7412 }
7413 else
7414 {
7415 if (info_verbose)
c906108c 7416 {
442e4d9c 7417 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7418 self->filename);
442e4d9c 7419 gdb_flush (gdb_stdout);
c906108c 7420 }
c906108c 7421
442e4d9c 7422 /* Restore our global data. */
9a3c8263
SM
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
10b3939b 7426
442e4d9c
YQ
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
9a619af0 7437
442e4d9c
YQ
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
b2ab525c 7441
442e4d9c 7442 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7443
257e7a09 7444 psymtab_to_symtab_1 (self);
c906108c 7445
442e4d9c
YQ
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
c906108c 7449 }
95554aad
TT
7450
7451 process_cu_includes ();
c906108c 7452}
9cdd5dbd
DE
7453\f
7454/* Reading in full CUs. */
c906108c 7455
10b3939b
DJ
7456/* Add PER_CU to the queue. */
7457
7458static void
95554aad
TT
7459queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
10b3939b
DJ
7461{
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
8d749320 7465 item = XNEW (struct dwarf2_queue_item);
10b3939b 7466 item->per_cu = per_cu;
95554aad 7467 item->pretend_language = pretend_language;
10b3939b
DJ
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476}
7477
89e63ee4
DE
7478/* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
0907af0c 7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7486
7487static int
89e63ee4 7488maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491{
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
89e63ee4
DE
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523}
7524
10b3939b
DJ
7525/* Process the queue. */
7526
7527static void
a0f42c21 7528process_queue (void)
10b3939b
DJ
7529{
7530 struct dwarf2_queue_item *item, *next_item;
7531
b4f54984 7532 if (dwarf_read_debug)
45cfd468
DE
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7536 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7537 }
7538
03dd20cc
DJ
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
cc12ce38
DE
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
f4dc4d17
DE
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7550 unsigned int debug_print_threshold;
247f5c4f 7551 char buf[100];
f4dc4d17 7552
247f5c4f 7553 if (per_cu->is_debug_types)
f4dc4d17 7554 {
247f5c4f
DE
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
f4dc4d17 7564 }
247f5c4f 7565 else
73be47f5
DE
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
247f5c4f 7570
b4f54984 7571 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
b4f54984 7579 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7581 }
10b3939b
DJ
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
45cfd468 7589
b4f54984 7590 if (dwarf_read_debug)
45cfd468
DE
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7593 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7594 }
10b3939b
DJ
7595}
7596
7597/* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601static void
7602dwarf2_release_queue (void *dummy)
7603{
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
dee91e82 7614 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624}
7625
7626/* Read in full symbols for PST, and anything it depends on. */
7627
c906108c 7628static void
fba45db2 7629psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7630{
10b3939b 7631 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7632 int i;
7633
95554aad
TT
7634 if (pst->readin)
7635 return;
7636
aaa75496 7637 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
a3f17187 7644 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7650 wrap_here (""); /* Flush output. */
aaa75496
JB
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
9a3c8263 7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7657
7658 if (per_cu == NULL)
aaa75496
JB
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
c906108c 7665
a0f42c21 7666 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7667}
7668
dee91e82
DE
7669/* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
10b3939b 7671
dee91e82
DE
7672static hashval_t
7673die_hash (const void *item)
10b3939b 7674{
9a3c8263 7675 const struct die_info *die = (const struct die_info *) item;
6502dd73 7676
dee91e82
DE
7677 return die->offset.sect_off;
7678}
63d06c5c 7679
dee91e82
DE
7680/* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
98bfdba5 7682
dee91e82
DE
7683static int
7684die_eq (const void *item_lhs, const void *item_rhs)
7685{
9a3c8263
SM
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7688
dee91e82
DE
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690}
c906108c 7691
dee91e82
DE
7692/* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
c906108c 7695
dee91e82
DE
7696static void
7697load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7698 const gdb_byte *info_ptr,
dee91e82
DE
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702{
7703 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7704 enum language *language_ptr = (enum language *) data;
6caca83c 7705
dee91e82
DE
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
e142c38c 7715
dee91e82
DE
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7721
7722 /* We try not to read any attributes in this function, because not
9cdd5dbd 7723 all CUs needed for references have been loaded yet, and symbol
10b3939b 7724 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
95554aad 7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7729}
10b3939b 7730
dee91e82 7731/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7732
dee91e82 7733static void
95554aad
TT
7734load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
dee91e82 7736{
3019eac3 7737 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7738
f4dc4d17
DE
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7741}
7742
3da10d80
KS
7743/* Add a DIE to the delayed physname list. */
7744
7745static void
7746add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749{
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757}
7758
7759/* A cleanup for freeing the delayed method list. */
7760
7761static void
7762free_delayed_list (void *ptr)
7763{
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770}
7771
7772/* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778static void
7779compute_delayed_physnames (struct dwarf2_cu *cu)
7780{
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
1d06ead6 7785 const char *physname;
3da10d80
KS
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7788 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
3da10d80
KS
7791 }
7792}
7793
a766d390
DE
7794/* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805static void
7806fixup_go_packaging (struct dwarf2_cu *cu)
7807{
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
4262abfb 7835 : objfile_name (cu->objfile)),
a766d390
DE
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
34a68019 7846 const char *saved_package_name
224c3ddb
SM
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
a766d390 7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7851 saved_package_name, objfile);
a766d390
DE
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
e623cf5d 7856 sym = allocate_symbol (objfile);
f85f34ed 7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
a766d390
DE
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870}
7871
95554aad
TT
7872/* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
43f3e411
DE
7875static struct compunit_symtab *
7876get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7877{
7878 return (dwarf2_per_objfile->using_index
43f3e411
DE
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7881}
7882
7883/* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886static void
43f3e411 7887recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7888 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7889 struct dwarf2_per_cu_data *per_cu,
43f3e411 7890 struct compunit_symtab *immediate_parent)
95554aad
TT
7891{
7892 void **slot;
7893 int ix;
43f3e411 7894 struct compunit_symtab *cust;
95554aad
TT
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
ec94af83
DE
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
43f3e411 7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7914 if (*slot == NULL)
7915 {
43f3e411
DE
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
ec94af83
DE
7920 }
7921 }
7922 else
f9125b6c 7923 {
43f3e411
DE
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
f9125b6c 7927 }
ec94af83 7928 }
95554aad
TT
7929
7930 for (ix = 0;
796a7ff8 7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7932 ++ix)
ec94af83
DE
7933 {
7934 recursively_compute_inclusions (result, all_children,
43f3e411 7935 all_type_symtabs, iter, cust);
ec94af83 7936 }
95554aad
TT
7937}
7938
43f3e411 7939/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7940 PER_CU. */
7941
7942static void
43f3e411 7943compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7944{
f4dc4d17
DE
7945 gdb_assert (! per_cu->is_debug_types);
7946
796a7ff8 7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7948 {
7949 int ix, len;
ec94af83 7950 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7953 htab_t all_children, all_type_symtabs;
43f3e411 7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7955
7956 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7957 if (cust == NULL)
95554aad
TT
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
ec94af83
DE
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
95554aad
TT
7964
7965 for (ix = 0;
796a7ff8 7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7967 ix, per_cu_iter);
95554aad 7968 ++ix)
ec94af83
DE
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7971 all_type_symtabs, per_cu_iter,
43f3e411 7972 cust);
ec94af83 7973 }
95554aad 7974
ec94af83 7975 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
8d749320
SM
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
95554aad 7980 for (ix = 0;
43f3e411
DE
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
95554aad 7983 ++ix)
43f3e411
DE
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
95554aad 7986
43f3e411 7987 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7988 htab_delete (all_children);
ec94af83 7989 htab_delete (all_type_symtabs);
95554aad
TT
7990 }
7991}
7992
7993/* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996static void
7997process_cu_includes (void)
7998{
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
f4dc4d17
DE
8006 {
8007 if (! iter->is_debug_types)
43f3e411 8008 compute_compunit_symtab_includes (iter);
f4dc4d17 8009 }
95554aad
TT
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012}
8013
9cdd5dbd 8014/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8015 already been loaded into memory. */
8016
8017static void
95554aad
TT
8018process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
10b3939b 8020{
10b3939b 8021 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8022 struct objfile *objfile = per_cu->objfile;
3e29f34a 8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8024 CORE_ADDR lowpc, highpc;
43f3e411 8025 struct compunit_symtab *cust;
3da10d80 8026 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8027 CORE_ADDR baseaddr;
4359dff1 8028 struct block *static_block;
3e29f34a 8029 CORE_ADDR addr;
10b3939b
DJ
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
10b3939b
DJ
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8036
8037 cu->list_in_scope = &file_symbols;
c906108c 8038
95554aad
TT
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
c906108c 8042 /* Do line number decoding in read_file_scope () */
10b3939b 8043 process_die (cu->dies, cu);
c906108c 8044
a766d390
DE
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
3da10d80
KS
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
fae299cd
DC
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
10b3939b 8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8059
3e29f34a
MR
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
43f3e411
DE
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
c906108c 8072
43f3e411 8073 if (cust != NULL)
c906108c 8074 {
df15bd07 8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8076
8be455d7
JK
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
43f3e411 8080 if (!(cu->language == language_c
40e3ad0e 8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
ab260dad 8096 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8097 cust->locations_valid = 1;
e0d00bc7
JK
8098
8099 if (gcc_4_minor >= 5)
43f3e411 8100 cust->epilogue_unwind_valid = 1;
96408a79 8101
43f3e411 8102 cust->call_site_htab = cu->call_site_htab;
c906108c 8103 }
9291a0cd
TT
8104
8105 if (dwarf2_per_objfile->using_index)
43f3e411 8106 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8110 pst->compunit_symtab = cust;
9291a0cd
TT
8111 pst->readin = 1;
8112 }
c906108c 8113
95554aad
TT
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
c906108c 8117 do_cleanups (back_to);
f4dc4d17 8118}
45cfd468 8119
f4dc4d17
DE
8120/* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123static void
8124process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126{
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
43f3e411 8129 struct compunit_symtab *cust;
f4dc4d17 8130 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
43f3e411 8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8163 {
43f3e411
DE
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8166
43f3e411 8167 if (cust != NULL)
f4dc4d17
DE
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
43f3e411
DE
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8176 }
8177 }
8178 else
8179 {
0ab9ce85 8180 augment_type_symtab ();
43f3e411 8181 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
43f3e411 8185 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8189 pst->compunit_symtab = cust;
f4dc4d17 8190 pst->readin = 1;
45cfd468 8191 }
f4dc4d17
DE
8192
8193 do_cleanups (back_to);
c906108c
SS
8194}
8195
95554aad
TT
8196/* Process an imported unit DIE. */
8197
8198static void
8199process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200{
8201 struct attribute *attr;
8202
f4dc4d17
DE
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
4262abfb 8208 objfile_name (cu->objfile));
f4dc4d17
DE
8209 }
8210
95554aad
TT
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
36586728 8217 int is_dwz;
95554aad
TT
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8222
69d751e3 8223 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
796a7ff8 8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8228 per_cu);
8229 }
8230}
8231
adde2bff
DE
8232/* Reset the in_process bit of a die. */
8233
8234static void
8235reset_die_in_process (void *arg)
8236{
9a3c8263 8237 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8238
adde2bff
DE
8239 die->in_process = 0;
8240}
8241
c906108c
SS
8242/* Process a die and its children. */
8243
8244static void
e7c27a73 8245process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8246{
adde2bff
DE
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
c906108c
SS
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
95554aad 8260 case DW_TAG_partial_unit:
e7c27a73 8261 read_file_scope (die, cu);
c906108c 8262 break;
348e048f
DE
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
c906108c 8266 case DW_TAG_subprogram:
c906108c 8267 case DW_TAG_inlined_subroutine:
edb3359d 8268 read_func_scope (die, cu);
c906108c
SS
8269 break;
8270 case DW_TAG_lexical_block:
14898363
L
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
e7c27a73 8273 read_lexical_block_scope (die, cu);
c906108c 8274 break;
96408a79
SA
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
c906108c 8278 case DW_TAG_class_type:
680b30c7 8279 case DW_TAG_interface_type:
c906108c
SS
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
134d01f1 8282 process_structure_scope (die, cu);
c906108c
SS
8283 break;
8284 case DW_TAG_enumeration_type:
134d01f1 8285 process_enumeration_scope (die, cu);
c906108c 8286 break;
134d01f1 8287
f792889a
DJ
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
c906108c 8291 case DW_TAG_subroutine_type:
72019c9c 8292 case DW_TAG_set_type:
c906108c 8293 case DW_TAG_array_type:
c906108c 8294 case DW_TAG_pointer_type:
c906108c 8295 case DW_TAG_ptr_to_member_type:
c906108c 8296 case DW_TAG_reference_type:
c906108c 8297 case DW_TAG_string_type:
c906108c 8298 break;
134d01f1 8299
c906108c 8300 case DW_TAG_base_type:
a02abb62 8301 case DW_TAG_subrange_type:
cb249c71 8302 case DW_TAG_typedef:
134d01f1
DJ
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
f792889a 8305 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8306 break;
c906108c 8307 case DW_TAG_common_block:
e7c27a73 8308 read_common_block (die, cu);
c906108c
SS
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
d9fa45fe 8312 case DW_TAG_namespace:
4d4ec4e5 8313 cu->processing_has_namespace_info = 1;
e7c27a73 8314 read_namespace (die, cu);
d9fa45fe 8315 break;
5d7cb8df 8316 case DW_TAG_module:
4d4ec4e5 8317 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8318 read_module (die, cu);
8319 break;
d9fa45fe 8320 case DW_TAG_imported_declaration:
74921315
KS
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8325 case DW_TAG_imported_module:
4d4ec4e5 8326 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
d9fa45fe 8332 break;
95554aad
TT
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
c906108c 8338 default:
e7c27a73 8339 new_symbol (die, NULL, cu);
c906108c
SS
8340 break;
8341 }
adde2bff
DE
8342
8343 do_cleanups (in_process);
c906108c 8344}
ca69b9e6
DE
8345\f
8346/* DWARF name computation. */
c906108c 8347
94af9270
KS
8348/* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352static int
8353die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354{
1c809c68
TT
8355 struct attribute *attr;
8356
94af9270
KS
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
08a76f8a 8368 case DW_TAG_inlined_subroutine:
94af9270 8369 case DW_TAG_member:
74921315 8370 case DW_TAG_imported_declaration:
94af9270
KS
8371 return 1;
8372
8373 case DW_TAG_variable:
c2b0a229 8374 case DW_TAG_constant:
94af9270
KS
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
9a619af0 8383
94af9270
KS
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
1c809c68 8388 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8399 return 0;
8400 return 1;
94af9270
KS
8401
8402 default:
8403 return 0;
8404 }
8405}
8406
98bfdba5
PA
8407/* Retrieve the last character from a mem_file. */
8408
8409static void
8410do_ui_file_peek_last (void *object, const char *buffer, long length)
8411{
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416}
8417
94af9270 8418/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
94af9270 8427
af6b7be1
JB
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
94af9270
KS
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433static const char *
15d034d0
TT
8434dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8436 int physname)
8437{
bb5ed363
DE
8438 struct objfile *objfile = cu->objfile;
8439
94af9270
KS
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
2ee7123e
DE
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
2ee7123e 8458 const char *linkage_name;
f55ee35c 8459
2ee7123e
DE
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
f55ee35c
JK
8465 }
8466
94af9270
KS
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
f55ee35c 8469 && (cu->language == language_cplus || cu->language == language_java
45280282 8470 || cu->language == language_fortran || cu->language == language_d))
94af9270
KS
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
0d5cff50 8475 const char *prefix;
94af9270 8476 struct ui_file *buf;
34a68019
TT
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
94af9270
KS
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
f55ee35c
JK
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
9a619af0 8486
94af9270
KS
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
62d5b8da 8491 fputs_unfiltered (name, buf);
94af9270 8492
98bfdba5
PA
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
12df843f 8525 LONGEST value;
d521ce57 8526 const gdb_byte *bytes;
98bfdba5
PA
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
79d43c61 8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
3e43a32a
MS
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
98bfdba5
PA
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
3e43a32a
MS
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
98bfdba5
PA
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
94af9270
KS
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
6e70227d 8621
94af9270
KS
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
79d43c61
TT
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
94af9270
KS
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
0963b4bd 8634 names. */
94af9270
KS
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8637 0, 0, &type_print_raw_options);
94af9270
KS
8638 }
8639 else if (cu->language == language_cplus)
8640 {
60430eff
DJ
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
94af9270
KS
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
94af9270
KS
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
34a68019 8655 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
34a68019
TT
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
34a68019
TT
8671 else
8672 name = canonical_name;
9a619af0 8673
34a68019 8674 xfree (intermediate_name);
94af9270
KS
8675 }
8676 }
8677
8678 return name;
8679}
8680
0114d602
DJ
8681/* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
34a68019 8683 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
0963b4bd 8687 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8688
8689static const char *
15d034d0 8690dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8691{
94af9270
KS
8692 return dwarf2_compute_name (name, die, cu, 0);
8693}
0114d602 8694
94af9270
KS
8695/* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
0114d602 8699
94af9270 8700 The output string will be canonicalized (if C++/Java). */
0114d602 8701
94af9270 8702static const char *
15d034d0 8703dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8704{
bb5ed363 8705 struct objfile *objfile = cu->objfile;
900e11f9
JK
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
7d45c7c3
KB
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9
JK
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
7d45c7c3 8724 if (mangled != NULL)
900e11f9
JK
8725 {
8726 char *demangled;
8727
900e11f9
JK
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
a766d390
DE
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8de20a37
TT
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
a766d390 8751 }
900e11f9
JK
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
900e11f9
JK
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
224c3ddb
SM
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
900e11f9
JK
8799
8800 do_cleanups (back_to);
8801 return retval;
0114d602
DJ
8802}
8803
74921315
KS
8804/* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809static int
8810read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811{
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862}
8863
22cee43f
PMR
8864/* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873static struct using_direct **
8874using_directives (enum language language)
8875{
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880}
8881
27aa8d6a
SW
8882/* Read the import statement specified by the given die and record it. */
8883
8884static void
8885read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886{
bb5ed363 8887 struct objfile *objfile = cu->objfile;
27aa8d6a 8888 struct attribute *import_attr;
32019081 8889 struct die_info *imported_die, *child_die;
de4affc9 8890 struct dwarf2_cu *imported_cu;
27aa8d6a 8891 const char *imported_name;
794684b6 8892 const char *imported_name_prefix;
13387711
SW
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
794684b6 8896 const char *import_prefix;
32019081
JK
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
13387711 8899
27aa8d6a
SW
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
de4affc9
CC
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
82856980
SW
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
27aa8d6a 8950
794684b6
SW
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
de4affc9 8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8957
f55ee35c
JK
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
794684b6 8960 {
13387711
SW
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
794684b6 8963 }
13387711 8964 else if (strlen (imported_name_prefix) > 0)
12aaed36 8965 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
13387711
SW
8969 else
8970 canonical_name = imported_name;
794684b6 8971
32019081
JK
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
4262abfb 8988 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9009 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
22cee43f
PMR
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
32019081
JK
9026
9027 do_cleanups (cleanups);
27aa8d6a
SW
9028}
9029
f4dc4d17 9030/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9031
cb1df416
DJ
9032static void
9033free_cu_line_header (void *arg)
9034{
9a3c8263 9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039}
9040
1b80a9fa
JK
9041/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045static int
9046producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047{
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052}
9053
9291a0cd
TT
9054static void
9055find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9056 const char **name, const char **comp_dir)
9291a0cd 9057{
9291a0cd
TT
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
7d45c7c3
KB
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9062
7d45c7c3
KB
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9066 {
15d034d0
TT
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9291a0cd
TT
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
e6a959d6 9077 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085}
9086
f4dc4d17
DE
9087/* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9091
9092static void
9093handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9095{
527f3840 9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9097 struct attribute *attr;
527f3840
JK
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
2ab95328 9104
f4dc4d17
DE
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
2ab95328 9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
2ab95328 9121 {
527f3840
JK
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
2ab95328 9130
527f3840
JK
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9144 {
527f3840 9145 gdb_assert (*slot != NULL);
9a3c8263 9146 cu->line_header = (struct line_header *) *slot;
527f3840 9147 return;
dee91e82 9148 }
2ab95328 9149 }
527f3840
JK
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
2ab95328
TT
9185}
9186
95554aad 9187/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9188
c906108c 9189static void
e7c27a73 9190read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9191{
dee91e82 9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
15d034d0
TT
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
c906108c
SS
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
e142c38c 9202 CORE_ADDR baseaddr;
6e70227d 9203
e142c38c 9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9205
fae299cd 9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
2acceee2 9210 if (lowpc == ((CORE_ADDR) -1))
c906108c 9211 lowpc = highpc;
3e29f34a 9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9213
9291a0cd 9214 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9215
95554aad 9216 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9217
f4b8a18d
KW
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
3019eac3
DE
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
f4dc4d17 9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
c3b7b696 9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
43f3e411 9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
43f3e411 9266 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271}
9272
f4dc4d17
DE
9273/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9278
9279static void
f4dc4d17 9280setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9281{
f4dc4d17
DE
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
3019eac3 9287 struct attribute *attr;
f4dc4d17 9288 unsigned int i, line_offset;
0186c6a7 9289 struct signatured_type *sig_type;
3019eac3 9290
f4dc4d17 9291 gdb_assert (per_cu->is_debug_types);
0186c6a7 9292 sig_type = (struct signatured_type *) per_cu;
3019eac3 9293
f4dc4d17 9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9295
f4dc4d17 9296 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9297 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
43f3e411 9306 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
3019eac3 9312 {
f4dc4d17
DE
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9323 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9324 }
f4dc4d17 9325 return;
3019eac3
DE
9326 }
9327
f4dc4d17
DE
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
3019eac3 9330
f4dc4d17
DE
9331 if (first_time)
9332 {
43f3e411 9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9334
1fd60fc0
DE
9335 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9336 still initializing it, and our caller (a few levels up)
9337 process_full_type_unit still needs to know if this is the first
9338 time. */
9339
f4dc4d17
DE
9340 tu_group->num_symtabs = lh->num_file_names;
9341 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9342
f4dc4d17
DE
9343 for (i = 0; i < lh->num_file_names; ++i)
9344 {
d521ce57 9345 const char *dir = NULL;
f4dc4d17 9346 struct file_entry *fe = &lh->file_names[i];
3019eac3 9347
afa6c9ab 9348 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9349 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9350 dwarf2_start_subfile (fe->name, dir);
3019eac3 9351
f4dc4d17
DE
9352 if (current_subfile->symtab == NULL)
9353 {
9354 /* NOTE: start_subfile will recognize when it's been passed
9355 a file it has already seen. So we can't assume there's a
43f3e411 9356 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9357 lh->file_names may contain dups. */
43f3e411
DE
9358 current_subfile->symtab
9359 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9360 }
9361
9362 fe->symtab = current_subfile->symtab;
9363 tu_group->symtabs[i] = fe->symtab;
9364 }
9365 }
9366 else
3019eac3 9367 {
0ab9ce85 9368 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9369
9370 for (i = 0; i < lh->num_file_names; ++i)
9371 {
9372 struct file_entry *fe = &lh->file_names[i];
9373
9374 fe->symtab = tu_group->symtabs[i];
9375 }
3019eac3
DE
9376 }
9377
f4dc4d17
DE
9378 /* The main symtab is allocated last. Type units don't have DW_AT_name
9379 so they don't have a "real" (so to speak) symtab anyway.
9380 There is later code that will assign the main symtab to all symbols
9381 that don't have one. We need to handle the case of a symbol with a
9382 missing symtab (DW_AT_decl_file) anyway. */
9383}
3019eac3 9384
f4dc4d17
DE
9385/* Process DW_TAG_type_unit.
9386 For TUs we want to skip the first top level sibling if it's not the
9387 actual type being defined by this TU. In this case the first top
9388 level sibling is there to provide context only. */
3019eac3 9389
f4dc4d17
DE
9390static void
9391read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9392{
9393 struct die_info *child_die;
3019eac3 9394
f4dc4d17
DE
9395 prepare_one_comp_unit (cu, die, language_minimal);
9396
9397 /* Initialize (or reinitialize) the machinery for building symtabs.
9398 We do this before processing child DIEs, so that the line header table
9399 is available for DW_AT_decl_file. */
9400 setup_type_unit_groups (die, cu);
9401
9402 if (die->child != NULL)
9403 {
9404 child_die = die->child;
9405 while (child_die && child_die->tag)
9406 {
9407 process_die (child_die, cu);
9408 child_die = sibling_die (child_die);
9409 }
9410 }
3019eac3
DE
9411}
9412\f
80626a55
DE
9413/* DWO/DWP files.
9414
9415 http://gcc.gnu.org/wiki/DebugFission
9416 http://gcc.gnu.org/wiki/DebugFissionDWP
9417
9418 To simplify handling of both DWO files ("object" files with the DWARF info)
9419 and DWP files (a file with the DWOs packaged up into one file), we treat
9420 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9421
9422static hashval_t
9423hash_dwo_file (const void *item)
9424{
9a3c8263 9425 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9426 hashval_t hash;
3019eac3 9427
a2ce51a0
DE
9428 hash = htab_hash_string (dwo_file->dwo_name);
9429 if (dwo_file->comp_dir != NULL)
9430 hash += htab_hash_string (dwo_file->comp_dir);
9431 return hash;
3019eac3
DE
9432}
9433
9434static int
9435eq_dwo_file (const void *item_lhs, const void *item_rhs)
9436{
9a3c8263
SM
9437 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9438 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9439
a2ce51a0
DE
9440 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9441 return 0;
9442 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9443 return lhs->comp_dir == rhs->comp_dir;
9444 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9445}
9446
9447/* Allocate a hash table for DWO files. */
9448
9449static htab_t
9450allocate_dwo_file_hash_table (void)
9451{
9452 struct objfile *objfile = dwarf2_per_objfile->objfile;
9453
9454 return htab_create_alloc_ex (41,
9455 hash_dwo_file,
9456 eq_dwo_file,
9457 NULL,
9458 &objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9461}
9462
80626a55
DE
9463/* Lookup DWO file DWO_NAME. */
9464
9465static void **
0ac5b59e 9466lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9467{
9468 struct dwo_file find_entry;
9469 void **slot;
9470
9471 if (dwarf2_per_objfile->dwo_files == NULL)
9472 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9473
9474 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9475 find_entry.dwo_name = dwo_name;
9476 find_entry.comp_dir = comp_dir;
80626a55
DE
9477 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9478
9479 return slot;
9480}
9481
3019eac3
DE
9482static hashval_t
9483hash_dwo_unit (const void *item)
9484{
9a3c8263 9485 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9486
9487 /* This drops the top 32 bits of the id, but is ok for a hash. */
9488 return dwo_unit->signature;
9489}
9490
9491static int
9492eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9493{
9a3c8263
SM
9494 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9495 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9496
9497 /* The signature is assumed to be unique within the DWO file.
9498 So while object file CU dwo_id's always have the value zero,
9499 that's OK, assuming each object file DWO file has only one CU,
9500 and that's the rule for now. */
9501 return lhs->signature == rhs->signature;
9502}
9503
9504/* Allocate a hash table for DWO CUs,TUs.
9505 There is one of these tables for each of CUs,TUs for each DWO file. */
9506
9507static htab_t
9508allocate_dwo_unit_table (struct objfile *objfile)
9509{
9510 /* Start out with a pretty small number.
9511 Generally DWO files contain only one CU and maybe some TUs. */
9512 return htab_create_alloc_ex (3,
9513 hash_dwo_unit,
9514 eq_dwo_unit,
9515 NULL,
9516 &objfile->objfile_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9519}
9520
80626a55 9521/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9522
19c3d4c9 9523struct create_dwo_cu_data
3019eac3
DE
9524{
9525 struct dwo_file *dwo_file;
19c3d4c9 9526 struct dwo_unit dwo_unit;
3019eac3
DE
9527};
9528
19c3d4c9 9529/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9530
9531static void
19c3d4c9
DE
9532create_dwo_cu_reader (const struct die_reader_specs *reader,
9533 const gdb_byte *info_ptr,
9534 struct die_info *comp_unit_die,
9535 int has_children,
9536 void *datap)
3019eac3
DE
9537{
9538 struct dwarf2_cu *cu = reader->cu;
9539 struct objfile *objfile = dwarf2_per_objfile->objfile;
9540 sect_offset offset = cu->per_cu->offset;
8a0459fd 9541 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9543 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9545 struct attribute *attr;
3019eac3
DE
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
19c3d4c9
DE
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9554 return;
9555 }
9556
3019eac3
DE
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9559 dwo_unit->section = section;
3019eac3
DE
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
b4f54984 9563 if (dwarf_read_debug)
4031ecc5
DE
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9566}
9567
19c3d4c9
DE
9568/* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
3019eac3 9570
19c3d4c9
DE
9571static struct dwo_unit *
9572create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9573{
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 bfd *abfd;
9577 htab_t cu_htab;
d521ce57 9578 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9579 struct create_dwo_cu_data create_dwo_cu_data;
9580 struct dwo_unit *dwo_unit;
3019eac3
DE
9581
9582 dwarf2_read_section (objfile, section);
9583 info_ptr = section->buffer;
9584
9585 if (info_ptr == NULL)
9586 return NULL;
9587
9588 /* We can't set abfd until now because the section may be empty or
9589 not present, in which case section->asection will be NULL. */
a32a8923 9590 abfd = get_section_bfd_owner (section);
3019eac3 9591
b4f54984 9592 if (dwarf_read_debug)
19c3d4c9
DE
9593 {
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9595 get_section_name (section),
9596 get_section_file_name (section));
19c3d4c9 9597 }
3019eac3 9598
19c3d4c9
DE
9599 create_dwo_cu_data.dwo_file = dwo_file;
9600 dwo_unit = NULL;
3019eac3
DE
9601
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9604 {
9605 struct dwarf2_per_cu_data per_cu;
9606
19c3d4c9
DE
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9613 per_cu.section = section;
3019eac3 9614
33e80786 9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9618
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9620 {
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9628 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9629 break;
9630 }
9631
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9634 }
3019eac3
DE
9635
9636 info_ptr += per_cu.length;
9637 }
9638
19c3d4c9 9639 return dwo_unit;
3019eac3
DE
9640}
9641
80626a55
DE
9642/* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9644
d2415c6c
DE
9645 DWP Version 1:
9646
80626a55
DE
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9652
d2415c6c
DE
9653 The index section header consists of:
9654
9655 V, 32 bit version number
9656 -, 32 bits unused
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
80626a55 9659
d2415c6c 9660 Numbers are recorded using the byte order of the application binary.
80626a55 9661
d2415c6c
DE
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9666
d2415c6c
DE
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9673
73869dc2
DE
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9681
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9685
9686 ---
9687
9688 DWP Version 2:
9689
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9693 section.
9694
9695 Index Section Contents:
9696 Header
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9701
9702 The index section header consists of:
9703
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9708
9709 Numbers are recorded using the byte order of the application binary.
9710
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9715
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9724
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9733
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9744
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9749
9750 ---
9751
9752 Hash table lookup is handled the same in version 1 and 2:
9753
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9756
d2415c6c
DE
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
80626a55 9759
d2415c6c
DE
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
80626a55 9762
d2415c6c 9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9764
d2415c6c
DE
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
80626a55 9768
d2415c6c 9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9770
d2415c6c 9771 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9772 to stop at an unused slot or find the match. */
80626a55
DE
9773
9774/* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9778
9779static struct dwp_hash_table *
9780create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9781{
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9784 const gdb_byte *index_ptr, *index_end;
80626a55 9785 struct dwarf2_section_info *index;
73869dc2 9786 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9787 struct dwp_hash_table *htab;
9788
9789 if (is_debug_types)
9790 index = &dwp_file->sections.tu_index;
9791 else
9792 index = &dwp_file->sections.cu_index;
9793
9794 if (dwarf2_section_empty_p (index))
9795 return NULL;
9796 dwarf2_read_section (objfile, index);
9797
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9800
9801 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9802 index_ptr += 4;
9803 if (version == 2)
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9805 else
9806 nr_columns = 0;
9807 index_ptr += 4;
80626a55
DE
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9809 index_ptr += 4;
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812
73869dc2 9813 if (version != 1 && version != 2)
80626a55 9814 {
21aa081e 9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9816 " [in module %s]"),
21aa081e 9817 pulongest (version), dwp_file->name);
80626a55
DE
9818 }
9819 if (nr_slots != (nr_slots & -nr_slots))
9820 {
21aa081e 9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9822 " is not power of 2 [in module %s]"),
21aa081e 9823 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9824 }
9825
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
80626a55
DE
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9833
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9837 {
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9841 {
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9845 dwp_file->name);
9846 }
9847 return htab;
9848 }
9849
9850 if (version == 1)
9851 {
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9856 }
9857 else
9858 {
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9863 int i;
9864
9865 if (nr_columns < 2)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9875 dwp_file->name);
9876 }
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9880 {
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9882
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 if (ids_seen[id] != -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9894 }
9895 ids_seen[id] = i;
9896 ids[i] = id;
9897 }
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9901 != 1)
9902 {
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9905 dwp_file->name);
9906 }
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9912 dwp_file->name);
9913 }
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9920 > index_end)
9921 {
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9923 " [in module %s]"),
9924 dwp_file->name);
9925 }
9926 }
80626a55
DE
9927
9928 return htab;
9929}
9930
9931/* Update SECTIONS with the data from SECTP.
9932
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9935 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9936
9937 The result is non-zero for success, or zero if an error was found. */
9938
9939static int
73869dc2
DE
9940locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9942{
9943 const struct dwop_section_names *names = &dwop_section_names;
9944
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9946 {
9947 /* There can be only one. */
049412e3 9948 if (sections->abbrev.s.section != NULL)
80626a55 9949 return 0;
049412e3 9950 sections->abbrev.s.section = sectp;
80626a55
DE
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9955 {
9956 /* There can be only one. */
049412e3 9957 if (sections->info_or_types.s.section != NULL)
80626a55 9958 return 0;
049412e3 9959 sections->info_or_types.s.section = sectp;
80626a55
DE
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9963 {
9964 /* There can be only one. */
049412e3 9965 if (sections->line.s.section != NULL)
80626a55 9966 return 0;
049412e3 9967 sections->line.s.section = sectp;
80626a55
DE
9968 sections->line.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9971 {
9972 /* There can be only one. */
049412e3 9973 if (sections->loc.s.section != NULL)
80626a55 9974 return 0;
049412e3 9975 sections->loc.s.section = sectp;
80626a55
DE
9976 sections->loc.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9979 {
9980 /* There can be only one. */
049412e3 9981 if (sections->macinfo.s.section != NULL)
80626a55 9982 return 0;
049412e3 9983 sections->macinfo.s.section = sectp;
80626a55
DE
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9985 }
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9987 {
9988 /* There can be only one. */
049412e3 9989 if (sections->macro.s.section != NULL)
80626a55 9990 return 0;
049412e3 9991 sections->macro.s.section = sectp;
80626a55
DE
9992 sections->macro.size = bfd_get_section_size (sectp);
9993 }
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9995 {
9996 /* There can be only one. */
049412e3 9997 if (sections->str_offsets.s.section != NULL)
80626a55 9998 return 0;
049412e3 9999 sections->str_offsets.s.section = sectp;
80626a55
DE
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10001 }
10002 else
10003 {
10004 /* No other kind of section is valid. */
10005 return 0;
10006 }
10007
10008 return 1;
10009}
10010
73869dc2
DE
10011/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
80626a55
DE
10015
10016static struct dwo_unit *
73869dc2
DE
10017create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
80626a55
DE
10021{
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
73869dc2 10029 struct virtual_v1_dwo_sections sections;
80626a55
DE
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct dwarf2_section_info *cutu;
10033 struct cleanup *cleanups;
10034 int i;
10035
73869dc2
DE
10036 gdb_assert (dwp_file->version == 1);
10037
b4f54984 10038 if (dwarf_read_debug)
80626a55 10039 {
73869dc2 10040 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10041 kind,
73869dc2 10042 pulongest (unit_index), hex_string (signature),
80626a55
DE
10043 dwp_file->name);
10044 }
10045
19ac8c2e 10046 /* Fetch the sections of this DWO unit.
80626a55
DE
10047 Put a limit on the number of sections we look for so that bad data
10048 doesn't cause us to loop forever. */
10049
73869dc2 10050#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10051 (1 /* .debug_info or .debug_types */ \
10052 + 1 /* .debug_abbrev */ \
10053 + 1 /* .debug_line */ \
10054 + 1 /* .debug_loc */ \
10055 + 1 /* .debug_str_offsets */ \
19ac8c2e 10056 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10057 + 1 /* trailing zero */)
10058
10059 memset (&sections, 0, sizeof (sections));
10060 cleanups = make_cleanup (null_cleanup, 0);
10061
73869dc2 10062 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10063 {
10064 asection *sectp;
10065 uint32_t section_nr =
10066 read_4_bytes (dbfd,
73869dc2
DE
10067 dwp_htab->section_pool.v1.indices
10068 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10069
10070 if (section_nr == 0)
10071 break;
10072 if (section_nr >= dwp_file->num_sections)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, section number too large"
10075 " [in module %s]"),
10076 dwp_file->name);
10077 }
10078
10079 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10080 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086 }
10087
10088 if (i < 2
a32a8923
DE
10089 || dwarf2_section_empty_p (&sections.info_or_types)
10090 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
73869dc2 10096 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10097 {
10098 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10099 " [in module %s]"),
10100 dwp_file->name);
10101 }
10102
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10105
10106 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10107 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10111
2792b94d
PM
10112 virtual_dwo_name =
10113 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10114 get_section_id (&sections.abbrev),
10115 get_section_id (&sections.line),
10116 get_section_id (&sections.loc),
10117 get_section_id (&sections.str_offsets));
80626a55
DE
10118 make_cleanup (xfree, virtual_dwo_name);
10119 /* Can we use an existing virtual DWO file? */
0ac5b59e 10120 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10121 /* Create one if necessary. */
10122 if (*dwo_file_slot == NULL)
10123 {
b4f54984 10124 if (dwarf_read_debug)
80626a55
DE
10125 {
10126 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10127 virtual_dwo_name);
10128 }
10129 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10130 dwo_file->dwo_name
10131 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
0ac5b59e 10134 dwo_file->comp_dir = comp_dir;
80626a55
DE
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10143 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10148 for it, invalidating all copies of pointers into the previous
10149 contents. */
80626a55
DE
10150 *dwo_file_slot = dwo_file;
10151 }
10152 else
10153 {
b4f54984 10154 if (dwarf_read_debug)
80626a55
DE
10155 {
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10157 virtual_dwo_name);
10158 }
9a3c8263 10159 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10160 }
10161 do_cleanups (cleanups);
10162
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
8d749320
SM
10166 dwo_unit->section =
10167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10168 *dwo_unit->section = sections.info_or_types;
57d63ce2 10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10170
10171 return dwo_unit;
10172}
10173
73869dc2
DE
10174/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10178
10179static struct dwarf2_section_info
10180create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10182{
10183 struct dwarf2_section_info result;
10184 asection *sectp;
10185
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10188
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10192
10193 if (size == 0)
10194 return result;
10195
10196 sectp = get_section_bfd_section (section);
10197
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10201 if (sectp == NULL
10202 || offset + size > bfd_get_section_size (sectp))
10203 {
10204 bfd *abfd = sectp->owner;
10205
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10210 }
10211
10212 result.virtual_offset = offset;
10213 result.size = size;
10214 return result;
10215}
10216
10217/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10221
10222static struct dwo_unit *
10223create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10227{
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10240 int i;
10241
10242 gdb_assert (dwp_file->version == 2);
10243
b4f54984 10244 if (dwarf_read_debug)
73869dc2
DE
10245 {
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10247 kind,
10248 pulongest (unit_index), hex_string (signature),
10249 dwp_file->name);
10250 }
10251
10252 /* Fetch the section offsets of this DWO unit. */
10253
10254 memset (&sections, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10256
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10258 {
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10267 + i)
10268 * sizeof (uint32_t)));
10269
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10271 {
10272 case DW_SECT_INFO:
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10276 break;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10280 break;
10281 case DW_SECT_LINE:
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10284 break;
10285 case DW_SECT_LOC:
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10288 break;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10292 break;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10296 break;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10300 break;
10301 }
10302 }
10303
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10306
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10312
10313 virtual_dwo_name =
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10325 {
b4f54984 10326 if (dwarf_read_debug)
73869dc2
DE
10327 {
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10329 virtual_dwo_name);
10330 }
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10332 dwo_file->dwo_name
10333 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
73869dc2
DE
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
b4f54984 10369 if (dwarf_read_debug)
73869dc2
DE
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
9a3c8263 10374 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
8d749320
SM
10381 dwo_unit->section =
10382 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391}
10392
57d63ce2
DE
10393/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
80626a55
DE
10395
10396static struct dwo_unit *
57d63ce2
DE
10397lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
80626a55 10399{
57d63ce2
DE
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10402 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10403 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
19ac8c2e
DE
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
80626a55
DE
10416
10417 if (*slot != NULL)
9a3c8263 10418 return (struct dwo_unit *) *slot;
80626a55
DE
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
57d63ce2 10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10427 if (signature_in_table == signature)
10428 {
57d63ce2
DE
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10432
73869dc2
DE
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
9a3c8263 10445 return (struct dwo_unit *) *slot;
80626a55
DE
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455}
10456
ab5088bf 10457/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
80626a55 10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
13aaf454
DE
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10466 If unable to find/open the file, return NULL.
3019eac3
DE
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469static bfd *
6ac97d4c 10470try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10471{
10472 bfd *sym_bfd;
80626a55 10473 int desc, flags;
3019eac3 10474 char *absolute_name;
9c02c129
DE
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
6ac97d4c
DE
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
9c02c129 10489 else
6ac97d4c 10490 search_path = xstrdup (debug_file_directory);
3019eac3 10491
492c0ab7 10492 flags = OPF_RETURN_REALPATH;
80626a55
DE
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10495 desc = openp (search_path, flags, file_name,
3019eac3 10496 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10497 xfree (search_path);
3019eac3
DE
10498 if (desc < 0)
10499 return NULL;
10500
bb397797 10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10502 xfree (absolute_name);
9c02c129
DE
10503 if (sym_bfd == NULL)
10504 return NULL;
3019eac3
DE
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
cbb099e8 10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10510 return NULL;
10511 }
10512
13aaf454
DE
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
3019eac3
DE
10519 return sym_bfd;
10520}
10521
ab5088bf 10522/* Try to open DWO file FILE_NAME.
3019eac3
DE
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529static bfd *
ab5088bf 10530open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10531{
10532 bfd *abfd;
3019eac3 10533
80626a55 10534 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
80626a55 10541 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10542
10543 /* NOTE: If comp_dir is a relative path, this will also try the
10544 search path, which seems useful. */
6ac97d4c 10545 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10546 xfree (path_to_try);
10547 if (abfd != NULL)
10548 return abfd;
10549 }
10550
10551 /* That didn't work, try debug-file-directory, which, despite its name,
10552 is a list of paths. */
10553
10554 if (*debug_file_directory == '\0')
10555 return NULL;
10556
6ac97d4c 10557 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10558}
10559
80626a55
DE
10560/* This function is mapped across the sections and remembers the offset and
10561 size of each of the DWO debugging sections we are interested in. */
10562
10563static void
10564dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10565{
9a3c8263 10566 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10567 const struct dwop_section_names *names = &dwop_section_names;
10568
10569 if (section_is_p (sectp->name, &names->abbrev_dwo))
10570 {
049412e3 10571 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10572 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->info_dwo))
10575 {
049412e3 10576 dwo_sections->info.s.section = sectp;
80626a55
DE
10577 dwo_sections->info.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->line_dwo))
10580 {
049412e3 10581 dwo_sections->line.s.section = sectp;
80626a55
DE
10582 dwo_sections->line.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->loc_dwo))
10585 {
049412e3 10586 dwo_sections->loc.s.section = sectp;
80626a55
DE
10587 dwo_sections->loc.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10590 {
049412e3 10591 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10592 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->macro_dwo))
10595 {
049412e3 10596 dwo_sections->macro.s.section = sectp;
80626a55
DE
10597 dwo_sections->macro.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_dwo))
10600 {
049412e3 10601 dwo_sections->str.s.section = sectp;
80626a55
DE
10602 dwo_sections->str.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10605 {
049412e3 10606 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10607 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10608 }
10609 else if (section_is_p (sectp->name, &names->types_dwo))
10610 {
10611 struct dwarf2_section_info type_section;
10612
10613 memset (&type_section, 0, sizeof (type_section));
049412e3 10614 type_section.s.section = sectp;
80626a55
DE
10615 type_section.size = bfd_get_section_size (sectp);
10616 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10617 &type_section);
10618 }
10619}
10620
ab5088bf 10621/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10622 by PER_CU. This is for the non-DWP case.
80626a55 10623 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10624
10625static struct dwo_file *
0ac5b59e
DE
10626open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10627 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10628{
10629 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10630 struct dwo_file *dwo_file;
10631 bfd *dbfd;
3019eac3
DE
10632 struct cleanup *cleanups;
10633
ab5088bf 10634 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10635 if (dbfd == NULL)
10636 {
b4f54984 10637 if (dwarf_read_debug)
80626a55
DE
10638 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10639 return NULL;
10640 }
10641 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10642 dwo_file->dwo_name = dwo_name;
10643 dwo_file->comp_dir = comp_dir;
80626a55 10644 dwo_file->dbfd = dbfd;
3019eac3
DE
10645
10646 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10647
80626a55 10648 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10649
19c3d4c9 10650 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10651
10652 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10653 dwo_file->sections.types);
10654
10655 discard_cleanups (cleanups);
10656
b4f54984 10657 if (dwarf_read_debug)
80626a55
DE
10658 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10659
3019eac3
DE
10660 return dwo_file;
10661}
10662
80626a55 10663/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10664 size of each of the DWP debugging sections common to version 1 and 2 that
10665 we are interested in. */
3019eac3 10666
80626a55 10667static void
73869dc2
DE
10668dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10669 void *dwp_file_ptr)
3019eac3 10670{
9a3c8263 10671 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10672 const struct dwop_section_names *names = &dwop_section_names;
10673 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10674
80626a55 10675 /* Record the ELF section number for later lookup: this is what the
73869dc2 10676 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10677 gdb_assert (elf_section_nr < dwp_file->num_sections);
10678 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10679
80626a55
DE
10680 /* Look for specific sections that we need. */
10681 if (section_is_p (sectp->name, &names->str_dwo))
10682 {
049412e3 10683 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10684 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->cu_index))
10687 {
049412e3 10688 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10689 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10690 }
10691 else if (section_is_p (sectp->name, &names->tu_index))
10692 {
049412e3 10693 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10694 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10695 }
10696}
3019eac3 10697
73869dc2
DE
10698/* This function is mapped across the sections and remembers the offset and
10699 size of each of the DWP version 2 debugging sections that we are interested
10700 in. This is split into a separate function because we don't know if we
10701 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10702
10703static void
10704dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10705{
9a3c8263 10706 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10707 const struct dwop_section_names *names = &dwop_section_names;
10708 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10709
10710 /* Record the ELF section number for later lookup: this is what the
10711 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10712 gdb_assert (elf_section_nr < dwp_file->num_sections);
10713 dwp_file->elf_sections[elf_section_nr] = sectp;
10714
10715 /* Look for specific sections that we need. */
10716 if (section_is_p (sectp->name, &names->abbrev_dwo))
10717 {
049412e3 10718 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10719 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->info_dwo))
10722 {
049412e3 10723 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10724 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->line_dwo))
10727 {
049412e3 10728 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10729 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->loc_dwo))
10732 {
049412e3 10733 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10734 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10737 {
049412e3 10738 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10739 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->macro_dwo))
10742 {
049412e3 10743 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10744 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10747 {
049412e3 10748 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10749 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10750 }
10751 else if (section_is_p (sectp->name, &names->types_dwo))
10752 {
049412e3 10753 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10754 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10755 }
10756}
10757
80626a55 10758/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10759
80626a55
DE
10760static hashval_t
10761hash_dwp_loaded_cutus (const void *item)
10762{
9a3c8263 10763 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10764
80626a55
DE
10765 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10766 return dwo_unit->signature;
3019eac3
DE
10767}
10768
80626a55 10769/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10770
80626a55
DE
10771static int
10772eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10773{
9a3c8263
SM
10774 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10775 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10776
80626a55
DE
10777 return dua->signature == dub->signature;
10778}
3019eac3 10779
80626a55 10780/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10781
80626a55
DE
10782static htab_t
10783allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10784{
10785 return htab_create_alloc_ex (3,
10786 hash_dwp_loaded_cutus,
10787 eq_dwp_loaded_cutus,
10788 NULL,
10789 &objfile->objfile_obstack,
10790 hashtab_obstack_allocate,
10791 dummy_obstack_deallocate);
10792}
3019eac3 10793
ab5088bf
DE
10794/* Try to open DWP file FILE_NAME.
10795 The result is the bfd handle of the file.
10796 If there is a problem finding or opening the file, return NULL.
10797 Upon success, the canonicalized path of the file is stored in the bfd,
10798 same as symfile_bfd_open. */
10799
10800static bfd *
10801open_dwp_file (const char *file_name)
10802{
6ac97d4c
DE
10803 bfd *abfd;
10804
10805 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10806 if (abfd != NULL)
10807 return abfd;
10808
10809 /* Work around upstream bug 15652.
10810 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10811 [Whether that's a "bug" is debatable, but it is getting in our way.]
10812 We have no real idea where the dwp file is, because gdb's realpath-ing
10813 of the executable's path may have discarded the needed info.
10814 [IWBN if the dwp file name was recorded in the executable, akin to
10815 .gnu_debuglink, but that doesn't exist yet.]
10816 Strip the directory from FILE_NAME and search again. */
10817 if (*debug_file_directory != '\0')
10818 {
10819 /* Don't implicitly search the current directory here.
10820 If the user wants to search "." to handle this case,
10821 it must be added to debug-file-directory. */
10822 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10823 0 /*search_cwd*/);
10824 }
10825
10826 return NULL;
ab5088bf
DE
10827}
10828
80626a55
DE
10829/* Initialize the use of the DWP file for the current objfile.
10830 By convention the name of the DWP file is ${objfile}.dwp.
10831 The result is NULL if it can't be found. */
a766d390 10832
80626a55 10833static struct dwp_file *
ab5088bf 10834open_and_init_dwp_file (void)
80626a55
DE
10835{
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837 struct dwp_file *dwp_file;
10838 char *dwp_name;
10839 bfd *dbfd;
10840 struct cleanup *cleanups;
10841
82bf32bc
JK
10842 /* Try to find first .dwp for the binary file before any symbolic links
10843 resolving. */
10844 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10845 cleanups = make_cleanup (xfree, dwp_name);
10846
ab5088bf 10847 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10848 if (dbfd == NULL
10849 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10850 {
10851 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10853 make_cleanup (xfree, dwp_name);
10854 dbfd = open_dwp_file (dwp_name);
10855 }
10856
80626a55
DE
10857 if (dbfd == NULL)
10858 {
b4f54984 10859 if (dwarf_read_debug)
80626a55
DE
10860 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10861 do_cleanups (cleanups);
10862 return NULL;
3019eac3 10863 }
80626a55 10864 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10865 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10866 dwp_file->dbfd = dbfd;
10867 do_cleanups (cleanups);
c906108c 10868
80626a55
DE
10869 /* +1: section 0 is unused */
10870 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10871 dwp_file->elf_sections =
10872 OBSTACK_CALLOC (&objfile->objfile_obstack,
10873 dwp_file->num_sections, asection *);
10874
73869dc2 10875 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10876
10877 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10878
10879 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10880
73869dc2
DE
10881 /* The DWP file version is stored in the hash table. Oh well. */
10882 if (dwp_file->cus->version != dwp_file->tus->version)
10883 {
10884 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10885 pretty bizarre. We use pulongest here because that's the established
4d65956b 10886 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10887 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10888 " TU version %s [in DWP file %s]"),
10889 pulongest (dwp_file->cus->version),
10890 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10891 }
10892 dwp_file->version = dwp_file->cus->version;
10893
10894 if (dwp_file->version == 2)
10895 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10896
19ac8c2e
DE
10897 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10898 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10899
b4f54984 10900 if (dwarf_read_debug)
80626a55
DE
10901 {
10902 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10903 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10904 " %s CUs, %s TUs\n",
10905 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10906 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10907 }
10908
10909 return dwp_file;
3019eac3 10910}
c906108c 10911
ab5088bf
DE
10912/* Wrapper around open_and_init_dwp_file, only open it once. */
10913
10914static struct dwp_file *
10915get_dwp_file (void)
10916{
10917 if (! dwarf2_per_objfile->dwp_checked)
10918 {
10919 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10920 dwarf2_per_objfile->dwp_checked = 1;
10921 }
10922 return dwarf2_per_objfile->dwp_file;
10923}
10924
80626a55
DE
10925/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10926 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10927 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10928 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10929 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10930
10931 This is called, for example, when wanting to read a variable with a
10932 complex location. Therefore we don't want to do file i/o for every call.
10933 Therefore we don't want to look for a DWO file on every call.
10934 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10935 then we check if we've already seen DWO_NAME, and only THEN do we check
10936 for a DWO file.
10937
1c658ad5 10938 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10939 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10940
3019eac3 10941static struct dwo_unit *
80626a55
DE
10942lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10943 const char *dwo_name, const char *comp_dir,
10944 ULONGEST signature, int is_debug_types)
3019eac3
DE
10945{
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10947 const char *kind = is_debug_types ? "TU" : "CU";
10948 void **dwo_file_slot;
3019eac3 10949 struct dwo_file *dwo_file;
80626a55 10950 struct dwp_file *dwp_file;
cb1df416 10951
6a506a2d
DE
10952 /* First see if there's a DWP file.
10953 If we have a DWP file but didn't find the DWO inside it, don't
10954 look for the original DWO file. It makes gdb behave differently
10955 depending on whether one is debugging in the build tree. */
cf2c3c16 10956
ab5088bf 10957 dwp_file = get_dwp_file ();
80626a55 10958 if (dwp_file != NULL)
cf2c3c16 10959 {
80626a55
DE
10960 const struct dwp_hash_table *dwp_htab =
10961 is_debug_types ? dwp_file->tus : dwp_file->cus;
10962
10963 if (dwp_htab != NULL)
10964 {
10965 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10966 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10967 signature, is_debug_types);
80626a55
DE
10968
10969 if (dwo_cutu != NULL)
10970 {
b4f54984 10971 if (dwarf_read_debug)
80626a55
DE
10972 {
10973 fprintf_unfiltered (gdb_stdlog,
10974 "Virtual DWO %s %s found: @%s\n",
10975 kind, hex_string (signature),
10976 host_address_to_string (dwo_cutu));
10977 }
10978 return dwo_cutu;
10979 }
10980 }
10981 }
6a506a2d 10982 else
80626a55 10983 {
6a506a2d 10984 /* No DWP file, look for the DWO file. */
80626a55 10985
6a506a2d
DE
10986 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10987 if (*dwo_file_slot == NULL)
80626a55 10988 {
6a506a2d
DE
10989 /* Read in the file and build a table of the CUs/TUs it contains. */
10990 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10991 }
6a506a2d 10992 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 10993 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 10994
6a506a2d 10995 if (dwo_file != NULL)
19c3d4c9 10996 {
6a506a2d
DE
10997 struct dwo_unit *dwo_cutu = NULL;
10998
10999 if (is_debug_types && dwo_file->tus)
11000 {
11001 struct dwo_unit find_dwo_cutu;
11002
11003 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11004 find_dwo_cutu.signature = signature;
9a3c8263
SM
11005 dwo_cutu
11006 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11007 }
11008 else if (!is_debug_types && dwo_file->cu)
80626a55 11009 {
6a506a2d
DE
11010 if (signature == dwo_file->cu->signature)
11011 dwo_cutu = dwo_file->cu;
11012 }
11013
11014 if (dwo_cutu != NULL)
11015 {
b4f54984 11016 if (dwarf_read_debug)
6a506a2d
DE
11017 {
11018 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11019 kind, dwo_name, hex_string (signature),
11020 host_address_to_string (dwo_cutu));
11021 }
11022 return dwo_cutu;
80626a55
DE
11023 }
11024 }
2e276125 11025 }
9cdd5dbd 11026
80626a55
DE
11027 /* We didn't find it. This could mean a dwo_id mismatch, or
11028 someone deleted the DWO/DWP file, or the search path isn't set up
11029 correctly to find the file. */
11030
b4f54984 11031 if (dwarf_read_debug)
80626a55
DE
11032 {
11033 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11034 kind, dwo_name, hex_string (signature));
11035 }
3019eac3 11036
6656a72d
DE
11037 /* This is a warning and not a complaint because it can be caused by
11038 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11039 {
11040 /* Print the name of the DWP file if we looked there, helps the user
11041 better diagnose the problem. */
11042 char *dwp_text = NULL;
11043 struct cleanup *cleanups;
11044
11045 if (dwp_file != NULL)
11046 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11047 cleanups = make_cleanup (xfree, dwp_text);
11048
11049 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11050 " [in module %s]"),
11051 kind, dwo_name, hex_string (signature),
11052 dwp_text != NULL ? dwp_text : "",
11053 this_unit->is_debug_types ? "TU" : "CU",
11054 this_unit->offset.sect_off, objfile_name (objfile));
11055
11056 do_cleanups (cleanups);
11057 }
3019eac3 11058 return NULL;
5fb290d7
DJ
11059}
11060
80626a55
DE
11061/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11062 See lookup_dwo_cutu_unit for details. */
11063
11064static struct dwo_unit *
11065lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11066 const char *dwo_name, const char *comp_dir,
11067 ULONGEST signature)
11068{
11069 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11070}
11071
11072/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11073 See lookup_dwo_cutu_unit for details. */
11074
11075static struct dwo_unit *
11076lookup_dwo_type_unit (struct signatured_type *this_tu,
11077 const char *dwo_name, const char *comp_dir)
11078{
11079 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11080}
11081
89e63ee4
DE
11082/* Traversal function for queue_and_load_all_dwo_tus. */
11083
11084static int
11085queue_and_load_dwo_tu (void **slot, void *info)
11086{
11087 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11088 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11089 ULONGEST signature = dwo_unit->signature;
11090 struct signatured_type *sig_type =
11091 lookup_dwo_signatured_type (per_cu->cu, signature);
11092
11093 if (sig_type != NULL)
11094 {
11095 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11096
11097 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11098 a real dependency of PER_CU on SIG_TYPE. That is detected later
11099 while processing PER_CU. */
11100 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11101 load_full_type_unit (sig_cu);
11102 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11103 }
11104
11105 return 1;
11106}
11107
11108/* Queue all TUs contained in the DWO of PER_CU to be read in.
11109 The DWO may have the only definition of the type, though it may not be
11110 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11111 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11112
11113static void
11114queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11115{
11116 struct dwo_unit *dwo_unit;
11117 struct dwo_file *dwo_file;
11118
11119 gdb_assert (!per_cu->is_debug_types);
11120 gdb_assert (get_dwp_file () == NULL);
11121 gdb_assert (per_cu->cu != NULL);
11122
11123 dwo_unit = per_cu->cu->dwo_unit;
11124 gdb_assert (dwo_unit != NULL);
11125
11126 dwo_file = dwo_unit->dwo_file;
11127 if (dwo_file->tus != NULL)
11128 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11129}
11130
3019eac3
DE
11131/* Free all resources associated with DWO_FILE.
11132 Close the DWO file and munmap the sections.
11133 All memory should be on the objfile obstack. */
348e048f
DE
11134
11135static void
3019eac3 11136free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11137{
3019eac3
DE
11138 int ix;
11139 struct dwarf2_section_info *section;
348e048f 11140
5c6fa7ab 11141 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11142 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11143
3019eac3
DE
11144 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11145}
348e048f 11146
3019eac3 11147/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11148
3019eac3
DE
11149static void
11150free_dwo_file_cleanup (void *arg)
11151{
11152 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11153 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11154
3019eac3
DE
11155 free_dwo_file (dwo_file, objfile);
11156}
348e048f 11157
3019eac3 11158/* Traversal function for free_dwo_files. */
2ab95328 11159
3019eac3
DE
11160static int
11161free_dwo_file_from_slot (void **slot, void *info)
11162{
11163 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11164 struct objfile *objfile = (struct objfile *) info;
348e048f 11165
3019eac3 11166 free_dwo_file (dwo_file, objfile);
348e048f 11167
3019eac3
DE
11168 return 1;
11169}
348e048f 11170
3019eac3 11171/* Free all resources associated with DWO_FILES. */
348e048f 11172
3019eac3
DE
11173static void
11174free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11175{
11176 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11177}
3019eac3
DE
11178\f
11179/* Read in various DIEs. */
348e048f 11180
d389af10
JK
11181/* qsort helper for inherit_abstract_dies. */
11182
11183static int
11184unsigned_int_compar (const void *ap, const void *bp)
11185{
11186 unsigned int a = *(unsigned int *) ap;
11187 unsigned int b = *(unsigned int *) bp;
11188
11189 return (a > b) - (b > a);
11190}
11191
11192/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11193 Inherit only the children of the DW_AT_abstract_origin DIE not being
11194 already referenced by DW_AT_abstract_origin from the children of the
11195 current DIE. */
d389af10
JK
11196
11197static void
11198inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11199{
11200 struct die_info *child_die;
11201 unsigned die_children_count;
11202 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11203 sect_offset *offsets;
11204 sect_offset *offsets_end, *offsetp;
d389af10
JK
11205 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11206 struct die_info *origin_die;
11207 /* Iterator of the ORIGIN_DIE children. */
11208 struct die_info *origin_child_die;
11209 struct cleanup *cleanups;
11210 struct attribute *attr;
cd02d79d
PA
11211 struct dwarf2_cu *origin_cu;
11212 struct pending **origin_previous_list_in_scope;
d389af10
JK
11213
11214 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11215 if (!attr)
11216 return;
11217
cd02d79d
PA
11218 /* Note that following die references may follow to a die in a
11219 different cu. */
11220
11221 origin_cu = cu;
11222 origin_die = follow_die_ref (die, attr, &origin_cu);
11223
11224 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11225 symbols in. */
11226 origin_previous_list_in_scope = origin_cu->list_in_scope;
11227 origin_cu->list_in_scope = cu->list_in_scope;
11228
edb3359d
DJ
11229 if (die->tag != origin_die->tag
11230 && !(die->tag == DW_TAG_inlined_subroutine
11231 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11232 complaint (&symfile_complaints,
11233 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11234 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11235
11236 child_die = die->child;
11237 die_children_count = 0;
11238 while (child_die && child_die->tag)
11239 {
11240 child_die = sibling_die (child_die);
11241 die_children_count++;
11242 }
8d749320 11243 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11244 cleanups = make_cleanup (xfree, offsets);
11245
11246 offsets_end = offsets;
3ea89b92
PMR
11247 for (child_die = die->child;
11248 child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11250 {
11251 struct die_info *child_origin_die;
11252 struct dwarf2_cu *child_origin_cu;
11253
11254 /* We are trying to process concrete instance entries:
11255 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11256 it's not relevant to our analysis here. i.e. detecting DIEs that are
11257 present in the abstract instance but not referenced in the concrete
11258 one. */
11259 if (child_die->tag == DW_TAG_GNU_call_site)
11260 continue;
11261
c38f313d
DJ
11262 /* For each CHILD_DIE, find the corresponding child of
11263 ORIGIN_DIE. If there is more than one layer of
11264 DW_AT_abstract_origin, follow them all; there shouldn't be,
11265 but GCC versions at least through 4.4 generate this (GCC PR
11266 40573). */
3ea89b92
PMR
11267 child_origin_die = child_die;
11268 child_origin_cu = cu;
c38f313d
DJ
11269 while (1)
11270 {
cd02d79d
PA
11271 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11272 child_origin_cu);
c38f313d
DJ
11273 if (attr == NULL)
11274 break;
cd02d79d
PA
11275 child_origin_die = follow_die_ref (child_origin_die, attr,
11276 &child_origin_cu);
c38f313d
DJ
11277 }
11278
d389af10
JK
11279 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11280 counterpart may exist. */
c38f313d 11281 if (child_origin_die != child_die)
d389af10 11282 {
edb3359d
DJ
11283 if (child_die->tag != child_origin_die->tag
11284 && !(child_die->tag == DW_TAG_inlined_subroutine
11285 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11286 complaint (&symfile_complaints,
11287 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11288 "different tags"), child_die->offset.sect_off,
11289 child_origin_die->offset.sect_off);
c38f313d
DJ
11290 if (child_origin_die->parent != origin_die)
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11293 "different parents"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
c38f313d
DJ
11295 else
11296 *offsets_end++ = child_origin_die->offset;
d389af10 11297 }
d389af10
JK
11298 }
11299 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11300 unsigned_int_compar);
11301 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11302 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11303 complaint (&symfile_complaints,
11304 _("Multiple children of DIE 0x%x refer "
11305 "to DIE 0x%x as their abstract origin"),
b64f50a1 11306 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11307
11308 offsetp = offsets;
11309 origin_child_die = origin_die->child;
11310 while (origin_child_die && origin_child_die->tag)
11311 {
11312 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11313 while (offsetp < offsets_end
11314 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11315 offsetp++;
b64f50a1
JK
11316 if (offsetp >= offsets_end
11317 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11318 {
adde2bff
DE
11319 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11320 Check whether we're already processing ORIGIN_CHILD_DIE.
11321 This can happen with mutually referenced abstract_origins.
11322 PR 16581. */
11323 if (!origin_child_die->in_process)
11324 process_die (origin_child_die, origin_cu);
d389af10
JK
11325 }
11326 origin_child_die = sibling_die (origin_child_die);
11327 }
cd02d79d 11328 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11329
11330 do_cleanups (cleanups);
11331}
11332
c906108c 11333static void
e7c27a73 11334read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11335{
e7c27a73 11336 struct objfile *objfile = cu->objfile;
3e29f34a 11337 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11338 struct context_stack *newobj;
c906108c
SS
11339 CORE_ADDR lowpc;
11340 CORE_ADDR highpc;
11341 struct die_info *child_die;
edb3359d 11342 struct attribute *attr, *call_line, *call_file;
15d034d0 11343 const char *name;
e142c38c 11344 CORE_ADDR baseaddr;
801e3a5b 11345 struct block *block;
edb3359d 11346 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11347 VEC (symbolp) *template_args = NULL;
11348 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11349
11350 if (inlined_func)
11351 {
11352 /* If we do not have call site information, we can't show the
11353 caller of this inlined function. That's too confusing, so
11354 only use the scope for local variables. */
11355 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11356 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11357 if (call_line == NULL || call_file == NULL)
11358 {
11359 read_lexical_block_scope (die, cu);
11360 return;
11361 }
11362 }
c906108c 11363
e142c38c
DJ
11364 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11365
94af9270 11366 name = dwarf2_name (die, cu);
c906108c 11367
e8d05480
JB
11368 /* Ignore functions with missing or empty names. These are actually
11369 illegal according to the DWARF standard. */
11370 if (name == NULL)
11371 {
11372 complaint (&symfile_complaints,
b64f50a1
JK
11373 _("missing name for subprogram DIE at %d"),
11374 die->offset.sect_off);
e8d05480
JB
11375 return;
11376 }
11377
11378 /* Ignore functions with missing or invalid low and high pc attributes. */
11379 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11380 {
ae4d0c03
PM
11381 attr = dwarf2_attr (die, DW_AT_external, cu);
11382 if (!attr || !DW_UNSND (attr))
11383 complaint (&symfile_complaints,
3e43a32a
MS
11384 _("cannot get low and high bounds "
11385 "for subprogram DIE at %d"),
b64f50a1 11386 die->offset.sect_off);
e8d05480
JB
11387 return;
11388 }
c906108c 11389
3e29f34a
MR
11390 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11392
34eaf542
TT
11393 /* If we have any template arguments, then we must allocate a
11394 different sort of symbol. */
11395 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11396 {
11397 if (child_die->tag == DW_TAG_template_type_param
11398 || child_die->tag == DW_TAG_template_value_param)
11399 {
e623cf5d 11400 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11401 templ_func->base.is_cplus_template_function = 1;
11402 break;
11403 }
11404 }
11405
fe978cb0
PA
11406 newobj = push_context (0, lowpc);
11407 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11408 (struct symbol *) templ_func);
4c2df51b 11409
4cecd739
DJ
11410 /* If there is a location expression for DW_AT_frame_base, record
11411 it. */
e142c38c 11412 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11413 if (attr)
fe978cb0 11414 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11415
63e43d3a
PMR
11416 /* If there is a location for the static link, record it. */
11417 newobj->static_link = NULL;
11418 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11419 if (attr)
11420 {
224c3ddb
SM
11421 newobj->static_link
11422 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11423 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11424 }
11425
e142c38c 11426 cu->list_in_scope = &local_symbols;
c906108c 11427
639d11d3 11428 if (die->child != NULL)
c906108c 11429 {
639d11d3 11430 child_die = die->child;
c906108c
SS
11431 while (child_die && child_die->tag)
11432 {
34eaf542
TT
11433 if (child_die->tag == DW_TAG_template_type_param
11434 || child_die->tag == DW_TAG_template_value_param)
11435 {
11436 struct symbol *arg = new_symbol (child_die, NULL, cu);
11437
f1078f66
DJ
11438 if (arg != NULL)
11439 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11440 }
11441 else
11442 process_die (child_die, cu);
c906108c
SS
11443 child_die = sibling_die (child_die);
11444 }
11445 }
11446
d389af10
JK
11447 inherit_abstract_dies (die, cu);
11448
4a811a97
UW
11449 /* If we have a DW_AT_specification, we might need to import using
11450 directives from the context of the specification DIE. See the
11451 comment in determine_prefix. */
11452 if (cu->language == language_cplus
11453 && dwarf2_attr (die, DW_AT_specification, cu))
11454 {
11455 struct dwarf2_cu *spec_cu = cu;
11456 struct die_info *spec_die = die_specification (die, &spec_cu);
11457
11458 while (spec_die)
11459 {
11460 child_die = spec_die->child;
11461 while (child_die && child_die->tag)
11462 {
11463 if (child_die->tag == DW_TAG_imported_module)
11464 process_die (child_die, spec_cu);
11465 child_die = sibling_die (child_die);
11466 }
11467
11468 /* In some cases, GCC generates specification DIEs that
11469 themselves contain DW_AT_specification attributes. */
11470 spec_die = die_specification (spec_die, &spec_cu);
11471 }
11472 }
11473
fe978cb0 11474 newobj = pop_context ();
c906108c 11475 /* Make a block for the local symbols within. */
fe978cb0 11476 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11477 newobj->static_link, lowpc, highpc);
801e3a5b 11478
df8a16a1 11479 /* For C++, set the block's scope. */
45280282
IB
11480 if ((cu->language == language_cplus
11481 || cu->language == language_fortran
11482 || cu->language == language_d)
4d4ec4e5 11483 && cu->processing_has_namespace_info)
195a3f6c
TT
11484 block_set_scope (block, determine_prefix (die, cu),
11485 &objfile->objfile_obstack);
df8a16a1 11486
801e3a5b
JB
11487 /* If we have address ranges, record them. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11489
fe978cb0 11490 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11491
34eaf542
TT
11492 /* Attach template arguments to function. */
11493 if (! VEC_empty (symbolp, template_args))
11494 {
11495 gdb_assert (templ_func != NULL);
11496
11497 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11498 templ_func->template_arguments
8d749320
SM
11499 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11500 templ_func->n_template_arguments);
34eaf542
TT
11501 memcpy (templ_func->template_arguments,
11502 VEC_address (symbolp, template_args),
11503 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11504 VEC_free (symbolp, template_args);
11505 }
11506
208d8187
JB
11507 /* In C++, we can have functions nested inside functions (e.g., when
11508 a function declares a class that has methods). This means that
11509 when we finish processing a function scope, we may need to go
11510 back to building a containing block's symbol lists. */
fe978cb0 11511 local_symbols = newobj->locals;
22cee43f 11512 local_using_directives = newobj->local_using_directives;
208d8187 11513
921e78cf
JB
11514 /* If we've finished processing a top-level function, subsequent
11515 symbols go in the file symbol list. */
11516 if (outermost_context_p ())
e142c38c 11517 cu->list_in_scope = &file_symbols;
c906108c
SS
11518}
11519
11520/* Process all the DIES contained within a lexical block scope. Start
11521 a new scope, process the dies, and then close the scope. */
11522
11523static void
e7c27a73 11524read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11525{
e7c27a73 11526 struct objfile *objfile = cu->objfile;
3e29f34a 11527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11528 struct context_stack *newobj;
c906108c
SS
11529 CORE_ADDR lowpc, highpc;
11530 struct die_info *child_die;
e142c38c
DJ
11531 CORE_ADDR baseaddr;
11532
11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11534
11535 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11536 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11537 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11538 be nasty. Might be easier to properly extend generic blocks to
af34e669 11539 describe ranges. */
d85a05f0 11540 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11541 return;
3e29f34a
MR
11542 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11543 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11544
11545 push_context (0, lowpc);
639d11d3 11546 if (die->child != NULL)
c906108c 11547 {
639d11d3 11548 child_die = die->child;
c906108c
SS
11549 while (child_die && child_die->tag)
11550 {
e7c27a73 11551 process_die (child_die, cu);
c906108c
SS
11552 child_die = sibling_die (child_die);
11553 }
11554 }
3ea89b92 11555 inherit_abstract_dies (die, cu);
fe978cb0 11556 newobj = pop_context ();
c906108c 11557
22cee43f 11558 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11559 {
801e3a5b 11560 struct block *block
63e43d3a 11561 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11562 newobj->start_addr, highpc);
801e3a5b
JB
11563
11564 /* Note that recording ranges after traversing children, as we
11565 do here, means that recording a parent's ranges entails
11566 walking across all its children's ranges as they appear in
11567 the address map, which is quadratic behavior.
11568
11569 It would be nicer to record the parent's ranges before
11570 traversing its children, simply overriding whatever you find
11571 there. But since we don't even decide whether to create a
11572 block until after we've traversed its children, that's hard
11573 to do. */
11574 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11575 }
fe978cb0 11576 local_symbols = newobj->locals;
22cee43f 11577 local_using_directives = newobj->local_using_directives;
c906108c
SS
11578}
11579
96408a79
SA
11580/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11581
11582static void
11583read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11584{
11585 struct objfile *objfile = cu->objfile;
11586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11587 CORE_ADDR pc, baseaddr;
11588 struct attribute *attr;
11589 struct call_site *call_site, call_site_local;
11590 void **slot;
11591 int nparams;
11592 struct die_info *child_die;
11593
11594 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11595
11596 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11597 if (!attr)
11598 {
11599 complaint (&symfile_complaints,
11600 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11601 "DIE 0x%x [in module %s]"),
4262abfb 11602 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11603 return;
11604 }
31aa7e4e 11605 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11606 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11607
11608 if (cu->call_site_htab == NULL)
11609 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11610 NULL, &objfile->objfile_obstack,
11611 hashtab_obstack_allocate, NULL);
11612 call_site_local.pc = pc;
11613 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11614 if (*slot != NULL)
11615 {
11616 complaint (&symfile_complaints,
11617 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11618 "DIE 0x%x [in module %s]"),
4262abfb
JK
11619 paddress (gdbarch, pc), die->offset.sect_off,
11620 objfile_name (objfile));
96408a79
SA
11621 return;
11622 }
11623
11624 /* Count parameters at the caller. */
11625
11626 nparams = 0;
11627 for (child_die = die->child; child_die && child_die->tag;
11628 child_die = sibling_die (child_die))
11629 {
11630 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11631 {
11632 complaint (&symfile_complaints,
11633 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11634 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11635 child_die->tag, child_die->offset.sect_off,
11636 objfile_name (objfile));
96408a79
SA
11637 continue;
11638 }
11639
11640 nparams++;
11641 }
11642
224c3ddb
SM
11643 call_site
11644 = ((struct call_site *)
11645 obstack_alloc (&objfile->objfile_obstack,
11646 sizeof (*call_site)
11647 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11648 *slot = call_site;
11649 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11650 call_site->pc = pc;
11651
11652 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11653 {
11654 struct die_info *func_die;
11655
11656 /* Skip also over DW_TAG_inlined_subroutine. */
11657 for (func_die = die->parent;
11658 func_die && func_die->tag != DW_TAG_subprogram
11659 && func_die->tag != DW_TAG_subroutine_type;
11660 func_die = func_die->parent);
11661
11662 /* DW_AT_GNU_all_call_sites is a superset
11663 of DW_AT_GNU_all_tail_call_sites. */
11664 if (func_die
11665 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11666 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11667 {
11668 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11669 not complete. But keep CALL_SITE for look ups via call_site_htab,
11670 both the initial caller containing the real return address PC and
11671 the final callee containing the current PC of a chain of tail
11672 calls do not need to have the tail call list complete. But any
11673 function candidate for a virtual tail call frame searched via
11674 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11675 determined unambiguously. */
11676 }
11677 else
11678 {
11679 struct type *func_type = NULL;
11680
11681 if (func_die)
11682 func_type = get_die_type (func_die, cu);
11683 if (func_type != NULL)
11684 {
11685 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11686
11687 /* Enlist this call site to the function. */
11688 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11689 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11690 }
11691 else
11692 complaint (&symfile_complaints,
11693 _("Cannot find function owning DW_TAG_GNU_call_site "
11694 "DIE 0x%x [in module %s]"),
4262abfb 11695 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11696 }
11697 }
11698
11699 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11700 if (attr == NULL)
11701 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11702 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11703 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11704 /* Keep NULL DWARF_BLOCK. */;
11705 else if (attr_form_is_block (attr))
11706 {
11707 struct dwarf2_locexpr_baton *dlbaton;
11708
8d749320 11709 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11710 dlbaton->data = DW_BLOCK (attr)->data;
11711 dlbaton->size = DW_BLOCK (attr)->size;
11712 dlbaton->per_cu = cu->per_cu;
11713
11714 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11715 }
7771576e 11716 else if (attr_form_is_ref (attr))
96408a79 11717 {
96408a79
SA
11718 struct dwarf2_cu *target_cu = cu;
11719 struct die_info *target_die;
11720
ac9ec31b 11721 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11722 gdb_assert (target_cu->objfile == objfile);
11723 if (die_is_declaration (target_die, target_cu))
11724 {
7d45c7c3 11725 const char *target_physname;
9112db09
JK
11726
11727 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11728 target_physname = dwarf2_string_attr (target_die,
11729 DW_AT_linkage_name,
11730 target_cu);
11731 if (target_physname == NULL)
11732 target_physname = dwarf2_string_attr (target_die,
11733 DW_AT_MIPS_linkage_name,
11734 target_cu);
11735 if (target_physname == NULL)
9112db09 11736 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11737 if (target_physname == NULL)
11738 complaint (&symfile_complaints,
11739 _("DW_AT_GNU_call_site_target target DIE has invalid "
11740 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11741 die->offset.sect_off, objfile_name (objfile));
96408a79 11742 else
7d455152 11743 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11744 }
11745 else
11746 {
11747 CORE_ADDR lowpc;
11748
11749 /* DW_AT_entry_pc should be preferred. */
11750 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11751 complaint (&symfile_complaints,
11752 _("DW_AT_GNU_call_site_target target DIE has invalid "
11753 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11754 die->offset.sect_off, objfile_name (objfile));
96408a79 11755 else
3e29f34a
MR
11756 {
11757 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11758 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11759 }
96408a79
SA
11760 }
11761 }
11762 else
11763 complaint (&symfile_complaints,
11764 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11765 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11766 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11767
11768 call_site->per_cu = cu->per_cu;
11769
11770 for (child_die = die->child;
11771 child_die && child_die->tag;
11772 child_die = sibling_die (child_die))
11773 {
96408a79 11774 struct call_site_parameter *parameter;
1788b2d3 11775 struct attribute *loc, *origin;
96408a79
SA
11776
11777 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11778 {
11779 /* Already printed the complaint above. */
11780 continue;
11781 }
11782
11783 gdb_assert (call_site->parameter_count < nparams);
11784 parameter = &call_site->parameter[call_site->parameter_count];
11785
1788b2d3
JK
11786 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11787 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11788 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11789
24c5c679 11790 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11791 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11792 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11793 {
11794 sect_offset offset;
11795
11796 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11797 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11798 if (!offset_in_cu_p (&cu->header, offset))
11799 {
11800 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11801 binding can be done only inside one CU. Such referenced DIE
11802 therefore cannot be even moved to DW_TAG_partial_unit. */
11803 complaint (&symfile_complaints,
11804 _("DW_AT_abstract_origin offset is not in CU for "
11805 "DW_TAG_GNU_call_site child DIE 0x%x "
11806 "[in module %s]"),
4262abfb 11807 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11808 continue;
11809 }
1788b2d3
JK
11810 parameter->u.param_offset.cu_off = (offset.sect_off
11811 - cu->header.offset.sect_off);
11812 }
11813 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11814 {
11815 complaint (&symfile_complaints,
11816 _("No DW_FORM_block* DW_AT_location for "
11817 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11818 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11819 continue;
11820 }
24c5c679 11821 else
96408a79 11822 {
24c5c679
JK
11823 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11824 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11825 if (parameter->u.dwarf_reg != -1)
11826 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11827 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11828 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11829 &parameter->u.fb_offset))
11830 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11831 else
11832 {
11833 complaint (&symfile_complaints,
11834 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11835 "for DW_FORM_block* DW_AT_location is supported for "
11836 "DW_TAG_GNU_call_site child DIE 0x%x "
11837 "[in module %s]"),
4262abfb 11838 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11839 continue;
11840 }
96408a79
SA
11841 }
11842
11843 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11844 if (!attr_form_is_block (attr))
11845 {
11846 complaint (&symfile_complaints,
11847 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11848 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11849 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11850 continue;
11851 }
11852 parameter->value = DW_BLOCK (attr)->data;
11853 parameter->value_size = DW_BLOCK (attr)->size;
11854
11855 /* Parameters are not pre-cleared by memset above. */
11856 parameter->data_value = NULL;
11857 parameter->data_value_size = 0;
11858 call_site->parameter_count++;
11859
11860 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11861 if (attr)
11862 {
11863 if (!attr_form_is_block (attr))
11864 complaint (&symfile_complaints,
11865 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11866 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11867 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11868 else
11869 {
11870 parameter->data_value = DW_BLOCK (attr)->data;
11871 parameter->data_value_size = DW_BLOCK (attr)->size;
11872 }
11873 }
11874 }
11875}
11876
43039443 11877/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11878 Return 1 if the attributes are present and valid, otherwise, return 0.
11879 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11880
11881static int
11882dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11883 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11884 struct partial_symtab *ranges_pst)
43039443
JK
11885{
11886 struct objfile *objfile = cu->objfile;
3e29f34a 11887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11888 struct comp_unit_head *cu_header = &cu->header;
11889 bfd *obfd = objfile->obfd;
11890 unsigned int addr_size = cu_header->addr_size;
11891 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11892 /* Base address selection entry. */
11893 CORE_ADDR base;
11894 int found_base;
11895 unsigned int dummy;
d521ce57 11896 const gdb_byte *buffer;
43039443
JK
11897 CORE_ADDR marker;
11898 int low_set;
11899 CORE_ADDR low = 0;
11900 CORE_ADDR high = 0;
ff013f42 11901 CORE_ADDR baseaddr;
43039443 11902
d00adf39
DE
11903 found_base = cu->base_known;
11904 base = cu->base_address;
43039443 11905
be391dca 11906 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11907 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11908 {
11909 complaint (&symfile_complaints,
11910 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11911 offset);
11912 return 0;
11913 }
dce234bc 11914 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11915
11916 /* Read in the largest possible address. */
11917 marker = read_address (obfd, buffer, cu, &dummy);
11918 if ((marker & mask) == mask)
11919 {
11920 /* If we found the largest possible address, then
11921 read the base address. */
11922 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11923 buffer += 2 * addr_size;
11924 offset += 2 * addr_size;
11925 found_base = 1;
11926 }
11927
11928 low_set = 0;
11929
e7030f15 11930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11931
43039443
JK
11932 while (1)
11933 {
11934 CORE_ADDR range_beginning, range_end;
11935
11936 range_beginning = read_address (obfd, buffer, cu, &dummy);
11937 buffer += addr_size;
11938 range_end = read_address (obfd, buffer, cu, &dummy);
11939 buffer += addr_size;
11940 offset += 2 * addr_size;
11941
11942 /* An end of list marker is a pair of zero addresses. */
11943 if (range_beginning == 0 && range_end == 0)
11944 /* Found the end of list entry. */
11945 break;
11946
11947 /* Each base address selection entry is a pair of 2 values.
11948 The first is the largest possible address, the second is
11949 the base address. Check for a base address here. */
11950 if ((range_beginning & mask) == mask)
11951 {
11952 /* If we found the largest possible address, then
11953 read the base address. */
11954 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11955 found_base = 1;
11956 continue;
11957 }
11958
11959 if (!found_base)
11960 {
11961 /* We have no valid base address for the ranges
11962 data. */
11963 complaint (&symfile_complaints,
11964 _("Invalid .debug_ranges data (no base address)"));
11965 return 0;
11966 }
11967
9277c30c
UW
11968 if (range_beginning > range_end)
11969 {
11970 /* Inverted range entries are invalid. */
11971 complaint (&symfile_complaints,
11972 _("Invalid .debug_ranges data (inverted range)"));
11973 return 0;
11974 }
11975
11976 /* Empty range entries have no effect. */
11977 if (range_beginning == range_end)
11978 continue;
11979
43039443
JK
11980 range_beginning += base;
11981 range_end += base;
11982
01093045
DE
11983 /* A not-uncommon case of bad debug info.
11984 Don't pollute the addrmap with bad data. */
11985 if (range_beginning + baseaddr == 0
11986 && !dwarf2_per_objfile->has_section_at_zero)
11987 {
11988 complaint (&symfile_complaints,
11989 _(".debug_ranges entry has start address of zero"
4262abfb 11990 " [in module %s]"), objfile_name (objfile));
01093045
DE
11991 continue;
11992 }
11993
9277c30c 11994 if (ranges_pst != NULL)
3e29f34a
MR
11995 {
11996 CORE_ADDR lowpc;
11997 CORE_ADDR highpc;
11998
11999 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12000 range_beginning + baseaddr);
12001 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12002 range_end + baseaddr);
12003 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12004 ranges_pst);
12005 }
ff013f42 12006
43039443
JK
12007 /* FIXME: This is recording everything as a low-high
12008 segment of consecutive addresses. We should have a
12009 data structure for discontiguous block ranges
12010 instead. */
12011 if (! low_set)
12012 {
12013 low = range_beginning;
12014 high = range_end;
12015 low_set = 1;
12016 }
12017 else
12018 {
12019 if (range_beginning < low)
12020 low = range_beginning;
12021 if (range_end > high)
12022 high = range_end;
12023 }
12024 }
12025
12026 if (! low_set)
12027 /* If the first entry is an end-of-list marker, the range
12028 describes an empty scope, i.e. no instructions. */
12029 return 0;
12030
12031 if (low_return)
12032 *low_return = low;
12033 if (high_return)
12034 *high_return = high;
12035 return 1;
12036}
12037
af34e669
DJ
12038/* Get low and high pc attributes from a die. Return 1 if the attributes
12039 are present and valid, otherwise, return 0. Return -1 if the range is
12040 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12041
c906108c 12042static int
af34e669 12043dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12044 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12045 struct partial_symtab *pst)
c906108c
SS
12046{
12047 struct attribute *attr;
91da1414 12048 struct attribute *attr_high;
af34e669
DJ
12049 CORE_ADDR low = 0;
12050 CORE_ADDR high = 0;
12051 int ret = 0;
c906108c 12052
91da1414
MW
12053 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12054 if (attr_high)
af34e669 12055 {
e142c38c 12056 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12057 if (attr)
91da1414 12058 {
31aa7e4e
JB
12059 low = attr_value_as_address (attr);
12060 high = attr_value_as_address (attr_high);
12061 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12062 high += low;
91da1414 12063 }
af34e669
DJ
12064 else
12065 /* Found high w/o low attribute. */
12066 return 0;
12067
12068 /* Found consecutive range of addresses. */
12069 ret = 1;
12070 }
c906108c 12071 else
af34e669 12072 {
e142c38c 12073 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12074 if (attr != NULL)
12075 {
ab435259
DE
12076 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12077 We take advantage of the fact that DW_AT_ranges does not appear
12078 in DW_TAG_compile_unit of DWO files. */
12079 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12080 unsigned int ranges_offset = (DW_UNSND (attr)
12081 + (need_ranges_base
12082 ? cu->ranges_base
12083 : 0));
2e3cf129 12084
af34e669 12085 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12086 .debug_ranges section. */
2e3cf129 12087 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12088 return 0;
43039443 12089 /* Found discontinuous range of addresses. */
af34e669
DJ
12090 ret = -1;
12091 }
12092 }
c906108c 12093
9373cf26
JK
12094 /* read_partial_die has also the strict LOW < HIGH requirement. */
12095 if (high <= low)
c906108c
SS
12096 return 0;
12097
12098 /* When using the GNU linker, .gnu.linkonce. sections are used to
12099 eliminate duplicate copies of functions and vtables and such.
12100 The linker will arbitrarily choose one and discard the others.
12101 The AT_*_pc values for such functions refer to local labels in
12102 these sections. If the section from that file was discarded, the
12103 labels are not in the output, so the relocs get a value of 0.
12104 If this is a discarded function, mark the pc bounds as invalid,
12105 so that GDB will ignore it. */
72dca2f5 12106 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12107 return 0;
12108
12109 *lowpc = low;
96408a79
SA
12110 if (highpc)
12111 *highpc = high;
af34e669 12112 return ret;
c906108c
SS
12113}
12114
b084d499
JB
12115/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12116 its low and high PC addresses. Do nothing if these addresses could not
12117 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12118 and HIGHPC to the high address if greater than HIGHPC. */
12119
12120static void
12121dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12122 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12123 struct dwarf2_cu *cu)
12124{
12125 CORE_ADDR low, high;
12126 struct die_info *child = die->child;
12127
d85a05f0 12128 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12129 {
12130 *lowpc = min (*lowpc, low);
12131 *highpc = max (*highpc, high);
12132 }
12133
12134 /* If the language does not allow nested subprograms (either inside
12135 subprograms or lexical blocks), we're done. */
12136 if (cu->language != language_ada)
12137 return;
6e70227d 12138
b084d499
JB
12139 /* Check all the children of the given DIE. If it contains nested
12140 subprograms, then check their pc bounds. Likewise, we need to
12141 check lexical blocks as well, as they may also contain subprogram
12142 definitions. */
12143 while (child && child->tag)
12144 {
12145 if (child->tag == DW_TAG_subprogram
12146 || child->tag == DW_TAG_lexical_block)
12147 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12148 child = sibling_die (child);
12149 }
12150}
12151
fae299cd
DC
12152/* Get the low and high pc's represented by the scope DIE, and store
12153 them in *LOWPC and *HIGHPC. If the correct values can't be
12154 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12155
12156static void
12157get_scope_pc_bounds (struct die_info *die,
12158 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12159 struct dwarf2_cu *cu)
12160{
12161 CORE_ADDR best_low = (CORE_ADDR) -1;
12162 CORE_ADDR best_high = (CORE_ADDR) 0;
12163 CORE_ADDR current_low, current_high;
12164
d85a05f0 12165 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12166 {
12167 best_low = current_low;
12168 best_high = current_high;
12169 }
12170 else
12171 {
12172 struct die_info *child = die->child;
12173
12174 while (child && child->tag)
12175 {
12176 switch (child->tag) {
12177 case DW_TAG_subprogram:
b084d499 12178 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12179 break;
12180 case DW_TAG_namespace:
f55ee35c 12181 case DW_TAG_module:
fae299cd
DC
12182 /* FIXME: carlton/2004-01-16: Should we do this for
12183 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12184 that current GCC's always emit the DIEs corresponding
12185 to definitions of methods of classes as children of a
12186 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12187 the DIEs giving the declarations, which could be
12188 anywhere). But I don't see any reason why the
12189 standards says that they have to be there. */
12190 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12191
12192 if (current_low != ((CORE_ADDR) -1))
12193 {
12194 best_low = min (best_low, current_low);
12195 best_high = max (best_high, current_high);
12196 }
12197 break;
12198 default:
0963b4bd 12199 /* Ignore. */
fae299cd
DC
12200 break;
12201 }
12202
12203 child = sibling_die (child);
12204 }
12205 }
12206
12207 *lowpc = best_low;
12208 *highpc = best_high;
12209}
12210
801e3a5b
JB
12211/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12212 in DIE. */
380bca97 12213
801e3a5b
JB
12214static void
12215dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12216 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12217{
bb5ed363 12218 struct objfile *objfile = cu->objfile;
3e29f34a 12219 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12220 struct attribute *attr;
91da1414 12221 struct attribute *attr_high;
801e3a5b 12222
91da1414
MW
12223 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12224 if (attr_high)
801e3a5b 12225 {
801e3a5b
JB
12226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12227 if (attr)
12228 {
31aa7e4e
JB
12229 CORE_ADDR low = attr_value_as_address (attr);
12230 CORE_ADDR high = attr_value_as_address (attr_high);
12231
12232 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12233 high += low;
9a619af0 12234
3e29f34a
MR
12235 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12236 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12237 record_block_range (block, low, high - 1);
801e3a5b
JB
12238 }
12239 }
12240
12241 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12242 if (attr)
12243 {
bb5ed363 12244 bfd *obfd = objfile->obfd;
ab435259
DE
12245 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12246 We take advantage of the fact that DW_AT_ranges does not appear
12247 in DW_TAG_compile_unit of DWO files. */
12248 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12249
12250 /* The value of the DW_AT_ranges attribute is the offset of the
12251 address range list in the .debug_ranges section. */
ab435259
DE
12252 unsigned long offset = (DW_UNSND (attr)
12253 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12254 const gdb_byte *buffer;
801e3a5b
JB
12255
12256 /* For some target architectures, but not others, the
12257 read_address function sign-extends the addresses it returns.
12258 To recognize base address selection entries, we need a
12259 mask. */
12260 unsigned int addr_size = cu->header.addr_size;
12261 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12262
12263 /* The base address, to which the next pair is relative. Note
12264 that this 'base' is a DWARF concept: most entries in a range
12265 list are relative, to reduce the number of relocs against the
12266 debugging information. This is separate from this function's
12267 'baseaddr' argument, which GDB uses to relocate debugging
12268 information from a shared library based on the address at
12269 which the library was loaded. */
d00adf39
DE
12270 CORE_ADDR base = cu->base_address;
12271 int base_known = cu->base_known;
801e3a5b 12272
d62bfeaf 12273 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12274 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12275 {
12276 complaint (&symfile_complaints,
12277 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12278 offset);
12279 return;
12280 }
d62bfeaf 12281 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12282
12283 for (;;)
12284 {
12285 unsigned int bytes_read;
12286 CORE_ADDR start, end;
12287
12288 start = read_address (obfd, buffer, cu, &bytes_read);
12289 buffer += bytes_read;
12290 end = read_address (obfd, buffer, cu, &bytes_read);
12291 buffer += bytes_read;
12292
12293 /* Did we find the end of the range list? */
12294 if (start == 0 && end == 0)
12295 break;
12296
12297 /* Did we find a base address selection entry? */
12298 else if ((start & base_select_mask) == base_select_mask)
12299 {
12300 base = end;
12301 base_known = 1;
12302 }
12303
12304 /* We found an ordinary address range. */
12305 else
12306 {
12307 if (!base_known)
12308 {
12309 complaint (&symfile_complaints,
3e43a32a
MS
12310 _("Invalid .debug_ranges data "
12311 "(no base address)"));
801e3a5b
JB
12312 return;
12313 }
12314
9277c30c
UW
12315 if (start > end)
12316 {
12317 /* Inverted range entries are invalid. */
12318 complaint (&symfile_complaints,
12319 _("Invalid .debug_ranges data "
12320 "(inverted range)"));
12321 return;
12322 }
12323
12324 /* Empty range entries have no effect. */
12325 if (start == end)
12326 continue;
12327
01093045
DE
12328 start += base + baseaddr;
12329 end += base + baseaddr;
12330
12331 /* A not-uncommon case of bad debug info.
12332 Don't pollute the addrmap with bad data. */
12333 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12334 {
12335 complaint (&symfile_complaints,
12336 _(".debug_ranges entry has start address of zero"
4262abfb 12337 " [in module %s]"), objfile_name (objfile));
01093045
DE
12338 continue;
12339 }
12340
3e29f34a
MR
12341 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12342 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12343 record_block_range (block, start, end - 1);
801e3a5b
JB
12344 }
12345 }
12346 }
12347}
12348
685b1105
JK
12349/* Check whether the producer field indicates either of GCC < 4.6, or the
12350 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12351
685b1105
JK
12352static void
12353check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12354{
12355 const char *cs;
38360086 12356 int major, minor;
60d5a603
JK
12357
12358 if (cu->producer == NULL)
12359 {
12360 /* For unknown compilers expect their behavior is DWARF version
12361 compliant.
12362
12363 GCC started to support .debug_types sections by -gdwarf-4 since
12364 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12365 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12366 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12367 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12368 }
b1ffba5a 12369 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12370 {
38360086
MW
12371 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12372 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12373 }
61012eef 12374 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12375 cu->producer_is_icc = 1;
12376 else
12377 {
12378 /* For other non-GCC compilers, expect their behavior is DWARF version
12379 compliant. */
60d5a603
JK
12380 }
12381
ba919b58 12382 cu->checked_producer = 1;
685b1105 12383}
ba919b58 12384
685b1105
JK
12385/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12386 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12387 during 4.6.0 experimental. */
12388
12389static int
12390producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12391{
12392 if (!cu->checked_producer)
12393 check_producer (cu);
12394
12395 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12396}
12397
12398/* Return the default accessibility type if it is not overriden by
12399 DW_AT_accessibility. */
12400
12401static enum dwarf_access_attribute
12402dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12403{
12404 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12405 {
12406 /* The default DWARF 2 accessibility for members is public, the default
12407 accessibility for inheritance is private. */
12408
12409 if (die->tag != DW_TAG_inheritance)
12410 return DW_ACCESS_public;
12411 else
12412 return DW_ACCESS_private;
12413 }
12414 else
12415 {
12416 /* DWARF 3+ defines the default accessibility a different way. The same
12417 rules apply now for DW_TAG_inheritance as for the members and it only
12418 depends on the container kind. */
12419
12420 if (die->parent->tag == DW_TAG_class_type)
12421 return DW_ACCESS_private;
12422 else
12423 return DW_ACCESS_public;
12424 }
12425}
12426
74ac6d43
TT
12427/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12428 offset. If the attribute was not found return 0, otherwise return
12429 1. If it was found but could not properly be handled, set *OFFSET
12430 to 0. */
12431
12432static int
12433handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12434 LONGEST *offset)
12435{
12436 struct attribute *attr;
12437
12438 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12439 if (attr != NULL)
12440 {
12441 *offset = 0;
12442
12443 /* Note that we do not check for a section offset first here.
12444 This is because DW_AT_data_member_location is new in DWARF 4,
12445 so if we see it, we can assume that a constant form is really
12446 a constant and not a section offset. */
12447 if (attr_form_is_constant (attr))
12448 *offset = dwarf2_get_attr_constant_value (attr, 0);
12449 else if (attr_form_is_section_offset (attr))
12450 dwarf2_complex_location_expr_complaint ();
12451 else if (attr_form_is_block (attr))
12452 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12453 else
12454 dwarf2_complex_location_expr_complaint ();
12455
12456 return 1;
12457 }
12458
12459 return 0;
12460}
12461
c906108c
SS
12462/* Add an aggregate field to the field list. */
12463
12464static void
107d2387 12465dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12466 struct dwarf2_cu *cu)
6e70227d 12467{
e7c27a73 12468 struct objfile *objfile = cu->objfile;
5e2b427d 12469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12470 struct nextfield *new_field;
12471 struct attribute *attr;
12472 struct field *fp;
15d034d0 12473 const char *fieldname = "";
c906108c
SS
12474
12475 /* Allocate a new field list entry and link it in. */
8d749320 12476 new_field = XNEW (struct nextfield);
b8c9b27d 12477 make_cleanup (xfree, new_field);
c906108c 12478 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12479
12480 if (die->tag == DW_TAG_inheritance)
12481 {
12482 new_field->next = fip->baseclasses;
12483 fip->baseclasses = new_field;
12484 }
12485 else
12486 {
12487 new_field->next = fip->fields;
12488 fip->fields = new_field;
12489 }
c906108c
SS
12490 fip->nfields++;
12491
e142c38c 12492 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12493 if (attr)
12494 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12495 else
12496 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12497 if (new_field->accessibility != DW_ACCESS_public)
12498 fip->non_public_fields = 1;
60d5a603 12499
e142c38c 12500 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12501 if (attr)
12502 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12503 else
12504 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12505
12506 fp = &new_field->field;
a9a9bd0f 12507
e142c38c 12508 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12509 {
74ac6d43
TT
12510 LONGEST offset;
12511
a9a9bd0f 12512 /* Data member other than a C++ static data member. */
6e70227d 12513
c906108c 12514 /* Get type of field. */
e7c27a73 12515 fp->type = die_type (die, cu);
c906108c 12516
d6a843b5 12517 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12518
c906108c 12519 /* Get bit size of field (zero if none). */
e142c38c 12520 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12521 if (attr)
12522 {
12523 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12524 }
12525 else
12526 {
12527 FIELD_BITSIZE (*fp) = 0;
12528 }
12529
12530 /* Get bit offset of field. */
74ac6d43
TT
12531 if (handle_data_member_location (die, cu, &offset))
12532 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12533 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12534 if (attr)
12535 {
5e2b427d 12536 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12537 {
12538 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12539 additional bit offset from the MSB of the containing
12540 anonymous object to the MSB of the field. We don't
12541 have to do anything special since we don't need to
12542 know the size of the anonymous object. */
f41f5e61 12543 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12544 }
12545 else
12546 {
12547 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12548 MSB of the anonymous object, subtract off the number of
12549 bits from the MSB of the field to the MSB of the
12550 object, and then subtract off the number of bits of
12551 the field itself. The result is the bit offset of
12552 the LSB of the field. */
c906108c
SS
12553 int anonymous_size;
12554 int bit_offset = DW_UNSND (attr);
12555
e142c38c 12556 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12557 if (attr)
12558 {
12559 /* The size of the anonymous object containing
12560 the bit field is explicit, so use the
12561 indicated size (in bytes). */
12562 anonymous_size = DW_UNSND (attr);
12563 }
12564 else
12565 {
12566 /* The size of the anonymous object containing
12567 the bit field must be inferred from the type
12568 attribute of the data member containing the
12569 bit field. */
12570 anonymous_size = TYPE_LENGTH (fp->type);
12571 }
f41f5e61
PA
12572 SET_FIELD_BITPOS (*fp,
12573 (FIELD_BITPOS (*fp)
12574 + anonymous_size * bits_per_byte
12575 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12576 }
12577 }
12578
12579 /* Get name of field. */
39cbfefa
DJ
12580 fieldname = dwarf2_name (die, cu);
12581 if (fieldname == NULL)
12582 fieldname = "";
d8151005
DJ
12583
12584 /* The name is already allocated along with this objfile, so we don't
12585 need to duplicate it for the type. */
12586 fp->name = fieldname;
c906108c
SS
12587
12588 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12589 pointer or virtual base class pointer) to private. */
e142c38c 12590 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12591 {
d48cc9dd 12592 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12593 new_field->accessibility = DW_ACCESS_private;
12594 fip->non_public_fields = 1;
12595 }
12596 }
a9a9bd0f 12597 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12598 {
a9a9bd0f
DC
12599 /* C++ static member. */
12600
12601 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12602 is a declaration, but all versions of G++ as of this writing
12603 (so through at least 3.2.1) incorrectly generate
12604 DW_TAG_variable tags. */
6e70227d 12605
ff355380 12606 const char *physname;
c906108c 12607
a9a9bd0f 12608 /* Get name of field. */
39cbfefa
DJ
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
c906108c
SS
12611 return;
12612
254e6b9e 12613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12614 if (attr
12615 /* Only create a symbol if this is an external value.
12616 new_symbol checks this and puts the value in the global symbol
12617 table, which we want. If it is not external, new_symbol
12618 will try to put the value in cu->list_in_scope which is wrong. */
12619 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12620 {
12621 /* A static const member, not much different than an enum as far as
12622 we're concerned, except that we can support more types. */
12623 new_symbol (die, NULL, cu);
12624 }
12625
2df3850c 12626 /* Get physical name. */
ff355380 12627 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12628
d8151005
DJ
12629 /* The name is already allocated along with this objfile, so we don't
12630 need to duplicate it for the type. */
12631 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12632 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12633 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12634 }
12635 else if (die->tag == DW_TAG_inheritance)
12636 {
74ac6d43 12637 LONGEST offset;
d4b96c9a 12638
74ac6d43
TT
12639 /* C++ base class field. */
12640 if (handle_data_member_location (die, cu, &offset))
12641 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12642 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12643 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12644 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12645 fip->nbaseclasses++;
12646 }
12647}
12648
98751a41
JK
12649/* Add a typedef defined in the scope of the FIP's class. */
12650
12651static void
12652dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12653 struct dwarf2_cu *cu)
6e70227d 12654{
98751a41 12655 struct objfile *objfile = cu->objfile;
98751a41
JK
12656 struct typedef_field_list *new_field;
12657 struct attribute *attr;
12658 struct typedef_field *fp;
12659 char *fieldname = "";
12660
12661 /* Allocate a new field list entry and link it in. */
8d749320 12662 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12663 make_cleanup (xfree, new_field);
12664
12665 gdb_assert (die->tag == DW_TAG_typedef);
12666
12667 fp = &new_field->field;
12668
12669 /* Get name of field. */
12670 fp->name = dwarf2_name (die, cu);
12671 if (fp->name == NULL)
12672 return;
12673
12674 fp->type = read_type_die (die, cu);
12675
12676 new_field->next = fip->typedef_field_list;
12677 fip->typedef_field_list = new_field;
12678 fip->typedef_field_list_count++;
12679}
12680
c906108c
SS
12681/* Create the vector of fields, and attach it to the type. */
12682
12683static void
fba45db2 12684dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12685 struct dwarf2_cu *cu)
c906108c
SS
12686{
12687 int nfields = fip->nfields;
12688
12689 /* Record the field count, allocate space for the array of fields,
12690 and create blank accessibility bitfields if necessary. */
12691 TYPE_NFIELDS (type) = nfields;
12692 TYPE_FIELDS (type) = (struct field *)
12693 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12694 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12695
b4ba55a1 12696 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12697 {
12698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12699
12700 TYPE_FIELD_PRIVATE_BITS (type) =
12701 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12702 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12703
12704 TYPE_FIELD_PROTECTED_BITS (type) =
12705 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12706 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12707
774b6a14
TT
12708 TYPE_FIELD_IGNORE_BITS (type) =
12709 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12710 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12711 }
12712
12713 /* If the type has baseclasses, allocate and clear a bit vector for
12714 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12715 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12716 {
12717 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12718 unsigned char *pointer;
c906108c
SS
12719
12720 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12721 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12722 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12723 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12724 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12725 }
12726
3e43a32a
MS
12727 /* Copy the saved-up fields into the field vector. Start from the head of
12728 the list, adding to the tail of the field array, so that they end up in
12729 the same order in the array in which they were added to the list. */
c906108c
SS
12730 while (nfields-- > 0)
12731 {
7d0ccb61
DJ
12732 struct nextfield *fieldp;
12733
12734 if (fip->fields)
12735 {
12736 fieldp = fip->fields;
12737 fip->fields = fieldp->next;
12738 }
12739 else
12740 {
12741 fieldp = fip->baseclasses;
12742 fip->baseclasses = fieldp->next;
12743 }
12744
12745 TYPE_FIELD (type, nfields) = fieldp->field;
12746 switch (fieldp->accessibility)
c906108c 12747 {
c5aa993b 12748 case DW_ACCESS_private:
b4ba55a1
JB
12749 if (cu->language != language_ada)
12750 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12751 break;
c906108c 12752
c5aa993b 12753 case DW_ACCESS_protected:
b4ba55a1
JB
12754 if (cu->language != language_ada)
12755 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12756 break;
c906108c 12757
c5aa993b
JM
12758 case DW_ACCESS_public:
12759 break;
c906108c 12760
c5aa993b
JM
12761 default:
12762 /* Unknown accessibility. Complain and treat it as public. */
12763 {
e2e0b3e5 12764 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12765 fieldp->accessibility);
c5aa993b
JM
12766 }
12767 break;
c906108c
SS
12768 }
12769 if (nfields < fip->nbaseclasses)
12770 {
7d0ccb61 12771 switch (fieldp->virtuality)
c906108c 12772 {
c5aa993b
JM
12773 case DW_VIRTUALITY_virtual:
12774 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12775 if (cu->language == language_ada)
a73c6dcd 12776 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12777 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12778 break;
c906108c
SS
12779 }
12780 }
c906108c
SS
12781 }
12782}
12783
7d27a96d
TT
12784/* Return true if this member function is a constructor, false
12785 otherwise. */
12786
12787static int
12788dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12789{
12790 const char *fieldname;
fe978cb0 12791 const char *type_name;
7d27a96d
TT
12792 int len;
12793
12794 if (die->parent == NULL)
12795 return 0;
12796
12797 if (die->parent->tag != DW_TAG_structure_type
12798 && die->parent->tag != DW_TAG_union_type
12799 && die->parent->tag != DW_TAG_class_type)
12800 return 0;
12801
12802 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12803 type_name = dwarf2_name (die->parent, cu);
12804 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12805 return 0;
12806
12807 len = strlen (fieldname);
fe978cb0
PA
12808 return (strncmp (fieldname, type_name, len) == 0
12809 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12810}
12811
c906108c
SS
12812/* Add a member function to the proper fieldlist. */
12813
12814static void
107d2387 12815dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12816 struct type *type, struct dwarf2_cu *cu)
c906108c 12817{
e7c27a73 12818 struct objfile *objfile = cu->objfile;
c906108c
SS
12819 struct attribute *attr;
12820 struct fnfieldlist *flp;
12821 int i;
12822 struct fn_field *fnp;
15d034d0 12823 const char *fieldname;
c906108c 12824 struct nextfnfield *new_fnfield;
f792889a 12825 struct type *this_type;
60d5a603 12826 enum dwarf_access_attribute accessibility;
c906108c 12827
b4ba55a1 12828 if (cu->language == language_ada)
a73c6dcd 12829 error (_("unexpected member function in Ada type"));
b4ba55a1 12830
2df3850c 12831 /* Get name of member function. */
39cbfefa
DJ
12832 fieldname = dwarf2_name (die, cu);
12833 if (fieldname == NULL)
2df3850c 12834 return;
c906108c 12835
c906108c
SS
12836 /* Look up member function name in fieldlist. */
12837 for (i = 0; i < fip->nfnfields; i++)
12838 {
27bfe10e 12839 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12840 break;
12841 }
12842
12843 /* Create new list element if necessary. */
12844 if (i < fip->nfnfields)
12845 flp = &fip->fnfieldlists[i];
12846 else
12847 {
12848 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12849 {
12850 fip->fnfieldlists = (struct fnfieldlist *)
12851 xrealloc (fip->fnfieldlists,
12852 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12853 * sizeof (struct fnfieldlist));
c906108c 12854 if (fip->nfnfields == 0)
c13c43fd 12855 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12856 }
12857 flp = &fip->fnfieldlists[fip->nfnfields];
12858 flp->name = fieldname;
12859 flp->length = 0;
12860 flp->head = NULL;
3da10d80 12861 i = fip->nfnfields++;
c906108c
SS
12862 }
12863
12864 /* Create a new member function field and chain it to the field list
0963b4bd 12865 entry. */
8d749320 12866 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12867 make_cleanup (xfree, new_fnfield);
c906108c
SS
12868 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12869 new_fnfield->next = flp->head;
12870 flp->head = new_fnfield;
12871 flp->length++;
12872
12873 /* Fill in the member function field info. */
12874 fnp = &new_fnfield->fnfield;
3da10d80
KS
12875
12876 /* Delay processing of the physname until later. */
12877 if (cu->language == language_cplus || cu->language == language_java)
12878 {
12879 add_to_method_list (type, i, flp->length - 1, fieldname,
12880 die, cu);
12881 }
12882 else
12883 {
1d06ead6 12884 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12885 fnp->physname = physname ? physname : "";
12886 }
12887
c906108c 12888 fnp->type = alloc_type (objfile);
f792889a
DJ
12889 this_type = read_type_die (die, cu);
12890 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12891 {
f792889a 12892 int nparams = TYPE_NFIELDS (this_type);
c906108c 12893
f792889a 12894 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12895 of the method itself (TYPE_CODE_METHOD). */
12896 smash_to_method_type (fnp->type, type,
f792889a
DJ
12897 TYPE_TARGET_TYPE (this_type),
12898 TYPE_FIELDS (this_type),
12899 TYPE_NFIELDS (this_type),
12900 TYPE_VARARGS (this_type));
c906108c
SS
12901
12902 /* Handle static member functions.
c5aa993b 12903 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12904 member functions. G++ helps GDB by marking the first
12905 parameter for non-static member functions (which is the this
12906 pointer) as artificial. We obtain this information from
12907 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12908 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12909 fnp->voffset = VOFFSET_STATIC;
12910 }
12911 else
e2e0b3e5 12912 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12913 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12914
12915 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12916 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12917 fnp->fcontext = die_containing_type (die, cu);
c906108c 12918
3e43a32a
MS
12919 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12920 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12921
12922 /* Get accessibility. */
e142c38c 12923 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12924 if (attr)
aead7601 12925 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12926 else
12927 accessibility = dwarf2_default_access_attribute (die, cu);
12928 switch (accessibility)
c906108c 12929 {
60d5a603
JK
12930 case DW_ACCESS_private:
12931 fnp->is_private = 1;
12932 break;
12933 case DW_ACCESS_protected:
12934 fnp->is_protected = 1;
12935 break;
c906108c
SS
12936 }
12937
b02dede2 12938 /* Check for artificial methods. */
e142c38c 12939 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12940 if (attr && DW_UNSND (attr) != 0)
12941 fnp->is_artificial = 1;
12942
7d27a96d
TT
12943 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12944
0d564a31 12945 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12946 function. For older versions of GCC, this is an offset in the
12947 appropriate virtual table, as specified by DW_AT_containing_type.
12948 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12949 to the object address. */
12950
e142c38c 12951 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12952 if (attr)
8e19ed76 12953 {
aec5aa8b 12954 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12955 {
aec5aa8b
TT
12956 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12957 {
12958 /* Old-style GCC. */
12959 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12960 }
12961 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12962 || (DW_BLOCK (attr)->size > 1
12963 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12964 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12965 {
12966 struct dwarf_block blk;
12967 int offset;
12968
12969 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12970 ? 1 : 2);
12971 blk.size = DW_BLOCK (attr)->size - offset;
12972 blk.data = DW_BLOCK (attr)->data + offset;
12973 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12974 if ((fnp->voffset % cu->header.addr_size) != 0)
12975 dwarf2_complex_location_expr_complaint ();
12976 else
12977 fnp->voffset /= cu->header.addr_size;
12978 fnp->voffset += 2;
12979 }
12980 else
12981 dwarf2_complex_location_expr_complaint ();
12982
12983 if (!fnp->fcontext)
7e993ebf
KS
12984 {
12985 /* If there is no `this' field and no DW_AT_containing_type,
12986 we cannot actually find a base class context for the
12987 vtable! */
12988 if (TYPE_NFIELDS (this_type) == 0
12989 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12990 {
12991 complaint (&symfile_complaints,
12992 _("cannot determine context for virtual member "
12993 "function \"%s\" (offset %d)"),
12994 fieldname, die->offset.sect_off);
12995 }
12996 else
12997 {
12998 fnp->fcontext
12999 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13000 }
13001 }
aec5aa8b 13002 }
3690dd37 13003 else if (attr_form_is_section_offset (attr))
8e19ed76 13004 {
4d3c2250 13005 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13006 }
13007 else
13008 {
4d3c2250
KB
13009 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13010 fieldname);
8e19ed76 13011 }
0d564a31 13012 }
d48cc9dd
DJ
13013 else
13014 {
13015 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13016 if (attr && DW_UNSND (attr))
13017 {
13018 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13019 complaint (&symfile_complaints,
3e43a32a
MS
13020 _("Member function \"%s\" (offset %d) is virtual "
13021 "but the vtable offset is not specified"),
b64f50a1 13022 fieldname, die->offset.sect_off);
9655fd1a 13023 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13024 TYPE_CPLUS_DYNAMIC (type) = 1;
13025 }
13026 }
c906108c
SS
13027}
13028
13029/* Create the vector of member function fields, and attach it to the type. */
13030
13031static void
fba45db2 13032dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13033 struct dwarf2_cu *cu)
c906108c
SS
13034{
13035 struct fnfieldlist *flp;
c906108c
SS
13036 int i;
13037
b4ba55a1 13038 if (cu->language == language_ada)
a73c6dcd 13039 error (_("unexpected member functions in Ada type"));
b4ba55a1 13040
c906108c
SS
13041 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13042 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13043 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13044
13045 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13046 {
13047 struct nextfnfield *nfp = flp->head;
13048 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13049 int k;
13050
13051 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13052 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13053 fn_flp->fn_fields = (struct fn_field *)
13054 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13055 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13056 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13057 }
13058
13059 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13060}
13061
1168df01
JB
13062/* Returns non-zero if NAME is the name of a vtable member in CU's
13063 language, zero otherwise. */
13064static int
13065is_vtable_name (const char *name, struct dwarf2_cu *cu)
13066{
13067 static const char vptr[] = "_vptr";
987504bb 13068 static const char vtable[] = "vtable";
1168df01 13069
987504bb
JJ
13070 /* Look for the C++ and Java forms of the vtable. */
13071 if ((cu->language == language_java
61012eef
GB
13072 && startswith (name, vtable))
13073 || (startswith (name, vptr)
987504bb 13074 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13075 return 1;
13076
13077 return 0;
13078}
13079
c0dd20ea 13080/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13081 functions, with the ABI-specified layout. If TYPE describes
13082 such a structure, smash it into a member function type.
61049d3b
DJ
13083
13084 GCC shouldn't do this; it should just output pointer to member DIEs.
13085 This is GCC PR debug/28767. */
c0dd20ea 13086
0b92b5bb
TT
13087static void
13088quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13089{
09e2d7c7 13090 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13091
13092 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13093 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13094 return;
c0dd20ea
DJ
13095
13096 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13097 if (TYPE_FIELD_NAME (type, 0) == NULL
13098 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13099 || TYPE_FIELD_NAME (type, 1) == NULL
13100 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13101 return;
c0dd20ea
DJ
13102
13103 /* Find the type of the method. */
0b92b5bb 13104 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13105 if (pfn_type == NULL
13106 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13107 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13108 return;
c0dd20ea
DJ
13109
13110 /* Look for the "this" argument. */
13111 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13112 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13113 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13114 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13115 return;
c0dd20ea 13116
09e2d7c7 13117 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13118 new_type = alloc_type (objfile);
09e2d7c7 13119 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13120 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13121 TYPE_VARARGS (pfn_type));
0b92b5bb 13122 smash_to_methodptr_type (type, new_type);
c0dd20ea 13123}
1168df01 13124
685b1105
JK
13125/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13126 (icc). */
13127
13128static int
13129producer_is_icc (struct dwarf2_cu *cu)
13130{
13131 if (!cu->checked_producer)
13132 check_producer (cu);
13133
13134 return cu->producer_is_icc;
13135}
13136
c906108c 13137/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13138 (definition) to create a type for the structure or union. Fill in
13139 the type's name and general properties; the members will not be
83655187
DE
13140 processed until process_structure_scope. A symbol table entry for
13141 the type will also not be done until process_structure_scope (assuming
13142 the type has a name).
c906108c 13143
c767944b
DJ
13144 NOTE: we need to call these functions regardless of whether or not the
13145 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13146 structure or union. This gets the type entered into our set of
83655187 13147 user defined types. */
c906108c 13148
f792889a 13149static struct type *
134d01f1 13150read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13151{
e7c27a73 13152 struct objfile *objfile = cu->objfile;
c906108c
SS
13153 struct type *type;
13154 struct attribute *attr;
15d034d0 13155 const char *name;
c906108c 13156
348e048f
DE
13157 /* If the definition of this type lives in .debug_types, read that type.
13158 Don't follow DW_AT_specification though, that will take us back up
13159 the chain and we want to go down. */
45e58e77 13160 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13161 if (attr)
13162 {
ac9ec31b 13163 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13164
ac9ec31b 13165 /* The type's CU may not be the same as CU.
02142a6c 13166 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13167 return set_die_type (die, type, cu);
13168 }
13169
c0dd20ea 13170 type = alloc_type (objfile);
c906108c 13171 INIT_CPLUS_SPECIFIC (type);
93311388 13172
39cbfefa
DJ
13173 name = dwarf2_name (die, cu);
13174 if (name != NULL)
c906108c 13175 {
987504bb 13176 if (cu->language == language_cplus
45280282
IB
13177 || cu->language == language_java
13178 || cu->language == language_d)
63d06c5c 13179 {
15d034d0 13180 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13181
13182 /* dwarf2_full_name might have already finished building the DIE's
13183 type. If so, there is no need to continue. */
13184 if (get_die_type (die, cu) != NULL)
13185 return get_die_type (die, cu);
13186
13187 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13188 if (die->tag == DW_TAG_structure_type
13189 || die->tag == DW_TAG_class_type)
13190 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13191 }
13192 else
13193 {
d8151005
DJ
13194 /* The name is already allocated along with this objfile, so
13195 we don't need to duplicate it for the type. */
7d455152 13196 TYPE_TAG_NAME (type) = name;
94af9270
KS
13197 if (die->tag == DW_TAG_class_type)
13198 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13199 }
c906108c
SS
13200 }
13201
13202 if (die->tag == DW_TAG_structure_type)
13203 {
13204 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13205 }
13206 else if (die->tag == DW_TAG_union_type)
13207 {
13208 TYPE_CODE (type) = TYPE_CODE_UNION;
13209 }
13210 else
13211 {
4753d33b 13212 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13213 }
13214
0cc2414c
TT
13215 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13216 TYPE_DECLARED_CLASS (type) = 1;
13217
e142c38c 13218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13219 if (attr)
13220 {
155bfbd3
JB
13221 if (attr_form_is_constant (attr))
13222 TYPE_LENGTH (type) = DW_UNSND (attr);
13223 else
13224 {
13225 /* For the moment, dynamic type sizes are not supported
13226 by GDB's struct type. The actual size is determined
13227 on-demand when resolving the type of a given object,
13228 so set the type's length to zero for now. Otherwise,
13229 we record an expression as the length, and that expression
13230 could lead to a very large value, which could eventually
13231 lead to us trying to allocate that much memory when creating
13232 a value of that type. */
13233 TYPE_LENGTH (type) = 0;
13234 }
c906108c
SS
13235 }
13236 else
13237 {
13238 TYPE_LENGTH (type) = 0;
13239 }
13240
422b1cb0 13241 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13242 {
13243 /* ICC does not output the required DW_AT_declaration
13244 on incomplete types, but gives them a size of zero. */
422b1cb0 13245 TYPE_STUB (type) = 1;
685b1105
JK
13246 }
13247 else
13248 TYPE_STUB_SUPPORTED (type) = 1;
13249
dc718098 13250 if (die_is_declaration (die, cu))
876cecd0 13251 TYPE_STUB (type) = 1;
a6c727b2
DJ
13252 else if (attr == NULL && die->child == NULL
13253 && producer_is_realview (cu->producer))
13254 /* RealView does not output the required DW_AT_declaration
13255 on incomplete types. */
13256 TYPE_STUB (type) = 1;
dc718098 13257
c906108c
SS
13258 /* We need to add the type field to the die immediately so we don't
13259 infinitely recurse when dealing with pointers to the structure
0963b4bd 13260 type within the structure itself. */
1c379e20 13261 set_die_type (die, type, cu);
c906108c 13262
7e314c57
JK
13263 /* set_die_type should be already done. */
13264 set_descriptive_type (type, die, cu);
13265
c767944b
DJ
13266 return type;
13267}
13268
13269/* Finish creating a structure or union type, including filling in
13270 its members and creating a symbol for it. */
13271
13272static void
13273process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13274{
13275 struct objfile *objfile = cu->objfile;
ca040673 13276 struct die_info *child_die;
c767944b
DJ
13277 struct type *type;
13278
13279 type = get_die_type (die, cu);
13280 if (type == NULL)
13281 type = read_structure_type (die, cu);
13282
e142c38c 13283 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13284 {
13285 struct field_info fi;
34eaf542 13286 VEC (symbolp) *template_args = NULL;
c767944b 13287 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13288
13289 memset (&fi, 0, sizeof (struct field_info));
13290
639d11d3 13291 child_die = die->child;
c906108c
SS
13292
13293 while (child_die && child_die->tag)
13294 {
a9a9bd0f
DC
13295 if (child_die->tag == DW_TAG_member
13296 || child_die->tag == DW_TAG_variable)
c906108c 13297 {
a9a9bd0f
DC
13298 /* NOTE: carlton/2002-11-05: A C++ static data member
13299 should be a DW_TAG_member that is a declaration, but
13300 all versions of G++ as of this writing (so through at
13301 least 3.2.1) incorrectly generate DW_TAG_variable
13302 tags for them instead. */
e7c27a73 13303 dwarf2_add_field (&fi, child_die, cu);
c906108c 13304 }
8713b1b1 13305 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13306 {
0963b4bd 13307 /* C++ member function. */
e7c27a73 13308 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13309 }
13310 else if (child_die->tag == DW_TAG_inheritance)
13311 {
13312 /* C++ base class field. */
e7c27a73 13313 dwarf2_add_field (&fi, child_die, cu);
c906108c 13314 }
98751a41
JK
13315 else if (child_die->tag == DW_TAG_typedef)
13316 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13317 else if (child_die->tag == DW_TAG_template_type_param
13318 || child_die->tag == DW_TAG_template_value_param)
13319 {
13320 struct symbol *arg = new_symbol (child_die, NULL, cu);
13321
f1078f66
DJ
13322 if (arg != NULL)
13323 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13324 }
13325
c906108c
SS
13326 child_die = sibling_die (child_die);
13327 }
13328
34eaf542
TT
13329 /* Attach template arguments to type. */
13330 if (! VEC_empty (symbolp, template_args))
13331 {
13332 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13333 TYPE_N_TEMPLATE_ARGUMENTS (type)
13334 = VEC_length (symbolp, template_args);
13335 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13336 = XOBNEWVEC (&objfile->objfile_obstack,
13337 struct symbol *,
13338 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13339 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13340 VEC_address (symbolp, template_args),
13341 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13342 * sizeof (struct symbol *)));
13343 VEC_free (symbolp, template_args);
13344 }
13345
c906108c
SS
13346 /* Attach fields and member functions to the type. */
13347 if (fi.nfields)
e7c27a73 13348 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13349 if (fi.nfnfields)
13350 {
e7c27a73 13351 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13352
c5aa993b 13353 /* Get the type which refers to the base class (possibly this
c906108c 13354 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13355 class from the DW_AT_containing_type attribute. This use of
13356 DW_AT_containing_type is a GNU extension. */
c906108c 13357
e142c38c 13358 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13359 {
e7c27a73 13360 struct type *t = die_containing_type (die, cu);
c906108c 13361
ae6ae975 13362 set_type_vptr_basetype (type, t);
c906108c
SS
13363 if (type == t)
13364 {
c906108c
SS
13365 int i;
13366
13367 /* Our own class provides vtbl ptr. */
13368 for (i = TYPE_NFIELDS (t) - 1;
13369 i >= TYPE_N_BASECLASSES (t);
13370 --i)
13371 {
0d5cff50 13372 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13373
1168df01 13374 if (is_vtable_name (fieldname, cu))
c906108c 13375 {
ae6ae975 13376 set_type_vptr_fieldno (type, i);
c906108c
SS
13377 break;
13378 }
13379 }
13380
13381 /* Complain if virtual function table field not found. */
13382 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13383 complaint (&symfile_complaints,
3e43a32a
MS
13384 _("virtual function table pointer "
13385 "not found when defining class '%s'"),
4d3c2250
KB
13386 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13387 "");
c906108c
SS
13388 }
13389 else
13390 {
ae6ae975 13391 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13392 }
13393 }
f6235d4c 13394 else if (cu->producer
61012eef 13395 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13396 {
13397 /* The IBM XLC compiler does not provide direct indication
13398 of the containing type, but the vtable pointer is
13399 always named __vfp. */
13400
13401 int i;
13402
13403 for (i = TYPE_NFIELDS (type) - 1;
13404 i >= TYPE_N_BASECLASSES (type);
13405 --i)
13406 {
13407 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13408 {
ae6ae975
DE
13409 set_type_vptr_fieldno (type, i);
13410 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13411 break;
13412 }
13413 }
13414 }
c906108c 13415 }
98751a41
JK
13416
13417 /* Copy fi.typedef_field_list linked list elements content into the
13418 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13419 if (fi.typedef_field_list)
13420 {
13421 int i = fi.typedef_field_list_count;
13422
a0d7a4ff 13423 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13424 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13425 = ((struct typedef_field *)
13426 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13427 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13428
13429 /* Reverse the list order to keep the debug info elements order. */
13430 while (--i >= 0)
13431 {
13432 struct typedef_field *dest, *src;
6e70227d 13433
98751a41
JK
13434 dest = &TYPE_TYPEDEF_FIELD (type, i);
13435 src = &fi.typedef_field_list->field;
13436 fi.typedef_field_list = fi.typedef_field_list->next;
13437 *dest = *src;
13438 }
13439 }
c767944b
DJ
13440
13441 do_cleanups (back_to);
eb2a6f42
TT
13442
13443 if (HAVE_CPLUS_STRUCT (type))
13444 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13445 }
63d06c5c 13446
bb5ed363 13447 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13448
90aeadfc
DC
13449 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13450 snapshots) has been known to create a die giving a declaration
13451 for a class that has, as a child, a die giving a definition for a
13452 nested class. So we have to process our children even if the
13453 current die is a declaration. Normally, of course, a declaration
13454 won't have any children at all. */
134d01f1 13455
ca040673
DE
13456 child_die = die->child;
13457
90aeadfc
DC
13458 while (child_die != NULL && child_die->tag)
13459 {
13460 if (child_die->tag == DW_TAG_member
13461 || child_die->tag == DW_TAG_variable
34eaf542
TT
13462 || child_die->tag == DW_TAG_inheritance
13463 || child_die->tag == DW_TAG_template_value_param
13464 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13465 {
90aeadfc 13466 /* Do nothing. */
134d01f1 13467 }
90aeadfc
DC
13468 else
13469 process_die (child_die, cu);
134d01f1 13470
90aeadfc 13471 child_die = sibling_die (child_die);
134d01f1
DJ
13472 }
13473
fa4028e9
JB
13474 /* Do not consider external references. According to the DWARF standard,
13475 these DIEs are identified by the fact that they have no byte_size
13476 attribute, and a declaration attribute. */
13477 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13478 || !die_is_declaration (die, cu))
c767944b 13479 new_symbol (die, type, cu);
134d01f1
DJ
13480}
13481
55426c9d
JB
13482/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13483 update TYPE using some information only available in DIE's children. */
13484
13485static void
13486update_enumeration_type_from_children (struct die_info *die,
13487 struct type *type,
13488 struct dwarf2_cu *cu)
13489{
13490 struct obstack obstack;
60f7655a 13491 struct die_info *child_die;
55426c9d
JB
13492 int unsigned_enum = 1;
13493 int flag_enum = 1;
13494 ULONGEST mask = 0;
13495 struct cleanup *old_chain;
13496
13497 obstack_init (&obstack);
13498 old_chain = make_cleanup_obstack_free (&obstack);
13499
60f7655a
DE
13500 for (child_die = die->child;
13501 child_die != NULL && child_die->tag;
13502 child_die = sibling_die (child_die))
55426c9d
JB
13503 {
13504 struct attribute *attr;
13505 LONGEST value;
13506 const gdb_byte *bytes;
13507 struct dwarf2_locexpr_baton *baton;
13508 const char *name;
60f7655a 13509
55426c9d
JB
13510 if (child_die->tag != DW_TAG_enumerator)
13511 continue;
13512
13513 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13514 if (attr == NULL)
13515 continue;
13516
13517 name = dwarf2_name (child_die, cu);
13518 if (name == NULL)
13519 name = "<anonymous enumerator>";
13520
13521 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13522 &value, &bytes, &baton);
13523 if (value < 0)
13524 {
13525 unsigned_enum = 0;
13526 flag_enum = 0;
13527 }
13528 else if ((mask & value) != 0)
13529 flag_enum = 0;
13530 else
13531 mask |= value;
13532
13533 /* If we already know that the enum type is neither unsigned, nor
13534 a flag type, no need to look at the rest of the enumerates. */
13535 if (!unsigned_enum && !flag_enum)
13536 break;
55426c9d
JB
13537 }
13538
13539 if (unsigned_enum)
13540 TYPE_UNSIGNED (type) = 1;
13541 if (flag_enum)
13542 TYPE_FLAG_ENUM (type) = 1;
13543
13544 do_cleanups (old_chain);
13545}
13546
134d01f1
DJ
13547/* Given a DW_AT_enumeration_type die, set its type. We do not
13548 complete the type's fields yet, or create any symbols. */
c906108c 13549
f792889a 13550static struct type *
134d01f1 13551read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13552{
e7c27a73 13553 struct objfile *objfile = cu->objfile;
c906108c 13554 struct type *type;
c906108c 13555 struct attribute *attr;
0114d602 13556 const char *name;
134d01f1 13557
348e048f
DE
13558 /* If the definition of this type lives in .debug_types, read that type.
13559 Don't follow DW_AT_specification though, that will take us back up
13560 the chain and we want to go down. */
45e58e77 13561 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13562 if (attr)
13563 {
ac9ec31b 13564 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13565
ac9ec31b 13566 /* The type's CU may not be the same as CU.
02142a6c 13567 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13568 return set_die_type (die, type, cu);
13569 }
13570
c906108c
SS
13571 type = alloc_type (objfile);
13572
13573 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13574 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13575 if (name != NULL)
7d455152 13576 TYPE_TAG_NAME (type) = name;
c906108c 13577
0626fc76
TT
13578 attr = dwarf2_attr (die, DW_AT_type, cu);
13579 if (attr != NULL)
13580 {
13581 struct type *underlying_type = die_type (die, cu);
13582
13583 TYPE_TARGET_TYPE (type) = underlying_type;
13584 }
13585
e142c38c 13586 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13587 if (attr)
13588 {
13589 TYPE_LENGTH (type) = DW_UNSND (attr);
13590 }
13591 else
13592 {
13593 TYPE_LENGTH (type) = 0;
13594 }
13595
137033e9
JB
13596 /* The enumeration DIE can be incomplete. In Ada, any type can be
13597 declared as private in the package spec, and then defined only
13598 inside the package body. Such types are known as Taft Amendment
13599 Types. When another package uses such a type, an incomplete DIE
13600 may be generated by the compiler. */
02eb380e 13601 if (die_is_declaration (die, cu))
876cecd0 13602 TYPE_STUB (type) = 1;
02eb380e 13603
0626fc76
TT
13604 /* Finish the creation of this type by using the enum's children.
13605 We must call this even when the underlying type has been provided
13606 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13607 update_enumeration_type_from_children (die, type, cu);
13608
0626fc76
TT
13609 /* If this type has an underlying type that is not a stub, then we
13610 may use its attributes. We always use the "unsigned" attribute
13611 in this situation, because ordinarily we guess whether the type
13612 is unsigned -- but the guess can be wrong and the underlying type
13613 can tell us the reality. However, we defer to a local size
13614 attribute if one exists, because this lets the compiler override
13615 the underlying type if needed. */
13616 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13617 {
13618 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13619 if (TYPE_LENGTH (type) == 0)
13620 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13621 }
13622
3d567982
TT
13623 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13624
f792889a 13625 return set_die_type (die, type, cu);
134d01f1
DJ
13626}
13627
13628/* Given a pointer to a die which begins an enumeration, process all
13629 the dies that define the members of the enumeration, and create the
13630 symbol for the enumeration type.
13631
13632 NOTE: We reverse the order of the element list. */
13633
13634static void
13635process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13636{
f792889a 13637 struct type *this_type;
134d01f1 13638
f792889a
DJ
13639 this_type = get_die_type (die, cu);
13640 if (this_type == NULL)
13641 this_type = read_enumeration_type (die, cu);
9dc481d3 13642
639d11d3 13643 if (die->child != NULL)
c906108c 13644 {
9dc481d3
DE
13645 struct die_info *child_die;
13646 struct symbol *sym;
13647 struct field *fields = NULL;
13648 int num_fields = 0;
15d034d0 13649 const char *name;
9dc481d3 13650
639d11d3 13651 child_die = die->child;
c906108c
SS
13652 while (child_die && child_die->tag)
13653 {
13654 if (child_die->tag != DW_TAG_enumerator)
13655 {
e7c27a73 13656 process_die (child_die, cu);
c906108c
SS
13657 }
13658 else
13659 {
39cbfefa
DJ
13660 name = dwarf2_name (child_die, cu);
13661 if (name)
c906108c 13662 {
f792889a 13663 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13664
13665 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13666 {
13667 fields = (struct field *)
13668 xrealloc (fields,
13669 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13670 * sizeof (struct field));
c906108c
SS
13671 }
13672
3567439c 13673 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13674 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13675 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13676 FIELD_BITSIZE (fields[num_fields]) = 0;
13677
13678 num_fields++;
13679 }
13680 }
13681
13682 child_die = sibling_die (child_die);
13683 }
13684
13685 if (num_fields)
13686 {
f792889a
DJ
13687 TYPE_NFIELDS (this_type) = num_fields;
13688 TYPE_FIELDS (this_type) = (struct field *)
13689 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13690 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13691 sizeof (struct field) * num_fields);
b8c9b27d 13692 xfree (fields);
c906108c 13693 }
c906108c 13694 }
134d01f1 13695
6c83ed52
TT
13696 /* If we are reading an enum from a .debug_types unit, and the enum
13697 is a declaration, and the enum is not the signatured type in the
13698 unit, then we do not want to add a symbol for it. Adding a
13699 symbol would in some cases obscure the true definition of the
13700 enum, giving users an incomplete type when the definition is
13701 actually available. Note that we do not want to do this for all
13702 enums which are just declarations, because C++0x allows forward
13703 enum declarations. */
3019eac3 13704 if (cu->per_cu->is_debug_types
6c83ed52
TT
13705 && die_is_declaration (die, cu))
13706 {
52dc124a 13707 struct signatured_type *sig_type;
6c83ed52 13708
c0f78cd4 13709 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13710 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13711 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13712 return;
13713 }
13714
f792889a 13715 new_symbol (die, this_type, cu);
c906108c
SS
13716}
13717
13718/* Extract all information from a DW_TAG_array_type DIE and put it in
13719 the DIE's type field. For now, this only handles one dimensional
13720 arrays. */
13721
f792889a 13722static struct type *
e7c27a73 13723read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13724{
e7c27a73 13725 struct objfile *objfile = cu->objfile;
c906108c 13726 struct die_info *child_die;
7e314c57 13727 struct type *type;
c906108c
SS
13728 struct type *element_type, *range_type, *index_type;
13729 struct type **range_types = NULL;
13730 struct attribute *attr;
13731 int ndim = 0;
13732 struct cleanup *back_to;
15d034d0 13733 const char *name;
dc53a7ad 13734 unsigned int bit_stride = 0;
c906108c 13735
e7c27a73 13736 element_type = die_type (die, cu);
c906108c 13737
7e314c57
JK
13738 /* The die_type call above may have already set the type for this DIE. */
13739 type = get_die_type (die, cu);
13740 if (type)
13741 return type;
13742
dc53a7ad
JB
13743 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13744 if (attr != NULL)
13745 bit_stride = DW_UNSND (attr) * 8;
13746
13747 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13748 if (attr != NULL)
13749 bit_stride = DW_UNSND (attr);
13750
c906108c
SS
13751 /* Irix 6.2 native cc creates array types without children for
13752 arrays with unspecified length. */
639d11d3 13753 if (die->child == NULL)
c906108c 13754 {
46bf5051 13755 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13756 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13757 type = create_array_type_with_stride (NULL, element_type, range_type,
13758 bit_stride);
f792889a 13759 return set_die_type (die, type, cu);
c906108c
SS
13760 }
13761
13762 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13763 child_die = die->child;
c906108c
SS
13764 while (child_die && child_die->tag)
13765 {
13766 if (child_die->tag == DW_TAG_subrange_type)
13767 {
f792889a 13768 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13769
f792889a 13770 if (child_type != NULL)
a02abb62 13771 {
0963b4bd
MS
13772 /* The range type was succesfully read. Save it for the
13773 array type creation. */
a02abb62
JB
13774 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13775 {
13776 range_types = (struct type **)
13777 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13778 * sizeof (struct type *));
13779 if (ndim == 0)
13780 make_cleanup (free_current_contents, &range_types);
13781 }
f792889a 13782 range_types[ndim++] = child_type;
a02abb62 13783 }
c906108c
SS
13784 }
13785 child_die = sibling_die (child_die);
13786 }
13787
13788 /* Dwarf2 dimensions are output from left to right, create the
13789 necessary array types in backwards order. */
7ca2d3a3 13790
c906108c 13791 type = element_type;
7ca2d3a3
DL
13792
13793 if (read_array_order (die, cu) == DW_ORD_col_major)
13794 {
13795 int i = 0;
9a619af0 13796
7ca2d3a3 13797 while (i < ndim)
dc53a7ad
JB
13798 type = create_array_type_with_stride (NULL, type, range_types[i++],
13799 bit_stride);
7ca2d3a3
DL
13800 }
13801 else
13802 {
13803 while (ndim-- > 0)
dc53a7ad
JB
13804 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13805 bit_stride);
7ca2d3a3 13806 }
c906108c 13807
f5f8a009
EZ
13808 /* Understand Dwarf2 support for vector types (like they occur on
13809 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13810 array type. This is not part of the Dwarf2/3 standard yet, but a
13811 custom vendor extension. The main difference between a regular
13812 array and the vector variant is that vectors are passed by value
13813 to functions. */
e142c38c 13814 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13815 if (attr)
ea37ba09 13816 make_vector_type (type);
f5f8a009 13817
dbc98a8b
KW
13818 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13819 implementation may choose to implement triple vectors using this
13820 attribute. */
13821 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13822 if (attr)
13823 {
13824 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13825 TYPE_LENGTH (type) = DW_UNSND (attr);
13826 else
3e43a32a
MS
13827 complaint (&symfile_complaints,
13828 _("DW_AT_byte_size for array type smaller "
13829 "than the total size of elements"));
dbc98a8b
KW
13830 }
13831
39cbfefa
DJ
13832 name = dwarf2_name (die, cu);
13833 if (name)
13834 TYPE_NAME (type) = name;
6e70227d 13835
0963b4bd 13836 /* Install the type in the die. */
7e314c57
JK
13837 set_die_type (die, type, cu);
13838
13839 /* set_die_type should be already done. */
b4ba55a1
JB
13840 set_descriptive_type (type, die, cu);
13841
c906108c
SS
13842 do_cleanups (back_to);
13843
7e314c57 13844 return type;
c906108c
SS
13845}
13846
7ca2d3a3 13847static enum dwarf_array_dim_ordering
6e70227d 13848read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13849{
13850 struct attribute *attr;
13851
13852 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13853
aead7601
SM
13854 if (attr)
13855 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13856
0963b4bd
MS
13857 /* GNU F77 is a special case, as at 08/2004 array type info is the
13858 opposite order to the dwarf2 specification, but data is still
13859 laid out as per normal fortran.
7ca2d3a3 13860
0963b4bd
MS
13861 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13862 version checking. */
7ca2d3a3 13863
905e0470
PM
13864 if (cu->language == language_fortran
13865 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13866 {
13867 return DW_ORD_row_major;
13868 }
13869
6e70227d 13870 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13871 {
13872 case array_column_major:
13873 return DW_ORD_col_major;
13874 case array_row_major:
13875 default:
13876 return DW_ORD_row_major;
13877 };
13878}
13879
72019c9c 13880/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13881 the DIE's type field. */
72019c9c 13882
f792889a 13883static struct type *
72019c9c
GM
13884read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13885{
7e314c57
JK
13886 struct type *domain_type, *set_type;
13887 struct attribute *attr;
f792889a 13888
7e314c57
JK
13889 domain_type = die_type (die, cu);
13890
13891 /* The die_type call above may have already set the type for this DIE. */
13892 set_type = get_die_type (die, cu);
13893 if (set_type)
13894 return set_type;
13895
13896 set_type = create_set_type (NULL, domain_type);
13897
13898 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13899 if (attr)
13900 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13901
f792889a 13902 return set_die_type (die, set_type, cu);
72019c9c 13903}
7ca2d3a3 13904
0971de02
TT
13905/* A helper for read_common_block that creates a locexpr baton.
13906 SYM is the symbol which we are marking as computed.
13907 COMMON_DIE is the DIE for the common block.
13908 COMMON_LOC is the location expression attribute for the common
13909 block itself.
13910 MEMBER_LOC is the location expression attribute for the particular
13911 member of the common block that we are processing.
13912 CU is the CU from which the above come. */
13913
13914static void
13915mark_common_block_symbol_computed (struct symbol *sym,
13916 struct die_info *common_die,
13917 struct attribute *common_loc,
13918 struct attribute *member_loc,
13919 struct dwarf2_cu *cu)
13920{
13921 struct objfile *objfile = dwarf2_per_objfile->objfile;
13922 struct dwarf2_locexpr_baton *baton;
13923 gdb_byte *ptr;
13924 unsigned int cu_off;
13925 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13926 LONGEST offset = 0;
13927
13928 gdb_assert (common_loc && member_loc);
13929 gdb_assert (attr_form_is_block (common_loc));
13930 gdb_assert (attr_form_is_block (member_loc)
13931 || attr_form_is_constant (member_loc));
13932
8d749320 13933 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13934 baton->per_cu = cu->per_cu;
13935 gdb_assert (baton->per_cu);
13936
13937 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13938
13939 if (attr_form_is_constant (member_loc))
13940 {
13941 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13942 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13943 }
13944 else
13945 baton->size += DW_BLOCK (member_loc)->size;
13946
224c3ddb 13947 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13948 baton->data = ptr;
13949
13950 *ptr++ = DW_OP_call4;
13951 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13952 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13953 ptr += 4;
13954
13955 if (attr_form_is_constant (member_loc))
13956 {
13957 *ptr++ = DW_OP_addr;
13958 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13959 ptr += cu->header.addr_size;
13960 }
13961 else
13962 {
13963 /* We have to copy the data here, because DW_OP_call4 will only
13964 use a DW_AT_location attribute. */
13965 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13966 ptr += DW_BLOCK (member_loc)->size;
13967 }
13968
13969 *ptr++ = DW_OP_plus;
13970 gdb_assert (ptr - baton->data == baton->size);
13971
0971de02 13972 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13973 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13974}
13975
4357ac6c
TT
13976/* Create appropriate locally-scoped variables for all the
13977 DW_TAG_common_block entries. Also create a struct common_block
13978 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13979 is used to sepate the common blocks name namespace from regular
13980 variable names. */
c906108c
SS
13981
13982static void
e7c27a73 13983read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13984{
0971de02
TT
13985 struct attribute *attr;
13986
13987 attr = dwarf2_attr (die, DW_AT_location, cu);
13988 if (attr)
13989 {
13990 /* Support the .debug_loc offsets. */
13991 if (attr_form_is_block (attr))
13992 {
13993 /* Ok. */
13994 }
13995 else if (attr_form_is_section_offset (attr))
13996 {
13997 dwarf2_complex_location_expr_complaint ();
13998 attr = NULL;
13999 }
14000 else
14001 {
14002 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14003 "common block member");
14004 attr = NULL;
14005 }
14006 }
14007
639d11d3 14008 if (die->child != NULL)
c906108c 14009 {
4357ac6c
TT
14010 struct objfile *objfile = cu->objfile;
14011 struct die_info *child_die;
14012 size_t n_entries = 0, size;
14013 struct common_block *common_block;
14014 struct symbol *sym;
74ac6d43 14015
4357ac6c
TT
14016 for (child_die = die->child;
14017 child_die && child_die->tag;
14018 child_die = sibling_die (child_die))
14019 ++n_entries;
14020
14021 size = (sizeof (struct common_block)
14022 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14023 common_block
14024 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14025 size);
4357ac6c
TT
14026 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14027 common_block->n_entries = 0;
14028
14029 for (child_die = die->child;
14030 child_die && child_die->tag;
14031 child_die = sibling_die (child_die))
14032 {
14033 /* Create the symbol in the DW_TAG_common_block block in the current
14034 symbol scope. */
e7c27a73 14035 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14036 if (sym != NULL)
14037 {
14038 struct attribute *member_loc;
14039
14040 common_block->contents[common_block->n_entries++] = sym;
14041
14042 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14043 cu);
14044 if (member_loc)
14045 {
14046 /* GDB has handled this for a long time, but it is
14047 not specified by DWARF. It seems to have been
14048 emitted by gfortran at least as recently as:
14049 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14050 complaint (&symfile_complaints,
14051 _("Variable in common block has "
14052 "DW_AT_data_member_location "
14053 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14054 child_die->offset.sect_off,
14055 objfile_name (cu->objfile));
0971de02
TT
14056
14057 if (attr_form_is_section_offset (member_loc))
14058 dwarf2_complex_location_expr_complaint ();
14059 else if (attr_form_is_constant (member_loc)
14060 || attr_form_is_block (member_loc))
14061 {
14062 if (attr)
14063 mark_common_block_symbol_computed (sym, die, attr,
14064 member_loc, cu);
14065 }
14066 else
14067 dwarf2_complex_location_expr_complaint ();
14068 }
14069 }
c906108c 14070 }
4357ac6c
TT
14071
14072 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14073 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14074 }
14075}
14076
0114d602 14077/* Create a type for a C++ namespace. */
d9fa45fe 14078
0114d602
DJ
14079static struct type *
14080read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14081{
e7c27a73 14082 struct objfile *objfile = cu->objfile;
0114d602 14083 const char *previous_prefix, *name;
9219021c 14084 int is_anonymous;
0114d602
DJ
14085 struct type *type;
14086
14087 /* For extensions, reuse the type of the original namespace. */
14088 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14089 {
14090 struct die_info *ext_die;
14091 struct dwarf2_cu *ext_cu = cu;
9a619af0 14092
0114d602
DJ
14093 ext_die = dwarf2_extension (die, &ext_cu);
14094 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14095
14096 /* EXT_CU may not be the same as CU.
02142a6c 14097 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14098 return set_die_type (die, type, cu);
14099 }
9219021c 14100
e142c38c 14101 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14102
14103 /* Now build the name of the current namespace. */
14104
0114d602
DJ
14105 previous_prefix = determine_prefix (die, cu);
14106 if (previous_prefix[0] != '\0')
14107 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14108 previous_prefix, name, 0, cu);
0114d602
DJ
14109
14110 /* Create the type. */
14111 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14112 objfile);
abee88f2 14113 TYPE_NAME (type) = name;
0114d602
DJ
14114 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14115
60531b24 14116 return set_die_type (die, type, cu);
0114d602
DJ
14117}
14118
22cee43f 14119/* Read a namespace scope. */
0114d602
DJ
14120
14121static void
14122read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14123{
14124 struct objfile *objfile = cu->objfile;
0114d602 14125 int is_anonymous;
9219021c 14126
5c4e30ca
DC
14127 /* Add a symbol associated to this if we haven't seen the namespace
14128 before. Also, add a using directive if it's an anonymous
14129 namespace. */
9219021c 14130
f2f0e013 14131 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14132 {
14133 struct type *type;
14134
0114d602 14135 type = read_type_die (die, cu);
e7c27a73 14136 new_symbol (die, type, cu);
5c4e30ca 14137
e8e80198 14138 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14139 if (is_anonymous)
0114d602
DJ
14140 {
14141 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14142
22cee43f
PMR
14143 add_using_directive (using_directives (cu->language),
14144 previous_prefix, TYPE_NAME (type), NULL,
14145 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14146 }
5c4e30ca 14147 }
9219021c 14148
639d11d3 14149 if (die->child != NULL)
d9fa45fe 14150 {
639d11d3 14151 struct die_info *child_die = die->child;
6e70227d 14152
d9fa45fe
DC
14153 while (child_die && child_die->tag)
14154 {
e7c27a73 14155 process_die (child_die, cu);
d9fa45fe
DC
14156 child_die = sibling_die (child_die);
14157 }
14158 }
38d518c9
EZ
14159}
14160
f55ee35c
JK
14161/* Read a Fortran module as type. This DIE can be only a declaration used for
14162 imported module. Still we need that type as local Fortran "use ... only"
14163 declaration imports depend on the created type in determine_prefix. */
14164
14165static struct type *
14166read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14167{
14168 struct objfile *objfile = cu->objfile;
15d034d0 14169 const char *module_name;
f55ee35c
JK
14170 struct type *type;
14171
14172 module_name = dwarf2_name (die, cu);
14173 if (!module_name)
3e43a32a
MS
14174 complaint (&symfile_complaints,
14175 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14176 die->offset.sect_off);
f55ee35c
JK
14177 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14178
14179 /* determine_prefix uses TYPE_TAG_NAME. */
14180 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14181
14182 return set_die_type (die, type, cu);
14183}
14184
5d7cb8df
JK
14185/* Read a Fortran module. */
14186
14187static void
14188read_module (struct die_info *die, struct dwarf2_cu *cu)
14189{
14190 struct die_info *child_die = die->child;
530e8392
KB
14191 struct type *type;
14192
14193 type = read_type_die (die, cu);
14194 new_symbol (die, type, cu);
5d7cb8df 14195
5d7cb8df
JK
14196 while (child_die && child_die->tag)
14197 {
14198 process_die (child_die, cu);
14199 child_die = sibling_die (child_die);
14200 }
14201}
14202
38d518c9
EZ
14203/* Return the name of the namespace represented by DIE. Set
14204 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14205 namespace. */
14206
14207static const char *
e142c38c 14208namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14209{
14210 struct die_info *current_die;
14211 const char *name = NULL;
14212
14213 /* Loop through the extensions until we find a name. */
14214
14215 for (current_die = die;
14216 current_die != NULL;
f2f0e013 14217 current_die = dwarf2_extension (die, &cu))
38d518c9 14218 {
96553a0c
DE
14219 /* We don't use dwarf2_name here so that we can detect the absence
14220 of a name -> anonymous namespace. */
7d45c7c3 14221 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14222
38d518c9
EZ
14223 if (name != NULL)
14224 break;
14225 }
14226
14227 /* Is it an anonymous namespace? */
14228
14229 *is_anonymous = (name == NULL);
14230 if (*is_anonymous)
2b1dbab0 14231 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14232
14233 return name;
d9fa45fe
DC
14234}
14235
c906108c
SS
14236/* Extract all information from a DW_TAG_pointer_type DIE and add to
14237 the user defined type vector. */
14238
f792889a 14239static struct type *
e7c27a73 14240read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14241{
5e2b427d 14242 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14243 struct comp_unit_head *cu_header = &cu->header;
c906108c 14244 struct type *type;
8b2dbe47
KB
14245 struct attribute *attr_byte_size;
14246 struct attribute *attr_address_class;
14247 int byte_size, addr_class;
7e314c57
JK
14248 struct type *target_type;
14249
14250 target_type = die_type (die, cu);
c906108c 14251
7e314c57
JK
14252 /* The die_type call above may have already set the type for this DIE. */
14253 type = get_die_type (die, cu);
14254 if (type)
14255 return type;
14256
14257 type = lookup_pointer_type (target_type);
8b2dbe47 14258
e142c38c 14259 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14260 if (attr_byte_size)
14261 byte_size = DW_UNSND (attr_byte_size);
c906108c 14262 else
8b2dbe47
KB
14263 byte_size = cu_header->addr_size;
14264
e142c38c 14265 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14266 if (attr_address_class)
14267 addr_class = DW_UNSND (attr_address_class);
14268 else
14269 addr_class = DW_ADDR_none;
14270
14271 /* If the pointer size or address class is different than the
14272 default, create a type variant marked as such and set the
14273 length accordingly. */
14274 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14275 {
5e2b427d 14276 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14277 {
14278 int type_flags;
14279
849957d9 14280 type_flags = gdbarch_address_class_type_flags
5e2b427d 14281 (gdbarch, byte_size, addr_class);
876cecd0
TT
14282 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14283 == 0);
8b2dbe47
KB
14284 type = make_type_with_address_space (type, type_flags);
14285 }
14286 else if (TYPE_LENGTH (type) != byte_size)
14287 {
3e43a32a
MS
14288 complaint (&symfile_complaints,
14289 _("invalid pointer size %d"), byte_size);
8b2dbe47 14290 }
6e70227d 14291 else
9a619af0
MS
14292 {
14293 /* Should we also complain about unhandled address classes? */
14294 }
c906108c 14295 }
8b2dbe47
KB
14296
14297 TYPE_LENGTH (type) = byte_size;
f792889a 14298 return set_die_type (die, type, cu);
c906108c
SS
14299}
14300
14301/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14302 the user defined type vector. */
14303
f792889a 14304static struct type *
e7c27a73 14305read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14306{
14307 struct type *type;
14308 struct type *to_type;
14309 struct type *domain;
14310
e7c27a73
DJ
14311 to_type = die_type (die, cu);
14312 domain = die_containing_type (die, cu);
0d5de010 14313
7e314c57
JK
14314 /* The calls above may have already set the type for this DIE. */
14315 type = get_die_type (die, cu);
14316 if (type)
14317 return type;
14318
0d5de010
DJ
14319 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14320 type = lookup_methodptr_type (to_type);
7078baeb
TT
14321 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14322 {
14323 struct type *new_type = alloc_type (cu->objfile);
14324
14325 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14326 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14327 TYPE_VARARGS (to_type));
14328 type = lookup_methodptr_type (new_type);
14329 }
0d5de010
DJ
14330 else
14331 type = lookup_memberptr_type (to_type, domain);
c906108c 14332
f792889a 14333 return set_die_type (die, type, cu);
c906108c
SS
14334}
14335
14336/* Extract all information from a DW_TAG_reference_type DIE and add to
14337 the user defined type vector. */
14338
f792889a 14339static struct type *
e7c27a73 14340read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14341{
e7c27a73 14342 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14343 struct type *type, *target_type;
c906108c
SS
14344 struct attribute *attr;
14345
7e314c57
JK
14346 target_type = die_type (die, cu);
14347
14348 /* The die_type call above may have already set the type for this DIE. */
14349 type = get_die_type (die, cu);
14350 if (type)
14351 return type;
14352
14353 type = lookup_reference_type (target_type);
e142c38c 14354 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14355 if (attr)
14356 {
14357 TYPE_LENGTH (type) = DW_UNSND (attr);
14358 }
14359 else
14360 {
107d2387 14361 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14362 }
f792889a 14363 return set_die_type (die, type, cu);
c906108c
SS
14364}
14365
cf363f18
MW
14366/* Add the given cv-qualifiers to the element type of the array. GCC
14367 outputs DWARF type qualifiers that apply to an array, not the
14368 element type. But GDB relies on the array element type to carry
14369 the cv-qualifiers. This mimics section 6.7.3 of the C99
14370 specification. */
14371
14372static struct type *
14373add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14374 struct type *base_type, int cnst, int voltl)
14375{
14376 struct type *el_type, *inner_array;
14377
14378 base_type = copy_type (base_type);
14379 inner_array = base_type;
14380
14381 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14382 {
14383 TYPE_TARGET_TYPE (inner_array) =
14384 copy_type (TYPE_TARGET_TYPE (inner_array));
14385 inner_array = TYPE_TARGET_TYPE (inner_array);
14386 }
14387
14388 el_type = TYPE_TARGET_TYPE (inner_array);
14389 cnst |= TYPE_CONST (el_type);
14390 voltl |= TYPE_VOLATILE (el_type);
14391 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14392
14393 return set_die_type (die, base_type, cu);
14394}
14395
f792889a 14396static struct type *
e7c27a73 14397read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14398{
f792889a 14399 struct type *base_type, *cv_type;
c906108c 14400
e7c27a73 14401 base_type = die_type (die, cu);
7e314c57
JK
14402
14403 /* The die_type call above may have already set the type for this DIE. */
14404 cv_type = get_die_type (die, cu);
14405 if (cv_type)
14406 return cv_type;
14407
2f608a3a
KW
14408 /* In case the const qualifier is applied to an array type, the element type
14409 is so qualified, not the array type (section 6.7.3 of C99). */
14410 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14411 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14412
f792889a
DJ
14413 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14414 return set_die_type (die, cv_type, cu);
c906108c
SS
14415}
14416
f792889a 14417static struct type *
e7c27a73 14418read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14419{
f792889a 14420 struct type *base_type, *cv_type;
c906108c 14421
e7c27a73 14422 base_type = die_type (die, cu);
7e314c57
JK
14423
14424 /* The die_type call above may have already set the type for this DIE. */
14425 cv_type = get_die_type (die, cu);
14426 if (cv_type)
14427 return cv_type;
14428
cf363f18
MW
14429 /* In case the volatile qualifier is applied to an array type, the
14430 element type is so qualified, not the array type (section 6.7.3
14431 of C99). */
14432 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14433 return add_array_cv_type (die, cu, base_type, 0, 1);
14434
f792889a
DJ
14435 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14436 return set_die_type (die, cv_type, cu);
c906108c
SS
14437}
14438
06d66ee9
TT
14439/* Handle DW_TAG_restrict_type. */
14440
14441static struct type *
14442read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14443{
14444 struct type *base_type, *cv_type;
14445
14446 base_type = die_type (die, cu);
14447
14448 /* The die_type call above may have already set the type for this DIE. */
14449 cv_type = get_die_type (die, cu);
14450 if (cv_type)
14451 return cv_type;
14452
14453 cv_type = make_restrict_type (base_type);
14454 return set_die_type (die, cv_type, cu);
14455}
14456
a2c2acaf
MW
14457/* Handle DW_TAG_atomic_type. */
14458
14459static struct type *
14460read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14461{
14462 struct type *base_type, *cv_type;
14463
14464 base_type = die_type (die, cu);
14465
14466 /* The die_type call above may have already set the type for this DIE. */
14467 cv_type = get_die_type (die, cu);
14468 if (cv_type)
14469 return cv_type;
14470
14471 cv_type = make_atomic_type (base_type);
14472 return set_die_type (die, cv_type, cu);
14473}
14474
c906108c
SS
14475/* Extract all information from a DW_TAG_string_type DIE and add to
14476 the user defined type vector. It isn't really a user defined type,
14477 but it behaves like one, with other DIE's using an AT_user_def_type
14478 attribute to reference it. */
14479
f792889a 14480static struct type *
e7c27a73 14481read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14482{
e7c27a73 14483 struct objfile *objfile = cu->objfile;
3b7538c0 14484 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14485 struct type *type, *range_type, *index_type, *char_type;
14486 struct attribute *attr;
14487 unsigned int length;
14488
e142c38c 14489 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14490 if (attr)
14491 {
14492 length = DW_UNSND (attr);
14493 }
14494 else
14495 {
0963b4bd 14496 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14497 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14498 if (attr)
14499 {
14500 length = DW_UNSND (attr);
14501 }
14502 else
14503 {
14504 length = 1;
14505 }
c906108c 14506 }
6ccb9162 14507
46bf5051 14508 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14509 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14510 char_type = language_string_char_type (cu->language_defn, gdbarch);
14511 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14512
f792889a 14513 return set_die_type (die, type, cu);
c906108c
SS
14514}
14515
4d804846
JB
14516/* Assuming that DIE corresponds to a function, returns nonzero
14517 if the function is prototyped. */
14518
14519static int
14520prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14521{
14522 struct attribute *attr;
14523
14524 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14525 if (attr && (DW_UNSND (attr) != 0))
14526 return 1;
14527
14528 /* The DWARF standard implies that the DW_AT_prototyped attribute
14529 is only meaninful for C, but the concept also extends to other
14530 languages that allow unprototyped functions (Eg: Objective C).
14531 For all other languages, assume that functions are always
14532 prototyped. */
14533 if (cu->language != language_c
14534 && cu->language != language_objc
14535 && cu->language != language_opencl)
14536 return 1;
14537
14538 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14539 prototyped and unprototyped functions; default to prototyped,
14540 since that is more common in modern code (and RealView warns
14541 about unprototyped functions). */
14542 if (producer_is_realview (cu->producer))
14543 return 1;
14544
14545 return 0;
14546}
14547
c906108c
SS
14548/* Handle DIES due to C code like:
14549
14550 struct foo
c5aa993b
JM
14551 {
14552 int (*funcp)(int a, long l);
14553 int b;
14554 };
c906108c 14555
0963b4bd 14556 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14557
f792889a 14558static struct type *
e7c27a73 14559read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14560{
bb5ed363 14561 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14562 struct type *type; /* Type that this function returns. */
14563 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14564 struct attribute *attr;
14565
e7c27a73 14566 type = die_type (die, cu);
7e314c57
JK
14567
14568 /* The die_type call above may have already set the type for this DIE. */
14569 ftype = get_die_type (die, cu);
14570 if (ftype)
14571 return ftype;
14572
0c8b41f1 14573 ftype = lookup_function_type (type);
c906108c 14574
4d804846 14575 if (prototyped_function_p (die, cu))
a6c727b2 14576 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14577
c055b101
CV
14578 /* Store the calling convention in the type if it's available in
14579 the subroutine die. Otherwise set the calling convention to
14580 the default value DW_CC_normal. */
14581 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14582 if (attr)
14583 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14584 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14585 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14586 else
14587 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14588
743649fd
MW
14589 /* Record whether the function returns normally to its caller or not
14590 if the DWARF producer set that information. */
14591 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14592 if (attr && (DW_UNSND (attr) != 0))
14593 TYPE_NO_RETURN (ftype) = 1;
14594
76c10ea2
GM
14595 /* We need to add the subroutine type to the die immediately so
14596 we don't infinitely recurse when dealing with parameters
0963b4bd 14597 declared as the same subroutine type. */
76c10ea2 14598 set_die_type (die, ftype, cu);
6e70227d 14599
639d11d3 14600 if (die->child != NULL)
c906108c 14601 {
bb5ed363 14602 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14603 struct die_info *child_die;
8072405b 14604 int nparams, iparams;
c906108c
SS
14605
14606 /* Count the number of parameters.
14607 FIXME: GDB currently ignores vararg functions, but knows about
14608 vararg member functions. */
8072405b 14609 nparams = 0;
639d11d3 14610 child_die = die->child;
c906108c
SS
14611 while (child_die && child_die->tag)
14612 {
14613 if (child_die->tag == DW_TAG_formal_parameter)
14614 nparams++;
14615 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14616 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14617 child_die = sibling_die (child_die);
14618 }
14619
14620 /* Allocate storage for parameters and fill them in. */
14621 TYPE_NFIELDS (ftype) = nparams;
14622 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14623 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14624
8072405b
JK
14625 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14626 even if we error out during the parameters reading below. */
14627 for (iparams = 0; iparams < nparams; iparams++)
14628 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14629
14630 iparams = 0;
639d11d3 14631 child_die = die->child;
c906108c
SS
14632 while (child_die && child_die->tag)
14633 {
14634 if (child_die->tag == DW_TAG_formal_parameter)
14635 {
3ce3b1ba
PA
14636 struct type *arg_type;
14637
14638 /* DWARF version 2 has no clean way to discern C++
14639 static and non-static member functions. G++ helps
14640 GDB by marking the first parameter for non-static
14641 member functions (which is the this pointer) as
14642 artificial. We pass this information to
14643 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14644
14645 DWARF version 3 added DW_AT_object_pointer, which GCC
14646 4.5 does not yet generate. */
e142c38c 14647 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14648 if (attr)
14649 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14650 else
418835cc
KS
14651 {
14652 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14653
14654 /* GCC/43521: In java, the formal parameter
14655 "this" is sometimes not marked with DW_AT_artificial. */
14656 if (cu->language == language_java)
14657 {
14658 const char *name = dwarf2_name (child_die, cu);
9a619af0 14659
418835cc
KS
14660 if (name && !strcmp (name, "this"))
14661 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14662 }
14663 }
3ce3b1ba
PA
14664 arg_type = die_type (child_die, cu);
14665
14666 /* RealView does not mark THIS as const, which the testsuite
14667 expects. GCC marks THIS as const in method definitions,
14668 but not in the class specifications (GCC PR 43053). */
14669 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14670 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14671 {
14672 int is_this = 0;
14673 struct dwarf2_cu *arg_cu = cu;
14674 const char *name = dwarf2_name (child_die, cu);
14675
14676 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14677 if (attr)
14678 {
14679 /* If the compiler emits this, use it. */
14680 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14681 is_this = 1;
14682 }
14683 else if (name && strcmp (name, "this") == 0)
14684 /* Function definitions will have the argument names. */
14685 is_this = 1;
14686 else if (name == NULL && iparams == 0)
14687 /* Declarations may not have the names, so like
14688 elsewhere in GDB, assume an artificial first
14689 argument is "this". */
14690 is_this = 1;
14691
14692 if (is_this)
14693 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14694 arg_type, 0);
14695 }
14696
14697 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14698 iparams++;
14699 }
14700 child_die = sibling_die (child_die);
14701 }
14702 }
14703
76c10ea2 14704 return ftype;
c906108c
SS
14705}
14706
f792889a 14707static struct type *
e7c27a73 14708read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14709{
e7c27a73 14710 struct objfile *objfile = cu->objfile;
0114d602 14711 const char *name = NULL;
3c8e0968 14712 struct type *this_type, *target_type;
c906108c 14713
94af9270 14714 name = dwarf2_full_name (NULL, die, cu);
f792889a 14715 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14716 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14717 TYPE_NAME (this_type) = name;
f792889a 14718 set_die_type (die, this_type, cu);
3c8e0968
DE
14719 target_type = die_type (die, cu);
14720 if (target_type != this_type)
14721 TYPE_TARGET_TYPE (this_type) = target_type;
14722 else
14723 {
14724 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14725 spec and cause infinite loops in GDB. */
14726 complaint (&symfile_complaints,
14727 _("Self-referential DW_TAG_typedef "
14728 "- DIE at 0x%x [in module %s]"),
4262abfb 14729 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14730 TYPE_TARGET_TYPE (this_type) = NULL;
14731 }
f792889a 14732 return this_type;
c906108c
SS
14733}
14734
14735/* Find a representation of a given base type and install
14736 it in the TYPE field of the die. */
14737
f792889a 14738static struct type *
e7c27a73 14739read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14740{
e7c27a73 14741 struct objfile *objfile = cu->objfile;
c906108c
SS
14742 struct type *type;
14743 struct attribute *attr;
14744 int encoding = 0, size = 0;
15d034d0 14745 const char *name;
6ccb9162
UW
14746 enum type_code code = TYPE_CODE_INT;
14747 int type_flags = 0;
14748 struct type *target_type = NULL;
c906108c 14749
e142c38c 14750 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14751 if (attr)
14752 {
14753 encoding = DW_UNSND (attr);
14754 }
e142c38c 14755 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14756 if (attr)
14757 {
14758 size = DW_UNSND (attr);
14759 }
39cbfefa 14760 name = dwarf2_name (die, cu);
6ccb9162 14761 if (!name)
c906108c 14762 {
6ccb9162
UW
14763 complaint (&symfile_complaints,
14764 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14765 }
6ccb9162
UW
14766
14767 switch (encoding)
c906108c 14768 {
6ccb9162
UW
14769 case DW_ATE_address:
14770 /* Turn DW_ATE_address into a void * pointer. */
14771 code = TYPE_CODE_PTR;
14772 type_flags |= TYPE_FLAG_UNSIGNED;
14773 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14774 break;
14775 case DW_ATE_boolean:
14776 code = TYPE_CODE_BOOL;
14777 type_flags |= TYPE_FLAG_UNSIGNED;
14778 break;
14779 case DW_ATE_complex_float:
14780 code = TYPE_CODE_COMPLEX;
14781 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14782 break;
14783 case DW_ATE_decimal_float:
14784 code = TYPE_CODE_DECFLOAT;
14785 break;
14786 case DW_ATE_float:
14787 code = TYPE_CODE_FLT;
14788 break;
14789 case DW_ATE_signed:
14790 break;
14791 case DW_ATE_unsigned:
14792 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14793 if (cu->language == language_fortran
14794 && name
61012eef 14795 && startswith (name, "character("))
3b2b8fea 14796 code = TYPE_CODE_CHAR;
6ccb9162
UW
14797 break;
14798 case DW_ATE_signed_char:
6e70227d 14799 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14800 || cu->language == language_pascal
14801 || cu->language == language_fortran)
6ccb9162
UW
14802 code = TYPE_CODE_CHAR;
14803 break;
14804 case DW_ATE_unsigned_char:
868a0084 14805 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14806 || cu->language == language_pascal
14807 || cu->language == language_fortran)
6ccb9162
UW
14808 code = TYPE_CODE_CHAR;
14809 type_flags |= TYPE_FLAG_UNSIGNED;
14810 break;
75079b2b
TT
14811 case DW_ATE_UTF:
14812 /* We just treat this as an integer and then recognize the
14813 type by name elsewhere. */
14814 break;
14815
6ccb9162
UW
14816 default:
14817 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14818 dwarf_type_encoding_name (encoding));
14819 break;
c906108c 14820 }
6ccb9162 14821
0114d602
DJ
14822 type = init_type (code, size, type_flags, NULL, objfile);
14823 TYPE_NAME (type) = name;
6ccb9162
UW
14824 TYPE_TARGET_TYPE (type) = target_type;
14825
0114d602 14826 if (name && strcmp (name, "char") == 0)
876cecd0 14827 TYPE_NOSIGN (type) = 1;
0114d602 14828
f792889a 14829 return set_die_type (die, type, cu);
c906108c
SS
14830}
14831
80180f79
SA
14832/* Parse dwarf attribute if it's a block, reference or constant and put the
14833 resulting value of the attribute into struct bound_prop.
14834 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14835
14836static int
14837attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14838 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14839{
14840 struct dwarf2_property_baton *baton;
14841 struct obstack *obstack = &cu->objfile->objfile_obstack;
14842
14843 if (attr == NULL || prop == NULL)
14844 return 0;
14845
14846 if (attr_form_is_block (attr))
14847 {
8d749320 14848 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14849 baton->referenced_type = NULL;
14850 baton->locexpr.per_cu = cu->per_cu;
14851 baton->locexpr.size = DW_BLOCK (attr)->size;
14852 baton->locexpr.data = DW_BLOCK (attr)->data;
14853 prop->data.baton = baton;
14854 prop->kind = PROP_LOCEXPR;
14855 gdb_assert (prop->data.baton != NULL);
14856 }
14857 else if (attr_form_is_ref (attr))
14858 {
14859 struct dwarf2_cu *target_cu = cu;
14860 struct die_info *target_die;
14861 struct attribute *target_attr;
14862
14863 target_die = follow_die_ref (die, attr, &target_cu);
14864 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14865 if (target_attr == NULL)
14866 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14867 target_cu);
80180f79
SA
14868 if (target_attr == NULL)
14869 return 0;
14870
df25ebbd 14871 switch (target_attr->name)
80180f79 14872 {
df25ebbd
JB
14873 case DW_AT_location:
14874 if (attr_form_is_section_offset (target_attr))
14875 {
8d749320 14876 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14877 baton->referenced_type = die_type (target_die, target_cu);
14878 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14879 prop->data.baton = baton;
14880 prop->kind = PROP_LOCLIST;
14881 gdb_assert (prop->data.baton != NULL);
14882 }
14883 else if (attr_form_is_block (target_attr))
14884 {
8d749320 14885 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14886 baton->referenced_type = die_type (target_die, target_cu);
14887 baton->locexpr.per_cu = cu->per_cu;
14888 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14889 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14890 prop->data.baton = baton;
14891 prop->kind = PROP_LOCEXPR;
14892 gdb_assert (prop->data.baton != NULL);
14893 }
14894 else
14895 {
14896 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14897 "dynamic property");
14898 return 0;
14899 }
14900 break;
14901 case DW_AT_data_member_location:
14902 {
14903 LONGEST offset;
14904
14905 if (!handle_data_member_location (target_die, target_cu,
14906 &offset))
14907 return 0;
14908
8d749320 14909 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14910 baton->referenced_type = read_type_die (target_die->parent,
14911 target_cu);
df25ebbd
JB
14912 baton->offset_info.offset = offset;
14913 baton->offset_info.type = die_type (target_die, target_cu);
14914 prop->data.baton = baton;
14915 prop->kind = PROP_ADDR_OFFSET;
14916 break;
14917 }
80180f79
SA
14918 }
14919 }
14920 else if (attr_form_is_constant (attr))
14921 {
14922 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14923 prop->kind = PROP_CONST;
14924 }
14925 else
14926 {
14927 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14928 dwarf2_name (die, cu));
14929 return 0;
14930 }
14931
14932 return 1;
14933}
14934
a02abb62
JB
14935/* Read the given DW_AT_subrange DIE. */
14936
f792889a 14937static struct type *
a02abb62
JB
14938read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14939{
4c9ad8c2 14940 struct type *base_type, *orig_base_type;
a02abb62
JB
14941 struct type *range_type;
14942 struct attribute *attr;
729efb13 14943 struct dynamic_prop low, high;
4fae6e18 14944 int low_default_is_valid;
c451ebe5 14945 int high_bound_is_count = 0;
15d034d0 14946 const char *name;
43bbcdc2 14947 LONGEST negative_mask;
e77813c8 14948
4c9ad8c2
TT
14949 orig_base_type = die_type (die, cu);
14950 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14951 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14952 creating the range type, but we use the result of check_typedef
14953 when examining properties of the type. */
14954 base_type = check_typedef (orig_base_type);
a02abb62 14955
7e314c57
JK
14956 /* The die_type call above may have already set the type for this DIE. */
14957 range_type = get_die_type (die, cu);
14958 if (range_type)
14959 return range_type;
14960
729efb13
SA
14961 low.kind = PROP_CONST;
14962 high.kind = PROP_CONST;
14963 high.data.const_val = 0;
14964
4fae6e18
JK
14965 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14966 omitting DW_AT_lower_bound. */
14967 switch (cu->language)
6e70227d 14968 {
4fae6e18
JK
14969 case language_c:
14970 case language_cplus:
729efb13 14971 low.data.const_val = 0;
4fae6e18
JK
14972 low_default_is_valid = 1;
14973 break;
14974 case language_fortran:
729efb13 14975 low.data.const_val = 1;
4fae6e18
JK
14976 low_default_is_valid = 1;
14977 break;
14978 case language_d:
14979 case language_java:
14980 case language_objc:
729efb13 14981 low.data.const_val = 0;
4fae6e18
JK
14982 low_default_is_valid = (cu->header.version >= 4);
14983 break;
14984 case language_ada:
14985 case language_m2:
14986 case language_pascal:
729efb13 14987 low.data.const_val = 1;
4fae6e18
JK
14988 low_default_is_valid = (cu->header.version >= 4);
14989 break;
14990 default:
729efb13 14991 low.data.const_val = 0;
4fae6e18
JK
14992 low_default_is_valid = 0;
14993 break;
a02abb62
JB
14994 }
14995
e142c38c 14996 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14997 if (attr)
11c1ba78 14998 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14999 else if (!low_default_is_valid)
15000 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15001 "- DIE at 0x%x [in module %s]"),
4262abfb 15002 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15003
e142c38c 15004 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15005 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15006 {
15007 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15008 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15009 {
c451ebe5
SA
15010 /* If bounds are constant do the final calculation here. */
15011 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15012 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15013 else
15014 high_bound_is_count = 1;
c2ff108b 15015 }
e77813c8
PM
15016 }
15017
15018 /* Dwarf-2 specifications explicitly allows to create subrange types
15019 without specifying a base type.
15020 In that case, the base type must be set to the type of
15021 the lower bound, upper bound or count, in that order, if any of these
15022 three attributes references an object that has a type.
15023 If no base type is found, the Dwarf-2 specifications say that
15024 a signed integer type of size equal to the size of an address should
15025 be used.
15026 For the following C code: `extern char gdb_int [];'
15027 GCC produces an empty range DIE.
15028 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15029 high bound or count are not yet handled by this code. */
e77813c8
PM
15030 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15031 {
15032 struct objfile *objfile = cu->objfile;
15033 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15034 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15035 struct type *int_type = objfile_type (objfile)->builtin_int;
15036
15037 /* Test "int", "long int", and "long long int" objfile types,
15038 and select the first one having a size above or equal to the
15039 architecture address size. */
15040 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15041 base_type = int_type;
15042 else
15043 {
15044 int_type = objfile_type (objfile)->builtin_long;
15045 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15046 base_type = int_type;
15047 else
15048 {
15049 int_type = objfile_type (objfile)->builtin_long_long;
15050 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15051 base_type = int_type;
15052 }
15053 }
15054 }
a02abb62 15055
dbb9c2b1
JB
15056 /* Normally, the DWARF producers are expected to use a signed
15057 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15058 But this is unfortunately not always the case, as witnessed
15059 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15060 is used instead. To work around that ambiguity, we treat
15061 the bounds as signed, and thus sign-extend their values, when
15062 the base type is signed. */
6e70227d 15063 negative_mask =
66c6502d 15064 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15065 if (low.kind == PROP_CONST
15066 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15067 low.data.const_val |= negative_mask;
15068 if (high.kind == PROP_CONST
15069 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15070 high.data.const_val |= negative_mask;
43bbcdc2 15071
729efb13 15072 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15073
c451ebe5
SA
15074 if (high_bound_is_count)
15075 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15076
c2ff108b
JK
15077 /* Ada expects an empty array on no boundary attributes. */
15078 if (attr == NULL && cu->language != language_ada)
729efb13 15079 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15080
39cbfefa
DJ
15081 name = dwarf2_name (die, cu);
15082 if (name)
15083 TYPE_NAME (range_type) = name;
6e70227d 15084
e142c38c 15085 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15086 if (attr)
15087 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15088
7e314c57
JK
15089 set_die_type (die, range_type, cu);
15090
15091 /* set_die_type should be already done. */
b4ba55a1
JB
15092 set_descriptive_type (range_type, die, cu);
15093
7e314c57 15094 return range_type;
a02abb62 15095}
6e70227d 15096
f792889a 15097static struct type *
81a17f79
JB
15098read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15099{
15100 struct type *type;
81a17f79 15101
81a17f79
JB
15102 /* For now, we only support the C meaning of an unspecified type: void. */
15103
0114d602
DJ
15104 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15105 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15106
f792889a 15107 return set_die_type (die, type, cu);
81a17f79 15108}
a02abb62 15109
639d11d3
DC
15110/* Read a single die and all its descendents. Set the die's sibling
15111 field to NULL; set other fields in the die correctly, and set all
15112 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15113 location of the info_ptr after reading all of those dies. PARENT
15114 is the parent of the die in question. */
15115
15116static struct die_info *
dee91e82 15117read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15118 const gdb_byte *info_ptr,
15119 const gdb_byte **new_info_ptr,
dee91e82 15120 struct die_info *parent)
639d11d3
DC
15121{
15122 struct die_info *die;
d521ce57 15123 const gdb_byte *cur_ptr;
639d11d3
DC
15124 int has_children;
15125
bf6af496 15126 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15127 if (die == NULL)
15128 {
15129 *new_info_ptr = cur_ptr;
15130 return NULL;
15131 }
93311388 15132 store_in_ref_table (die, reader->cu);
639d11d3
DC
15133
15134 if (has_children)
bf6af496 15135 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15136 else
15137 {
15138 die->child = NULL;
15139 *new_info_ptr = cur_ptr;
15140 }
15141
15142 die->sibling = NULL;
15143 die->parent = parent;
15144 return die;
15145}
15146
15147/* Read a die, all of its descendents, and all of its siblings; set
15148 all of the fields of all of the dies correctly. Arguments are as
15149 in read_die_and_children. */
15150
15151static struct die_info *
bf6af496 15152read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15153 const gdb_byte *info_ptr,
15154 const gdb_byte **new_info_ptr,
bf6af496 15155 struct die_info *parent)
639d11d3
DC
15156{
15157 struct die_info *first_die, *last_sibling;
d521ce57 15158 const gdb_byte *cur_ptr;
639d11d3 15159
c906108c 15160 cur_ptr = info_ptr;
639d11d3
DC
15161 first_die = last_sibling = NULL;
15162
15163 while (1)
c906108c 15164 {
639d11d3 15165 struct die_info *die
dee91e82 15166 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15167
1d325ec1 15168 if (die == NULL)
c906108c 15169 {
639d11d3
DC
15170 *new_info_ptr = cur_ptr;
15171 return first_die;
c906108c 15172 }
1d325ec1
DJ
15173
15174 if (!first_die)
15175 first_die = die;
c906108c 15176 else
1d325ec1
DJ
15177 last_sibling->sibling = die;
15178
15179 last_sibling = die;
c906108c 15180 }
c906108c
SS
15181}
15182
bf6af496
DE
15183/* Read a die, all of its descendents, and all of its siblings; set
15184 all of the fields of all of the dies correctly. Arguments are as
15185 in read_die_and_children.
15186 This the main entry point for reading a DIE and all its children. */
15187
15188static struct die_info *
15189read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15190 const gdb_byte *info_ptr,
15191 const gdb_byte **new_info_ptr,
bf6af496
DE
15192 struct die_info *parent)
15193{
15194 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15195 new_info_ptr, parent);
15196
b4f54984 15197 if (dwarf_die_debug)
bf6af496
DE
15198 {
15199 fprintf_unfiltered (gdb_stdlog,
15200 "Read die from %s@0x%x of %s:\n",
a32a8923 15201 get_section_name (reader->die_section),
bf6af496
DE
15202 (unsigned) (info_ptr - reader->die_section->buffer),
15203 bfd_get_filename (reader->abfd));
b4f54984 15204 dump_die (die, dwarf_die_debug);
bf6af496
DE
15205 }
15206
15207 return die;
15208}
15209
3019eac3
DE
15210/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15211 attributes.
15212 The caller is responsible for filling in the extra attributes
15213 and updating (*DIEP)->num_attrs.
15214 Set DIEP to point to a newly allocated die with its information,
15215 except for its child, sibling, and parent fields.
15216 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15217
d521ce57 15218static const gdb_byte *
3019eac3 15219read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15220 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15221 int *has_children, int num_extra_attrs)
93311388 15222{
b64f50a1
JK
15223 unsigned int abbrev_number, bytes_read, i;
15224 sect_offset offset;
93311388
DE
15225 struct abbrev_info *abbrev;
15226 struct die_info *die;
15227 struct dwarf2_cu *cu = reader->cu;
15228 bfd *abfd = reader->abfd;
15229
b64f50a1 15230 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15231 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15232 info_ptr += bytes_read;
15233 if (!abbrev_number)
15234 {
15235 *diep = NULL;
15236 *has_children = 0;
15237 return info_ptr;
15238 }
15239
433df2d4 15240 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15241 if (!abbrev)
348e048f
DE
15242 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15243 abbrev_number,
15244 bfd_get_filename (abfd));
15245
3019eac3 15246 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15247 die->offset = offset;
15248 die->tag = abbrev->tag;
15249 die->abbrev = abbrev_number;
15250
3019eac3
DE
15251 /* Make the result usable.
15252 The caller needs to update num_attrs after adding the extra
15253 attributes. */
93311388
DE
15254 die->num_attrs = abbrev->num_attrs;
15255
15256 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15257 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15258 info_ptr);
93311388
DE
15259
15260 *diep = die;
15261 *has_children = abbrev->has_children;
15262 return info_ptr;
15263}
15264
3019eac3
DE
15265/* Read a die and all its attributes.
15266 Set DIEP to point to a newly allocated die with its information,
15267 except for its child, sibling, and parent fields.
15268 Set HAS_CHILDREN to tell whether the die has children or not. */
15269
d521ce57 15270static const gdb_byte *
3019eac3 15271read_full_die (const struct die_reader_specs *reader,
d521ce57 15272 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15273 int *has_children)
15274{
d521ce57 15275 const gdb_byte *result;
bf6af496
DE
15276
15277 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15278
b4f54984 15279 if (dwarf_die_debug)
bf6af496
DE
15280 {
15281 fprintf_unfiltered (gdb_stdlog,
15282 "Read die from %s@0x%x of %s:\n",
a32a8923 15283 get_section_name (reader->die_section),
bf6af496
DE
15284 (unsigned) (info_ptr - reader->die_section->buffer),
15285 bfd_get_filename (reader->abfd));
b4f54984 15286 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15287 }
15288
15289 return result;
3019eac3 15290}
433df2d4
DE
15291\f
15292/* Abbreviation tables.
3019eac3 15293
433df2d4 15294 In DWARF version 2, the description of the debugging information is
c906108c
SS
15295 stored in a separate .debug_abbrev section. Before we read any
15296 dies from a section we read in all abbreviations and install them
433df2d4
DE
15297 in a hash table. */
15298
15299/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15300
15301static struct abbrev_info *
15302abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15303{
15304 struct abbrev_info *abbrev;
15305
8d749320 15306 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15307 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15308
433df2d4
DE
15309 return abbrev;
15310}
15311
15312/* Add an abbreviation to the table. */
c906108c
SS
15313
15314static void
433df2d4
DE
15315abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15316 unsigned int abbrev_number,
15317 struct abbrev_info *abbrev)
15318{
15319 unsigned int hash_number;
15320
15321 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15322 abbrev->next = abbrev_table->abbrevs[hash_number];
15323 abbrev_table->abbrevs[hash_number] = abbrev;
15324}
dee91e82 15325
433df2d4
DE
15326/* Look up an abbrev in the table.
15327 Returns NULL if the abbrev is not found. */
15328
15329static struct abbrev_info *
15330abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15331 unsigned int abbrev_number)
c906108c 15332{
433df2d4
DE
15333 unsigned int hash_number;
15334 struct abbrev_info *abbrev;
15335
15336 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15337 abbrev = abbrev_table->abbrevs[hash_number];
15338
15339 while (abbrev)
15340 {
15341 if (abbrev->number == abbrev_number)
15342 return abbrev;
15343 abbrev = abbrev->next;
15344 }
15345 return NULL;
15346}
15347
15348/* Read in an abbrev table. */
15349
15350static struct abbrev_table *
15351abbrev_table_read_table (struct dwarf2_section_info *section,
15352 sect_offset offset)
15353{
15354 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15355 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15356 struct abbrev_table *abbrev_table;
d521ce57 15357 const gdb_byte *abbrev_ptr;
c906108c
SS
15358 struct abbrev_info *cur_abbrev;
15359 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15360 unsigned int abbrev_form;
f3dd6933
DJ
15361 struct attr_abbrev *cur_attrs;
15362 unsigned int allocated_attrs;
c906108c 15363
70ba0933 15364 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15365 abbrev_table->offset = offset;
433df2d4 15366 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15367 abbrev_table->abbrevs =
15368 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15369 ABBREV_HASH_SIZE);
433df2d4
DE
15370 memset (abbrev_table->abbrevs, 0,
15371 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15372
433df2d4
DE
15373 dwarf2_read_section (objfile, section);
15374 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15375 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15376 abbrev_ptr += bytes_read;
15377
f3dd6933 15378 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15379 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15380
0963b4bd 15381 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15382 while (abbrev_number)
15383 {
433df2d4 15384 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15385
15386 /* read in abbrev header */
15387 cur_abbrev->number = abbrev_number;
aead7601
SM
15388 cur_abbrev->tag
15389 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15390 abbrev_ptr += bytes_read;
15391 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15392 abbrev_ptr += 1;
15393
15394 /* now read in declarations */
15395 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15396 abbrev_ptr += bytes_read;
15397 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15398 abbrev_ptr += bytes_read;
15399 while (abbrev_name)
15400 {
f3dd6933 15401 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15402 {
f3dd6933
DJ
15403 allocated_attrs += ATTR_ALLOC_CHUNK;
15404 cur_attrs
224c3ddb 15405 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15406 }
ae038cb0 15407
aead7601
SM
15408 cur_attrs[cur_abbrev->num_attrs].name
15409 = (enum dwarf_attribute) abbrev_name;
15410 cur_attrs[cur_abbrev->num_attrs++].form
15411 = (enum dwarf_form) abbrev_form;
c906108c
SS
15412 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15413 abbrev_ptr += bytes_read;
15414 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15415 abbrev_ptr += bytes_read;
15416 }
15417
8d749320
SM
15418 cur_abbrev->attrs =
15419 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15420 cur_abbrev->num_attrs);
f3dd6933
DJ
15421 memcpy (cur_abbrev->attrs, cur_attrs,
15422 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15423
433df2d4 15424 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15425
15426 /* Get next abbreviation.
15427 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15428 always properly terminated with an abbrev number of 0.
15429 Exit loop if we encounter an abbreviation which we have
15430 already read (which means we are about to read the abbreviations
15431 for the next compile unit) or if the end of the abbreviation
15432 table is reached. */
433df2d4 15433 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15434 break;
15435 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15436 abbrev_ptr += bytes_read;
433df2d4 15437 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15438 break;
15439 }
f3dd6933
DJ
15440
15441 xfree (cur_attrs);
433df2d4 15442 return abbrev_table;
c906108c
SS
15443}
15444
433df2d4 15445/* Free the resources held by ABBREV_TABLE. */
c906108c 15446
c906108c 15447static void
433df2d4 15448abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15449{
433df2d4
DE
15450 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15451 xfree (abbrev_table);
c906108c
SS
15452}
15453
f4dc4d17
DE
15454/* Same as abbrev_table_free but as a cleanup.
15455 We pass in a pointer to the pointer to the table so that we can
15456 set the pointer to NULL when we're done. It also simplifies
73051182 15457 build_type_psymtabs_1. */
f4dc4d17
DE
15458
15459static void
15460abbrev_table_free_cleanup (void *table_ptr)
15461{
9a3c8263 15462 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15463
15464 if (*abbrev_table_ptr != NULL)
15465 abbrev_table_free (*abbrev_table_ptr);
15466 *abbrev_table_ptr = NULL;
15467}
15468
433df2d4
DE
15469/* Read the abbrev table for CU from ABBREV_SECTION. */
15470
15471static void
15472dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15473 struct dwarf2_section_info *abbrev_section)
c906108c 15474{
433df2d4
DE
15475 cu->abbrev_table =
15476 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15477}
c906108c 15478
433df2d4 15479/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15480
433df2d4
DE
15481static void
15482dwarf2_free_abbrev_table (void *ptr_to_cu)
15483{
9a3c8263 15484 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15485
a2ce51a0
DE
15486 if (cu->abbrev_table != NULL)
15487 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15488 /* Set this to NULL so that we SEGV if we try to read it later,
15489 and also because free_comp_unit verifies this is NULL. */
15490 cu->abbrev_table = NULL;
15491}
15492\f
72bf9492
DJ
15493/* Returns nonzero if TAG represents a type that we might generate a partial
15494 symbol for. */
15495
15496static int
15497is_type_tag_for_partial (int tag)
15498{
15499 switch (tag)
15500 {
15501#if 0
15502 /* Some types that would be reasonable to generate partial symbols for,
15503 that we don't at present. */
15504 case DW_TAG_array_type:
15505 case DW_TAG_file_type:
15506 case DW_TAG_ptr_to_member_type:
15507 case DW_TAG_set_type:
15508 case DW_TAG_string_type:
15509 case DW_TAG_subroutine_type:
15510#endif
15511 case DW_TAG_base_type:
15512 case DW_TAG_class_type:
680b30c7 15513 case DW_TAG_interface_type:
72bf9492
DJ
15514 case DW_TAG_enumeration_type:
15515 case DW_TAG_structure_type:
15516 case DW_TAG_subrange_type:
15517 case DW_TAG_typedef:
15518 case DW_TAG_union_type:
15519 return 1;
15520 default:
15521 return 0;
15522 }
15523}
15524
15525/* Load all DIEs that are interesting for partial symbols into memory. */
15526
15527static struct partial_die_info *
dee91e82 15528load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15529 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15530{
dee91e82 15531 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15532 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15533 struct partial_die_info *part_die;
15534 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15535 struct abbrev_info *abbrev;
15536 unsigned int bytes_read;
5afb4e99 15537 unsigned int load_all = 0;
72bf9492
DJ
15538 int nesting_level = 1;
15539
15540 parent_die = NULL;
15541 last_die = NULL;
15542
7adf1e79
DE
15543 gdb_assert (cu->per_cu != NULL);
15544 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15545 load_all = 1;
15546
72bf9492
DJ
15547 cu->partial_dies
15548 = htab_create_alloc_ex (cu->header.length / 12,
15549 partial_die_hash,
15550 partial_die_eq,
15551 NULL,
15552 &cu->comp_unit_obstack,
15553 hashtab_obstack_allocate,
15554 dummy_obstack_deallocate);
15555
8d749320 15556 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15557
15558 while (1)
15559 {
15560 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15561
15562 /* A NULL abbrev means the end of a series of children. */
15563 if (abbrev == NULL)
15564 {
15565 if (--nesting_level == 0)
15566 {
15567 /* PART_DIE was probably the last thing allocated on the
15568 comp_unit_obstack, so we could call obstack_free
15569 here. We don't do that because the waste is small,
15570 and will be cleaned up when we're done with this
15571 compilation unit. This way, we're also more robust
15572 against other users of the comp_unit_obstack. */
15573 return first_die;
15574 }
15575 info_ptr += bytes_read;
15576 last_die = parent_die;
15577 parent_die = parent_die->die_parent;
15578 continue;
15579 }
15580
98bfdba5
PA
15581 /* Check for template arguments. We never save these; if
15582 they're seen, we just mark the parent, and go on our way. */
15583 if (parent_die != NULL
15584 && cu->language == language_cplus
15585 && (abbrev->tag == DW_TAG_template_type_param
15586 || abbrev->tag == DW_TAG_template_value_param))
15587 {
15588 parent_die->has_template_arguments = 1;
15589
15590 if (!load_all)
15591 {
15592 /* We don't need a partial DIE for the template argument. */
dee91e82 15593 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15594 continue;
15595 }
15596 }
15597
0d99eb77 15598 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15599 Skip their other children. */
15600 if (!load_all
15601 && cu->language == language_cplus
15602 && parent_die != NULL
15603 && parent_die->tag == DW_TAG_subprogram)
15604 {
dee91e82 15605 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15606 continue;
15607 }
15608
5afb4e99
DJ
15609 /* Check whether this DIE is interesting enough to save. Normally
15610 we would not be interested in members here, but there may be
15611 later variables referencing them via DW_AT_specification (for
15612 static members). */
15613 if (!load_all
15614 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15615 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15616 && abbrev->tag != DW_TAG_enumerator
15617 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15618 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15619 && abbrev->tag != DW_TAG_variable
5afb4e99 15620 && abbrev->tag != DW_TAG_namespace
f55ee35c 15621 && abbrev->tag != DW_TAG_module
95554aad 15622 && abbrev->tag != DW_TAG_member
74921315
KS
15623 && abbrev->tag != DW_TAG_imported_unit
15624 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15625 {
15626 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15627 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15628 continue;
15629 }
15630
dee91e82
DE
15631 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15632 info_ptr);
72bf9492
DJ
15633
15634 /* This two-pass algorithm for processing partial symbols has a
15635 high cost in cache pressure. Thus, handle some simple cases
15636 here which cover the majority of C partial symbols. DIEs
15637 which neither have specification tags in them, nor could have
15638 specification tags elsewhere pointing at them, can simply be
15639 processed and discarded.
15640
15641 This segment is also optional; scan_partial_symbols and
15642 add_partial_symbol will handle these DIEs if we chain
15643 them in normally. When compilers which do not emit large
15644 quantities of duplicate debug information are more common,
15645 this code can probably be removed. */
15646
15647 /* Any complete simple types at the top level (pretty much all
15648 of them, for a language without namespaces), can be processed
15649 directly. */
15650 if (parent_die == NULL
15651 && part_die->has_specification == 0
15652 && part_die->is_declaration == 0
d8228535 15653 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15654 || part_die->tag == DW_TAG_base_type
15655 || part_die->tag == DW_TAG_subrange_type))
15656 {
15657 if (building_psymtab && part_die->name != NULL)
04a679b8 15658 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15659 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15660 &objfile->static_psymbols,
1762568f 15661 0, cu->language, objfile);
dee91e82 15662 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15663 continue;
15664 }
15665
d8228535
JK
15666 /* The exception for DW_TAG_typedef with has_children above is
15667 a workaround of GCC PR debug/47510. In the case of this complaint
15668 type_name_no_tag_or_error will error on such types later.
15669
15670 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15671 it could not find the child DIEs referenced later, this is checked
15672 above. In correct DWARF DW_TAG_typedef should have no children. */
15673
15674 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15675 complaint (&symfile_complaints,
15676 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15677 "- DIE at 0x%x [in module %s]"),
4262abfb 15678 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15679
72bf9492
DJ
15680 /* If we're at the second level, and we're an enumerator, and
15681 our parent has no specification (meaning possibly lives in a
15682 namespace elsewhere), then we can add the partial symbol now
15683 instead of queueing it. */
15684 if (part_die->tag == DW_TAG_enumerator
15685 && parent_die != NULL
15686 && parent_die->die_parent == NULL
15687 && parent_die->tag == DW_TAG_enumeration_type
15688 && parent_die->has_specification == 0)
15689 {
15690 if (part_die->name == NULL)
3e43a32a
MS
15691 complaint (&symfile_complaints,
15692 _("malformed enumerator DIE ignored"));
72bf9492 15693 else if (building_psymtab)
04a679b8 15694 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15695 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15696 (cu->language == language_cplus
15697 || cu->language == language_java)
bb5ed363
DE
15698 ? &objfile->global_psymbols
15699 : &objfile->static_psymbols,
1762568f 15700 0, cu->language, objfile);
72bf9492 15701
dee91e82 15702 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15703 continue;
15704 }
15705
15706 /* We'll save this DIE so link it in. */
15707 part_die->die_parent = parent_die;
15708 part_die->die_sibling = NULL;
15709 part_die->die_child = NULL;
15710
15711 if (last_die && last_die == parent_die)
15712 last_die->die_child = part_die;
15713 else if (last_die)
15714 last_die->die_sibling = part_die;
15715
15716 last_die = part_die;
15717
15718 if (first_die == NULL)
15719 first_die = part_die;
15720
15721 /* Maybe add the DIE to the hash table. Not all DIEs that we
15722 find interesting need to be in the hash table, because we
15723 also have the parent/sibling/child chains; only those that we
15724 might refer to by offset later during partial symbol reading.
15725
15726 For now this means things that might have be the target of a
15727 DW_AT_specification, DW_AT_abstract_origin, or
15728 DW_AT_extension. DW_AT_extension will refer only to
15729 namespaces; DW_AT_abstract_origin refers to functions (and
15730 many things under the function DIE, but we do not recurse
15731 into function DIEs during partial symbol reading) and
15732 possibly variables as well; DW_AT_specification refers to
15733 declarations. Declarations ought to have the DW_AT_declaration
15734 flag. It happens that GCC forgets to put it in sometimes, but
15735 only for functions, not for types.
15736
15737 Adding more things than necessary to the hash table is harmless
15738 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15739 wasted time in find_partial_die, when we reread the compilation
15740 unit with load_all_dies set. */
72bf9492 15741
5afb4e99 15742 if (load_all
72929c62 15743 || abbrev->tag == DW_TAG_constant
5afb4e99 15744 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15745 || abbrev->tag == DW_TAG_variable
15746 || abbrev->tag == DW_TAG_namespace
15747 || part_die->is_declaration)
15748 {
15749 void **slot;
15750
15751 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15752 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15753 *slot = part_die;
15754 }
15755
8d749320 15756 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15757
15758 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15759 we have no reason to follow the children of structures; for other
98bfdba5
PA
15760 languages we have to, so that we can get at method physnames
15761 to infer fully qualified class names, for DW_AT_specification,
15762 and for C++ template arguments. For C++, we also look one level
15763 inside functions to find template arguments (if the name of the
15764 function does not already contain the template arguments).
bc30ff58
JB
15765
15766 For Ada, we need to scan the children of subprograms and lexical
15767 blocks as well because Ada allows the definition of nested
15768 entities that could be interesting for the debugger, such as
15769 nested subprograms for instance. */
72bf9492 15770 if (last_die->has_children
5afb4e99
DJ
15771 && (load_all
15772 || last_die->tag == DW_TAG_namespace
f55ee35c 15773 || last_die->tag == DW_TAG_module
72bf9492 15774 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15775 || (cu->language == language_cplus
15776 && last_die->tag == DW_TAG_subprogram
15777 && (last_die->name == NULL
15778 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15779 || (cu->language != language_c
15780 && (last_die->tag == DW_TAG_class_type
680b30c7 15781 || last_die->tag == DW_TAG_interface_type
72bf9492 15782 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15783 || last_die->tag == DW_TAG_union_type))
15784 || (cu->language == language_ada
15785 && (last_die->tag == DW_TAG_subprogram
15786 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15787 {
15788 nesting_level++;
15789 parent_die = last_die;
15790 continue;
15791 }
15792
15793 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15794 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15795
15796 /* Back to the top, do it again. */
15797 }
15798}
15799
c906108c
SS
15800/* Read a minimal amount of information into the minimal die structure. */
15801
d521ce57 15802static const gdb_byte *
dee91e82
DE
15803read_partial_die (const struct die_reader_specs *reader,
15804 struct partial_die_info *part_die,
15805 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15806 const gdb_byte *info_ptr)
c906108c 15807{
dee91e82 15808 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15809 struct objfile *objfile = cu->objfile;
d521ce57 15810 const gdb_byte *buffer = reader->buffer;
fa238c03 15811 unsigned int i;
c906108c 15812 struct attribute attr;
c5aa993b 15813 int has_low_pc_attr = 0;
c906108c 15814 int has_high_pc_attr = 0;
91da1414 15815 int high_pc_relative = 0;
c906108c 15816
72bf9492 15817 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15818
b64f50a1 15819 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15820
15821 info_ptr += abbrev_len;
15822
15823 if (abbrev == NULL)
15824 return info_ptr;
15825
c906108c
SS
15826 part_die->tag = abbrev->tag;
15827 part_die->has_children = abbrev->has_children;
c906108c
SS
15828
15829 for (i = 0; i < abbrev->num_attrs; ++i)
15830 {
dee91e82 15831 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15832
15833 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15834 partial symbol table. */
c906108c
SS
15835 switch (attr.name)
15836 {
15837 case DW_AT_name:
71c25dea
TT
15838 switch (part_die->tag)
15839 {
15840 case DW_TAG_compile_unit:
95554aad 15841 case DW_TAG_partial_unit:
348e048f 15842 case DW_TAG_type_unit:
71c25dea
TT
15843 /* Compilation units have a DW_AT_name that is a filename, not
15844 a source language identifier. */
15845 case DW_TAG_enumeration_type:
15846 case DW_TAG_enumerator:
15847 /* These tags always have simple identifiers already; no need
15848 to canonicalize them. */
15849 part_die->name = DW_STRING (&attr);
15850 break;
15851 default:
15852 part_die->name
15853 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15854 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15855 break;
15856 }
c906108c 15857 break;
31ef98ae 15858 case DW_AT_linkage_name:
c906108c 15859 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15860 /* Note that both forms of linkage name might appear. We
15861 assume they will be the same, and we only store the last
15862 one we see. */
94af9270
KS
15863 if (cu->language == language_ada)
15864 part_die->name = DW_STRING (&attr);
abc72ce4 15865 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15866 break;
15867 case DW_AT_low_pc:
15868 has_low_pc_attr = 1;
31aa7e4e 15869 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15870 break;
15871 case DW_AT_high_pc:
15872 has_high_pc_attr = 1;
31aa7e4e
JB
15873 part_die->highpc = attr_value_as_address (&attr);
15874 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15875 high_pc_relative = 1;
c906108c
SS
15876 break;
15877 case DW_AT_location:
0963b4bd 15878 /* Support the .debug_loc offsets. */
8e19ed76
PS
15879 if (attr_form_is_block (&attr))
15880 {
95554aad 15881 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15882 }
3690dd37 15883 else if (attr_form_is_section_offset (&attr))
8e19ed76 15884 {
4d3c2250 15885 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15886 }
15887 else
15888 {
4d3c2250
KB
15889 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15890 "partial symbol information");
8e19ed76 15891 }
c906108c 15892 break;
c906108c
SS
15893 case DW_AT_external:
15894 part_die->is_external = DW_UNSND (&attr);
15895 break;
15896 case DW_AT_declaration:
15897 part_die->is_declaration = DW_UNSND (&attr);
15898 break;
15899 case DW_AT_type:
15900 part_die->has_type = 1;
15901 break;
15902 case DW_AT_abstract_origin:
15903 case DW_AT_specification:
72bf9492
DJ
15904 case DW_AT_extension:
15905 part_die->has_specification = 1;
c764a876 15906 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15907 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15908 || cu->per_cu->is_dwz);
c906108c
SS
15909 break;
15910 case DW_AT_sibling:
15911 /* Ignore absolute siblings, they might point outside of
15912 the current compile unit. */
15913 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15914 complaint (&symfile_complaints,
15915 _("ignoring absolute DW_AT_sibling"));
c906108c 15916 else
b9502d3f
WN
15917 {
15918 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15919 const gdb_byte *sibling_ptr = buffer + off;
15920
15921 if (sibling_ptr < info_ptr)
15922 complaint (&symfile_complaints,
15923 _("DW_AT_sibling points backwards"));
22869d73
KS
15924 else if (sibling_ptr > reader->buffer_end)
15925 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15926 else
15927 part_die->sibling = sibling_ptr;
15928 }
c906108c 15929 break;
fa4028e9
JB
15930 case DW_AT_byte_size:
15931 part_die->has_byte_size = 1;
15932 break;
ff908ebf
AW
15933 case DW_AT_const_value:
15934 part_die->has_const_value = 1;
15935 break;
68511cec
CES
15936 case DW_AT_calling_convention:
15937 /* DWARF doesn't provide a way to identify a program's source-level
15938 entry point. DW_AT_calling_convention attributes are only meant
15939 to describe functions' calling conventions.
15940
15941 However, because it's a necessary piece of information in
15942 Fortran, and because DW_CC_program is the only piece of debugging
15943 information whose definition refers to a 'main program' at all,
15944 several compilers have begun marking Fortran main programs with
15945 DW_CC_program --- even when those functions use the standard
15946 calling conventions.
15947
15948 So until DWARF specifies a way to provide this information and
15949 compilers pick up the new representation, we'll support this
15950 practice. */
15951 if (DW_UNSND (&attr) == DW_CC_program
15952 && cu->language == language_fortran)
3d548a53 15953 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15954 break;
481860b3
GB
15955 case DW_AT_inline:
15956 if (DW_UNSND (&attr) == DW_INL_inlined
15957 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15958 part_die->may_be_inlined = 1;
15959 break;
95554aad
TT
15960
15961 case DW_AT_import:
15962 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15963 {
15964 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15965 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15966 || cu->per_cu->is_dwz);
15967 }
95554aad
TT
15968 break;
15969
c906108c
SS
15970 default:
15971 break;
15972 }
15973 }
15974
91da1414
MW
15975 if (high_pc_relative)
15976 part_die->highpc += part_die->lowpc;
15977
9373cf26
JK
15978 if (has_low_pc_attr && has_high_pc_attr)
15979 {
15980 /* When using the GNU linker, .gnu.linkonce. sections are used to
15981 eliminate duplicate copies of functions and vtables and such.
15982 The linker will arbitrarily choose one and discard the others.
15983 The AT_*_pc values for such functions refer to local labels in
15984 these sections. If the section from that file was discarded, the
15985 labels are not in the output, so the relocs get a value of 0.
15986 If this is a discarded function, mark the pc bounds as invalid,
15987 so that GDB will ignore it. */
15988 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15989 {
bb5ed363 15990 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15991
15992 complaint (&symfile_complaints,
15993 _("DW_AT_low_pc %s is zero "
15994 "for DIE at 0x%x [in module %s]"),
15995 paddress (gdbarch, part_die->lowpc),
4262abfb 15996 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15997 }
15998 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15999 else if (part_die->lowpc >= part_die->highpc)
16000 {
bb5ed363 16001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16002
16003 complaint (&symfile_complaints,
16004 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16005 "for DIE at 0x%x [in module %s]"),
16006 paddress (gdbarch, part_die->lowpc),
16007 paddress (gdbarch, part_die->highpc),
4262abfb 16008 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16009 }
16010 else
16011 part_die->has_pc_info = 1;
16012 }
85cbf3d3 16013
c906108c
SS
16014 return info_ptr;
16015}
16016
72bf9492
DJ
16017/* Find a cached partial DIE at OFFSET in CU. */
16018
16019static struct partial_die_info *
b64f50a1 16020find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16021{
16022 struct partial_die_info *lookup_die = NULL;
16023 struct partial_die_info part_die;
16024
16025 part_die.offset = offset;
9a3c8263
SM
16026 lookup_die = ((struct partial_die_info *)
16027 htab_find_with_hash (cu->partial_dies, &part_die,
16028 offset.sect_off));
72bf9492 16029
72bf9492
DJ
16030 return lookup_die;
16031}
16032
348e048f
DE
16033/* Find a partial DIE at OFFSET, which may or may not be in CU,
16034 except in the case of .debug_types DIEs which do not reference
16035 outside their CU (they do however referencing other types via
55f1336d 16036 DW_FORM_ref_sig8). */
72bf9492
DJ
16037
16038static struct partial_die_info *
36586728 16039find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16040{
bb5ed363 16041 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16042 struct dwarf2_per_cu_data *per_cu = NULL;
16043 struct partial_die_info *pd = NULL;
72bf9492 16044
36586728
TT
16045 if (offset_in_dwz == cu->per_cu->is_dwz
16046 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16047 {
16048 pd = find_partial_die_in_comp_unit (offset, cu);
16049 if (pd != NULL)
16050 return pd;
0d99eb77
DE
16051 /* We missed recording what we needed.
16052 Load all dies and try again. */
16053 per_cu = cu->per_cu;
5afb4e99 16054 }
0d99eb77
DE
16055 else
16056 {
16057 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16058 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16059 {
16060 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16061 " external reference to offset 0x%lx [in module %s].\n"),
16062 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16063 bfd_get_filename (objfile->obfd));
16064 }
36586728
TT
16065 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16066 objfile);
72bf9492 16067
0d99eb77
DE
16068 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16069 load_partial_comp_unit (per_cu);
ae038cb0 16070
0d99eb77
DE
16071 per_cu->cu->last_used = 0;
16072 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16073 }
5afb4e99 16074
dee91e82
DE
16075 /* If we didn't find it, and not all dies have been loaded,
16076 load them all and try again. */
16077
5afb4e99
DJ
16078 if (pd == NULL && per_cu->load_all_dies == 0)
16079 {
5afb4e99 16080 per_cu->load_all_dies = 1;
fd820528
DE
16081
16082 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16083 THIS_CU->cu may already be in use. So we can't just free it and
16084 replace its DIEs with the ones we read in. Instead, we leave those
16085 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16086 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16087 set. */
dee91e82 16088 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16089
16090 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16091 }
16092
16093 if (pd == NULL)
16094 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16095 _("could not find partial DIE 0x%x "
16096 "in cache [from module %s]\n"),
b64f50a1 16097 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16098 return pd;
72bf9492
DJ
16099}
16100
abc72ce4
DE
16101/* See if we can figure out if the class lives in a namespace. We do
16102 this by looking for a member function; its demangled name will
16103 contain namespace info, if there is any. */
16104
16105static void
16106guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16107 struct dwarf2_cu *cu)
16108{
16109 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16110 what template types look like, because the demangler
16111 frequently doesn't give the same name as the debug info. We
16112 could fix this by only using the demangled name to get the
16113 prefix (but see comment in read_structure_type). */
16114
16115 struct partial_die_info *real_pdi;
16116 struct partial_die_info *child_pdi;
16117
16118 /* If this DIE (this DIE's specification, if any) has a parent, then
16119 we should not do this. We'll prepend the parent's fully qualified
16120 name when we create the partial symbol. */
16121
16122 real_pdi = struct_pdi;
16123 while (real_pdi->has_specification)
36586728
TT
16124 real_pdi = find_partial_die (real_pdi->spec_offset,
16125 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16126
16127 if (real_pdi->die_parent != NULL)
16128 return;
16129
16130 for (child_pdi = struct_pdi->die_child;
16131 child_pdi != NULL;
16132 child_pdi = child_pdi->die_sibling)
16133 {
16134 if (child_pdi->tag == DW_TAG_subprogram
16135 && child_pdi->linkage_name != NULL)
16136 {
16137 char *actual_class_name
16138 = language_class_name_from_physname (cu->language_defn,
16139 child_pdi->linkage_name);
16140 if (actual_class_name != NULL)
16141 {
16142 struct_pdi->name
224c3ddb
SM
16143 = ((const char *)
16144 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16145 actual_class_name,
16146 strlen (actual_class_name)));
abc72ce4
DE
16147 xfree (actual_class_name);
16148 }
16149 break;
16150 }
16151 }
16152}
16153
72bf9492
DJ
16154/* Adjust PART_DIE before generating a symbol for it. This function
16155 may set the is_external flag or change the DIE's name. */
16156
16157static void
16158fixup_partial_die (struct partial_die_info *part_die,
16159 struct dwarf2_cu *cu)
16160{
abc72ce4
DE
16161 /* Once we've fixed up a die, there's no point in doing so again.
16162 This also avoids a memory leak if we were to call
16163 guess_partial_die_structure_name multiple times. */
16164 if (part_die->fixup_called)
16165 return;
16166
72bf9492
DJ
16167 /* If we found a reference attribute and the DIE has no name, try
16168 to find a name in the referred to DIE. */
16169
16170 if (part_die->name == NULL && part_die->has_specification)
16171 {
16172 struct partial_die_info *spec_die;
72bf9492 16173
36586728
TT
16174 spec_die = find_partial_die (part_die->spec_offset,
16175 part_die->spec_is_dwz, cu);
72bf9492 16176
10b3939b 16177 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16178
16179 if (spec_die->name)
16180 {
16181 part_die->name = spec_die->name;
16182
16183 /* Copy DW_AT_external attribute if it is set. */
16184 if (spec_die->is_external)
16185 part_die->is_external = spec_die->is_external;
16186 }
16187 }
16188
16189 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16190
16191 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16192 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16193
abc72ce4
DE
16194 /* If there is no parent die to provide a namespace, and there are
16195 children, see if we can determine the namespace from their linkage
122d1940 16196 name. */
abc72ce4 16197 if (cu->language == language_cplus
8b70b953 16198 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16199 && part_die->die_parent == NULL
16200 && part_die->has_children
16201 && (part_die->tag == DW_TAG_class_type
16202 || part_die->tag == DW_TAG_structure_type
16203 || part_die->tag == DW_TAG_union_type))
16204 guess_partial_die_structure_name (part_die, cu);
16205
53832f31
TT
16206 /* GCC might emit a nameless struct or union that has a linkage
16207 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16208 if (part_die->name == NULL
96408a79
SA
16209 && (part_die->tag == DW_TAG_class_type
16210 || part_die->tag == DW_TAG_interface_type
16211 || part_die->tag == DW_TAG_structure_type
16212 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16213 && part_die->linkage_name != NULL)
16214 {
16215 char *demangled;
16216
8de20a37 16217 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16218 if (demangled)
16219 {
96408a79
SA
16220 const char *base;
16221
16222 /* Strip any leading namespaces/classes, keep only the base name.
16223 DW_AT_name for named DIEs does not contain the prefixes. */
16224 base = strrchr (demangled, ':');
16225 if (base && base > demangled && base[-1] == ':')
16226 base++;
16227 else
16228 base = demangled;
16229
34a68019 16230 part_die->name
224c3ddb
SM
16231 = ((const char *)
16232 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16233 base, strlen (base)));
53832f31
TT
16234 xfree (demangled);
16235 }
16236 }
16237
abc72ce4 16238 part_die->fixup_called = 1;
72bf9492
DJ
16239}
16240
a8329558 16241/* Read an attribute value described by an attribute form. */
c906108c 16242
d521ce57 16243static const gdb_byte *
dee91e82
DE
16244read_attribute_value (const struct die_reader_specs *reader,
16245 struct attribute *attr, unsigned form,
d521ce57 16246 const gdb_byte *info_ptr)
c906108c 16247{
dee91e82 16248 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16249 struct objfile *objfile = cu->objfile;
16250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16251 bfd *abfd = reader->abfd;
e7c27a73 16252 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16253 unsigned int bytes_read;
16254 struct dwarf_block *blk;
16255
aead7601 16256 attr->form = (enum dwarf_form) form;
a8329558 16257 switch (form)
c906108c 16258 {
c906108c 16259 case DW_FORM_ref_addr:
ae411497 16260 if (cu->header.version == 2)
4568ecf9 16261 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16262 else
4568ecf9
DE
16263 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16264 &cu->header, &bytes_read);
ae411497
TT
16265 info_ptr += bytes_read;
16266 break;
36586728
TT
16267 case DW_FORM_GNU_ref_alt:
16268 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16269 info_ptr += bytes_read;
16270 break;
ae411497 16271 case DW_FORM_addr:
e7c27a73 16272 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16273 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16274 info_ptr += bytes_read;
c906108c
SS
16275 break;
16276 case DW_FORM_block2:
7b5a2f43 16277 blk = dwarf_alloc_block (cu);
c906108c
SS
16278 blk->size = read_2_bytes (abfd, info_ptr);
16279 info_ptr += 2;
16280 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16281 info_ptr += blk->size;
16282 DW_BLOCK (attr) = blk;
16283 break;
16284 case DW_FORM_block4:
7b5a2f43 16285 blk = dwarf_alloc_block (cu);
c906108c
SS
16286 blk->size = read_4_bytes (abfd, info_ptr);
16287 info_ptr += 4;
16288 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16289 info_ptr += blk->size;
16290 DW_BLOCK (attr) = blk;
16291 break;
16292 case DW_FORM_data2:
16293 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16294 info_ptr += 2;
16295 break;
16296 case DW_FORM_data4:
16297 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16298 info_ptr += 4;
16299 break;
16300 case DW_FORM_data8:
16301 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16302 info_ptr += 8;
16303 break;
2dc7f7b3
TT
16304 case DW_FORM_sec_offset:
16305 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16306 info_ptr += bytes_read;
16307 break;
c906108c 16308 case DW_FORM_string:
9b1c24c8 16309 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16310 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16311 info_ptr += bytes_read;
16312 break;
4bdf3d34 16313 case DW_FORM_strp:
36586728
TT
16314 if (!cu->per_cu->is_dwz)
16315 {
16316 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16317 &bytes_read);
16318 DW_STRING_IS_CANONICAL (attr) = 0;
16319 info_ptr += bytes_read;
16320 break;
16321 }
16322 /* FALLTHROUGH */
16323 case DW_FORM_GNU_strp_alt:
16324 {
16325 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16326 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16327 &bytes_read);
16328
16329 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16330 DW_STRING_IS_CANONICAL (attr) = 0;
16331 info_ptr += bytes_read;
16332 }
4bdf3d34 16333 break;
2dc7f7b3 16334 case DW_FORM_exprloc:
c906108c 16335 case DW_FORM_block:
7b5a2f43 16336 blk = dwarf_alloc_block (cu);
c906108c
SS
16337 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16338 info_ptr += bytes_read;
16339 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16340 info_ptr += blk->size;
16341 DW_BLOCK (attr) = blk;
16342 break;
16343 case DW_FORM_block1:
7b5a2f43 16344 blk = dwarf_alloc_block (cu);
c906108c
SS
16345 blk->size = read_1_byte (abfd, info_ptr);
16346 info_ptr += 1;
16347 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16348 info_ptr += blk->size;
16349 DW_BLOCK (attr) = blk;
16350 break;
16351 case DW_FORM_data1:
16352 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16353 info_ptr += 1;
16354 break;
16355 case DW_FORM_flag:
16356 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16357 info_ptr += 1;
16358 break;
2dc7f7b3
TT
16359 case DW_FORM_flag_present:
16360 DW_UNSND (attr) = 1;
16361 break;
c906108c
SS
16362 case DW_FORM_sdata:
16363 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16364 info_ptr += bytes_read;
16365 break;
16366 case DW_FORM_udata:
16367 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16368 info_ptr += bytes_read;
16369 break;
16370 case DW_FORM_ref1:
4568ecf9
DE
16371 DW_UNSND (attr) = (cu->header.offset.sect_off
16372 + read_1_byte (abfd, info_ptr));
c906108c
SS
16373 info_ptr += 1;
16374 break;
16375 case DW_FORM_ref2:
4568ecf9
DE
16376 DW_UNSND (attr) = (cu->header.offset.sect_off
16377 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16378 info_ptr += 2;
16379 break;
16380 case DW_FORM_ref4:
4568ecf9
DE
16381 DW_UNSND (attr) = (cu->header.offset.sect_off
16382 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16383 info_ptr += 4;
16384 break;
613e1657 16385 case DW_FORM_ref8:
4568ecf9
DE
16386 DW_UNSND (attr) = (cu->header.offset.sect_off
16387 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16388 info_ptr += 8;
16389 break;
55f1336d 16390 case DW_FORM_ref_sig8:
ac9ec31b 16391 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16392 info_ptr += 8;
16393 break;
c906108c 16394 case DW_FORM_ref_udata:
4568ecf9
DE
16395 DW_UNSND (attr) = (cu->header.offset.sect_off
16396 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16397 info_ptr += bytes_read;
16398 break;
c906108c 16399 case DW_FORM_indirect:
a8329558
KW
16400 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16401 info_ptr += bytes_read;
dee91e82 16402 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16403 break;
3019eac3
DE
16404 case DW_FORM_GNU_addr_index:
16405 if (reader->dwo_file == NULL)
16406 {
16407 /* For now flag a hard error.
16408 Later we can turn this into a complaint. */
16409 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16410 dwarf_form_name (form),
16411 bfd_get_filename (abfd));
16412 }
16413 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16414 info_ptr += bytes_read;
16415 break;
16416 case DW_FORM_GNU_str_index:
16417 if (reader->dwo_file == NULL)
16418 {
16419 /* For now flag a hard error.
16420 Later we can turn this into a complaint if warranted. */
16421 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16422 dwarf_form_name (form),
16423 bfd_get_filename (abfd));
16424 }
16425 {
16426 ULONGEST str_index =
16427 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16428
342587c4 16429 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16430 DW_STRING_IS_CANONICAL (attr) = 0;
16431 info_ptr += bytes_read;
16432 }
16433 break;
c906108c 16434 default:
8a3fe4f8 16435 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16436 dwarf_form_name (form),
16437 bfd_get_filename (abfd));
c906108c 16438 }
28e94949 16439
36586728 16440 /* Super hack. */
7771576e 16441 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16442 attr->form = DW_FORM_GNU_ref_alt;
16443
28e94949
JB
16444 /* We have seen instances where the compiler tried to emit a byte
16445 size attribute of -1 which ended up being encoded as an unsigned
16446 0xffffffff. Although 0xffffffff is technically a valid size value,
16447 an object of this size seems pretty unlikely so we can relatively
16448 safely treat these cases as if the size attribute was invalid and
16449 treat them as zero by default. */
16450 if (attr->name == DW_AT_byte_size
16451 && form == DW_FORM_data4
16452 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16453 {
16454 complaint
16455 (&symfile_complaints,
43bbcdc2
PH
16456 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16457 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16458 DW_UNSND (attr) = 0;
16459 }
28e94949 16460
c906108c
SS
16461 return info_ptr;
16462}
16463
a8329558
KW
16464/* Read an attribute described by an abbreviated attribute. */
16465
d521ce57 16466static const gdb_byte *
dee91e82
DE
16467read_attribute (const struct die_reader_specs *reader,
16468 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16469 const gdb_byte *info_ptr)
a8329558
KW
16470{
16471 attr->name = abbrev->name;
dee91e82 16472 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16473}
16474
0963b4bd 16475/* Read dwarf information from a buffer. */
c906108c
SS
16476
16477static unsigned int
a1855c1d 16478read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16479{
fe1b8b76 16480 return bfd_get_8 (abfd, buf);
c906108c
SS
16481}
16482
16483static int
a1855c1d 16484read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16485{
fe1b8b76 16486 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16487}
16488
16489static unsigned int
a1855c1d 16490read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16491{
fe1b8b76 16492 return bfd_get_16 (abfd, buf);
c906108c
SS
16493}
16494
21ae7a4d 16495static int
a1855c1d 16496read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16497{
16498 return bfd_get_signed_16 (abfd, buf);
16499}
16500
c906108c 16501static unsigned int
a1855c1d 16502read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16503{
fe1b8b76 16504 return bfd_get_32 (abfd, buf);
c906108c
SS
16505}
16506
21ae7a4d 16507static int
a1855c1d 16508read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16509{
16510 return bfd_get_signed_32 (abfd, buf);
16511}
16512
93311388 16513static ULONGEST
a1855c1d 16514read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16515{
fe1b8b76 16516 return bfd_get_64 (abfd, buf);
c906108c
SS
16517}
16518
16519static CORE_ADDR
d521ce57 16520read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16521 unsigned int *bytes_read)
c906108c 16522{
e7c27a73 16523 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16524 CORE_ADDR retval = 0;
16525
107d2387 16526 if (cu_header->signed_addr_p)
c906108c 16527 {
107d2387
AC
16528 switch (cu_header->addr_size)
16529 {
16530 case 2:
fe1b8b76 16531 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16532 break;
16533 case 4:
fe1b8b76 16534 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16535 break;
16536 case 8:
fe1b8b76 16537 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16538 break;
16539 default:
8e65ff28 16540 internal_error (__FILE__, __LINE__,
e2e0b3e5 16541 _("read_address: bad switch, signed [in module %s]"),
659b0389 16542 bfd_get_filename (abfd));
107d2387
AC
16543 }
16544 }
16545 else
16546 {
16547 switch (cu_header->addr_size)
16548 {
16549 case 2:
fe1b8b76 16550 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16551 break;
16552 case 4:
fe1b8b76 16553 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16554 break;
16555 case 8:
fe1b8b76 16556 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16557 break;
16558 default:
8e65ff28 16559 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16560 _("read_address: bad switch, "
16561 "unsigned [in module %s]"),
659b0389 16562 bfd_get_filename (abfd));
107d2387 16563 }
c906108c 16564 }
64367e0a 16565
107d2387
AC
16566 *bytes_read = cu_header->addr_size;
16567 return retval;
c906108c
SS
16568}
16569
f7ef9339 16570/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16571 specification allows the initial length to take up either 4 bytes
16572 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16573 bytes describe the length and all offsets will be 8 bytes in length
16574 instead of 4.
16575
f7ef9339
KB
16576 An older, non-standard 64-bit format is also handled by this
16577 function. The older format in question stores the initial length
16578 as an 8-byte quantity without an escape value. Lengths greater
16579 than 2^32 aren't very common which means that the initial 4 bytes
16580 is almost always zero. Since a length value of zero doesn't make
16581 sense for the 32-bit format, this initial zero can be considered to
16582 be an escape value which indicates the presence of the older 64-bit
16583 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16584 greater than 4GB. If it becomes necessary to handle lengths
16585 somewhat larger than 4GB, we could allow other small values (such
16586 as the non-sensical values of 1, 2, and 3) to also be used as
16587 escape values indicating the presence of the old format.
f7ef9339 16588
917c78fc
MK
16589 The value returned via bytes_read should be used to increment the
16590 relevant pointer after calling read_initial_length().
c764a876 16591
613e1657
KB
16592 [ Note: read_initial_length() and read_offset() are based on the
16593 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16594 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16595 from:
16596
f7ef9339 16597 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16598
613e1657
KB
16599 This document is only a draft and is subject to change. (So beware.)
16600
f7ef9339 16601 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16602 determined empirically by examining 64-bit ELF files produced by
16603 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16604
16605 - Kevin, July 16, 2002
613e1657
KB
16606 ] */
16607
16608static LONGEST
d521ce57 16609read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16610{
fe1b8b76 16611 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16612
dd373385 16613 if (length == 0xffffffff)
613e1657 16614 {
fe1b8b76 16615 length = bfd_get_64 (abfd, buf + 4);
613e1657 16616 *bytes_read = 12;
613e1657 16617 }
dd373385 16618 else if (length == 0)
f7ef9339 16619 {
dd373385 16620 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16621 length = bfd_get_64 (abfd, buf);
f7ef9339 16622 *bytes_read = 8;
f7ef9339 16623 }
613e1657
KB
16624 else
16625 {
16626 *bytes_read = 4;
613e1657
KB
16627 }
16628
c764a876
DE
16629 return length;
16630}
dd373385 16631
c764a876
DE
16632/* Cover function for read_initial_length.
16633 Returns the length of the object at BUF, and stores the size of the
16634 initial length in *BYTES_READ and stores the size that offsets will be in
16635 *OFFSET_SIZE.
16636 If the initial length size is not equivalent to that specified in
16637 CU_HEADER then issue a complaint.
16638 This is useful when reading non-comp-unit headers. */
dd373385 16639
c764a876 16640static LONGEST
d521ce57 16641read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16642 const struct comp_unit_head *cu_header,
16643 unsigned int *bytes_read,
16644 unsigned int *offset_size)
16645{
16646 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16647
16648 gdb_assert (cu_header->initial_length_size == 4
16649 || cu_header->initial_length_size == 8
16650 || cu_header->initial_length_size == 12);
16651
16652 if (cu_header->initial_length_size != *bytes_read)
16653 complaint (&symfile_complaints,
16654 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16655
c764a876 16656 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16657 return length;
613e1657
KB
16658}
16659
16660/* Read an offset from the data stream. The size of the offset is
917c78fc 16661 given by cu_header->offset_size. */
613e1657
KB
16662
16663static LONGEST
d521ce57
TT
16664read_offset (bfd *abfd, const gdb_byte *buf,
16665 const struct comp_unit_head *cu_header,
891d2f0b 16666 unsigned int *bytes_read)
c764a876
DE
16667{
16668 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16669
c764a876
DE
16670 *bytes_read = cu_header->offset_size;
16671 return offset;
16672}
16673
16674/* Read an offset from the data stream. */
16675
16676static LONGEST
d521ce57 16677read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16678{
16679 LONGEST retval = 0;
16680
c764a876 16681 switch (offset_size)
613e1657
KB
16682 {
16683 case 4:
fe1b8b76 16684 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16685 break;
16686 case 8:
fe1b8b76 16687 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16688 break;
16689 default:
8e65ff28 16690 internal_error (__FILE__, __LINE__,
c764a876 16691 _("read_offset_1: bad switch [in module %s]"),
659b0389 16692 bfd_get_filename (abfd));
613e1657
KB
16693 }
16694
917c78fc 16695 return retval;
613e1657
KB
16696}
16697
d521ce57
TT
16698static const gdb_byte *
16699read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16700{
16701 /* If the size of a host char is 8 bits, we can return a pointer
16702 to the buffer, otherwise we have to copy the data to a buffer
16703 allocated on the temporary obstack. */
4bdf3d34 16704 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16705 return buf;
c906108c
SS
16706}
16707
d521ce57
TT
16708static const char *
16709read_direct_string (bfd *abfd, const gdb_byte *buf,
16710 unsigned int *bytes_read_ptr)
c906108c
SS
16711{
16712 /* If the size of a host char is 8 bits, we can return a pointer
16713 to the string, otherwise we have to copy the string to a buffer
16714 allocated on the temporary obstack. */
4bdf3d34 16715 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16716 if (*buf == '\0')
16717 {
16718 *bytes_read_ptr = 1;
16719 return NULL;
16720 }
d521ce57
TT
16721 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16722 return (const char *) buf;
4bdf3d34
JJ
16723}
16724
d521ce57 16725static const char *
cf2c3c16 16726read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16727{
be391dca 16728 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16729 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16730 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16731 bfd_get_filename (abfd));
dce234bc 16732 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16733 error (_("DW_FORM_strp pointing outside of "
16734 ".debug_str section [in module %s]"),
16735 bfd_get_filename (abfd));
4bdf3d34 16736 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16737 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16738 return NULL;
d521ce57 16739 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16740}
16741
36586728
TT
16742/* Read a string at offset STR_OFFSET in the .debug_str section from
16743 the .dwz file DWZ. Throw an error if the offset is too large. If
16744 the string consists of a single NUL byte, return NULL; otherwise
16745 return a pointer to the string. */
16746
d521ce57 16747static const char *
36586728
TT
16748read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16749{
16750 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16751
16752 if (dwz->str.buffer == NULL)
16753 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16754 "section [in module %s]"),
16755 bfd_get_filename (dwz->dwz_bfd));
16756 if (str_offset >= dwz->str.size)
16757 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16758 ".debug_str section [in module %s]"),
16759 bfd_get_filename (dwz->dwz_bfd));
16760 gdb_assert (HOST_CHAR_BIT == 8);
16761 if (dwz->str.buffer[str_offset] == '\0')
16762 return NULL;
d521ce57 16763 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16764}
16765
d521ce57
TT
16766static const char *
16767read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16768 const struct comp_unit_head *cu_header,
16769 unsigned int *bytes_read_ptr)
16770{
16771 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16772
16773 return read_indirect_string_at_offset (abfd, str_offset);
16774}
16775
12df843f 16776static ULONGEST
d521ce57
TT
16777read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16778 unsigned int *bytes_read_ptr)
c906108c 16779{
12df843f 16780 ULONGEST result;
ce5d95e1 16781 unsigned int num_read;
c906108c
SS
16782 int i, shift;
16783 unsigned char byte;
16784
16785 result = 0;
16786 shift = 0;
16787 num_read = 0;
16788 i = 0;
16789 while (1)
16790 {
fe1b8b76 16791 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16792 buf++;
16793 num_read++;
12df843f 16794 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16795 if ((byte & 128) == 0)
16796 {
16797 break;
16798 }
16799 shift += 7;
16800 }
16801 *bytes_read_ptr = num_read;
16802 return result;
16803}
16804
12df843f 16805static LONGEST
d521ce57
TT
16806read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16807 unsigned int *bytes_read_ptr)
c906108c 16808{
12df843f 16809 LONGEST result;
77e0b926 16810 int i, shift, num_read;
c906108c
SS
16811 unsigned char byte;
16812
16813 result = 0;
16814 shift = 0;
c906108c
SS
16815 num_read = 0;
16816 i = 0;
16817 while (1)
16818 {
fe1b8b76 16819 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16820 buf++;
16821 num_read++;
12df843f 16822 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16823 shift += 7;
16824 if ((byte & 128) == 0)
16825 {
16826 break;
16827 }
16828 }
77e0b926 16829 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16830 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16831 *bytes_read_ptr = num_read;
16832 return result;
16833}
16834
3019eac3
DE
16835/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16836 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16837 ADDR_SIZE is the size of addresses from the CU header. */
16838
16839static CORE_ADDR
16840read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16841{
16842 struct objfile *objfile = dwarf2_per_objfile->objfile;
16843 bfd *abfd = objfile->obfd;
16844 const gdb_byte *info_ptr;
16845
16846 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16847 if (dwarf2_per_objfile->addr.buffer == NULL)
16848 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16849 objfile_name (objfile));
3019eac3
DE
16850 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16851 error (_("DW_FORM_addr_index pointing outside of "
16852 ".debug_addr section [in module %s]"),
4262abfb 16853 objfile_name (objfile));
3019eac3
DE
16854 info_ptr = (dwarf2_per_objfile->addr.buffer
16855 + addr_base + addr_index * addr_size);
16856 if (addr_size == 4)
16857 return bfd_get_32 (abfd, info_ptr);
16858 else
16859 return bfd_get_64 (abfd, info_ptr);
16860}
16861
16862/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16863
16864static CORE_ADDR
16865read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16866{
16867 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16868}
16869
16870/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16871
16872static CORE_ADDR
d521ce57 16873read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16874 unsigned int *bytes_read)
16875{
16876 bfd *abfd = cu->objfile->obfd;
16877 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16878
16879 return read_addr_index (cu, addr_index);
16880}
16881
16882/* Data structure to pass results from dwarf2_read_addr_index_reader
16883 back to dwarf2_read_addr_index. */
16884
16885struct dwarf2_read_addr_index_data
16886{
16887 ULONGEST addr_base;
16888 int addr_size;
16889};
16890
16891/* die_reader_func for dwarf2_read_addr_index. */
16892
16893static void
16894dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16895 const gdb_byte *info_ptr,
3019eac3
DE
16896 struct die_info *comp_unit_die,
16897 int has_children,
16898 void *data)
16899{
16900 struct dwarf2_cu *cu = reader->cu;
16901 struct dwarf2_read_addr_index_data *aidata =
16902 (struct dwarf2_read_addr_index_data *) data;
16903
16904 aidata->addr_base = cu->addr_base;
16905 aidata->addr_size = cu->header.addr_size;
16906}
16907
16908/* Given an index in .debug_addr, fetch the value.
16909 NOTE: This can be called during dwarf expression evaluation,
16910 long after the debug information has been read, and thus per_cu->cu
16911 may no longer exist. */
16912
16913CORE_ADDR
16914dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16915 unsigned int addr_index)
16916{
16917 struct objfile *objfile = per_cu->objfile;
16918 struct dwarf2_cu *cu = per_cu->cu;
16919 ULONGEST addr_base;
16920 int addr_size;
16921
16922 /* This is intended to be called from outside this file. */
16923 dw2_setup (objfile);
16924
16925 /* We need addr_base and addr_size.
16926 If we don't have PER_CU->cu, we have to get it.
16927 Nasty, but the alternative is storing the needed info in PER_CU,
16928 which at this point doesn't seem justified: it's not clear how frequently
16929 it would get used and it would increase the size of every PER_CU.
16930 Entry points like dwarf2_per_cu_addr_size do a similar thing
16931 so we're not in uncharted territory here.
16932 Alas we need to be a bit more complicated as addr_base is contained
16933 in the DIE.
16934
16935 We don't need to read the entire CU(/TU).
16936 We just need the header and top level die.
a1b64ce1 16937
3019eac3 16938 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16939 For now we skip this optimization. */
3019eac3
DE
16940
16941 if (cu != NULL)
16942 {
16943 addr_base = cu->addr_base;
16944 addr_size = cu->header.addr_size;
16945 }
16946 else
16947 {
16948 struct dwarf2_read_addr_index_data aidata;
16949
a1b64ce1
DE
16950 /* Note: We can't use init_cutu_and_read_dies_simple here,
16951 we need addr_base. */
16952 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16953 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16954 addr_base = aidata.addr_base;
16955 addr_size = aidata.addr_size;
16956 }
16957
16958 return read_addr_index_1 (addr_index, addr_base, addr_size);
16959}
16960
57d63ce2
DE
16961/* Given a DW_FORM_GNU_str_index, fetch the string.
16962 This is only used by the Fission support. */
3019eac3 16963
d521ce57 16964static const char *
342587c4 16965read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16966{
16967 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16968 const char *objf_name = objfile_name (objfile);
3019eac3 16969 bfd *abfd = objfile->obfd;
342587c4 16970 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16971 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16972 struct dwarf2_section_info *str_offsets_section =
16973 &reader->dwo_file->sections.str_offsets;
d521ce57 16974 const gdb_byte *info_ptr;
3019eac3 16975 ULONGEST str_offset;
57d63ce2 16976 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16977
73869dc2
DE
16978 dwarf2_read_section (objfile, str_section);
16979 dwarf2_read_section (objfile, str_offsets_section);
16980 if (str_section->buffer == NULL)
57d63ce2 16981 error (_("%s used without .debug_str.dwo section"
3019eac3 16982 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16983 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16984 if (str_offsets_section->buffer == NULL)
57d63ce2 16985 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16986 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16987 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16988 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16989 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16990 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16991 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16992 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16993 + str_index * cu->header.offset_size);
16994 if (cu->header.offset_size == 4)
16995 str_offset = bfd_get_32 (abfd, info_ptr);
16996 else
16997 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16998 if (str_offset >= str_section->size)
57d63ce2 16999 error (_("Offset from %s pointing outside of"
3019eac3 17000 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17001 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17002 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17003}
17004
3019eac3
DE
17005/* Return the length of an LEB128 number in BUF. */
17006
17007static int
17008leb128_size (const gdb_byte *buf)
17009{
17010 const gdb_byte *begin = buf;
17011 gdb_byte byte;
17012
17013 while (1)
17014 {
17015 byte = *buf++;
17016 if ((byte & 128) == 0)
17017 return buf - begin;
17018 }
17019}
17020
c906108c 17021static void
e142c38c 17022set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17023{
17024 switch (lang)
17025 {
17026 case DW_LANG_C89:
76bee0cc 17027 case DW_LANG_C99:
0cfd832f 17028 case DW_LANG_C11:
c906108c 17029 case DW_LANG_C:
d1be3247 17030 case DW_LANG_UPC:
e142c38c 17031 cu->language = language_c;
c906108c
SS
17032 break;
17033 case DW_LANG_C_plus_plus:
0cfd832f
MW
17034 case DW_LANG_C_plus_plus_11:
17035 case DW_LANG_C_plus_plus_14:
e142c38c 17036 cu->language = language_cplus;
c906108c 17037 break;
6aecb9c2
JB
17038 case DW_LANG_D:
17039 cu->language = language_d;
17040 break;
c906108c
SS
17041 case DW_LANG_Fortran77:
17042 case DW_LANG_Fortran90:
b21b22e0 17043 case DW_LANG_Fortran95:
f7de9aab
MW
17044 case DW_LANG_Fortran03:
17045 case DW_LANG_Fortran08:
e142c38c 17046 cu->language = language_fortran;
c906108c 17047 break;
a766d390
DE
17048 case DW_LANG_Go:
17049 cu->language = language_go;
17050 break;
c906108c 17051 case DW_LANG_Mips_Assembler:
e142c38c 17052 cu->language = language_asm;
c906108c 17053 break;
bebd888e 17054 case DW_LANG_Java:
e142c38c 17055 cu->language = language_java;
bebd888e 17056 break;
c906108c 17057 case DW_LANG_Ada83:
8aaf0b47 17058 case DW_LANG_Ada95:
bc5f45f8
JB
17059 cu->language = language_ada;
17060 break;
72019c9c
GM
17061 case DW_LANG_Modula2:
17062 cu->language = language_m2;
17063 break;
fe8e67fd
PM
17064 case DW_LANG_Pascal83:
17065 cu->language = language_pascal;
17066 break;
22566fbd
DJ
17067 case DW_LANG_ObjC:
17068 cu->language = language_objc;
17069 break;
c906108c
SS
17070 case DW_LANG_Cobol74:
17071 case DW_LANG_Cobol85:
c906108c 17072 default:
e142c38c 17073 cu->language = language_minimal;
c906108c
SS
17074 break;
17075 }
e142c38c 17076 cu->language_defn = language_def (cu->language);
c906108c
SS
17077}
17078
17079/* Return the named attribute or NULL if not there. */
17080
17081static struct attribute *
e142c38c 17082dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17083{
a48e046c 17084 for (;;)
c906108c 17085 {
a48e046c
TT
17086 unsigned int i;
17087 struct attribute *spec = NULL;
17088
17089 for (i = 0; i < die->num_attrs; ++i)
17090 {
17091 if (die->attrs[i].name == name)
17092 return &die->attrs[i];
17093 if (die->attrs[i].name == DW_AT_specification
17094 || die->attrs[i].name == DW_AT_abstract_origin)
17095 spec = &die->attrs[i];
17096 }
17097
17098 if (!spec)
17099 break;
c906108c 17100
f2f0e013 17101 die = follow_die_ref (die, spec, &cu);
f2f0e013 17102 }
c5aa993b 17103
c906108c
SS
17104 return NULL;
17105}
17106
348e048f
DE
17107/* Return the named attribute or NULL if not there,
17108 but do not follow DW_AT_specification, etc.
17109 This is for use in contexts where we're reading .debug_types dies.
17110 Following DW_AT_specification, DW_AT_abstract_origin will take us
17111 back up the chain, and we want to go down. */
17112
17113static struct attribute *
45e58e77 17114dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17115{
17116 unsigned int i;
17117
17118 for (i = 0; i < die->num_attrs; ++i)
17119 if (die->attrs[i].name == name)
17120 return &die->attrs[i];
17121
17122 return NULL;
17123}
17124
7d45c7c3
KB
17125/* Return the string associated with a string-typed attribute, or NULL if it
17126 is either not found or is of an incorrect type. */
17127
17128static const char *
17129dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17130{
17131 struct attribute *attr;
17132 const char *str = NULL;
17133
17134 attr = dwarf2_attr (die, name, cu);
17135
17136 if (attr != NULL)
17137 {
17138 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17139 || attr->form == DW_FORM_GNU_strp_alt)
17140 str = DW_STRING (attr);
17141 else
17142 complaint (&symfile_complaints,
17143 _("string type expected for attribute %s for "
17144 "DIE at 0x%x in module %s"),
17145 dwarf_attr_name (name), die->offset.sect_off,
17146 objfile_name (cu->objfile));
17147 }
17148
17149 return str;
17150}
17151
05cf31d1
JB
17152/* Return non-zero iff the attribute NAME is defined for the given DIE,
17153 and holds a non-zero value. This function should only be used for
2dc7f7b3 17154 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17155
17156static int
17157dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17158{
17159 struct attribute *attr = dwarf2_attr (die, name, cu);
17160
17161 return (attr && DW_UNSND (attr));
17162}
17163
3ca72b44 17164static int
e142c38c 17165die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17166{
05cf31d1
JB
17167 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17168 which value is non-zero. However, we have to be careful with
17169 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17170 (via dwarf2_flag_true_p) follows this attribute. So we may
17171 end up accidently finding a declaration attribute that belongs
17172 to a different DIE referenced by the specification attribute,
17173 even though the given DIE does not have a declaration attribute. */
17174 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17175 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17176}
17177
63d06c5c 17178/* Return the die giving the specification for DIE, if there is
f2f0e013 17179 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17180 containing the return value on output. If there is no
17181 specification, but there is an abstract origin, that is
17182 returned. */
63d06c5c
DC
17183
17184static struct die_info *
f2f0e013 17185die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17186{
f2f0e013
DJ
17187 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17188 *spec_cu);
63d06c5c 17189
edb3359d
DJ
17190 if (spec_attr == NULL)
17191 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17192
63d06c5c
DC
17193 if (spec_attr == NULL)
17194 return NULL;
17195 else
f2f0e013 17196 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17197}
c906108c 17198
debd256d 17199/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17200 refers to.
17201 NOTE: This is also used as a "cleanup" function. */
17202
debd256d
JB
17203static void
17204free_line_header (struct line_header *lh)
17205{
17206 if (lh->standard_opcode_lengths)
a8bc7b56 17207 xfree (lh->standard_opcode_lengths);
debd256d
JB
17208
17209 /* Remember that all the lh->file_names[i].name pointers are
17210 pointers into debug_line_buffer, and don't need to be freed. */
17211 if (lh->file_names)
a8bc7b56 17212 xfree (lh->file_names);
debd256d
JB
17213
17214 /* Similarly for the include directory names. */
17215 if (lh->include_dirs)
a8bc7b56 17216 xfree (lh->include_dirs);
debd256d 17217
a8bc7b56 17218 xfree (lh);
debd256d
JB
17219}
17220
527f3840
JK
17221/* Stub for free_line_header to match void * callback types. */
17222
17223static void
17224free_line_header_voidp (void *arg)
17225{
9a3c8263 17226 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17227
17228 free_line_header (lh);
17229}
17230
debd256d 17231/* Add an entry to LH's include directory table. */
ae2de4f8 17232
debd256d 17233static void
d521ce57 17234add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17235{
27e0867f
DE
17236 if (dwarf_line_debug >= 2)
17237 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17238 lh->num_include_dirs + 1, include_dir);
17239
debd256d
JB
17240 /* Grow the array if necessary. */
17241 if (lh->include_dirs_size == 0)
c5aa993b 17242 {
debd256d 17243 lh->include_dirs_size = 1; /* for testing */
8d749320 17244 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17245 }
17246 else if (lh->num_include_dirs >= lh->include_dirs_size)
17247 {
17248 lh->include_dirs_size *= 2;
8d749320
SM
17249 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17250 lh->include_dirs_size);
c5aa993b 17251 }
c906108c 17252
debd256d
JB
17253 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17254}
6e70227d 17255
debd256d 17256/* Add an entry to LH's file name table. */
ae2de4f8 17257
debd256d
JB
17258static void
17259add_file_name (struct line_header *lh,
d521ce57 17260 const char *name,
debd256d
JB
17261 unsigned int dir_index,
17262 unsigned int mod_time,
17263 unsigned int length)
17264{
17265 struct file_entry *fe;
17266
27e0867f
DE
17267 if (dwarf_line_debug >= 2)
17268 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17269 lh->num_file_names + 1, name);
17270
debd256d
JB
17271 /* Grow the array if necessary. */
17272 if (lh->file_names_size == 0)
17273 {
17274 lh->file_names_size = 1; /* for testing */
8d749320 17275 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17276 }
17277 else if (lh->num_file_names >= lh->file_names_size)
17278 {
17279 lh->file_names_size *= 2;
224c3ddb
SM
17280 lh->file_names
17281 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17282 }
17283
17284 fe = &lh->file_names[lh->num_file_names++];
17285 fe->name = name;
17286 fe->dir_index = dir_index;
17287 fe->mod_time = mod_time;
17288 fe->length = length;
aaa75496 17289 fe->included_p = 0;
cb1df416 17290 fe->symtab = NULL;
debd256d 17291}
6e70227d 17292
83769d0b 17293/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17294
17295static struct dwarf2_section_info *
17296get_debug_line_section (struct dwarf2_cu *cu)
17297{
17298 struct dwarf2_section_info *section;
17299
17300 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17301 DWO file. */
17302 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17303 section = &cu->dwo_unit->dwo_file->sections.line;
17304 else if (cu->per_cu->is_dwz)
17305 {
17306 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17307
17308 section = &dwz->line;
17309 }
17310 else
17311 section = &dwarf2_per_objfile->line;
17312
17313 return section;
17314}
17315
debd256d 17316/* Read the statement program header starting at OFFSET in
3019eac3 17317 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17318 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17319 Returns NULL if there is a problem reading the header, e.g., if it
17320 has a version we don't understand.
debd256d
JB
17321
17322 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17323 the returned object point into the dwarf line section buffer,
17324 and must not be freed. */
ae2de4f8 17325
debd256d 17326static struct line_header *
3019eac3 17327dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17328{
17329 struct cleanup *back_to;
17330 struct line_header *lh;
d521ce57 17331 const gdb_byte *line_ptr;
c764a876 17332 unsigned int bytes_read, offset_size;
debd256d 17333 int i;
d521ce57 17334 const char *cur_dir, *cur_file;
3019eac3
DE
17335 struct dwarf2_section_info *section;
17336 bfd *abfd;
17337
36586728 17338 section = get_debug_line_section (cu);
3019eac3
DE
17339 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17340 if (section->buffer == NULL)
debd256d 17341 {
3019eac3
DE
17342 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17343 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17344 else
17345 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17346 return 0;
17347 }
17348
fceca515
DE
17349 /* We can't do this until we know the section is non-empty.
17350 Only then do we know we have such a section. */
a32a8923 17351 abfd = get_section_bfd_owner (section);
fceca515 17352
a738430d
MK
17353 /* Make sure that at least there's room for the total_length field.
17354 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17355 if (offset + 4 >= section->size)
debd256d 17356 {
4d3c2250 17357 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17358 return 0;
17359 }
17360
8d749320 17361 lh = XNEW (struct line_header);
debd256d
JB
17362 memset (lh, 0, sizeof (*lh));
17363 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17364 (void *) lh);
17365
527f3840
JK
17366 lh->offset.sect_off = offset;
17367 lh->offset_in_dwz = cu->per_cu->is_dwz;
17368
3019eac3 17369 line_ptr = section->buffer + offset;
debd256d 17370
a738430d 17371 /* Read in the header. */
6e70227d 17372 lh->total_length =
c764a876
DE
17373 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17374 &bytes_read, &offset_size);
debd256d 17375 line_ptr += bytes_read;
3019eac3 17376 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17377 {
4d3c2250 17378 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17379 do_cleanups (back_to);
debd256d
JB
17380 return 0;
17381 }
17382 lh->statement_program_end = line_ptr + lh->total_length;
17383 lh->version = read_2_bytes (abfd, line_ptr);
17384 line_ptr += 2;
cd366ee8
DE
17385 if (lh->version > 4)
17386 {
17387 /* This is a version we don't understand. The format could have
17388 changed in ways we don't handle properly so just punt. */
17389 complaint (&symfile_complaints,
17390 _("unsupported version in .debug_line section"));
17391 return NULL;
17392 }
c764a876
DE
17393 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17394 line_ptr += offset_size;
debd256d
JB
17395 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17396 line_ptr += 1;
2dc7f7b3
TT
17397 if (lh->version >= 4)
17398 {
17399 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17400 line_ptr += 1;
17401 }
17402 else
17403 lh->maximum_ops_per_instruction = 1;
17404
17405 if (lh->maximum_ops_per_instruction == 0)
17406 {
17407 lh->maximum_ops_per_instruction = 1;
17408 complaint (&symfile_complaints,
3e43a32a
MS
17409 _("invalid maximum_ops_per_instruction "
17410 "in `.debug_line' section"));
2dc7f7b3
TT
17411 }
17412
debd256d
JB
17413 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17414 line_ptr += 1;
17415 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17416 line_ptr += 1;
17417 lh->line_range = read_1_byte (abfd, line_ptr);
17418 line_ptr += 1;
17419 lh->opcode_base = read_1_byte (abfd, line_ptr);
17420 line_ptr += 1;
8d749320 17421 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17422
17423 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17424 for (i = 1; i < lh->opcode_base; ++i)
17425 {
17426 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17427 line_ptr += 1;
17428 }
17429
a738430d 17430 /* Read directory table. */
9b1c24c8 17431 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17432 {
17433 line_ptr += bytes_read;
17434 add_include_dir (lh, cur_dir);
17435 }
17436 line_ptr += bytes_read;
17437
a738430d 17438 /* Read file name table. */
9b1c24c8 17439 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17440 {
17441 unsigned int dir_index, mod_time, length;
17442
17443 line_ptr += bytes_read;
17444 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17445 line_ptr += bytes_read;
17446 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17447 line_ptr += bytes_read;
17448 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17449 line_ptr += bytes_read;
17450
17451 add_file_name (lh, cur_file, dir_index, mod_time, length);
17452 }
17453 line_ptr += bytes_read;
6e70227d 17454 lh->statement_program_start = line_ptr;
debd256d 17455
3019eac3 17456 if (line_ptr > (section->buffer + section->size))
4d3c2250 17457 complaint (&symfile_complaints,
3e43a32a
MS
17458 _("line number info header doesn't "
17459 "fit in `.debug_line' section"));
debd256d
JB
17460
17461 discard_cleanups (back_to);
17462 return lh;
17463}
c906108c 17464
c6da4cef
DE
17465/* Subroutine of dwarf_decode_lines to simplify it.
17466 Return the file name of the psymtab for included file FILE_INDEX
17467 in line header LH of PST.
17468 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17469 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17470 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17471
17472 The function creates dangling cleanup registration. */
c6da4cef 17473
d521ce57 17474static const char *
c6da4cef
DE
17475psymtab_include_file_name (const struct line_header *lh, int file_index,
17476 const struct partial_symtab *pst,
17477 const char *comp_dir)
17478{
17479 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17480 const char *include_name = fe.name;
17481 const char *include_name_to_compare = include_name;
17482 const char *dir_name = NULL;
72b9f47f
TT
17483 const char *pst_filename;
17484 char *copied_name = NULL;
c6da4cef
DE
17485 int file_is_pst;
17486
afa6c9ab 17487 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17488 dir_name = lh->include_dirs[fe.dir_index - 1];
17489
17490 if (!IS_ABSOLUTE_PATH (include_name)
17491 && (dir_name != NULL || comp_dir != NULL))
17492 {
17493 /* Avoid creating a duplicate psymtab for PST.
17494 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17495 Before we do the comparison, however, we need to account
17496 for DIR_NAME and COMP_DIR.
17497 First prepend dir_name (if non-NULL). If we still don't
17498 have an absolute path prepend comp_dir (if non-NULL).
17499 However, the directory we record in the include-file's
17500 psymtab does not contain COMP_DIR (to match the
17501 corresponding symtab(s)).
17502
17503 Example:
17504
17505 bash$ cd /tmp
17506 bash$ gcc -g ./hello.c
17507 include_name = "hello.c"
17508 dir_name = "."
17509 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17510 DW_AT_name = "./hello.c"
17511
17512 */
c6da4cef
DE
17513
17514 if (dir_name != NULL)
17515 {
d521ce57
TT
17516 char *tem = concat (dir_name, SLASH_STRING,
17517 include_name, (char *)NULL);
17518
17519 make_cleanup (xfree, tem);
17520 include_name = tem;
c6da4cef 17521 include_name_to_compare = include_name;
c6da4cef
DE
17522 }
17523 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17524 {
d521ce57
TT
17525 char *tem = concat (comp_dir, SLASH_STRING,
17526 include_name, (char *)NULL);
17527
17528 make_cleanup (xfree, tem);
17529 include_name_to_compare = tem;
c6da4cef
DE
17530 }
17531 }
17532
17533 pst_filename = pst->filename;
17534 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17535 {
72b9f47f
TT
17536 copied_name = concat (pst->dirname, SLASH_STRING,
17537 pst_filename, (char *)NULL);
17538 pst_filename = copied_name;
c6da4cef
DE
17539 }
17540
1e3fad37 17541 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17542
72b9f47f
TT
17543 if (copied_name != NULL)
17544 xfree (copied_name);
c6da4cef
DE
17545
17546 if (file_is_pst)
17547 return NULL;
17548 return include_name;
17549}
17550
d9b3de22
DE
17551/* State machine to track the state of the line number program. */
17552
17553typedef struct
17554{
17555 /* These are part of the standard DWARF line number state machine. */
17556
17557 unsigned char op_index;
17558 unsigned int file;
17559 unsigned int line;
17560 CORE_ADDR address;
17561 int is_stmt;
17562 unsigned int discriminator;
17563
17564 /* Additional bits of state we need to track. */
17565
17566 /* The last file that we called dwarf2_start_subfile for.
17567 This is only used for TLLs. */
17568 unsigned int last_file;
17569 /* The last file a line number was recorded for. */
17570 struct subfile *last_subfile;
17571
17572 /* The function to call to record a line. */
17573 record_line_ftype *record_line;
17574
17575 /* The last line number that was recorded, used to coalesce
17576 consecutive entries for the same line. This can happen, for
17577 example, when discriminators are present. PR 17276. */
17578 unsigned int last_line;
17579 int line_has_non_zero_discriminator;
17580} lnp_state_machine;
17581
17582/* There's a lot of static state to pass to dwarf_record_line.
17583 This keeps it all together. */
17584
17585typedef struct
17586{
17587 /* The gdbarch. */
17588 struct gdbarch *gdbarch;
17589
17590 /* The line number header. */
17591 struct line_header *line_header;
17592
17593 /* Non-zero if we're recording lines.
17594 Otherwise we're building partial symtabs and are just interested in
17595 finding include files mentioned by the line number program. */
17596 int record_lines_p;
17597} lnp_reader_state;
17598
c91513d8
PP
17599/* Ignore this record_line request. */
17600
17601static void
17602noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17603{
17604 return;
17605}
17606
a05a36a5
DE
17607/* Return non-zero if we should add LINE to the line number table.
17608 LINE is the line to add, LAST_LINE is the last line that was added,
17609 LAST_SUBFILE is the subfile for LAST_LINE.
17610 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17611 had a non-zero discriminator.
17612
17613 We have to be careful in the presence of discriminators.
17614 E.g., for this line:
17615
17616 for (i = 0; i < 100000; i++);
17617
17618 clang can emit four line number entries for that one line,
17619 each with a different discriminator.
17620 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17621
17622 However, we want gdb to coalesce all four entries into one.
17623 Otherwise the user could stepi into the middle of the line and
17624 gdb would get confused about whether the pc really was in the
17625 middle of the line.
17626
17627 Things are further complicated by the fact that two consecutive
17628 line number entries for the same line is a heuristic used by gcc
17629 to denote the end of the prologue. So we can't just discard duplicate
17630 entries, we have to be selective about it. The heuristic we use is
17631 that we only collapse consecutive entries for the same line if at least
17632 one of those entries has a non-zero discriminator. PR 17276.
17633
17634 Note: Addresses in the line number state machine can never go backwards
17635 within one sequence, thus this coalescing is ok. */
17636
17637static int
17638dwarf_record_line_p (unsigned int line, unsigned int last_line,
17639 int line_has_non_zero_discriminator,
17640 struct subfile *last_subfile)
17641{
17642 if (current_subfile != last_subfile)
17643 return 1;
17644 if (line != last_line)
17645 return 1;
17646 /* Same line for the same file that we've seen already.
17647 As a last check, for pr 17276, only record the line if the line
17648 has never had a non-zero discriminator. */
17649 if (!line_has_non_zero_discriminator)
17650 return 1;
17651 return 0;
17652}
17653
252a6764
DE
17654/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17655 in the line table of subfile SUBFILE. */
17656
17657static void
d9b3de22
DE
17658dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17659 unsigned int line, CORE_ADDR address,
17660 record_line_ftype p_record_line)
252a6764
DE
17661{
17662 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17663
27e0867f
DE
17664 if (dwarf_line_debug)
17665 {
17666 fprintf_unfiltered (gdb_stdlog,
17667 "Recording line %u, file %s, address %s\n",
17668 line, lbasename (subfile->name),
17669 paddress (gdbarch, address));
17670 }
17671
d5962de5 17672 (*p_record_line) (subfile, line, addr);
252a6764
DE
17673}
17674
17675/* Subroutine of dwarf_decode_lines_1 to simplify it.
17676 Mark the end of a set of line number records.
d9b3de22 17677 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17678 If SUBFILE is NULL the request is ignored. */
17679
17680static void
17681dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17682 CORE_ADDR address, record_line_ftype p_record_line)
17683{
27e0867f
DE
17684 if (subfile == NULL)
17685 return;
17686
17687 if (dwarf_line_debug)
17688 {
17689 fprintf_unfiltered (gdb_stdlog,
17690 "Finishing current line, file %s, address %s\n",
17691 lbasename (subfile->name),
17692 paddress (gdbarch, address));
17693 }
17694
d9b3de22
DE
17695 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17696}
17697
17698/* Record the line in STATE.
17699 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17700
17701static void
17702dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17703 int end_sequence)
17704{
17705 const struct line_header *lh = reader->line_header;
17706 unsigned int file, line, discriminator;
17707 int is_stmt;
17708
17709 file = state->file;
17710 line = state->line;
17711 is_stmt = state->is_stmt;
17712 discriminator = state->discriminator;
17713
17714 if (dwarf_line_debug)
17715 {
17716 fprintf_unfiltered (gdb_stdlog,
17717 "Processing actual line %u: file %u,"
17718 " address %s, is_stmt %u, discrim %u\n",
17719 line, file,
17720 paddress (reader->gdbarch, state->address),
17721 is_stmt, discriminator);
17722 }
17723
17724 if (file == 0 || file - 1 >= lh->num_file_names)
17725 dwarf2_debug_line_missing_file_complaint ();
17726 /* For now we ignore lines not starting on an instruction boundary.
17727 But not when processing end_sequence for compatibility with the
17728 previous version of the code. */
17729 else if (state->op_index == 0 || end_sequence)
17730 {
17731 lh->file_names[file - 1].included_p = 1;
17732 if (reader->record_lines_p && is_stmt)
17733 {
e815d2d2 17734 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17735 {
17736 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17737 state->address, state->record_line);
17738 }
17739
17740 if (!end_sequence)
17741 {
17742 if (dwarf_record_line_p (line, state->last_line,
17743 state->line_has_non_zero_discriminator,
17744 state->last_subfile))
17745 {
17746 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17747 line, state->address,
17748 state->record_line);
17749 }
17750 state->last_subfile = current_subfile;
17751 state->last_line = line;
17752 }
17753 }
17754 }
17755}
17756
17757/* Initialize STATE for the start of a line number program. */
17758
17759static void
17760init_lnp_state_machine (lnp_state_machine *state,
17761 const lnp_reader_state *reader)
17762{
17763 memset (state, 0, sizeof (*state));
17764
17765 /* Just starting, there is no "last file". */
17766 state->last_file = 0;
17767 state->last_subfile = NULL;
17768
17769 state->record_line = record_line;
17770
17771 state->last_line = 0;
17772 state->line_has_non_zero_discriminator = 0;
17773
17774 /* Initialize these according to the DWARF spec. */
17775 state->op_index = 0;
17776 state->file = 1;
17777 state->line = 1;
17778 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17779 was a line entry for it so that the backend has a chance to adjust it
17780 and also record it in case it needs it. This is currently used by MIPS
17781 code, cf. `mips_adjust_dwarf2_line'. */
17782 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17783 state->is_stmt = reader->line_header->default_is_stmt;
17784 state->discriminator = 0;
252a6764
DE
17785}
17786
924c2928
DE
17787/* Check address and if invalid nop-out the rest of the lines in this
17788 sequence. */
17789
17790static void
d9b3de22 17791check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17792 const gdb_byte *line_ptr,
17793 CORE_ADDR lowpc, CORE_ADDR address)
17794{
17795 /* If address < lowpc then it's not a usable value, it's outside the
17796 pc range of the CU. However, we restrict the test to only address
17797 values of zero to preserve GDB's previous behaviour which is to
17798 handle the specific case of a function being GC'd by the linker. */
17799
17800 if (address == 0 && address < lowpc)
17801 {
17802 /* This line table is for a function which has been
17803 GCd by the linker. Ignore it. PR gdb/12528 */
17804
17805 struct objfile *objfile = cu->objfile;
17806 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17807
17808 complaint (&symfile_complaints,
17809 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17810 line_offset, objfile_name (objfile));
d9b3de22
DE
17811 state->record_line = noop_record_line;
17812 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17813 until we see DW_LNE_end_sequence. */
17814 }
17815}
17816
f3f5162e 17817/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17818 Process the line number information in LH.
17819 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17820 program in order to set included_p for every referenced header. */
debd256d 17821
c906108c 17822static void
43f3e411
DE
17823dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17824 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17825{
d521ce57
TT
17826 const gdb_byte *line_ptr, *extended_end;
17827 const gdb_byte *line_end;
a8c50c1f 17828 unsigned int bytes_read, extended_len;
699ca60a 17829 unsigned char op_code, extended_op;
e142c38c
DJ
17830 CORE_ADDR baseaddr;
17831 struct objfile *objfile = cu->objfile;
f3f5162e 17832 bfd *abfd = objfile->obfd;
fbf65064 17833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17834 /* Non-zero if we're recording line info (as opposed to building partial
17835 symtabs). */
17836 int record_lines_p = !decode_for_pst_p;
17837 /* A collection of things we need to pass to dwarf_record_line. */
17838 lnp_reader_state reader_state;
e142c38c
DJ
17839
17840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17841
debd256d
JB
17842 line_ptr = lh->statement_program_start;
17843 line_end = lh->statement_program_end;
c906108c 17844
d9b3de22
DE
17845 reader_state.gdbarch = gdbarch;
17846 reader_state.line_header = lh;
17847 reader_state.record_lines_p = record_lines_p;
17848
c906108c
SS
17849 /* Read the statement sequences until there's nothing left. */
17850 while (line_ptr < line_end)
17851 {
d9b3de22
DE
17852 /* The DWARF line number program state machine. */
17853 lnp_state_machine state_machine;
c906108c 17854 int end_sequence = 0;
d9b3de22
DE
17855
17856 /* Reset the state machine at the start of each sequence. */
17857 init_lnp_state_machine (&state_machine, &reader_state);
17858
17859 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17860 {
aaa75496 17861 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17862 /* lh->include_dirs and lh->file_names are 0-based, but the
17863 directory and file name numbers in the statement program
17864 are 1-based. */
d9b3de22 17865 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17866 const char *dir = NULL;
a738430d 17867
afa6c9ab 17868 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17869 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17870
4d663531 17871 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17872 }
17873
a738430d 17874 /* Decode the table. */
d9b3de22 17875 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17876 {
17877 op_code = read_1_byte (abfd, line_ptr);
17878 line_ptr += 1;
9aa1fe7e 17879
debd256d 17880 if (op_code >= lh->opcode_base)
6e70227d 17881 {
8e07a239 17882 /* Special opcode. */
699ca60a 17883 unsigned char adj_opcode;
3e29f34a 17884 CORE_ADDR addr_adj;
a05a36a5 17885 int line_delta;
8e07a239 17886
debd256d 17887 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17888 addr_adj = (((state_machine.op_index
17889 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17890 / lh->maximum_ops_per_instruction)
17891 * lh->minimum_instruction_length);
d9b3de22
DE
17892 state_machine.address
17893 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17894 state_machine.op_index = ((state_machine.op_index
17895 + (adj_opcode / lh->line_range))
17896 % lh->maximum_ops_per_instruction);
a05a36a5 17897 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17898 state_machine.line += line_delta;
a05a36a5 17899 if (line_delta != 0)
d9b3de22
DE
17900 state_machine.line_has_non_zero_discriminator
17901 = state_machine.discriminator != 0;
17902
17903 dwarf_record_line (&reader_state, &state_machine, 0);
17904 state_machine.discriminator = 0;
9aa1fe7e
GK
17905 }
17906 else switch (op_code)
c906108c
SS
17907 {
17908 case DW_LNS_extended_op:
3e43a32a
MS
17909 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17910 &bytes_read);
473b7be6 17911 line_ptr += bytes_read;
a8c50c1f 17912 extended_end = line_ptr + extended_len;
c906108c
SS
17913 extended_op = read_1_byte (abfd, line_ptr);
17914 line_ptr += 1;
17915 switch (extended_op)
17916 {
17917 case DW_LNE_end_sequence:
d9b3de22 17918 state_machine.record_line = record_line;
c906108c 17919 end_sequence = 1;
c906108c
SS
17920 break;
17921 case DW_LNE_set_address:
d9b3de22
DE
17922 {
17923 CORE_ADDR address
17924 = read_address (abfd, line_ptr, cu, &bytes_read);
17925
17926 line_ptr += bytes_read;
17927 check_line_address (cu, &state_machine, line_ptr,
17928 lowpc, address);
17929 state_machine.op_index = 0;
17930 address += baseaddr;
17931 state_machine.address
17932 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17933 }
c906108c
SS
17934 break;
17935 case DW_LNE_define_file:
debd256d 17936 {
d521ce57 17937 const char *cur_file;
debd256d 17938 unsigned int dir_index, mod_time, length;
6e70227d 17939
3e43a32a
MS
17940 cur_file = read_direct_string (abfd, line_ptr,
17941 &bytes_read);
debd256d
JB
17942 line_ptr += bytes_read;
17943 dir_index =
17944 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17945 line_ptr += bytes_read;
17946 mod_time =
17947 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17948 line_ptr += bytes_read;
17949 length =
17950 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17951 line_ptr += bytes_read;
17952 add_file_name (lh, cur_file, dir_index, mod_time, length);
17953 }
c906108c 17954 break;
d0c6ba3d
CC
17955 case DW_LNE_set_discriminator:
17956 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17957 just ignore it. We still need to check its value though:
17958 if there are consecutive entries for the same
17959 (non-prologue) line we want to coalesce them.
17960 PR 17276. */
d9b3de22
DE
17961 state_machine.discriminator
17962 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17963 state_machine.line_has_non_zero_discriminator
17964 |= state_machine.discriminator != 0;
a05a36a5 17965 line_ptr += bytes_read;
d0c6ba3d 17966 break;
c906108c 17967 default:
4d3c2250 17968 complaint (&symfile_complaints,
e2e0b3e5 17969 _("mangled .debug_line section"));
debd256d 17970 return;
c906108c 17971 }
a8c50c1f
DJ
17972 /* Make sure that we parsed the extended op correctly. If e.g.
17973 we expected a different address size than the producer used,
17974 we may have read the wrong number of bytes. */
17975 if (line_ptr != extended_end)
17976 {
17977 complaint (&symfile_complaints,
17978 _("mangled .debug_line section"));
17979 return;
17980 }
c906108c
SS
17981 break;
17982 case DW_LNS_copy:
d9b3de22
DE
17983 dwarf_record_line (&reader_state, &state_machine, 0);
17984 state_machine.discriminator = 0;
c906108c
SS
17985 break;
17986 case DW_LNS_advance_pc:
2dc7f7b3
TT
17987 {
17988 CORE_ADDR adjust
17989 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17990 CORE_ADDR addr_adj;
2dc7f7b3 17991
d9b3de22 17992 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17993 / lh->maximum_ops_per_instruction)
17994 * lh->minimum_instruction_length);
d9b3de22
DE
17995 state_machine.address
17996 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17997 state_machine.op_index = ((state_machine.op_index + adjust)
17998 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17999 line_ptr += bytes_read;
18000 }
c906108c
SS
18001 break;
18002 case DW_LNS_advance_line:
a05a36a5
DE
18003 {
18004 int line_delta
18005 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18006
d9b3de22 18007 state_machine.line += line_delta;
a05a36a5 18008 if (line_delta != 0)
d9b3de22
DE
18009 state_machine.line_has_non_zero_discriminator
18010 = state_machine.discriminator != 0;
a05a36a5
DE
18011 line_ptr += bytes_read;
18012 }
c906108c
SS
18013 break;
18014 case DW_LNS_set_file:
d9b3de22
DE
18015 {
18016 /* The arrays lh->include_dirs and lh->file_names are
18017 0-based, but the directory and file name numbers in
18018 the statement program are 1-based. */
18019 struct file_entry *fe;
18020 const char *dir = NULL;
18021
18022 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18023 &bytes_read);
18024 line_ptr += bytes_read;
18025 if (state_machine.file == 0
18026 || state_machine.file - 1 >= lh->num_file_names)
18027 dwarf2_debug_line_missing_file_complaint ();
18028 else
18029 {
18030 fe = &lh->file_names[state_machine.file - 1];
18031 if (fe->dir_index && lh->include_dirs != NULL)
18032 dir = lh->include_dirs[fe->dir_index - 1];
18033 if (record_lines_p)
18034 {
18035 state_machine.last_subfile = current_subfile;
18036 state_machine.line_has_non_zero_discriminator
18037 = state_machine.discriminator != 0;
18038 dwarf2_start_subfile (fe->name, dir);
18039 }
18040 }
18041 }
c906108c
SS
18042 break;
18043 case DW_LNS_set_column:
0ad93d4f 18044 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18045 line_ptr += bytes_read;
18046 break;
18047 case DW_LNS_negate_stmt:
d9b3de22 18048 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18049 break;
18050 case DW_LNS_set_basic_block:
c906108c 18051 break;
c2c6d25f
JM
18052 /* Add to the address register of the state machine the
18053 address increment value corresponding to special opcode
a738430d
MK
18054 255. I.e., this value is scaled by the minimum
18055 instruction length since special opcode 255 would have
b021a221 18056 scaled the increment. */
c906108c 18057 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18058 {
18059 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18060 CORE_ADDR addr_adj;
2dc7f7b3 18061
d9b3de22 18062 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18063 / lh->maximum_ops_per_instruction)
18064 * lh->minimum_instruction_length);
d9b3de22
DE
18065 state_machine.address
18066 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18067 state_machine.op_index = ((state_machine.op_index + adjust)
18068 % lh->maximum_ops_per_instruction);
2dc7f7b3 18069 }
c906108c
SS
18070 break;
18071 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18072 {
18073 CORE_ADDR addr_adj;
18074
18075 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18076 state_machine.address
18077 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18078 state_machine.op_index = 0;
3e29f34a
MR
18079 line_ptr += 2;
18080 }
c906108c 18081 break;
9aa1fe7e 18082 default:
a738430d
MK
18083 {
18084 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18085 int i;
a738430d 18086
debd256d 18087 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18088 {
18089 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18090 line_ptr += bytes_read;
18091 }
18092 }
c906108c
SS
18093 }
18094 }
d9b3de22
DE
18095
18096 if (!end_sequence)
18097 dwarf2_debug_line_missing_end_sequence_complaint ();
18098
18099 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18100 in which case we still finish recording the last line). */
18101 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18102 }
f3f5162e
DE
18103}
18104
18105/* Decode the Line Number Program (LNP) for the given line_header
18106 structure and CU. The actual information extracted and the type
18107 of structures created from the LNP depends on the value of PST.
18108
18109 1. If PST is NULL, then this procedure uses the data from the program
18110 to create all necessary symbol tables, and their linetables.
18111
18112 2. If PST is not NULL, this procedure reads the program to determine
18113 the list of files included by the unit represented by PST, and
18114 builds all the associated partial symbol tables.
18115
18116 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18117 It is used for relative paths in the line table.
18118 NOTE: When processing partial symtabs (pst != NULL),
18119 comp_dir == pst->dirname.
18120
18121 NOTE: It is important that psymtabs have the same file name (via strcmp)
18122 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18123 symtab we don't use it in the name of the psymtabs we create.
18124 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18125 A good testcase for this is mb-inline.exp.
18126
527f3840
JK
18127 LOWPC is the lowest address in CU (or 0 if not known).
18128
18129 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18130 for its PC<->lines mapping information. Otherwise only the filename
18131 table is read in. */
f3f5162e
DE
18132
18133static void
18134dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18135 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18136 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18137{
18138 struct objfile *objfile = cu->objfile;
18139 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18140
527f3840
JK
18141 if (decode_mapping)
18142 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18143
18144 if (decode_for_pst_p)
18145 {
18146 int file_index;
18147
18148 /* Now that we're done scanning the Line Header Program, we can
18149 create the psymtab of each included file. */
18150 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18151 if (lh->file_names[file_index].included_p == 1)
18152 {
d521ce57 18153 const char *include_name =
c6da4cef
DE
18154 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18155 if (include_name != NULL)
aaa75496
JB
18156 dwarf2_create_include_psymtab (include_name, pst, objfile);
18157 }
18158 }
cb1df416
DJ
18159 else
18160 {
18161 /* Make sure a symtab is created for every file, even files
18162 which contain only variables (i.e. no code with associated
18163 line numbers). */
43f3e411 18164 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18165 int i;
cb1df416
DJ
18166
18167 for (i = 0; i < lh->num_file_names; i++)
18168 {
d521ce57 18169 const char *dir = NULL;
f3f5162e 18170 struct file_entry *fe;
9a619af0 18171
cb1df416 18172 fe = &lh->file_names[i];
afa6c9ab 18173 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18174 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18175 dwarf2_start_subfile (fe->name, dir);
cb1df416 18176
cb1df416 18177 if (current_subfile->symtab == NULL)
43f3e411
DE
18178 {
18179 current_subfile->symtab
18180 = allocate_symtab (cust, current_subfile->name);
18181 }
cb1df416
DJ
18182 fe->symtab = current_subfile->symtab;
18183 }
18184 }
c906108c
SS
18185}
18186
18187/* Start a subfile for DWARF. FILENAME is the name of the file and
18188 DIRNAME the name of the source directory which contains FILENAME
4d663531 18189 or NULL if not known.
c906108c
SS
18190 This routine tries to keep line numbers from identical absolute and
18191 relative file names in a common subfile.
18192
18193 Using the `list' example from the GDB testsuite, which resides in
18194 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18195 of /srcdir/list0.c yields the following debugging information for list0.c:
18196
c5aa993b 18197 DW_AT_name: /srcdir/list0.c
4d663531 18198 DW_AT_comp_dir: /compdir
357e46e7 18199 files.files[0].name: list0.h
c5aa993b 18200 files.files[0].dir: /srcdir
357e46e7 18201 files.files[1].name: list0.c
c5aa993b 18202 files.files[1].dir: /srcdir
c906108c
SS
18203
18204 The line number information for list0.c has to end up in a single
4f1520fb
FR
18205 subfile, so that `break /srcdir/list0.c:1' works as expected.
18206 start_subfile will ensure that this happens provided that we pass the
18207 concatenation of files.files[1].dir and files.files[1].name as the
18208 subfile's name. */
c906108c
SS
18209
18210static void
4d663531 18211dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18212{
d521ce57 18213 char *copy = NULL;
4f1520fb 18214
4d663531 18215 /* In order not to lose the line information directory,
4f1520fb
FR
18216 we concatenate it to the filename when it makes sense.
18217 Note that the Dwarf3 standard says (speaking of filenames in line
18218 information): ``The directory index is ignored for file names
18219 that represent full path names''. Thus ignoring dirname in the
18220 `else' branch below isn't an issue. */
c906108c 18221
d5166ae1 18222 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18223 {
18224 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18225 filename = copy;
18226 }
c906108c 18227
4d663531 18228 start_subfile (filename);
4f1520fb 18229
d521ce57
TT
18230 if (copy != NULL)
18231 xfree (copy);
c906108c
SS
18232}
18233
f4dc4d17
DE
18234/* Start a symtab for DWARF.
18235 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18236
43f3e411 18237static struct compunit_symtab *
f4dc4d17 18238dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18239 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18240{
43f3e411
DE
18241 struct compunit_symtab *cust
18242 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18243
f4dc4d17
DE
18244 record_debugformat ("DWARF 2");
18245 record_producer (cu->producer);
18246
18247 /* We assume that we're processing GCC output. */
18248 processing_gcc_compilation = 2;
18249
4d4ec4e5 18250 cu->processing_has_namespace_info = 0;
43f3e411
DE
18251
18252 return cust;
f4dc4d17
DE
18253}
18254
4c2df51b
DJ
18255static void
18256var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18257 struct dwarf2_cu *cu)
4c2df51b 18258{
e7c27a73
DJ
18259 struct objfile *objfile = cu->objfile;
18260 struct comp_unit_head *cu_header = &cu->header;
18261
4c2df51b
DJ
18262 /* NOTE drow/2003-01-30: There used to be a comment and some special
18263 code here to turn a symbol with DW_AT_external and a
18264 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18265 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18266 with some versions of binutils) where shared libraries could have
18267 relocations against symbols in their debug information - the
18268 minimal symbol would have the right address, but the debug info
18269 would not. It's no longer necessary, because we will explicitly
18270 apply relocations when we read in the debug information now. */
18271
18272 /* A DW_AT_location attribute with no contents indicates that a
18273 variable has been optimized away. */
18274 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18275 {
f1e6e072 18276 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18277 return;
18278 }
18279
18280 /* Handle one degenerate form of location expression specially, to
18281 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18282 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18283 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18284
18285 if (attr_form_is_block (attr)
3019eac3
DE
18286 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18287 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18288 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18289 && (DW_BLOCK (attr)->size
18290 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18291 {
891d2f0b 18292 unsigned int dummy;
4c2df51b 18293
3019eac3
DE
18294 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18295 SYMBOL_VALUE_ADDRESS (sym) =
18296 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18297 else
18298 SYMBOL_VALUE_ADDRESS (sym) =
18299 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18300 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18301 fixup_symbol_section (sym, objfile);
18302 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18303 SYMBOL_SECTION (sym));
4c2df51b
DJ
18304 return;
18305 }
18306
18307 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18308 expression evaluator, and use LOC_COMPUTED only when necessary
18309 (i.e. when the value of a register or memory location is
18310 referenced, or a thread-local block, etc.). Then again, it might
18311 not be worthwhile. I'm assuming that it isn't unless performance
18312 or memory numbers show me otherwise. */
18313
f1e6e072 18314 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18315
f1e6e072 18316 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18317 cu->has_loclist = 1;
4c2df51b
DJ
18318}
18319
c906108c
SS
18320/* Given a pointer to a DWARF information entry, figure out if we need
18321 to make a symbol table entry for it, and if so, create a new entry
18322 and return a pointer to it.
18323 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18324 used the passed type.
18325 If SPACE is not NULL, use it to hold the new symbol. If it is
18326 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18327
18328static struct symbol *
34eaf542
TT
18329new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18330 struct symbol *space)
c906108c 18331{
e7c27a73 18332 struct objfile *objfile = cu->objfile;
3e29f34a 18333 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18334 struct symbol *sym = NULL;
15d034d0 18335 const char *name;
c906108c
SS
18336 struct attribute *attr = NULL;
18337 struct attribute *attr2 = NULL;
e142c38c 18338 CORE_ADDR baseaddr;
e37fd15a
SW
18339 struct pending **list_to_add = NULL;
18340
edb3359d 18341 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18342
18343 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18344
94af9270 18345 name = dwarf2_name (die, cu);
c906108c
SS
18346 if (name)
18347 {
94af9270 18348 const char *linkagename;
34eaf542 18349 int suppress_add = 0;
94af9270 18350
34eaf542
TT
18351 if (space)
18352 sym = space;
18353 else
e623cf5d 18354 sym = allocate_symbol (objfile);
c906108c 18355 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18356
18357 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18358 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18359 linkagename = dwarf2_physname (name, die, cu);
18360 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18361
f55ee35c
JK
18362 /* Fortran does not have mangling standard and the mangling does differ
18363 between gfortran, iFort etc. */
18364 if (cu->language == language_fortran
b250c185 18365 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18366 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18367 dwarf2_full_name (name, die, cu),
29df156d 18368 NULL);
f55ee35c 18369
c906108c 18370 /* Default assumptions.
c5aa993b 18371 Use the passed type or decode it from the die. */
176620f1 18372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18373 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18374 if (type != NULL)
18375 SYMBOL_TYPE (sym) = type;
18376 else
e7c27a73 18377 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18378 attr = dwarf2_attr (die,
18379 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18380 cu);
c906108c
SS
18381 if (attr)
18382 {
18383 SYMBOL_LINE (sym) = DW_UNSND (attr);
18384 }
cb1df416 18385
edb3359d
DJ
18386 attr = dwarf2_attr (die,
18387 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18388 cu);
cb1df416
DJ
18389 if (attr)
18390 {
18391 int file_index = DW_UNSND (attr);
9a619af0 18392
cb1df416
DJ
18393 if (cu->line_header == NULL
18394 || file_index > cu->line_header->num_file_names)
18395 complaint (&symfile_complaints,
18396 _("file index out of range"));
1c3d648d 18397 else if (file_index > 0)
cb1df416
DJ
18398 {
18399 struct file_entry *fe;
9a619af0 18400
cb1df416 18401 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18402 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18403 }
18404 }
18405
c906108c
SS
18406 switch (die->tag)
18407 {
18408 case DW_TAG_label:
e142c38c 18409 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18410 if (attr)
3e29f34a
MR
18411 {
18412 CORE_ADDR addr;
18413
18414 addr = attr_value_as_address (attr);
18415 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18416 SYMBOL_VALUE_ADDRESS (sym) = addr;
18417 }
0f5238ed
TT
18418 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18419 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18420 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18421 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18422 break;
18423 case DW_TAG_subprogram:
18424 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18425 finish_block. */
f1e6e072 18426 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18427 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18428 if ((attr2 && (DW_UNSND (attr2) != 0))
18429 || cu->language == language_ada)
c906108c 18430 {
2cfa0c8d
JB
18431 /* Subprograms marked external are stored as a global symbol.
18432 Ada subprograms, whether marked external or not, are always
18433 stored as a global symbol, because we want to be able to
18434 access them globally. For instance, we want to be able
18435 to break on a nested subprogram without having to
18436 specify the context. */
e37fd15a 18437 list_to_add = &global_symbols;
c906108c
SS
18438 }
18439 else
18440 {
e37fd15a 18441 list_to_add = cu->list_in_scope;
c906108c
SS
18442 }
18443 break;
edb3359d
DJ
18444 case DW_TAG_inlined_subroutine:
18445 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18446 finish_block. */
f1e6e072 18447 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18448 SYMBOL_INLINED (sym) = 1;
481860b3 18449 list_to_add = cu->list_in_scope;
edb3359d 18450 break;
34eaf542
TT
18451 case DW_TAG_template_value_param:
18452 suppress_add = 1;
18453 /* Fall through. */
72929c62 18454 case DW_TAG_constant:
c906108c 18455 case DW_TAG_variable:
254e6b9e 18456 case DW_TAG_member:
0963b4bd
MS
18457 /* Compilation with minimal debug info may result in
18458 variables with missing type entries. Change the
18459 misleading `void' type to something sensible. */
c906108c 18460 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18461 SYMBOL_TYPE (sym)
46bf5051 18462 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18463
e142c38c 18464 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18465 /* In the case of DW_TAG_member, we should only be called for
18466 static const members. */
18467 if (die->tag == DW_TAG_member)
18468 {
3863f96c
DE
18469 /* dwarf2_add_field uses die_is_declaration,
18470 so we do the same. */
254e6b9e
DE
18471 gdb_assert (die_is_declaration (die, cu));
18472 gdb_assert (attr);
18473 }
c906108c
SS
18474 if (attr)
18475 {
e7c27a73 18476 dwarf2_const_value (attr, sym, cu);
e142c38c 18477 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18478 if (!suppress_add)
34eaf542
TT
18479 {
18480 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18481 list_to_add = &global_symbols;
34eaf542 18482 else
e37fd15a 18483 list_to_add = cu->list_in_scope;
34eaf542 18484 }
c906108c
SS
18485 break;
18486 }
e142c38c 18487 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18488 if (attr)
18489 {
e7c27a73 18490 var_decode_location (attr, sym, cu);
e142c38c 18491 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18492
18493 /* Fortran explicitly imports any global symbols to the local
18494 scope by DW_TAG_common_block. */
18495 if (cu->language == language_fortran && die->parent
18496 && die->parent->tag == DW_TAG_common_block)
18497 attr2 = NULL;
18498
caac4577
JG
18499 if (SYMBOL_CLASS (sym) == LOC_STATIC
18500 && SYMBOL_VALUE_ADDRESS (sym) == 0
18501 && !dwarf2_per_objfile->has_section_at_zero)
18502 {
18503 /* When a static variable is eliminated by the linker,
18504 the corresponding debug information is not stripped
18505 out, but the variable address is set to null;
18506 do not add such variables into symbol table. */
18507 }
18508 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18509 {
f55ee35c
JK
18510 /* Workaround gfortran PR debug/40040 - it uses
18511 DW_AT_location for variables in -fPIC libraries which may
18512 get overriden by other libraries/executable and get
18513 a different address. Resolve it by the minimal symbol
18514 which may come from inferior's executable using copy
18515 relocation. Make this workaround only for gfortran as for
18516 other compilers GDB cannot guess the minimal symbol
18517 Fortran mangling kind. */
18518 if (cu->language == language_fortran && die->parent
18519 && die->parent->tag == DW_TAG_module
18520 && cu->producer
61012eef 18521 && startswith (cu->producer, "GNU Fortran "))
f1e6e072 18522 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18523
1c809c68
TT
18524 /* A variable with DW_AT_external is never static,
18525 but it may be block-scoped. */
18526 list_to_add = (cu->list_in_scope == &file_symbols
18527 ? &global_symbols : cu->list_in_scope);
1c809c68 18528 }
c906108c 18529 else
e37fd15a 18530 list_to_add = cu->list_in_scope;
c906108c
SS
18531 }
18532 else
18533 {
18534 /* We do not know the address of this symbol.
c5aa993b
JM
18535 If it is an external symbol and we have type information
18536 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18537 The address of the variable will then be determined from
18538 the minimal symbol table whenever the variable is
18539 referenced. */
e142c38c 18540 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18541
18542 /* Fortran explicitly imports any global symbols to the local
18543 scope by DW_TAG_common_block. */
18544 if (cu->language == language_fortran && die->parent
18545 && die->parent->tag == DW_TAG_common_block)
18546 {
18547 /* SYMBOL_CLASS doesn't matter here because
18548 read_common_block is going to reset it. */
18549 if (!suppress_add)
18550 list_to_add = cu->list_in_scope;
18551 }
18552 else if (attr2 && (DW_UNSND (attr2) != 0)
18553 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18554 {
0fe7935b
DJ
18555 /* A variable with DW_AT_external is never static, but it
18556 may be block-scoped. */
18557 list_to_add = (cu->list_in_scope == &file_symbols
18558 ? &global_symbols : cu->list_in_scope);
18559
f1e6e072 18560 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18561 }
442ddf59
JK
18562 else if (!die_is_declaration (die, cu))
18563 {
18564 /* Use the default LOC_OPTIMIZED_OUT class. */
18565 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18566 if (!suppress_add)
18567 list_to_add = cu->list_in_scope;
442ddf59 18568 }
c906108c
SS
18569 }
18570 break;
18571 case DW_TAG_formal_parameter:
edb3359d
DJ
18572 /* If we are inside a function, mark this as an argument. If
18573 not, we might be looking at an argument to an inlined function
18574 when we do not have enough information to show inlined frames;
18575 pretend it's a local variable in that case so that the user can
18576 still see it. */
18577 if (context_stack_depth > 0
18578 && context_stack[context_stack_depth - 1].name != NULL)
18579 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18580 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18581 if (attr)
18582 {
e7c27a73 18583 var_decode_location (attr, sym, cu);
c906108c 18584 }
e142c38c 18585 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18586 if (attr)
18587 {
e7c27a73 18588 dwarf2_const_value (attr, sym, cu);
c906108c 18589 }
f346a30d 18590
e37fd15a 18591 list_to_add = cu->list_in_scope;
c906108c
SS
18592 break;
18593 case DW_TAG_unspecified_parameters:
18594 /* From varargs functions; gdb doesn't seem to have any
18595 interest in this information, so just ignore it for now.
18596 (FIXME?) */
18597 break;
34eaf542
TT
18598 case DW_TAG_template_type_param:
18599 suppress_add = 1;
18600 /* Fall through. */
c906108c 18601 case DW_TAG_class_type:
680b30c7 18602 case DW_TAG_interface_type:
c906108c
SS
18603 case DW_TAG_structure_type:
18604 case DW_TAG_union_type:
72019c9c 18605 case DW_TAG_set_type:
c906108c 18606 case DW_TAG_enumeration_type:
f1e6e072 18607 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18608 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18609
63d06c5c 18610 {
987504bb 18611 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18612 really ever be static objects: otherwise, if you try
18613 to, say, break of a class's method and you're in a file
18614 which doesn't mention that class, it won't work unless
18615 the check for all static symbols in lookup_symbol_aux
18616 saves you. See the OtherFileClass tests in
18617 gdb.c++/namespace.exp. */
18618
e37fd15a 18619 if (!suppress_add)
34eaf542 18620 {
34eaf542
TT
18621 list_to_add = (cu->list_in_scope == &file_symbols
18622 && (cu->language == language_cplus
18623 || cu->language == language_java)
18624 ? &global_symbols : cu->list_in_scope);
63d06c5c 18625
64382290
TT
18626 /* The semantics of C++ state that "struct foo {
18627 ... }" also defines a typedef for "foo". A Java
18628 class declaration also defines a typedef for the
18629 class. */
18630 if (cu->language == language_cplus
18631 || cu->language == language_java
45280282
IB
18632 || cu->language == language_ada
18633 || cu->language == language_d)
64382290
TT
18634 {
18635 /* The symbol's name is already allocated along
18636 with this objfile, so we don't need to
18637 duplicate it for the type. */
18638 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18639 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18640 }
63d06c5c
DC
18641 }
18642 }
c906108c
SS
18643 break;
18644 case DW_TAG_typedef:
f1e6e072 18645 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18646 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18647 list_to_add = cu->list_in_scope;
63d06c5c 18648 break;
c906108c 18649 case DW_TAG_base_type:
a02abb62 18650 case DW_TAG_subrange_type:
f1e6e072 18651 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18652 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18653 list_to_add = cu->list_in_scope;
c906108c
SS
18654 break;
18655 case DW_TAG_enumerator:
e142c38c 18656 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18657 if (attr)
18658 {
e7c27a73 18659 dwarf2_const_value (attr, sym, cu);
c906108c 18660 }
63d06c5c
DC
18661 {
18662 /* NOTE: carlton/2003-11-10: See comment above in the
18663 DW_TAG_class_type, etc. block. */
18664
e142c38c 18665 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18666 && (cu->language == language_cplus
18667 || cu->language == language_java)
e142c38c 18668 ? &global_symbols : cu->list_in_scope);
63d06c5c 18669 }
c906108c 18670 break;
74921315 18671 case DW_TAG_imported_declaration:
5c4e30ca 18672 case DW_TAG_namespace:
f1e6e072 18673 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18674 list_to_add = &global_symbols;
5c4e30ca 18675 break;
530e8392
KB
18676 case DW_TAG_module:
18677 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18678 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18679 list_to_add = &global_symbols;
18680 break;
4357ac6c 18681 case DW_TAG_common_block:
f1e6e072 18682 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18683 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18684 add_symbol_to_list (sym, cu->list_in_scope);
18685 break;
c906108c
SS
18686 default:
18687 /* Not a tag we recognize. Hopefully we aren't processing
18688 trash data, but since we must specifically ignore things
18689 we don't recognize, there is nothing else we should do at
0963b4bd 18690 this point. */
e2e0b3e5 18691 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18692 dwarf_tag_name (die->tag));
c906108c
SS
18693 break;
18694 }
df8a16a1 18695
e37fd15a
SW
18696 if (suppress_add)
18697 {
18698 sym->hash_next = objfile->template_symbols;
18699 objfile->template_symbols = sym;
18700 list_to_add = NULL;
18701 }
18702
18703 if (list_to_add != NULL)
18704 add_symbol_to_list (sym, list_to_add);
18705
df8a16a1
DJ
18706 /* For the benefit of old versions of GCC, check for anonymous
18707 namespaces based on the demangled name. */
4d4ec4e5 18708 if (!cu->processing_has_namespace_info
94af9270 18709 && cu->language == language_cplus)
a10964d1 18710 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18711 }
18712 return (sym);
18713}
18714
34eaf542
TT
18715/* A wrapper for new_symbol_full that always allocates a new symbol. */
18716
18717static struct symbol *
18718new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18719{
18720 return new_symbol_full (die, type, cu, NULL);
18721}
18722
98bfdba5
PA
18723/* Given an attr with a DW_FORM_dataN value in host byte order,
18724 zero-extend it as appropriate for the symbol's type. The DWARF
18725 standard (v4) is not entirely clear about the meaning of using
18726 DW_FORM_dataN for a constant with a signed type, where the type is
18727 wider than the data. The conclusion of a discussion on the DWARF
18728 list was that this is unspecified. We choose to always zero-extend
18729 because that is the interpretation long in use by GCC. */
c906108c 18730
98bfdba5 18731static gdb_byte *
ff39bb5e 18732dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18733 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18734{
e7c27a73 18735 struct objfile *objfile = cu->objfile;
e17a4113
UW
18736 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18737 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18738 LONGEST l = DW_UNSND (attr);
18739
18740 if (bits < sizeof (*value) * 8)
18741 {
18742 l &= ((LONGEST) 1 << bits) - 1;
18743 *value = l;
18744 }
18745 else if (bits == sizeof (*value) * 8)
18746 *value = l;
18747 else
18748 {
224c3ddb 18749 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18750 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18751 return bytes;
18752 }
18753
18754 return NULL;
18755}
18756
18757/* Read a constant value from an attribute. Either set *VALUE, or if
18758 the value does not fit in *VALUE, set *BYTES - either already
18759 allocated on the objfile obstack, or newly allocated on OBSTACK,
18760 or, set *BATON, if we translated the constant to a location
18761 expression. */
18762
18763static void
ff39bb5e 18764dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18765 const char *name, struct obstack *obstack,
18766 struct dwarf2_cu *cu,
d521ce57 18767 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18768 struct dwarf2_locexpr_baton **baton)
18769{
18770 struct objfile *objfile = cu->objfile;
18771 struct comp_unit_head *cu_header = &cu->header;
c906108c 18772 struct dwarf_block *blk;
98bfdba5
PA
18773 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18774 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18775
18776 *value = 0;
18777 *bytes = NULL;
18778 *baton = NULL;
c906108c
SS
18779
18780 switch (attr->form)
18781 {
18782 case DW_FORM_addr:
3019eac3 18783 case DW_FORM_GNU_addr_index:
ac56253d 18784 {
ac56253d
TT
18785 gdb_byte *data;
18786
98bfdba5
PA
18787 if (TYPE_LENGTH (type) != cu_header->addr_size)
18788 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18789 cu_header->addr_size,
98bfdba5 18790 TYPE_LENGTH (type));
ac56253d
TT
18791 /* Symbols of this form are reasonably rare, so we just
18792 piggyback on the existing location code rather than writing
18793 a new implementation of symbol_computed_ops. */
8d749320 18794 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18795 (*baton)->per_cu = cu->per_cu;
18796 gdb_assert ((*baton)->per_cu);
ac56253d 18797
98bfdba5 18798 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18799 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18800 (*baton)->data = data;
ac56253d
TT
18801
18802 data[0] = DW_OP_addr;
18803 store_unsigned_integer (&data[1], cu_header->addr_size,
18804 byte_order, DW_ADDR (attr));
18805 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18806 }
c906108c 18807 break;
4ac36638 18808 case DW_FORM_string:
93b5768b 18809 case DW_FORM_strp:
3019eac3 18810 case DW_FORM_GNU_str_index:
36586728 18811 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18812 /* DW_STRING is already allocated on the objfile obstack, point
18813 directly to it. */
d521ce57 18814 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18815 break;
c906108c
SS
18816 case DW_FORM_block1:
18817 case DW_FORM_block2:
18818 case DW_FORM_block4:
18819 case DW_FORM_block:
2dc7f7b3 18820 case DW_FORM_exprloc:
c906108c 18821 blk = DW_BLOCK (attr);
98bfdba5
PA
18822 if (TYPE_LENGTH (type) != blk->size)
18823 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18824 TYPE_LENGTH (type));
18825 *bytes = blk->data;
c906108c 18826 break;
2df3850c
JM
18827
18828 /* The DW_AT_const_value attributes are supposed to carry the
18829 symbol's value "represented as it would be on the target
18830 architecture." By the time we get here, it's already been
18831 converted to host endianness, so we just need to sign- or
18832 zero-extend it as appropriate. */
18833 case DW_FORM_data1:
3aef2284 18834 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18835 break;
c906108c 18836 case DW_FORM_data2:
3aef2284 18837 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18838 break;
c906108c 18839 case DW_FORM_data4:
3aef2284 18840 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18841 break;
c906108c 18842 case DW_FORM_data8:
3aef2284 18843 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18844 break;
18845
c906108c 18846 case DW_FORM_sdata:
98bfdba5 18847 *value = DW_SND (attr);
2df3850c
JM
18848 break;
18849
c906108c 18850 case DW_FORM_udata:
98bfdba5 18851 *value = DW_UNSND (attr);
c906108c 18852 break;
2df3850c 18853
c906108c 18854 default:
4d3c2250 18855 complaint (&symfile_complaints,
e2e0b3e5 18856 _("unsupported const value attribute form: '%s'"),
4d3c2250 18857 dwarf_form_name (attr->form));
98bfdba5 18858 *value = 0;
c906108c
SS
18859 break;
18860 }
18861}
18862
2df3850c 18863
98bfdba5
PA
18864/* Copy constant value from an attribute to a symbol. */
18865
2df3850c 18866static void
ff39bb5e 18867dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18868 struct dwarf2_cu *cu)
2df3850c 18869{
98bfdba5
PA
18870 struct objfile *objfile = cu->objfile;
18871 struct comp_unit_head *cu_header = &cu->header;
12df843f 18872 LONGEST value;
d521ce57 18873 const gdb_byte *bytes;
98bfdba5 18874 struct dwarf2_locexpr_baton *baton;
2df3850c 18875
98bfdba5
PA
18876 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18877 SYMBOL_PRINT_NAME (sym),
18878 &objfile->objfile_obstack, cu,
18879 &value, &bytes, &baton);
2df3850c 18880
98bfdba5
PA
18881 if (baton != NULL)
18882 {
98bfdba5 18883 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18884 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18885 }
18886 else if (bytes != NULL)
18887 {
18888 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18889 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18890 }
18891 else
18892 {
18893 SYMBOL_VALUE (sym) = value;
f1e6e072 18894 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18895 }
2df3850c
JM
18896}
18897
c906108c
SS
18898/* Return the type of the die in question using its DW_AT_type attribute. */
18899
18900static struct type *
e7c27a73 18901die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18902{
c906108c 18903 struct attribute *type_attr;
c906108c 18904
e142c38c 18905 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18906 if (!type_attr)
18907 {
18908 /* A missing DW_AT_type represents a void type. */
46bf5051 18909 return objfile_type (cu->objfile)->builtin_void;
c906108c 18910 }
348e048f 18911
673bfd45 18912 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18913}
18914
b4ba55a1
JB
18915/* True iff CU's producer generates GNAT Ada auxiliary information
18916 that allows to find parallel types through that information instead
18917 of having to do expensive parallel lookups by type name. */
18918
18919static int
18920need_gnat_info (struct dwarf2_cu *cu)
18921{
18922 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18923 of GNAT produces this auxiliary information, without any indication
18924 that it is produced. Part of enhancing the FSF version of GNAT
18925 to produce that information will be to put in place an indicator
18926 that we can use in order to determine whether the descriptive type
18927 info is available or not. One suggestion that has been made is
18928 to use a new attribute, attached to the CU die. For now, assume
18929 that the descriptive type info is not available. */
18930 return 0;
18931}
18932
b4ba55a1
JB
18933/* Return the auxiliary type of the die in question using its
18934 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18935 attribute is not present. */
18936
18937static struct type *
18938die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18939{
b4ba55a1 18940 struct attribute *type_attr;
b4ba55a1
JB
18941
18942 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18943 if (!type_attr)
18944 return NULL;
18945
673bfd45 18946 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18947}
18948
18949/* If DIE has a descriptive_type attribute, then set the TYPE's
18950 descriptive type accordingly. */
18951
18952static void
18953set_descriptive_type (struct type *type, struct die_info *die,
18954 struct dwarf2_cu *cu)
18955{
18956 struct type *descriptive_type = die_descriptive_type (die, cu);
18957
18958 if (descriptive_type)
18959 {
18960 ALLOCATE_GNAT_AUX_TYPE (type);
18961 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18962 }
18963}
18964
c906108c
SS
18965/* Return the containing type of the die in question using its
18966 DW_AT_containing_type attribute. */
18967
18968static struct type *
e7c27a73 18969die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18970{
c906108c 18971 struct attribute *type_attr;
c906108c 18972
e142c38c 18973 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18974 if (!type_attr)
18975 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18976 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18977
673bfd45 18978 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18979}
18980
ac9ec31b
DE
18981/* Return an error marker type to use for the ill formed type in DIE/CU. */
18982
18983static struct type *
18984build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18985{
18986 struct objfile *objfile = dwarf2_per_objfile->objfile;
18987 char *message, *saved;
18988
18989 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18990 objfile_name (objfile),
ac9ec31b
DE
18991 cu->header.offset.sect_off,
18992 die->offset.sect_off);
224c3ddb
SM
18993 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18994 message, strlen (message));
ac9ec31b
DE
18995 xfree (message);
18996
18997 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18998}
18999
673bfd45 19000/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19001 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19002 DW_AT_containing_type.
673bfd45
DE
19003 If there is no type substitute an error marker. */
19004
c906108c 19005static struct type *
ff39bb5e 19006lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19007 struct dwarf2_cu *cu)
c906108c 19008{
bb5ed363 19009 struct objfile *objfile = cu->objfile;
f792889a
DJ
19010 struct type *this_type;
19011
ac9ec31b
DE
19012 gdb_assert (attr->name == DW_AT_type
19013 || attr->name == DW_AT_GNAT_descriptive_type
19014 || attr->name == DW_AT_containing_type);
19015
673bfd45
DE
19016 /* First see if we have it cached. */
19017
36586728
TT
19018 if (attr->form == DW_FORM_GNU_ref_alt)
19019 {
19020 struct dwarf2_per_cu_data *per_cu;
19021 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19022
19023 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19024 this_type = get_die_type_at_offset (offset, per_cu);
19025 }
7771576e 19026 else if (attr_form_is_ref (attr))
673bfd45 19027 {
b64f50a1 19028 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19029
19030 this_type = get_die_type_at_offset (offset, cu->per_cu);
19031 }
55f1336d 19032 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19033 {
ac9ec31b 19034 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19035
ac9ec31b 19036 return get_signatured_type (die, signature, cu);
673bfd45
DE
19037 }
19038 else
19039 {
ac9ec31b
DE
19040 complaint (&symfile_complaints,
19041 _("Dwarf Error: Bad type attribute %s in DIE"
19042 " at 0x%x [in module %s]"),
19043 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19044 objfile_name (objfile));
ac9ec31b 19045 return build_error_marker_type (cu, die);
673bfd45
DE
19046 }
19047
19048 /* If not cached we need to read it in. */
19049
19050 if (this_type == NULL)
19051 {
ac9ec31b 19052 struct die_info *type_die = NULL;
673bfd45
DE
19053 struct dwarf2_cu *type_cu = cu;
19054
7771576e 19055 if (attr_form_is_ref (attr))
ac9ec31b
DE
19056 type_die = follow_die_ref (die, attr, &type_cu);
19057 if (type_die == NULL)
19058 return build_error_marker_type (cu, die);
19059 /* If we find the type now, it's probably because the type came
3019eac3
DE
19060 from an inter-CU reference and the type's CU got expanded before
19061 ours. */
ac9ec31b 19062 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19063 }
19064
19065 /* If we still don't have a type use an error marker. */
19066
19067 if (this_type == NULL)
ac9ec31b 19068 return build_error_marker_type (cu, die);
673bfd45 19069
f792889a 19070 return this_type;
c906108c
SS
19071}
19072
673bfd45
DE
19073/* Return the type in DIE, CU.
19074 Returns NULL for invalid types.
19075
02142a6c 19076 This first does a lookup in die_type_hash,
673bfd45
DE
19077 and only reads the die in if necessary.
19078
19079 NOTE: This can be called when reading in partial or full symbols. */
19080
f792889a 19081static struct type *
e7c27a73 19082read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19083{
f792889a
DJ
19084 struct type *this_type;
19085
19086 this_type = get_die_type (die, cu);
19087 if (this_type)
19088 return this_type;
19089
673bfd45
DE
19090 return read_type_die_1 (die, cu);
19091}
19092
19093/* Read the type in DIE, CU.
19094 Returns NULL for invalid types. */
19095
19096static struct type *
19097read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19098{
19099 struct type *this_type = NULL;
19100
c906108c
SS
19101 switch (die->tag)
19102 {
19103 case DW_TAG_class_type:
680b30c7 19104 case DW_TAG_interface_type:
c906108c
SS
19105 case DW_TAG_structure_type:
19106 case DW_TAG_union_type:
f792889a 19107 this_type = read_structure_type (die, cu);
c906108c
SS
19108 break;
19109 case DW_TAG_enumeration_type:
f792889a 19110 this_type = read_enumeration_type (die, cu);
c906108c
SS
19111 break;
19112 case DW_TAG_subprogram:
19113 case DW_TAG_subroutine_type:
edb3359d 19114 case DW_TAG_inlined_subroutine:
f792889a 19115 this_type = read_subroutine_type (die, cu);
c906108c
SS
19116 break;
19117 case DW_TAG_array_type:
f792889a 19118 this_type = read_array_type (die, cu);
c906108c 19119 break;
72019c9c 19120 case DW_TAG_set_type:
f792889a 19121 this_type = read_set_type (die, cu);
72019c9c 19122 break;
c906108c 19123 case DW_TAG_pointer_type:
f792889a 19124 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19125 break;
19126 case DW_TAG_ptr_to_member_type:
f792889a 19127 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19128 break;
19129 case DW_TAG_reference_type:
f792889a 19130 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19131 break;
19132 case DW_TAG_const_type:
f792889a 19133 this_type = read_tag_const_type (die, cu);
c906108c
SS
19134 break;
19135 case DW_TAG_volatile_type:
f792889a 19136 this_type = read_tag_volatile_type (die, cu);
c906108c 19137 break;
06d66ee9
TT
19138 case DW_TAG_restrict_type:
19139 this_type = read_tag_restrict_type (die, cu);
19140 break;
c906108c 19141 case DW_TAG_string_type:
f792889a 19142 this_type = read_tag_string_type (die, cu);
c906108c
SS
19143 break;
19144 case DW_TAG_typedef:
f792889a 19145 this_type = read_typedef (die, cu);
c906108c 19146 break;
a02abb62 19147 case DW_TAG_subrange_type:
f792889a 19148 this_type = read_subrange_type (die, cu);
a02abb62 19149 break;
c906108c 19150 case DW_TAG_base_type:
f792889a 19151 this_type = read_base_type (die, cu);
c906108c 19152 break;
81a17f79 19153 case DW_TAG_unspecified_type:
f792889a 19154 this_type = read_unspecified_type (die, cu);
81a17f79 19155 break;
0114d602
DJ
19156 case DW_TAG_namespace:
19157 this_type = read_namespace_type (die, cu);
19158 break;
f55ee35c
JK
19159 case DW_TAG_module:
19160 this_type = read_module_type (die, cu);
19161 break;
a2c2acaf
MW
19162 case DW_TAG_atomic_type:
19163 this_type = read_tag_atomic_type (die, cu);
19164 break;
c906108c 19165 default:
3e43a32a
MS
19166 complaint (&symfile_complaints,
19167 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19168 dwarf_tag_name (die->tag));
c906108c
SS
19169 break;
19170 }
63d06c5c 19171
f792889a 19172 return this_type;
63d06c5c
DC
19173}
19174
abc72ce4
DE
19175/* See if we can figure out if the class lives in a namespace. We do
19176 this by looking for a member function; its demangled name will
19177 contain namespace info, if there is any.
19178 Return the computed name or NULL.
19179 Space for the result is allocated on the objfile's obstack.
19180 This is the full-die version of guess_partial_die_structure_name.
19181 In this case we know DIE has no useful parent. */
19182
19183static char *
19184guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19185{
19186 struct die_info *spec_die;
19187 struct dwarf2_cu *spec_cu;
19188 struct die_info *child;
19189
19190 spec_cu = cu;
19191 spec_die = die_specification (die, &spec_cu);
19192 if (spec_die != NULL)
19193 {
19194 die = spec_die;
19195 cu = spec_cu;
19196 }
19197
19198 for (child = die->child;
19199 child != NULL;
19200 child = child->sibling)
19201 {
19202 if (child->tag == DW_TAG_subprogram)
19203 {
7d45c7c3 19204 const char *linkage_name;
abc72ce4 19205
7d45c7c3
KB
19206 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19207 if (linkage_name == NULL)
19208 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19209 cu);
19210 if (linkage_name != NULL)
abc72ce4
DE
19211 {
19212 char *actual_name
19213 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19214 linkage_name);
abc72ce4
DE
19215 char *name = NULL;
19216
19217 if (actual_name != NULL)
19218 {
15d034d0 19219 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19220
19221 if (die_name != NULL
19222 && strcmp (die_name, actual_name) != 0)
19223 {
19224 /* Strip off the class name from the full name.
19225 We want the prefix. */
19226 int die_name_len = strlen (die_name);
19227 int actual_name_len = strlen (actual_name);
19228
19229 /* Test for '::' as a sanity check. */
19230 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19231 && actual_name[actual_name_len
19232 - die_name_len - 1] == ':')
224c3ddb
SM
19233 name = (char *) obstack_copy0 (
19234 &cu->objfile->per_bfd->storage_obstack,
19235 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19236 }
19237 }
19238 xfree (actual_name);
19239 return name;
19240 }
19241 }
19242 }
19243
19244 return NULL;
19245}
19246
96408a79
SA
19247/* GCC might emit a nameless typedef that has a linkage name. Determine the
19248 prefix part in such case. See
19249 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19250
19251static char *
19252anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19253{
19254 struct attribute *attr;
e6a959d6 19255 const char *base;
96408a79
SA
19256
19257 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19258 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19259 return NULL;
19260
7d45c7c3 19261 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19262 return NULL;
19263
19264 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19265 if (attr == NULL)
19266 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19267 if (attr == NULL || DW_STRING (attr) == NULL)
19268 return NULL;
19269
19270 /* dwarf2_name had to be already called. */
19271 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19272
19273 /* Strip the base name, keep any leading namespaces/classes. */
19274 base = strrchr (DW_STRING (attr), ':');
19275 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19276 return "";
19277
224c3ddb
SM
19278 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19279 DW_STRING (attr),
19280 &base[-1] - DW_STRING (attr));
96408a79
SA
19281}
19282
fdde2d81 19283/* Return the name of the namespace/class that DIE is defined within,
0114d602 19284 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19285
0114d602
DJ
19286 For example, if we're within the method foo() in the following
19287 code:
19288
19289 namespace N {
19290 class C {
19291 void foo () {
19292 }
19293 };
19294 }
19295
19296 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19297
0d5cff50 19298static const char *
e142c38c 19299determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19300{
0114d602
DJ
19301 struct die_info *parent, *spec_die;
19302 struct dwarf2_cu *spec_cu;
19303 struct type *parent_type;
96408a79 19304 char *retval;
63d06c5c 19305
f55ee35c 19306 if (cu->language != language_cplus && cu->language != language_java
45280282 19307 && cu->language != language_fortran && cu->language != language_d)
0114d602
DJ
19308 return "";
19309
96408a79
SA
19310 retval = anonymous_struct_prefix (die, cu);
19311 if (retval)
19312 return retval;
19313
0114d602
DJ
19314 /* We have to be careful in the presence of DW_AT_specification.
19315 For example, with GCC 3.4, given the code
19316
19317 namespace N {
19318 void foo() {
19319 // Definition of N::foo.
19320 }
19321 }
19322
19323 then we'll have a tree of DIEs like this:
19324
19325 1: DW_TAG_compile_unit
19326 2: DW_TAG_namespace // N
19327 3: DW_TAG_subprogram // declaration of N::foo
19328 4: DW_TAG_subprogram // definition of N::foo
19329 DW_AT_specification // refers to die #3
19330
19331 Thus, when processing die #4, we have to pretend that we're in
19332 the context of its DW_AT_specification, namely the contex of die
19333 #3. */
19334 spec_cu = cu;
19335 spec_die = die_specification (die, &spec_cu);
19336 if (spec_die == NULL)
19337 parent = die->parent;
19338 else
63d06c5c 19339 {
0114d602
DJ
19340 parent = spec_die->parent;
19341 cu = spec_cu;
63d06c5c 19342 }
0114d602
DJ
19343
19344 if (parent == NULL)
19345 return "";
98bfdba5
PA
19346 else if (parent->building_fullname)
19347 {
19348 const char *name;
19349 const char *parent_name;
19350
19351 /* It has been seen on RealView 2.2 built binaries,
19352 DW_TAG_template_type_param types actually _defined_ as
19353 children of the parent class:
19354
19355 enum E {};
19356 template class <class Enum> Class{};
19357 Class<enum E> class_e;
19358
19359 1: DW_TAG_class_type (Class)
19360 2: DW_TAG_enumeration_type (E)
19361 3: DW_TAG_enumerator (enum1:0)
19362 3: DW_TAG_enumerator (enum2:1)
19363 ...
19364 2: DW_TAG_template_type_param
19365 DW_AT_type DW_FORM_ref_udata (E)
19366
19367 Besides being broken debug info, it can put GDB into an
19368 infinite loop. Consider:
19369
19370 When we're building the full name for Class<E>, we'll start
19371 at Class, and go look over its template type parameters,
19372 finding E. We'll then try to build the full name of E, and
19373 reach here. We're now trying to build the full name of E,
19374 and look over the parent DIE for containing scope. In the
19375 broken case, if we followed the parent DIE of E, we'd again
19376 find Class, and once again go look at its template type
19377 arguments, etc., etc. Simply don't consider such parent die
19378 as source-level parent of this die (it can't be, the language
19379 doesn't allow it), and break the loop here. */
19380 name = dwarf2_name (die, cu);
19381 parent_name = dwarf2_name (parent, cu);
19382 complaint (&symfile_complaints,
19383 _("template param type '%s' defined within parent '%s'"),
19384 name ? name : "<unknown>",
19385 parent_name ? parent_name : "<unknown>");
19386 return "";
19387 }
63d06c5c 19388 else
0114d602
DJ
19389 switch (parent->tag)
19390 {
63d06c5c 19391 case DW_TAG_namespace:
0114d602 19392 parent_type = read_type_die (parent, cu);
acebe513
UW
19393 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19394 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19395 Work around this problem here. */
19396 if (cu->language == language_cplus
19397 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19398 return "";
0114d602
DJ
19399 /* We give a name to even anonymous namespaces. */
19400 return TYPE_TAG_NAME (parent_type);
63d06c5c 19401 case DW_TAG_class_type:
680b30c7 19402 case DW_TAG_interface_type:
63d06c5c 19403 case DW_TAG_structure_type:
0114d602 19404 case DW_TAG_union_type:
f55ee35c 19405 case DW_TAG_module:
0114d602
DJ
19406 parent_type = read_type_die (parent, cu);
19407 if (TYPE_TAG_NAME (parent_type) != NULL)
19408 return TYPE_TAG_NAME (parent_type);
19409 else
19410 /* An anonymous structure is only allowed non-static data
19411 members; no typedefs, no member functions, et cetera.
19412 So it does not need a prefix. */
19413 return "";
abc72ce4 19414 case DW_TAG_compile_unit:
95554aad 19415 case DW_TAG_partial_unit:
abc72ce4
DE
19416 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19417 if (cu->language == language_cplus
8b70b953 19418 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19419 && die->child != NULL
19420 && (die->tag == DW_TAG_class_type
19421 || die->tag == DW_TAG_structure_type
19422 || die->tag == DW_TAG_union_type))
19423 {
19424 char *name = guess_full_die_structure_name (die, cu);
19425 if (name != NULL)
19426 return name;
19427 }
19428 return "";
3d567982
TT
19429 case DW_TAG_enumeration_type:
19430 parent_type = read_type_die (parent, cu);
19431 if (TYPE_DECLARED_CLASS (parent_type))
19432 {
19433 if (TYPE_TAG_NAME (parent_type) != NULL)
19434 return TYPE_TAG_NAME (parent_type);
19435 return "";
19436 }
19437 /* Fall through. */
63d06c5c 19438 default:
8176b9b8 19439 return determine_prefix (parent, cu);
63d06c5c 19440 }
63d06c5c
DC
19441}
19442
3e43a32a
MS
19443/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19444 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19445 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19446 an obconcat, otherwise allocate storage for the result. The CU argument is
19447 used to determine the language and hence, the appropriate separator. */
987504bb 19448
f55ee35c 19449#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19450
19451static char *
f55ee35c
JK
19452typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19453 int physname, struct dwarf2_cu *cu)
63d06c5c 19454{
f55ee35c 19455 const char *lead = "";
5c315b68 19456 const char *sep;
63d06c5c 19457
3e43a32a
MS
19458 if (suffix == NULL || suffix[0] == '\0'
19459 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19460 sep = "";
19461 else if (cu->language == language_java)
19462 sep = ".";
45280282
IB
19463 else if (cu->language == language_d)
19464 {
19465 /* For D, the 'main' function could be defined in any module, but it
19466 should never be prefixed. */
19467 if (strcmp (suffix, "D main") == 0)
19468 {
19469 prefix = "";
19470 sep = "";
19471 }
19472 else
19473 sep = ".";
19474 }
f55ee35c
JK
19475 else if (cu->language == language_fortran && physname)
19476 {
19477 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19478 DW_AT_MIPS_linkage_name is preferred and used instead. */
19479
19480 lead = "__";
19481 sep = "_MOD_";
19482 }
987504bb
JJ
19483 else
19484 sep = "::";
63d06c5c 19485
6dd47d34
DE
19486 if (prefix == NULL)
19487 prefix = "";
19488 if (suffix == NULL)
19489 suffix = "";
19490
987504bb
JJ
19491 if (obs == NULL)
19492 {
3e43a32a 19493 char *retval
224c3ddb
SM
19494 = ((char *)
19495 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19496
f55ee35c
JK
19497 strcpy (retval, lead);
19498 strcat (retval, prefix);
6dd47d34
DE
19499 strcat (retval, sep);
19500 strcat (retval, suffix);
63d06c5c
DC
19501 return retval;
19502 }
987504bb
JJ
19503 else
19504 {
19505 /* We have an obstack. */
f55ee35c 19506 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19507 }
63d06c5c
DC
19508}
19509
c906108c
SS
19510/* Return sibling of die, NULL if no sibling. */
19511
f9aca02d 19512static struct die_info *
fba45db2 19513sibling_die (struct die_info *die)
c906108c 19514{
639d11d3 19515 return die->sibling;
c906108c
SS
19516}
19517
71c25dea
TT
19518/* Get name of a die, return NULL if not found. */
19519
15d034d0
TT
19520static const char *
19521dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19522 struct obstack *obstack)
19523{
19524 if (name && cu->language == language_cplus)
19525 {
19526 char *canon_name = cp_canonicalize_string (name);
19527
19528 if (canon_name != NULL)
19529 {
19530 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19531 name = (const char *) obstack_copy0 (obstack, canon_name,
19532 strlen (canon_name));
71c25dea
TT
19533 xfree (canon_name);
19534 }
19535 }
19536
19537 return name;
c906108c
SS
19538}
19539
96553a0c
DE
19540/* Get name of a die, return NULL if not found.
19541 Anonymous namespaces are converted to their magic string. */
9219021c 19542
15d034d0 19543static const char *
e142c38c 19544dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19545{
19546 struct attribute *attr;
19547
e142c38c 19548 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19549 if ((!attr || !DW_STRING (attr))
96553a0c 19550 && die->tag != DW_TAG_namespace
53832f31
TT
19551 && die->tag != DW_TAG_class_type
19552 && die->tag != DW_TAG_interface_type
19553 && die->tag != DW_TAG_structure_type
19554 && die->tag != DW_TAG_union_type)
71c25dea
TT
19555 return NULL;
19556
19557 switch (die->tag)
19558 {
19559 case DW_TAG_compile_unit:
95554aad 19560 case DW_TAG_partial_unit:
71c25dea
TT
19561 /* Compilation units have a DW_AT_name that is a filename, not
19562 a source language identifier. */
19563 case DW_TAG_enumeration_type:
19564 case DW_TAG_enumerator:
19565 /* These tags always have simple identifiers already; no need
19566 to canonicalize them. */
19567 return DW_STRING (attr);
907af001 19568
96553a0c
DE
19569 case DW_TAG_namespace:
19570 if (attr != NULL && DW_STRING (attr) != NULL)
19571 return DW_STRING (attr);
19572 return CP_ANONYMOUS_NAMESPACE_STR;
19573
418835cc
KS
19574 case DW_TAG_subprogram:
19575 /* Java constructors will all be named "<init>", so return
19576 the class name when we see this special case. */
19577 if (cu->language == language_java
19578 && DW_STRING (attr) != NULL
19579 && strcmp (DW_STRING (attr), "<init>") == 0)
19580 {
19581 struct dwarf2_cu *spec_cu = cu;
19582 struct die_info *spec_die;
19583
19584 /* GCJ will output '<init>' for Java constructor names.
19585 For this special case, return the name of the parent class. */
19586
cdc07690 19587 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19588 If so, use the name of the specified DIE. */
19589 spec_die = die_specification (die, &spec_cu);
19590 if (spec_die != NULL)
19591 return dwarf2_name (spec_die, spec_cu);
19592
19593 do
19594 {
19595 die = die->parent;
19596 if (die->tag == DW_TAG_class_type)
19597 return dwarf2_name (die, cu);
19598 }
95554aad
TT
19599 while (die->tag != DW_TAG_compile_unit
19600 && die->tag != DW_TAG_partial_unit);
418835cc 19601 }
907af001
UW
19602 break;
19603
19604 case DW_TAG_class_type:
19605 case DW_TAG_interface_type:
19606 case DW_TAG_structure_type:
19607 case DW_TAG_union_type:
19608 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19609 structures or unions. These were of the form "._%d" in GCC 4.1,
19610 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19611 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19612 if (attr && DW_STRING (attr)
61012eef
GB
19613 && (startswith (DW_STRING (attr), "._")
19614 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19615 return NULL;
53832f31
TT
19616
19617 /* GCC might emit a nameless typedef that has a linkage name. See
19618 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19619 if (!attr || DW_STRING (attr) == NULL)
19620 {
df5c6c50 19621 char *demangled = NULL;
53832f31
TT
19622
19623 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19624 if (attr == NULL)
19625 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19626
19627 if (attr == NULL || DW_STRING (attr) == NULL)
19628 return NULL;
19629
df5c6c50
JK
19630 /* Avoid demangling DW_STRING (attr) the second time on a second
19631 call for the same DIE. */
19632 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19633 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19634
19635 if (demangled)
19636 {
e6a959d6 19637 const char *base;
96408a79 19638
53832f31 19639 /* FIXME: we already did this for the partial symbol... */
34a68019 19640 DW_STRING (attr)
224c3ddb
SM
19641 = ((const char *)
19642 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19643 demangled, strlen (demangled)));
53832f31
TT
19644 DW_STRING_IS_CANONICAL (attr) = 1;
19645 xfree (demangled);
96408a79
SA
19646
19647 /* Strip any leading namespaces/classes, keep only the base name.
19648 DW_AT_name for named DIEs does not contain the prefixes. */
19649 base = strrchr (DW_STRING (attr), ':');
19650 if (base && base > DW_STRING (attr) && base[-1] == ':')
19651 return &base[1];
19652 else
19653 return DW_STRING (attr);
53832f31
TT
19654 }
19655 }
907af001
UW
19656 break;
19657
71c25dea 19658 default:
907af001
UW
19659 break;
19660 }
19661
19662 if (!DW_STRING_IS_CANONICAL (attr))
19663 {
19664 DW_STRING (attr)
19665 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19666 &cu->objfile->per_bfd->storage_obstack);
907af001 19667 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19668 }
907af001 19669 return DW_STRING (attr);
9219021c
DC
19670}
19671
19672/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19673 is none. *EXT_CU is the CU containing DIE on input, and the CU
19674 containing the return value on output. */
9219021c
DC
19675
19676static struct die_info *
f2f0e013 19677dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19678{
19679 struct attribute *attr;
9219021c 19680
f2f0e013 19681 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19682 if (attr == NULL)
19683 return NULL;
19684
f2f0e013 19685 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19686}
19687
c906108c
SS
19688/* Convert a DIE tag into its string name. */
19689
f39c6ffd 19690static const char *
aa1ee363 19691dwarf_tag_name (unsigned tag)
c906108c 19692{
f39c6ffd
TT
19693 const char *name = get_DW_TAG_name (tag);
19694
19695 if (name == NULL)
19696 return "DW_TAG_<unknown>";
19697
19698 return name;
c906108c
SS
19699}
19700
19701/* Convert a DWARF attribute code into its string name. */
19702
f39c6ffd 19703static const char *
aa1ee363 19704dwarf_attr_name (unsigned attr)
c906108c 19705{
f39c6ffd
TT
19706 const char *name;
19707
c764a876 19708#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19709 if (attr == DW_AT_MIPS_fde)
19710 return "DW_AT_MIPS_fde";
19711#else
19712 if (attr == DW_AT_HP_block_index)
19713 return "DW_AT_HP_block_index";
c764a876 19714#endif
f39c6ffd
TT
19715
19716 name = get_DW_AT_name (attr);
19717
19718 if (name == NULL)
19719 return "DW_AT_<unknown>";
19720
19721 return name;
c906108c
SS
19722}
19723
19724/* Convert a DWARF value form code into its string name. */
19725
f39c6ffd 19726static const char *
aa1ee363 19727dwarf_form_name (unsigned form)
c906108c 19728{
f39c6ffd
TT
19729 const char *name = get_DW_FORM_name (form);
19730
19731 if (name == NULL)
19732 return "DW_FORM_<unknown>";
19733
19734 return name;
c906108c
SS
19735}
19736
19737static char *
fba45db2 19738dwarf_bool_name (unsigned mybool)
c906108c
SS
19739{
19740 if (mybool)
19741 return "TRUE";
19742 else
19743 return "FALSE";
19744}
19745
19746/* Convert a DWARF type code into its string name. */
19747
f39c6ffd 19748static const char *
aa1ee363 19749dwarf_type_encoding_name (unsigned enc)
c906108c 19750{
f39c6ffd 19751 const char *name = get_DW_ATE_name (enc);
c906108c 19752
f39c6ffd
TT
19753 if (name == NULL)
19754 return "DW_ATE_<unknown>";
c906108c 19755
f39c6ffd 19756 return name;
c906108c 19757}
c906108c 19758
f9aca02d 19759static void
d97bc12b 19760dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19761{
19762 unsigned int i;
19763
d97bc12b
DE
19764 print_spaces (indent, f);
19765 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19766 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19767
19768 if (die->parent != NULL)
19769 {
19770 print_spaces (indent, f);
19771 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19772 die->parent->offset.sect_off);
d97bc12b
DE
19773 }
19774
19775 print_spaces (indent, f);
19776 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19777 dwarf_bool_name (die->child != NULL));
c906108c 19778
d97bc12b
DE
19779 print_spaces (indent, f);
19780 fprintf_unfiltered (f, " attributes:\n");
19781
c906108c
SS
19782 for (i = 0; i < die->num_attrs; ++i)
19783 {
d97bc12b
DE
19784 print_spaces (indent, f);
19785 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19786 dwarf_attr_name (die->attrs[i].name),
19787 dwarf_form_name (die->attrs[i].form));
d97bc12b 19788
c906108c
SS
19789 switch (die->attrs[i].form)
19790 {
c906108c 19791 case DW_FORM_addr:
3019eac3 19792 case DW_FORM_GNU_addr_index:
d97bc12b 19793 fprintf_unfiltered (f, "address: ");
5af949e3 19794 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19795 break;
19796 case DW_FORM_block2:
19797 case DW_FORM_block4:
19798 case DW_FORM_block:
19799 case DW_FORM_block1:
56eb65bd
SP
19800 fprintf_unfiltered (f, "block: size %s",
19801 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19802 break;
2dc7f7b3 19803 case DW_FORM_exprloc:
56eb65bd
SP
19804 fprintf_unfiltered (f, "expression: size %s",
19805 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19806 break;
4568ecf9
DE
19807 case DW_FORM_ref_addr:
19808 fprintf_unfiltered (f, "ref address: ");
19809 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19810 break;
36586728
TT
19811 case DW_FORM_GNU_ref_alt:
19812 fprintf_unfiltered (f, "alt ref address: ");
19813 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19814 break;
10b3939b
DJ
19815 case DW_FORM_ref1:
19816 case DW_FORM_ref2:
19817 case DW_FORM_ref4:
4568ecf9
DE
19818 case DW_FORM_ref8:
19819 case DW_FORM_ref_udata:
d97bc12b 19820 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19821 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19822 break;
c906108c
SS
19823 case DW_FORM_data1:
19824 case DW_FORM_data2:
19825 case DW_FORM_data4:
ce5d95e1 19826 case DW_FORM_data8:
c906108c
SS
19827 case DW_FORM_udata:
19828 case DW_FORM_sdata:
43bbcdc2
PH
19829 fprintf_unfiltered (f, "constant: %s",
19830 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19831 break;
2dc7f7b3
TT
19832 case DW_FORM_sec_offset:
19833 fprintf_unfiltered (f, "section offset: %s",
19834 pulongest (DW_UNSND (&die->attrs[i])));
19835 break;
55f1336d 19836 case DW_FORM_ref_sig8:
ac9ec31b
DE
19837 fprintf_unfiltered (f, "signature: %s",
19838 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19839 break;
c906108c 19840 case DW_FORM_string:
4bdf3d34 19841 case DW_FORM_strp:
3019eac3 19842 case DW_FORM_GNU_str_index:
36586728 19843 case DW_FORM_GNU_strp_alt:
8285870a 19844 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19845 DW_STRING (&die->attrs[i])
8285870a
JK
19846 ? DW_STRING (&die->attrs[i]) : "",
19847 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19848 break;
19849 case DW_FORM_flag:
19850 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19851 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19852 else
d97bc12b 19853 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19854 break;
2dc7f7b3
TT
19855 case DW_FORM_flag_present:
19856 fprintf_unfiltered (f, "flag: TRUE");
19857 break;
a8329558 19858 case DW_FORM_indirect:
0963b4bd
MS
19859 /* The reader will have reduced the indirect form to
19860 the "base form" so this form should not occur. */
3e43a32a
MS
19861 fprintf_unfiltered (f,
19862 "unexpected attribute form: DW_FORM_indirect");
a8329558 19863 break;
c906108c 19864 default:
d97bc12b 19865 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19866 die->attrs[i].form);
d97bc12b 19867 break;
c906108c 19868 }
d97bc12b 19869 fprintf_unfiltered (f, "\n");
c906108c
SS
19870 }
19871}
19872
f9aca02d 19873static void
d97bc12b 19874dump_die_for_error (struct die_info *die)
c906108c 19875{
d97bc12b
DE
19876 dump_die_shallow (gdb_stderr, 0, die);
19877}
19878
19879static void
19880dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19881{
19882 int indent = level * 4;
19883
19884 gdb_assert (die != NULL);
19885
19886 if (level >= max_level)
19887 return;
19888
19889 dump_die_shallow (f, indent, die);
19890
19891 if (die->child != NULL)
c906108c 19892 {
d97bc12b
DE
19893 print_spaces (indent, f);
19894 fprintf_unfiltered (f, " Children:");
19895 if (level + 1 < max_level)
19896 {
19897 fprintf_unfiltered (f, "\n");
19898 dump_die_1 (f, level + 1, max_level, die->child);
19899 }
19900 else
19901 {
3e43a32a
MS
19902 fprintf_unfiltered (f,
19903 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19904 }
19905 }
19906
19907 if (die->sibling != NULL && level > 0)
19908 {
19909 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19910 }
19911}
19912
d97bc12b
DE
19913/* This is called from the pdie macro in gdbinit.in.
19914 It's not static so gcc will keep a copy callable from gdb. */
19915
19916void
19917dump_die (struct die_info *die, int max_level)
19918{
19919 dump_die_1 (gdb_stdlog, 0, max_level, die);
19920}
19921
f9aca02d 19922static void
51545339 19923store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19924{
51545339 19925 void **slot;
c906108c 19926
b64f50a1
JK
19927 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19928 INSERT);
51545339
DJ
19929
19930 *slot = die;
c906108c
SS
19931}
19932
b64f50a1
JK
19933/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19934 required kind. */
19935
19936static sect_offset
ff39bb5e 19937dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19938{
4568ecf9 19939 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19940
7771576e 19941 if (attr_form_is_ref (attr))
b64f50a1 19942 return retval;
93311388 19943
b64f50a1 19944 retval.sect_off = 0;
93311388
DE
19945 complaint (&symfile_complaints,
19946 _("unsupported die ref attribute form: '%s'"),
19947 dwarf_form_name (attr->form));
b64f50a1 19948 return retval;
c906108c
SS
19949}
19950
43bbcdc2
PH
19951/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19952 * the value held by the attribute is not constant. */
a02abb62 19953
43bbcdc2 19954static LONGEST
ff39bb5e 19955dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19956{
19957 if (attr->form == DW_FORM_sdata)
19958 return DW_SND (attr);
19959 else if (attr->form == DW_FORM_udata
19960 || attr->form == DW_FORM_data1
19961 || attr->form == DW_FORM_data2
19962 || attr->form == DW_FORM_data4
19963 || attr->form == DW_FORM_data8)
19964 return DW_UNSND (attr);
19965 else
19966 {
3e43a32a
MS
19967 complaint (&symfile_complaints,
19968 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19969 dwarf_form_name (attr->form));
19970 return default_value;
19971 }
19972}
19973
348e048f
DE
19974/* Follow reference or signature attribute ATTR of SRC_DIE.
19975 On entry *REF_CU is the CU of SRC_DIE.
19976 On exit *REF_CU is the CU of the result. */
19977
19978static struct die_info *
ff39bb5e 19979follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19980 struct dwarf2_cu **ref_cu)
19981{
19982 struct die_info *die;
19983
7771576e 19984 if (attr_form_is_ref (attr))
348e048f 19985 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19986 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19987 die = follow_die_sig (src_die, attr, ref_cu);
19988 else
19989 {
19990 dump_die_for_error (src_die);
19991 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19992 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19993 }
19994
19995 return die;
03dd20cc
DJ
19996}
19997
5c631832 19998/* Follow reference OFFSET.
673bfd45
DE
19999 On entry *REF_CU is the CU of the source die referencing OFFSET.
20000 On exit *REF_CU is the CU of the result.
20001 Returns NULL if OFFSET is invalid. */
f504f079 20002
f9aca02d 20003static struct die_info *
36586728
TT
20004follow_die_offset (sect_offset offset, int offset_in_dwz,
20005 struct dwarf2_cu **ref_cu)
c906108c 20006{
10b3939b 20007 struct die_info temp_die;
f2f0e013 20008 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20009
348e048f
DE
20010 gdb_assert (cu->per_cu != NULL);
20011
98bfdba5
PA
20012 target_cu = cu;
20013
3019eac3 20014 if (cu->per_cu->is_debug_types)
348e048f
DE
20015 {
20016 /* .debug_types CUs cannot reference anything outside their CU.
20017 If they need to, they have to reference a signatured type via
55f1336d 20018 DW_FORM_ref_sig8. */
348e048f 20019 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20020 return NULL;
348e048f 20021 }
36586728
TT
20022 else if (offset_in_dwz != cu->per_cu->is_dwz
20023 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20024 {
20025 struct dwarf2_per_cu_data *per_cu;
9a619af0 20026
36586728
TT
20027 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20028 cu->objfile);
03dd20cc
DJ
20029
20030 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20031 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20032 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20033
10b3939b
DJ
20034 target_cu = per_cu->cu;
20035 }
98bfdba5
PA
20036 else if (cu->dies == NULL)
20037 {
20038 /* We're loading full DIEs during partial symbol reading. */
20039 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20040 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20041 }
c906108c 20042
f2f0e013 20043 *ref_cu = target_cu;
51545339 20044 temp_die.offset = offset;
9a3c8263
SM
20045 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20046 &temp_die, offset.sect_off);
5c631832 20047}
10b3939b 20048
5c631832
JK
20049/* Follow reference attribute ATTR of SRC_DIE.
20050 On entry *REF_CU is the CU of SRC_DIE.
20051 On exit *REF_CU is the CU of the result. */
20052
20053static struct die_info *
ff39bb5e 20054follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20055 struct dwarf2_cu **ref_cu)
20056{
b64f50a1 20057 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20058 struct dwarf2_cu *cu = *ref_cu;
20059 struct die_info *die;
20060
36586728
TT
20061 die = follow_die_offset (offset,
20062 (attr->form == DW_FORM_GNU_ref_alt
20063 || cu->per_cu->is_dwz),
20064 ref_cu);
5c631832
JK
20065 if (!die)
20066 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20067 "at 0x%x [in module %s]"),
4262abfb
JK
20068 offset.sect_off, src_die->offset.sect_off,
20069 objfile_name (cu->objfile));
348e048f 20070
5c631832
JK
20071 return die;
20072}
20073
d83e736b
JK
20074/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20075 Returned value is intended for DW_OP_call*. Returned
20076 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20077
20078struct dwarf2_locexpr_baton
8b9737bf
TT
20079dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20080 struct dwarf2_per_cu_data *per_cu,
20081 CORE_ADDR (*get_frame_pc) (void *baton),
20082 void *baton)
5c631832 20083{
918dd910 20084 struct dwarf2_cu *cu;
5c631832
JK
20085 struct die_info *die;
20086 struct attribute *attr;
20087 struct dwarf2_locexpr_baton retval;
20088
8cf6f0b1
TT
20089 dw2_setup (per_cu->objfile);
20090
918dd910
JK
20091 if (per_cu->cu == NULL)
20092 load_cu (per_cu);
20093 cu = per_cu->cu;
cc12ce38
DE
20094 if (cu == NULL)
20095 {
20096 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20097 Instead just throw an error, not much else we can do. */
20098 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20099 offset.sect_off, objfile_name (per_cu->objfile));
20100 }
918dd910 20101
36586728 20102 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20103 if (!die)
20104 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20105 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20106
20107 attr = dwarf2_attr (die, DW_AT_location, cu);
20108 if (!attr)
20109 {
e103e986
JK
20110 /* DWARF: "If there is no such attribute, then there is no effect.".
20111 DATA is ignored if SIZE is 0. */
5c631832 20112
e103e986 20113 retval.data = NULL;
5c631832
JK
20114 retval.size = 0;
20115 }
8cf6f0b1
TT
20116 else if (attr_form_is_section_offset (attr))
20117 {
20118 struct dwarf2_loclist_baton loclist_baton;
20119 CORE_ADDR pc = (*get_frame_pc) (baton);
20120 size_t size;
20121
20122 fill_in_loclist_baton (cu, &loclist_baton, attr);
20123
20124 retval.data = dwarf2_find_location_expression (&loclist_baton,
20125 &size, pc);
20126 retval.size = size;
20127 }
5c631832
JK
20128 else
20129 {
20130 if (!attr_form_is_block (attr))
20131 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20132 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20133 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20134
20135 retval.data = DW_BLOCK (attr)->data;
20136 retval.size = DW_BLOCK (attr)->size;
20137 }
20138 retval.per_cu = cu->per_cu;
918dd910 20139
918dd910
JK
20140 age_cached_comp_units ();
20141
5c631832 20142 return retval;
348e048f
DE
20143}
20144
8b9737bf
TT
20145/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20146 offset. */
20147
20148struct dwarf2_locexpr_baton
20149dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20150 struct dwarf2_per_cu_data *per_cu,
20151 CORE_ADDR (*get_frame_pc) (void *baton),
20152 void *baton)
20153{
20154 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20155
20156 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20157}
20158
b6807d98
TT
20159/* Write a constant of a given type as target-ordered bytes into
20160 OBSTACK. */
20161
20162static const gdb_byte *
20163write_constant_as_bytes (struct obstack *obstack,
20164 enum bfd_endian byte_order,
20165 struct type *type,
20166 ULONGEST value,
20167 LONGEST *len)
20168{
20169 gdb_byte *result;
20170
20171 *len = TYPE_LENGTH (type);
224c3ddb 20172 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20173 store_unsigned_integer (result, *len, byte_order, value);
20174
20175 return result;
20176}
20177
20178/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20179 pointer to the constant bytes and set LEN to the length of the
20180 data. If memory is needed, allocate it on OBSTACK. If the DIE
20181 does not have a DW_AT_const_value, return NULL. */
20182
20183const gdb_byte *
20184dwarf2_fetch_constant_bytes (sect_offset offset,
20185 struct dwarf2_per_cu_data *per_cu,
20186 struct obstack *obstack,
20187 LONGEST *len)
20188{
20189 struct dwarf2_cu *cu;
20190 struct die_info *die;
20191 struct attribute *attr;
20192 const gdb_byte *result = NULL;
20193 struct type *type;
20194 LONGEST value;
20195 enum bfd_endian byte_order;
20196
20197 dw2_setup (per_cu->objfile);
20198
20199 if (per_cu->cu == NULL)
20200 load_cu (per_cu);
20201 cu = per_cu->cu;
cc12ce38
DE
20202 if (cu == NULL)
20203 {
20204 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20205 Instead just throw an error, not much else we can do. */
20206 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20207 offset.sect_off, objfile_name (per_cu->objfile));
20208 }
b6807d98
TT
20209
20210 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20211 if (!die)
20212 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20213 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20214
20215
20216 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20217 if (attr == NULL)
20218 return NULL;
20219
20220 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20221 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20222
20223 switch (attr->form)
20224 {
20225 case DW_FORM_addr:
20226 case DW_FORM_GNU_addr_index:
20227 {
20228 gdb_byte *tem;
20229
20230 *len = cu->header.addr_size;
224c3ddb 20231 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20232 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20233 result = tem;
20234 }
20235 break;
20236 case DW_FORM_string:
20237 case DW_FORM_strp:
20238 case DW_FORM_GNU_str_index:
20239 case DW_FORM_GNU_strp_alt:
20240 /* DW_STRING is already allocated on the objfile obstack, point
20241 directly to it. */
20242 result = (const gdb_byte *) DW_STRING (attr);
20243 *len = strlen (DW_STRING (attr));
20244 break;
20245 case DW_FORM_block1:
20246 case DW_FORM_block2:
20247 case DW_FORM_block4:
20248 case DW_FORM_block:
20249 case DW_FORM_exprloc:
20250 result = DW_BLOCK (attr)->data;
20251 *len = DW_BLOCK (attr)->size;
20252 break;
20253
20254 /* The DW_AT_const_value attributes are supposed to carry the
20255 symbol's value "represented as it would be on the target
20256 architecture." By the time we get here, it's already been
20257 converted to host endianness, so we just need to sign- or
20258 zero-extend it as appropriate. */
20259 case DW_FORM_data1:
20260 type = die_type (die, cu);
20261 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20262 if (result == NULL)
20263 result = write_constant_as_bytes (obstack, byte_order,
20264 type, value, len);
20265 break;
20266 case DW_FORM_data2:
20267 type = die_type (die, cu);
20268 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20269 if (result == NULL)
20270 result = write_constant_as_bytes (obstack, byte_order,
20271 type, value, len);
20272 break;
20273 case DW_FORM_data4:
20274 type = die_type (die, cu);
20275 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20276 if (result == NULL)
20277 result = write_constant_as_bytes (obstack, byte_order,
20278 type, value, len);
20279 break;
20280 case DW_FORM_data8:
20281 type = die_type (die, cu);
20282 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20283 if (result == NULL)
20284 result = write_constant_as_bytes (obstack, byte_order,
20285 type, value, len);
20286 break;
20287
20288 case DW_FORM_sdata:
20289 type = die_type (die, cu);
20290 result = write_constant_as_bytes (obstack, byte_order,
20291 type, DW_SND (attr), len);
20292 break;
20293
20294 case DW_FORM_udata:
20295 type = die_type (die, cu);
20296 result = write_constant_as_bytes (obstack, byte_order,
20297 type, DW_UNSND (attr), len);
20298 break;
20299
20300 default:
20301 complaint (&symfile_complaints,
20302 _("unsupported const value attribute form: '%s'"),
20303 dwarf_form_name (attr->form));
20304 break;
20305 }
20306
20307 return result;
20308}
20309
8a9b8146
TT
20310/* Return the type of the DIE at DIE_OFFSET in the CU named by
20311 PER_CU. */
20312
20313struct type *
b64f50a1 20314dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20315 struct dwarf2_per_cu_data *per_cu)
20316{
b64f50a1
JK
20317 sect_offset die_offset_sect;
20318
8a9b8146 20319 dw2_setup (per_cu->objfile);
b64f50a1
JK
20320
20321 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20322 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20323}
20324
ac9ec31b 20325/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20326 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20327 On exit *REF_CU is the CU of the result.
20328 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20329
20330static struct die_info *
ac9ec31b
DE
20331follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20332 struct dwarf2_cu **ref_cu)
348e048f
DE
20333{
20334 struct objfile *objfile = (*ref_cu)->objfile;
20335 struct die_info temp_die;
348e048f
DE
20336 struct dwarf2_cu *sig_cu;
20337 struct die_info *die;
20338
ac9ec31b
DE
20339 /* While it might be nice to assert sig_type->type == NULL here,
20340 we can get here for DW_AT_imported_declaration where we need
20341 the DIE not the type. */
348e048f
DE
20342
20343 /* If necessary, add it to the queue and load its DIEs. */
20344
95554aad 20345 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20346 read_signatured_type (sig_type);
348e048f 20347
348e048f 20348 sig_cu = sig_type->per_cu.cu;
69d751e3 20349 gdb_assert (sig_cu != NULL);
3019eac3
DE
20350 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20351 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20352 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20353 temp_die.offset.sect_off);
348e048f
DE
20354 if (die)
20355 {
796a7ff8
DE
20356 /* For .gdb_index version 7 keep track of included TUs.
20357 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20358 if (dwarf2_per_objfile->index_table != NULL
20359 && dwarf2_per_objfile->index_table->version <= 7)
20360 {
20361 VEC_safe_push (dwarf2_per_cu_ptr,
20362 (*ref_cu)->per_cu->imported_symtabs,
20363 sig_cu->per_cu);
20364 }
20365
348e048f
DE
20366 *ref_cu = sig_cu;
20367 return die;
20368 }
20369
ac9ec31b
DE
20370 return NULL;
20371}
20372
20373/* Follow signatured type referenced by ATTR in SRC_DIE.
20374 On entry *REF_CU is the CU of SRC_DIE.
20375 On exit *REF_CU is the CU of the result.
20376 The result is the DIE of the type.
20377 If the referenced type cannot be found an error is thrown. */
20378
20379static struct die_info *
ff39bb5e 20380follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20381 struct dwarf2_cu **ref_cu)
20382{
20383 ULONGEST signature = DW_SIGNATURE (attr);
20384 struct signatured_type *sig_type;
20385 struct die_info *die;
20386
20387 gdb_assert (attr->form == DW_FORM_ref_sig8);
20388
a2ce51a0 20389 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20390 /* sig_type will be NULL if the signatured type is missing from
20391 the debug info. */
20392 if (sig_type == NULL)
20393 {
20394 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20395 " from DIE at 0x%x [in module %s]"),
20396 hex_string (signature), src_die->offset.sect_off,
4262abfb 20397 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20398 }
20399
20400 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20401 if (die == NULL)
20402 {
20403 dump_die_for_error (src_die);
20404 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20405 " from DIE at 0x%x [in module %s]"),
20406 hex_string (signature), src_die->offset.sect_off,
4262abfb 20407 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20408 }
20409
20410 return die;
20411}
20412
20413/* Get the type specified by SIGNATURE referenced in DIE/CU,
20414 reading in and processing the type unit if necessary. */
20415
20416static struct type *
20417get_signatured_type (struct die_info *die, ULONGEST signature,
20418 struct dwarf2_cu *cu)
20419{
20420 struct signatured_type *sig_type;
20421 struct dwarf2_cu *type_cu;
20422 struct die_info *type_die;
20423 struct type *type;
20424
a2ce51a0 20425 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20426 /* sig_type will be NULL if the signatured type is missing from
20427 the debug info. */
20428 if (sig_type == NULL)
20429 {
20430 complaint (&symfile_complaints,
20431 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20432 " from DIE at 0x%x [in module %s]"),
20433 hex_string (signature), die->offset.sect_off,
4262abfb 20434 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20435 return build_error_marker_type (cu, die);
20436 }
20437
20438 /* If we already know the type we're done. */
20439 if (sig_type->type != NULL)
20440 return sig_type->type;
20441
20442 type_cu = cu;
20443 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20444 if (type_die != NULL)
20445 {
20446 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20447 is created. This is important, for example, because for c++ classes
20448 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20449 type = read_type_die (type_die, type_cu);
20450 if (type == NULL)
20451 {
20452 complaint (&symfile_complaints,
20453 _("Dwarf Error: Cannot build signatured type %s"
20454 " referenced from DIE at 0x%x [in module %s]"),
20455 hex_string (signature), die->offset.sect_off,
4262abfb 20456 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20457 type = build_error_marker_type (cu, die);
20458 }
20459 }
20460 else
20461 {
20462 complaint (&symfile_complaints,
20463 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20464 " from DIE at 0x%x [in module %s]"),
20465 hex_string (signature), die->offset.sect_off,
4262abfb 20466 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20467 type = build_error_marker_type (cu, die);
20468 }
20469 sig_type->type = type;
20470
20471 return type;
20472}
20473
20474/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20475 reading in and processing the type unit if necessary. */
20476
20477static struct type *
ff39bb5e 20478get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20479 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20480{
20481 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20482 if (attr_form_is_ref (attr))
ac9ec31b
DE
20483 {
20484 struct dwarf2_cu *type_cu = cu;
20485 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20486
20487 return read_type_die (type_die, type_cu);
20488 }
20489 else if (attr->form == DW_FORM_ref_sig8)
20490 {
20491 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20492 }
20493 else
20494 {
20495 complaint (&symfile_complaints,
20496 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20497 " at 0x%x [in module %s]"),
20498 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20499 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20500 return build_error_marker_type (cu, die);
20501 }
348e048f
DE
20502}
20503
e5fe5e75 20504/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20505
20506static void
e5fe5e75 20507load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20508{
52dc124a 20509 struct signatured_type *sig_type;
348e048f 20510
f4dc4d17
DE
20511 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20512 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20513
6721b2ec
DE
20514 /* We have the per_cu, but we need the signatured_type.
20515 Fortunately this is an easy translation. */
20516 gdb_assert (per_cu->is_debug_types);
20517 sig_type = (struct signatured_type *) per_cu;
348e048f 20518
6721b2ec 20519 gdb_assert (per_cu->cu == NULL);
348e048f 20520
52dc124a 20521 read_signatured_type (sig_type);
348e048f 20522
6721b2ec 20523 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20524}
20525
dee91e82
DE
20526/* die_reader_func for read_signatured_type.
20527 This is identical to load_full_comp_unit_reader,
20528 but is kept separate for now. */
348e048f
DE
20529
20530static void
dee91e82 20531read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20532 const gdb_byte *info_ptr,
dee91e82
DE
20533 struct die_info *comp_unit_die,
20534 int has_children,
20535 void *data)
348e048f 20536{
dee91e82 20537 struct dwarf2_cu *cu = reader->cu;
348e048f 20538
dee91e82
DE
20539 gdb_assert (cu->die_hash == NULL);
20540 cu->die_hash =
20541 htab_create_alloc_ex (cu->header.length / 12,
20542 die_hash,
20543 die_eq,
20544 NULL,
20545 &cu->comp_unit_obstack,
20546 hashtab_obstack_allocate,
20547 dummy_obstack_deallocate);
348e048f 20548
dee91e82
DE
20549 if (has_children)
20550 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20551 &info_ptr, comp_unit_die);
20552 cu->dies = comp_unit_die;
20553 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20554
20555 /* We try not to read any attributes in this function, because not
9cdd5dbd 20556 all CUs needed for references have been loaded yet, and symbol
348e048f 20557 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20558 or we won't be able to build types correctly.
20559 Similarly, if we do not read the producer, we can not apply
20560 producer-specific interpretation. */
95554aad 20561 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20562}
348e048f 20563
3019eac3
DE
20564/* Read in a signatured type and build its CU and DIEs.
20565 If the type is a stub for the real type in a DWO file,
20566 read in the real type from the DWO file as well. */
dee91e82
DE
20567
20568static void
20569read_signatured_type (struct signatured_type *sig_type)
20570{
20571 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20572
3019eac3 20573 gdb_assert (per_cu->is_debug_types);
dee91e82 20574 gdb_assert (per_cu->cu == NULL);
348e048f 20575
f4dc4d17
DE
20576 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20577 read_signatured_type_reader, NULL);
7ee85ab1 20578 sig_type->per_cu.tu_read = 1;
c906108c
SS
20579}
20580
c906108c
SS
20581/* Decode simple location descriptions.
20582 Given a pointer to a dwarf block that defines a location, compute
20583 the location and return the value.
20584
4cecd739
DJ
20585 NOTE drow/2003-11-18: This function is called in two situations
20586 now: for the address of static or global variables (partial symbols
20587 only) and for offsets into structures which are expected to be
20588 (more or less) constant. The partial symbol case should go away,
20589 and only the constant case should remain. That will let this
20590 function complain more accurately. A few special modes are allowed
20591 without complaint for global variables (for instance, global
20592 register values and thread-local values).
c906108c
SS
20593
20594 A location description containing no operations indicates that the
4cecd739 20595 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20596 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20597 callers will only want a very basic result and this can become a
21ae7a4d
JK
20598 complaint.
20599
20600 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20601
20602static CORE_ADDR
e7c27a73 20603decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20604{
e7c27a73 20605 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20606 size_t i;
20607 size_t size = blk->size;
d521ce57 20608 const gdb_byte *data = blk->data;
21ae7a4d
JK
20609 CORE_ADDR stack[64];
20610 int stacki;
20611 unsigned int bytes_read, unsnd;
20612 gdb_byte op;
c906108c 20613
21ae7a4d
JK
20614 i = 0;
20615 stacki = 0;
20616 stack[stacki] = 0;
20617 stack[++stacki] = 0;
20618
20619 while (i < size)
20620 {
20621 op = data[i++];
20622 switch (op)
20623 {
20624 case DW_OP_lit0:
20625 case DW_OP_lit1:
20626 case DW_OP_lit2:
20627 case DW_OP_lit3:
20628 case DW_OP_lit4:
20629 case DW_OP_lit5:
20630 case DW_OP_lit6:
20631 case DW_OP_lit7:
20632 case DW_OP_lit8:
20633 case DW_OP_lit9:
20634 case DW_OP_lit10:
20635 case DW_OP_lit11:
20636 case DW_OP_lit12:
20637 case DW_OP_lit13:
20638 case DW_OP_lit14:
20639 case DW_OP_lit15:
20640 case DW_OP_lit16:
20641 case DW_OP_lit17:
20642 case DW_OP_lit18:
20643 case DW_OP_lit19:
20644 case DW_OP_lit20:
20645 case DW_OP_lit21:
20646 case DW_OP_lit22:
20647 case DW_OP_lit23:
20648 case DW_OP_lit24:
20649 case DW_OP_lit25:
20650 case DW_OP_lit26:
20651 case DW_OP_lit27:
20652 case DW_OP_lit28:
20653 case DW_OP_lit29:
20654 case DW_OP_lit30:
20655 case DW_OP_lit31:
20656 stack[++stacki] = op - DW_OP_lit0;
20657 break;
f1bea926 20658
21ae7a4d
JK
20659 case DW_OP_reg0:
20660 case DW_OP_reg1:
20661 case DW_OP_reg2:
20662 case DW_OP_reg3:
20663 case DW_OP_reg4:
20664 case DW_OP_reg5:
20665 case DW_OP_reg6:
20666 case DW_OP_reg7:
20667 case DW_OP_reg8:
20668 case DW_OP_reg9:
20669 case DW_OP_reg10:
20670 case DW_OP_reg11:
20671 case DW_OP_reg12:
20672 case DW_OP_reg13:
20673 case DW_OP_reg14:
20674 case DW_OP_reg15:
20675 case DW_OP_reg16:
20676 case DW_OP_reg17:
20677 case DW_OP_reg18:
20678 case DW_OP_reg19:
20679 case DW_OP_reg20:
20680 case DW_OP_reg21:
20681 case DW_OP_reg22:
20682 case DW_OP_reg23:
20683 case DW_OP_reg24:
20684 case DW_OP_reg25:
20685 case DW_OP_reg26:
20686 case DW_OP_reg27:
20687 case DW_OP_reg28:
20688 case DW_OP_reg29:
20689 case DW_OP_reg30:
20690 case DW_OP_reg31:
20691 stack[++stacki] = op - DW_OP_reg0;
20692 if (i < size)
20693 dwarf2_complex_location_expr_complaint ();
20694 break;
c906108c 20695
21ae7a4d
JK
20696 case DW_OP_regx:
20697 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20698 i += bytes_read;
20699 stack[++stacki] = unsnd;
20700 if (i < size)
20701 dwarf2_complex_location_expr_complaint ();
20702 break;
c906108c 20703
21ae7a4d
JK
20704 case DW_OP_addr:
20705 stack[++stacki] = read_address (objfile->obfd, &data[i],
20706 cu, &bytes_read);
20707 i += bytes_read;
20708 break;
d53d4ac5 20709
21ae7a4d
JK
20710 case DW_OP_const1u:
20711 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20712 i += 1;
20713 break;
20714
20715 case DW_OP_const1s:
20716 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20717 i += 1;
20718 break;
20719
20720 case DW_OP_const2u:
20721 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20722 i += 2;
20723 break;
20724
20725 case DW_OP_const2s:
20726 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20727 i += 2;
20728 break;
d53d4ac5 20729
21ae7a4d
JK
20730 case DW_OP_const4u:
20731 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20732 i += 4;
20733 break;
20734
20735 case DW_OP_const4s:
20736 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20737 i += 4;
20738 break;
20739
585861ea
JK
20740 case DW_OP_const8u:
20741 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20742 i += 8;
20743 break;
20744
21ae7a4d
JK
20745 case DW_OP_constu:
20746 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20747 &bytes_read);
20748 i += bytes_read;
20749 break;
20750
20751 case DW_OP_consts:
20752 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20753 i += bytes_read;
20754 break;
20755
20756 case DW_OP_dup:
20757 stack[stacki + 1] = stack[stacki];
20758 stacki++;
20759 break;
20760
20761 case DW_OP_plus:
20762 stack[stacki - 1] += stack[stacki];
20763 stacki--;
20764 break;
20765
20766 case DW_OP_plus_uconst:
20767 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20768 &bytes_read);
20769 i += bytes_read;
20770 break;
20771
20772 case DW_OP_minus:
20773 stack[stacki - 1] -= stack[stacki];
20774 stacki--;
20775 break;
20776
20777 case DW_OP_deref:
20778 /* If we're not the last op, then we definitely can't encode
20779 this using GDB's address_class enum. This is valid for partial
20780 global symbols, although the variable's address will be bogus
20781 in the psymtab. */
20782 if (i < size)
20783 dwarf2_complex_location_expr_complaint ();
20784 break;
20785
20786 case DW_OP_GNU_push_tls_address:
20787 /* The top of the stack has the offset from the beginning
20788 of the thread control block at which the variable is located. */
20789 /* Nothing should follow this operator, so the top of stack would
20790 be returned. */
20791 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20792 address will be bogus in the psymtab. Make it always at least
20793 non-zero to not look as a variable garbage collected by linker
20794 which have DW_OP_addr 0. */
21ae7a4d
JK
20795 if (i < size)
20796 dwarf2_complex_location_expr_complaint ();
585861ea 20797 stack[stacki]++;
21ae7a4d
JK
20798 break;
20799
20800 case DW_OP_GNU_uninit:
20801 break;
20802
3019eac3 20803 case DW_OP_GNU_addr_index:
49f6c839 20804 case DW_OP_GNU_const_index:
3019eac3
DE
20805 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20806 &bytes_read);
20807 i += bytes_read;
20808 break;
20809
21ae7a4d
JK
20810 default:
20811 {
f39c6ffd 20812 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20813
20814 if (name)
20815 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20816 name);
20817 else
20818 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20819 op);
20820 }
20821
20822 return (stack[stacki]);
d53d4ac5 20823 }
3c6e0cb3 20824
21ae7a4d
JK
20825 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20826 outside of the allocated space. Also enforce minimum>0. */
20827 if (stacki >= ARRAY_SIZE (stack) - 1)
20828 {
20829 complaint (&symfile_complaints,
20830 _("location description stack overflow"));
20831 return 0;
20832 }
20833
20834 if (stacki <= 0)
20835 {
20836 complaint (&symfile_complaints,
20837 _("location description stack underflow"));
20838 return 0;
20839 }
20840 }
20841 return (stack[stacki]);
c906108c
SS
20842}
20843
20844/* memory allocation interface */
20845
c906108c 20846static struct dwarf_block *
7b5a2f43 20847dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20848{
8d749320 20849 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20850}
20851
c906108c 20852static struct die_info *
b60c80d6 20853dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20854{
20855 struct die_info *die;
b60c80d6
DJ
20856 size_t size = sizeof (struct die_info);
20857
20858 if (num_attrs > 1)
20859 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20860
b60c80d6 20861 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20862 memset (die, 0, sizeof (struct die_info));
20863 return (die);
20864}
2e276125
JB
20865
20866\f
20867/* Macro support. */
20868
233d95b5
JK
20869/* Return file name relative to the compilation directory of file number I in
20870 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20871 responsible for freeing it. */
233d95b5 20872
2e276125 20873static char *
233d95b5 20874file_file_name (int file, struct line_header *lh)
2e276125 20875{
6a83a1e6
EZ
20876 /* Is the file number a valid index into the line header's file name
20877 table? Remember that file numbers start with one, not zero. */
20878 if (1 <= file && file <= lh->num_file_names)
20879 {
20880 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20881
afa6c9ab
SL
20882 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20883 || lh->include_dirs == NULL)
6a83a1e6 20884 return xstrdup (fe->name);
233d95b5
JK
20885 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20886 fe->name, NULL);
6a83a1e6 20887 }
2e276125
JB
20888 else
20889 {
6a83a1e6
EZ
20890 /* The compiler produced a bogus file number. We can at least
20891 record the macro definitions made in the file, even if we
20892 won't be able to find the file by name. */
20893 char fake_name[80];
9a619af0 20894
8c042590
PM
20895 xsnprintf (fake_name, sizeof (fake_name),
20896 "<bad macro file number %d>", file);
2e276125 20897
6e70227d 20898 complaint (&symfile_complaints,
6a83a1e6
EZ
20899 _("bad file number in macro information (%d)"),
20900 file);
2e276125 20901
6a83a1e6 20902 return xstrdup (fake_name);
2e276125
JB
20903 }
20904}
20905
233d95b5
JK
20906/* Return the full name of file number I in *LH's file name table.
20907 Use COMP_DIR as the name of the current directory of the
20908 compilation. The result is allocated using xmalloc; the caller is
20909 responsible for freeing it. */
20910static char *
20911file_full_name (int file, struct line_header *lh, const char *comp_dir)
20912{
20913 /* Is the file number a valid index into the line header's file name
20914 table? Remember that file numbers start with one, not zero. */
20915 if (1 <= file && file <= lh->num_file_names)
20916 {
20917 char *relative = file_file_name (file, lh);
20918
20919 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20920 return relative;
20921 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20922 }
20923 else
20924 return file_file_name (file, lh);
20925}
20926
2e276125
JB
20927
20928static struct macro_source_file *
20929macro_start_file (int file, int line,
20930 struct macro_source_file *current_file,
43f3e411 20931 struct line_header *lh)
2e276125 20932{
233d95b5
JK
20933 /* File name relative to the compilation directory of this source file. */
20934 char *file_name = file_file_name (file, lh);
2e276125 20935
2e276125 20936 if (! current_file)
abc9d0dc 20937 {
fc474241
DE
20938 /* Note: We don't create a macro table for this compilation unit
20939 at all until we actually get a filename. */
43f3e411 20940 struct macro_table *macro_table = get_macro_table ();
fc474241 20941
abc9d0dc
TT
20942 /* If we have no current file, then this must be the start_file
20943 directive for the compilation unit's main source file. */
fc474241
DE
20944 current_file = macro_set_main (macro_table, file_name);
20945 macro_define_special (macro_table);
abc9d0dc 20946 }
2e276125 20947 else
233d95b5 20948 current_file = macro_include (current_file, line, file_name);
2e276125 20949
233d95b5 20950 xfree (file_name);
6e70227d 20951
2e276125
JB
20952 return current_file;
20953}
20954
20955
20956/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20957 followed by a null byte. */
20958static char *
20959copy_string (const char *buf, int len)
20960{
224c3ddb 20961 char *s = (char *) xmalloc (len + 1);
9a619af0 20962
2e276125
JB
20963 memcpy (s, buf, len);
20964 s[len] = '\0';
2e276125
JB
20965 return s;
20966}
20967
20968
20969static const char *
20970consume_improper_spaces (const char *p, const char *body)
20971{
20972 if (*p == ' ')
20973 {
4d3c2250 20974 complaint (&symfile_complaints,
3e43a32a
MS
20975 _("macro definition contains spaces "
20976 "in formal argument list:\n`%s'"),
4d3c2250 20977 body);
2e276125
JB
20978
20979 while (*p == ' ')
20980 p++;
20981 }
20982
20983 return p;
20984}
20985
20986
20987static void
20988parse_macro_definition (struct macro_source_file *file, int line,
20989 const char *body)
20990{
20991 const char *p;
20992
20993 /* The body string takes one of two forms. For object-like macro
20994 definitions, it should be:
20995
20996 <macro name> " " <definition>
20997
20998 For function-like macro definitions, it should be:
20999
21000 <macro name> "() " <definition>
21001 or
21002 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21003
21004 Spaces may appear only where explicitly indicated, and in the
21005 <definition>.
21006
21007 The Dwarf 2 spec says that an object-like macro's name is always
21008 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21009 the space when the macro's definition is the empty string.
2e276125
JB
21010
21011 The Dwarf 2 spec says that there should be no spaces between the
21012 formal arguments in a function-like macro's formal argument list,
21013 but versions of GCC around March 2002 include spaces after the
21014 commas. */
21015
21016
21017 /* Find the extent of the macro name. The macro name is terminated
21018 by either a space or null character (for an object-like macro) or
21019 an opening paren (for a function-like macro). */
21020 for (p = body; *p; p++)
21021 if (*p == ' ' || *p == '(')
21022 break;
21023
21024 if (*p == ' ' || *p == '\0')
21025 {
21026 /* It's an object-like macro. */
21027 int name_len = p - body;
21028 char *name = copy_string (body, name_len);
21029 const char *replacement;
21030
21031 if (*p == ' ')
21032 replacement = body + name_len + 1;
21033 else
21034 {
4d3c2250 21035 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21036 replacement = body + name_len;
21037 }
6e70227d 21038
2e276125
JB
21039 macro_define_object (file, line, name, replacement);
21040
21041 xfree (name);
21042 }
21043 else if (*p == '(')
21044 {
21045 /* It's a function-like macro. */
21046 char *name = copy_string (body, p - body);
21047 int argc = 0;
21048 int argv_size = 1;
8d749320 21049 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21050
21051 p++;
21052
21053 p = consume_improper_spaces (p, body);
21054
21055 /* Parse the formal argument list. */
21056 while (*p && *p != ')')
21057 {
21058 /* Find the extent of the current argument name. */
21059 const char *arg_start = p;
21060
21061 while (*p && *p != ',' && *p != ')' && *p != ' ')
21062 p++;
21063
21064 if (! *p || p == arg_start)
4d3c2250 21065 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21066 else
21067 {
21068 /* Make sure argv has room for the new argument. */
21069 if (argc >= argv_size)
21070 {
21071 argv_size *= 2;
224c3ddb 21072 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21073 }
21074
21075 argv[argc++] = copy_string (arg_start, p - arg_start);
21076 }
21077
21078 p = consume_improper_spaces (p, body);
21079
21080 /* Consume the comma, if present. */
21081 if (*p == ',')
21082 {
21083 p++;
21084
21085 p = consume_improper_spaces (p, body);
21086 }
21087 }
21088
21089 if (*p == ')')
21090 {
21091 p++;
21092
21093 if (*p == ' ')
21094 /* Perfectly formed definition, no complaints. */
21095 macro_define_function (file, line, name,
6e70227d 21096 argc, (const char **) argv,
2e276125
JB
21097 p + 1);
21098 else if (*p == '\0')
21099 {
21100 /* Complain, but do define it. */
4d3c2250 21101 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21102 macro_define_function (file, line, name,
6e70227d 21103 argc, (const char **) argv,
2e276125
JB
21104 p);
21105 }
21106 else
21107 /* Just complain. */
4d3c2250 21108 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21109 }
21110 else
21111 /* Just complain. */
4d3c2250 21112 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21113
21114 xfree (name);
21115 {
21116 int i;
21117
21118 for (i = 0; i < argc; i++)
21119 xfree (argv[i]);
21120 }
21121 xfree (argv);
21122 }
21123 else
4d3c2250 21124 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21125}
21126
cf2c3c16
TT
21127/* Skip some bytes from BYTES according to the form given in FORM.
21128 Returns the new pointer. */
2e276125 21129
d521ce57
TT
21130static const gdb_byte *
21131skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21132 enum dwarf_form form,
21133 unsigned int offset_size,
21134 struct dwarf2_section_info *section)
2e276125 21135{
cf2c3c16 21136 unsigned int bytes_read;
2e276125 21137
cf2c3c16 21138 switch (form)
2e276125 21139 {
cf2c3c16
TT
21140 case DW_FORM_data1:
21141 case DW_FORM_flag:
21142 ++bytes;
21143 break;
21144
21145 case DW_FORM_data2:
21146 bytes += 2;
21147 break;
21148
21149 case DW_FORM_data4:
21150 bytes += 4;
21151 break;
21152
21153 case DW_FORM_data8:
21154 bytes += 8;
21155 break;
21156
21157 case DW_FORM_string:
21158 read_direct_string (abfd, bytes, &bytes_read);
21159 bytes += bytes_read;
21160 break;
21161
21162 case DW_FORM_sec_offset:
21163 case DW_FORM_strp:
36586728 21164 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21165 bytes += offset_size;
21166 break;
21167
21168 case DW_FORM_block:
21169 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21170 bytes += bytes_read;
21171 break;
21172
21173 case DW_FORM_block1:
21174 bytes += 1 + read_1_byte (abfd, bytes);
21175 break;
21176 case DW_FORM_block2:
21177 bytes += 2 + read_2_bytes (abfd, bytes);
21178 break;
21179 case DW_FORM_block4:
21180 bytes += 4 + read_4_bytes (abfd, bytes);
21181 break;
21182
21183 case DW_FORM_sdata:
21184 case DW_FORM_udata:
3019eac3
DE
21185 case DW_FORM_GNU_addr_index:
21186 case DW_FORM_GNU_str_index:
d521ce57 21187 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21188 if (bytes == NULL)
21189 {
21190 dwarf2_section_buffer_overflow_complaint (section);
21191 return NULL;
21192 }
cf2c3c16
TT
21193 break;
21194
21195 default:
21196 {
21197 complain:
21198 complaint (&symfile_complaints,
21199 _("invalid form 0x%x in `%s'"),
a32a8923 21200 form, get_section_name (section));
cf2c3c16
TT
21201 return NULL;
21202 }
2e276125
JB
21203 }
21204
cf2c3c16
TT
21205 return bytes;
21206}
757a13d0 21207
cf2c3c16
TT
21208/* A helper for dwarf_decode_macros that handles skipping an unknown
21209 opcode. Returns an updated pointer to the macro data buffer; or,
21210 on error, issues a complaint and returns NULL. */
757a13d0 21211
d521ce57 21212static const gdb_byte *
cf2c3c16 21213skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21214 const gdb_byte **opcode_definitions,
21215 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21216 bfd *abfd,
21217 unsigned int offset_size,
21218 struct dwarf2_section_info *section)
21219{
21220 unsigned int bytes_read, i;
21221 unsigned long arg;
d521ce57 21222 const gdb_byte *defn;
2e276125 21223
cf2c3c16 21224 if (opcode_definitions[opcode] == NULL)
2e276125 21225 {
cf2c3c16
TT
21226 complaint (&symfile_complaints,
21227 _("unrecognized DW_MACFINO opcode 0x%x"),
21228 opcode);
21229 return NULL;
21230 }
2e276125 21231
cf2c3c16
TT
21232 defn = opcode_definitions[opcode];
21233 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21234 defn += bytes_read;
2e276125 21235
cf2c3c16
TT
21236 for (i = 0; i < arg; ++i)
21237 {
aead7601
SM
21238 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21239 (enum dwarf_form) defn[i], offset_size,
f664829e 21240 section);
cf2c3c16
TT
21241 if (mac_ptr == NULL)
21242 {
21243 /* skip_form_bytes already issued the complaint. */
21244 return NULL;
21245 }
21246 }
757a13d0 21247
cf2c3c16
TT
21248 return mac_ptr;
21249}
757a13d0 21250
cf2c3c16
TT
21251/* A helper function which parses the header of a macro section.
21252 If the macro section is the extended (for now called "GNU") type,
21253 then this updates *OFFSET_SIZE. Returns a pointer to just after
21254 the header, or issues a complaint and returns NULL on error. */
757a13d0 21255
d521ce57
TT
21256static const gdb_byte *
21257dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21258 bfd *abfd,
d521ce57 21259 const gdb_byte *mac_ptr,
cf2c3c16
TT
21260 unsigned int *offset_size,
21261 int section_is_gnu)
21262{
21263 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21264
cf2c3c16
TT
21265 if (section_is_gnu)
21266 {
21267 unsigned int version, flags;
757a13d0 21268
cf2c3c16
TT
21269 version = read_2_bytes (abfd, mac_ptr);
21270 if (version != 4)
21271 {
21272 complaint (&symfile_complaints,
21273 _("unrecognized version `%d' in .debug_macro section"),
21274 version);
21275 return NULL;
21276 }
21277 mac_ptr += 2;
757a13d0 21278
cf2c3c16
TT
21279 flags = read_1_byte (abfd, mac_ptr);
21280 ++mac_ptr;
21281 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21282
cf2c3c16
TT
21283 if ((flags & 2) != 0)
21284 /* We don't need the line table offset. */
21285 mac_ptr += *offset_size;
757a13d0 21286
cf2c3c16
TT
21287 /* Vendor opcode descriptions. */
21288 if ((flags & 4) != 0)
21289 {
21290 unsigned int i, count;
757a13d0 21291
cf2c3c16
TT
21292 count = read_1_byte (abfd, mac_ptr);
21293 ++mac_ptr;
21294 for (i = 0; i < count; ++i)
21295 {
21296 unsigned int opcode, bytes_read;
21297 unsigned long arg;
21298
21299 opcode = read_1_byte (abfd, mac_ptr);
21300 ++mac_ptr;
21301 opcode_definitions[opcode] = mac_ptr;
21302 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21303 mac_ptr += bytes_read;
21304 mac_ptr += arg;
21305 }
757a13d0 21306 }
cf2c3c16 21307 }
757a13d0 21308
cf2c3c16
TT
21309 return mac_ptr;
21310}
757a13d0 21311
cf2c3c16 21312/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21313 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21314
21315static void
d521ce57
TT
21316dwarf_decode_macro_bytes (bfd *abfd,
21317 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21318 struct macro_source_file *current_file,
43f3e411 21319 struct line_header *lh,
cf2c3c16 21320 struct dwarf2_section_info *section,
36586728 21321 int section_is_gnu, int section_is_dwz,
cf2c3c16 21322 unsigned int offset_size,
8fc3fc34 21323 htab_t include_hash)
cf2c3c16 21324{
4d663531 21325 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21326 enum dwarf_macro_record_type macinfo_type;
21327 int at_commandline;
d521ce57 21328 const gdb_byte *opcode_definitions[256];
757a13d0 21329
cf2c3c16
TT
21330 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21331 &offset_size, section_is_gnu);
21332 if (mac_ptr == NULL)
21333 {
21334 /* We already issued a complaint. */
21335 return;
21336 }
757a13d0
JK
21337
21338 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21339 GDB is still reading the definitions from command line. First
21340 DW_MACINFO_start_file will need to be ignored as it was already executed
21341 to create CURRENT_FILE for the main source holding also the command line
21342 definitions. On first met DW_MACINFO_start_file this flag is reset to
21343 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21344
21345 at_commandline = 1;
21346
21347 do
21348 {
21349 /* Do we at least have room for a macinfo type byte? */
21350 if (mac_ptr >= mac_end)
21351 {
f664829e 21352 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21353 break;
21354 }
21355
aead7601 21356 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21357 mac_ptr++;
21358
cf2c3c16
TT
21359 /* Note that we rely on the fact that the corresponding GNU and
21360 DWARF constants are the same. */
757a13d0
JK
21361 switch (macinfo_type)
21362 {
21363 /* A zero macinfo type indicates the end of the macro
21364 information. */
21365 case 0:
21366 break;
2e276125 21367
cf2c3c16
TT
21368 case DW_MACRO_GNU_define:
21369 case DW_MACRO_GNU_undef:
21370 case DW_MACRO_GNU_define_indirect:
21371 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21372 case DW_MACRO_GNU_define_indirect_alt:
21373 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21374 {
891d2f0b 21375 unsigned int bytes_read;
2e276125 21376 int line;
d521ce57 21377 const char *body;
cf2c3c16 21378 int is_define;
2e276125 21379
cf2c3c16
TT
21380 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21381 mac_ptr += bytes_read;
21382
21383 if (macinfo_type == DW_MACRO_GNU_define
21384 || macinfo_type == DW_MACRO_GNU_undef)
21385 {
21386 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21387 mac_ptr += bytes_read;
21388 }
21389 else
21390 {
21391 LONGEST str_offset;
21392
21393 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21394 mac_ptr += offset_size;
2e276125 21395
36586728 21396 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21397 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21398 || section_is_dwz)
36586728
TT
21399 {
21400 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21401
21402 body = read_indirect_string_from_dwz (dwz, str_offset);
21403 }
21404 else
21405 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21406 }
21407
21408 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21409 || macinfo_type == DW_MACRO_GNU_define_indirect
21410 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21411 if (! current_file)
757a13d0
JK
21412 {
21413 /* DWARF violation as no main source is present. */
21414 complaint (&symfile_complaints,
21415 _("debug info with no main source gives macro %s "
21416 "on line %d: %s"),
cf2c3c16
TT
21417 is_define ? _("definition") : _("undefinition"),
21418 line, body);
757a13d0
JK
21419 break;
21420 }
3e43a32a
MS
21421 if ((line == 0 && !at_commandline)
21422 || (line != 0 && at_commandline))
4d3c2250 21423 complaint (&symfile_complaints,
757a13d0
JK
21424 _("debug info gives %s macro %s with %s line %d: %s"),
21425 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21426 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21427 line == 0 ? _("zero") : _("non-zero"), line, body);
21428
cf2c3c16 21429 if (is_define)
757a13d0 21430 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21431 else
21432 {
21433 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21434 || macinfo_type == DW_MACRO_GNU_undef_indirect
21435 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21436 macro_undef (current_file, line, body);
21437 }
2e276125
JB
21438 }
21439 break;
21440
cf2c3c16 21441 case DW_MACRO_GNU_start_file:
2e276125 21442 {
891d2f0b 21443 unsigned int bytes_read;
2e276125
JB
21444 int line, file;
21445
21446 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21447 mac_ptr += bytes_read;
21448 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21449 mac_ptr += bytes_read;
21450
3e43a32a
MS
21451 if ((line == 0 && !at_commandline)
21452 || (line != 0 && at_commandline))
757a13d0
JK
21453 complaint (&symfile_complaints,
21454 _("debug info gives source %d included "
21455 "from %s at %s line %d"),
21456 file, at_commandline ? _("command-line") : _("file"),
21457 line == 0 ? _("zero") : _("non-zero"), line);
21458
21459 if (at_commandline)
21460 {
cf2c3c16
TT
21461 /* This DW_MACRO_GNU_start_file was executed in the
21462 pass one. */
757a13d0
JK
21463 at_commandline = 0;
21464 }
21465 else
43f3e411 21466 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21467 }
21468 break;
21469
cf2c3c16 21470 case DW_MACRO_GNU_end_file:
2e276125 21471 if (! current_file)
4d3c2250 21472 complaint (&symfile_complaints,
3e43a32a
MS
21473 _("macro debug info has an unmatched "
21474 "`close_file' directive"));
2e276125
JB
21475 else
21476 {
21477 current_file = current_file->included_by;
21478 if (! current_file)
21479 {
cf2c3c16 21480 enum dwarf_macro_record_type next_type;
2e276125
JB
21481
21482 /* GCC circa March 2002 doesn't produce the zero
21483 type byte marking the end of the compilation
21484 unit. Complain if it's not there, but exit no
21485 matter what. */
21486
21487 /* Do we at least have room for a macinfo type byte? */
21488 if (mac_ptr >= mac_end)
21489 {
f664829e 21490 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21491 return;
21492 }
21493
21494 /* We don't increment mac_ptr here, so this is just
21495 a look-ahead. */
aead7601
SM
21496 next_type
21497 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21498 mac_ptr);
2e276125 21499 if (next_type != 0)
4d3c2250 21500 complaint (&symfile_complaints,
3e43a32a
MS
21501 _("no terminating 0-type entry for "
21502 "macros in `.debug_macinfo' section"));
2e276125
JB
21503
21504 return;
21505 }
21506 }
21507 break;
21508
cf2c3c16 21509 case DW_MACRO_GNU_transparent_include:
36586728 21510 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21511 {
21512 LONGEST offset;
8fc3fc34 21513 void **slot;
a036ba48
TT
21514 bfd *include_bfd = abfd;
21515 struct dwarf2_section_info *include_section = section;
21516 struct dwarf2_section_info alt_section;
d521ce57 21517 const gdb_byte *include_mac_end = mac_end;
a036ba48 21518 int is_dwz = section_is_dwz;
d521ce57 21519 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21520
21521 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21522 mac_ptr += offset_size;
21523
a036ba48
TT
21524 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21525 {
21526 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21527
4d663531 21528 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21529
a036ba48 21530 include_section = &dwz->macro;
a32a8923 21531 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21532 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21533 is_dwz = 1;
21534 }
21535
21536 new_mac_ptr = include_section->buffer + offset;
21537 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21538
8fc3fc34
TT
21539 if (*slot != NULL)
21540 {
21541 /* This has actually happened; see
21542 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21543 complaint (&symfile_complaints,
21544 _("recursive DW_MACRO_GNU_transparent_include in "
21545 ".debug_macro section"));
21546 }
21547 else
21548 {
d521ce57 21549 *slot = (void *) new_mac_ptr;
36586728 21550
a036ba48 21551 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21552 include_mac_end, current_file, lh,
36586728 21553 section, section_is_gnu, is_dwz,
4d663531 21554 offset_size, include_hash);
8fc3fc34 21555
d521ce57 21556 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21557 }
cf2c3c16
TT
21558 }
21559 break;
21560
2e276125 21561 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21562 if (!section_is_gnu)
21563 {
21564 unsigned int bytes_read;
21565 int constant;
2e276125 21566
cf2c3c16
TT
21567 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21568 mac_ptr += bytes_read;
21569 read_direct_string (abfd, mac_ptr, &bytes_read);
21570 mac_ptr += bytes_read;
2e276125 21571
cf2c3c16
TT
21572 /* We don't recognize any vendor extensions. */
21573 break;
21574 }
21575 /* FALLTHROUGH */
21576
21577 default:
21578 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21579 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21580 section);
21581 if (mac_ptr == NULL)
21582 return;
21583 break;
2e276125 21584 }
757a13d0 21585 } while (macinfo_type != 0);
2e276125 21586}
8e19ed76 21587
cf2c3c16 21588static void
09262596 21589dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21590 int section_is_gnu)
cf2c3c16 21591{
bb5ed363 21592 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21593 struct line_header *lh = cu->line_header;
21594 bfd *abfd;
d521ce57 21595 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21596 struct macro_source_file *current_file = 0;
21597 enum dwarf_macro_record_type macinfo_type;
21598 unsigned int offset_size = cu->header.offset_size;
d521ce57 21599 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21600 struct cleanup *cleanup;
21601 htab_t include_hash;
21602 void **slot;
09262596
DE
21603 struct dwarf2_section_info *section;
21604 const char *section_name;
21605
21606 if (cu->dwo_unit != NULL)
21607 {
21608 if (section_is_gnu)
21609 {
21610 section = &cu->dwo_unit->dwo_file->sections.macro;
21611 section_name = ".debug_macro.dwo";
21612 }
21613 else
21614 {
21615 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21616 section_name = ".debug_macinfo.dwo";
21617 }
21618 }
21619 else
21620 {
21621 if (section_is_gnu)
21622 {
21623 section = &dwarf2_per_objfile->macro;
21624 section_name = ".debug_macro";
21625 }
21626 else
21627 {
21628 section = &dwarf2_per_objfile->macinfo;
21629 section_name = ".debug_macinfo";
21630 }
21631 }
cf2c3c16 21632
bb5ed363 21633 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21634 if (section->buffer == NULL)
21635 {
fceca515 21636 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21637 return;
21638 }
a32a8923 21639 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21640
21641 /* First pass: Find the name of the base filename.
21642 This filename is needed in order to process all macros whose definition
21643 (or undefinition) comes from the command line. These macros are defined
21644 before the first DW_MACINFO_start_file entry, and yet still need to be
21645 associated to the base file.
21646
21647 To determine the base file name, we scan the macro definitions until we
21648 reach the first DW_MACINFO_start_file entry. We then initialize
21649 CURRENT_FILE accordingly so that any macro definition found before the
21650 first DW_MACINFO_start_file can still be associated to the base file. */
21651
21652 mac_ptr = section->buffer + offset;
21653 mac_end = section->buffer + section->size;
21654
21655 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21656 &offset_size, section_is_gnu);
21657 if (mac_ptr == NULL)
21658 {
21659 /* We already issued a complaint. */
21660 return;
21661 }
21662
21663 do
21664 {
21665 /* Do we at least have room for a macinfo type byte? */
21666 if (mac_ptr >= mac_end)
21667 {
21668 /* Complaint is printed during the second pass as GDB will probably
21669 stop the first pass earlier upon finding
21670 DW_MACINFO_start_file. */
21671 break;
21672 }
21673
aead7601 21674 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21675 mac_ptr++;
21676
21677 /* Note that we rely on the fact that the corresponding GNU and
21678 DWARF constants are the same. */
21679 switch (macinfo_type)
21680 {
21681 /* A zero macinfo type indicates the end of the macro
21682 information. */
21683 case 0:
21684 break;
21685
21686 case DW_MACRO_GNU_define:
21687 case DW_MACRO_GNU_undef:
21688 /* Only skip the data by MAC_PTR. */
21689 {
21690 unsigned int bytes_read;
21691
21692 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21693 mac_ptr += bytes_read;
21694 read_direct_string (abfd, mac_ptr, &bytes_read);
21695 mac_ptr += bytes_read;
21696 }
21697 break;
21698
21699 case DW_MACRO_GNU_start_file:
21700 {
21701 unsigned int bytes_read;
21702 int line, file;
21703
21704 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21705 mac_ptr += bytes_read;
21706 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21707 mac_ptr += bytes_read;
21708
43f3e411 21709 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21710 }
21711 break;
21712
21713 case DW_MACRO_GNU_end_file:
21714 /* No data to skip by MAC_PTR. */
21715 break;
21716
21717 case DW_MACRO_GNU_define_indirect:
21718 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21719 case DW_MACRO_GNU_define_indirect_alt:
21720 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21721 {
21722 unsigned int bytes_read;
21723
21724 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21725 mac_ptr += bytes_read;
21726 mac_ptr += offset_size;
21727 }
21728 break;
21729
21730 case DW_MACRO_GNU_transparent_include:
f7a35f02 21731 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21732 /* Note that, according to the spec, a transparent include
21733 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21734 skip this opcode. */
21735 mac_ptr += offset_size;
21736 break;
21737
21738 case DW_MACINFO_vendor_ext:
21739 /* Only skip the data by MAC_PTR. */
21740 if (!section_is_gnu)
21741 {
21742 unsigned int bytes_read;
21743
21744 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21745 mac_ptr += bytes_read;
21746 read_direct_string (abfd, mac_ptr, &bytes_read);
21747 mac_ptr += bytes_read;
21748 }
21749 /* FALLTHROUGH */
21750
21751 default:
21752 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21753 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21754 section);
21755 if (mac_ptr == NULL)
21756 return;
21757 break;
21758 }
21759 } while (macinfo_type != 0 && current_file == NULL);
21760
21761 /* Second pass: Process all entries.
21762
21763 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21764 command-line macro definitions/undefinitions. This flag is unset when we
21765 reach the first DW_MACINFO_start_file entry. */
21766
8fc3fc34
TT
21767 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21768 NULL, xcalloc, xfree);
21769 cleanup = make_cleanup_htab_delete (include_hash);
21770 mac_ptr = section->buffer + offset;
21771 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21772 *slot = (void *) mac_ptr;
8fc3fc34 21773 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21774 current_file, lh, section,
4d663531 21775 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21776 do_cleanups (cleanup);
cf2c3c16
TT
21777}
21778
8e19ed76 21779/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21780 if so return true else false. */
380bca97 21781
8e19ed76 21782static int
6e5a29e1 21783attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21784{
21785 return (attr == NULL ? 0 :
21786 attr->form == DW_FORM_block1
21787 || attr->form == DW_FORM_block2
21788 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21789 || attr->form == DW_FORM_block
21790 || attr->form == DW_FORM_exprloc);
8e19ed76 21791}
4c2df51b 21792
c6a0999f
JB
21793/* Return non-zero if ATTR's value is a section offset --- classes
21794 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21795 You may use DW_UNSND (attr) to retrieve such offsets.
21796
21797 Section 7.5.4, "Attribute Encodings", explains that no attribute
21798 may have a value that belongs to more than one of these classes; it
21799 would be ambiguous if we did, because we use the same forms for all
21800 of them. */
380bca97 21801
3690dd37 21802static int
6e5a29e1 21803attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21804{
21805 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21806 || attr->form == DW_FORM_data8
21807 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21808}
21809
3690dd37
JB
21810/* Return non-zero if ATTR's value falls in the 'constant' class, or
21811 zero otherwise. When this function returns true, you can apply
21812 dwarf2_get_attr_constant_value to it.
21813
21814 However, note that for some attributes you must check
21815 attr_form_is_section_offset before using this test. DW_FORM_data4
21816 and DW_FORM_data8 are members of both the constant class, and of
21817 the classes that contain offsets into other debug sections
21818 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21819 that, if an attribute's can be either a constant or one of the
21820 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21821 taken as section offsets, not constants. */
380bca97 21822
3690dd37 21823static int
6e5a29e1 21824attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21825{
21826 switch (attr->form)
21827 {
21828 case DW_FORM_sdata:
21829 case DW_FORM_udata:
21830 case DW_FORM_data1:
21831 case DW_FORM_data2:
21832 case DW_FORM_data4:
21833 case DW_FORM_data8:
21834 return 1;
21835 default:
21836 return 0;
21837 }
21838}
21839
7771576e
SA
21840
21841/* DW_ADDR is always stored already as sect_offset; despite for the forms
21842 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21843
21844static int
6e5a29e1 21845attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21846{
21847 switch (attr->form)
21848 {
21849 case DW_FORM_ref_addr:
21850 case DW_FORM_ref1:
21851 case DW_FORM_ref2:
21852 case DW_FORM_ref4:
21853 case DW_FORM_ref8:
21854 case DW_FORM_ref_udata:
21855 case DW_FORM_GNU_ref_alt:
21856 return 1;
21857 default:
21858 return 0;
21859 }
21860}
21861
3019eac3
DE
21862/* Return the .debug_loc section to use for CU.
21863 For DWO files use .debug_loc.dwo. */
21864
21865static struct dwarf2_section_info *
21866cu_debug_loc_section (struct dwarf2_cu *cu)
21867{
21868 if (cu->dwo_unit)
21869 return &cu->dwo_unit->dwo_file->sections.loc;
21870 return &dwarf2_per_objfile->loc;
21871}
21872
8cf6f0b1
TT
21873/* A helper function that fills in a dwarf2_loclist_baton. */
21874
21875static void
21876fill_in_loclist_baton (struct dwarf2_cu *cu,
21877 struct dwarf2_loclist_baton *baton,
ff39bb5e 21878 const struct attribute *attr)
8cf6f0b1 21879{
3019eac3
DE
21880 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21881
21882 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21883
21884 baton->per_cu = cu->per_cu;
21885 gdb_assert (baton->per_cu);
21886 /* We don't know how long the location list is, but make sure we
21887 don't run off the edge of the section. */
3019eac3
DE
21888 baton->size = section->size - DW_UNSND (attr);
21889 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21890 baton->base_address = cu->base_address;
f664829e 21891 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21892}
21893
4c2df51b 21894static void
ff39bb5e 21895dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21896 struct dwarf2_cu *cu, int is_block)
4c2df51b 21897{
bb5ed363 21898 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21899 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21900
3690dd37 21901 if (attr_form_is_section_offset (attr)
3019eac3 21902 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21903 the section. If so, fall through to the complaint in the
21904 other branch. */
3019eac3 21905 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21906 {
0d53c4c4 21907 struct dwarf2_loclist_baton *baton;
4c2df51b 21908
8d749320 21909 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21910
8cf6f0b1 21911 fill_in_loclist_baton (cu, baton, attr);
be391dca 21912
d00adf39 21913 if (cu->base_known == 0)
0d53c4c4 21914 complaint (&symfile_complaints,
3e43a32a
MS
21915 _("Location list used without "
21916 "specifying the CU base address."));
4c2df51b 21917
f1e6e072
TT
21918 SYMBOL_ACLASS_INDEX (sym) = (is_block
21919 ? dwarf2_loclist_block_index
21920 : dwarf2_loclist_index);
0d53c4c4
DJ
21921 SYMBOL_LOCATION_BATON (sym) = baton;
21922 }
21923 else
21924 {
21925 struct dwarf2_locexpr_baton *baton;
21926
8d749320 21927 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21928 baton->per_cu = cu->per_cu;
21929 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21930
21931 if (attr_form_is_block (attr))
21932 {
21933 /* Note that we're just copying the block's data pointer
21934 here, not the actual data. We're still pointing into the
6502dd73
DJ
21935 info_buffer for SYM's objfile; right now we never release
21936 that buffer, but when we do clean up properly this may
21937 need to change. */
0d53c4c4
DJ
21938 baton->size = DW_BLOCK (attr)->size;
21939 baton->data = DW_BLOCK (attr)->data;
21940 }
21941 else
21942 {
21943 dwarf2_invalid_attrib_class_complaint ("location description",
21944 SYMBOL_NATURAL_NAME (sym));
21945 baton->size = 0;
0d53c4c4 21946 }
6e70227d 21947
f1e6e072
TT
21948 SYMBOL_ACLASS_INDEX (sym) = (is_block
21949 ? dwarf2_locexpr_block_index
21950 : dwarf2_locexpr_index);
0d53c4c4
DJ
21951 SYMBOL_LOCATION_BATON (sym) = baton;
21952 }
4c2df51b 21953}
6502dd73 21954
9aa1f1e3
TT
21955/* Return the OBJFILE associated with the compilation unit CU. If CU
21956 came from a separate debuginfo file, then the master objfile is
21957 returned. */
ae0d2f24
UW
21958
21959struct objfile *
21960dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21961{
9291a0cd 21962 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21963
21964 /* Return the master objfile, so that we can report and look up the
21965 correct file containing this variable. */
21966 if (objfile->separate_debug_objfile_backlink)
21967 objfile = objfile->separate_debug_objfile_backlink;
21968
21969 return objfile;
21970}
21971
96408a79
SA
21972/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21973 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21974 CU_HEADERP first. */
21975
21976static const struct comp_unit_head *
21977per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21978 struct dwarf2_per_cu_data *per_cu)
21979{
d521ce57 21980 const gdb_byte *info_ptr;
96408a79
SA
21981
21982 if (per_cu->cu)
21983 return &per_cu->cu->header;
21984
8a0459fd 21985 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21986
21987 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21988 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21989
21990 return cu_headerp;
21991}
21992
ae0d2f24
UW
21993/* Return the address size given in the compilation unit header for CU. */
21994
98714339 21995int
ae0d2f24
UW
21996dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21997{
96408a79
SA
21998 struct comp_unit_head cu_header_local;
21999 const struct comp_unit_head *cu_headerp;
c471e790 22000
96408a79
SA
22001 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22002
22003 return cu_headerp->addr_size;
ae0d2f24
UW
22004}
22005
9eae7c52
TT
22006/* Return the offset size given in the compilation unit header for CU. */
22007
22008int
22009dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22010{
96408a79
SA
22011 struct comp_unit_head cu_header_local;
22012 const struct comp_unit_head *cu_headerp;
9c6c53f7 22013
96408a79
SA
22014 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22015
22016 return cu_headerp->offset_size;
22017}
22018
22019/* See its dwarf2loc.h declaration. */
22020
22021int
22022dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22023{
22024 struct comp_unit_head cu_header_local;
22025 const struct comp_unit_head *cu_headerp;
22026
22027 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22028
22029 if (cu_headerp->version == 2)
22030 return cu_headerp->addr_size;
22031 else
22032 return cu_headerp->offset_size;
181cebd4
JK
22033}
22034
9aa1f1e3
TT
22035/* Return the text offset of the CU. The returned offset comes from
22036 this CU's objfile. If this objfile came from a separate debuginfo
22037 file, then the offset may be different from the corresponding
22038 offset in the parent objfile. */
22039
22040CORE_ADDR
22041dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22042{
bb3fa9d0 22043 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22044
22045 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22046}
22047
348e048f
DE
22048/* Locate the .debug_info compilation unit from CU's objfile which contains
22049 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22050
22051static struct dwarf2_per_cu_data *
b64f50a1 22052dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22053 unsigned int offset_in_dwz,
ae038cb0
DJ
22054 struct objfile *objfile)
22055{
22056 struct dwarf2_per_cu_data *this_cu;
22057 int low, high;
36586728 22058 const sect_offset *cu_off;
ae038cb0 22059
ae038cb0
DJ
22060 low = 0;
22061 high = dwarf2_per_objfile->n_comp_units - 1;
22062 while (high > low)
22063 {
36586728 22064 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22065 int mid = low + (high - low) / 2;
9a619af0 22066
36586728
TT
22067 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22068 cu_off = &mid_cu->offset;
22069 if (mid_cu->is_dwz > offset_in_dwz
22070 || (mid_cu->is_dwz == offset_in_dwz
22071 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22072 high = mid;
22073 else
22074 low = mid + 1;
22075 }
22076 gdb_assert (low == high);
36586728
TT
22077 this_cu = dwarf2_per_objfile->all_comp_units[low];
22078 cu_off = &this_cu->offset;
22079 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22080 {
36586728 22081 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22082 error (_("Dwarf Error: could not find partial DIE containing "
22083 "offset 0x%lx [in module %s]"),
b64f50a1 22084 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22085
b64f50a1
JK
22086 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22087 <= offset.sect_off);
ae038cb0
DJ
22088 return dwarf2_per_objfile->all_comp_units[low-1];
22089 }
22090 else
22091 {
22092 this_cu = dwarf2_per_objfile->all_comp_units[low];
22093 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22094 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22095 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22096 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22097 return this_cu;
22098 }
22099}
22100
23745b47 22101/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22102
9816fde3 22103static void
23745b47 22104init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22105{
9816fde3 22106 memset (cu, 0, sizeof (*cu));
23745b47
DE
22107 per_cu->cu = cu;
22108 cu->per_cu = per_cu;
22109 cu->objfile = per_cu->objfile;
93311388 22110 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22111}
22112
22113/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22114
22115static void
95554aad
TT
22116prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22117 enum language pretend_language)
9816fde3
JK
22118{
22119 struct attribute *attr;
22120
22121 /* Set the language we're debugging. */
22122 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22123 if (attr)
22124 set_cu_language (DW_UNSND (attr), cu);
22125 else
9cded63f 22126 {
95554aad 22127 cu->language = pretend_language;
9cded63f
TT
22128 cu->language_defn = language_def (cu->language);
22129 }
dee91e82 22130
7d45c7c3 22131 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22132}
22133
ae038cb0
DJ
22134/* Release one cached compilation unit, CU. We unlink it from the tree
22135 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22136 the caller is responsible for that.
22137 NOTE: DATA is a void * because this function is also used as a
22138 cleanup routine. */
ae038cb0
DJ
22139
22140static void
68dc6402 22141free_heap_comp_unit (void *data)
ae038cb0 22142{
9a3c8263 22143 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22144
23745b47
DE
22145 gdb_assert (cu->per_cu != NULL);
22146 cu->per_cu->cu = NULL;
ae038cb0
DJ
22147 cu->per_cu = NULL;
22148
22149 obstack_free (&cu->comp_unit_obstack, NULL);
22150
22151 xfree (cu);
22152}
22153
72bf9492 22154/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22155 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22156 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22157
22158static void
22159free_stack_comp_unit (void *data)
22160{
9a3c8263 22161 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22162
23745b47
DE
22163 gdb_assert (cu->per_cu != NULL);
22164 cu->per_cu->cu = NULL;
22165 cu->per_cu = NULL;
22166
72bf9492
DJ
22167 obstack_free (&cu->comp_unit_obstack, NULL);
22168 cu->partial_dies = NULL;
ae038cb0
DJ
22169}
22170
22171/* Free all cached compilation units. */
22172
22173static void
22174free_cached_comp_units (void *data)
22175{
22176 struct dwarf2_per_cu_data *per_cu, **last_chain;
22177
22178 per_cu = dwarf2_per_objfile->read_in_chain;
22179 last_chain = &dwarf2_per_objfile->read_in_chain;
22180 while (per_cu != NULL)
22181 {
22182 struct dwarf2_per_cu_data *next_cu;
22183
22184 next_cu = per_cu->cu->read_in_chain;
22185
68dc6402 22186 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22187 *last_chain = next_cu;
22188
22189 per_cu = next_cu;
22190 }
22191}
22192
22193/* Increase the age counter on each cached compilation unit, and free
22194 any that are too old. */
22195
22196static void
22197age_cached_comp_units (void)
22198{
22199 struct dwarf2_per_cu_data *per_cu, **last_chain;
22200
22201 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22202 per_cu = dwarf2_per_objfile->read_in_chain;
22203 while (per_cu != NULL)
22204 {
22205 per_cu->cu->last_used ++;
b4f54984 22206 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22207 dwarf2_mark (per_cu->cu);
22208 per_cu = per_cu->cu->read_in_chain;
22209 }
22210
22211 per_cu = dwarf2_per_objfile->read_in_chain;
22212 last_chain = &dwarf2_per_objfile->read_in_chain;
22213 while (per_cu != NULL)
22214 {
22215 struct dwarf2_per_cu_data *next_cu;
22216
22217 next_cu = per_cu->cu->read_in_chain;
22218
22219 if (!per_cu->cu->mark)
22220 {
68dc6402 22221 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22222 *last_chain = next_cu;
22223 }
22224 else
22225 last_chain = &per_cu->cu->read_in_chain;
22226
22227 per_cu = next_cu;
22228 }
22229}
22230
22231/* Remove a single compilation unit from the cache. */
22232
22233static void
dee91e82 22234free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22235{
22236 struct dwarf2_per_cu_data *per_cu, **last_chain;
22237
22238 per_cu = dwarf2_per_objfile->read_in_chain;
22239 last_chain = &dwarf2_per_objfile->read_in_chain;
22240 while (per_cu != NULL)
22241 {
22242 struct dwarf2_per_cu_data *next_cu;
22243
22244 next_cu = per_cu->cu->read_in_chain;
22245
dee91e82 22246 if (per_cu == target_per_cu)
ae038cb0 22247 {
68dc6402 22248 free_heap_comp_unit (per_cu->cu);
dee91e82 22249 per_cu->cu = NULL;
ae038cb0
DJ
22250 *last_chain = next_cu;
22251 break;
22252 }
22253 else
22254 last_chain = &per_cu->cu->read_in_chain;
22255
22256 per_cu = next_cu;
22257 }
22258}
22259
fe3e1990
DJ
22260/* Release all extra memory associated with OBJFILE. */
22261
22262void
22263dwarf2_free_objfile (struct objfile *objfile)
22264{
9a3c8263
SM
22265 dwarf2_per_objfile
22266 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22267 dwarf2_objfile_data_key);
fe3e1990
DJ
22268
22269 if (dwarf2_per_objfile == NULL)
22270 return;
22271
22272 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22273 free_cached_comp_units (NULL);
22274
7b9f3c50
DE
22275 if (dwarf2_per_objfile->quick_file_names_table)
22276 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22277
527f3840
JK
22278 if (dwarf2_per_objfile->line_header_hash)
22279 htab_delete (dwarf2_per_objfile->line_header_hash);
22280
fe3e1990
DJ
22281 /* Everything else should be on the objfile obstack. */
22282}
22283
dee91e82
DE
22284/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22285 We store these in a hash table separate from the DIEs, and preserve them
22286 when the DIEs are flushed out of cache.
22287
22288 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22289 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22290 or the type may come from a DWO file. Furthermore, while it's more logical
22291 to use per_cu->section+offset, with Fission the section with the data is in
22292 the DWO file but we don't know that section at the point we need it.
22293 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22294 because we can enter the lookup routine, get_die_type_at_offset, from
22295 outside this file, and thus won't necessarily have PER_CU->cu.
22296 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22297
dee91e82 22298struct dwarf2_per_cu_offset_and_type
1c379e20 22299{
dee91e82 22300 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22301 sect_offset offset;
1c379e20
DJ
22302 struct type *type;
22303};
22304
dee91e82 22305/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22306
22307static hashval_t
dee91e82 22308per_cu_offset_and_type_hash (const void *item)
1c379e20 22309{
9a3c8263
SM
22310 const struct dwarf2_per_cu_offset_and_type *ofs
22311 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22312
dee91e82 22313 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22314}
22315
dee91e82 22316/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22317
22318static int
dee91e82 22319per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22320{
9a3c8263
SM
22321 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22322 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22323 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22324 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22325
dee91e82
DE
22326 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22327 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22328}
22329
22330/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22331 table if necessary. For convenience, return TYPE.
22332
22333 The DIEs reading must have careful ordering to:
22334 * Not cause infite loops trying to read in DIEs as a prerequisite for
22335 reading current DIE.
22336 * Not trying to dereference contents of still incompletely read in types
22337 while reading in other DIEs.
22338 * Enable referencing still incompletely read in types just by a pointer to
22339 the type without accessing its fields.
22340
22341 Therefore caller should follow these rules:
22342 * Try to fetch any prerequisite types we may need to build this DIE type
22343 before building the type and calling set_die_type.
e71ec853 22344 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22345 possible before fetching more types to complete the current type.
22346 * Make the type as complete as possible before fetching more types. */
1c379e20 22347
f792889a 22348static struct type *
1c379e20
DJ
22349set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22350{
dee91e82 22351 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22352 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22353 struct attribute *attr;
22354 struct dynamic_prop prop;
1c379e20 22355
b4ba55a1
JB
22356 /* For Ada types, make sure that the gnat-specific data is always
22357 initialized (if not already set). There are a few types where
22358 we should not be doing so, because the type-specific area is
22359 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22360 where the type-specific area is used to store the floatformat).
22361 But this is not a problem, because the gnat-specific information
22362 is actually not needed for these types. */
22363 if (need_gnat_info (cu)
22364 && TYPE_CODE (type) != TYPE_CODE_FUNC
22365 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22366 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22367 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22368 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22369 && !HAVE_GNAT_AUX_INFO (type))
22370 INIT_GNAT_SPECIFIC (type);
22371
3f2f83dd
KB
22372 /* Read DW_AT_allocated and set in type. */
22373 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22374 if (attr_form_is_block (attr))
22375 {
22376 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22377 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22378 }
22379 else if (attr != NULL)
22380 {
22381 complaint (&symfile_complaints,
22382 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22383 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22384 die->offset.sect_off);
22385 }
22386
22387 /* Read DW_AT_associated and set in type. */
22388 attr = dwarf2_attr (die, DW_AT_associated, cu);
22389 if (attr_form_is_block (attr))
22390 {
22391 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22392 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22393 }
22394 else if (attr != NULL)
22395 {
22396 complaint (&symfile_complaints,
22397 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22398 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22399 die->offset.sect_off);
22400 }
22401
3cdcd0ce
JB
22402 /* Read DW_AT_data_location and set in type. */
22403 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22404 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22405 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22406
dee91e82 22407 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22408 {
dee91e82
DE
22409 dwarf2_per_objfile->die_type_hash =
22410 htab_create_alloc_ex (127,
22411 per_cu_offset_and_type_hash,
22412 per_cu_offset_and_type_eq,
22413 NULL,
22414 &objfile->objfile_obstack,
22415 hashtab_obstack_allocate,
22416 dummy_obstack_deallocate);
f792889a 22417 }
1c379e20 22418
dee91e82 22419 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22420 ofs.offset = die->offset;
22421 ofs.type = type;
dee91e82
DE
22422 slot = (struct dwarf2_per_cu_offset_and_type **)
22423 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22424 if (*slot)
22425 complaint (&symfile_complaints,
22426 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22427 die->offset.sect_off);
8d749320
SM
22428 *slot = XOBNEW (&objfile->objfile_obstack,
22429 struct dwarf2_per_cu_offset_and_type);
1c379e20 22430 **slot = ofs;
f792889a 22431 return type;
1c379e20
DJ
22432}
22433
02142a6c
DE
22434/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22435 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22436
22437static struct type *
b64f50a1 22438get_die_type_at_offset (sect_offset offset,
673bfd45 22439 struct dwarf2_per_cu_data *per_cu)
1c379e20 22440{
dee91e82 22441 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22442
dee91e82 22443 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22444 return NULL;
1c379e20 22445
dee91e82 22446 ofs.per_cu = per_cu;
673bfd45 22447 ofs.offset = offset;
9a3c8263
SM
22448 slot = ((struct dwarf2_per_cu_offset_and_type *)
22449 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22450 if (slot)
22451 return slot->type;
22452 else
22453 return NULL;
22454}
22455
02142a6c 22456/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22457 or return NULL if DIE does not have a saved type. */
22458
22459static struct type *
22460get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22461{
22462 return get_die_type_at_offset (die->offset, cu->per_cu);
22463}
22464
10b3939b
DJ
22465/* Add a dependence relationship from CU to REF_PER_CU. */
22466
22467static void
22468dwarf2_add_dependence (struct dwarf2_cu *cu,
22469 struct dwarf2_per_cu_data *ref_per_cu)
22470{
22471 void **slot;
22472
22473 if (cu->dependencies == NULL)
22474 cu->dependencies
22475 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22476 NULL, &cu->comp_unit_obstack,
22477 hashtab_obstack_allocate,
22478 dummy_obstack_deallocate);
22479
22480 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22481 if (*slot == NULL)
22482 *slot = ref_per_cu;
22483}
1c379e20 22484
f504f079
DE
22485/* Subroutine of dwarf2_mark to pass to htab_traverse.
22486 Set the mark field in every compilation unit in the
ae038cb0
DJ
22487 cache that we must keep because we are keeping CU. */
22488
10b3939b
DJ
22489static int
22490dwarf2_mark_helper (void **slot, void *data)
22491{
22492 struct dwarf2_per_cu_data *per_cu;
22493
22494 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22495
22496 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22497 reading of the chain. As such dependencies remain valid it is not much
22498 useful to track and undo them during QUIT cleanups. */
22499 if (per_cu->cu == NULL)
22500 return 1;
22501
10b3939b
DJ
22502 if (per_cu->cu->mark)
22503 return 1;
22504 per_cu->cu->mark = 1;
22505
22506 if (per_cu->cu->dependencies != NULL)
22507 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22508
22509 return 1;
22510}
22511
f504f079
DE
22512/* Set the mark field in CU and in every other compilation unit in the
22513 cache that we must keep because we are keeping CU. */
22514
ae038cb0
DJ
22515static void
22516dwarf2_mark (struct dwarf2_cu *cu)
22517{
22518 if (cu->mark)
22519 return;
22520 cu->mark = 1;
10b3939b
DJ
22521 if (cu->dependencies != NULL)
22522 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22523}
22524
22525static void
22526dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22527{
22528 while (per_cu)
22529 {
22530 per_cu->cu->mark = 0;
22531 per_cu = per_cu->cu->read_in_chain;
22532 }
72bf9492
DJ
22533}
22534
72bf9492
DJ
22535/* Trivial hash function for partial_die_info: the hash value of a DIE
22536 is its offset in .debug_info for this objfile. */
22537
22538static hashval_t
22539partial_die_hash (const void *item)
22540{
9a3c8263
SM
22541 const struct partial_die_info *part_die
22542 = (const struct partial_die_info *) item;
9a619af0 22543
b64f50a1 22544 return part_die->offset.sect_off;
72bf9492
DJ
22545}
22546
22547/* Trivial comparison function for partial_die_info structures: two DIEs
22548 are equal if they have the same offset. */
22549
22550static int
22551partial_die_eq (const void *item_lhs, const void *item_rhs)
22552{
9a3c8263
SM
22553 const struct partial_die_info *part_die_lhs
22554 = (const struct partial_die_info *) item_lhs;
22555 const struct partial_die_info *part_die_rhs
22556 = (const struct partial_die_info *) item_rhs;
9a619af0 22557
b64f50a1 22558 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22559}
22560
b4f54984
DE
22561static struct cmd_list_element *set_dwarf_cmdlist;
22562static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22563
22564static void
b4f54984 22565set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22566{
b4f54984 22567 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22568 gdb_stdout);
ae038cb0
DJ
22569}
22570
22571static void
b4f54984 22572show_dwarf_cmd (char *args, int from_tty)
6e70227d 22573{
b4f54984 22574 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22575}
22576
4bf44c1c 22577/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22578
22579static void
c1bd65d0 22580dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22581{
9a3c8263 22582 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22583 int ix;
8b70b953 22584
626f2d1c
TT
22585 /* Make sure we don't accidentally use dwarf2_per_objfile while
22586 cleaning up. */
22587 dwarf2_per_objfile = NULL;
22588
59b0c7c1
JB
22589 for (ix = 0; ix < data->n_comp_units; ++ix)
22590 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22591
59b0c7c1 22592 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22593 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22594 data->all_type_units[ix]->per_cu.imported_symtabs);
22595 xfree (data->all_type_units);
95554aad 22596
8b70b953 22597 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22598
22599 if (data->dwo_files)
22600 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22601 if (data->dwp_file)
22602 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22603
22604 if (data->dwz_file && data->dwz_file->dwz_bfd)
22605 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22606}
22607
22608\f
ae2de4f8 22609/* The "save gdb-index" command. */
9291a0cd
TT
22610
22611/* The contents of the hash table we create when building the string
22612 table. */
22613struct strtab_entry
22614{
22615 offset_type offset;
22616 const char *str;
22617};
22618
559a7a62
JK
22619/* Hash function for a strtab_entry.
22620
22621 Function is used only during write_hash_table so no index format backward
22622 compatibility is needed. */
b89be57b 22623
9291a0cd
TT
22624static hashval_t
22625hash_strtab_entry (const void *e)
22626{
9a3c8263 22627 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22628 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22629}
22630
22631/* Equality function for a strtab_entry. */
b89be57b 22632
9291a0cd
TT
22633static int
22634eq_strtab_entry (const void *a, const void *b)
22635{
9a3c8263
SM
22636 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22637 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22638 return !strcmp (ea->str, eb->str);
22639}
22640
22641/* Create a strtab_entry hash table. */
b89be57b 22642
9291a0cd
TT
22643static htab_t
22644create_strtab (void)
22645{
22646 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22647 xfree, xcalloc, xfree);
22648}
22649
22650/* Add a string to the constant pool. Return the string's offset in
22651 host order. */
b89be57b 22652
9291a0cd
TT
22653static offset_type
22654add_string (htab_t table, struct obstack *cpool, const char *str)
22655{
22656 void **slot;
22657 struct strtab_entry entry;
22658 struct strtab_entry *result;
22659
22660 entry.str = str;
22661 slot = htab_find_slot (table, &entry, INSERT);
22662 if (*slot)
9a3c8263 22663 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22664 else
22665 {
22666 result = XNEW (struct strtab_entry);
22667 result->offset = obstack_object_size (cpool);
22668 result->str = str;
22669 obstack_grow_str0 (cpool, str);
22670 *slot = result;
22671 }
22672 return result->offset;
22673}
22674
22675/* An entry in the symbol table. */
22676struct symtab_index_entry
22677{
22678 /* The name of the symbol. */
22679 const char *name;
22680 /* The offset of the name in the constant pool. */
22681 offset_type index_offset;
22682 /* A sorted vector of the indices of all the CUs that hold an object
22683 of this name. */
22684 VEC (offset_type) *cu_indices;
22685};
22686
22687/* The symbol table. This is a power-of-2-sized hash table. */
22688struct mapped_symtab
22689{
22690 offset_type n_elements;
22691 offset_type size;
22692 struct symtab_index_entry **data;
22693};
22694
22695/* Hash function for a symtab_index_entry. */
b89be57b 22696
9291a0cd
TT
22697static hashval_t
22698hash_symtab_entry (const void *e)
22699{
9a3c8263
SM
22700 const struct symtab_index_entry *entry
22701 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22702 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22703 sizeof (offset_type) * VEC_length (offset_type,
22704 entry->cu_indices),
22705 0);
22706}
22707
22708/* Equality function for a symtab_index_entry. */
b89be57b 22709
9291a0cd
TT
22710static int
22711eq_symtab_entry (const void *a, const void *b)
22712{
9a3c8263
SM
22713 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22714 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22715 int len = VEC_length (offset_type, ea->cu_indices);
22716 if (len != VEC_length (offset_type, eb->cu_indices))
22717 return 0;
22718 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22719 VEC_address (offset_type, eb->cu_indices),
22720 sizeof (offset_type) * len);
22721}
22722
22723/* Destroy a symtab_index_entry. */
b89be57b 22724
9291a0cd
TT
22725static void
22726delete_symtab_entry (void *p)
22727{
9a3c8263 22728 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22729 VEC_free (offset_type, entry->cu_indices);
22730 xfree (entry);
22731}
22732
22733/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22734
9291a0cd 22735static htab_t
3876f04e 22736create_symbol_hash_table (void)
9291a0cd
TT
22737{
22738 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22739 delete_symtab_entry, xcalloc, xfree);
22740}
22741
22742/* Create a new mapped symtab object. */
b89be57b 22743
9291a0cd
TT
22744static struct mapped_symtab *
22745create_mapped_symtab (void)
22746{
22747 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22748 symtab->n_elements = 0;
22749 symtab->size = 1024;
22750 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22751 return symtab;
22752}
22753
22754/* Destroy a mapped_symtab. */
b89be57b 22755
9291a0cd
TT
22756static void
22757cleanup_mapped_symtab (void *p)
22758{
9a3c8263 22759 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22760 /* The contents of the array are freed when the other hash table is
22761 destroyed. */
22762 xfree (symtab->data);
22763 xfree (symtab);
22764}
22765
22766/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22767 the slot.
22768
22769 Function is used only during write_hash_table so no index format backward
22770 compatibility is needed. */
b89be57b 22771
9291a0cd
TT
22772static struct symtab_index_entry **
22773find_slot (struct mapped_symtab *symtab, const char *name)
22774{
559a7a62 22775 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22776
22777 index = hash & (symtab->size - 1);
22778 step = ((hash * 17) & (symtab->size - 1)) | 1;
22779
22780 for (;;)
22781 {
22782 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22783 return &symtab->data[index];
22784 index = (index + step) & (symtab->size - 1);
22785 }
22786}
22787
22788/* Expand SYMTAB's hash table. */
b89be57b 22789
9291a0cd
TT
22790static void
22791hash_expand (struct mapped_symtab *symtab)
22792{
22793 offset_type old_size = symtab->size;
22794 offset_type i;
22795 struct symtab_index_entry **old_entries = symtab->data;
22796
22797 symtab->size *= 2;
22798 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22799
22800 for (i = 0; i < old_size; ++i)
22801 {
22802 if (old_entries[i])
22803 {
22804 struct symtab_index_entry **slot = find_slot (symtab,
22805 old_entries[i]->name);
22806 *slot = old_entries[i];
22807 }
22808 }
22809
22810 xfree (old_entries);
22811}
22812
156942c7
DE
22813/* Add an entry to SYMTAB. NAME is the name of the symbol.
22814 CU_INDEX is the index of the CU in which the symbol appears.
22815 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22816
9291a0cd
TT
22817static void
22818add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22819 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22820 offset_type cu_index)
22821{
22822 struct symtab_index_entry **slot;
156942c7 22823 offset_type cu_index_and_attrs;
9291a0cd
TT
22824
22825 ++symtab->n_elements;
22826 if (4 * symtab->n_elements / 3 >= symtab->size)
22827 hash_expand (symtab);
22828
22829 slot = find_slot (symtab, name);
22830 if (!*slot)
22831 {
22832 *slot = XNEW (struct symtab_index_entry);
22833 (*slot)->name = name;
156942c7 22834 /* index_offset is set later. */
9291a0cd
TT
22835 (*slot)->cu_indices = NULL;
22836 }
156942c7
DE
22837
22838 cu_index_and_attrs = 0;
22839 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22840 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22841 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22842
22843 /* We don't want to record an index value twice as we want to avoid the
22844 duplication.
22845 We process all global symbols and then all static symbols
22846 (which would allow us to avoid the duplication by only having to check
22847 the last entry pushed), but a symbol could have multiple kinds in one CU.
22848 To keep things simple we don't worry about the duplication here and
22849 sort and uniqufy the list after we've processed all symbols. */
22850 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22851}
22852
22853/* qsort helper routine for uniquify_cu_indices. */
22854
22855static int
22856offset_type_compare (const void *ap, const void *bp)
22857{
22858 offset_type a = *(offset_type *) ap;
22859 offset_type b = *(offset_type *) bp;
22860
22861 return (a > b) - (b > a);
22862}
22863
22864/* Sort and remove duplicates of all symbols' cu_indices lists. */
22865
22866static void
22867uniquify_cu_indices (struct mapped_symtab *symtab)
22868{
22869 int i;
22870
22871 for (i = 0; i < symtab->size; ++i)
22872 {
22873 struct symtab_index_entry *entry = symtab->data[i];
22874
22875 if (entry
22876 && entry->cu_indices != NULL)
22877 {
22878 unsigned int next_to_insert, next_to_check;
22879 offset_type last_value;
22880
22881 qsort (VEC_address (offset_type, entry->cu_indices),
22882 VEC_length (offset_type, entry->cu_indices),
22883 sizeof (offset_type), offset_type_compare);
22884
22885 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22886 next_to_insert = 1;
22887 for (next_to_check = 1;
22888 next_to_check < VEC_length (offset_type, entry->cu_indices);
22889 ++next_to_check)
22890 {
22891 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22892 != last_value)
22893 {
22894 last_value = VEC_index (offset_type, entry->cu_indices,
22895 next_to_check);
22896 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22897 last_value);
22898 ++next_to_insert;
22899 }
22900 }
22901 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22902 }
22903 }
9291a0cd
TT
22904}
22905
22906/* Add a vector of indices to the constant pool. */
b89be57b 22907
9291a0cd 22908static offset_type
3876f04e 22909add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22910 struct symtab_index_entry *entry)
22911{
22912 void **slot;
22913
3876f04e 22914 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22915 if (!*slot)
22916 {
22917 offset_type len = VEC_length (offset_type, entry->cu_indices);
22918 offset_type val = MAYBE_SWAP (len);
22919 offset_type iter;
22920 int i;
22921
22922 *slot = entry;
22923 entry->index_offset = obstack_object_size (cpool);
22924
22925 obstack_grow (cpool, &val, sizeof (val));
22926 for (i = 0;
22927 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22928 ++i)
22929 {
22930 val = MAYBE_SWAP (iter);
22931 obstack_grow (cpool, &val, sizeof (val));
22932 }
22933 }
22934 else
22935 {
9a3c8263
SM
22936 struct symtab_index_entry *old_entry
22937 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22938 entry->index_offset = old_entry->index_offset;
22939 entry = old_entry;
22940 }
22941 return entry->index_offset;
22942}
22943
22944/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22945 constant pool entries going into the obstack CPOOL. */
b89be57b 22946
9291a0cd
TT
22947static void
22948write_hash_table (struct mapped_symtab *symtab,
22949 struct obstack *output, struct obstack *cpool)
22950{
22951 offset_type i;
3876f04e 22952 htab_t symbol_hash_table;
9291a0cd
TT
22953 htab_t str_table;
22954
3876f04e 22955 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22956 str_table = create_strtab ();
3876f04e 22957
9291a0cd
TT
22958 /* We add all the index vectors to the constant pool first, to
22959 ensure alignment is ok. */
22960 for (i = 0; i < symtab->size; ++i)
22961 {
22962 if (symtab->data[i])
3876f04e 22963 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22964 }
22965
22966 /* Now write out the hash table. */
22967 for (i = 0; i < symtab->size; ++i)
22968 {
22969 offset_type str_off, vec_off;
22970
22971 if (symtab->data[i])
22972 {
22973 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22974 vec_off = symtab->data[i]->index_offset;
22975 }
22976 else
22977 {
22978 /* While 0 is a valid constant pool index, it is not valid
22979 to have 0 for both offsets. */
22980 str_off = 0;
22981 vec_off = 0;
22982 }
22983
22984 str_off = MAYBE_SWAP (str_off);
22985 vec_off = MAYBE_SWAP (vec_off);
22986
22987 obstack_grow (output, &str_off, sizeof (str_off));
22988 obstack_grow (output, &vec_off, sizeof (vec_off));
22989 }
22990
22991 htab_delete (str_table);
3876f04e 22992 htab_delete (symbol_hash_table);
9291a0cd
TT
22993}
22994
0a5429f6
DE
22995/* Struct to map psymtab to CU index in the index file. */
22996struct psymtab_cu_index_map
22997{
22998 struct partial_symtab *psymtab;
22999 unsigned int cu_index;
23000};
23001
23002static hashval_t
23003hash_psymtab_cu_index (const void *item)
23004{
9a3c8263
SM
23005 const struct psymtab_cu_index_map *map
23006 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
23007
23008 return htab_hash_pointer (map->psymtab);
23009}
23010
23011static int
23012eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23013{
9a3c8263
SM
23014 const struct psymtab_cu_index_map *lhs
23015 = (const struct psymtab_cu_index_map *) item_lhs;
23016 const struct psymtab_cu_index_map *rhs
23017 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23018
23019 return lhs->psymtab == rhs->psymtab;
23020}
23021
23022/* Helper struct for building the address table. */
23023struct addrmap_index_data
23024{
23025 struct objfile *objfile;
23026 struct obstack *addr_obstack;
23027 htab_t cu_index_htab;
23028
23029 /* Non-zero if the previous_* fields are valid.
23030 We can't write an entry until we see the next entry (since it is only then
23031 that we know the end of the entry). */
23032 int previous_valid;
23033 /* Index of the CU in the table of all CUs in the index file. */
23034 unsigned int previous_cu_index;
0963b4bd 23035 /* Start address of the CU. */
0a5429f6
DE
23036 CORE_ADDR previous_cu_start;
23037};
23038
23039/* Write an address entry to OBSTACK. */
b89be57b 23040
9291a0cd 23041static void
0a5429f6
DE
23042add_address_entry (struct objfile *objfile, struct obstack *obstack,
23043 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23044{
0a5429f6 23045 offset_type cu_index_to_write;
948f8e3d 23046 gdb_byte addr[8];
9291a0cd
TT
23047 CORE_ADDR baseaddr;
23048
23049 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23050
0a5429f6
DE
23051 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23052 obstack_grow (obstack, addr, 8);
23053 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23054 obstack_grow (obstack, addr, 8);
23055 cu_index_to_write = MAYBE_SWAP (cu_index);
23056 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23057}
23058
23059/* Worker function for traversing an addrmap to build the address table. */
23060
23061static int
23062add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23063{
9a3c8263
SM
23064 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23065 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23066
23067 if (data->previous_valid)
23068 add_address_entry (data->objfile, data->addr_obstack,
23069 data->previous_cu_start, start_addr,
23070 data->previous_cu_index);
23071
23072 data->previous_cu_start = start_addr;
23073 if (pst != NULL)
23074 {
23075 struct psymtab_cu_index_map find_map, *map;
23076 find_map.psymtab = pst;
9a3c8263
SM
23077 map = ((struct psymtab_cu_index_map *)
23078 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23079 gdb_assert (map != NULL);
23080 data->previous_cu_index = map->cu_index;
23081 data->previous_valid = 1;
23082 }
23083 else
23084 data->previous_valid = 0;
23085
23086 return 0;
23087}
23088
23089/* Write OBJFILE's address map to OBSTACK.
23090 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23091 in the index file. */
23092
23093static void
23094write_address_map (struct objfile *objfile, struct obstack *obstack,
23095 htab_t cu_index_htab)
23096{
23097 struct addrmap_index_data addrmap_index_data;
23098
23099 /* When writing the address table, we have to cope with the fact that
23100 the addrmap iterator only provides the start of a region; we have to
23101 wait until the next invocation to get the start of the next region. */
23102
23103 addrmap_index_data.objfile = objfile;
23104 addrmap_index_data.addr_obstack = obstack;
23105 addrmap_index_data.cu_index_htab = cu_index_htab;
23106 addrmap_index_data.previous_valid = 0;
23107
23108 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23109 &addrmap_index_data);
23110
23111 /* It's highly unlikely the last entry (end address = 0xff...ff)
23112 is valid, but we should still handle it.
23113 The end address is recorded as the start of the next region, but that
23114 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23115 anyway. */
23116 if (addrmap_index_data.previous_valid)
23117 add_address_entry (objfile, obstack,
23118 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23119 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23120}
23121
156942c7
DE
23122/* Return the symbol kind of PSYM. */
23123
23124static gdb_index_symbol_kind
23125symbol_kind (struct partial_symbol *psym)
23126{
23127 domain_enum domain = PSYMBOL_DOMAIN (psym);
23128 enum address_class aclass = PSYMBOL_CLASS (psym);
23129
23130 switch (domain)
23131 {
23132 case VAR_DOMAIN:
23133 switch (aclass)
23134 {
23135 case LOC_BLOCK:
23136 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23137 case LOC_TYPEDEF:
23138 return GDB_INDEX_SYMBOL_KIND_TYPE;
23139 case LOC_COMPUTED:
23140 case LOC_CONST_BYTES:
23141 case LOC_OPTIMIZED_OUT:
23142 case LOC_STATIC:
23143 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23144 case LOC_CONST:
23145 /* Note: It's currently impossible to recognize psyms as enum values
23146 short of reading the type info. For now punt. */
23147 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23148 default:
23149 /* There are other LOC_FOO values that one might want to classify
23150 as variables, but dwarf2read.c doesn't currently use them. */
23151 return GDB_INDEX_SYMBOL_KIND_OTHER;
23152 }
23153 case STRUCT_DOMAIN:
23154 return GDB_INDEX_SYMBOL_KIND_TYPE;
23155 default:
23156 return GDB_INDEX_SYMBOL_KIND_OTHER;
23157 }
23158}
23159
9291a0cd 23160/* Add a list of partial symbols to SYMTAB. */
b89be57b 23161
9291a0cd
TT
23162static void
23163write_psymbols (struct mapped_symtab *symtab,
987d643c 23164 htab_t psyms_seen,
9291a0cd
TT
23165 struct partial_symbol **psymp,
23166 int count,
987d643c
TT
23167 offset_type cu_index,
23168 int is_static)
9291a0cd
TT
23169{
23170 for (; count-- > 0; ++psymp)
23171 {
156942c7
DE
23172 struct partial_symbol *psym = *psymp;
23173 void **slot;
987d643c 23174
156942c7 23175 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23176 error (_("Ada is not currently supported by the index"));
987d643c 23177
987d643c 23178 /* Only add a given psymbol once. */
156942c7 23179 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23180 if (!*slot)
23181 {
156942c7
DE
23182 gdb_index_symbol_kind kind = symbol_kind (psym);
23183
23184 *slot = psym;
23185 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23186 is_static, kind, cu_index);
987d643c 23187 }
9291a0cd
TT
23188 }
23189}
23190
23191/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23192 exception if there is an error. */
b89be57b 23193
9291a0cd
TT
23194static void
23195write_obstack (FILE *file, struct obstack *obstack)
23196{
23197 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23198 file)
23199 != obstack_object_size (obstack))
23200 error (_("couldn't data write to file"));
23201}
23202
23203/* Unlink a file if the argument is not NULL. */
b89be57b 23204
9291a0cd
TT
23205static void
23206unlink_if_set (void *p)
23207{
9a3c8263 23208 char **filename = (char **) p;
9291a0cd
TT
23209 if (*filename)
23210 unlink (*filename);
23211}
23212
1fd400ff
TT
23213/* A helper struct used when iterating over debug_types. */
23214struct signatured_type_index_data
23215{
23216 struct objfile *objfile;
23217 struct mapped_symtab *symtab;
23218 struct obstack *types_list;
987d643c 23219 htab_t psyms_seen;
1fd400ff
TT
23220 int cu_index;
23221};
23222
23223/* A helper function that writes a single signatured_type to an
23224 obstack. */
b89be57b 23225
1fd400ff
TT
23226static int
23227write_one_signatured_type (void **slot, void *d)
23228{
9a3c8263
SM
23229 struct signatured_type_index_data *info
23230 = (struct signatured_type_index_data *) d;
1fd400ff 23231 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23232 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23233 gdb_byte val[8];
23234
23235 write_psymbols (info->symtab,
987d643c 23236 info->psyms_seen,
3e43a32a
MS
23237 info->objfile->global_psymbols.list
23238 + psymtab->globals_offset,
987d643c
TT
23239 psymtab->n_global_syms, info->cu_index,
23240 0);
1fd400ff 23241 write_psymbols (info->symtab,
987d643c 23242 info->psyms_seen,
3e43a32a
MS
23243 info->objfile->static_psymbols.list
23244 + psymtab->statics_offset,
987d643c
TT
23245 psymtab->n_static_syms, info->cu_index,
23246 1);
1fd400ff 23247
b64f50a1
JK
23248 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23249 entry->per_cu.offset.sect_off);
1fd400ff 23250 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23251 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23252 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23253 obstack_grow (info->types_list, val, 8);
23254 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23255 obstack_grow (info->types_list, val, 8);
23256
23257 ++info->cu_index;
23258
23259 return 1;
23260}
23261
95554aad
TT
23262/* Recurse into all "included" dependencies and write their symbols as
23263 if they appeared in this psymtab. */
23264
23265static void
23266recursively_write_psymbols (struct objfile *objfile,
23267 struct partial_symtab *psymtab,
23268 struct mapped_symtab *symtab,
23269 htab_t psyms_seen,
23270 offset_type cu_index)
23271{
23272 int i;
23273
23274 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23275 if (psymtab->dependencies[i]->user != NULL)
23276 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23277 symtab, psyms_seen, cu_index);
23278
23279 write_psymbols (symtab,
23280 psyms_seen,
23281 objfile->global_psymbols.list + psymtab->globals_offset,
23282 psymtab->n_global_syms, cu_index,
23283 0);
23284 write_psymbols (symtab,
23285 psyms_seen,
23286 objfile->static_psymbols.list + psymtab->statics_offset,
23287 psymtab->n_static_syms, cu_index,
23288 1);
23289}
23290
9291a0cd 23291/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23292
9291a0cd
TT
23293static void
23294write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23295{
23296 struct cleanup *cleanup;
23297 char *filename, *cleanup_filename;
1fd400ff
TT
23298 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23299 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23300 int i;
23301 FILE *out_file;
23302 struct mapped_symtab *symtab;
23303 offset_type val, size_of_contents, total_len;
23304 struct stat st;
987d643c 23305 htab_t psyms_seen;
0a5429f6
DE
23306 htab_t cu_index_htab;
23307 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23308
9291a0cd
TT
23309 if (dwarf2_per_objfile->using_index)
23310 error (_("Cannot use an index to create the index"));
23311
8b70b953
TT
23312 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23313 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23314
260b681b
DE
23315 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23316 return;
23317
4262abfb
JK
23318 if (stat (objfile_name (objfile), &st) < 0)
23319 perror_with_name (objfile_name (objfile));
9291a0cd 23320
4262abfb 23321 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23322 INDEX_SUFFIX, (char *) NULL);
23323 cleanup = make_cleanup (xfree, filename);
23324
614c279d 23325 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23326 if (!out_file)
23327 error (_("Can't open `%s' for writing"), filename);
23328
23329 cleanup_filename = filename;
23330 make_cleanup (unlink_if_set, &cleanup_filename);
23331
23332 symtab = create_mapped_symtab ();
23333 make_cleanup (cleanup_mapped_symtab, symtab);
23334
23335 obstack_init (&addr_obstack);
23336 make_cleanup_obstack_free (&addr_obstack);
23337
23338 obstack_init (&cu_list);
23339 make_cleanup_obstack_free (&cu_list);
23340
1fd400ff
TT
23341 obstack_init (&types_cu_list);
23342 make_cleanup_obstack_free (&types_cu_list);
23343
987d643c
TT
23344 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23345 NULL, xcalloc, xfree);
96408a79 23346 make_cleanup_htab_delete (psyms_seen);
987d643c 23347
0a5429f6
DE
23348 /* While we're scanning CU's create a table that maps a psymtab pointer
23349 (which is what addrmap records) to its index (which is what is recorded
23350 in the index file). This will later be needed to write the address
23351 table. */
23352 cu_index_htab = htab_create_alloc (100,
23353 hash_psymtab_cu_index,
23354 eq_psymtab_cu_index,
23355 NULL, xcalloc, xfree);
96408a79 23356 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23357 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23358 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23359 make_cleanup (xfree, psymtab_cu_index_map);
23360
23361 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23362 work here. Also, the debug_types entries do not appear in
23363 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23364 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23365 {
3e43a32a
MS
23366 struct dwarf2_per_cu_data *per_cu
23367 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23368 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23369 gdb_byte val[8];
0a5429f6
DE
23370 struct psymtab_cu_index_map *map;
23371 void **slot;
9291a0cd 23372
92fac807
JK
23373 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23374 It may be referenced from a local scope but in such case it does not
23375 need to be present in .gdb_index. */
23376 if (psymtab == NULL)
23377 continue;
23378
95554aad
TT
23379 if (psymtab->user == NULL)
23380 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23381
0a5429f6
DE
23382 map = &psymtab_cu_index_map[i];
23383 map->psymtab = psymtab;
23384 map->cu_index = i;
23385 slot = htab_find_slot (cu_index_htab, map, INSERT);
23386 gdb_assert (slot != NULL);
23387 gdb_assert (*slot == NULL);
23388 *slot = map;
9291a0cd 23389
b64f50a1
JK
23390 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23391 per_cu->offset.sect_off);
9291a0cd 23392 obstack_grow (&cu_list, val, 8);
e254ef6a 23393 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23394 obstack_grow (&cu_list, val, 8);
23395 }
23396
0a5429f6
DE
23397 /* Dump the address map. */
23398 write_address_map (objfile, &addr_obstack, cu_index_htab);
23399
1fd400ff
TT
23400 /* Write out the .debug_type entries, if any. */
23401 if (dwarf2_per_objfile->signatured_types)
23402 {
23403 struct signatured_type_index_data sig_data;
23404
23405 sig_data.objfile = objfile;
23406 sig_data.symtab = symtab;
23407 sig_data.types_list = &types_cu_list;
987d643c 23408 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23409 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23410 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23411 write_one_signatured_type, &sig_data);
23412 }
23413
156942c7
DE
23414 /* Now that we've processed all symbols we can shrink their cu_indices
23415 lists. */
23416 uniquify_cu_indices (symtab);
23417
9291a0cd
TT
23418 obstack_init (&constant_pool);
23419 make_cleanup_obstack_free (&constant_pool);
23420 obstack_init (&symtab_obstack);
23421 make_cleanup_obstack_free (&symtab_obstack);
23422 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23423
23424 obstack_init (&contents);
23425 make_cleanup_obstack_free (&contents);
1fd400ff 23426 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23427 total_len = size_of_contents;
23428
23429 /* The version number. */
796a7ff8 23430 val = MAYBE_SWAP (8);
9291a0cd
TT
23431 obstack_grow (&contents, &val, sizeof (val));
23432
23433 /* The offset of the CU list from the start of the file. */
23434 val = MAYBE_SWAP (total_len);
23435 obstack_grow (&contents, &val, sizeof (val));
23436 total_len += obstack_object_size (&cu_list);
23437
1fd400ff
TT
23438 /* The offset of the types CU list from the start of the file. */
23439 val = MAYBE_SWAP (total_len);
23440 obstack_grow (&contents, &val, sizeof (val));
23441 total_len += obstack_object_size (&types_cu_list);
23442
9291a0cd
TT
23443 /* The offset of the address table from the start of the file. */
23444 val = MAYBE_SWAP (total_len);
23445 obstack_grow (&contents, &val, sizeof (val));
23446 total_len += obstack_object_size (&addr_obstack);
23447
23448 /* The offset of the symbol table from the start of the file. */
23449 val = MAYBE_SWAP (total_len);
23450 obstack_grow (&contents, &val, sizeof (val));
23451 total_len += obstack_object_size (&symtab_obstack);
23452
23453 /* The offset of the constant pool from the start of the file. */
23454 val = MAYBE_SWAP (total_len);
23455 obstack_grow (&contents, &val, sizeof (val));
23456 total_len += obstack_object_size (&constant_pool);
23457
23458 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23459
23460 write_obstack (out_file, &contents);
23461 write_obstack (out_file, &cu_list);
1fd400ff 23462 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23463 write_obstack (out_file, &addr_obstack);
23464 write_obstack (out_file, &symtab_obstack);
23465 write_obstack (out_file, &constant_pool);
23466
23467 fclose (out_file);
23468
23469 /* We want to keep the file, so we set cleanup_filename to NULL
23470 here. See unlink_if_set. */
23471 cleanup_filename = NULL;
23472
23473 do_cleanups (cleanup);
23474}
23475
90476074
TT
23476/* Implementation of the `save gdb-index' command.
23477
23478 Note that the file format used by this command is documented in the
23479 GDB manual. Any changes here must be documented there. */
11570e71 23480
9291a0cd
TT
23481static void
23482save_gdb_index_command (char *arg, int from_tty)
23483{
23484 struct objfile *objfile;
23485
23486 if (!arg || !*arg)
96d19272 23487 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23488
23489 ALL_OBJFILES (objfile)
23490 {
23491 struct stat st;
23492
23493 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23494 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23495 continue;
23496
9a3c8263
SM
23497 dwarf2_per_objfile
23498 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23499 dwarf2_objfile_data_key);
9291a0cd
TT
23500 if (dwarf2_per_objfile)
23501 {
9291a0cd 23502
492d29ea 23503 TRY
9291a0cd
TT
23504 {
23505 write_psymtabs_to_index (objfile, arg);
23506 }
492d29ea
PA
23507 CATCH (except, RETURN_MASK_ERROR)
23508 {
23509 exception_fprintf (gdb_stderr, except,
23510 _("Error while writing index for `%s': "),
23511 objfile_name (objfile));
23512 }
23513 END_CATCH
9291a0cd
TT
23514 }
23515 }
dce234bc
PP
23516}
23517
9291a0cd
TT
23518\f
23519
b4f54984 23520int dwarf_always_disassemble;
9eae7c52
TT
23521
23522static void
b4f54984
DE
23523show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23524 struct cmd_list_element *c, const char *value)
9eae7c52 23525{
3e43a32a
MS
23526 fprintf_filtered (file,
23527 _("Whether to always disassemble "
23528 "DWARF expressions is %s.\n"),
9eae7c52
TT
23529 value);
23530}
23531
900e11f9
JK
23532static void
23533show_check_physname (struct ui_file *file, int from_tty,
23534 struct cmd_list_element *c, const char *value)
23535{
23536 fprintf_filtered (file,
23537 _("Whether to check \"physname\" is %s.\n"),
23538 value);
23539}
23540
6502dd73
DJ
23541void _initialize_dwarf2_read (void);
23542
23543void
23544_initialize_dwarf2_read (void)
23545{
96d19272
JK
23546 struct cmd_list_element *c;
23547
dce234bc 23548 dwarf2_objfile_data_key
c1bd65d0 23549 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23550
b4f54984
DE
23551 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23552Set DWARF specific variables.\n\
23553Configure DWARF variables such as the cache size"),
23554 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23555 0/*allow-unknown*/, &maintenance_set_cmdlist);
23556
b4f54984
DE
23557 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23558Show DWARF specific variables\n\
23559Show DWARF variables such as the cache size"),
23560 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23561 0/*allow-unknown*/, &maintenance_show_cmdlist);
23562
23563 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23564 &dwarf_max_cache_age, _("\
23565Set the upper bound on the age of cached DWARF compilation units."), _("\
23566Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23567A higher limit means that cached compilation units will be stored\n\
23568in memory longer, and more total memory will be used. Zero disables\n\
23569caching, which can slow down startup."),
2c5b56ce 23570 NULL,
b4f54984
DE
23571 show_dwarf_max_cache_age,
23572 &set_dwarf_cmdlist,
23573 &show_dwarf_cmdlist);
d97bc12b 23574
9eae7c52 23575 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23576 &dwarf_always_disassemble, _("\
9eae7c52
TT
23577Set whether `info address' always disassembles DWARF expressions."), _("\
23578Show whether `info address' always disassembles DWARF expressions."), _("\
23579When enabled, DWARF expressions are always printed in an assembly-like\n\
23580syntax. When disabled, expressions will be printed in a more\n\
23581conversational style, when possible."),
23582 NULL,
b4f54984
DE
23583 show_dwarf_always_disassemble,
23584 &set_dwarf_cmdlist,
23585 &show_dwarf_cmdlist);
23586
23587 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23588Set debugging of the DWARF reader."), _("\
23589Show debugging of the DWARF reader."), _("\
23590When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23591reading and symtab expansion. A value of 1 (one) provides basic\n\
23592information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23593 NULL,
23594 NULL,
23595 &setdebuglist, &showdebuglist);
23596
b4f54984
DE
23597 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23598Set debugging of the DWARF DIE reader."), _("\
23599Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23600When enabled (non-zero), DIEs are dumped after they are read in.\n\
23601The value is the maximum depth to print."),
ccce17b0
YQ
23602 NULL,
23603 NULL,
23604 &setdebuglist, &showdebuglist);
9291a0cd 23605
27e0867f
DE
23606 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23607Set debugging of the dwarf line reader."), _("\
23608Show debugging of the dwarf line reader."), _("\
23609When enabled (non-zero), line number entries are dumped as they are read in.\n\
23610A value of 1 (one) provides basic information.\n\
23611A value greater than 1 provides more verbose information."),
23612 NULL,
23613 NULL,
23614 &setdebuglist, &showdebuglist);
23615
900e11f9
JK
23616 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23617Set cross-checking of \"physname\" code against demangler."), _("\
23618Show cross-checking of \"physname\" code against demangler."), _("\
23619When enabled, GDB's internal \"physname\" code is checked against\n\
23620the demangler."),
23621 NULL, show_check_physname,
23622 &setdebuglist, &showdebuglist);
23623
e615022a
DE
23624 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23625 no_class, &use_deprecated_index_sections, _("\
23626Set whether to use deprecated gdb_index sections."), _("\
23627Show whether to use deprecated gdb_index sections."), _("\
23628When enabled, deprecated .gdb_index sections are used anyway.\n\
23629Normally they are ignored either because of a missing feature or\n\
23630performance issue.\n\
23631Warning: This option must be enabled before gdb reads the file."),
23632 NULL,
23633 NULL,
23634 &setlist, &showlist);
23635
96d19272 23636 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23637 _("\
fc1a9d6e 23638Save a gdb-index file.\n\
11570e71 23639Usage: save gdb-index DIRECTORY"),
96d19272
JK
23640 &save_cmdlist);
23641 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23642
23643 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23644 &dwarf2_locexpr_funcs);
23645 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23646 &dwarf2_loclist_funcs);
23647
23648 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23649 &dwarf2_block_frame_base_locexpr_funcs);
23650 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23651 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23652}
This page took 3.918874 seconds and 4 git commands to generate.