Set TYPE_LENGTH on a variant part
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
e2882c85 3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c 31#include "defs.h"
cd4fb1b2 32#include "dwarf2read.h"
87d6a7aa 33#include "dwarf-index-cache.h"
cd4fb1b2 34#include "dwarf-index-common.h"
c906108c 35#include "bfd.h"
80626a55 36#include "elf-bfd.h"
c906108c
SS
37#include "symtab.h"
38#include "gdbtypes.h"
c906108c 39#include "objfiles.h"
fa8f86ff 40#include "dwarf2.h"
804d2729 41#include "buildsym.h"
c906108c 42#include "demangle.h"
50f182aa 43#include "gdb-demangle.h"
c906108c 44#include "expression.h"
d5166ae1 45#include "filenames.h" /* for DOSish file names */
2e276125 46#include "macrotab.h"
c906108c
SS
47#include "language.h"
48#include "complaints.h"
357e46e7 49#include "bcache.h"
4c2df51b
DJ
50#include "dwarf2expr.h"
51#include "dwarf2loc.h"
9219021c 52#include "cp-support.h"
72bf9492 53#include "hashtab.h"
ae038cb0
DJ
54#include "command.h"
55#include "gdbcmd.h"
edb3359d 56#include "block.h"
ff013f42 57#include "addrmap.h"
94af9270 58#include "typeprint.h"
ccefe4c4 59#include "psympriv.h"
53ce3c39 60#include <sys/stat.h>
96d19272 61#include "completer.h"
34eaf542 62#include "vec.h"
98bfdba5 63#include "c-lang.h"
a766d390 64#include "go-lang.h"
98bfdba5 65#include "valprint.h"
3019eac3 66#include "gdbcore.h" /* for gnutarget */
156942c7 67#include "gdb/gdb-index.h"
60d5a603 68#include <ctype.h>
cbb099e8 69#include "gdb_bfd.h"
4357ac6c 70#include "f-lang.h"
05cba821 71#include "source.h"
614c279d 72#include "filestuff.h"
dc294be5 73#include "build-id.h"
22cee43f 74#include "namespace.h"
bef155c3 75#include "common/gdb_unlinker.h"
14bc53a8 76#include "common/function-view.h"
ecfb656c
PA
77#include "common/gdb_optional.h"
78#include "common/underlying.h"
d5722aa2 79#include "common/byte-vector.h"
927aa2e7 80#include "common/hash_enum.h"
bbf2f4df 81#include "filename-seen-cache.h"
b32b108a 82#include "producer.h"
c906108c 83#include <fcntl.h>
c906108c 84#include <sys/types.h>
325fac50 85#include <algorithm>
bc8f2430
JK
86#include <unordered_set>
87#include <unordered_map>
c62446b1 88#include "selftest.h"
437afbb8
JK
89#include <cmath>
90#include <set>
91#include <forward_list>
c9317f21 92#include "rust-lang.h"
b4987c95 93#include "common/pathstuff.h"
437afbb8 94
73be47f5
DE
95/* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
b4f54984
DE
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98static unsigned int dwarf_read_debug = 0;
45cfd468 99
d97bc12b 100/* When non-zero, dump DIEs after they are read in. */
b4f54984 101static unsigned int dwarf_die_debug = 0;
d97bc12b 102
27e0867f
DE
103/* When non-zero, dump line number entries as they are read in. */
104static unsigned int dwarf_line_debug = 0;
105
900e11f9
JK
106/* When non-zero, cross-check physname against demangler. */
107static int check_physname = 0;
108
481860b3 109/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 110static int use_deprecated_index_sections = 0;
481860b3 111
6502dd73
DJ
112static const struct objfile_data *dwarf2_objfile_data_key;
113
f1e6e072
TT
114/* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116static int dwarf2_locexpr_index;
117static int dwarf2_loclist_index;
118static int dwarf2_locexpr_block_index;
119static int dwarf2_loclist_block_index;
120
3f563c84
PA
121/* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134struct name_component
135{
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144};
145
44ed8f3e
PA
146/* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149struct mapped_index_base
150{
22ca247e
TT
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
44ed8f3e
PA
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186protected:
187 ~mapped_index_base() = default;
188};
189
9291a0cd
TT
190/* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
fc898b42 192struct mapped_index final : public mapped_index_base
9291a0cd 193{
f00a2de2
PA
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
559a7a62 201 /* Index data format version. */
3063847f 202 int version = 0;
559a7a62 203
f00a2de2
PA
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
b11b1f88 206
3876f04e 207 /* The symbol table, implemented as a hash table. */
f00a2de2 208 gdb::array_view<symbol_table_slot> symbol_table;
b11b1f88 209
9291a0cd 210 /* A pointer to the constant pool. */
3063847f 211 const char *constant_pool = nullptr;
3f563c84 212
44ed8f3e
PA
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
5c58de74 218
3f563c84
PA
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
44ed8f3e 221 const char *symbol_name_at (offset_type idx) const override
f00a2de2 222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
5c58de74 223
44ed8f3e
PA
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
9291a0cd
TT
226};
227
927aa2e7
JK
228/* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
fc898b42 230struct mapped_debug_names final : public mapped_index_base
927aa2e7 231{
ed2dc618
SM
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
927aa2e7
JK
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
44ed8f3e
PA
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
927aa2e7
JK
278};
279
cd4fb1b2 280/* See dwarf2read.h. */
ed2dc618 281
cd4fb1b2 282dwarf2_per_objfile *
ed2dc618
SM
283get_dwarf2_per_objfile (struct objfile *objfile)
284{
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287}
288
289/* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291void
292set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294{
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297}
c906108c 298
251d32d9 299/* Default names of the debugging sections. */
c906108c 300
233a11ab
CS
301/* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
9cdd5dbd
DE
304static const struct dwarf2_debug_sections dwarf2_elf_names =
305{
251d32d9
TG
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
43988095 310 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 311 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 312 { ".debug_macro", ".zdebug_macro" },
251d32d9 313 { ".debug_str", ".zdebug_str" },
43988095 314 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 315 { ".debug_ranges", ".zdebug_ranges" },
43988095 316 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 317 { ".debug_types", ".zdebug_types" },
3019eac3 318 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
24d3216f 321 { ".gdb_index", ".zgdb_index" },
927aa2e7
JK
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
24d3216f 324 23
251d32d9 325};
c906108c 326
80626a55 327/* List of DWO/DWP sections. */
3019eac3 328
80626a55 329static const struct dwop_section_names
3019eac3
DE
330{
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
43988095 335 struct dwarf2_section_names loclists_dwo;
09262596
DE
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
3019eac3
DE
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
80626a55
DE
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
3019eac3 343}
80626a55 344dwop_section_names =
3019eac3
DE
345{
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
358};
359
c906108c
SS
360/* local data types */
361
107d2387
AC
362/* The data in a compilation unit header, after target2host
363 translation, looks like this. */
c906108c 364struct comp_unit_head
a738430d 365{
c764a876 366 unsigned int length;
a738430d 367 short version;
a738430d
MK
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
9c541725 370 sect_offset abbrev_sect_off;
57349743 371
a738430d
MK
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
57349743 374
a738430d
MK
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
57349743 377
43988095
JK
378 enum dwarf_unit_type unit_type;
379
a738430d
MK
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
9c541725 382 sect_offset sect_off;
57349743 383
d00adf39
DE
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
9c541725 386 cu_offset first_die_cu_offset;
43988095
JK
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 393 cu_offset type_cu_offset_in_tu;
a738430d 394};
c906108c 395
3da10d80
KS
396/* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398struct delayed_method_info
399{
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414};
415
e7c27a73
DJ
416/* Internal state when decoding a particular compilation unit. */
417struct dwarf2_cu
418{
fcd3b13d
SM
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
d00adf39 424 /* The header of the compilation unit. */
fcd3b13d 425 struct comp_unit_head header {};
e142c38c 426
d00adf39 427 /* Base address of this compilation unit. */
fcd3b13d 428 CORE_ADDR base_address = 0;
d00adf39
DE
429
430 /* Non-zero if base_address has been set. */
fcd3b13d 431 int base_known = 0;
d00adf39 432
e142c38c 433 /* The language we are debugging. */
fcd3b13d
SM
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
e142c38c 436
fcd3b13d 437 const char *producer = nullptr;
b0f35d58 438
804d2729
TT
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
e142c38c
DJ
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
fcd3b13d 452 struct pending **list_in_scope = nullptr;
e142c38c 453
b64f50a1
JK
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
fcd3b13d 456 htab_t partial_dies = nullptr;
72bf9492
DJ
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
fcd3b13d 460 auto_obstack comp_unit_obstack;
72bf9492 461
ae038cb0
DJ
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
fcd3b13d 466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
ae038cb0 467
69d751e3 468 /* Backlink to our per_cu entry. */
ae038cb0
DJ
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
fcd3b13d 472 int last_used = 0;
ae038cb0 473
b64f50a1
JK
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
fcd3b13d 476 htab_t die_hash = nullptr;
10b3939b
DJ
477
478 /* Full DIEs if read in. */
fcd3b13d 479 struct die_info *dies = nullptr;
10b3939b
DJ
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
fcd3b13d 484 htab_t dependencies = nullptr;
10b3939b 485
cb1df416 486 /* Header data from the line table, during full symbol processing. */
fcd3b13d 487 struct line_header *line_header = nullptr;
4c8aa72d
PA
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
fcd3b13d 493 die_info *line_header_die_owner = nullptr;
cb1df416 494
3da10d80
KS
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
c89b44cd 497 std::vector<delayed_method_info> method_list;
3da10d80 498
96408a79 499 /* To be copied to symtab->call_site_htab. */
fcd3b13d 500 htab_t call_site_htab = nullptr;
96408a79 501
034e5797
DE
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
fcd3b13d 511 struct dwo_unit *dwo_unit = nullptr;
3019eac3
DE
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
1dbab08b 515 Note this value comes from the Fission stub CU/TU's DIE. */
fcd3b13d 516 ULONGEST addr_base = 0;
3019eac3 517
2e3cf129
DE
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 521 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
fcd3b13d 528 ULONGEST ranges_base = 0;
2e3cf129 529
c9317f21
TT
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
ae038cb0
DJ
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
8be455d7
JK
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 545 unsigned int has_loclist : 1;
ba919b58 546
1b80a9fa
JK
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
ba919b58
TT
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 553 unsigned int producer_is_gcc_lt_4_3 : 1;
5230b05a 554 unsigned int producer_is_icc_lt_14 : 1;
4d4ec4e5
TT
555
556 /* When set, the file that we're processing is known to have
557 debugging info for C++ namespaces. GCC 3.3.x did not produce
558 this information, but later versions do. */
559
560 unsigned int processing_has_namespace_info : 1;
d590ff25
YQ
561
562 struct partial_die_info *find_partial_die (sect_offset sect_off);
e7c27a73
DJ
563};
564
094b34ac
DE
565/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
566 This includes type_unit_group and quick_file_names. */
567
568struct stmt_list_hash
569{
570 /* The DWO unit this table is from or NULL if there is none. */
571 struct dwo_unit *dwo_unit;
572
573 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 574 sect_offset line_sect_off;
094b34ac
DE
575};
576
f4dc4d17
DE
577/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
578 an object of this type. */
579
580struct type_unit_group
581{
0186c6a7 582 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
583 To simplify things we create an artificial CU that "includes" all the
584 type units using this stmt_list so that the rest of the code still has
585 a "per_cu" handle on the symtab.
586 This PER_CU is recognized by having no section. */
8a0459fd 587#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
588 struct dwarf2_per_cu_data per_cu;
589
0186c6a7
DE
590 /* The TUs that share this DW_AT_stmt_list entry.
591 This is added to while parsing type units to build partial symtabs,
592 and is deleted afterwards and not used again. */
593 VEC (sig_type_ptr) *tus;
f4dc4d17 594
43f3e411 595 /* The compunit symtab.
094b34ac 596 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
597 so we create an essentially anonymous symtab as the compunit symtab. */
598 struct compunit_symtab *compunit_symtab;
f4dc4d17 599
094b34ac
DE
600 /* The data used to construct the hash key. */
601 struct stmt_list_hash hash;
f4dc4d17
DE
602
603 /* The number of symtabs from the line header.
604 The value here must match line_header.num_file_names. */
605 unsigned int num_symtabs;
606
607 /* The symbol tables for this TU (obtained from the files listed in
608 DW_AT_stmt_list).
609 WARNING: The order of entries here must match the order of entries
610 in the line header. After the first TU using this type_unit_group, the
611 line header for the subsequent TUs is recreated from this. This is done
612 because we need to use the same symtabs for each TU using the same
613 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
614 there's no guarantee the line header doesn't have duplicate entries. */
615 struct symtab **symtabs;
616};
617
73869dc2 618/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
619
620struct dwo_sections
621{
622 struct dwarf2_section_info abbrev;
3019eac3
DE
623 struct dwarf2_section_info line;
624 struct dwarf2_section_info loc;
43988095 625 struct dwarf2_section_info loclists;
09262596
DE
626 struct dwarf2_section_info macinfo;
627 struct dwarf2_section_info macro;
3019eac3
DE
628 struct dwarf2_section_info str;
629 struct dwarf2_section_info str_offsets;
80626a55
DE
630 /* In the case of a virtual DWO file, these two are unused. */
631 struct dwarf2_section_info info;
3019eac3
DE
632 VEC (dwarf2_section_info_def) *types;
633};
634
c88ee1f0 635/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
636
637struct dwo_unit
638{
639 /* Backlink to the containing struct dwo_file. */
640 struct dwo_file *dwo_file;
641
642 /* The "id" that distinguishes this CU/TU.
643 .debug_info calls this "dwo_id", .debug_types calls this "signature".
644 Since signatures came first, we stick with it for consistency. */
645 ULONGEST signature;
646
647 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 648 struct dwarf2_section_info *section;
3019eac3 649
9c541725
PA
650 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
651 sect_offset sect_off;
3019eac3
DE
652 unsigned int length;
653
654 /* For types, offset in the type's DIE of the type defined by this TU. */
655 cu_offset type_offset_in_tu;
656};
657
73869dc2
DE
658/* include/dwarf2.h defines the DWP section codes.
659 It defines a max value but it doesn't define a min value, which we
660 use for error checking, so provide one. */
661
662enum dwp_v2_section_ids
663{
664 DW_SECT_MIN = 1
665};
666
80626a55 667/* Data for one DWO file.
57d63ce2
DE
668
669 This includes virtual DWO files (a virtual DWO file is a DWO file as it
670 appears in a DWP file). DWP files don't really have DWO files per se -
671 comdat folding of types "loses" the DWO file they came from, and from
672 a high level view DWP files appear to contain a mass of random types.
673 However, to maintain consistency with the non-DWP case we pretend DWP
674 files contain virtual DWO files, and we assign each TU with one virtual
675 DWO file (generally based on the line and abbrev section offsets -
676 a heuristic that seems to work in practice). */
3019eac3
DE
677
678struct dwo_file
679{
0ac5b59e 680 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
681 For virtual DWO files the name is constructed from the section offsets
682 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
683 from related CU+TUs. */
0ac5b59e
DE
684 const char *dwo_name;
685
686 /* The DW_AT_comp_dir attribute. */
687 const char *comp_dir;
3019eac3 688
80626a55
DE
689 /* The bfd, when the file is open. Otherwise this is NULL.
690 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
691 bfd *dbfd;
3019eac3 692
73869dc2
DE
693 /* The sections that make up this DWO file.
694 Remember that for virtual DWO files in DWP V2, these are virtual
695 sections (for lack of a better name). */
3019eac3
DE
696 struct dwo_sections sections;
697
33c5cd75
DB
698 /* The CUs in the file.
699 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
700 an extension to handle LLVM's Link Time Optimization output (where
701 multiple source files may be compiled into a single object/dwo pair). */
702 htab_t cus;
3019eac3
DE
703
704 /* Table of TUs in the file.
705 Each element is a struct dwo_unit. */
706 htab_t tus;
707};
708
80626a55
DE
709/* These sections are what may appear in a DWP file. */
710
711struct dwp_sections
712{
73869dc2 713 /* These are used by both DWP version 1 and 2. */
80626a55
DE
714 struct dwarf2_section_info str;
715 struct dwarf2_section_info cu_index;
716 struct dwarf2_section_info tu_index;
73869dc2
DE
717
718 /* These are only used by DWP version 2 files.
719 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
720 sections are referenced by section number, and are not recorded here.
721 In DWP version 2 there is at most one copy of all these sections, each
722 section being (effectively) comprised of the concatenation of all of the
723 individual sections that exist in the version 1 format.
724 To keep the code simple we treat each of these concatenated pieces as a
725 section itself (a virtual section?). */
726 struct dwarf2_section_info abbrev;
727 struct dwarf2_section_info info;
728 struct dwarf2_section_info line;
729 struct dwarf2_section_info loc;
730 struct dwarf2_section_info macinfo;
731 struct dwarf2_section_info macro;
732 struct dwarf2_section_info str_offsets;
733 struct dwarf2_section_info types;
80626a55
DE
734};
735
73869dc2
DE
736/* These sections are what may appear in a virtual DWO file in DWP version 1.
737 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 738
73869dc2 739struct virtual_v1_dwo_sections
80626a55
DE
740{
741 struct dwarf2_section_info abbrev;
742 struct dwarf2_section_info line;
743 struct dwarf2_section_info loc;
744 struct dwarf2_section_info macinfo;
745 struct dwarf2_section_info macro;
746 struct dwarf2_section_info str_offsets;
747 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 748 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
749 struct dwarf2_section_info info_or_types;
750};
751
73869dc2
DE
752/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
753 In version 2, the sections of the DWO files are concatenated together
754 and stored in one section of that name. Thus each ELF section contains
755 several "virtual" sections. */
756
757struct virtual_v2_dwo_sections
758{
759 bfd_size_type abbrev_offset;
760 bfd_size_type abbrev_size;
761
762 bfd_size_type line_offset;
763 bfd_size_type line_size;
764
765 bfd_size_type loc_offset;
766 bfd_size_type loc_size;
767
768 bfd_size_type macinfo_offset;
769 bfd_size_type macinfo_size;
770
771 bfd_size_type macro_offset;
772 bfd_size_type macro_size;
773
774 bfd_size_type str_offsets_offset;
775 bfd_size_type str_offsets_size;
776
777 /* Each DWP hash table entry records one CU or one TU.
778 That is recorded here, and copied to dwo_unit.section. */
779 bfd_size_type info_or_types_offset;
780 bfd_size_type info_or_types_size;
781};
782
80626a55
DE
783/* Contents of DWP hash tables. */
784
785struct dwp_hash_table
786{
73869dc2 787 uint32_t version, nr_columns;
80626a55 788 uint32_t nr_units, nr_slots;
73869dc2
DE
789 const gdb_byte *hash_table, *unit_table;
790 union
791 {
792 struct
793 {
794 const gdb_byte *indices;
795 } v1;
796 struct
797 {
798 /* This is indexed by column number and gives the id of the section
799 in that column. */
800#define MAX_NR_V2_DWO_SECTIONS \
801 (1 /* .debug_info or .debug_types */ \
802 + 1 /* .debug_abbrev */ \
803 + 1 /* .debug_line */ \
804 + 1 /* .debug_loc */ \
805 + 1 /* .debug_str_offsets */ \
806 + 1 /* .debug_macro or .debug_macinfo */)
807 int section_ids[MAX_NR_V2_DWO_SECTIONS];
808 const gdb_byte *offsets;
809 const gdb_byte *sizes;
810 } v2;
811 } section_pool;
80626a55
DE
812};
813
814/* Data for one DWP file. */
815
816struct dwp_file
817{
400174b1
TT
818 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
819 : name (name_),
820 dbfd (std::move (abfd))
821 {
822 }
823
80626a55
DE
824 /* Name of the file. */
825 const char *name;
826
73869dc2 827 /* File format version. */
400174b1 828 int version = 0;
73869dc2 829
93417882 830 /* The bfd. */
400174b1 831 gdb_bfd_ref_ptr dbfd;
80626a55
DE
832
833 /* Section info for this file. */
400174b1 834 struct dwp_sections sections {};
80626a55 835
57d63ce2 836 /* Table of CUs in the file. */
400174b1 837 const struct dwp_hash_table *cus = nullptr;
80626a55
DE
838
839 /* Table of TUs in the file. */
400174b1 840 const struct dwp_hash_table *tus = nullptr;
80626a55 841
19ac8c2e 842 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
400174b1
TT
843 htab_t loaded_cus {};
844 htab_t loaded_tus {};
80626a55 845
73869dc2
DE
846 /* Table to map ELF section numbers to their sections.
847 This is only needed for the DWP V1 file format. */
400174b1
TT
848 unsigned int num_sections = 0;
849 asection **elf_sections = nullptr;
80626a55
DE
850};
851
36586728
TT
852/* This represents a '.dwz' file. */
853
854struct dwz_file
855{
7ff8cb8c
TT
856 dwz_file (gdb_bfd_ref_ptr &&bfd)
857 : dwz_bfd (std::move (bfd))
858 {
859 }
860
36586728 861 /* A dwz file can only contain a few sections. */
7ff8cb8c
TT
862 struct dwarf2_section_info abbrev {};
863 struct dwarf2_section_info info {};
864 struct dwarf2_section_info str {};
865 struct dwarf2_section_info line {};
866 struct dwarf2_section_info macro {};
867 struct dwarf2_section_info gdb_index {};
868 struct dwarf2_section_info debug_names {};
36586728
TT
869
870 /* The dwz's BFD. */
7ff8cb8c 871 gdb_bfd_ref_ptr dwz_bfd;
87d6a7aa
SM
872
873 /* If we loaded the index from an external file, this contains the
874 resources associated to the open file, memory mapping, etc. */
875 std::unique_ptr<index_cache_resource> index_cache_res;
36586728
TT
876};
877
0963b4bd
MS
878/* Struct used to pass misc. parameters to read_die_and_children, et
879 al. which are used for both .debug_info and .debug_types dies.
880 All parameters here are unchanging for the life of the call. This
dee91e82 881 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
882
883struct die_reader_specs
884{
a32a8923 885 /* The bfd of die_section. */
93311388
DE
886 bfd* abfd;
887
888 /* The CU of the DIE we are parsing. */
889 struct dwarf2_cu *cu;
890
80626a55 891 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
892 struct dwo_file *dwo_file;
893
dee91e82 894 /* The section the die comes from.
3019eac3 895 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
896 struct dwarf2_section_info *die_section;
897
898 /* die_section->buffer. */
d521ce57 899 const gdb_byte *buffer;
f664829e
DE
900
901 /* The end of the buffer. */
902 const gdb_byte *buffer_end;
a2ce51a0
DE
903
904 /* The value of the DW_AT_comp_dir attribute. */
905 const char *comp_dir;
685af9cd
TT
906
907 /* The abbreviation table to use when reading the DIEs. */
908 struct abbrev_table *abbrev_table;
93311388
DE
909};
910
fd820528 911/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 912typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 913 const gdb_byte *info_ptr,
dee91e82
DE
914 struct die_info *comp_unit_die,
915 int has_children,
916 void *data);
917
ecfb656c
PA
918/* A 1-based directory index. This is a strong typedef to prevent
919 accidentally using a directory index as a 0-based index into an
920 array/vector. */
921enum class dir_index : unsigned int {};
922
923/* Likewise, a 1-based file name index. */
924enum class file_name_index : unsigned int {};
925
52059ffd
TT
926struct file_entry
927{
fff8551c
PA
928 file_entry () = default;
929
ecfb656c 930 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
931 unsigned int mod_time_, unsigned int length_)
932 : name (name_),
ecfb656c 933 d_index (d_index_),
fff8551c
PA
934 mod_time (mod_time_),
935 length (length_)
936 {}
937
ecfb656c
PA
938 /* Return the include directory at D_INDEX stored in LH. Returns
939 NULL if D_INDEX is out of bounds. */
8c43009f
PA
940 const char *include_dir (const line_header *lh) const;
941
fff8551c
PA
942 /* The file name. Note this is an observing pointer. The memory is
943 owned by debug_line_buffer. */
944 const char *name {};
945
8c43009f 946 /* The directory index (1-based). */
ecfb656c 947 dir_index d_index {};
fff8551c
PA
948
949 unsigned int mod_time {};
950
951 unsigned int length {};
952
953 /* True if referenced by the Line Number Program. */
954 bool included_p {};
955
83769d0b 956 /* The associated symbol table, if any. */
fff8551c 957 struct symtab *symtab {};
52059ffd
TT
958};
959
debd256d
JB
960/* The line number information for a compilation unit (found in the
961 .debug_line section) begins with a "statement program header",
962 which contains the following information. */
963struct line_header
964{
fff8551c
PA
965 line_header ()
966 : offset_in_dwz {}
967 {}
968
969 /* Add an entry to the include directory table. */
970 void add_include_dir (const char *include_dir);
971
972 /* Add an entry to the file name table. */
ecfb656c 973 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
974 unsigned int mod_time, unsigned int length);
975
ecfb656c 976 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 977 is out of bounds. */
ecfb656c 978 const char *include_dir_at (dir_index index) const
8c43009f 979 {
ecfb656c
PA
980 /* Convert directory index number (1-based) to vector index
981 (0-based). */
982 size_t vec_index = to_underlying (index) - 1;
983
984 if (vec_index >= include_dirs.size ())
8c43009f 985 return NULL;
ecfb656c 986 return include_dirs[vec_index];
8c43009f
PA
987 }
988
ecfb656c 989 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 990 is out of bounds. */
ecfb656c 991 file_entry *file_name_at (file_name_index index)
8c43009f 992 {
ecfb656c
PA
993 /* Convert file name index number (1-based) to vector index
994 (0-based). */
995 size_t vec_index = to_underlying (index) - 1;
996
997 if (vec_index >= file_names.size ())
fff8551c 998 return NULL;
ecfb656c 999 return &file_names[vec_index];
fff8551c
PA
1000 }
1001
1002 /* Const version of the above. */
1003 const file_entry *file_name_at (unsigned int index) const
1004 {
1005 if (index >= file_names.size ())
8c43009f
PA
1006 return NULL;
1007 return &file_names[index];
1008 }
1009
527f3840 1010 /* Offset of line number information in .debug_line section. */
9c541725 1011 sect_offset sect_off {};
527f3840
JK
1012
1013 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1014 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1015
1016 unsigned int total_length {};
1017 unsigned short version {};
1018 unsigned int header_length {};
1019 unsigned char minimum_instruction_length {};
1020 unsigned char maximum_ops_per_instruction {};
1021 unsigned char default_is_stmt {};
1022 int line_base {};
1023 unsigned char line_range {};
1024 unsigned char opcode_base {};
debd256d
JB
1025
1026 /* standard_opcode_lengths[i] is the number of operands for the
1027 standard opcode whose value is i. This means that
1028 standard_opcode_lengths[0] is unused, and the last meaningful
1029 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1030 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1031
fff8551c
PA
1032 /* The include_directories table. Note these are observing
1033 pointers. The memory is owned by debug_line_buffer. */
1034 std::vector<const char *> include_dirs;
debd256d 1035
fff8551c
PA
1036 /* The file_names table. */
1037 std::vector<file_entry> file_names;
debd256d
JB
1038
1039 /* The start and end of the statement program following this
6502dd73 1040 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1041 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1042};
c906108c 1043
fff8551c
PA
1044typedef std::unique_ptr<line_header> line_header_up;
1045
8c43009f
PA
1046const char *
1047file_entry::include_dir (const line_header *lh) const
1048{
ecfb656c 1049 return lh->include_dir_at (d_index);
8c43009f
PA
1050}
1051
c906108c 1052/* When we construct a partial symbol table entry we only
0963b4bd 1053 need this much information. */
6f06d47b 1054struct partial_die_info : public allocate_on_obstack
c906108c 1055 {
6f06d47b
YQ
1056 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1057
1058 /* Disable assign but still keep copy ctor, which is needed
1059 load_partial_dies. */
1060 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1061
52356b79
YQ
1062 /* Adjust the partial die before generating a symbol for it. This
1063 function may set the is_external flag or change the DIE's
1064 name. */
1065 void fixup (struct dwarf2_cu *cu);
1066
48fbe735
YQ
1067 /* Read a minimal amount of information into the minimal die
1068 structure. */
1069 const gdb_byte *read (const struct die_reader_specs *reader,
1070 const struct abbrev_info &abbrev,
1071 const gdb_byte *info_ptr);
1072
72bf9492 1073 /* Offset of this DIE. */
6f06d47b 1074 const sect_offset sect_off;
72bf9492
DJ
1075
1076 /* DWARF-2 tag for this DIE. */
6f06d47b 1077 const ENUM_BITFIELD(dwarf_tag) tag : 16;
72bf9492 1078
72bf9492 1079 /* Assorted flags describing the data found in this DIE. */
6f06d47b
YQ
1080 const unsigned int has_children : 1;
1081
72bf9492
DJ
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
481860b3 1087 unsigned int may_be_inlined : 1;
72bf9492 1088
0c1b455e
TT
1089 /* This DIE has been marked DW_AT_main_subprogram. */
1090 unsigned int main_subprogram : 1;
1091
72bf9492
DJ
1092 /* Flag set if the SCOPE field of this structure has been
1093 computed. */
1094 unsigned int scope_set : 1;
1095
fa4028e9
JB
1096 /* Flag set if the DIE has a byte_size attribute. */
1097 unsigned int has_byte_size : 1;
1098
ff908ebf
AW
1099 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1100 unsigned int has_const_value : 1;
1101
98bfdba5
PA
1102 /* Flag set if any of the DIE's children are template arguments. */
1103 unsigned int has_template_arguments : 1;
1104
52356b79 1105 /* Flag set if fixup has been called on this die. */
abc72ce4
DE
1106 unsigned int fixup_called : 1;
1107
36586728
TT
1108 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1109 unsigned int is_dwz : 1;
1110
1111 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1112 unsigned int spec_is_dwz : 1;
1113
72bf9492 1114 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1115 sometimes a default name for unnamed DIEs. */
6f06d47b 1116 const char *name = nullptr;
72bf9492 1117
abc72ce4 1118 /* The linkage name, if present. */
6f06d47b 1119 const char *linkage_name = nullptr;
abc72ce4 1120
72bf9492
DJ
1121 /* The scope to prepend to our children. This is generally
1122 allocated on the comp_unit_obstack, so will disappear
1123 when this compilation unit leaves the cache. */
6f06d47b 1124 const char *scope = nullptr;
72bf9492 1125
95554aad
TT
1126 /* Some data associated with the partial DIE. The tag determines
1127 which field is live. */
1128 union
1129 {
1130 /* The location description associated with this DIE, if any. */
1131 struct dwarf_block *locdesc;
1132 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1133 sect_offset sect_off;
6f06d47b 1134 } d {};
72bf9492
DJ
1135
1136 /* If HAS_PC_INFO, the PC range associated with this DIE. */
6f06d47b
YQ
1137 CORE_ADDR lowpc = 0;
1138 CORE_ADDR highpc = 0;
72bf9492 1139
93311388 1140 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1141 DW_AT_sibling, if any. */
48fbe735
YQ
1142 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1143 could return DW_AT_sibling values to its caller load_partial_dies. */
6f06d47b 1144 const gdb_byte *sibling = nullptr;
72bf9492
DJ
1145
1146 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1147 DW_AT_specification (or DW_AT_abstract_origin or
1148 DW_AT_extension). */
6f06d47b 1149 sect_offset spec_offset {};
72bf9492
DJ
1150
1151 /* Pointers to this DIE's parent, first child, and next sibling,
1152 if any. */
6f06d47b
YQ
1153 struct partial_die_info *die_parent = nullptr;
1154 struct partial_die_info *die_child = nullptr;
1155 struct partial_die_info *die_sibling = nullptr;
1156
1157 friend struct partial_die_info *
1158 dwarf2_cu::find_partial_die (sect_offset sect_off);
1159
1160 private:
1161 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1162 partial_die_info (sect_offset sect_off)
1163 : partial_die_info (sect_off, DW_TAG_padding, 0)
1164 {
1165 }
1166
1167 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1168 int has_children_)
1169 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1170 {
1171 is_external = 0;
1172 is_declaration = 0;
1173 has_type = 0;
1174 has_specification = 0;
1175 has_pc_info = 0;
1176 may_be_inlined = 0;
1177 main_subprogram = 0;
1178 scope_set = 0;
1179 has_byte_size = 0;
1180 has_const_value = 0;
1181 has_template_arguments = 0;
1182 fixup_called = 0;
1183 is_dwz = 0;
1184 spec_is_dwz = 0;
1185 }
c906108c
SS
1186 };
1187
0963b4bd 1188/* This data structure holds the information of an abbrev. */
c906108c
SS
1189struct abbrev_info
1190 {
1191 unsigned int number; /* number identifying abbrev */
1192 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1193 unsigned short has_children; /* boolean */
1194 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1195 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1196 struct abbrev_info *next; /* next in chain */
1197 };
1198
1199struct attr_abbrev
1200 {
9d25dd43
DE
1201 ENUM_BITFIELD(dwarf_attribute) name : 16;
1202 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1203
1204 /* It is valid only if FORM is DW_FORM_implicit_const. */
1205 LONGEST implicit_const;
c906108c
SS
1206 };
1207
433df2d4
DE
1208/* Size of abbrev_table.abbrev_hash_table. */
1209#define ABBREV_HASH_SIZE 121
1210
1211/* Top level data structure to contain an abbreviation table. */
1212
1213struct abbrev_table
1214{
685af9cd
TT
1215 explicit abbrev_table (sect_offset off)
1216 : sect_off (off)
1217 {
4a17f768 1218 m_abbrevs =
685af9cd 1219 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
4a17f768 1220 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
685af9cd
TT
1221 }
1222
1223 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1224
1225 /* Allocate space for a struct abbrev_info object in
1226 ABBREV_TABLE. */
1227 struct abbrev_info *alloc_abbrev ();
1228
1229 /* Add an abbreviation to the table. */
1230 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1231
1232 /* Look up an abbrev in the table.
1233 Returns NULL if the abbrev is not found. */
1234
1235 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1236
1237
f4dc4d17
DE
1238 /* Where the abbrev table came from.
1239 This is used as a sanity check when the table is used. */
685af9cd 1240 const sect_offset sect_off;
433df2d4
DE
1241
1242 /* Storage for the abbrev table. */
685af9cd 1243 auto_obstack abbrev_obstack;
433df2d4 1244
4a17f768
YQ
1245private:
1246
433df2d4
DE
1247 /* Hash table of abbrevs.
1248 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1249 It could be statically allocated, but the previous code didn't so we
1250 don't either. */
4a17f768 1251 struct abbrev_info **m_abbrevs;
433df2d4
DE
1252};
1253
685af9cd
TT
1254typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1255
0963b4bd 1256/* Attributes have a name and a value. */
b60c80d6
DJ
1257struct attribute
1258 {
9d25dd43 1259 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1260 ENUM_BITFIELD(dwarf_form) form : 15;
1261
1262 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1263 field should be in u.str (existing only for DW_STRING) but it is kept
1264 here for better struct attribute alignment. */
1265 unsigned int string_is_canonical : 1;
1266
b60c80d6
DJ
1267 union
1268 {
15d034d0 1269 const char *str;
b60c80d6 1270 struct dwarf_block *blk;
43bbcdc2
PH
1271 ULONGEST unsnd;
1272 LONGEST snd;
b60c80d6 1273 CORE_ADDR addr;
ac9ec31b 1274 ULONGEST signature;
b60c80d6
DJ
1275 }
1276 u;
1277 };
1278
0963b4bd 1279/* This data structure holds a complete die structure. */
c906108c
SS
1280struct die_info
1281 {
76815b17
DE
1282 /* DWARF-2 tag for this DIE. */
1283 ENUM_BITFIELD(dwarf_tag) tag : 16;
1284
1285 /* Number of attributes */
98bfdba5
PA
1286 unsigned char num_attrs;
1287
1288 /* True if we're presently building the full type name for the
1289 type derived from this DIE. */
1290 unsigned char building_fullname : 1;
76815b17 1291
adde2bff
DE
1292 /* True if this die is in process. PR 16581. */
1293 unsigned char in_process : 1;
1294
76815b17
DE
1295 /* Abbrev number */
1296 unsigned int abbrev;
1297
93311388 1298 /* Offset in .debug_info or .debug_types section. */
9c541725 1299 sect_offset sect_off;
78ba4af6
JB
1300
1301 /* The dies in a compilation unit form an n-ary tree. PARENT
1302 points to this die's parent; CHILD points to the first child of
1303 this node; and all the children of a given node are chained
4950bc1c 1304 together via their SIBLING fields. */
639d11d3
DC
1305 struct die_info *child; /* Its first child, if any. */
1306 struct die_info *sibling; /* Its next sibling, if any. */
1307 struct die_info *parent; /* Its parent, if any. */
c906108c 1308
b60c80d6
DJ
1309 /* An array of attributes, with NUM_ATTRS elements. There may be
1310 zero, but it's not common and zero-sized arrays are not
1311 sufficiently portable C. */
1312 struct attribute attrs[1];
c906108c
SS
1313 };
1314
0963b4bd 1315/* Get at parts of an attribute structure. */
c906108c
SS
1316
1317#define DW_STRING(attr) ((attr)->u.str)
8285870a 1318#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1319#define DW_UNSND(attr) ((attr)->u.unsnd)
1320#define DW_BLOCK(attr) ((attr)->u.blk)
1321#define DW_SND(attr) ((attr)->u.snd)
1322#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1323#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1324
0963b4bd 1325/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1326struct dwarf_block
1327 {
56eb65bd 1328 size_t size;
1d6edc3c
JK
1329
1330 /* Valid only if SIZE is not zero. */
d521ce57 1331 const gdb_byte *data;
c906108c
SS
1332 };
1333
c906108c
SS
1334#ifndef ATTR_ALLOC_CHUNK
1335#define ATTR_ALLOC_CHUNK 4
1336#endif
1337
c906108c
SS
1338/* Allocate fields for structs, unions and enums in this size. */
1339#ifndef DW_FIELD_ALLOC_CHUNK
1340#define DW_FIELD_ALLOC_CHUNK 4
1341#endif
1342
c906108c
SS
1343/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1344 but this would require a corresponding change in unpack_field_as_long
1345 and friends. */
1346static int bits_per_byte = 8;
1347
2ddeaf8a
TT
1348/* When reading a variant or variant part, we track a bit more
1349 information about the field, and store it in an object of this
1350 type. */
1351
1352struct variant_field
1353{
1354 /* If we see a DW_TAG_variant, then this will be the discriminant
1355 value. */
1356 ULONGEST discriminant_value;
1357 /* If we see a DW_TAG_variant, then this will be set if this is the
1358 default branch. */
1359 bool default_branch;
1360 /* While reading a DW_TAG_variant_part, this will be set if this
1361 field is the discriminant. */
1362 bool is_discriminant;
1363};
1364
52059ffd
TT
1365struct nextfield
1366{
be2daae6
TT
1367 int accessibility = 0;
1368 int virtuality = 0;
2ddeaf8a 1369 /* Extra information to describe a variant or variant part. */
be2daae6
TT
1370 struct variant_field variant {};
1371 struct field field {};
52059ffd
TT
1372};
1373
1374struct fnfieldlist
1375{
be2daae6
TT
1376 const char *name = nullptr;
1377 std::vector<struct fn_field> fnfields;
52059ffd
TT
1378};
1379
c906108c
SS
1380/* The routines that read and process dies for a C struct or C++ class
1381 pass lists of data member fields and lists of member function fields
1382 in an instance of a field_info structure, as defined below. */
1383struct field_info
c5aa993b 1384 {
0963b4bd 1385 /* List of data member and baseclasses fields. */
be2daae6
TT
1386 std::vector<struct nextfield> fields;
1387 std::vector<struct nextfield> baseclasses;
c906108c 1388
7d0ccb61 1389 /* Number of fields (including baseclasses). */
be2daae6 1390 int nfields = 0;
c906108c 1391
c5aa993b 1392 /* Set if the accesibility of one of the fields is not public. */
be2daae6 1393 int non_public_fields = 0;
c906108c 1394
c5aa993b
JM
1395 /* Member function fieldlist array, contains name of possibly overloaded
1396 member function, number of overloaded member functions and a pointer
1397 to the head of the member function field chain. */
be2daae6 1398 std::vector<struct fnfieldlist> fnfieldlists;
98751a41
JK
1399
1400 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1401 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
be2daae6 1402 std::vector<struct decl_field> typedef_field_list;
883fd55a
KS
1403
1404 /* Nested types defined by this class and the number of elements in this
1405 list. */
be2daae6 1406 std::vector<struct decl_field> nested_types_list;
c5aa993b 1407 };
c906108c 1408
10b3939b
DJ
1409/* One item on the queue of compilation units to read in full symbols
1410 for. */
1411struct dwarf2_queue_item
1412{
1413 struct dwarf2_per_cu_data *per_cu;
95554aad 1414 enum language pretend_language;
10b3939b
DJ
1415 struct dwarf2_queue_item *next;
1416};
1417
1418/* The current queue. */
1419static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1420
ae038cb0
DJ
1421/* Loaded secondary compilation units are kept in memory until they
1422 have not been referenced for the processing of this many
1423 compilation units. Set this to zero to disable caching. Cache
1424 sizes of up to at least twenty will improve startup time for
1425 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1426static int dwarf_max_cache_age = 5;
920d2a44 1427static void
b4f54984
DE
1428show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1429 struct cmd_list_element *c, const char *value)
920d2a44 1430{
3e43a32a 1431 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1432 "DWARF compilation units is %s.\n"),
920d2a44
AC
1433 value);
1434}
4390d890 1435\f
c906108c
SS
1436/* local function prototypes */
1437
a32a8923
DE
1438static const char *get_section_name (const struct dwarf2_section_info *);
1439
1440static const char *get_section_file_name (const struct dwarf2_section_info *);
1441
918dd910
JK
1442static void dwarf2_find_base_address (struct die_info *die,
1443 struct dwarf2_cu *cu);
1444
0018ea6f
DE
1445static struct partial_symtab *create_partial_symtab
1446 (struct dwarf2_per_cu_data *per_cu, const char *name);
1447
f1902523
JK
1448static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1449 const gdb_byte *info_ptr,
1450 struct die_info *type_unit_die,
1451 int has_children, void *data);
1452
ed2dc618
SM
1453static void dwarf2_build_psymtabs_hard
1454 (struct dwarf2_per_objfile *dwarf2_per_objfile);
c906108c 1455
72bf9492
DJ
1456static void scan_partial_symbols (struct partial_die_info *,
1457 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1458 int, struct dwarf2_cu *);
c906108c 1459
72bf9492
DJ
1460static void add_partial_symbol (struct partial_die_info *,
1461 struct dwarf2_cu *);
63d06c5c 1462
72bf9492
DJ
1463static void add_partial_namespace (struct partial_die_info *pdi,
1464 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1465 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1466
5d7cb8df 1467static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1468 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1469 struct dwarf2_cu *cu);
1470
72bf9492
DJ
1471static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1472 struct dwarf2_cu *cu);
91c24f0a 1473
bc30ff58
JB
1474static void add_partial_subprogram (struct partial_die_info *pdi,
1475 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1476 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1477
257e7a09
YQ
1478static void dwarf2_read_symtab (struct partial_symtab *,
1479 struct objfile *);
c906108c 1480
a14ed312 1481static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1482
685af9cd 1483static abbrev_table_up abbrev_table_read_table
ed2dc618
SM
1484 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1485 sect_offset);
433df2d4 1486
d521ce57 1487static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1488
dee91e82 1489static struct partial_die_info *load_partial_dies
d521ce57 1490 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1491
36586728 1492static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1493 struct dwarf2_cu *);
72bf9492 1494
d521ce57
TT
1495static const gdb_byte *read_attribute (const struct die_reader_specs *,
1496 struct attribute *, struct attr_abbrev *,
1497 const gdb_byte *);
a8329558 1498
a1855c1d 1499static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1500
a1855c1d 1501static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1502
a1855c1d 1503static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1504
a1855c1d 1505static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1506
a1855c1d 1507static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1508
d521ce57 1509static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1510 unsigned int *);
c906108c 1511
d521ce57 1512static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1513
1514static LONGEST read_checked_initial_length_and_offset
d521ce57 1515 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1516 unsigned int *, unsigned int *);
613e1657 1517
d521ce57
TT
1518static LONGEST read_offset (bfd *, const gdb_byte *,
1519 const struct comp_unit_head *,
c764a876
DE
1520 unsigned int *);
1521
d521ce57 1522static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1523
ed2dc618
SM
1524static sect_offset read_abbrev_offset
1525 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1526 struct dwarf2_section_info *, sect_offset);
f4dc4d17 1527
d521ce57 1528static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1529
d521ce57 1530static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1531
ed2dc618
SM
1532static const char *read_indirect_string
1533 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1534 const struct comp_unit_head *, unsigned int *);
4bdf3d34 1535
ed2dc618
SM
1536static const char *read_indirect_line_string
1537 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1538 const struct comp_unit_head *, unsigned int *);
36586728 1539
ed2dc618
SM
1540static const char *read_indirect_string_at_offset
1541 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1542 LONGEST str_offset);
927aa2e7 1543
ed2dc618
SM
1544static const char *read_indirect_string_from_dwz
1545 (struct objfile *objfile, struct dwz_file *, LONGEST);
c906108c 1546
d521ce57 1547static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1548
d521ce57
TT
1549static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1550 const gdb_byte *,
3019eac3
DE
1551 unsigned int *);
1552
d521ce57 1553static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1554 ULONGEST str_index);
3019eac3 1555
e142c38c 1556static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1557
e142c38c
DJ
1558static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1559 struct dwarf2_cu *);
c906108c 1560
348e048f 1561static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1562 unsigned int);
348e048f 1563
7d45c7c3
KB
1564static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1565 struct dwarf2_cu *cu);
1566
05cf31d1
JB
1567static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1568 struct dwarf2_cu *cu);
1569
e142c38c 1570static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1571
e142c38c 1572static struct die_info *die_specification (struct die_info *die,
f2f0e013 1573 struct dwarf2_cu **);
63d06c5c 1574
9c541725 1575static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1576 struct dwarf2_cu *cu);
debd256d 1577
f3f5162e 1578static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1579 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1580 CORE_ADDR, int decode_mapping);
c906108c 1581
804d2729
TT
1582static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1583 const char *);
c906108c 1584
43f3e411
DE
1585static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1586 const char *, const char *,
1587 CORE_ADDR);
f4dc4d17 1588
a14ed312 1589static struct symbol *new_symbol (struct die_info *, struct type *,
5e2db402 1590 struct dwarf2_cu *, struct symbol * = NULL);
34eaf542 1591
ff39bb5e 1592static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1593 struct dwarf2_cu *);
c906108c 1594
ff39bb5e 1595static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1596 struct type *type,
1597 const char *name,
1598 struct obstack *obstack,
12df843f 1599 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1600 const gdb_byte **bytes,
98bfdba5 1601 struct dwarf2_locexpr_baton **baton);
2df3850c 1602
e7c27a73 1603static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1604
b4ba55a1
JB
1605static int need_gnat_info (struct dwarf2_cu *);
1606
3e43a32a
MS
1607static struct type *die_descriptive_type (struct die_info *,
1608 struct dwarf2_cu *);
b4ba55a1
JB
1609
1610static void set_descriptive_type (struct type *, struct die_info *,
1611 struct dwarf2_cu *);
1612
e7c27a73
DJ
1613static struct type *die_containing_type (struct die_info *,
1614 struct dwarf2_cu *);
c906108c 1615
ff39bb5e 1616static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1617 struct dwarf2_cu *);
c906108c 1618
f792889a 1619static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1620
673bfd45
DE
1621static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1622
0d5cff50 1623static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1624
6e70227d 1625static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1626 const char *suffix, int physname,
1627 struct dwarf2_cu *cu);
63d06c5c 1628
e7c27a73 1629static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1630
348e048f
DE
1631static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1632
e7c27a73 1633static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1634
e7c27a73 1635static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1636
96408a79
SA
1637static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1638
71a3c369
TT
1639static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1640
ff013f42
JK
1641static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1642 struct dwarf2_cu *, struct partial_symtab *);
1643
3a2b436a 1644/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1645 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1646enum pc_bounds_kind
1647{
e385593e 1648 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1649 PC_BOUNDS_NOT_PRESENT,
1650
e385593e
JK
1651 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1652 were present but they do not form a valid range of PC addresses. */
1653 PC_BOUNDS_INVALID,
1654
3a2b436a
JK
1655 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1656 PC_BOUNDS_RANGES,
1657
1658 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1659 PC_BOUNDS_HIGH_LOW,
1660};
1661
1662static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *,
1665 struct partial_symtab *);
c906108c 1666
fae299cd
DC
1667static void get_scope_pc_bounds (struct die_info *,
1668 CORE_ADDR *, CORE_ADDR *,
1669 struct dwarf2_cu *);
1670
801e3a5b
JB
1671static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1672 CORE_ADDR, struct dwarf2_cu *);
1673
a14ed312 1674static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1675 struct dwarf2_cu *);
c906108c 1676
a14ed312 1677static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1678 struct type *, struct dwarf2_cu *);
c906108c 1679
a14ed312 1680static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1681 struct die_info *, struct type *,
e7c27a73 1682 struct dwarf2_cu *);
c906108c 1683
a14ed312 1684static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1685 struct type *,
1686 struct dwarf2_cu *);
c906108c 1687
134d01f1 1688static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1689
e7c27a73 1690static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1691
e7c27a73 1692static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1693
5d7cb8df
JK
1694static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1695
804d2729 1696static struct using_direct **using_directives (struct dwarf2_cu *cu);
22cee43f 1697
27aa8d6a
SW
1698static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1699
74921315
KS
1700static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1701
f55ee35c
JK
1702static struct type *read_module_type (struct die_info *die,
1703 struct dwarf2_cu *cu);
1704
38d518c9 1705static const char *namespace_name (struct die_info *die,
e142c38c 1706 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1707
134d01f1 1708static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1709
e7c27a73 1710static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1711
6e70227d 1712static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1713 struct dwarf2_cu *);
1714
bf6af496 1715static struct die_info *read_die_and_siblings_1
d521ce57 1716 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1717 struct die_info *);
639d11d3 1718
dee91e82 1719static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1720 const gdb_byte *info_ptr,
1721 const gdb_byte **new_info_ptr,
639d11d3
DC
1722 struct die_info *parent);
1723
d521ce57
TT
1724static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1725 struct die_info **, const gdb_byte *,
1726 int *, int);
3019eac3 1727
d521ce57
TT
1728static const gdb_byte *read_full_die (const struct die_reader_specs *,
1729 struct die_info **, const gdb_byte *,
1730 int *);
93311388 1731
e7c27a73 1732static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1733
15d034d0
TT
1734static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1735 struct obstack *);
71c25dea 1736
15d034d0 1737static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1738
15d034d0 1739static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1740 struct die_info *die,
1741 struct dwarf2_cu *cu);
1742
ca69b9e6
DE
1743static const char *dwarf2_physname (const char *name, struct die_info *die,
1744 struct dwarf2_cu *cu);
1745
e142c38c 1746static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1747 struct dwarf2_cu **);
9219021c 1748
f39c6ffd 1749static const char *dwarf_tag_name (unsigned int);
c906108c 1750
f39c6ffd 1751static const char *dwarf_attr_name (unsigned int);
c906108c 1752
f39c6ffd 1753static const char *dwarf_form_name (unsigned int);
c906108c 1754
a121b7c1 1755static const char *dwarf_bool_name (unsigned int);
c906108c 1756
f39c6ffd 1757static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1758
f9aca02d 1759static struct die_info *sibling_die (struct die_info *);
c906108c 1760
d97bc12b
DE
1761static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1762
1763static void dump_die_for_error (struct die_info *);
1764
1765static void dump_die_1 (struct ui_file *, int level, int max_level,
1766 struct die_info *);
c906108c 1767
d97bc12b 1768/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1769
51545339 1770static void store_in_ref_table (struct die_info *,
10b3939b 1771 struct dwarf2_cu *);
c906108c 1772
ff39bb5e 1773static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1774
ff39bb5e 1775static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1776
348e048f 1777static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1778 const struct attribute *,
348e048f
DE
1779 struct dwarf2_cu **);
1780
10b3939b 1781static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1782 const struct attribute *,
f2f0e013 1783 struct dwarf2_cu **);
c906108c 1784
348e048f 1785static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1786 const struct attribute *,
348e048f
DE
1787 struct dwarf2_cu **);
1788
ac9ec31b
DE
1789static struct type *get_signatured_type (struct die_info *, ULONGEST,
1790 struct dwarf2_cu *);
1791
1792static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1793 const struct attribute *,
ac9ec31b
DE
1794 struct dwarf2_cu *);
1795
e5fe5e75 1796static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1797
52dc124a 1798static void read_signatured_type (struct signatured_type *);
348e048f 1799
63e43d3a
PMR
1800static int attr_to_dynamic_prop (const struct attribute *attr,
1801 struct die_info *die, struct dwarf2_cu *cu,
1802 struct dynamic_prop *prop);
1803
c906108c
SS
1804/* memory allocation interface */
1805
7b5a2f43 1806static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1807
b60c80d6 1808static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1809
43f3e411 1810static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1811
6e5a29e1 1812static int attr_form_is_block (const struct attribute *);
8e19ed76 1813
6e5a29e1 1814static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1815
6e5a29e1 1816static int attr_form_is_constant (const struct attribute *);
3690dd37 1817
6e5a29e1 1818static int attr_form_is_ref (const struct attribute *);
7771576e 1819
8cf6f0b1
TT
1820static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1821 struct dwarf2_loclist_baton *baton,
ff39bb5e 1822 const struct attribute *attr);
8cf6f0b1 1823
ff39bb5e 1824static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1825 struct symbol *sym,
f1e6e072
TT
1826 struct dwarf2_cu *cu,
1827 int is_block);
4c2df51b 1828
d521ce57
TT
1829static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1830 const gdb_byte *info_ptr,
1831 struct abbrev_info *abbrev);
4bb7a0a7 1832
72bf9492
DJ
1833static hashval_t partial_die_hash (const void *item);
1834
1835static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1836
ae038cb0 1837static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
ed2dc618
SM
1838 (sect_offset sect_off, unsigned int offset_in_dwz,
1839 struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1840
9816fde3 1841static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1842 struct die_info *comp_unit_die,
1843 enum language pretend_language);
93311388 1844
ed2dc618 1845static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1846
dee91e82 1847static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1848
f792889a
DJ
1849static struct type *set_die_type (struct die_info *, struct type *,
1850 struct dwarf2_cu *);
1c379e20 1851
ed2dc618 1852static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1853
ed2dc618 1854static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1fd400ff 1855
58f0c718 1856static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
95554aad 1857 enum language);
10b3939b 1858
95554aad
TT
1859static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
10b3939b 1861
f4dc4d17
DE
1862static void process_full_type_unit (struct dwarf2_per_cu_data *,
1863 enum language);
1864
10b3939b
DJ
1865static void dwarf2_add_dependence (struct dwarf2_cu *,
1866 struct dwarf2_per_cu_data *);
1867
ae038cb0
DJ
1868static void dwarf2_mark (struct dwarf2_cu *);
1869
1870static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1871
b64f50a1 1872static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1873 struct dwarf2_per_cu_data *);
673bfd45 1874
f792889a 1875static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1876
95554aad
TT
1877static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1878 enum language pretend_language);
1879
ed2dc618 1880static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
9291a0cd 1881
b303c6f6
AB
1882/* Class, the destructor of which frees all allocated queue entries. This
1883 will only have work to do if an error was thrown while processing the
1884 dwarf. If no error was thrown then the queue entries should have all
1885 been processed, and freed, as we went along. */
1886
1887class dwarf2_queue_guard
1888{
1889public:
1890 dwarf2_queue_guard () = default;
1891
1892 /* Free any entries remaining on the queue. There should only be
1893 entries left if we hit an error while processing the dwarf. */
1894 ~dwarf2_queue_guard ()
1895 {
1896 struct dwarf2_queue_item *item, *last;
1897
1898 item = dwarf2_queue;
1899 while (item)
1900 {
1901 /* Anything still marked queued is likely to be in an
1902 inconsistent state, so discard it. */
1903 if (item->per_cu->queued)
1904 {
1905 if (item->per_cu->cu != NULL)
1906 free_one_cached_comp_unit (item->per_cu);
1907 item->per_cu->queued = 0;
1908 }
1909
1910 last = item;
1911 item = item->next;
1912 xfree (last);
1913 }
1914
1915 dwarf2_queue = dwarf2_queue_tail = NULL;
1916 }
1917};
1918
d721ba37
PA
1919/* The return type of find_file_and_directory. Note, the enclosed
1920 string pointers are only valid while this object is valid. */
1921
1922struct file_and_directory
1923{
1924 /* The filename. This is never NULL. */
1925 const char *name;
1926
1927 /* The compilation directory. NULL if not known. If we needed to
1928 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1929 points directly to the DW_AT_comp_dir string attribute owned by
1930 the obstack that owns the DIE. */
1931 const char *comp_dir;
1932
1933 /* If we needed to build a new string for comp_dir, this is what
1934 owns the storage. */
1935 std::string comp_dir_storage;
1936};
1937
1938static file_and_directory find_file_and_directory (struct die_info *die,
1939 struct dwarf2_cu *cu);
9291a0cd
TT
1940
1941static char *file_full_name (int file, struct line_header *lh,
1942 const char *comp_dir);
1943
43988095
JK
1944/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1945enum class rcuh_kind { COMPILE, TYPE };
1946
d521ce57 1947static const gdb_byte *read_and_check_comp_unit_head
ed2dc618
SM
1948 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1949 struct comp_unit_head *header,
36586728 1950 struct dwarf2_section_info *section,
d521ce57 1951 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 1952 rcuh_kind section_kind);
36586728 1953
fd820528 1954static void init_cutu_and_read_dies
f4dc4d17 1955 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
58f0c718 1956 int use_existing_cu, int keep, bool skip_partial,
3019eac3
DE
1957 die_reader_func_ftype *die_reader_func, void *data);
1958
dee91e82
DE
1959static void init_cutu_and_read_dies_simple
1960 (struct dwarf2_per_cu_data *this_cu,
1961 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1962
673bfd45 1963static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1964
3019eac3
DE
1965static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1966
57d63ce2 1967static struct dwo_unit *lookup_dwo_unit_in_dwp
ed2dc618
SM
1968 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1969 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 1970 ULONGEST signature, int is_debug_types);
a2ce51a0 1971
ed2dc618
SM
1972static struct dwp_file *get_dwp_file
1973 (struct dwarf2_per_objfile *dwarf2_per_objfile);
a2ce51a0 1974
3019eac3 1975static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1976 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1977
1978static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1979 (struct signatured_type *, const char *, const char *);
3019eac3 1980
89e63ee4
DE
1981static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1982
263db9a1 1983static void free_dwo_file (struct dwo_file *);
3019eac3 1984
263db9a1
TT
1985/* A unique_ptr helper to free a dwo_file. */
1986
1987struct dwo_file_deleter
ed2dc618 1988{
263db9a1
TT
1989 void operator() (struct dwo_file *df) const
1990 {
1991 free_dwo_file (df);
1992 }
ed2dc618
SM
1993};
1994
263db9a1
TT
1995/* A unique pointer to a dwo_file. */
1996
1997typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1998
ed2dc618 1999static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
95554aad 2000
1b80a9fa 2001static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2002
2003static void free_line_header_voidp (void *arg);
4390d890
DE
2004\f
2005/* Various complaints about symbol reading that don't abort the process. */
2006
2007static void
2008dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2009{
b98664d3 2010 complaint (_("statement list doesn't fit in .debug_line section"));
4390d890
DE
2011}
2012
2013static void
2014dwarf2_debug_line_missing_file_complaint (void)
2015{
b98664d3 2016 complaint (_(".debug_line section has line data without a file"));
4390d890
DE
2017}
2018
2019static void
2020dwarf2_debug_line_missing_end_sequence_complaint (void)
2021{
b98664d3 2022 complaint (_(".debug_line section has line "
4390d890
DE
2023 "program sequence without an end"));
2024}
2025
2026static void
2027dwarf2_complex_location_expr_complaint (void)
2028{
b98664d3 2029 complaint (_("location expression too complex"));
4390d890
DE
2030}
2031
2032static void
2033dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2034 int arg3)
2035{
b98664d3 2036 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
4390d890
DE
2037 arg1, arg2, arg3);
2038}
2039
2040static void
2041dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2042{
b98664d3 2043 complaint (_("debug info runs off end of %s section"
4390d890 2044 " [in module %s]"),
a32a8923
DE
2045 get_section_name (section),
2046 get_section_file_name (section));
4390d890 2047}
1b80a9fa 2048
4390d890
DE
2049static void
2050dwarf2_macro_malformed_definition_complaint (const char *arg1)
2051{
b98664d3 2052 complaint (_("macro debug info contains a "
4390d890
DE
2053 "malformed macro definition:\n`%s'"),
2054 arg1);
2055}
2056
2057static void
2058dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2059{
b98664d3 2060 complaint (_("invalid attribute class or form for '%s' in '%s'"),
4390d890
DE
2061 arg1, arg2);
2062}
527f3840
JK
2063
2064/* Hash function for line_header_hash. */
2065
2066static hashval_t
2067line_header_hash (const struct line_header *ofs)
2068{
9c541725 2069 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2070}
2071
2072/* Hash function for htab_create_alloc_ex for line_header_hash. */
2073
2074static hashval_t
2075line_header_hash_voidp (const void *item)
2076{
9a3c8263 2077 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2078
2079 return line_header_hash (ofs);
2080}
2081
2082/* Equality function for line_header_hash. */
2083
2084static int
2085line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2086{
9a3c8263
SM
2087 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2088 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2089
9c541725 2090 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2091 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2092}
2093
4390d890 2094\f
9291a0cd 2095
31aa7e4e
JB
2096/* Read the given attribute value as an address, taking the attribute's
2097 form into account. */
2098
2099static CORE_ADDR
2100attr_value_as_address (struct attribute *attr)
2101{
2102 CORE_ADDR addr;
2103
2104 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2105 {
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2119 }
2120 else
2121 addr = DW_ADDR (attr);
2122
2123 return addr;
2124}
2125
330cdd98
PA
2126/* See declaration. */
2127
2128dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2131{
2132 if (names == NULL)
2133 names = &dwarf2_elf_names;
2134
2135 bfd *obfd = objfile->obfd;
2136
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2139}
2140
fc8e7e75
SM
2141static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2142
330cdd98
PA
2143dwarf2_per_objfile::~dwarf2_per_objfile ()
2144{
2145 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2146 free_cached_comp_units ();
2147
2148 if (quick_file_names_table)
2149 htab_delete (quick_file_names_table);
2150
2151 if (line_header_hash)
2152 htab_delete (line_header_hash);
2153
b76e467d
SM
2154 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2155 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
fc8e7e75 2156
b2bdb8cf
SM
2157 for (signatured_type *sig_type : all_type_units)
2158 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
fc8e7e75
SM
2159
2160 VEC_free (dwarf2_section_info_def, types);
2161
2162 if (dwo_files != NULL)
2163 free_dwo_files (dwo_files, objfile);
fc8e7e75 2164
330cdd98
PA
2165 /* Everything else should be on the objfile obstack. */
2166}
2167
2168/* See declaration. */
2169
2170void
2171dwarf2_per_objfile::free_cached_comp_units ()
2172{
2173 dwarf2_per_cu_data *per_cu = read_in_chain;
2174 dwarf2_per_cu_data **last_chain = &read_in_chain;
2175 while (per_cu != NULL)
2176 {
2177 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2178
fcd3b13d 2179 delete per_cu->cu;
330cdd98
PA
2180 *last_chain = next_cu;
2181 per_cu = next_cu;
2182 }
2183}
2184
11ed8cad
TT
2185/* A helper class that calls free_cached_comp_units on
2186 destruction. */
2187
2188class free_cached_comp_units
2189{
2190public:
2191
2192 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2193 : m_per_objfile (per_objfile)
2194 {
2195 }
2196
2197 ~free_cached_comp_units ()
2198 {
2199 m_per_objfile->free_cached_comp_units ();
2200 }
2201
2202 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2203
2204private:
2205
2206 dwarf2_per_objfile *m_per_objfile;
2207};
2208
c906108c 2209/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2210 information and return true if we have enough to do something.
2211 NAMES points to the dwarf2 section names, or is NULL if the standard
2212 ELF names are used. */
c906108c
SS
2213
2214int
251d32d9
TG
2215dwarf2_has_info (struct objfile *objfile,
2216 const struct dwarf2_debug_sections *names)
c906108c 2217{
97cbe998
SDJ
2218 if (objfile->flags & OBJF_READNEVER)
2219 return 0;
2220
ed2dc618
SM
2221 struct dwarf2_per_objfile *dwarf2_per_objfile
2222 = get_dwarf2_per_objfile (objfile);
2223
2224 if (dwarf2_per_objfile == NULL)
be391dca
TT
2225 {
2226 /* Initialize per-objfile state. */
fd90ace4
YQ
2227 dwarf2_per_objfile
2228 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2229 names);
ed2dc618 2230 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
be391dca 2231 }
73869dc2 2232 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2233 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2234 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2235 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2236}
2237
2238/* Return the containing section of virtual section SECTION. */
2239
2240static struct dwarf2_section_info *
2241get_containing_section (const struct dwarf2_section_info *section)
2242{
2243 gdb_assert (section->is_virtual);
2244 return section->s.containing_section;
c906108c
SS
2245}
2246
a32a8923
DE
2247/* Return the bfd owner of SECTION. */
2248
2249static struct bfd *
2250get_section_bfd_owner (const struct dwarf2_section_info *section)
2251{
73869dc2
DE
2252 if (section->is_virtual)
2253 {
2254 section = get_containing_section (section);
2255 gdb_assert (!section->is_virtual);
2256 }
049412e3 2257 return section->s.section->owner;
a32a8923
DE
2258}
2259
2260/* Return the bfd section of SECTION.
2261 Returns NULL if the section is not present. */
2262
2263static asection *
2264get_section_bfd_section (const struct dwarf2_section_info *section)
2265{
73869dc2
DE
2266 if (section->is_virtual)
2267 {
2268 section = get_containing_section (section);
2269 gdb_assert (!section->is_virtual);
2270 }
049412e3 2271 return section->s.section;
a32a8923
DE
2272}
2273
2274/* Return the name of SECTION. */
2275
2276static const char *
2277get_section_name (const struct dwarf2_section_info *section)
2278{
2279 asection *sectp = get_section_bfd_section (section);
2280
2281 gdb_assert (sectp != NULL);
2282 return bfd_section_name (get_section_bfd_owner (section), sectp);
2283}
2284
2285/* Return the name of the file SECTION is in. */
2286
2287static const char *
2288get_section_file_name (const struct dwarf2_section_info *section)
2289{
2290 bfd *abfd = get_section_bfd_owner (section);
2291
2292 return bfd_get_filename (abfd);
2293}
2294
2295/* Return the id of SECTION.
2296 Returns 0 if SECTION doesn't exist. */
2297
2298static int
2299get_section_id (const struct dwarf2_section_info *section)
2300{
2301 asection *sectp = get_section_bfd_section (section);
2302
2303 if (sectp == NULL)
2304 return 0;
2305 return sectp->id;
2306}
2307
2308/* Return the flags of SECTION.
73869dc2 2309 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2310
2311static int
2312get_section_flags (const struct dwarf2_section_info *section)
2313{
2314 asection *sectp = get_section_bfd_section (section);
2315
2316 gdb_assert (sectp != NULL);
2317 return bfd_get_section_flags (sectp->owner, sectp);
2318}
2319
251d32d9
TG
2320/* When loading sections, we look either for uncompressed section or for
2321 compressed section names. */
233a11ab
CS
2322
2323static int
251d32d9
TG
2324section_is_p (const char *section_name,
2325 const struct dwarf2_section_names *names)
233a11ab 2326{
251d32d9
TG
2327 if (names->normal != NULL
2328 && strcmp (section_name, names->normal) == 0)
2329 return 1;
2330 if (names->compressed != NULL
2331 && strcmp (section_name, names->compressed) == 0)
2332 return 1;
2333 return 0;
233a11ab
CS
2334}
2335
330cdd98 2336/* See declaration. */
c906108c 2337
330cdd98
PA
2338void
2339dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2340 const dwarf2_debug_sections &names)
c906108c 2341{
dc7650b8 2342 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2343
dc7650b8
JK
2344 if ((aflag & SEC_HAS_CONTENTS) == 0)
2345 {
2346 }
330cdd98 2347 else if (section_is_p (sectp->name, &names.info))
c906108c 2348 {
330cdd98
PA
2349 this->info.s.section = sectp;
2350 this->info.size = bfd_get_section_size (sectp);
c906108c 2351 }
330cdd98 2352 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2353 {
330cdd98
PA
2354 this->abbrev.s.section = sectp;
2355 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2356 }
330cdd98 2357 else if (section_is_p (sectp->name, &names.line))
c906108c 2358 {
330cdd98
PA
2359 this->line.s.section = sectp;
2360 this->line.size = bfd_get_section_size (sectp);
c906108c 2361 }
330cdd98 2362 else if (section_is_p (sectp->name, &names.loc))
c906108c 2363 {
330cdd98
PA
2364 this->loc.s.section = sectp;
2365 this->loc.size = bfd_get_section_size (sectp);
c906108c 2366 }
330cdd98 2367 else if (section_is_p (sectp->name, &names.loclists))
43988095 2368 {
330cdd98
PA
2369 this->loclists.s.section = sectp;
2370 this->loclists.size = bfd_get_section_size (sectp);
43988095 2371 }
330cdd98 2372 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2373 {
330cdd98
PA
2374 this->macinfo.s.section = sectp;
2375 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2376 }
330cdd98 2377 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2378 {
330cdd98
PA
2379 this->macro.s.section = sectp;
2380 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2381 }
330cdd98 2382 else if (section_is_p (sectp->name, &names.str))
c906108c 2383 {
330cdd98
PA
2384 this->str.s.section = sectp;
2385 this->str.size = bfd_get_section_size (sectp);
c906108c 2386 }
330cdd98 2387 else if (section_is_p (sectp->name, &names.line_str))
43988095 2388 {
330cdd98
PA
2389 this->line_str.s.section = sectp;
2390 this->line_str.size = bfd_get_section_size (sectp);
43988095 2391 }
330cdd98 2392 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2393 {
330cdd98
PA
2394 this->addr.s.section = sectp;
2395 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2396 }
330cdd98 2397 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2398 {
330cdd98
PA
2399 this->frame.s.section = sectp;
2400 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2401 }
330cdd98 2402 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2403 {
330cdd98
PA
2404 this->eh_frame.s.section = sectp;
2405 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2406 }
330cdd98 2407 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2408 {
330cdd98
PA
2409 this->ranges.s.section = sectp;
2410 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2411 }
330cdd98 2412 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2413 {
330cdd98
PA
2414 this->rnglists.s.section = sectp;
2415 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2416 }
330cdd98 2417 else if (section_is_p (sectp->name, &names.types))
348e048f 2418 {
8b70b953
TT
2419 struct dwarf2_section_info type_section;
2420
2421 memset (&type_section, 0, sizeof (type_section));
049412e3 2422 type_section.s.section = sectp;
8b70b953
TT
2423 type_section.size = bfd_get_section_size (sectp);
2424
330cdd98 2425 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2426 &type_section);
348e048f 2427 }
330cdd98 2428 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2429 {
330cdd98
PA
2430 this->gdb_index.s.section = sectp;
2431 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2432 }
927aa2e7
JK
2433 else if (section_is_p (sectp->name, &names.debug_names))
2434 {
2435 this->debug_names.s.section = sectp;
2436 this->debug_names.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.debug_aranges))
2439 {
2440 this->debug_aranges.s.section = sectp;
2441 this->debug_aranges.size = bfd_get_section_size (sectp);
2442 }
dce234bc 2443
b4e1fd61 2444 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2445 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2446 this->has_section_at_zero = true;
c906108c
SS
2447}
2448
fceca515
DE
2449/* A helper function that decides whether a section is empty,
2450 or not present. */
9e0ac564
TT
2451
2452static int
19ac8c2e 2453dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2454{
73869dc2
DE
2455 if (section->is_virtual)
2456 return section->size == 0;
049412e3 2457 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2458}
2459
cd4fb1b2 2460/* See dwarf2read.h. */
c906108c 2461
cd4fb1b2
SM
2462void
2463dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
c906108c 2464{
a32a8923 2465 asection *sectp;
3019eac3 2466 bfd *abfd;
dce234bc 2467 gdb_byte *buf, *retbuf;
c906108c 2468
be391dca
TT
2469 if (info->readin)
2470 return;
dce234bc 2471 info->buffer = NULL;
be391dca 2472 info->readin = 1;
188dd5d6 2473
9e0ac564 2474 if (dwarf2_section_empty_p (info))
dce234bc 2475 return;
c906108c 2476
a32a8923 2477 sectp = get_section_bfd_section (info);
3019eac3 2478
73869dc2
DE
2479 /* If this is a virtual section we need to read in the real one first. */
2480 if (info->is_virtual)
2481 {
2482 struct dwarf2_section_info *containing_section =
2483 get_containing_section (info);
2484
2485 gdb_assert (sectp != NULL);
2486 if ((sectp->flags & SEC_RELOC) != 0)
2487 {
2488 error (_("Dwarf Error: DWP format V2 with relocations is not"
2489 " supported in section %s [in module %s]"),
2490 get_section_name (info), get_section_file_name (info));
2491 }
2492 dwarf2_read_section (objfile, containing_section);
2493 /* Other code should have already caught virtual sections that don't
2494 fit. */
2495 gdb_assert (info->virtual_offset + info->size
2496 <= containing_section->size);
2497 /* If the real section is empty or there was a problem reading the
2498 section we shouldn't get here. */
2499 gdb_assert (containing_section->buffer != NULL);
2500 info->buffer = containing_section->buffer + info->virtual_offset;
2501 return;
2502 }
2503
4bf44c1c
TT
2504 /* If the section has relocations, we must read it ourselves.
2505 Otherwise we attach it to the BFD. */
2506 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2507 {
d521ce57 2508 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2509 return;
dce234bc 2510 }
dce234bc 2511
224c3ddb 2512 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2513 info->buffer = buf;
dce234bc
PP
2514
2515 /* When debugging .o files, we may need to apply relocations; see
2516 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2517 We never compress sections in .o files, so we only need to
2518 try this when the section is not compressed. */
ac8035ab 2519 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2520 if (retbuf != NULL)
2521 {
2522 info->buffer = retbuf;
2523 return;
2524 }
2525
a32a8923
DE
2526 abfd = get_section_bfd_owner (info);
2527 gdb_assert (abfd != NULL);
2528
dce234bc
PP
2529 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2530 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2531 {
2532 error (_("Dwarf Error: Can't read DWARF data"
2533 " in section %s [in module %s]"),
2534 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2535 }
dce234bc
PP
2536}
2537
9e0ac564
TT
2538/* A helper function that returns the size of a section in a safe way.
2539 If you are positive that the section has been read before using the
2540 size, then it is safe to refer to the dwarf2_section_info object's
2541 "size" field directly. In other cases, you must call this
2542 function, because for compressed sections the size field is not set
2543 correctly until the section has been read. */
2544
2545static bfd_size_type
2546dwarf2_section_size (struct objfile *objfile,
2547 struct dwarf2_section_info *info)
2548{
2549 if (!info->readin)
2550 dwarf2_read_section (objfile, info);
2551 return info->size;
2552}
2553
dce234bc 2554/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2555 SECTION_NAME. */
af34e669 2556
dce234bc 2557void
3017a003
TG
2558dwarf2_get_section_info (struct objfile *objfile,
2559 enum dwarf2_section_enum sect,
d521ce57 2560 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2561 bfd_size_type *sizep)
2562{
2563 struct dwarf2_per_objfile *data
9a3c8263
SM
2564 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2565 dwarf2_objfile_data_key);
dce234bc 2566 struct dwarf2_section_info *info;
a3b2a86b
TT
2567
2568 /* We may see an objfile without any DWARF, in which case we just
2569 return nothing. */
2570 if (data == NULL)
2571 {
2572 *sectp = NULL;
2573 *bufp = NULL;
2574 *sizep = 0;
2575 return;
2576 }
3017a003
TG
2577 switch (sect)
2578 {
2579 case DWARF2_DEBUG_FRAME:
2580 info = &data->frame;
2581 break;
2582 case DWARF2_EH_FRAME:
2583 info = &data->eh_frame;
2584 break;
2585 default:
2586 gdb_assert_not_reached ("unexpected section");
2587 }
dce234bc 2588
9e0ac564 2589 dwarf2_read_section (objfile, info);
dce234bc 2590
a32a8923 2591 *sectp = get_section_bfd_section (info);
dce234bc
PP
2592 *bufp = info->buffer;
2593 *sizep = info->size;
2594}
2595
36586728
TT
2596/* A helper function to find the sections for a .dwz file. */
2597
2598static void
2599locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2600{
9a3c8263 2601 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2602
2603 /* Note that we only support the standard ELF names, because .dwz
2604 is ELF-only (at the time of writing). */
2605 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2606 {
049412e3 2607 dwz_file->abbrev.s.section = sectp;
36586728
TT
2608 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2611 {
049412e3 2612 dwz_file->info.s.section = sectp;
36586728
TT
2613 dwz_file->info.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2616 {
049412e3 2617 dwz_file->str.s.section = sectp;
36586728
TT
2618 dwz_file->str.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2621 {
049412e3 2622 dwz_file->line.s.section = sectp;
36586728
TT
2623 dwz_file->line.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2626 {
049412e3 2627 dwz_file->macro.s.section = sectp;
36586728
TT
2628 dwz_file->macro.size = bfd_get_section_size (sectp);
2629 }
2ec9a5e0
TT
2630 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2631 {
049412e3 2632 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2633 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2634 }
927aa2e7
JK
2635 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2636 {
2637 dwz_file->debug_names.s.section = sectp;
2638 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2639 }
36586728
TT
2640}
2641
4db1a1dc
TT
2642/* Open the separate '.dwz' debug file, if needed. Return NULL if
2643 there is no .gnu_debugaltlink section in the file. Error if there
2644 is such a section but the file cannot be found. */
36586728
TT
2645
2646static struct dwz_file *
ed2dc618 2647dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 2648{
36586728 2649 const char *filename;
acd13123 2650 bfd_size_type buildid_len_arg;
dc294be5
TT
2651 size_t buildid_len;
2652 bfd_byte *buildid;
36586728
TT
2653
2654 if (dwarf2_per_objfile->dwz_file != NULL)
7ff8cb8c 2655 return dwarf2_per_objfile->dwz_file.get ();
36586728 2656
4db1a1dc 2657 bfd_set_error (bfd_error_no_error);
791afaa2
TT
2658 gdb::unique_xmalloc_ptr<char> data
2659 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2660 &buildid_len_arg, &buildid));
4db1a1dc
TT
2661 if (data == NULL)
2662 {
2663 if (bfd_get_error () == bfd_error_no_error)
2664 return NULL;
2665 error (_("could not read '.gnu_debugaltlink' section: %s"),
2666 bfd_errmsg (bfd_get_error ()));
2667 }
791afaa2
TT
2668
2669 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
36586728 2670
acd13123
TT
2671 buildid_len = (size_t) buildid_len_arg;
2672
791afaa2 2673 filename = data.get ();
d721ba37
PA
2674
2675 std::string abs_storage;
36586728
TT
2676 if (!IS_ABSOLUTE_PATH (filename))
2677 {
14278e1f
TT
2678 gdb::unique_xmalloc_ptr<char> abs
2679 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2680
14278e1f 2681 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2682 filename = abs_storage.c_str ();
36586728
TT
2683 }
2684
dc294be5
TT
2685 /* First try the file name given in the section. If that doesn't
2686 work, try to use the build-id instead. */
192b62ce 2687 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2688 if (dwz_bfd != NULL)
36586728 2689 {
192b62ce
TT
2690 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2691 dwz_bfd.release ();
36586728
TT
2692 }
2693
dc294be5
TT
2694 if (dwz_bfd == NULL)
2695 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2696
2697 if (dwz_bfd == NULL)
2698 error (_("could not find '.gnu_debugaltlink' file for %s"),
2699 objfile_name (dwarf2_per_objfile->objfile));
2700
7ff8cb8c
TT
2701 std::unique_ptr<struct dwz_file> result
2702 (new struct dwz_file (std::move (dwz_bfd)));
36586728 2703
7ff8cb8c
TT
2704 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2705 result.get ());
36586728 2706
7ff8cb8c
TT
2707 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2708 result->dwz_bfd.get ());
2709 dwarf2_per_objfile->dwz_file = std::move (result);
2710 return dwarf2_per_objfile->dwz_file.get ();
36586728 2711}
9291a0cd 2712\f
7b9f3c50
DE
2713/* DWARF quick_symbols_functions support. */
2714
2715/* TUs can share .debug_line entries, and there can be a lot more TUs than
2716 unique line tables, so we maintain a separate table of all .debug_line
2717 derived entries to support the sharing.
2718 All the quick functions need is the list of file names. We discard the
2719 line_header when we're done and don't need to record it here. */
2720struct quick_file_names
2721{
094b34ac
DE
2722 /* The data used to construct the hash key. */
2723 struct stmt_list_hash hash;
7b9f3c50
DE
2724
2725 /* The number of entries in file_names, real_names. */
2726 unsigned int num_file_names;
2727
2728 /* The file names from the line table, after being run through
2729 file_full_name. */
2730 const char **file_names;
2731
2732 /* The file names from the line table after being run through
2733 gdb_realpath. These are computed lazily. */
2734 const char **real_names;
2735};
2736
2737/* When using the index (and thus not using psymtabs), each CU has an
2738 object of this type. This is used to hold information needed by
2739 the various "quick" methods. */
2740struct dwarf2_per_cu_quick_data
2741{
2742 /* The file table. This can be NULL if there was no file table
2743 or it's currently not read in.
2744 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2745 struct quick_file_names *file_names;
2746
2747 /* The corresponding symbol table. This is NULL if symbols for this
2748 CU have not yet been read. */
43f3e411 2749 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2750
2751 /* A temporary mark bit used when iterating over all CUs in
2752 expand_symtabs_matching. */
2753 unsigned int mark : 1;
2754
2755 /* True if we've tried to read the file table and found there isn't one.
2756 There will be no point in trying to read it again next time. */
2757 unsigned int no_file_data : 1;
2758};
2759
094b34ac
DE
2760/* Utility hash function for a stmt_list_hash. */
2761
2762static hashval_t
2763hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2764{
2765 hashval_t v = 0;
2766
2767 if (stmt_list_hash->dwo_unit != NULL)
2768 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2769 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2770 return v;
2771}
2772
2773/* Utility equality function for a stmt_list_hash. */
2774
2775static int
2776eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2777 const struct stmt_list_hash *rhs)
2778{
2779 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2780 return 0;
2781 if (lhs->dwo_unit != NULL
2782 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2783 return 0;
2784
9c541725 2785 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2786}
2787
7b9f3c50
DE
2788/* Hash function for a quick_file_names. */
2789
2790static hashval_t
2791hash_file_name_entry (const void *e)
2792{
9a3c8263
SM
2793 const struct quick_file_names *file_data
2794 = (const struct quick_file_names *) e;
7b9f3c50 2795
094b34ac 2796 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2797}
2798
2799/* Equality function for a quick_file_names. */
2800
2801static int
2802eq_file_name_entry (const void *a, const void *b)
2803{
9a3c8263
SM
2804 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2805 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2806
094b34ac 2807 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2808}
2809
2810/* Delete function for a quick_file_names. */
2811
2812static void
2813delete_file_name_entry (void *e)
2814{
9a3c8263 2815 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2816 int i;
2817
2818 for (i = 0; i < file_data->num_file_names; ++i)
2819 {
2820 xfree ((void*) file_data->file_names[i]);
2821 if (file_data->real_names)
2822 xfree ((void*) file_data->real_names[i]);
2823 }
2824
2825 /* The space for the struct itself lives on objfile_obstack,
2826 so we don't free it here. */
2827}
2828
2829/* Create a quick_file_names hash table. */
2830
2831static htab_t
2832create_quick_file_names_table (unsigned int nr_initial_entries)
2833{
2834 return htab_create_alloc (nr_initial_entries,
2835 hash_file_name_entry, eq_file_name_entry,
2836 delete_file_name_entry, xcalloc, xfree);
2837}
9291a0cd 2838
918dd910
JK
2839/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2840 have to be created afterwards. You should call age_cached_comp_units after
2841 processing PER_CU->CU. dw2_setup must have been already called. */
2842
2843static void
58f0c718 2844load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
918dd910 2845{
3019eac3 2846 if (per_cu->is_debug_types)
e5fe5e75 2847 load_full_type_unit (per_cu);
918dd910 2848 else
58f0c718 2849 load_full_comp_unit (per_cu, skip_partial, language_minimal);
918dd910 2850
cc12ce38
DE
2851 if (per_cu->cu == NULL)
2852 return; /* Dummy CU. */
2dc860c0
DE
2853
2854 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2855}
2856
a0f42c21 2857/* Read in the symbols for PER_CU. */
2fdf6df6 2858
9291a0cd 2859static void
58f0c718 2860dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2861{
ed2dc618 2862 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9291a0cd 2863
f4dc4d17
DE
2864 /* Skip type_unit_groups, reading the type units they contain
2865 is handled elsewhere. */
2866 if (IS_TYPE_UNIT_GROUP (per_cu))
2867 return;
2868
b303c6f6
AB
2869 /* The destructor of dwarf2_queue_guard frees any entries left on
2870 the queue. After this point we're guaranteed to leave this function
2871 with the dwarf queue empty. */
2872 dwarf2_queue_guard q_guard;
9291a0cd 2873
95554aad 2874 if (dwarf2_per_objfile->using_index
43f3e411 2875 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2876 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2877 {
2878 queue_comp_unit (per_cu, language_minimal);
58f0c718 2879 load_cu (per_cu, skip_partial);
89e63ee4
DE
2880
2881 /* If we just loaded a CU from a DWO, and we're working with an index
2882 that may badly handle TUs, load all the TUs in that DWO as well.
2883 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2884 if (!per_cu->is_debug_types
cc12ce38 2885 && per_cu->cu != NULL
89e63ee4
DE
2886 && per_cu->cu->dwo_unit != NULL
2887 && dwarf2_per_objfile->index_table != NULL
2888 && dwarf2_per_objfile->index_table->version <= 7
2889 /* DWP files aren't supported yet. */
ed2dc618 2890 && get_dwp_file (dwarf2_per_objfile) == NULL)
89e63ee4 2891 queue_and_load_all_dwo_tus (per_cu);
95554aad 2892 }
9291a0cd 2893
ed2dc618 2894 process_queue (dwarf2_per_objfile);
9291a0cd
TT
2895
2896 /* Age the cache, releasing compilation units that have not
2897 been used recently. */
ed2dc618 2898 age_cached_comp_units (dwarf2_per_objfile);
9291a0cd
TT
2899}
2900
2901/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2902 the objfile from which this CU came. Returns the resulting symbol
2903 table. */
2fdf6df6 2904
43f3e411 2905static struct compunit_symtab *
58f0c718 2906dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2907{
ed2dc618
SM
2908 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2909
95554aad 2910 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2911 if (!per_cu->v.quick->compunit_symtab)
9291a0cd 2912 {
11ed8cad 2913 free_cached_comp_units freer (dwarf2_per_objfile);
c83dd867 2914 scoped_restore decrementer = increment_reading_symtab ();
58f0c718 2915 dw2_do_instantiate_symtab (per_cu, skip_partial);
ed2dc618 2916 process_cu_includes (dwarf2_per_objfile);
9291a0cd 2917 }
f194fefb 2918
43f3e411 2919 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2920}
2921
ff4c9fec 2922/* See declaration. */
f4dc4d17 2923
ff4c9fec
SM
2924dwarf2_per_cu_data *
2925dwarf2_per_objfile::get_cutu (int index)
2926{
b76e467d 2927 if (index >= this->all_comp_units.size ())
ff4c9fec 2928 {
b76e467d 2929 index -= this->all_comp_units.size ();
b2bdb8cf 2930 gdb_assert (index < this->all_type_units.size ());
ff4c9fec
SM
2931 return &this->all_type_units[index]->per_cu;
2932 }
f4dc4d17 2933
ff4c9fec
SM
2934 return this->all_comp_units[index];
2935}
f4dc4d17 2936
ff4c9fec 2937/* See declaration. */
2fdf6df6 2938
ff4c9fec
SM
2939dwarf2_per_cu_data *
2940dwarf2_per_objfile::get_cu (int index)
1fd400ff 2941{
b76e467d 2942 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
f4dc4d17 2943
ff4c9fec 2944 return this->all_comp_units[index];
f4dc4d17
DE
2945}
2946
ff4c9fec 2947/* See declaration. */
f4dc4d17 2948
ff4c9fec
SM
2949signatured_type *
2950dwarf2_per_objfile::get_tu (int index)
f4dc4d17 2951{
b2bdb8cf 2952 gdb_assert (index >= 0 && index < this->all_type_units.size ());
f4dc4d17 2953
ff4c9fec 2954 return this->all_type_units[index];
1fd400ff
TT
2955}
2956
4b514bc8
JK
2957/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2958 objfile_obstack, and constructed with the specified field
2959 values. */
2960
2961static dwarf2_per_cu_data *
ed2dc618 2962create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4b514bc8
JK
2963 struct dwarf2_section_info *section,
2964 int is_dwz,
2965 sect_offset sect_off, ULONGEST length)
2966{
ed2dc618 2967 struct objfile *objfile = dwarf2_per_objfile->objfile;
4b514bc8
JK
2968 dwarf2_per_cu_data *the_cu
2969 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_data);
2971 the_cu->sect_off = sect_off;
2972 the_cu->length = length;
e3b94546 2973 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
4b514bc8
JK
2974 the_cu->section = section;
2975 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2976 struct dwarf2_per_cu_quick_data);
2977 the_cu->is_dwz = is_dwz;
2978 return the_cu;
2979}
2980
2ec9a5e0
TT
2981/* A helper for create_cus_from_index that handles a given list of
2982 CUs. */
2fdf6df6 2983
74a0d9f6 2984static void
12359b5e 2985create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
2986 const gdb_byte *cu_list, offset_type n_elements,
2987 struct dwarf2_section_info *section,
b76e467d 2988 int is_dwz)
9291a0cd 2989{
12359b5e 2990 for (offset_type i = 0; i < n_elements; i += 2)
9291a0cd 2991 {
74a0d9f6 2992 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
2993
2994 sect_offset sect_off
2995 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2996 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2997 cu_list += 2 * 8;
2998
b76e467d 2999 dwarf2_per_cu_data *per_cu
ed2dc618
SM
3000 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3001 sect_off, length);
b76e467d 3002 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
9291a0cd 3003 }
9291a0cd
TT
3004}
3005
2ec9a5e0 3006/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3007 the CU objects for this objfile. */
2ec9a5e0 3008
74a0d9f6 3009static void
12359b5e 3010create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
3011 const gdb_byte *cu_list, offset_type cu_list_elements,
3012 const gdb_byte *dwz_list, offset_type dwz_elements)
3013{
b76e467d
SM
3014 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3015 dwarf2_per_objfile->all_comp_units.reserve
3016 ((cu_list_elements + dwz_elements) / 2);
2ec9a5e0 3017
12359b5e 3018 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
b76e467d 3019 &dwarf2_per_objfile->info, 0);
2ec9a5e0
TT
3020
3021 if (dwz_elements == 0)
74a0d9f6 3022 return;
2ec9a5e0 3023
12359b5e
SM
3024 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3025 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
b76e467d 3026 &dwz->info, 1);
2ec9a5e0
TT
3027}
3028
1fd400ff 3029/* Create the signatured type hash table from the index. */
673bfd45 3030
74a0d9f6 3031static void
12359b5e
SM
3032create_signatured_type_table_from_index
3033 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3034 struct dwarf2_section_info *section,
3035 const gdb_byte *bytes,
3036 offset_type elements)
1fd400ff 3037{
12359b5e 3038 struct objfile *objfile = dwarf2_per_objfile->objfile;
1fd400ff 3039
b2bdb8cf
SM
3040 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3041 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
1fd400ff 3042
12359b5e 3043 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff 3044
12359b5e 3045 for (offset_type i = 0; i < elements; i += 3)
1fd400ff 3046 {
52dc124a 3047 struct signatured_type *sig_type;
9c541725 3048 ULONGEST signature;
1fd400ff 3049 void **slot;
9c541725 3050 cu_offset type_offset_in_tu;
1fd400ff 3051
74a0d9f6 3052 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3053 sect_offset sect_off
3054 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3055 type_offset_in_tu
3056 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3057 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3058 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3059 bytes += 3 * 8;
3060
52dc124a 3061 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3062 struct signatured_type);
52dc124a 3063 sig_type->signature = signature;
9c541725 3064 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3065 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3066 sig_type->per_cu.section = section;
9c541725 3067 sig_type->per_cu.sect_off = sect_off;
e3b94546 3068 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
52dc124a 3069 sig_type->per_cu.v.quick
1fd400ff
TT
3070 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3071 struct dwarf2_per_cu_quick_data);
3072
52dc124a
DE
3073 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3074 *slot = sig_type;
1fd400ff 3075
b2bdb8cf 3076 dwarf2_per_objfile->all_type_units.push_back (sig_type);
1fd400ff
TT
3077 }
3078
673bfd45 3079 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3080}
3081
927aa2e7
JK
3082/* Create the signatured type hash table from .debug_names. */
3083
3084static void
3085create_signatured_type_table_from_debug_names
ed2dc618 3086 (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3087 const mapped_debug_names &map,
3088 struct dwarf2_section_info *section,
3089 struct dwarf2_section_info *abbrev_section)
3090{
ed2dc618
SM
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092
927aa2e7
JK
3093 dwarf2_read_section (objfile, section);
3094 dwarf2_read_section (objfile, abbrev_section);
3095
b2bdb8cf
SM
3096 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3097 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
927aa2e7
JK
3098
3099 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3100
3101 for (uint32_t i = 0; i < map.tu_count; ++i)
3102 {
3103 struct signatured_type *sig_type;
927aa2e7 3104 void **slot;
927aa2e7
JK
3105
3106 sect_offset sect_off
3107 = (sect_offset) (extract_unsigned_integer
3108 (map.tu_table_reordered + i * map.offset_size,
3109 map.offset_size,
3110 map.dwarf5_byte_order));
3111
3112 comp_unit_head cu_header;
ed2dc618
SM
3113 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3114 abbrev_section,
927aa2e7
JK
3115 section->buffer + to_underlying (sect_off),
3116 rcuh_kind::TYPE);
3117
3118 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3119 struct signatured_type);
3120 sig_type->signature = cu_header.signature;
3121 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3122 sig_type->per_cu.is_debug_types = 1;
3123 sig_type->per_cu.section = section;
3124 sig_type->per_cu.sect_off = sect_off;
e3b94546 3125 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
927aa2e7
JK
3126 sig_type->per_cu.v.quick
3127 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3128 struct dwarf2_per_cu_quick_data);
3129
3130 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3131 *slot = sig_type;
3132
b2bdb8cf 3133 dwarf2_per_objfile->all_type_units.push_back (sig_type);
927aa2e7
JK
3134 }
3135
3136 dwarf2_per_objfile->signatured_types = sig_types_hash;
3137}
3138
9291a0cd
TT
3139/* Read the address map data from the mapped index, and use it to
3140 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3141
9291a0cd 3142static void
ed2dc618
SM
3143create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3144 struct mapped_index *index)
9291a0cd 3145{
ed2dc618 3146 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 3147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3148 const gdb_byte *iter, *end;
9291a0cd 3149 struct addrmap *mutable_map;
9291a0cd
TT
3150 CORE_ADDR baseaddr;
3151
8268c778
PA
3152 auto_obstack temp_obstack;
3153
9291a0cd
TT
3154 mutable_map = addrmap_create_mutable (&temp_obstack);
3155
f00a2de2
PA
3156 iter = index->address_table.data ();
3157 end = iter + index->address_table.size ();
9291a0cd
TT
3158
3159 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3160
3161 while (iter < end)
3162 {
3163 ULONGEST hi, lo, cu_index;
3164 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3165 iter += 8;
3166 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3169 iter += 4;
f652bce2 3170
24a55014 3171 if (lo > hi)
f652bce2 3172 {
b98664d3 3173 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3174 hex_string (lo), hex_string (hi));
24a55014 3175 continue;
f652bce2 3176 }
24a55014 3177
b76e467d 3178 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
f652bce2 3179 {
b98664d3 3180 complaint (_(".gdb_index address table has invalid CU number %u"),
f652bce2 3181 (unsigned) cu_index);
24a55014 3182 continue;
f652bce2 3183 }
24a55014 3184
79748972
TT
3185 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3186 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
ed2dc618 3187 addrmap_set_empty (mutable_map, lo, hi - 1,
ff4c9fec 3188 dwarf2_per_objfile->get_cu (cu_index));
9291a0cd
TT
3189 }
3190
3191 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3192 &objfile->objfile_obstack);
9291a0cd
TT
3193}
3194
927aa2e7
JK
3195/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3196 populate the objfile's psymtabs_addrmap. */
3197
3198static void
ed2dc618 3199create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3200 struct dwarf2_section_info *section)
3201{
ed2dc618 3202 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
3203 bfd *abfd = objfile->obfd;
3204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3205 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3206 SECT_OFF_TEXT (objfile));
3207
3208 auto_obstack temp_obstack;
3209 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3210
3211 std::unordered_map<sect_offset,
3212 dwarf2_per_cu_data *,
3213 gdb::hash_enum<sect_offset>>
3214 debug_info_offset_to_per_cu;
b76e467d 3215 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 3216 {
927aa2e7
JK
3217 const auto insertpair
3218 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3219 if (!insertpair.second)
3220 {
3221 warning (_("Section .debug_aranges in %s has duplicate "
9d8780f0
SM
3222 "debug_info_offset %s, ignoring .debug_aranges."),
3223 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
927aa2e7
JK
3224 return;
3225 }
3226 }
3227
3228 dwarf2_read_section (objfile, section);
3229
3230 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3231
3232 const gdb_byte *addr = section->buffer;
3233
3234 while (addr < section->buffer + section->size)
3235 {
3236 const gdb_byte *const entry_addr = addr;
3237 unsigned int bytes_read;
3238
3239 const LONGEST entry_length = read_initial_length (abfd, addr,
3240 &bytes_read);
3241 addr += bytes_read;
3242
3243 const gdb_byte *const entry_end = addr + entry_length;
3244 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3245 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3246 if (addr + entry_length > section->buffer + section->size)
3247 {
3248 warning (_("Section .debug_aranges in %s entry at offset %zu "
3249 "length %s exceeds section length %s, "
3250 "ignoring .debug_aranges."),
3251 objfile_name (objfile), entry_addr - section->buffer,
3252 plongest (bytes_read + entry_length),
3253 pulongest (section->size));
3254 return;
3255 }
3256
3257 /* The version number. */
3258 const uint16_t version = read_2_bytes (abfd, addr);
3259 addr += 2;
3260 if (version != 2)
3261 {
3262 warning (_("Section .debug_aranges in %s entry at offset %zu "
3263 "has unsupported version %d, ignoring .debug_aranges."),
3264 objfile_name (objfile), entry_addr - section->buffer,
3265 version);
3266 return;
3267 }
3268
3269 const uint64_t debug_info_offset
3270 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3271 addr += offset_size;
3272 const auto per_cu_it
3273 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3274 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3275 {
3276 warning (_("Section .debug_aranges in %s entry at offset %zu "
3277 "debug_info_offset %s does not exists, "
3278 "ignoring .debug_aranges."),
3279 objfile_name (objfile), entry_addr - section->buffer,
3280 pulongest (debug_info_offset));
3281 return;
3282 }
3283 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3284
3285 const uint8_t address_size = *addr++;
3286 if (address_size < 1 || address_size > 8)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "address_size %u is invalid, ignoring .debug_aranges."),
3290 objfile_name (objfile), entry_addr - section->buffer,
3291 address_size);
3292 return;
3293 }
3294
3295 const uint8_t segment_selector_size = *addr++;
3296 if (segment_selector_size != 0)
3297 {
3298 warning (_("Section .debug_aranges in %s entry at offset %zu "
3299 "segment_selector_size %u is not supported, "
3300 "ignoring .debug_aranges."),
3301 objfile_name (objfile), entry_addr - section->buffer,
3302 segment_selector_size);
3303 return;
3304 }
3305
3306 /* Must pad to an alignment boundary that is twice the address
3307 size. It is undocumented by the DWARF standard but GCC does
3308 use it. */
3309 for (size_t padding = ((-(addr - section->buffer))
3310 & (2 * address_size - 1));
3311 padding > 0; padding--)
3312 if (*addr++ != 0)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "padding is not zero, ignoring .debug_aranges."),
3316 objfile_name (objfile), entry_addr - section->buffer);
3317 return;
3318 }
3319
3320 for (;;)
3321 {
3322 if (addr + 2 * address_size > entry_end)
3323 {
3324 warning (_("Section .debug_aranges in %s entry at offset %zu "
3325 "address list is not properly terminated, "
3326 "ignoring .debug_aranges."),
3327 objfile_name (objfile), entry_addr - section->buffer);
3328 return;
3329 }
3330 ULONGEST start = extract_unsigned_integer (addr, address_size,
3331 dwarf5_byte_order);
3332 addr += address_size;
3333 ULONGEST length = extract_unsigned_integer (addr, address_size,
3334 dwarf5_byte_order);
3335 addr += address_size;
3336 if (start == 0 && length == 0)
3337 break;
3338 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3339 {
3340 /* Symbol was eliminated due to a COMDAT group. */
3341 continue;
3342 }
3343 ULONGEST end = start + length;
79748972
TT
3344 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3345 - baseaddr);
3346 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3347 - baseaddr);
927aa2e7
JK
3348 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3349 }
3350 }
3351
3352 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3353 &objfile->objfile_obstack);
3354}
3355
9291a0cd
TT
3356/* Find a slot in the mapped index INDEX for the object named NAME.
3357 If NAME is found, set *VEC_OUT to point to the CU vector in the
109483d9
PA
3358 constant pool and return true. If NAME cannot be found, return
3359 false. */
2fdf6df6 3360
109483d9 3361static bool
9291a0cd
TT
3362find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3363 offset_type **vec_out)
3364{
0cf03b49 3365 offset_type hash;
9291a0cd 3366 offset_type slot, step;
559a7a62 3367 int (*cmp) (const char *, const char *);
9291a0cd 3368
791afaa2 3369 gdb::unique_xmalloc_ptr<char> without_params;
0cf03b49 3370 if (current_language->la_language == language_cplus
45280282
IB
3371 || current_language->la_language == language_fortran
3372 || current_language->la_language == language_d)
0cf03b49
JK
3373 {
3374 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3375 not contain any. */
a8719064 3376
72998fb3 3377 if (strchr (name, '(') != NULL)
0cf03b49 3378 {
109483d9 3379 without_params = cp_remove_params (name);
0cf03b49 3380
72998fb3 3381 if (without_params != NULL)
791afaa2 3382 name = without_params.get ();
0cf03b49
JK
3383 }
3384 }
3385
559a7a62 3386 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3387 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3388 simulate our NAME being searched is also lowercased. */
3389 hash = mapped_index_string_hash ((index->version == 4
3390 && case_sensitivity == case_sensitive_off
3391 ? 5 : index->version),
3392 name);
3393
f00a2de2
PA
3394 slot = hash & (index->symbol_table.size () - 1);
3395 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
559a7a62 3396 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3397
3398 for (;;)
3399 {
9291a0cd 3400 const char *str;
f00a2de2
PA
3401
3402 const auto &bucket = index->symbol_table[slot];
3403 if (bucket.name == 0 && bucket.vec == 0)
109483d9 3404 return false;
9291a0cd 3405
f00a2de2 3406 str = index->constant_pool + MAYBE_SWAP (bucket.name);
559a7a62 3407 if (!cmp (name, str))
9291a0cd
TT
3408 {
3409 *vec_out = (offset_type *) (index->constant_pool
f00a2de2 3410 + MAYBE_SWAP (bucket.vec));
109483d9 3411 return true;
9291a0cd
TT
3412 }
3413
f00a2de2 3414 slot = (slot + step) & (index->symbol_table.size () - 1);
9291a0cd
TT
3415 }
3416}
3417
4485a1c1
SM
3418/* A helper function that reads the .gdb_index from BUFFER and fills
3419 in MAP. FILENAME is the name of the file containing the data;
d33bc52e 3420 it is used for error reporting. DEPRECATED_OK is true if it is
2ec9a5e0
TT
3421 ok to use deprecated sections.
3422
3423 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3424 out parameters that are filled in with information about the CU and
3425 TU lists in the section.
3426
4485a1c1 3427 Returns true if all went well, false otherwise. */
2fdf6df6 3428
d33bc52e 3429static bool
4485a1c1
SM
3430read_gdb_index_from_buffer (struct objfile *objfile,
3431 const char *filename,
3432 bool deprecated_ok,
3433 gdb::array_view<const gdb_byte> buffer,
3434 struct mapped_index *map,
3435 const gdb_byte **cu_list,
3436 offset_type *cu_list_elements,
3437 const gdb_byte **types_list,
3438 offset_type *types_list_elements)
3439{
3440 const gdb_byte *addr = &buffer[0];
82430852 3441
9291a0cd 3442 /* Version check. */
4485a1c1 3443 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3444 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3445 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3446 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3447 indices. */
831adc1f 3448 if (version < 4)
481860b3
GB
3449 {
3450 static int warning_printed = 0;
3451 if (!warning_printed)
3452 {
3453 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3454 filename);
481860b3
GB
3455 warning_printed = 1;
3456 }
3457 return 0;
3458 }
3459 /* Index version 4 uses a different hash function than index version
3460 5 and later.
3461
3462 Versions earlier than 6 did not emit psymbols for inlined
3463 functions. Using these files will cause GDB not to be able to
3464 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3465 indices unless the user has done
3466 "set use-deprecated-index-sections on". */
2ec9a5e0 3467 if (version < 6 && !deprecated_ok)
481860b3
GB
3468 {
3469 static int warning_printed = 0;
3470 if (!warning_printed)
3471 {
e615022a
DE
3472 warning (_("\
3473Skipping deprecated .gdb_index section in %s.\n\
3474Do \"set use-deprecated-index-sections on\" before the file is read\n\
3475to use the section anyway."),
2ec9a5e0 3476 filename);
481860b3
GB
3477 warning_printed = 1;
3478 }
3479 return 0;
3480 }
796a7ff8 3481 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3482 of the TU (for symbols coming from TUs),
3483 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3484 Plus gold-generated indices can have duplicate entries for global symbols,
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3486 These are just performance bugs, and we can't distinguish gdb-generated
3487 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3488
481860b3 3489 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3490 longer backward compatible. */
796a7ff8 3491 if (version > 8)
594e8718 3492 return 0;
9291a0cd 3493
559a7a62 3494 map->version = version;
9291a0cd 3495
4485a1c1 3496 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff 3497
4485a1c1 3498 int i = 0;
2ec9a5e0
TT
3499 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3500 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3501 / 8);
1fd400ff
TT
3502 ++i;
3503
2ec9a5e0
TT
3504 *types_list = addr + MAYBE_SWAP (metadata[i]);
3505 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3506 - MAYBE_SWAP (metadata[i]))
3507 / 8);
987d643c 3508 ++i;
1fd400ff 3509
f00a2de2
PA
3510 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3511 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3512 map->address_table
3513 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
1fd400ff
TT
3514 ++i;
3515
f00a2de2
PA
3516 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3517 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3518 map->symbol_table
3519 = gdb::array_view<mapped_index::symbol_table_slot>
3520 ((mapped_index::symbol_table_slot *) symbol_table,
3521 (mapped_index::symbol_table_slot *) symbol_table_end);
9291a0cd 3522
f00a2de2 3523 ++i;
f9d83a0b 3524 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3525
2ec9a5e0
TT
3526 return 1;
3527}
3528
4485a1c1
SM
3529/* Callback types for dwarf2_read_gdb_index. */
3530
3531typedef gdb::function_view
3532 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3533 get_gdb_index_contents_ftype;
3534typedef gdb::function_view
3535 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3536 get_gdb_index_contents_dwz_ftype;
3537
927aa2e7 3538/* Read .gdb_index. If everything went ok, initialize the "quick"
2ec9a5e0
TT
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541static int
4485a1c1
SM
3542dwarf2_read_gdb_index
3543 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3544 get_gdb_index_contents_ftype get_gdb_index_contents,
3545 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2ec9a5e0 3546{
2ec9a5e0
TT
3547 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3548 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3549 struct dwz_file *dwz;
12359b5e 3550 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ec9a5e0 3551
4485a1c1
SM
3552 gdb::array_view<const gdb_byte> main_index_contents
3553 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3554
3555 if (main_index_contents.empty ())
3556 return 0;
3557
3063847f 3558 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
4485a1c1
SM
3559 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3560 use_deprecated_index_sections,
3561 main_index_contents, map.get (), &cu_list,
3562 &cu_list_elements, &types_list,
3563 &types_list_elements))
2ec9a5e0
TT
3564 return 0;
3565
0fefef59 3566 /* Don't use the index if it's empty. */
3063847f 3567 if (map->symbol_table.empty ())
0fefef59
DE
3568 return 0;
3569
2ec9a5e0
TT
3570 /* If there is a .dwz file, read it so we can get its CU list as
3571 well. */
ed2dc618 3572 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 3573 if (dwz != NULL)
2ec9a5e0 3574 {
2ec9a5e0
TT
3575 struct mapped_index dwz_map;
3576 const gdb_byte *dwz_types_ignore;
3577 offset_type dwz_types_elements_ignore;
3578
4485a1c1
SM
3579 gdb::array_view<const gdb_byte> dwz_index_content
3580 = get_gdb_index_contents_dwz (objfile, dwz);
3581
3582 if (dwz_index_content.empty ())
3583 return 0;
3584
3585 if (!read_gdb_index_from_buffer (objfile,
3586 bfd_get_filename (dwz->dwz_bfd), 1,
3587 dwz_index_content, &dwz_map,
3588 &dwz_list, &dwz_list_elements,
3589 &dwz_types_ignore,
3590 &dwz_types_elements_ignore))
2ec9a5e0
TT
3591 {
3592 warning (_("could not read '.gdb_index' section from %s; skipping"),
3593 bfd_get_filename (dwz->dwz_bfd));
3594 return 0;
3595 }
3596 }
3597
12359b5e
SM
3598 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3599 dwz_list, dwz_list_elements);
1fd400ff 3600
8b70b953
TT
3601 if (types_list_elements)
3602 {
3603 struct dwarf2_section_info *section;
3604
3605 /* We can only handle a single .debug_types when we have an
3606 index. */
3607 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3608 return 0;
3609
3610 section = VEC_index (dwarf2_section_info_def,
3611 dwarf2_per_objfile->types, 0);
3612
12359b5e
SM
3613 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3614 types_list, types_list_elements);
8b70b953 3615 }
9291a0cd 3616
3063847f 3617 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
9291a0cd 3618
3063847f 3619 dwarf2_per_objfile->index_table = std::move (map);
9291a0cd 3620 dwarf2_per_objfile->using_index = 1;
7b9f3c50 3621 dwarf2_per_objfile->quick_file_names_table =
b76e467d 3622 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd
TT
3623
3624 return 1;
3625}
3626
dee91e82 3627/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3628
dee91e82
DE
3629static void
3630dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3631 const gdb_byte *info_ptr,
dee91e82
DE
3632 struct die_info *comp_unit_die,
3633 int has_children,
3634 void *data)
9291a0cd 3635{
dee91e82 3636 struct dwarf2_cu *cu = reader->cu;
ed2dc618 3637 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
518817b3
SM
3638 struct dwarf2_per_objfile *dwarf2_per_objfile
3639 = cu->per_cu->dwarf2_per_objfile;
dee91e82 3640 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3641 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3642 struct attribute *attr;
dee91e82 3643 int i;
7b9f3c50
DE
3644 void **slot;
3645 struct quick_file_names *qfn;
9291a0cd 3646
0186c6a7
DE
3647 gdb_assert (! this_cu->is_debug_types);
3648
07261596
TT
3649 /* Our callers never want to match partial units -- instead they
3650 will match the enclosing full CU. */
3651 if (comp_unit_die->tag == DW_TAG_partial_unit)
3652 {
3653 this_cu->v.quick->no_file_data = 1;
3654 return;
3655 }
3656
0186c6a7 3657 lh_cu = this_cu;
7b9f3c50 3658 slot = NULL;
dee91e82 3659
fff8551c 3660 line_header_up lh;
9c541725 3661 sect_offset line_offset {};
fff8551c 3662
dee91e82 3663 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3664 if (attr)
3665 {
7b9f3c50
DE
3666 struct quick_file_names find_entry;
3667
9c541725 3668 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3669
3670 /* We may have already read in this line header (TU line header sharing).
3671 If we have we're done. */
094b34ac 3672 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3673 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3674 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3675 &find_entry, INSERT);
3676 if (*slot != NULL)
3677 {
9a3c8263 3678 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3679 return;
7b9f3c50
DE
3680 }
3681
3019eac3 3682 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3683 }
3684 if (lh == NULL)
3685 {
094b34ac 3686 lh_cu->v.quick->no_file_data = 1;
dee91e82 3687 return;
9291a0cd
TT
3688 }
3689
8d749320 3690 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3691 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3692 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3693 gdb_assert (slot != NULL);
3694 *slot = qfn;
9291a0cd 3695
d721ba37 3696 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3697
fff8551c 3698 qfn->num_file_names = lh->file_names.size ();
8d749320 3699 qfn->file_names =
fff8551c
PA
3700 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3701 for (i = 0; i < lh->file_names.size (); ++i)
3702 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3703 qfn->real_names = NULL;
9291a0cd 3704
094b34ac 3705 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3706}
3707
3708/* A helper for the "quick" functions which attempts to read the line
3709 table for THIS_CU. */
3710
3711static struct quick_file_names *
e4a48d9d 3712dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3713{
0186c6a7
DE
3714 /* This should never be called for TUs. */
3715 gdb_assert (! this_cu->is_debug_types);
3716 /* Nor type unit groups. */
3717 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3718
dee91e82
DE
3719 if (this_cu->v.quick->file_names != NULL)
3720 return this_cu->v.quick->file_names;
3721 /* If we know there is no line data, no point in looking again. */
3722 if (this_cu->v.quick->no_file_data)
3723 return NULL;
3724
0186c6a7 3725 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3726
3727 if (this_cu->v.quick->no_file_data)
3728 return NULL;
3729 return this_cu->v.quick->file_names;
9291a0cd
TT
3730}
3731
3732/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3733 real path for a given file name from the line table. */
2fdf6df6 3734
9291a0cd 3735static const char *
7b9f3c50
DE
3736dw2_get_real_path (struct objfile *objfile,
3737 struct quick_file_names *qfn, int index)
9291a0cd 3738{
7b9f3c50
DE
3739 if (qfn->real_names == NULL)
3740 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3741 qfn->num_file_names, const char *);
9291a0cd 3742
7b9f3c50 3743 if (qfn->real_names[index] == NULL)
14278e1f 3744 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3745
7b9f3c50 3746 return qfn->real_names[index];
9291a0cd
TT
3747}
3748
3749static struct symtab *
3750dw2_find_last_source_symtab (struct objfile *objfile)
3751{
ed2dc618
SM
3752 struct dwarf2_per_objfile *dwarf2_per_objfile
3753 = get_dwarf2_per_objfile (objfile);
b76e467d 3754 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
58f0c718 3755 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
ae2de4f8 3756
43f3e411
DE
3757 if (cust == NULL)
3758 return NULL;
ed2dc618 3759
43f3e411 3760 return compunit_primary_filetab (cust);
9291a0cd
TT
3761}
3762
7b9f3c50
DE
3763/* Traversal function for dw2_forget_cached_source_info. */
3764
3765static int
3766dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3767{
7b9f3c50 3768 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3769
7b9f3c50 3770 if (file_data->real_names)
9291a0cd 3771 {
7b9f3c50 3772 int i;
9291a0cd 3773
7b9f3c50 3774 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3775 {
7b9f3c50
DE
3776 xfree ((void*) file_data->real_names[i]);
3777 file_data->real_names[i] = NULL;
9291a0cd
TT
3778 }
3779 }
7b9f3c50
DE
3780
3781 return 1;
3782}
3783
3784static void
3785dw2_forget_cached_source_info (struct objfile *objfile)
3786{
ed2dc618
SM
3787 struct dwarf2_per_objfile *dwarf2_per_objfile
3788 = get_dwarf2_per_objfile (objfile);
7b9f3c50
DE
3789
3790 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3791 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3792}
3793
f8eba3c6
TT
3794/* Helper function for dw2_map_symtabs_matching_filename that expands
3795 the symtabs and calls the iterator. */
3796
3797static int
3798dw2_map_expand_apply (struct objfile *objfile,
3799 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3800 const char *name, const char *real_path,
14bc53a8 3801 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3802{
43f3e411 3803 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3804
3805 /* Don't visit already-expanded CUs. */
43f3e411 3806 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3807 return 0;
3808
3809 /* This may expand more than one symtab, and we want to iterate over
3810 all of them. */
58f0c718 3811 dw2_instantiate_symtab (per_cu, false);
f8eba3c6 3812
14bc53a8
PA
3813 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3814 last_made, callback);
f8eba3c6
TT
3815}
3816
3817/* Implementation of the map_symtabs_matching_filename method. */
3818
14bc53a8
PA
3819static bool
3820dw2_map_symtabs_matching_filename
3821 (struct objfile *objfile, const char *name, const char *real_path,
3822 gdb::function_view<bool (symtab *)> callback)
9291a0cd 3823{
c011a4f4 3824 const char *name_basename = lbasename (name);
ed2dc618
SM
3825 struct dwarf2_per_objfile *dwarf2_per_objfile
3826 = get_dwarf2_per_objfile (objfile);
ae2de4f8 3827
848e3e78
DE
3828 /* The rule is CUs specify all the files, including those used by
3829 any TU, so there's no need to scan TUs here. */
f4dc4d17 3830
b76e467d 3831 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 3832 {
3d7bb9d9 3833 /* We only need to look at symtabs not already expanded. */
43f3e411 3834 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3835 continue;
3836
b76e467d 3837 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 3838 if (file_data == NULL)
9291a0cd
TT
3839 continue;
3840
b76e467d 3841 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3842 {
7b9f3c50 3843 const char *this_name = file_data->file_names[j];
da235a7c 3844 const char *this_real_name;
9291a0cd 3845
af529f8f 3846 if (compare_filenames_for_search (this_name, name))
9291a0cd 3847 {
f5b95b50 3848 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3849 callback))
3850 return true;
288e77a7 3851 continue;
4aac40c8 3852 }
9291a0cd 3853
c011a4f4
DE
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (! basenames_may_differ
3857 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3858 continue;
3859
da235a7c
JK
3860 this_real_name = dw2_get_real_path (objfile, file_data, j);
3861 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3862 {
da235a7c 3863 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3864 callback))
3865 return true;
288e77a7 3866 continue;
da235a7c 3867 }
9291a0cd 3868
da235a7c
JK
3869 if (real_path != NULL)
3870 {
af529f8f
JK
3871 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3872 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3873 if (this_real_name != NULL
af529f8f 3874 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3875 {
f5b95b50 3876 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3877 callback))
3878 return true;
288e77a7 3879 continue;
9291a0cd
TT
3880 }
3881 }
3882 }
3883 }
3884
14bc53a8 3885 return false;
9291a0cd
TT
3886}
3887
da51c347
DE
3888/* Struct used to manage iterating over all CUs looking for a symbol. */
3889
3890struct dw2_symtab_iterator
9291a0cd 3891{
ed2dc618
SM
3892 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3893 struct dwarf2_per_objfile *dwarf2_per_objfile;
da51c347
DE
3894 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3895 int want_specific_block;
3896 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3897 Unused if !WANT_SPECIFIC_BLOCK. */
3898 int block_index;
3899 /* The kind of symbol we're looking for. */
3900 domain_enum domain;
3901 /* The list of CUs from the index entry of the symbol,
3902 or NULL if not found. */
3903 offset_type *vec;
3904 /* The next element in VEC to look at. */
3905 int next;
3906 /* The number of elements in VEC, or zero if there is no match. */
3907 int length;
8943b874
DE
3908 /* Have we seen a global version of the symbol?
3909 If so we can ignore all further global instances.
3910 This is to work around gold/15646, inefficient gold-generated
3911 indices. */
3912 int global_seen;
da51c347 3913};
9291a0cd 3914
da51c347
DE
3915/* Initialize the index symtab iterator ITER.
3916 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3917 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3918
9291a0cd 3919static void
da51c347 3920dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
ed2dc618 3921 struct dwarf2_per_objfile *dwarf2_per_objfile,
da51c347
DE
3922 int want_specific_block,
3923 int block_index,
3924 domain_enum domain,
3925 const char *name)
3926{
ed2dc618 3927 iter->dwarf2_per_objfile = dwarf2_per_objfile;
da51c347
DE
3928 iter->want_specific_block = want_specific_block;
3929 iter->block_index = block_index;
3930 iter->domain = domain;
3931 iter->next = 0;
8943b874 3932 iter->global_seen = 0;
da51c347 3933
3063847f 3934 mapped_index *index = dwarf2_per_objfile->index_table.get ();
ed2dc618
SM
3935
3936 /* index is NULL if OBJF_READNOW. */
3937 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
da51c347
DE
3938 iter->length = MAYBE_SWAP (*iter->vec);
3939 else
3940 {
3941 iter->vec = NULL;
3942 iter->length = 0;
3943 }
3944}
3945
3946/* Return the next matching CU or NULL if there are no more. */
3947
3948static struct dwarf2_per_cu_data *
3949dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3950{
ed2dc618
SM
3951 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3952
da51c347
DE
3953 for ( ; iter->next < iter->length; ++iter->next)
3954 {
3955 offset_type cu_index_and_attrs =
3956 MAYBE_SWAP (iter->vec[iter->next + 1]);
3957 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
da51c347
DE
3958 int want_static = iter->block_index != GLOBAL_BLOCK;
3959 /* This value is only valid for index versions >= 7. */
3960 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3961 gdb_index_symbol_kind symbol_kind =
3962 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3963 /* Only check the symbol attributes if they're present.
3964 Indices prior to version 7 don't record them,
3965 and indices >= 7 may elide them for certain symbols
3966 (gold does this). */
3967 int attrs_valid =
ed2dc618 3968 (dwarf2_per_objfile->index_table->version >= 7
da51c347
DE
3969 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3970
3190f0c6 3971 /* Don't crash on bad data. */
b76e467d 3972 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 3973 + dwarf2_per_objfile->all_type_units.size ()))
3190f0c6 3974 {
b98664d3 3975 complaint (_(".gdb_index entry has bad CU index"
4262abfb
JK
3976 " [in module %s]"),
3977 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3978 continue;
3979 }
3980
ff4c9fec 3981 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3190f0c6 3982
da51c347 3983 /* Skip if already read in. */
43f3e411 3984 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3985 continue;
3986
8943b874
DE
3987 /* Check static vs global. */
3988 if (attrs_valid)
3989 {
3990 if (iter->want_specific_block
3991 && want_static != is_static)
3992 continue;
3993 /* Work around gold/15646. */
3994 if (!is_static && iter->global_seen)
3995 continue;
3996 if (!is_static)
3997 iter->global_seen = 1;
3998 }
da51c347
DE
3999
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
4002 {
4003 switch (iter->domain)
4004 {
4005 case VAR_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4007 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4008 /* Some types are also in VAR_DOMAIN. */
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 case STRUCT_DOMAIN:
4013 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4014 continue;
4015 break;
4016 case LABEL_DOMAIN:
4017 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4018 continue;
4019 break;
4020 default:
4021 break;
4022 }
4023 }
4024
4025 ++iter->next;
4026 return per_cu;
4027 }
4028
4029 return NULL;
4030}
4031
43f3e411 4032static struct compunit_symtab *
da51c347
DE
4033dw2_lookup_symbol (struct objfile *objfile, int block_index,
4034 const char *name, domain_enum domain)
9291a0cd 4035{
43f3e411 4036 struct compunit_symtab *stab_best = NULL;
ed2dc618
SM
4037 struct dwarf2_per_objfile *dwarf2_per_objfile
4038 = get_dwarf2_per_objfile (objfile);
9291a0cd 4039
b5ec771e
PA
4040 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4041
ed2dc618
SM
4042 struct dw2_symtab_iterator iter;
4043 struct dwarf2_per_cu_data *per_cu;
da51c347 4044
ed2dc618 4045 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
9291a0cd 4046
ed2dc618
SM
4047 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4048 {
4049 struct symbol *sym, *with_opaque = NULL;
58f0c718 4050 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
ed2dc618
SM
4051 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4052 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 4053
ed2dc618
SM
4054 sym = block_find_symbol (block, name, domain,
4055 block_find_non_opaque_type_preferred,
4056 &with_opaque);
b2e2f908 4057
ed2dc618
SM
4058 /* Some caution must be observed with overloaded functions
4059 and methods, since the index will not contain any overload
4060 information (but NAME might contain it). */
da51c347 4061
ed2dc618
SM
4062 if (sym != NULL
4063 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4064 return stab;
4065 if (with_opaque != NULL
4066 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4067 stab_best = stab;
da51c347 4068
ed2dc618 4069 /* Keep looking through other CUs. */
9291a0cd 4070 }
9291a0cd 4071
da51c347 4072 return stab_best;
9291a0cd
TT
4073}
4074
4075static void
4076dw2_print_stats (struct objfile *objfile)
4077{
ed2dc618
SM
4078 struct dwarf2_per_objfile *dwarf2_per_objfile
4079 = get_dwarf2_per_objfile (objfile);
b76e467d 4080 int total = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4081 + dwarf2_per_objfile->all_type_units.size ());
ed2dc618 4082 int count = 0;
9291a0cd 4083
ed2dc618 4084 for (int i = 0; i < total; ++i)
9291a0cd 4085 {
ff4c9fec 4086 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4087
43f3e411 4088 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4089 ++count;
4090 }
e4a48d9d 4091 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
4092 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4093}
4094
779bd270
DE
4095/* This dumps minimal information about the index.
4096 It is called via "mt print objfiles".
4097 One use is to verify .gdb_index has been loaded by the
4098 gdb.dwarf2/gdb-index.exp testcase. */
4099
9291a0cd
TT
4100static void
4101dw2_dump (struct objfile *objfile)
4102{
ed2dc618
SM
4103 struct dwarf2_per_objfile *dwarf2_per_objfile
4104 = get_dwarf2_per_objfile (objfile);
4105
779bd270
DE
4106 gdb_assert (dwarf2_per_objfile->using_index);
4107 printf_filtered (".gdb_index:");
4108 if (dwarf2_per_objfile->index_table != NULL)
4109 {
4110 printf_filtered (" version %d\n",
4111 dwarf2_per_objfile->index_table->version);
4112 }
4113 else
4114 printf_filtered (" faked for \"readnow\"\n");
4115 printf_filtered ("\n");
9291a0cd
TT
4116}
4117
9291a0cd
TT
4118static void
4119dw2_expand_symtabs_for_function (struct objfile *objfile,
4120 const char *func_name)
4121{
ed2dc618
SM
4122 struct dwarf2_per_objfile *dwarf2_per_objfile
4123 = get_dwarf2_per_objfile (objfile);
da51c347 4124
ed2dc618
SM
4125 struct dw2_symtab_iterator iter;
4126 struct dwarf2_per_cu_data *per_cu;
da51c347 4127
ed2dc618
SM
4128 /* Note: It doesn't matter what we pass for block_index here. */
4129 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4130 func_name);
da51c347 4131
ed2dc618 4132 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
58f0c718 4133 dw2_instantiate_symtab (per_cu, false);
da51c347 4134
9291a0cd
TT
4135}
4136
4137static void
4138dw2_expand_all_symtabs (struct objfile *objfile)
4139{
ed2dc618
SM
4140 struct dwarf2_per_objfile *dwarf2_per_objfile
4141 = get_dwarf2_per_objfile (objfile);
b76e467d 4142 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4143 + dwarf2_per_objfile->all_type_units.size ());
9291a0cd 4144
ed2dc618 4145 for (int i = 0; i < total_units; ++i)
9291a0cd 4146 {
ff4c9fec 4147 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4148
58f0c718
TT
4149 /* We don't want to directly expand a partial CU, because if we
4150 read it with the wrong language, then assertion failures can
4151 be triggered later on. See PR symtab/23010. So, tell
4152 dw2_instantiate_symtab to skip partial CUs -- any important
4153 partial CU will be read via DW_TAG_imported_unit anyway. */
4154 dw2_instantiate_symtab (per_cu, true);
9291a0cd
TT
4155 }
4156}
4157
4158static void
652a8996
JK
4159dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4160 const char *fullname)
9291a0cd 4161{
ed2dc618
SM
4162 struct dwarf2_per_objfile *dwarf2_per_objfile
4163 = get_dwarf2_per_objfile (objfile);
d4637a04
DE
4164
4165 /* We don't need to consider type units here.
4166 This is only called for examining code, e.g. expand_line_sal.
4167 There can be an order of magnitude (or more) more type units
4168 than comp units, and we avoid them if we can. */
4169
b76e467d 4170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 4171 {
3d7bb9d9 4172 /* We only need to look at symtabs not already expanded. */
43f3e411 4173 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4174 continue;
4175
b76e467d 4176 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 4177 if (file_data == NULL)
9291a0cd
TT
4178 continue;
4179
b76e467d 4180 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4181 {
652a8996
JK
4182 const char *this_fullname = file_data->file_names[j];
4183
4184 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4185 {
58f0c718 4186 dw2_instantiate_symtab (per_cu, false);
9291a0cd
TT
4187 break;
4188 }
4189 }
4190 }
4191}
4192
9291a0cd 4193static void
ade7ed9e 4194dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4195 const char * name, domain_enum domain,
ade7ed9e 4196 int global,
40658b94
PH
4197 int (*callback) (struct block *,
4198 struct symbol *, void *),
b5ec771e 4199 void *data, symbol_name_match_type match,
2edb89d3 4200 symbol_compare_ftype *ordered_compare)
9291a0cd 4201{
40658b94 4202 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4203 current language is Ada for a non-Ada objfile using GNU index. As Ada
4204 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4205}
4206
b5ec771e
PA
4207/* Symbol name matcher for .gdb_index names.
4208
4209 Symbol names in .gdb_index have a few particularities:
4210
4211 - There's no indication of which is the language of each symbol.
4212
4213 Since each language has its own symbol name matching algorithm,
4214 and we don't know which language is the right one, we must match
3f563c84
PA
4215 each symbol against all languages. This would be a potential
4216 performance problem if it were not mitigated by the
4217 mapped_index::name_components lookup table, which significantly
4218 reduces the number of times we need to call into this matcher,
4219 making it a non-issue.
b5ec771e
PA
4220
4221 - Symbol names in the index have no overload (parameter)
4222 information. I.e., in C++, "foo(int)" and "foo(long)" both
4223 appear as "foo" in the index, for example.
4224
4225 This means that the lookup names passed to the symbol name
4226 matcher functions must have no parameter information either
4227 because (e.g.) symbol search name "foo" does not match
4228 lookup-name "foo(int)" [while swapping search name for lookup
4229 name would match].
4230*/
4231class gdb_index_symbol_name_matcher
4232{
4233public:
4234 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4235 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4236
4237 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4238 Returns true if any matcher matches. */
4239 bool matches (const char *symbol_name);
4240
4241private:
4242 /* A reference to the lookup name we're matching against. */
4243 const lookup_name_info &m_lookup_name;
4244
4245 /* A vector holding all the different symbol name matchers, for all
4246 languages. */
4247 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4248};
4249
4250gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4251 (const lookup_name_info &lookup_name)
4252 : m_lookup_name (lookup_name)
4253{
4254 /* Prepare the vector of comparison functions upfront, to avoid
4255 doing the same work for each symbol. Care is taken to avoid
4256 matching with the same matcher more than once if/when multiple
4257 languages use the same matcher function. */
4258 auto &matchers = m_symbol_name_matcher_funcs;
4259 matchers.reserve (nr_languages);
4260
4261 matchers.push_back (default_symbol_name_matcher);
4262
4263 for (int i = 0; i < nr_languages; i++)
4264 {
4265 const language_defn *lang = language_def ((enum language) i);
c63d3e8d 4266 symbol_name_matcher_ftype *name_matcher
618daa93 4267 = get_symbol_name_matcher (lang, m_lookup_name);
c63d3e8d
PA
4268
4269 /* Don't insert the same comparison routine more than once.
4270 Note that we do this linear walk instead of a seemingly
4271 cheaper sorted insert, or use a std::set or something like
4272 that, because relative order of function addresses is not
4273 stable. This is not a problem in practice because the number
4274 of supported languages is low, and the cost here is tiny
4275 compared to the number of searches we'll do afterwards using
4276 this object. */
4277 if (name_matcher != default_symbol_name_matcher
4278 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4279 == matchers.end ()))
4280 matchers.push_back (name_matcher);
b5ec771e
PA
4281 }
4282}
4283
4284bool
4285gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4286{
4287 for (auto matches_name : m_symbol_name_matcher_funcs)
4288 if (matches_name (symbol_name, m_lookup_name, NULL))
4289 return true;
4290
4291 return false;
4292}
4293
e1ef7d7a
PA
4294/* Starting from a search name, return the string that finds the upper
4295 bound of all strings that start with SEARCH_NAME in a sorted name
4296 list. Returns the empty string to indicate that the upper bound is
4297 the end of the list. */
4298
4299static std::string
4300make_sort_after_prefix_name (const char *search_name)
4301{
4302 /* When looking to complete "func", we find the upper bound of all
4303 symbols that start with "func" by looking for where we'd insert
4304 the closest string that would follow "func" in lexicographical
4305 order. Usually, that's "func"-with-last-character-incremented,
4306 i.e. "fund". Mind non-ASCII characters, though. Usually those
4307 will be UTF-8 multi-byte sequences, but we can't be certain.
4308 Especially mind the 0xff character, which is a valid character in
4309 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4310 rule out compilers allowing it in identifiers. Note that
4311 conveniently, strcmp/strcasecmp are specified to compare
4312 characters interpreted as unsigned char. So what we do is treat
4313 the whole string as a base 256 number composed of a sequence of
4314 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4315 to 0, and carries 1 to the following more-significant position.
4316 If the very first character in SEARCH_NAME ends up incremented
4317 and carries/overflows, then the upper bound is the end of the
4318 list. The string after the empty string is also the empty
4319 string.
4320
4321 Some examples of this operation:
4322
4323 SEARCH_NAME => "+1" RESULT
4324
4325 "abc" => "abd"
4326 "ab\xff" => "ac"
4327 "\xff" "a" "\xff" => "\xff" "b"
4328 "\xff" => ""
4329 "\xff\xff" => ""
4330 "" => ""
4331
4332 Then, with these symbols for example:
4333
4334 func
4335 func1
4336 fund
4337
4338 completing "func" looks for symbols between "func" and
4339 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4340 which finds "func" and "func1", but not "fund".
4341
4342 And with:
4343
4344 funcÿ (Latin1 'ÿ' [0xff])
4345 funcÿ1
4346 fund
4347
4348 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4349 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4350
4351 And with:
4352
4353 ÿÿ (Latin1 'ÿ' [0xff])
4354 ÿÿ1
4355
4356 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4357 the end of the list.
4358 */
4359 std::string after = search_name;
4360 while (!after.empty () && (unsigned char) after.back () == 0xff)
4361 after.pop_back ();
4362 if (!after.empty ())
4363 after.back () = (unsigned char) after.back () + 1;
4364 return after;
4365}
4366
5c58de74 4367/* See declaration. */
61d96d7e 4368
5c58de74
PA
4369std::pair<std::vector<name_component>::const_iterator,
4370 std::vector<name_component>::const_iterator>
44ed8f3e 4371mapped_index_base::find_name_components_bounds
5c58de74 4372 (const lookup_name_info &lookup_name_without_params) const
3f563c84 4373{
5c58de74
PA
4374 auto *name_cmp
4375 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3f563c84
PA
4376
4377 const char *cplus
c62446b1 4378 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
9291a0cd 4379
3f563c84
PA
4380 /* Comparison function object for lower_bound that matches against a
4381 given symbol name. */
4382 auto lookup_compare_lower = [&] (const name_component &elem,
4383 const char *name)
4384 {
5c58de74 4385 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4386 const char *elem_name = elem_qualified + elem.name_offset;
4387 return name_cmp (elem_name, name) < 0;
4388 };
4389
4390 /* Comparison function object for upper_bound that matches against a
4391 given symbol name. */
4392 auto lookup_compare_upper = [&] (const char *name,
4393 const name_component &elem)
4394 {
5c58de74 4395 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4396 const char *elem_name = elem_qualified + elem.name_offset;
4397 return name_cmp (name, elem_name) < 0;
4398 };
4399
5c58de74
PA
4400 auto begin = this->name_components.begin ();
4401 auto end = this->name_components.end ();
3f563c84
PA
4402
4403 /* Find the lower bound. */
4404 auto lower = [&] ()
4405 {
5c58de74 4406 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
3f563c84
PA
4407 return begin;
4408 else
4409 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4410 } ();
4411
4412 /* Find the upper bound. */
4413 auto upper = [&] ()
4414 {
5c58de74 4415 if (lookup_name_without_params.completion_mode ())
3f563c84 4416 {
e1ef7d7a
PA
4417 /* In completion mode, we want UPPER to point past all
4418 symbols names that have the same prefix. I.e., with
4419 these symbols, and completing "func":
4420
4421 function << lower bound
4422 function1
4423 other_function << upper bound
4424
4425 We find the upper bound by looking for the insertion
4426 point of "func"-with-last-character-incremented,
4427 i.e. "fund". */
4428 std::string after = make_sort_after_prefix_name (cplus);
4429 if (after.empty ())
3f563c84 4430 return end;
e6b2f5ef
PA
4431 return std::lower_bound (lower, end, after.c_str (),
4432 lookup_compare_lower);
3f563c84
PA
4433 }
4434 else
4435 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4436 } ();
4437
5c58de74
PA
4438 return {lower, upper};
4439}
4440
4441/* See declaration. */
4442
4443void
44ed8f3e 4444mapped_index_base::build_name_components ()
5c58de74
PA
4445{
4446 if (!this->name_components.empty ())
4447 return;
4448
4449 this->name_components_casing = case_sensitivity;
4450 auto *name_cmp
4451 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4452
4453 /* The code below only knows how to break apart components of C++
4454 symbol names (and other languages that use '::' as
4455 namespace/module separator). If we add support for wild matching
4456 to some language that uses some other operator (E.g., Ada, Go and
4457 D use '.'), then we'll need to try splitting the symbol name
4458 according to that language too. Note that Ada does support wild
4459 matching, but doesn't currently support .gdb_index. */
44ed8f3e
PA
4460 auto count = this->symbol_name_count ();
4461 for (offset_type idx = 0; idx < count; idx++)
5c58de74 4462 {
44ed8f3e 4463 if (this->symbol_name_slot_invalid (idx))
5c58de74
PA
4464 continue;
4465
4466 const char *name = this->symbol_name_at (idx);
4467
4468 /* Add each name component to the name component table. */
4469 unsigned int previous_len = 0;
4470 for (unsigned int current_len = cp_find_first_component (name);
4471 name[current_len] != '\0';
4472 current_len += cp_find_first_component (name + current_len))
4473 {
4474 gdb_assert (name[current_len] == ':');
4475 this->name_components.push_back ({previous_len, idx});
4476 /* Skip the '::'. */
4477 current_len += 2;
4478 previous_len = current_len;
4479 }
4480 this->name_components.push_back ({previous_len, idx});
4481 }
4482
4483 /* Sort name_components elements by name. */
4484 auto name_comp_compare = [&] (const name_component &left,
4485 const name_component &right)
4486 {
4487 const char *left_qualified = this->symbol_name_at (left.idx);
4488 const char *right_qualified = this->symbol_name_at (right.idx);
4489
4490 const char *left_name = left_qualified + left.name_offset;
4491 const char *right_name = right_qualified + right.name_offset;
4492
4493 return name_cmp (left_name, right_name) < 0;
4494 };
4495
4496 std::sort (this->name_components.begin (),
4497 this->name_components.end (),
4498 name_comp_compare);
4499}
4500
4501/* Helper for dw2_expand_symtabs_matching that works with a
44ed8f3e
PA
4502 mapped_index_base instead of the containing objfile. This is split
4503 to a separate function in order to be able to unit test the
4504 name_components matching using a mock mapped_index_base. For each
5c58de74 4505 symbol name that matches, calls MATCH_CALLBACK, passing it the
44ed8f3e 4506 symbol's index in the mapped_index_base symbol table. */
5c58de74
PA
4507
4508static void
4509dw2_expand_symtabs_matching_symbol
44ed8f3e 4510 (mapped_index_base &index,
5c58de74
PA
4511 const lookup_name_info &lookup_name_in,
4512 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4513 enum search_domain kind,
4514 gdb::function_view<void (offset_type)> match_callback)
4515{
4516 lookup_name_info lookup_name_without_params
4517 = lookup_name_in.make_ignore_params ();
4518 gdb_index_symbol_name_matcher lookup_name_matcher
4519 (lookup_name_without_params);
4520
4521 /* Build the symbol name component sorted vector, if we haven't
4522 yet. */
4523 index.build_name_components ();
4524
4525 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4526
3f563c84
PA
4527 /* Now for each symbol name in range, check to see if we have a name
4528 match, and if so, call the MATCH_CALLBACK callback. */
4529
4530 /* The same symbol may appear more than once in the range though.
4531 E.g., if we're looking for symbols that complete "w", and we have
4532 a symbol named "w1::w2", we'll find the two name components for
4533 that same symbol in the range. To be sure we only call the
4534 callback once per symbol, we first collect the symbol name
4535 indexes that matched in a temporary vector and ignore
4536 duplicates. */
4537 std::vector<offset_type> matches;
5c58de74 4538 matches.reserve (std::distance (bounds.first, bounds.second));
3f563c84 4539
5c58de74 4540 for (; bounds.first != bounds.second; ++bounds.first)
3f563c84 4541 {
5c58de74 4542 const char *qualified = index.symbol_name_at (bounds.first->idx);
3f563c84
PA
4543
4544 if (!lookup_name_matcher.matches (qualified)
4545 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
9291a0cd
TT
4546 continue;
4547
5c58de74 4548 matches.push_back (bounds.first->idx);
3f563c84
PA
4549 }
4550
4551 std::sort (matches.begin (), matches.end ());
4552
4553 /* Finally call the callback, once per match. */
4554 ULONGEST prev = -1;
4555 for (offset_type idx : matches)
4556 {
4557 if (prev != idx)
4558 {
4559 match_callback (idx);
4560 prev = idx;
4561 }
4562 }
4563
4564 /* Above we use a type wider than idx's for 'prev', since 0 and
4565 (offset_type)-1 are both possible values. */
4566 static_assert (sizeof (prev) > sizeof (offset_type), "");
4567}
4568
c62446b1
PA
4569#if GDB_SELF_TEST
4570
4571namespace selftests { namespace dw2_expand_symtabs_matching {
4572
a3c5fafd
PA
4573/* A mock .gdb_index/.debug_names-like name index table, enough to
4574 exercise dw2_expand_symtabs_matching_symbol, which works with the
4575 mapped_index_base interface. Builds an index from the symbol list
4576 passed as parameter to the constructor. */
4577class mock_mapped_index : public mapped_index_base
c62446b1
PA
4578{
4579public:
a3c5fafd
PA
4580 mock_mapped_index (gdb::array_view<const char *> symbols)
4581 : m_symbol_table (symbols)
c62446b1
PA
4582 {}
4583
a3c5fafd 4584 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
c62446b1 4585
a3c5fafd 4586 /* Return the number of names in the symbol table. */
632e107b 4587 size_t symbol_name_count () const override
c62446b1 4588 {
a3c5fafd 4589 return m_symbol_table.size ();
c62446b1
PA
4590 }
4591
a3c5fafd 4592 /* Get the name of the symbol at IDX in the symbol table. */
632e107b 4593 const char *symbol_name_at (offset_type idx) const override
a3c5fafd
PA
4594 {
4595 return m_symbol_table[idx];
4596 }
c62446b1 4597
a3c5fafd
PA
4598private:
4599 gdb::array_view<const char *> m_symbol_table;
c62446b1
PA
4600};
4601
4602/* Convenience function that converts a NULL pointer to a "<null>"
4603 string, to pass to print routines. */
4604
4605static const char *
4606string_or_null (const char *str)
4607{
4608 return str != NULL ? str : "<null>";
4609}
4610
4611/* Check if a lookup_name_info built from
4612 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4613 index. EXPECTED_LIST is the list of expected matches, in expected
4614 matching order. If no match expected, then an empty list is
4615 specified. Returns true on success. On failure prints a warning
4616 indicating the file:line that failed, and returns false. */
4617
4618static bool
4619check_match (const char *file, int line,
4620 mock_mapped_index &mock_index,
4621 const char *name, symbol_name_match_type match_type,
4622 bool completion_mode,
4623 std::initializer_list<const char *> expected_list)
4624{
4625 lookup_name_info lookup_name (name, match_type, completion_mode);
4626
4627 bool matched = true;
4628
4629 auto mismatch = [&] (const char *expected_str,
4630 const char *got)
4631 {
4632 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4633 "expected=\"%s\", got=\"%s\"\n"),
4634 file, line,
4635 (match_type == symbol_name_match_type::FULL
4636 ? "FULL" : "WILD"),
4637 name, string_or_null (expected_str), string_or_null (got));
4638 matched = false;
4639 };
4640
4641 auto expected_it = expected_list.begin ();
4642 auto expected_end = expected_list.end ();
4643
a3c5fafd 4644 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
c62446b1
PA
4645 NULL, ALL_DOMAIN,
4646 [&] (offset_type idx)
4647 {
a3c5fafd 4648 const char *matched_name = mock_index.symbol_name_at (idx);
c62446b1
PA
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651
4652 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4653 mismatch (expected_str, matched_name);
4654 });
4655
4656 const char *expected_str
4657 = expected_it == expected_end ? NULL : *expected_it++;
4658 if (expected_str != NULL)
4659 mismatch (expected_str, NULL);
4660
4661 return matched;
4662}
4663
4664/* The symbols added to the mock mapped_index for testing (in
4665 canonical form). */
4666static const char *test_symbols[] = {
4667 "function",
4668 "std::bar",
4669 "std::zfunction",
4670 "std::zfunction2",
4671 "w1::w2",
4672 "ns::foo<char*>",
4673 "ns::foo<int>",
4674 "ns::foo<long>",
a20714ff
PA
4675 "ns2::tmpl<int>::foo2",
4676 "(anonymous namespace)::A::B::C",
c62446b1 4677
e1ef7d7a
PA
4678 /* These are used to check that the increment-last-char in the
4679 matching algorithm for completion doesn't match "t1_fund" when
4680 completing "t1_func". */
4681 "t1_func",
4682 "t1_func1",
4683 "t1_fund",
4684 "t1_fund1",
4685
4686 /* A UTF-8 name with multi-byte sequences to make sure that
4687 cp-name-parser understands this as a single identifier ("função"
4688 is "function" in PT). */
4689 u8"u8função",
4690
4691 /* \377 (0xff) is Latin1 'ÿ'. */
4692 "yfunc\377",
4693
4694 /* \377 (0xff) is Latin1 'ÿ'. */
4695 "\377",
4696 "\377\377123",
4697
c62446b1
PA
4698 /* A name with all sorts of complications. Starts with "z" to make
4699 it easier for the completion tests below. */
4700#define Z_SYM_NAME \
4701 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4702 "::tuple<(anonymous namespace)::ui*, " \
4703 "std::default_delete<(anonymous namespace)::ui>, void>"
4704
4705 Z_SYM_NAME
4706};
4707
a3c5fafd
PA
4708/* Returns true if the mapped_index_base::find_name_component_bounds
4709 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4710 in completion mode. */
5c58de74
PA
4711
4712static bool
a3c5fafd 4713check_find_bounds_finds (mapped_index_base &index,
5c58de74
PA
4714 const char *search_name,
4715 gdb::array_view<const char *> expected_syms)
4716{
4717 lookup_name_info lookup_name (search_name,
4718 symbol_name_match_type::FULL, true);
4719
4720 auto bounds = index.find_name_components_bounds (lookup_name);
4721
4722 size_t distance = std::distance (bounds.first, bounds.second);
4723 if (distance != expected_syms.size ())
4724 return false;
4725
4726 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4727 {
4728 auto nc_elem = bounds.first + exp_elem;
4729 const char *qualified = index.symbol_name_at (nc_elem->idx);
4730 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4731 return false;
4732 }
4733
4734 return true;
4735}
4736
4737/* Test the lower-level mapped_index::find_name_component_bounds
4738 method. */
4739
c62446b1 4740static void
5c58de74
PA
4741test_mapped_index_find_name_component_bounds ()
4742{
4743 mock_mapped_index mock_index (test_symbols);
4744
a3c5fafd 4745 mock_index.build_name_components ();
5c58de74
PA
4746
4747 /* Test the lower-level mapped_index::find_name_component_bounds
4748 method in completion mode. */
4749 {
4750 static const char *expected_syms[] = {
4751 "t1_func",
4752 "t1_func1",
5c58de74
PA
4753 };
4754
a3c5fafd 4755 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4756 "t1_func", expected_syms));
4757 }
4758
4759 /* Check that the increment-last-char in the name matching algorithm
4760 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4761 {
4762 static const char *expected_syms1[] = {
4763 "\377",
4764 "\377\377123",
4765 };
a3c5fafd 4766 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4767 "\377", expected_syms1));
4768
4769 static const char *expected_syms2[] = {
4770 "\377\377123",
4771 };
a3c5fafd 4772 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4773 "\377\377", expected_syms2));
4774 }
4775}
4776
4777/* Test dw2_expand_symtabs_matching_symbol. */
4778
4779static void
4780test_dw2_expand_symtabs_matching_symbol ()
c62446b1
PA
4781{
4782 mock_mapped_index mock_index (test_symbols);
4783
4784 /* We let all tests run until the end even if some fails, for debug
4785 convenience. */
4786 bool any_mismatch = false;
4787
4788 /* Create the expected symbols list (an initializer_list). Needed
4789 because lists have commas, and we need to pass them to CHECK,
4790 which is a macro. */
4791#define EXPECT(...) { __VA_ARGS__ }
4792
4793 /* Wrapper for check_match that passes down the current
4794 __FILE__/__LINE__. */
4795#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4796 any_mismatch |= !check_match (__FILE__, __LINE__, \
4797 mock_index, \
4798 NAME, MATCH_TYPE, COMPLETION_MODE, \
4799 EXPECTED_LIST)
4800
4801 /* Identity checks. */
4802 for (const char *sym : test_symbols)
4803 {
4804 /* Should be able to match all existing symbols. */
4805 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4806 EXPECT (sym));
4807
4808 /* Should be able to match all existing symbols with
4809 parameters. */
4810 std::string with_params = std::string (sym) + "(int)";
4811 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4812 EXPECT (sym));
4813
4814 /* Should be able to match all existing symbols with
4815 parameters and qualifiers. */
4816 with_params = std::string (sym) + " ( int ) const";
4817 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4818 EXPECT (sym));
4819
4820 /* This should really find sym, but cp-name-parser.y doesn't
4821 know about lvalue/rvalue qualifiers yet. */
4822 with_params = std::string (sym) + " ( int ) &&";
4823 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4824 {});
4825 }
4826
e1ef7d7a
PA
4827 /* Check that the name matching algorithm for completion doesn't get
4828 confused with Latin1 'ÿ' / 0xff. */
4829 {
4830 static const char str[] = "\377";
4831 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4832 EXPECT ("\377", "\377\377123"));
4833 }
4834
4835 /* Check that the increment-last-char in the matching algorithm for
4836 completion doesn't match "t1_fund" when completing "t1_func". */
4837 {
4838 static const char str[] = "t1_func";
4839 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4840 EXPECT ("t1_func", "t1_func1"));
4841 }
4842
c62446b1
PA
4843 /* Check that completion mode works at each prefix of the expected
4844 symbol name. */
4845 {
4846 static const char str[] = "function(int)";
4847 size_t len = strlen (str);
4848 std::string lookup;
4849
4850 for (size_t i = 1; i < len; i++)
4851 {
4852 lookup.assign (str, i);
4853 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4854 EXPECT ("function"));
4855 }
4856 }
4857
4858 /* While "w" is a prefix of both components, the match function
4859 should still only be called once. */
4860 {
4861 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4862 EXPECT ("w1::w2"));
a20714ff
PA
4863 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4864 EXPECT ("w1::w2"));
c62446b1
PA
4865 }
4866
4867 /* Same, with a "complicated" symbol. */
4868 {
4869 static const char str[] = Z_SYM_NAME;
4870 size_t len = strlen (str);
4871 std::string lookup;
4872
4873 for (size_t i = 1; i < len; i++)
4874 {
4875 lookup.assign (str, i);
4876 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4877 EXPECT (Z_SYM_NAME));
4878 }
4879 }
4880
4881 /* In FULL mode, an incomplete symbol doesn't match. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4884 {});
4885 }
4886
4887 /* A complete symbol with parameters matches any overload, since the
4888 index has no overload info. */
4889 {
4890 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4891 EXPECT ("std::zfunction", "std::zfunction2"));
a20714ff
PA
4892 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
c62446b1
PA
4896 }
4897
4898 /* Check that whitespace is ignored appropriately. A symbol with a
4899 template argument list. */
4900 {
4901 static const char expected[] = "ns::foo<int>";
4902 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4903 EXPECT (expected));
a20714ff
PA
4904 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4905 EXPECT (expected));
c62446b1
PA
4906 }
4907
4908 /* Check that whitespace is ignored appropriately. A symbol with a
4909 template argument list that includes a pointer. */
4910 {
4911 static const char expected[] = "ns::foo<char*>";
4912 /* Try both completion and non-completion modes. */
4913 static const bool completion_mode[2] = {false, true};
4914 for (size_t i = 0; i < 2; i++)
4915 {
4916 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4917 completion_mode[i], EXPECT (expected));
a20714ff
PA
4918 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4919 completion_mode[i], EXPECT (expected));
c62446b1
PA
4920
4921 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4922 completion_mode[i], EXPECT (expected));
a20714ff
PA
4923 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4924 completion_mode[i], EXPECT (expected));
c62446b1
PA
4925 }
4926 }
4927
4928 {
4929 /* Check method qualifiers are ignored. */
4930 static const char expected[] = "ns::foo<char*>";
4931 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4932 symbol_name_match_type::FULL, true, EXPECT (expected));
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
a20714ff
PA
4935 CHECK_MATCH ("foo < char * > ( int ) const",
4936 symbol_name_match_type::WILD, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) &&",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
c62446b1
PA
4939 }
4940
4941 /* Test lookup names that don't match anything. */
4942 {
a20714ff
PA
4943 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4944 {});
4945
c62446b1
PA
4946 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4947 {});
4948 }
4949
a20714ff
PA
4950 /* Some wild matching tests, exercising "(anonymous namespace)",
4951 which should not be confused with a parameter list. */
4952 {
4953 static const char *syms[] = {
4954 "A::B::C",
4955 "B::C",
4956 "C",
4957 "A :: B :: C ( int )",
4958 "B :: C ( int )",
4959 "C ( int )",
4960 };
4961
4962 for (const char *s : syms)
4963 {
4964 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4965 EXPECT ("(anonymous namespace)::A::B::C"));
4966 }
4967 }
4968
4969 {
4970 static const char expected[] = "ns2::tmpl<int>::foo2";
4971 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4972 EXPECT (expected));
4973 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 }
4976
c62446b1
PA
4977 SELF_CHECK (!any_mismatch);
4978
4979#undef EXPECT
4980#undef CHECK_MATCH
4981}
4982
5c58de74
PA
4983static void
4984run_test ()
4985{
4986 test_mapped_index_find_name_component_bounds ();
4987 test_dw2_expand_symtabs_matching_symbol ();
4988}
4989
c62446b1
PA
4990}} // namespace selftests::dw2_expand_symtabs_matching
4991
4992#endif /* GDB_SELF_TEST */
4993
4b514bc8
JK
4994/* If FILE_MATCHER is NULL or if PER_CU has
4995 dwarf2_per_cu_quick_data::MARK set (see
4996 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4997 EXPANSION_NOTIFY on it. */
4998
4999static void
5000dw2_expand_symtabs_matching_one
5001 (struct dwarf2_per_cu_data *per_cu,
5002 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5003 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5004{
5005 if (file_matcher == NULL || per_cu->v.quick->mark)
5006 {
5007 bool symtab_was_null
5008 = (per_cu->v.quick->compunit_symtab == NULL);
5009
58f0c718 5010 dw2_instantiate_symtab (per_cu, false);
4b514bc8
JK
5011
5012 if (expansion_notify != NULL
5013 && symtab_was_null
5014 && per_cu->v.quick->compunit_symtab != NULL)
5015 expansion_notify (per_cu->v.quick->compunit_symtab);
5016 }
5017}
5018
3f563c84
PA
5019/* Helper for dw2_expand_matching symtabs. Called on each symbol
5020 matched, to expand corresponding CUs that were marked. IDX is the
5021 index of the symbol name that matched. */
5022
5023static void
5024dw2_expand_marked_cus
ed2dc618 5025 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
3f563c84
PA
5026 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5027 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5028 search_domain kind)
5029{
3f563c84
PA
5030 offset_type *vec, vec_len, vec_idx;
5031 bool global_seen = false;
ed2dc618 5032 mapped_index &index = *dwarf2_per_objfile->index_table;
3f563c84 5033
61920122 5034 vec = (offset_type *) (index.constant_pool
f00a2de2 5035 + MAYBE_SWAP (index.symbol_table[idx].vec));
61920122
PA
5036 vec_len = MAYBE_SWAP (vec[0]);
5037 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5038 {
61920122
PA
5039 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5040 /* This value is only valid for index versions >= 7. */
5041 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5042 gdb_index_symbol_kind symbol_kind =
5043 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5044 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5045 /* Only check the symbol attributes if they're present.
5046 Indices prior to version 7 don't record them,
5047 and indices >= 7 may elide them for certain symbols
5048 (gold does this). */
5049 int attrs_valid =
5050 (index.version >= 7
5051 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5052
5053 /* Work around gold/15646. */
5054 if (attrs_valid)
9291a0cd 5055 {
61920122
PA
5056 if (!is_static && global_seen)
5057 continue;
5058 if (!is_static)
5059 global_seen = true;
5060 }
3190f0c6 5061
61920122
PA
5062 /* Only check the symbol's kind if it has one. */
5063 if (attrs_valid)
5064 {
5065 switch (kind)
8943b874 5066 {
61920122
PA
5067 case VARIABLES_DOMAIN:
5068 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5069 continue;
5070 break;
5071 case FUNCTIONS_DOMAIN:
5072 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
8943b874 5073 continue;
61920122
PA
5074 break;
5075 case TYPES_DOMAIN:
5076 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5077 continue;
5078 break;
5079 default:
5080 break;
8943b874 5081 }
61920122 5082 }
8943b874 5083
61920122 5084 /* Don't crash on bad data. */
b76e467d 5085 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 5086 + dwarf2_per_objfile->all_type_units.size ()))
61920122 5087 {
b98664d3 5088 complaint (_(".gdb_index entry has bad CU index"
ed2dc618
SM
5089 " [in module %s]"),
5090 objfile_name (dwarf2_per_objfile->objfile));
61920122
PA
5091 continue;
5092 }
5093
ff4c9fec 5094 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4b514bc8
JK
5095 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5096 expansion_notify);
61920122
PA
5097 }
5098}
5099
4b514bc8
JK
5100/* If FILE_MATCHER is non-NULL, set all the
5101 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5102 that match FILE_MATCHER. */
5103
61920122 5104static void
4b514bc8 5105dw_expand_symtabs_matching_file_matcher
ed2dc618
SM
5106 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5107 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
61920122 5108{
4b514bc8 5109 if (file_matcher == NULL)
61920122
PA
5110 return;
5111
4b514bc8
JK
5112 objfile *const objfile = dwarf2_per_objfile->objfile;
5113
5114 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5115 htab_eq_pointer,
5116 NULL, xcalloc, xfree));
5117 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
61920122
PA
5118 htab_eq_pointer,
5119 NULL, xcalloc, xfree));
61920122 5120
4b514bc8
JK
5121 /* The rule is CUs specify all the files, including those used by
5122 any TU, so there's no need to scan TUs here. */
61920122 5123
b76e467d 5124 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5125 {
927aa2e7
JK
5126 QUIT;
5127
5128 per_cu->v.quick->mark = 0;
5129
5130 /* We only need to look at symtabs not already expanded. */
5131 if (per_cu->v.quick->compunit_symtab)
5132 continue;
5133
b76e467d 5134 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5135 if (file_data == NULL)
5136 continue;
5137
5138 if (htab_find (visited_not_found.get (), file_data) != NULL)
5139 continue;
5140 else if (htab_find (visited_found.get (), file_data) != NULL)
5141 {
5142 per_cu->v.quick->mark = 1;
5143 continue;
5144 }
5145
b76e467d 5146 for (int j = 0; j < file_data->num_file_names; ++j)
927aa2e7
JK
5147 {
5148 const char *this_real_name;
5149
5150 if (file_matcher (file_data->file_names[j], false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155
5156 /* Before we invoke realpath, which can get expensive when many
5157 files are involved, do a quick comparison of the basenames. */
5158 if (!basenames_may_differ
5159 && !file_matcher (lbasename (file_data->file_names[j]),
5160 true))
5161 continue;
5162
5163 this_real_name = dw2_get_real_path (objfile, file_data, j);
5164 if (file_matcher (this_real_name, false))
5165 {
5166 per_cu->v.quick->mark = 1;
5167 break;
5168 }
5169 }
5170
b76e467d
SM
5171 void **slot = htab_find_slot (per_cu->v.quick->mark
5172 ? visited_found.get ()
5173 : visited_not_found.get (),
5174 file_data, INSERT);
927aa2e7
JK
5175 *slot = file_data;
5176 }
5177}
5178
5179static void
5180dw2_expand_symtabs_matching
5181 (struct objfile *objfile,
5182 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5183 const lookup_name_info &lookup_name,
5184 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5185 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5186 enum search_domain kind)
5187{
ed2dc618
SM
5188 struct dwarf2_per_objfile *dwarf2_per_objfile
5189 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5190
5191 /* index_table is NULL if OBJF_READNOW. */
5192 if (!dwarf2_per_objfile->index_table)
5193 return;
5194
ed2dc618 5195 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
927aa2e7
JK
5196
5197 mapped_index &index = *dwarf2_per_objfile->index_table;
5198
5199 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5200 symbol_matcher,
5201 kind, [&] (offset_type idx)
5202 {
ed2dc618 5203 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
927aa2e7
JK
5204 expansion_notify, kind);
5205 });
5206}
5207
5208/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5209 symtab. */
5210
5211static struct compunit_symtab *
5212recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5213 CORE_ADDR pc)
5214{
5215 int i;
5216
5217 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5218 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5219 return cust;
5220
5221 if (cust->includes == NULL)
5222 return NULL;
5223
5224 for (i = 0; cust->includes[i]; ++i)
5225 {
5226 struct compunit_symtab *s = cust->includes[i];
5227
5228 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5229 if (s != NULL)
5230 return s;
5231 }
5232
5233 return NULL;
5234}
5235
5236static struct compunit_symtab *
5237dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5238 struct bound_minimal_symbol msymbol,
5239 CORE_ADDR pc,
5240 struct obj_section *section,
5241 int warn_if_readin)
5242{
5243 struct dwarf2_per_cu_data *data;
5244 struct compunit_symtab *result;
5245
927aa2e7
JK
5246 if (!objfile->psymtabs_addrmap)
5247 return NULL;
5248
79748972
TT
5249 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5250 SECT_OFF_TEXT (objfile));
927aa2e7 5251 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
79748972 5252 pc - baseaddr);
927aa2e7
JK
5253 if (!data)
5254 return NULL;
5255
5256 if (warn_if_readin && data->v.quick->compunit_symtab)
5257 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5258 paddress (get_objfile_arch (objfile), pc));
5259
5260 result
58f0c718
TT
5261 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5262 false),
927aa2e7
JK
5263 pc);
5264 gdb_assert (result != NULL);
5265 return result;
5266}
5267
5268static void
5269dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5270 void *data, int need_fullname)
5271{
ed2dc618
SM
5272 struct dwarf2_per_objfile *dwarf2_per_objfile
5273 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5274
5275 if (!dwarf2_per_objfile->filenames_cache)
5276 {
5277 dwarf2_per_objfile->filenames_cache.emplace ();
5278
5279 htab_up visited (htab_create_alloc (10,
5280 htab_hash_pointer, htab_eq_pointer,
5281 NULL, xcalloc, xfree));
5282
5283 /* The rule is CUs specify all the files, including those used
5284 by any TU, so there's no need to scan TUs here. We can
5285 ignore file names coming from already-expanded CUs. */
5286
b76e467d 5287 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5288 {
927aa2e7
JK
5289 if (per_cu->v.quick->compunit_symtab)
5290 {
5291 void **slot = htab_find_slot (visited.get (),
5292 per_cu->v.quick->file_names,
5293 INSERT);
5294
5295 *slot = per_cu->v.quick->file_names;
5296 }
5297 }
5298
b76e467d 5299 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5300 {
927aa2e7
JK
5301 /* We only need to look at symtabs not already expanded. */
5302 if (per_cu->v.quick->compunit_symtab)
5303 continue;
5304
b76e467d 5305 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5306 if (file_data == NULL)
5307 continue;
5308
b76e467d 5309 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
927aa2e7
JK
5310 if (*slot)
5311 {
5312 /* Already visited. */
5313 continue;
5314 }
5315 *slot = file_data;
5316
5317 for (int j = 0; j < file_data->num_file_names; ++j)
5318 {
5319 const char *filename = file_data->file_names[j];
5320 dwarf2_per_objfile->filenames_cache->seen (filename);
5321 }
5322 }
5323 }
5324
5325 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5326 {
5327 gdb::unique_xmalloc_ptr<char> this_real_name;
5328
5329 if (need_fullname)
5330 this_real_name = gdb_realpath (filename);
5331 (*fun) (filename, this_real_name.get (), data);
5332 });
5333}
5334
5335static int
5336dw2_has_symbols (struct objfile *objfile)
5337{
5338 return 1;
5339}
5340
5341const struct quick_symbol_functions dwarf2_gdb_index_functions =
5342{
5343 dw2_has_symbols,
5344 dw2_find_last_source_symtab,
5345 dw2_forget_cached_source_info,
5346 dw2_map_symtabs_matching_filename,
5347 dw2_lookup_symbol,
5348 dw2_print_stats,
5349 dw2_dump,
927aa2e7
JK
5350 dw2_expand_symtabs_for_function,
5351 dw2_expand_all_symtabs,
5352 dw2_expand_symtabs_with_fullname,
5353 dw2_map_matching_symbols,
5354 dw2_expand_symtabs_matching,
5355 dw2_find_pc_sect_compunit_symtab,
5356 NULL,
5357 dw2_map_symbol_filenames
5358};
5359
5360/* DWARF-5 debug_names reader. */
5361
5362/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5363static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5364
5365/* A helper function that reads the .debug_names section in SECTION
5366 and fills in MAP. FILENAME is the name of the file containing the
5367 section; it is used for error reporting.
5368
5369 Returns true if all went well, false otherwise. */
5370
5371static bool
5372read_debug_names_from_section (struct objfile *objfile,
5373 const char *filename,
5374 struct dwarf2_section_info *section,
5375 mapped_debug_names &map)
5376{
5377 if (dwarf2_section_empty_p (section))
5378 return false;
5379
5380 /* Older elfutils strip versions could keep the section in the main
5381 executable while splitting it for the separate debug info file. */
5382 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5383 return false;
5384
5385 dwarf2_read_section (objfile, section);
5386
5387 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5388
5389 const gdb_byte *addr = section->buffer;
5390
5391 bfd *const abfd = get_section_bfd_owner (section);
5392
5393 unsigned int bytes_read;
5394 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5395 addr += bytes_read;
5396
5397 map.dwarf5_is_dwarf64 = bytes_read != 4;
5398 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5399 if (bytes_read + length != section->size)
5400 {
5401 /* There may be multiple per-CU indices. */
5402 warning (_("Section .debug_names in %s length %s does not match "
5403 "section length %s, ignoring .debug_names."),
5404 filename, plongest (bytes_read + length),
5405 pulongest (section->size));
5406 return false;
5407 }
5408
5409 /* The version number. */
5410 uint16_t version = read_2_bytes (abfd, addr);
5411 addr += 2;
5412 if (version != 5)
5413 {
5414 warning (_("Section .debug_names in %s has unsupported version %d, "
5415 "ignoring .debug_names."),
5416 filename, version);
5417 return false;
5418 }
5419
5420 /* Padding. */
5421 uint16_t padding = read_2_bytes (abfd, addr);
5422 addr += 2;
5423 if (padding != 0)
5424 {
5425 warning (_("Section .debug_names in %s has unsupported padding %d, "
5426 "ignoring .debug_names."),
5427 filename, padding);
5428 return false;
5429 }
5430
5431 /* comp_unit_count - The number of CUs in the CU list. */
5432 map.cu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434
5435 /* local_type_unit_count - The number of TUs in the local TU
5436 list. */
5437 map.tu_count = read_4_bytes (abfd, addr);
5438 addr += 4;
5439
5440 /* foreign_type_unit_count - The number of TUs in the foreign TU
5441 list. */
5442 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5443 addr += 4;
5444 if (foreign_tu_count != 0)
5445 {
5446 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5447 "ignoring .debug_names."),
5448 filename, static_cast<unsigned long> (foreign_tu_count));
5449 return false;
5450 }
5451
5452 /* bucket_count - The number of hash buckets in the hash lookup
5453 table. */
5454 map.bucket_count = read_4_bytes (abfd, addr);
5455 addr += 4;
5456
5457 /* name_count - The number of unique names in the index. */
5458 map.name_count = read_4_bytes (abfd, addr);
5459 addr += 4;
5460
5461 /* abbrev_table_size - The size in bytes of the abbreviations
5462 table. */
5463 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5464 addr += 4;
5465
5466 /* augmentation_string_size - The size in bytes of the augmentation
5467 string. This value is rounded up to a multiple of 4. */
5468 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5469 addr += 4;
5470 map.augmentation_is_gdb = ((augmentation_string_size
5471 == sizeof (dwarf5_augmentation))
5472 && memcmp (addr, dwarf5_augmentation,
5473 sizeof (dwarf5_augmentation)) == 0);
5474 augmentation_string_size += (-augmentation_string_size) & 3;
5475 addr += augmentation_string_size;
5476
5477 /* List of CUs */
5478 map.cu_table_reordered = addr;
5479 addr += map.cu_count * map.offset_size;
5480
5481 /* List of Local TUs */
5482 map.tu_table_reordered = addr;
5483 addr += map.tu_count * map.offset_size;
5484
5485 /* Hash Lookup Table */
5486 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5487 addr += map.bucket_count * 4;
5488 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.name_count * 4;
5490
5491 /* Name Table */
5492 map.name_table_string_offs_reordered = addr;
5493 addr += map.name_count * map.offset_size;
5494 map.name_table_entry_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496
5497 const gdb_byte *abbrev_table_start = addr;
5498 for (;;)
5499 {
5500 unsigned int bytes_read;
5501 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503 if (index_num == 0)
5504 break;
5505
5506 const auto insertpair
5507 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5508 if (!insertpair.second)
5509 {
5510 warning (_("Section .debug_names in %s has duplicate index %s, "
5511 "ignoring .debug_names."),
5512 filename, pulongest (index_num));
5513 return false;
5514 }
5515 mapped_debug_names::index_val &indexval = insertpair.first->second;
5516 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518
5519 for (;;)
5520 {
5521 mapped_debug_names::index_val::attr attr;
5522 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5523 addr += bytes_read;
5524 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5525 addr += bytes_read;
5526 if (attr.form == DW_FORM_implicit_const)
5527 {
5528 attr.implicit_const = read_signed_leb128 (abfd, addr,
5529 &bytes_read);
5530 addr += bytes_read;
5531 }
5532 if (attr.dw_idx == 0 && attr.form == 0)
5533 break;
5534 indexval.attr_vec.push_back (std::move (attr));
5535 }
5536 }
5537 if (addr != abbrev_table_start + abbrev_table_size)
5538 {
5539 warning (_("Section .debug_names in %s has abbreviation_table "
5540 "of size %zu vs. written as %u, ignoring .debug_names."),
5541 filename, addr - abbrev_table_start, abbrev_table_size);
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547}
5548
5549/* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552static void
ed2dc618 5553create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
b76e467d 5556 bool is_dwz)
927aa2e7
JK
5557{
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
b76e467d 5575 dwarf2_per_cu_data *per_cu
ed2dc618 5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
927aa2e7 5577 sect_off_prev, length);
b76e467d 5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
927aa2e7
JK
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582}
5583
5584/* Read the CU list from the mapped index, and use it to create all
ed2dc618 5585 the CU objects for this dwarf2_per_objfile. */
927aa2e7
JK
5586
5587static void
ed2dc618 5588create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591{
b76e467d
SM
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
927aa2e7 5594
ed2dc618
SM
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
b76e467d 5597 false /* is_dwz */);
927aa2e7
JK
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
ed2dc618
SM
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
b76e467d 5604 true /* is_dwz */);
927aa2e7
JK
5605}
5606
5607/* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610static bool
ed2dc618 5611dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
927aa2e7 5612{
22ca247e
TT
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
ed2dc618
SM
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
22ca247e 5620 *map))
927aa2e7
JK
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
22ca247e 5624 if (map->name_count == 0)
927aa2e7
JK
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
ed2dc618 5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
927aa2e7
JK
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd),
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd));
5638 return false;
5639 }
5640 }
5641
22ca247e 5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
927aa2e7 5643
22ca247e 5644 if (map->tu_count != 0)
927aa2e7
JK
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
5648 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5649 return false;
5650
5651 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5652 dwarf2_per_objfile->types, 0);
5653
5654 create_signatured_type_table_from_debug_names
22ca247e 5655 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
927aa2e7
JK
5656 }
5657
ed2dc618
SM
5658 create_addrmap_from_aranges (dwarf2_per_objfile,
5659 &dwarf2_per_objfile->debug_aranges);
927aa2e7 5660
22ca247e 5661 dwarf2_per_objfile->debug_names_table = std::move (map);
927aa2e7
JK
5662 dwarf2_per_objfile->using_index = 1;
5663 dwarf2_per_objfile->quick_file_names_table =
b76e467d 5664 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
927aa2e7
JK
5665
5666 return true;
5667}
5668
927aa2e7
JK
5669/* Type used to manage iterating over all CUs looking for a symbol for
5670 .debug_names. */
5671
5672class dw2_debug_names_iterator
5673{
5674public:
5675 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5676 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5677 dw2_debug_names_iterator (const mapped_debug_names &map,
5678 bool want_specific_block,
5679 block_enum block_index, domain_enum domain,
5680 const char *name)
5681 : m_map (map), m_want_specific_block (want_specific_block),
5682 m_block_index (block_index), m_domain (domain),
5683 m_addr (find_vec_in_debug_names (map, name))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 search_domain search, uint32_t namei)
5688 : m_map (map),
5689 m_search (search),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If true, only look for symbols that match BLOCK_INDEX. */
5706 const bool m_want_specific_block = false;
5707
5708 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5709 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5710 value. */
5711 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5712
5713 /* The kind of symbol we're looking for. */
5714 const domain_enum m_domain = UNDEF_DOMAIN;
5715 const search_domain m_search = ALL_DOMAIN;
5716
5717 /* The list of CUs from the index entry of the symbol, or NULL if
5718 not found. */
5719 const gdb_byte *m_addr;
5720};
5721
5722const char *
5723mapped_debug_names::namei_to_name (uint32_t namei) const
5724{
5725 const ULONGEST namei_string_offs
5726 = extract_unsigned_integer ((name_table_string_offs_reordered
5727 + namei * offset_size),
5728 offset_size,
5729 dwarf5_byte_order);
5730 return read_indirect_string_at_offset
ed2dc618 5731 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
927aa2e7
JK
5732}
5733
5734/* Find a slot in .debug_names for the object named NAME. If NAME is
5735 found, return pointer to its pool data. If NAME cannot be found,
5736 return NULL. */
5737
5738const gdb_byte *
5739dw2_debug_names_iterator::find_vec_in_debug_names
5740 (const mapped_debug_names &map, const char *name)
5741{
5742 int (*cmp) (const char *, const char *);
5743
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
5753 gdb::unique_xmalloc_ptr<char> without_params
5754 = cp_remove_params (name);
5755
5756 if (without_params != NULL)
5757 {
5758 name = without_params.get();
5759 }
5760 }
5761 }
5762
5763 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5764
5765 const uint32_t full_hash = dwarf5_djb_hash (name);
5766 uint32_t namei
5767 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5768 (map.bucket_table_reordered
5769 + (full_hash % map.bucket_count)), 4,
5770 map.dwarf5_byte_order);
5771 if (namei == 0)
5772 return NULL;
5773 --namei;
5774 if (namei >= map.name_count)
5775 {
b98664d3 5776 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5777 "[in module %s]"),
5778 namei, map.name_count,
ed2dc618 5779 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5780 return NULL;
5781 }
5782
5783 for (;;)
5784 {
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5790 return NULL;
5791
5792 if (full_hash == namei_full_hash)
5793 {
5794 const char *const namei_string = map.namei_to_name (namei);
5795
5796#if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5798 {
b98664d3 5799 complaint (_("Wrong .debug_names hash for string at index %u "
927aa2e7
JK
5800 "[in module %s]"),
5801 namei, objfile_name (dwarf2_per_objfile->objfile));
5802 return NULL;
5803 }
5804#endif
5805
5806 if (cmp (namei_string, name) == 0)
5807 {
5808 const ULONGEST namei_entry_offs
5809 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5810 + namei * map.offset_size),
5811 map.offset_size, map.dwarf5_byte_order);
5812 return map.entry_pool + namei_entry_offs;
5813 }
5814 }
5815
5816 ++namei;
5817 if (namei >= map.name_count)
5818 return NULL;
5819 }
5820}
5821
5822const gdb_byte *
5823dw2_debug_names_iterator::find_vec_in_debug_names
5824 (const mapped_debug_names &map, uint32_t namei)
5825{
5826 if (namei >= map.name_count)
5827 {
b98664d3 5828 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5829 "[in module %s]"),
5830 namei, map.name_count,
ed2dc618 5831 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5832 return NULL;
5833 }
5834
5835 const ULONGEST namei_entry_offs
5836 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5837 + namei * map.offset_size),
5838 map.offset_size, map.dwarf5_byte_order);
5839 return map.entry_pool + namei_entry_offs;
5840}
5841
5842/* See dw2_debug_names_iterator. */
5843
5844dwarf2_per_cu_data *
5845dw2_debug_names_iterator::next ()
5846{
5847 if (m_addr == NULL)
5848 return NULL;
5849
ed2dc618
SM
5850 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 bfd *const abfd = objfile->obfd;
927aa2e7
JK
5853
5854 again:
5855
5856 unsigned int bytes_read;
5857 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5859 if (abbrev == 0)
5860 return NULL;
5861
5862 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5863 if (indexval_it == m_map.abbrev_map.cend ())
5864 {
b98664d3 5865 complaint (_("Wrong .debug_names undefined abbrev code %s "
927aa2e7 5866 "[in module %s]"),
ed2dc618 5867 pulongest (abbrev), objfile_name (objfile));
927aa2e7
JK
5868 return NULL;
5869 }
5870 const mapped_debug_names::index_val &indexval = indexval_it->second;
5871 bool have_is_static = false;
5872 bool is_static;
5873 dwarf2_per_cu_data *per_cu = NULL;
5874 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5875 {
5876 ULONGEST ull;
5877 switch (attr.form)
5878 {
5879 case DW_FORM_implicit_const:
5880 ull = attr.implicit_const;
5881 break;
5882 case DW_FORM_flag_present:
5883 ull = 1;
5884 break;
5885 case DW_FORM_udata:
5886 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5887 m_addr += bytes_read;
5888 break;
5889 default:
b98664d3 5890 complaint (_("Unsupported .debug_names form %s [in module %s]"),
927aa2e7 5891 dwarf_form_name (attr.form),
ed2dc618 5892 objfile_name (objfile));
927aa2e7
JK
5893 return NULL;
5894 }
5895 switch (attr.dw_idx)
5896 {
5897 case DW_IDX_compile_unit:
5898 /* Don't crash on bad data. */
b76e467d 5899 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
927aa2e7 5900 {
b98664d3 5901 complaint (_(".debug_names entry has bad CU index %s"
927aa2e7
JK
5902 " [in module %s]"),
5903 pulongest (ull),
5904 objfile_name (dwarf2_per_objfile->objfile));
5905 continue;
5906 }
ff4c9fec 5907 per_cu = dwarf2_per_objfile->get_cutu (ull);
927aa2e7 5908 break;
8af5c486
JK
5909 case DW_IDX_type_unit:
5910 /* Don't crash on bad data. */
b2bdb8cf 5911 if (ull >= dwarf2_per_objfile->all_type_units.size ())
8af5c486 5912 {
b98664d3 5913 complaint (_(".debug_names entry has bad TU index %s"
8af5c486
JK
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
ff4c9fec 5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
8af5c486 5920 break;
927aa2e7
JK
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
4b514bc8 5992 {
927aa2e7
JK
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
4b514bc8 5995 {
927aa2e7
JK
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
4b514bc8 6000 }
927aa2e7
JK
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
4b514bc8 6004 {
927aa2e7
JK
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
4b514bc8 6009 }
927aa2e7
JK
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
4b514bc8 6023 }
927aa2e7
JK
6024
6025 return per_cu;
4b514bc8 6026}
61920122 6027
927aa2e7
JK
6028static struct compunit_symtab *
6029dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
4b514bc8 6031{
927aa2e7 6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
ed2dc618
SM
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
61920122 6035
927aa2e7
JK
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
61920122 6038 {
927aa2e7
JK
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
9291a0cd 6043
927aa2e7
JK
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
9703b513 6046
927aa2e7
JK
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
58f0c718 6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
9703b513 6055
927aa2e7
JK
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
9703b513 6059
927aa2e7
JK
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
a3ec0bb1 6063
927aa2e7
JK
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
9703b513 6070
927aa2e7 6071 /* Keep looking through other CUs. */
9703b513
TT
6072 }
6073
927aa2e7 6074 return stab_best;
9703b513
TT
6075}
6076
927aa2e7
JK
6077/* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
9291a0cd 6080
927aa2e7
JK
6081static void
6082dw2_debug_names_dump (struct objfile *objfile)
6083{
ed2dc618
SM
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
927aa2e7
JK
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
9291a0cd
TT
6094}
6095
9291a0cd 6096static void
927aa2e7
JK
6097dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
9291a0cd 6099{
ed2dc618
SM
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
ae2de4f8 6102
927aa2e7
JK
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
24c79950 6105 {
927aa2e7 6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
24c79950 6107
927aa2e7
JK
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
24c79950 6111
927aa2e7
JK
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
58f0c718 6114 dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6115 }
6116}
24c79950 6117
927aa2e7
JK
6118static void
6119dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126{
ed2dc618
SM
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
9291a0cd 6129
927aa2e7
JK
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
9291a0cd 6133
ed2dc618 6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
24c79950 6135
44ed8f3e 6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
bbf2f4df 6137
44ed8f3e
PA
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
927aa2e7 6141 {
927aa2e7
JK
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
bbf2f4df 6145
927aa2e7
JK
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
44ed8f3e 6150 });
9291a0cd
TT
6151}
6152
927aa2e7 6153const struct quick_symbol_functions dwarf2_debug_names_functions =
9291a0cd
TT
6154{
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
f8eba3c6 6158 dw2_map_symtabs_matching_filename,
927aa2e7 6159 dw2_debug_names_lookup_symbol,
9291a0cd 6160 dw2_print_stats,
927aa2e7 6161 dw2_debug_names_dump,
927aa2e7 6162 dw2_debug_names_expand_symtabs_for_function,
9291a0cd 6163 dw2_expand_all_symtabs,
652a8996 6164 dw2_expand_symtabs_with_fullname,
40658b94 6165 dw2_map_matching_symbols,
927aa2e7 6166 dw2_debug_names_expand_symtabs_matching,
43f3e411 6167 dw2_find_pc_sect_compunit_symtab,
71a3c369 6168 NULL,
9291a0cd
TT
6169 dw2_map_symbol_filenames
6170};
6171
4485a1c1
SM
6172/* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6173 to either a dwarf2_per_objfile or dwz_file object. */
6174
6175template <typename T>
6176static gdb::array_view<const gdb_byte>
6177get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6178{
6179 dwarf2_section_info *section = &section_owner->gdb_index;
6180
6181 if (dwarf2_section_empty_p (section))
6182 return {};
6183
6184 /* Older elfutils strip versions could keep the section in the main
6185 executable while splitting it for the separate debug info file. */
6186 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6187 return {};
6188
6189 dwarf2_read_section (obj, section);
6190
6191 return {section->buffer, section->size};
6192}
6193
87d6a7aa
SM
6194/* Lookup the index cache for the contents of the index associated to
6195 DWARF2_OBJ. */
6196
6197static gdb::array_view<const gdb_byte>
6198get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6199{
6200 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6201 if (build_id == nullptr)
6202 return {};
6203
6204 return global_index_cache.lookup_gdb_index (build_id,
6205 &dwarf2_obj->index_cache_res);
6206}
6207
6208/* Same as the above, but for DWZ. */
6209
6210static gdb::array_view<const gdb_byte>
6211get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6212{
6213 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6214 if (build_id == nullptr)
6215 return {};
6216
6217 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6218}
6219
3c0aa29a 6220/* See symfile.h. */
9291a0cd 6221
3c0aa29a
PA
6222bool
6223dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
9291a0cd 6224{
ed2dc618
SM
6225 struct dwarf2_per_objfile *dwarf2_per_objfile
6226 = get_dwarf2_per_objfile (objfile);
6227
9291a0cd
TT
6228 /* If we're about to read full symbols, don't bother with the
6229 indices. In this case we also don't care if some other debug
6230 format is making psymtabs, because they are all about to be
6231 expanded anyway. */
6232 if ((objfile->flags & OBJF_READNOW))
6233 {
9291a0cd 6234 dwarf2_per_objfile->using_index = 1;
ed2dc618
SM
6235 create_all_comp_units (dwarf2_per_objfile);
6236 create_all_type_units (dwarf2_per_objfile);
b76e467d
SM
6237 dwarf2_per_objfile->quick_file_names_table
6238 = create_quick_file_names_table
6239 (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd 6240
b76e467d 6241 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 6242 + dwarf2_per_objfile->all_type_units.size ()); ++i)
9291a0cd 6243 {
ff4c9fec 6244 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 6245
e254ef6a
DE
6246 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6247 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
6248 }
6249
6250 /* Return 1 so that gdb sees the "quick" functions. However,
6251 these functions will be no-ops because we will have expanded
6252 all symtabs. */
3c0aa29a
PA
6253 *index_kind = dw_index_kind::GDB_INDEX;
6254 return true;
9291a0cd
TT
6255 }
6256
ed2dc618 6257 if (dwarf2_read_debug_names (dwarf2_per_objfile))
3c0aa29a
PA
6258 {
6259 *index_kind = dw_index_kind::DEBUG_NAMES;
6260 return true;
6261 }
927aa2e7 6262
4485a1c1
SM
6263 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6264 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6265 get_gdb_index_contents_from_section<dwz_file>))
3c0aa29a
PA
6266 {
6267 *index_kind = dw_index_kind::GDB_INDEX;
6268 return true;
6269 }
9291a0cd 6270
87d6a7aa
SM
6271 /* ... otherwise, try to find the index in the index cache. */
6272 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6273 get_gdb_index_contents_from_cache,
6274 get_gdb_index_contents_from_cache_dwz))
6275 {
6276 global_index_cache.hit ();
6277 *index_kind = dw_index_kind::GDB_INDEX;
6278 return true;
6279 }
6280
6281 global_index_cache.miss ();
3c0aa29a 6282 return false;
9291a0cd
TT
6283}
6284
6285\f
6286
dce234bc
PP
6287/* Build a partial symbol table. */
6288
6289void
f29dff0a 6290dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 6291{
ed2dc618
SM
6292 struct dwarf2_per_objfile *dwarf2_per_objfile
6293 = get_dwarf2_per_objfile (objfile);
c9bf0622 6294
af5bf4ad
SM
6295 if (objfile->global_psymbols.capacity () == 0
6296 && objfile->static_psymbols.capacity () == 0)
6297 init_psymbol_list (objfile, 1024);
c906108c 6298
492d29ea 6299 TRY
c9bf0622
TT
6300 {
6301 /* This isn't really ideal: all the data we allocate on the
6302 objfile's obstack is still uselessly kept around. However,
6303 freeing it seems unsafe. */
906768f9 6304 psymtab_discarder psymtabs (objfile);
ed2dc618 6305 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
906768f9 6306 psymtabs.keep ();
87d6a7aa
SM
6307
6308 /* (maybe) store an index in the cache. */
6309 global_index_cache.store (dwarf2_per_objfile);
c9bf0622 6310 }
492d29ea
PA
6311 CATCH (except, RETURN_MASK_ERROR)
6312 {
6313 exception_print (gdb_stderr, except);
6314 }
6315 END_CATCH
c906108c 6316}
c906108c 6317
1ce1cefd
DE
6318/* Return the total length of the CU described by HEADER. */
6319
6320static unsigned int
6321get_cu_length (const struct comp_unit_head *header)
6322{
6323 return header->initial_length_size + header->length;
6324}
6325
9c541725 6326/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 6327
9c541725
PA
6328static inline bool
6329offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 6330{
9c541725
PA
6331 sect_offset bottom = cu_header->sect_off;
6332 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 6333
9c541725 6334 return sect_off >= bottom && sect_off < top;
45452591
DE
6335}
6336
3b80fe9b
DE
6337/* Find the base address of the compilation unit for range lists and
6338 location lists. It will normally be specified by DW_AT_low_pc.
6339 In DWARF-3 draft 4, the base address could be overridden by
6340 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6341 compilation units with discontinuous ranges. */
6342
6343static void
6344dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6345{
6346 struct attribute *attr;
6347
6348 cu->base_known = 0;
6349 cu->base_address = 0;
6350
6351 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6352 if (attr)
6353 {
31aa7e4e 6354 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6355 cu->base_known = 1;
6356 }
6357 else
6358 {
6359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6360 if (attr)
6361 {
31aa7e4e 6362 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6363 cu->base_known = 1;
6364 }
6365 }
6366}
6367
93311388 6368/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 6369 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
6370 NOTE: This leaves members offset, first_die_offset to be filled in
6371 by the caller. */
107d2387 6372
d521ce57 6373static const gdb_byte *
107d2387 6374read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
6375 const gdb_byte *info_ptr,
6376 struct dwarf2_section_info *section,
6377 rcuh_kind section_kind)
107d2387
AC
6378{
6379 int signed_addr;
891d2f0b 6380 unsigned int bytes_read;
43988095
JK
6381 const char *filename = get_section_file_name (section);
6382 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
6383
6384 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6385 cu_header->initial_length_size = bytes_read;
6386 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 6387 info_ptr += bytes_read;
107d2387 6388 cu_header->version = read_2_bytes (abfd, info_ptr);
1ea5da02
TV
6389 if (cu_header->version < 2 || cu_header->version > 5)
6390 error (_("Dwarf Error: wrong version in compilation unit header "
6391 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6392 cu_header->version, filename);
107d2387 6393 info_ptr += 2;
43988095
JK
6394 if (cu_header->version < 5)
6395 switch (section_kind)
6396 {
6397 case rcuh_kind::COMPILE:
6398 cu_header->unit_type = DW_UT_compile;
6399 break;
6400 case rcuh_kind::TYPE:
6401 cu_header->unit_type = DW_UT_type;
6402 break;
6403 default:
6404 internal_error (__FILE__, __LINE__,
6405 _("read_comp_unit_head: invalid section_kind"));
6406 }
6407 else
6408 {
6409 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6410 (read_1_byte (abfd, info_ptr));
6411 info_ptr += 1;
6412 switch (cu_header->unit_type)
6413 {
6414 case DW_UT_compile:
6415 if (section_kind != rcuh_kind::COMPILE)
6416 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6417 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6418 filename);
6419 break;
6420 case DW_UT_type:
6421 section_kind = rcuh_kind::TYPE;
6422 break;
6423 default:
6424 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6425 "(is %d, should be %d or %d) [in module %s]"),
6426 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6427 }
6428
6429 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6430 info_ptr += 1;
6431 }
9c541725
PA
6432 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6433 cu_header,
6434 &bytes_read);
613e1657 6435 info_ptr += bytes_read;
43988095
JK
6436 if (cu_header->version < 5)
6437 {
6438 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6439 info_ptr += 1;
6440 }
107d2387
AC
6441 signed_addr = bfd_get_sign_extend_vma (abfd);
6442 if (signed_addr < 0)
8e65ff28 6443 internal_error (__FILE__, __LINE__,
e2e0b3e5 6444 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 6445 cu_header->signed_addr_p = signed_addr;
c764a876 6446
43988095
JK
6447 if (section_kind == rcuh_kind::TYPE)
6448 {
6449 LONGEST type_offset;
6450
6451 cu_header->signature = read_8_bytes (abfd, info_ptr);
6452 info_ptr += 8;
6453
6454 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6455 info_ptr += bytes_read;
9c541725
PA
6456 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6457 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
6458 error (_("Dwarf Error: Too big type_offset in compilation unit "
6459 "header (is %s) [in module %s]"), plongest (type_offset),
6460 filename);
6461 }
6462
107d2387
AC
6463 return info_ptr;
6464}
6465
36586728
TT
6466/* Helper function that returns the proper abbrev section for
6467 THIS_CU. */
6468
6469static struct dwarf2_section_info *
6470get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6471{
6472 struct dwarf2_section_info *abbrev;
ed2dc618 6473 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
36586728
TT
6474
6475 if (this_cu->is_dwz)
ed2dc618 6476 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
36586728
TT
6477 else
6478 abbrev = &dwarf2_per_objfile->abbrev;
6479
6480 return abbrev;
6481}
6482
9ff913ba
DE
6483/* Subroutine of read_and_check_comp_unit_head and
6484 read_and_check_type_unit_head to simplify them.
6485 Perform various error checking on the header. */
6486
6487static void
ed2dc618
SM
6488error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6489 struct comp_unit_head *header,
4bdcc0c1
DE
6490 struct dwarf2_section_info *section,
6491 struct dwarf2_section_info *abbrev_section)
9ff913ba 6492{
a32a8923 6493 const char *filename = get_section_file_name (section);
9ff913ba 6494
9c541725 6495 if (to_underlying (header->abbrev_sect_off)
36586728 6496 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9d8780f0
SM
6497 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6498 "(offset %s + 6) [in module %s]"),
6499 sect_offset_str (header->abbrev_sect_off),
6500 sect_offset_str (header->sect_off),
9ff913ba
DE
6501 filename);
6502
9c541725 6503 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 6504 avoid potential 32-bit overflow. */
9c541725 6505 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 6506 > section->size)
9c541725 6507 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
9d8780f0
SM
6508 "(offset %s + 0) [in module %s]"),
6509 header->length, sect_offset_str (header->sect_off),
9ff913ba
DE
6510 filename);
6511}
6512
6513/* Read in a CU/TU header and perform some basic error checking.
6514 The contents of the header are stored in HEADER.
6515 The result is a pointer to the start of the first DIE. */
adabb602 6516
d521ce57 6517static const gdb_byte *
ed2dc618
SM
6518read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6519 struct comp_unit_head *header,
9ff913ba 6520 struct dwarf2_section_info *section,
4bdcc0c1 6521 struct dwarf2_section_info *abbrev_section,
d521ce57 6522 const gdb_byte *info_ptr,
43988095 6523 rcuh_kind section_kind)
72bf9492 6524{
d521ce57 6525 const gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492 6526
9c541725 6527 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 6528
43988095 6529 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 6530
9c541725 6531 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 6532
ed2dc618
SM
6533 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6534 abbrev_section);
9ff913ba
DE
6535
6536 return info_ptr;
348e048f
DE
6537}
6538
f4dc4d17
DE
6539/* Fetch the abbreviation table offset from a comp or type unit header. */
6540
6541static sect_offset
ed2dc618
SM
6542read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6543 struct dwarf2_section_info *section,
9c541725 6544 sect_offset sect_off)
f4dc4d17 6545{
a32a8923 6546 bfd *abfd = get_section_bfd_owner (section);
d521ce57 6547 const gdb_byte *info_ptr;
ac298888 6548 unsigned int initial_length_size, offset_size;
43988095 6549 uint16_t version;
f4dc4d17
DE
6550
6551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 6552 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 6553 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 6554 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
6555 info_ptr += initial_length_size;
6556
6557 version = read_2_bytes (abfd, info_ptr);
6558 info_ptr += 2;
6559 if (version >= 5)
6560 {
6561 /* Skip unit type and address size. */
6562 info_ptr += 2;
6563 }
6564
9c541725 6565 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
6566}
6567
aaa75496
JB
6568/* Allocate a new partial symtab for file named NAME and mark this new
6569 partial symtab as being an include of PST. */
6570
6571static void
d521ce57 6572dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
6573 struct objfile *objfile)
6574{
6575 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6576
fbd9ab74
JK
6577 if (!IS_ABSOLUTE_PATH (subpst->filename))
6578 {
6579 /* It shares objfile->objfile_obstack. */
6580 subpst->dirname = pst->dirname;
6581 }
6582
8d749320
SM
6583 subpst->dependencies
6584 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
6585 subpst->dependencies[0] = pst;
6586 subpst->number_of_dependencies = 1;
6587
6588 subpst->globals_offset = 0;
6589 subpst->n_global_syms = 0;
6590 subpst->statics_offset = 0;
6591 subpst->n_static_syms = 0;
43f3e411 6592 subpst->compunit_symtab = NULL;
aaa75496
JB
6593 subpst->read_symtab = pst->read_symtab;
6594 subpst->readin = 0;
6595
6596 /* No private part is necessary for include psymtabs. This property
6597 can be used to differentiate between such include psymtabs and
10b3939b 6598 the regular ones. */
58a9656e 6599 subpst->read_symtab_private = NULL;
aaa75496
JB
6600}
6601
6602/* Read the Line Number Program data and extract the list of files
6603 included by the source file represented by PST. Build an include
d85a05f0 6604 partial symtab for each of these included files. */
aaa75496
JB
6605
6606static void
6607dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
6608 struct die_info *die,
6609 struct partial_symtab *pst)
aaa75496 6610{
fff8551c 6611 line_header_up lh;
d85a05f0 6612 struct attribute *attr;
aaa75496 6613
d85a05f0
DJ
6614 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6615 if (attr)
9c541725 6616 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
6617 if (lh == NULL)
6618 return; /* No linetable, so no includes. */
6619
79748972
TT
6620 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6621 that we pass in the raw text_low here; that is ok because we're
6622 only decoding the line table to make include partial symtabs, and
6623 so the addresses aren't really used. */
4ae976d1 6624 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
79748972 6625 pst->raw_text_low (), 1);
aaa75496
JB
6626}
6627
348e048f 6628static hashval_t
52dc124a 6629hash_signatured_type (const void *item)
348e048f 6630{
9a3c8263
SM
6631 const struct signatured_type *sig_type
6632 = (const struct signatured_type *) item;
9a619af0 6633
348e048f 6634 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 6635 return sig_type->signature;
348e048f
DE
6636}
6637
6638static int
52dc124a 6639eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 6640{
9a3c8263
SM
6641 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6642 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 6643
348e048f
DE
6644 return lhs->signature == rhs->signature;
6645}
6646
1fd400ff
TT
6647/* Allocate a hash table for signatured types. */
6648
6649static htab_t
673bfd45 6650allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
6651{
6652 return htab_create_alloc_ex (41,
52dc124a
DE
6653 hash_signatured_type,
6654 eq_signatured_type,
1fd400ff
TT
6655 NULL,
6656 &objfile->objfile_obstack,
6657 hashtab_obstack_allocate,
6658 dummy_obstack_deallocate);
6659}
6660
d467dd73 6661/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
6662
6663static int
d467dd73 6664add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 6665{
9a3c8263 6666 struct signatured_type *sigt = (struct signatured_type *) *slot;
b2bdb8cf
SM
6667 std::vector<signatured_type *> *all_type_units
6668 = (std::vector<signatured_type *> *) datum;
1fd400ff 6669
b2bdb8cf 6670 all_type_units->push_back (sigt);
1fd400ff
TT
6671
6672 return 1;
6673}
6674
78d4d2c5 6675/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
6676 and fill them into TYPES_HTAB. It will process only type units,
6677 therefore DW_UT_type. */
c88ee1f0 6678
78d4d2c5 6679static void
ed2dc618
SM
6680create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6681 struct dwo_file *dwo_file,
43988095
JK
6682 dwarf2_section_info *section, htab_t &types_htab,
6683 rcuh_kind section_kind)
348e048f 6684{
3019eac3 6685 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 6686 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
6687 bfd *abfd;
6688 const gdb_byte *info_ptr, *end_ptr;
348e048f 6689
4bdcc0c1
DE
6690 abbrev_section = (dwo_file != NULL
6691 ? &dwo_file->sections.abbrev
6692 : &dwarf2_per_objfile->abbrev);
6693
b4f54984 6694 if (dwarf_read_debug)
43988095
JK
6695 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6696 get_section_name (section),
a32a8923 6697 get_section_file_name (abbrev_section));
09406207 6698
78d4d2c5
JK
6699 dwarf2_read_section (objfile, section);
6700 info_ptr = section->buffer;
348e048f 6701
78d4d2c5
JK
6702 if (info_ptr == NULL)
6703 return;
348e048f 6704
78d4d2c5
JK
6705 /* We can't set abfd until now because the section may be empty or
6706 not present, in which case the bfd is unknown. */
6707 abfd = get_section_bfd_owner (section);
348e048f 6708
78d4d2c5
JK
6709 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6710 because we don't need to read any dies: the signature is in the
6711 header. */
3019eac3 6712
78d4d2c5
JK
6713 end_ptr = info_ptr + section->size;
6714 while (info_ptr < end_ptr)
6715 {
78d4d2c5
JK
6716 struct signatured_type *sig_type;
6717 struct dwo_unit *dwo_tu;
6718 void **slot;
6719 const gdb_byte *ptr = info_ptr;
6720 struct comp_unit_head header;
6721 unsigned int length;
8b70b953 6722
9c541725 6723 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 6724
a49dd8dd
JK
6725 /* Initialize it due to a false compiler warning. */
6726 header.signature = -1;
9c541725 6727 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 6728
78d4d2c5
JK
6729 /* We need to read the type's signature in order to build the hash
6730 table, but we don't need anything else just yet. */
348e048f 6731
ed2dc618 6732 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
43988095 6733 abbrev_section, ptr, section_kind);
348e048f 6734
78d4d2c5 6735 length = get_cu_length (&header);
6caca83c 6736
78d4d2c5
JK
6737 /* Skip dummy type units. */
6738 if (ptr >= info_ptr + length
43988095
JK
6739 || peek_abbrev_code (abfd, ptr) == 0
6740 || header.unit_type != DW_UT_type)
78d4d2c5
JK
6741 {
6742 info_ptr += length;
6743 continue;
6744 }
dee91e82 6745
78d4d2c5
JK
6746 if (types_htab == NULL)
6747 {
6748 if (dwo_file)
6749 types_htab = allocate_dwo_unit_table (objfile);
6750 else
6751 types_htab = allocate_signatured_type_table (objfile);
6752 }
8b70b953 6753
78d4d2c5
JK
6754 if (dwo_file)
6755 {
6756 sig_type = NULL;
6757 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6758 struct dwo_unit);
6759 dwo_tu->dwo_file = dwo_file;
43988095 6760 dwo_tu->signature = header.signature;
9c541725 6761 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 6762 dwo_tu->section = section;
9c541725 6763 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
6764 dwo_tu->length = length;
6765 }
6766 else
6767 {
6768 /* N.B.: type_offset is not usable if this type uses a DWO file.
6769 The real type_offset is in the DWO file. */
6770 dwo_tu = NULL;
6771 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6772 struct signatured_type);
43988095 6773 sig_type->signature = header.signature;
9c541725 6774 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
e3b94546 6775 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
78d4d2c5
JK
6776 sig_type->per_cu.is_debug_types = 1;
6777 sig_type->per_cu.section = section;
9c541725 6778 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
6779 sig_type->per_cu.length = length;
6780 }
6781
6782 slot = htab_find_slot (types_htab,
6783 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6784 INSERT);
6785 gdb_assert (slot != NULL);
6786 if (*slot != NULL)
6787 {
9c541725 6788 sect_offset dup_sect_off;
0349ea22 6789
3019eac3
DE
6790 if (dwo_file)
6791 {
78d4d2c5
JK
6792 const struct dwo_unit *dup_tu
6793 = (const struct dwo_unit *) *slot;
6794
9c541725 6795 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
6796 }
6797 else
6798 {
78d4d2c5
JK
6799 const struct signatured_type *dup_tu
6800 = (const struct signatured_type *) *slot;
6801
9c541725 6802 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 6803 }
8b70b953 6804
b98664d3 6805 complaint (_("debug type entry at offset %s is duplicate to"
9d8780f0
SM
6806 " the entry at offset %s, signature %s"),
6807 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
43988095 6808 hex_string (header.signature));
78d4d2c5
JK
6809 }
6810 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 6811
78d4d2c5 6812 if (dwarf_read_debug > 1)
9d8780f0
SM
6813 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6814 sect_offset_str (sect_off),
43988095 6815 hex_string (header.signature));
3019eac3 6816
78d4d2c5
JK
6817 info_ptr += length;
6818 }
6819}
3019eac3 6820
78d4d2c5
JK
6821/* Create the hash table of all entries in the .debug_types
6822 (or .debug_types.dwo) section(s).
6823 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6824 otherwise it is NULL.
b3c8eb43 6825
78d4d2c5 6826 The result is a pointer to the hash table or NULL if there are no types.
348e048f 6827
78d4d2c5 6828 Note: This function processes DWO files only, not DWP files. */
348e048f 6829
78d4d2c5 6830static void
ed2dc618
SM
6831create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6832 struct dwo_file *dwo_file,
78d4d2c5
JK
6833 VEC (dwarf2_section_info_def) *types,
6834 htab_t &types_htab)
6835{
6836 int ix;
6837 struct dwarf2_section_info *section;
6838
6839 if (VEC_empty (dwarf2_section_info_def, types))
6840 return;
348e048f 6841
78d4d2c5
JK
6842 for (ix = 0;
6843 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6844 ++ix)
ed2dc618
SM
6845 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6846 types_htab, rcuh_kind::TYPE);
3019eac3
DE
6847}
6848
6849/* Create the hash table of all entries in the .debug_types section,
6850 and initialize all_type_units.
6851 The result is zero if there is an error (e.g. missing .debug_types section),
6852 otherwise non-zero. */
6853
6854static int
ed2dc618 6855create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
3019eac3 6856{
78d4d2c5 6857 htab_t types_htab = NULL;
3019eac3 6858
ed2dc618
SM
6859 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6860 &dwarf2_per_objfile->info, types_htab,
43988095 6861 rcuh_kind::COMPILE);
ed2dc618
SM
6862 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6863 dwarf2_per_objfile->types, types_htab);
3019eac3
DE
6864 if (types_htab == NULL)
6865 {
6866 dwarf2_per_objfile->signatured_types = NULL;
6867 return 0;
6868 }
6869
348e048f
DE
6870 dwarf2_per_objfile->signatured_types = types_htab;
6871
b2bdb8cf
SM
6872 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6873 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6874
6875 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6876 &dwarf2_per_objfile->all_type_units);
1fd400ff 6877
348e048f
DE
6878 return 1;
6879}
6880
6aa5f3a6
DE
6881/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6882 If SLOT is non-NULL, it is the entry to use in the hash table.
6883 Otherwise we find one. */
6884
6885static struct signatured_type *
ed2dc618
SM
6886add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6887 void **slot)
6aa5f3a6
DE
6888{
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6aa5f3a6 6890
b2bdb8cf
SM
6891 if (dwarf2_per_objfile->all_type_units.size ()
6892 == dwarf2_per_objfile->all_type_units.capacity ())
6893 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6aa5f3a6 6894
b2bdb8cf
SM
6895 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6896 struct signatured_type);
6897
6898 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6aa5f3a6
DE
6899 sig_type->signature = sig;
6900 sig_type->per_cu.is_debug_types = 1;
6901 if (dwarf2_per_objfile->using_index)
6902 {
6903 sig_type->per_cu.v.quick =
6904 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6905 struct dwarf2_per_cu_quick_data);
6906 }
6907
6908 if (slot == NULL)
6909 {
6910 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6911 sig_type, INSERT);
6912 }
6913 gdb_assert (*slot == NULL);
6914 *slot = sig_type;
6915 /* The rest of sig_type must be filled in by the caller. */
6916 return sig_type;
6917}
6918
a2ce51a0
DE
6919/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6920 Fill in SIG_ENTRY with DWO_ENTRY. */
6921
6922static void
ed2dc618 6923fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
a2ce51a0
DE
6924 struct signatured_type *sig_entry,
6925 struct dwo_unit *dwo_entry)
6926{
7ee85ab1 6927 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
6928 gdb_assert (! sig_entry->per_cu.queued);
6929 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 6933 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
6934 }
6935 else
6936 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 6937 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 6938 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 6939 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
6940 gdb_assert (sig_entry->dwo_unit == NULL);
6941
6942 sig_entry->per_cu.section = dwo_entry->section;
9c541725 6943 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
6944 sig_entry->per_cu.length = dwo_entry->length;
6945 sig_entry->per_cu.reading_dwo_directly = 1;
e3b94546 6946 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
a2ce51a0
DE
6947 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6948 sig_entry->dwo_unit = dwo_entry;
6949}
6950
6951/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
6952 If we haven't read the TU yet, create the signatured_type data structure
6953 for a TU to be read in directly from a DWO file, bypassing the stub.
6954 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6955 using .gdb_index, then when reading a CU we want to stay in the DWO file
6956 containing that CU. Otherwise we could end up reading several other DWO
6957 files (due to comdat folding) to process the transitive closure of all the
6958 mentioned TUs, and that can be slow. The current DWO file will have every
6959 type signature that it needs.
a2ce51a0
DE
6960 We only do this for .gdb_index because in the psymtab case we already have
6961 to read all the DWOs to build the type unit groups. */
6962
6963static struct signatured_type *
6964lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6965{
518817b3
SM
6966 struct dwarf2_per_objfile *dwarf2_per_objfile
6967 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0
DE
6968 struct objfile *objfile = dwarf2_per_objfile->objfile;
6969 struct dwo_file *dwo_file;
6970 struct dwo_unit find_dwo_entry, *dwo_entry;
6971 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 6972 void **slot;
a2ce51a0
DE
6973
6974 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6975
6aa5f3a6
DE
6976 /* If TU skeletons have been removed then we may not have read in any
6977 TUs yet. */
6978 if (dwarf2_per_objfile->signatured_types == NULL)
6979 {
6980 dwarf2_per_objfile->signatured_types
6981 = allocate_signatured_type_table (objfile);
6982 }
a2ce51a0
DE
6983
6984 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
6985 Use the global signatured_types array to do our own comdat-folding
6986 of types. If this is the first time we're reading this TU, and
6987 the TU has an entry in .gdb_index, replace the recorded data from
6988 .gdb_index with this TU. */
a2ce51a0 6989
a2ce51a0 6990 find_sig_entry.signature = sig;
6aa5f3a6
DE
6991 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6992 &find_sig_entry, INSERT);
9a3c8263 6993 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
6994
6995 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
6996 read. Don't reassign the global entry to point to this DWO if that's
6997 the case. Also note that if the TU is already being read, it may not
6998 have come from a DWO, the program may be a mix of Fission-compiled
6999 code and non-Fission-compiled code. */
7000
7001 /* Have we already tried to read this TU?
7002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7003 needn't exist in the global table yet). */
7004 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
7005 return sig_entry;
7006
6aa5f3a6
DE
7007 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7008 dwo_unit of the TU itself. */
7009 dwo_file = cu->dwo_unit->dwo_file;
7010
a2ce51a0
DE
7011 /* Ok, this is the first time we're reading this TU. */
7012 if (dwo_file->tus == NULL)
7013 return NULL;
7014 find_dwo_entry.signature = sig;
9a3c8263 7015 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
7016 if (dwo_entry == NULL)
7017 return NULL;
7018
6aa5f3a6
DE
7019 /* If the global table doesn't have an entry for this TU, add one. */
7020 if (sig_entry == NULL)
ed2dc618 7021 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6aa5f3a6 7022
ed2dc618 7023 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
89e63ee4 7024 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
7025 return sig_entry;
7026}
7027
a2ce51a0
DE
7028/* Subroutine of lookup_signatured_type.
7029 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
7030 then try the DWP file. If the TU stub (skeleton) has been removed then
7031 it won't be in .gdb_index. */
a2ce51a0
DE
7032
7033static struct signatured_type *
7034lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7035{
518817b3
SM
7036 struct dwarf2_per_objfile *dwarf2_per_objfile
7037 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0 7038 struct objfile *objfile = dwarf2_per_objfile->objfile;
ed2dc618 7039 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
a2ce51a0
DE
7040 struct dwo_unit *dwo_entry;
7041 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 7042 void **slot;
a2ce51a0
DE
7043
7044 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7045 gdb_assert (dwp_file != NULL);
7046
6aa5f3a6
DE
7047 /* If TU skeletons have been removed then we may not have read in any
7048 TUs yet. */
7049 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 7050 {
6aa5f3a6
DE
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
7053 }
7054
6aa5f3a6
DE
7055 find_sig_entry.signature = sig;
7056 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7057 &find_sig_entry, INSERT);
9a3c8263 7058 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
7059
7060 /* Have we already tried to read this TU?
7061 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7062 needn't exist in the global table yet). */
7063 if (sig_entry != NULL)
7064 return sig_entry;
7065
a2ce51a0
DE
7066 if (dwp_file->tus == NULL)
7067 return NULL;
ed2dc618 7068 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
57d63ce2 7069 sig, 1 /* is_debug_types */);
a2ce51a0
DE
7070 if (dwo_entry == NULL)
7071 return NULL;
7072
ed2dc618
SM
7073 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7074 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
a2ce51a0 7075
a2ce51a0
DE
7076 return sig_entry;
7077}
7078
380bca97 7079/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
7080 Returns NULL if signature SIG is not present in the table.
7081 It is up to the caller to complain about this. */
348e048f
DE
7082
7083static struct signatured_type *
a2ce51a0 7084lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 7085{
518817b3
SM
7086 struct dwarf2_per_objfile *dwarf2_per_objfile
7087 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 7088
a2ce51a0
DE
7089 if (cu->dwo_unit
7090 && dwarf2_per_objfile->using_index)
7091 {
7092 /* We're in a DWO/DWP file, and we're using .gdb_index.
7093 These cases require special processing. */
ed2dc618 7094 if (get_dwp_file (dwarf2_per_objfile) == NULL)
a2ce51a0
DE
7095 return lookup_dwo_signatured_type (cu, sig);
7096 else
7097 return lookup_dwp_signatured_type (cu, sig);
7098 }
7099 else
7100 {
7101 struct signatured_type find_entry, *entry;
348e048f 7102
a2ce51a0
DE
7103 if (dwarf2_per_objfile->signatured_types == NULL)
7104 return NULL;
7105 find_entry.signature = sig;
9a3c8263
SM
7106 entry = ((struct signatured_type *)
7107 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
7108 return entry;
7109 }
348e048f 7110}
42e7ad6c
DE
7111\f
7112/* Low level DIE reading support. */
348e048f 7113
d85a05f0
DJ
7114/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7115
7116static void
7117init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 7118 struct dwarf2_cu *cu,
3019eac3 7119 struct dwarf2_section_info *section,
685af9cd
TT
7120 struct dwo_file *dwo_file,
7121 struct abbrev_table *abbrev_table)
d85a05f0 7122{
fceca515 7123 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 7124 reader->abfd = get_section_bfd_owner (section);
d85a05f0 7125 reader->cu = cu;
3019eac3 7126 reader->dwo_file = dwo_file;
dee91e82
DE
7127 reader->die_section = section;
7128 reader->buffer = section->buffer;
f664829e 7129 reader->buffer_end = section->buffer + section->size;
a2ce51a0 7130 reader->comp_dir = NULL;
685af9cd 7131 reader->abbrev_table = abbrev_table;
d85a05f0
DJ
7132}
7133
b0c7bfa9
DE
7134/* Subroutine of init_cutu_and_read_dies to simplify it.
7135 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7136 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7137 already.
7138
7139 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7140 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
7141 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7142 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
7143 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7144 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
7145 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7146 are filled in with the info of the DIE from the DWO file.
685af9cd
TT
7147 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7148 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7149 kept around for at least as long as *RESULT_READER.
7150
b0c7bfa9
DE
7151 The result is non-zero if a valid (non-dummy) DIE was found. */
7152
7153static int
7154read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7155 struct dwo_unit *dwo_unit,
b0c7bfa9 7156 struct die_info *stub_comp_unit_die,
a2ce51a0 7157 const char *stub_comp_dir,
b0c7bfa9 7158 struct die_reader_specs *result_reader,
d521ce57 7159 const gdb_byte **result_info_ptr,
b0c7bfa9 7160 struct die_info **result_comp_unit_die,
685af9cd
TT
7161 int *result_has_children,
7162 abbrev_table_up *result_dwo_abbrev_table)
b0c7bfa9 7163{
ed2dc618 7164 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
b0c7bfa9
DE
7165 struct objfile *objfile = dwarf2_per_objfile->objfile;
7166 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9 7167 bfd *abfd;
d521ce57 7168 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
7169 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7170 int i,num_extra_attrs;
7171 struct dwarf2_section_info *dwo_abbrev_section;
7172 struct attribute *attr;
7173 struct die_info *comp_unit_die;
7174
b0aeadb3
DE
7175 /* At most one of these may be provided. */
7176 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 7177
b0c7bfa9
DE
7178 /* These attributes aren't processed until later:
7179 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
7180 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7181 referenced later. However, these attributes are found in the stub
7182 which we won't have later. In order to not impose this complication
7183 on the rest of the code, we read them here and copy them to the
7184 DWO CU/TU die. */
b0c7bfa9
DE
7185
7186 stmt_list = NULL;
7187 low_pc = NULL;
7188 high_pc = NULL;
7189 ranges = NULL;
7190 comp_dir = NULL;
7191
7192 if (stub_comp_unit_die != NULL)
7193 {
7194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7195 DWO file. */
7196 if (! this_cu->is_debug_types)
7197 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7198 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7199 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7200 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7201 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7202
7203 /* There should be a DW_AT_addr_base attribute here (if needed).
7204 We need the value before we can process DW_FORM_GNU_addr_index. */
7205 cu->addr_base = 0;
7206 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7207 if (attr)
7208 cu->addr_base = DW_UNSND (attr);
7209
7210 /* There should be a DW_AT_ranges_base attribute here (if needed).
7211 We need the value before we can process DW_AT_ranges. */
7212 cu->ranges_base = 0;
7213 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7214 if (attr)
7215 cu->ranges_base = DW_UNSND (attr);
7216 }
a2ce51a0
DE
7217 else if (stub_comp_dir != NULL)
7218 {
7219 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 7220 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
7221 comp_dir->name = DW_AT_comp_dir;
7222 comp_dir->form = DW_FORM_string;
7223 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7224 DW_STRING (comp_dir) = stub_comp_dir;
7225 }
b0c7bfa9
DE
7226
7227 /* Set up for reading the DWO CU/TU. */
7228 cu->dwo_unit = dwo_unit;
685af9cd 7229 dwarf2_section_info *section = dwo_unit->section;
b0c7bfa9 7230 dwarf2_read_section (objfile, section);
a32a8923 7231 abfd = get_section_bfd_owner (section);
9c541725
PA
7232 begin_info_ptr = info_ptr = (section->buffer
7233 + to_underlying (dwo_unit->sect_off));
b0c7bfa9 7234 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
b0c7bfa9
DE
7235
7236 if (this_cu->is_debug_types)
7237 {
b0c7bfa9
DE
7238 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7239
ed2dc618
SM
7240 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7241 &cu->header, section,
b0c7bfa9 7242 dwo_abbrev_section,
43988095 7243 info_ptr, rcuh_kind::TYPE);
a2ce51a0 7244 /* This is not an assert because it can be caused by bad debug info. */
43988095 7245 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
7246 {
7247 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
9d8780f0 7248 " TU at offset %s [in module %s]"),
a2ce51a0 7249 hex_string (sig_type->signature),
43988095 7250 hex_string (cu->header.signature),
9d8780f0 7251 sect_offset_str (dwo_unit->sect_off),
a2ce51a0
DE
7252 bfd_get_filename (abfd));
7253 }
9c541725 7254 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7255 /* For DWOs coming from DWP files, we don't know the CU length
7256 nor the type's offset in the TU until now. */
7257 dwo_unit->length = get_cu_length (&cu->header);
9c541725 7258 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
7259
7260 /* Establish the type offset that can be used to lookup the type.
7261 For DWO files, we don't know it until now. */
9c541725
PA
7262 sig_type->type_offset_in_section
7263 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
7264 }
7265 else
7266 {
ed2dc618
SM
7267 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7268 &cu->header, section,
b0c7bfa9 7269 dwo_abbrev_section,
43988095 7270 info_ptr, rcuh_kind::COMPILE);
9c541725 7271 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7272 /* For DWOs coming from DWP files, we don't know the CU length
7273 until now. */
7274 dwo_unit->length = get_cu_length (&cu->header);
7275 }
7276
685af9cd
TT
7277 *result_dwo_abbrev_table
7278 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7279 cu->header.abbrev_sect_off);
7280 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7281 result_dwo_abbrev_table->get ());
b0c7bfa9
DE
7282
7283 /* Read in the die, but leave space to copy over the attributes
7284 from the stub. This has the benefit of simplifying the rest of
7285 the code - all the work to maintain the illusion of a single
7286 DW_TAG_{compile,type}_unit DIE is done here. */
7287 num_extra_attrs = ((stmt_list != NULL)
7288 + (low_pc != NULL)
7289 + (high_pc != NULL)
7290 + (ranges != NULL)
7291 + (comp_dir != NULL));
7292 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7293 result_has_children, num_extra_attrs);
7294
7295 /* Copy over the attributes from the stub to the DIE we just read in. */
7296 comp_unit_die = *result_comp_unit_die;
7297 i = comp_unit_die->num_attrs;
7298 if (stmt_list != NULL)
7299 comp_unit_die->attrs[i++] = *stmt_list;
7300 if (low_pc != NULL)
7301 comp_unit_die->attrs[i++] = *low_pc;
7302 if (high_pc != NULL)
7303 comp_unit_die->attrs[i++] = *high_pc;
7304 if (ranges != NULL)
7305 comp_unit_die->attrs[i++] = *ranges;
7306 if (comp_dir != NULL)
7307 comp_unit_die->attrs[i++] = *comp_dir;
7308 comp_unit_die->num_attrs += num_extra_attrs;
7309
b4f54984 7310 if (dwarf_die_debug)
bf6af496
DE
7311 {
7312 fprintf_unfiltered (gdb_stdlog,
7313 "Read die from %s@0x%x of %s:\n",
a32a8923 7314 get_section_name (section),
bf6af496
DE
7315 (unsigned) (begin_info_ptr - section->buffer),
7316 bfd_get_filename (abfd));
b4f54984 7317 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
7318 }
7319
a2ce51a0
DE
7320 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7321 TUs by skipping the stub and going directly to the entry in the DWO file.
7322 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7323 to get it via circuitous means. Blech. */
7324 if (comp_dir != NULL)
7325 result_reader->comp_dir = DW_STRING (comp_dir);
7326
b0c7bfa9
DE
7327 /* Skip dummy compilation units. */
7328 if (info_ptr >= begin_info_ptr + dwo_unit->length
7329 || peek_abbrev_code (abfd, info_ptr) == 0)
7330 return 0;
7331
7332 *result_info_ptr = info_ptr;
7333 return 1;
7334}
7335
7336/* Subroutine of init_cutu_and_read_dies to simplify it.
7337 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 7338 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
7339
7340static struct dwo_unit *
7341lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7342 struct die_info *comp_unit_die)
7343{
7344 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9
DE
7345 ULONGEST signature;
7346 struct dwo_unit *dwo_unit;
7347 const char *comp_dir, *dwo_name;
7348
a2ce51a0
DE
7349 gdb_assert (cu != NULL);
7350
b0c7bfa9 7351 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
7352 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7353 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
7354
7355 if (this_cu->is_debug_types)
7356 {
7357 struct signatured_type *sig_type;
7358
7359 /* Since this_cu is the first member of struct signatured_type,
7360 we can go from a pointer to one to a pointer to the other. */
7361 sig_type = (struct signatured_type *) this_cu;
7362 signature = sig_type->signature;
7363 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7364 }
7365 else
7366 {
7367 struct attribute *attr;
7368
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7370 if (! attr)
7371 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7372 " [in module %s]"),
e3b94546 7373 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
b0c7bfa9
DE
7374 signature = DW_UNSND (attr);
7375 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7376 signature);
7377 }
7378
b0c7bfa9
DE
7379 return dwo_unit;
7380}
7381
a2ce51a0 7382/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6 7383 See it for a description of the parameters.
fcd3b13d 7384 Read a TU directly from a DWO file, bypassing the stub. */
a2ce51a0
DE
7385
7386static void
6aa5f3a6
DE
7387init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7388 int use_existing_cu, int keep,
a2ce51a0
DE
7389 die_reader_func_ftype *die_reader_func,
7390 void *data)
7391{
fcd3b13d 7392 std::unique_ptr<dwarf2_cu> new_cu;
a2ce51a0 7393 struct signatured_type *sig_type;
a2ce51a0
DE
7394 struct die_reader_specs reader;
7395 const gdb_byte *info_ptr;
7396 struct die_info *comp_unit_die;
7397 int has_children;
ed2dc618 7398 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
a2ce51a0
DE
7399
7400 /* Verify we can do the following downcast, and that we have the
7401 data we need. */
7402 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7403 sig_type = (struct signatured_type *) this_cu;
7404 gdb_assert (sig_type->dwo_unit != NULL);
7405
6aa5f3a6
DE
7406 if (use_existing_cu && this_cu->cu != NULL)
7407 {
7408 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6aa5f3a6
DE
7409 /* There's no need to do the rereading_dwo_cu handling that
7410 init_cutu_and_read_dies does since we don't read the stub. */
7411 }
7412 else
7413 {
7414 /* If !use_existing_cu, this_cu->cu must be NULL. */
7415 gdb_assert (this_cu->cu == NULL);
fcd3b13d 7416 new_cu.reset (new dwarf2_cu (this_cu));
6aa5f3a6
DE
7417 }
7418
7419 /* A future optimization, if needed, would be to use an existing
7420 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7421 could share abbrev tables. */
a2ce51a0 7422
685af9cd
TT
7423 /* The abbreviation table used by READER, this must live at least as long as
7424 READER. */
7425 abbrev_table_up dwo_abbrev_table;
7426
a2ce51a0 7427 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
a2ce51a0
DE
7428 NULL /* stub_comp_unit_die */,
7429 sig_type->dwo_unit->dwo_file->comp_dir,
7430 &reader, &info_ptr,
685af9cd
TT
7431 &comp_unit_die, &has_children,
7432 &dwo_abbrev_table) == 0)
a2ce51a0
DE
7433 {
7434 /* Dummy die. */
a2ce51a0
DE
7435 return;
7436 }
7437
7438 /* All the "real" work is done here. */
7439 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7440
6aa5f3a6 7441 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
7442 but the alternative is making the latter more complex.
7443 This function is only for the special case of using DWO files directly:
7444 no point in overly complicating the general case just to handle this. */
fcd3b13d 7445 if (new_cu != NULL && keep)
a2ce51a0 7446 {
fcd3b13d
SM
7447 /* Link this CU into read_in_chain. */
7448 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7449 dwarf2_per_objfile->read_in_chain = this_cu;
7450 /* The chain owns it now. */
7451 new_cu.release ();
a2ce51a0 7452 }
a2ce51a0
DE
7453}
7454
fd820528 7455/* Initialize a CU (or TU) and read its DIEs.
3019eac3 7456 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 7457
f4dc4d17
DE
7458 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7459 Otherwise the table specified in the comp unit header is read in and used.
7460 This is an optimization for when we already have the abbrev table.
7461
dee91e82
DE
7462 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7463 Otherwise, a new CU is allocated with xmalloc.
7464
7465 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7466 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7467
7468 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 7469 linker) then DIE_READER_FUNC will not get called. */
aaa75496 7470
70221824 7471static void
fd820528 7472init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 7473 struct abbrev_table *abbrev_table,
fd820528 7474 int use_existing_cu, int keep,
58f0c718 7475 bool skip_partial,
fd820528
DE
7476 die_reader_func_ftype *die_reader_func,
7477 void *data)
c906108c 7478{
ed2dc618 7479 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7480 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7481 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7482 bfd *abfd = get_section_bfd_owner (section);
dee91e82 7483 struct dwarf2_cu *cu;
d521ce57 7484 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7485 struct die_reader_specs reader;
d85a05f0 7486 struct die_info *comp_unit_die;
dee91e82 7487 int has_children;
d85a05f0 7488 struct attribute *attr;
dee91e82 7489 struct signatured_type *sig_type = NULL;
4bdcc0c1 7490 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
7491 /* Non-zero if CU currently points to a DWO file and we need to
7492 reread it. When this happens we need to reread the skeleton die
a2ce51a0 7493 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 7494 int rereading_dwo_cu = 0;
c906108c 7495
b4f54984 7496 if (dwarf_die_debug)
9d8780f0 7497 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7498 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7499 sect_offset_str (this_cu->sect_off));
09406207 7500
dee91e82
DE
7501 if (use_existing_cu)
7502 gdb_assert (keep);
23745b47 7503
a2ce51a0
DE
7504 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7505 file (instead of going through the stub), short-circuit all of this. */
7506 if (this_cu->reading_dwo_directly)
7507 {
7508 /* Narrow down the scope of possibilities to have to understand. */
7509 gdb_assert (this_cu->is_debug_types);
7510 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
7511 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7512 die_reader_func, data);
a2ce51a0
DE
7513 return;
7514 }
7515
dee91e82
DE
7516 /* This is cheap if the section is already read in. */
7517 dwarf2_read_section (objfile, section);
7518
9c541725 7519 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
7520
7521 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82 7522
fcd3b13d 7523 std::unique_ptr<dwarf2_cu> new_cu;
dee91e82
DE
7524 if (use_existing_cu && this_cu->cu != NULL)
7525 {
7526 cu = this_cu->cu;
42e7ad6c
DE
7527 /* If this CU is from a DWO file we need to start over, we need to
7528 refetch the attributes from the skeleton CU.
7529 This could be optimized by retrieving those attributes from when we
7530 were here the first time: the previous comp_unit_die was stored in
7531 comp_unit_obstack. But there's no data yet that we need this
7532 optimization. */
7533 if (cu->dwo_unit != NULL)
7534 rereading_dwo_cu = 1;
dee91e82
DE
7535 }
7536 else
7537 {
7538 /* If !use_existing_cu, this_cu->cu must be NULL. */
7539 gdb_assert (this_cu->cu == NULL);
fcd3b13d
SM
7540 new_cu.reset (new dwarf2_cu (this_cu));
7541 cu = new_cu.get ();
42e7ad6c 7542 }
dee91e82 7543
b0c7bfa9 7544 /* Get the header. */
9c541725 7545 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
7546 {
7547 /* We already have the header, there's no need to read it in again. */
9c541725 7548 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
7549 }
7550 else
7551 {
3019eac3 7552 if (this_cu->is_debug_types)
dee91e82 7553 {
ed2dc618
SM
7554 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7555 &cu->header, section,
4bdcc0c1 7556 abbrev_section, info_ptr,
43988095 7557 rcuh_kind::TYPE);
dee91e82 7558
42e7ad6c
DE
7559 /* Since per_cu is the first member of struct signatured_type,
7560 we can go from a pointer to one to a pointer to the other. */
7561 sig_type = (struct signatured_type *) this_cu;
43988095 7562 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
7563 gdb_assert (sig_type->type_offset_in_tu
7564 == cu->header.type_cu_offset_in_tu);
7565 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 7566
42e7ad6c
DE
7567 /* LENGTH has not been set yet for type units if we're
7568 using .gdb_index. */
1ce1cefd 7569 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
7570
7571 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
7572 sig_type->type_offset_in_section =
7573 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
7574
7575 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7576 }
7577 else
7578 {
ed2dc618
SM
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
4bdcc0c1 7581 abbrev_section,
43988095
JK
7582 info_ptr,
7583 rcuh_kind::COMPILE);
dee91e82 7584
9c541725 7585 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 7586 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 7587 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7588 }
7589 }
10b3939b 7590
6caca83c 7591 /* Skip dummy compilation units. */
dee91e82 7592 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c 7593 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7594 return;
6caca83c 7595
433df2d4
DE
7596 /* If we don't have them yet, read the abbrevs for this compilation unit.
7597 And if we need to read them now, make sure they're freed when we're
685af9cd
TT
7598 done (own the table through ABBREV_TABLE_HOLDER). */
7599 abbrev_table_up abbrev_table_holder;
f4dc4d17 7600 if (abbrev_table != NULL)
685af9cd
TT
7601 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7602 else
f4dc4d17 7603 {
685af9cd
TT
7604 abbrev_table_holder
7605 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7606 cu->header.abbrev_sect_off);
7607 abbrev_table = abbrev_table_holder.get ();
42e7ad6c 7608 }
af703f96 7609
dee91e82 7610 /* Read the top level CU/TU die. */
685af9cd 7611 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
dee91e82 7612 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 7613
58f0c718
TT
7614 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7615 return;
7616
b0c7bfa9 7617 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
685af9cd
TT
7618 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7619 table from the DWO file and pass the ownership over to us. It will be
7620 referenced from READER, so we must make sure to free it after we're done
7621 with READER.
7622
b0c7bfa9
DE
7623 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7624 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3 7625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
685af9cd 7626 abbrev_table_up dwo_abbrev_table;
3019eac3
DE
7627 if (attr)
7628 {
3019eac3 7629 struct dwo_unit *dwo_unit;
b0c7bfa9 7630 struct die_info *dwo_comp_unit_die;
3019eac3
DE
7631
7632 if (has_children)
6a506a2d 7633 {
b98664d3 7634 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
9d8780f0
SM
7635 " has children (offset %s) [in module %s]"),
7636 sect_offset_str (this_cu->sect_off),
7637 bfd_get_filename (abfd));
6a506a2d 7638 }
b0c7bfa9 7639 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 7640 if (dwo_unit != NULL)
3019eac3 7641 {
6a506a2d 7642 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
a2ce51a0 7643 comp_unit_die, NULL,
6a506a2d 7644 &reader, &info_ptr,
685af9cd
TT
7645 &dwo_comp_unit_die, &has_children,
7646 &dwo_abbrev_table) == 0)
6a506a2d
DE
7647 {
7648 /* Dummy die. */
6a506a2d
DE
7649 return;
7650 }
7651 comp_unit_die = dwo_comp_unit_die;
7652 }
7653 else
7654 {
7655 /* Yikes, we couldn't find the rest of the DIE, we only have
7656 the stub. A complaint has already been logged. There's
7657 not much more we can do except pass on the stub DIE to
7658 die_reader_func. We don't want to throw an error on bad
7659 debug info. */
3019eac3
DE
7660 }
7661 }
7662
b0c7bfa9 7663 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
7664 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7665
b0c7bfa9 7666 /* Done, clean up. */
fcd3b13d 7667 if (new_cu != NULL && keep)
348e048f 7668 {
fcd3b13d
SM
7669 /* Link this CU into read_in_chain. */
7670 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7671 dwarf2_per_objfile->read_in_chain = this_cu;
7672 /* The chain owns it now. */
7673 new_cu.release ();
348e048f 7674 }
dee91e82
DE
7675}
7676
33e80786
DE
7677/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7678 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7679 to have already done the lookup to find the DWO file).
dee91e82
DE
7680
7681 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 7682 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
7683
7684 We fill in THIS_CU->length.
7685
7686 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7687 linker) then DIE_READER_FUNC will not get called.
7688
7689 THIS_CU->cu is always freed when done.
3019eac3
DE
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
7692
7693static void
7694init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 7695 struct dwo_file *dwo_file,
dee91e82
DE
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698{
ed2dc618 7699 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7700 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7701 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7702 bfd *abfd = get_section_bfd_owner (section);
33e80786 7703 struct dwarf2_section_info *abbrev_section;
d521ce57 7704 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7705 struct die_reader_specs reader;
dee91e82
DE
7706 struct die_info *comp_unit_die;
7707 int has_children;
7708
b4f54984 7709 if (dwarf_die_debug)
9d8780f0 7710 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7711 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7712 sect_offset_str (this_cu->sect_off));
09406207 7713
dee91e82
DE
7714 gdb_assert (this_cu->cu == NULL);
7715
33e80786
DE
7716 abbrev_section = (dwo_file != NULL
7717 ? &dwo_file->sections.abbrev
7718 : get_abbrev_section_for_cu (this_cu));
7719
dee91e82
DE
7720 /* This is cheap if the section is already read in. */
7721 dwarf2_read_section (objfile, section);
7722
fcd3b13d 7723 struct dwarf2_cu cu (this_cu);
dee91e82 7724
9c541725 7725 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
ed2dc618
SM
7726 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7727 &cu.header, section,
4bdcc0c1 7728 abbrev_section, info_ptr,
43988095
JK
7729 (this_cu->is_debug_types
7730 ? rcuh_kind::TYPE
7731 : rcuh_kind::COMPILE));
dee91e82 7732
1ce1cefd 7733 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
7734
7735 /* Skip dummy compilation units. */
7736 if (info_ptr >= begin_info_ptr + this_cu->length
7737 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7738 return;
72bf9492 7739
685af9cd
TT
7740 abbrev_table_up abbrev_table
7741 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7742 cu.header.abbrev_sect_off);
dee91e82 7743
685af9cd 7744 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
dee91e82
DE
7745 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7746
7747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
dee91e82
DE
7748}
7749
3019eac3
DE
7750/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7751 does not lookup the specified DWO file.
7752 This cannot be used to read DWO files.
dee91e82
DE
7753
7754 THIS_CU->cu is always freed when done.
3019eac3
DE
7755 This is done in order to not leave THIS_CU->cu in a state where we have
7756 to care whether it refers to the "main" CU or the DWO CU.
7757 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
7758
7759static void
7760init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7761 die_reader_func_ftype *die_reader_func,
7762 void *data)
7763{
33e80786 7764 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 7765}
0018ea6f
DE
7766\f
7767/* Type Unit Groups.
dee91e82 7768
0018ea6f
DE
7769 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7770 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7771 so that all types coming from the same compilation (.o file) are grouped
7772 together. A future step could be to put the types in the same symtab as
7773 the CU the types ultimately came from. */
ff013f42 7774
f4dc4d17
DE
7775static hashval_t
7776hash_type_unit_group (const void *item)
7777{
9a3c8263
SM
7778 const struct type_unit_group *tu_group
7779 = (const struct type_unit_group *) item;
f4dc4d17 7780
094b34ac 7781 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 7782}
348e048f
DE
7783
7784static int
f4dc4d17 7785eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 7786{
9a3c8263
SM
7787 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7788 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 7789
094b34ac 7790 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 7791}
348e048f 7792
f4dc4d17
DE
7793/* Allocate a hash table for type unit groups. */
7794
7795static htab_t
ed2dc618 7796allocate_type_unit_groups_table (struct objfile *objfile)
f4dc4d17
DE
7797{
7798 return htab_create_alloc_ex (3,
7799 hash_type_unit_group,
7800 eq_type_unit_group,
7801 NULL,
ed2dc618 7802 &objfile->objfile_obstack,
f4dc4d17
DE
7803 hashtab_obstack_allocate,
7804 dummy_obstack_deallocate);
7805}
dee91e82 7806
f4dc4d17
DE
7807/* Type units that don't have DW_AT_stmt_list are grouped into their own
7808 partial symtabs. We combine several TUs per psymtab to not let the size
7809 of any one psymtab grow too big. */
7810#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7811#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 7812
094b34ac 7813/* Helper routine for get_type_unit_group.
f4dc4d17
DE
7814 Create the type_unit_group object used to hold one or more TUs. */
7815
7816static struct type_unit_group *
094b34ac 7817create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17 7818{
518817b3
SM
7819 struct dwarf2_per_objfile *dwarf2_per_objfile
7820 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17 7821 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 7822 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 7823 struct type_unit_group *tu_group;
f4dc4d17
DE
7824
7825 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7826 struct type_unit_group);
094b34ac 7827 per_cu = &tu_group->per_cu;
518817b3 7828 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
f4dc4d17 7829
094b34ac
DE
7830 if (dwarf2_per_objfile->using_index)
7831 {
7832 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7833 struct dwarf2_per_cu_quick_data);
094b34ac
DE
7834 }
7835 else
7836 {
9c541725 7837 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac 7838 struct partial_symtab *pst;
528e1572 7839 std::string name;
094b34ac
DE
7840
7841 /* Give the symtab a useful name for debug purposes. */
7842 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
528e1572
SM
7843 name = string_printf ("<type_units_%d>",
7844 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
094b34ac 7845 else
528e1572 7846 name = string_printf ("<type_units_at_0x%x>", line_offset);
094b34ac 7847
528e1572 7848 pst = create_partial_symtab (per_cu, name.c_str ());
094b34ac 7849 pst->anonymous = 1;
094b34ac 7850 }
f4dc4d17 7851
094b34ac 7852 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 7853 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
7854
7855 return tu_group;
7856}
7857
094b34ac
DE
7858/* Look up the type_unit_group for type unit CU, and create it if necessary.
7859 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
7860
7861static struct type_unit_group *
ff39bb5e 7862get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17 7863{
518817b3
SM
7864 struct dwarf2_per_objfile *dwarf2_per_objfile
7865 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
7866 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7867 struct type_unit_group *tu_group;
7868 void **slot;
7869 unsigned int line_offset;
7870 struct type_unit_group type_unit_group_for_lookup;
7871
7872 if (dwarf2_per_objfile->type_unit_groups == NULL)
7873 {
7874 dwarf2_per_objfile->type_unit_groups =
ed2dc618 7875 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
f4dc4d17
DE
7876 }
7877
7878 /* Do we need to create a new group, or can we use an existing one? */
7879
7880 if (stmt_list)
7881 {
7882 line_offset = DW_UNSND (stmt_list);
7883 ++tu_stats->nr_symtab_sharers;
7884 }
7885 else
7886 {
7887 /* Ugh, no stmt_list. Rare, but we have to handle it.
7888 We can do various things here like create one group per TU or
7889 spread them over multiple groups to split up the expansion work.
7890 To avoid worst case scenarios (too many groups or too large groups)
7891 we, umm, group them in bunches. */
7892 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7893 | (tu_stats->nr_stmt_less_type_units
7894 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7895 ++tu_stats->nr_stmt_less_type_units;
7896 }
7897
094b34ac 7898 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 7899 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
7900 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7901 &type_unit_group_for_lookup, INSERT);
7902 if (*slot != NULL)
7903 {
9a3c8263 7904 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
7905 gdb_assert (tu_group != NULL);
7906 }
7907 else
7908 {
9c541725 7909 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 7910 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
7911 *slot = tu_group;
7912 ++tu_stats->nr_symtabs;
7913 }
7914
7915 return tu_group;
7916}
0018ea6f
DE
7917\f
7918/* Partial symbol tables. */
7919
7920/* Create a psymtab named NAME and assign it to PER_CU.
7921
7922 The caller must fill in the following details:
7923 dirname, textlow, texthigh. */
7924
7925static struct partial_symtab *
7926create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7927{
e3b94546 7928 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
0018ea6f
DE
7929 struct partial_symtab *pst;
7930
18a94d75 7931 pst = start_psymtab_common (objfile, name, 0,
af5bf4ad
SM
7932 objfile->global_psymbols,
7933 objfile->static_psymbols);
0018ea6f
DE
7934
7935 pst->psymtabs_addrmap_supported = 1;
7936
7937 /* This is the glue that links PST into GDB's symbol API. */
7938 pst->read_symtab_private = per_cu;
7939 pst->read_symtab = dwarf2_read_symtab;
7940 per_cu->v.psymtab = pst;
7941
7942 return pst;
7943}
7944
b93601f3
TT
7945/* The DATA object passed to process_psymtab_comp_unit_reader has this
7946 type. */
7947
7948struct process_psymtab_comp_unit_data
7949{
7950 /* True if we are reading a DW_TAG_partial_unit. */
7951
7952 int want_partial_unit;
7953
7954 /* The "pretend" language that is used if the CU doesn't declare a
7955 language. */
7956
7957 enum language pretend_language;
7958};
7959
0018ea6f
DE
7960/* die_reader_func for process_psymtab_comp_unit. */
7961
7962static void
7963process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7964 const gdb_byte *info_ptr,
0018ea6f
DE
7965 struct die_info *comp_unit_die,
7966 int has_children,
7967 void *data)
7968{
7969 struct dwarf2_cu *cu = reader->cu;
518817b3 7970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 7971 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 7972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
7973 CORE_ADDR baseaddr;
7974 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7975 struct partial_symtab *pst;
3a2b436a 7976 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 7977 const char *filename;
9a3c8263
SM
7978 struct process_psymtab_comp_unit_data *info
7979 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 7980
b93601f3 7981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
7982 return;
7983
7984 gdb_assert (! per_cu->is_debug_types);
7985
b93601f3 7986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f 7987
0018ea6f 7988 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
7989 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7990 if (filename == NULL)
0018ea6f 7991 filename = "";
0018ea6f
DE
7992
7993 pst = create_partial_symtab (per_cu, filename);
7994
7995 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 7996 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
7997
7998 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7999
8000 dwarf2_find_base_address (comp_unit_die, cu);
8001
8002 /* Possibly set the default values of LOWPC and HIGHPC from
8003 `DW_AT_ranges'. */
3a2b436a
JK
8004 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8005 &best_highpc, cu, pst);
8006 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
79748972
TT
8007 {
8008 CORE_ADDR low
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8010 - baseaddr);
8011 CORE_ADDR high
8012 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8013 - baseaddr - 1);
8014 /* Store the contiguous range if it is not empty; it can be
8015 empty for CUs with no code. */
8016 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8017 }
0018ea6f
DE
8018
8019 /* Check if comp unit has_children.
8020 If so, read the rest of the partial symbols from this comp unit.
8021 If not, there's no more debug_info for this comp unit. */
8022 if (has_children)
8023 {
8024 struct partial_die_info *first_die;
8025 CORE_ADDR lowpc, highpc;
8026
8027 lowpc = ((CORE_ADDR) -1);
8028 highpc = ((CORE_ADDR) 0);
8029
8030 first_die = load_partial_dies (reader, info_ptr, 1);
8031
8032 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 8033 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
8034
8035 /* If we didn't find a lowpc, set it to highpc to avoid
8036 complaints from `maint check'. */
8037 if (lowpc == ((CORE_ADDR) -1))
8038 lowpc = highpc;
8039
8040 /* If the compilation unit didn't have an explicit address range,
8041 then use the information extracted from its child dies. */
e385593e 8042 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
8043 {
8044 best_lowpc = lowpc;
8045 best_highpc = highpc;
8046 }
8047 }
4ae976d1 8048 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8049 best_lowpc + baseaddr)
8050 - baseaddr);
4ae976d1 8051 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8052 best_highpc + baseaddr)
8053 - baseaddr);
0018ea6f 8054
8763cede 8055 end_psymtab_common (objfile, pst);
0018ea6f
DE
8056
8057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8058 {
8059 int i;
8060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8061 struct dwarf2_per_cu_data *iter;
8062
8063 /* Fill in 'dependencies' here; we fill in 'users' in a
8064 post-pass. */
8065 pst->number_of_dependencies = len;
8d749320
SM
8066 pst->dependencies =
8067 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
8068 for (i = 0;
8069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8070 i, iter);
8071 ++i)
8072 pst->dependencies[i] = iter->v.psymtab;
8073
8074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8075 }
8076
8077 /* Get the list of files included in the current compilation unit,
8078 and build a psymtab for each of them. */
8079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8080
b4f54984 8081 if (dwarf_read_debug)
0018ea6f
DE
8082 {
8083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8084
8085 fprintf_unfiltered (gdb_stdlog,
9d8780f0 8086 "Psymtab for %s unit @%s: %s - %s"
0018ea6f
DE
8087 ", %d global, %d static syms\n",
8088 per_cu->is_debug_types ? "type" : "comp",
9d8780f0 8089 sect_offset_str (per_cu->sect_off),
79748972
TT
8090 paddress (gdbarch, pst->text_low (objfile)),
8091 paddress (gdbarch, pst->text_high (objfile)),
0018ea6f
DE
8092 pst->n_global_syms, pst->n_static_syms);
8093 }
8094}
8095
8096/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8097 Process compilation unit THIS_CU for a psymtab. */
8098
8099static void
8100process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
8101 int want_partial_unit,
8102 enum language pretend_language)
0018ea6f
DE
8103{
8104 /* If this compilation unit was already read in, free the
8105 cached copy in order to read it in again. This is
8106 necessary because we skipped some symbols when we first
8107 read in the compilation unit (see load_partial_dies).
8108 This problem could be avoided, but the benefit is unclear. */
8109 if (this_cu->cu != NULL)
8110 free_one_cached_comp_unit (this_cu);
8111
f1902523 8112 if (this_cu->is_debug_types)
58f0c718
TT
8113 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8114 build_type_psymtabs_reader, NULL);
f1902523
JK
8115 else
8116 {
8117 process_psymtab_comp_unit_data info;
8118 info.want_partial_unit = want_partial_unit;
8119 info.pretend_language = pretend_language;
58f0c718 8120 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
f1902523
JK
8121 process_psymtab_comp_unit_reader, &info);
8122 }
0018ea6f
DE
8123
8124 /* Age out any secondary CUs. */
ed2dc618 8125 age_cached_comp_units (this_cu->dwarf2_per_objfile);
0018ea6f 8126}
f4dc4d17
DE
8127
8128/* Reader function for build_type_psymtabs. */
8129
8130static void
8131build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 8132 const gdb_byte *info_ptr,
f4dc4d17
DE
8133 struct die_info *type_unit_die,
8134 int has_children,
8135 void *data)
8136{
ed2dc618 8137 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 8138 = reader->cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
8139 struct objfile *objfile = dwarf2_per_objfile->objfile;
8140 struct dwarf2_cu *cu = reader->cu;
8141 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 8142 struct signatured_type *sig_type;
f4dc4d17
DE
8143 struct type_unit_group *tu_group;
8144 struct attribute *attr;
8145 struct partial_die_info *first_die;
8146 CORE_ADDR lowpc, highpc;
8147 struct partial_symtab *pst;
8148
8149 gdb_assert (data == NULL);
0186c6a7
DE
8150 gdb_assert (per_cu->is_debug_types);
8151 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8152
8153 if (! has_children)
8154 return;
8155
8156 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 8157 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 8158
0186c6a7 8159 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
8160
8161 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
f4dc4d17
DE
8162 pst = create_partial_symtab (per_cu, "");
8163 pst->anonymous = 1;
8164
8165 first_die = load_partial_dies (reader, info_ptr, 1);
8166
8167 lowpc = (CORE_ADDR) -1;
8168 highpc = (CORE_ADDR) 0;
8169 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8170
8763cede 8171 end_psymtab_common (objfile, pst);
f4dc4d17
DE
8172}
8173
73051182
DE
8174/* Struct used to sort TUs by their abbreviation table offset. */
8175
8176struct tu_abbrev_offset
8177{
b2bdb8cf
SM
8178 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8179 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8180 {}
8181
8182 signatured_type *sig_type;
73051182
DE
8183 sect_offset abbrev_offset;
8184};
8185
484cf504 8186/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
73051182 8187
484cf504
TT
8188static bool
8189sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8190 const struct tu_abbrev_offset &b)
73051182 8191{
484cf504 8192 return a.abbrev_offset < b.abbrev_offset;
73051182
DE
8193}
8194
8195/* Efficiently read all the type units.
8196 This does the bulk of the work for build_type_psymtabs.
8197
8198 The efficiency is because we sort TUs by the abbrev table they use and
8199 only read each abbrev table once. In one program there are 200K TUs
8200 sharing 8K abbrev tables.
8201
8202 The main purpose of this function is to support building the
8203 dwarf2_per_objfile->type_unit_groups table.
8204 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8205 can collapse the search space by grouping them by stmt_list.
8206 The savings can be significant, in the same program from above the 200K TUs
8207 share 8K stmt_list tables.
8208
8209 FUNC is expected to call get_type_unit_group, which will create the
8210 struct type_unit_group if necessary and add it to
8211 dwarf2_per_objfile->type_unit_groups. */
8212
8213static void
ed2dc618 8214build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
73051182 8215{
73051182 8216 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
685af9cd 8217 abbrev_table_up abbrev_table;
73051182 8218 sect_offset abbrev_offset;
73051182
DE
8219
8220 /* It's up to the caller to not call us multiple times. */
8221 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8222
b2bdb8cf 8223 if (dwarf2_per_objfile->all_type_units.empty ())
73051182
DE
8224 return;
8225
8226 /* TUs typically share abbrev tables, and there can be way more TUs than
8227 abbrev tables. Sort by abbrev table to reduce the number of times we
8228 read each abbrev table in.
8229 Alternatives are to punt or to maintain a cache of abbrev tables.
8230 This is simpler and efficient enough for now.
8231
8232 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8233 symtab to use). Typically TUs with the same abbrev offset have the same
8234 stmt_list value too so in practice this should work well.
8235
8236 The basic algorithm here is:
8237
8238 sort TUs by abbrev table
8239 for each TU with same abbrev table:
8240 read abbrev table if first user
8241 read TU top level DIE
8242 [IWBN if DWO skeletons had DW_AT_stmt_list]
8243 call FUNC */
8244
b4f54984 8245 if (dwarf_read_debug)
73051182
DE
8246 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8247
8248 /* Sort in a separate table to maintain the order of all_type_units
8249 for .gdb_index: TU indices directly index all_type_units. */
b2bdb8cf
SM
8250 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8251 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8252
8253 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8254 sorted_by_abbrev.emplace_back
8255 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8256 sig_type->per_cu.section,
8257 sig_type->per_cu.sect_off));
73051182 8258
484cf504
TT
8259 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8260 sort_tu_by_abbrev_offset);
73051182 8261
9c541725 8262 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182 8263
b2bdb8cf 8264 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
73051182 8265 {
73051182
DE
8266 /* Switch to the next abbrev table if necessary. */
8267 if (abbrev_table == NULL
b2bdb8cf 8268 || tu.abbrev_offset != abbrev_offset)
73051182 8269 {
b2bdb8cf 8270 abbrev_offset = tu.abbrev_offset;
73051182 8271 abbrev_table =
ed2dc618
SM
8272 abbrev_table_read_table (dwarf2_per_objfile,
8273 &dwarf2_per_objfile->abbrev,
73051182
DE
8274 abbrev_offset);
8275 ++tu_stats->nr_uniq_abbrev_tables;
8276 }
8277
b2bdb8cf 8278 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
58f0c718 8279 0, 0, false, build_type_psymtabs_reader, NULL);
73051182 8280 }
6aa5f3a6 8281}
73051182 8282
6aa5f3a6
DE
8283/* Print collected type unit statistics. */
8284
8285static void
ed2dc618 8286print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8287{
8288 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8289
8290 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
b2bdb8cf
SM
8291 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8292 dwarf2_per_objfile->all_type_units.size ());
6aa5f3a6
DE
8293 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8294 tu_stats->nr_uniq_abbrev_tables);
8295 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8296 tu_stats->nr_symtabs);
8297 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8298 tu_stats->nr_symtab_sharers);
8299 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8300 tu_stats->nr_stmt_less_type_units);
8301 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8302 tu_stats->nr_all_type_units_reallocs);
73051182
DE
8303}
8304
f4dc4d17
DE
8305/* Traversal function for build_type_psymtabs. */
8306
8307static int
8308build_type_psymtab_dependencies (void **slot, void *info)
8309{
ed2dc618
SM
8310 struct dwarf2_per_objfile *dwarf2_per_objfile
8311 = (struct dwarf2_per_objfile *) info;
f4dc4d17
DE
8312 struct objfile *objfile = dwarf2_per_objfile->objfile;
8313 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 8314 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 8315 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
8316 int len = VEC_length (sig_type_ptr, tu_group->tus);
8317 struct signatured_type *iter;
f4dc4d17
DE
8318 int i;
8319
8320 gdb_assert (len > 0);
0186c6a7 8321 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
8322
8323 pst->number_of_dependencies = len;
8d749320
SM
8324 pst->dependencies =
8325 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 8326 for (i = 0;
0186c6a7 8327 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
8328 ++i)
8329 {
0186c6a7
DE
8330 gdb_assert (iter->per_cu.is_debug_types);
8331 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 8332 iter->type_unit_group = tu_group;
f4dc4d17
DE
8333 }
8334
0186c6a7 8335 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
8336
8337 return 1;
8338}
8339
8340/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8341 Build partial symbol tables for the .debug_types comp-units. */
8342
8343static void
ed2dc618 8344build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
348e048f 8345{
ed2dc618 8346 if (! create_all_type_units (dwarf2_per_objfile))
348e048f
DE
8347 return;
8348
ed2dc618 8349 build_type_psymtabs_1 (dwarf2_per_objfile);
6aa5f3a6 8350}
f4dc4d17 8351
6aa5f3a6
DE
8352/* Traversal function for process_skeletonless_type_unit.
8353 Read a TU in a DWO file and build partial symbols for it. */
8354
8355static int
8356process_skeletonless_type_unit (void **slot, void *info)
8357{
8358 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
ed2dc618
SM
8359 struct dwarf2_per_objfile *dwarf2_per_objfile
8360 = (struct dwarf2_per_objfile *) info;
6aa5f3a6
DE
8361 struct signatured_type find_entry, *entry;
8362
8363 /* If this TU doesn't exist in the global table, add it and read it in. */
8364
8365 if (dwarf2_per_objfile->signatured_types == NULL)
8366 {
8367 dwarf2_per_objfile->signatured_types
ed2dc618 8368 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
6aa5f3a6
DE
8369 }
8370
8371 find_entry.signature = dwo_unit->signature;
8372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8373 INSERT);
8374 /* If we've already seen this type there's nothing to do. What's happening
8375 is we're doing our own version of comdat-folding here. */
8376 if (*slot != NULL)
8377 return 1;
8378
8379 /* This does the job that create_all_type_units would have done for
8380 this TU. */
ed2dc618
SM
8381 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8382 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
6aa5f3a6
DE
8383 *slot = entry;
8384
8385 /* This does the job that build_type_psymtabs_1 would have done. */
58f0c718 8386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
6aa5f3a6
DE
8387 build_type_psymtabs_reader, NULL);
8388
8389 return 1;
8390}
8391
8392/* Traversal function for process_skeletonless_type_units. */
8393
8394static int
8395process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8396{
8397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8398
8399 if (dwo_file->tus != NULL)
8400 {
8401 htab_traverse_noresize (dwo_file->tus,
8402 process_skeletonless_type_unit, info);
8403 }
8404
8405 return 1;
8406}
8407
8408/* Scan all TUs of DWO files, verifying we've processed them.
8409 This is needed in case a TU was emitted without its skeleton.
8410 Note: This can't be done until we know what all the DWO files are. */
8411
8412static void
ed2dc618 8413process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8414{
8415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
ed2dc618 8416 if (get_dwp_file (dwarf2_per_objfile) == NULL
6aa5f3a6
DE
8417 && dwarf2_per_objfile->dwo_files != NULL)
8418 {
8419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8420 process_dwo_file_for_skeletonless_type_units,
ed2dc618 8421 dwarf2_per_objfile);
6aa5f3a6 8422 }
348e048f
DE
8423}
8424
ed2dc618 8425/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
95554aad
TT
8426
8427static void
ed2dc618 8428set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 8429{
b76e467d 8430 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
95554aad 8431 {
95554aad 8432 struct partial_symtab *pst = per_cu->v.psymtab;
95554aad 8433
36586728
TT
8434 if (pst == NULL)
8435 continue;
8436
b76e467d 8437 for (int j = 0; j < pst->number_of_dependencies; ++j)
95554aad
TT
8438 {
8439 /* Set the 'user' field only if it is not already set. */
8440 if (pst->dependencies[j]->user == NULL)
8441 pst->dependencies[j]->user = pst;
8442 }
8443 }
8444}
8445
93311388
DE
8446/* Build the partial symbol table by doing a quick pass through the
8447 .debug_info and .debug_abbrev sections. */
72bf9492 8448
93311388 8449static void
ed2dc618 8450dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
93311388 8451{
ed2dc618 8452 struct objfile *objfile = dwarf2_per_objfile->objfile;
93311388 8453
b4f54984 8454 if (dwarf_read_debug)
45cfd468
DE
8455 {
8456 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 8457 objfile_name (objfile));
45cfd468
DE
8458 }
8459
98bfdba5
PA
8460 dwarf2_per_objfile->reading_partial_symbols = 1;
8461
be391dca 8462 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 8463
93311388
DE
8464 /* Any cached compilation units will be linked by the per-objfile
8465 read_in_chain. Make sure to free them when we're done. */
11ed8cad 8466 free_cached_comp_units freer (dwarf2_per_objfile);
72bf9492 8467
ed2dc618 8468 build_type_psymtabs (dwarf2_per_objfile);
348e048f 8469
ed2dc618 8470 create_all_comp_units (dwarf2_per_objfile);
c906108c 8471
60606b2c
TT
8472 /* Create a temporary address map on a temporary obstack. We later
8473 copy this to the final obstack. */
8268c778 8474 auto_obstack temp_obstack;
791afaa2
TT
8475
8476 scoped_restore save_psymtabs_addrmap
8477 = make_scoped_restore (&objfile->psymtabs_addrmap,
8478 addrmap_create_mutable (&temp_obstack));
72bf9492 8479
b76e467d
SM
8480 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8481 process_psymtab_comp_unit (per_cu, 0, language_minimal);
ff013f42 8482
6aa5f3a6 8483 /* This has to wait until we read the CUs, we need the list of DWOs. */
ed2dc618 8484 process_skeletonless_type_units (dwarf2_per_objfile);
6aa5f3a6
DE
8485
8486 /* Now that all TUs have been processed we can fill in the dependencies. */
8487 if (dwarf2_per_objfile->type_unit_groups != NULL)
8488 {
8489 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
ed2dc618 8490 build_type_psymtab_dependencies, dwarf2_per_objfile);
6aa5f3a6
DE
8491 }
8492
b4f54984 8493 if (dwarf_read_debug)
ed2dc618 8494 print_tu_stats (dwarf2_per_objfile);
6aa5f3a6 8495
ed2dc618 8496 set_partial_user (dwarf2_per_objfile);
95554aad 8497
ff013f42
JK
8498 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8499 &objfile->objfile_obstack);
791afaa2
TT
8500 /* At this point we want to keep the address map. */
8501 save_psymtabs_addrmap.release ();
ff013f42 8502
b4f54984 8503 if (dwarf_read_debug)
45cfd468 8504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 8505 objfile_name (objfile));
ae038cb0
DJ
8506}
8507
3019eac3 8508/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
8509
8510static void
dee91e82 8511load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 8512 const gdb_byte *info_ptr,
dee91e82
DE
8513 struct die_info *comp_unit_die,
8514 int has_children,
8515 void *data)
ae038cb0 8516{
dee91e82 8517 struct dwarf2_cu *cu = reader->cu;
ae038cb0 8518
95554aad 8519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 8520
ae038cb0
DJ
8521 /* Check if comp unit has_children.
8522 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 8523 If not, there's no more debug_info for this comp unit. */
d85a05f0 8524 if (has_children)
dee91e82
DE
8525 load_partial_dies (reader, info_ptr, 0);
8526}
98bfdba5 8527
dee91e82
DE
8528/* Load the partial DIEs for a secondary CU into memory.
8529 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 8530
dee91e82
DE
8531static void
8532load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8533{
58f0c718 8534 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
f4dc4d17 8535 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
8536}
8537
ae038cb0 8538static void
ed2dc618 8539read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
36586728 8540 struct dwarf2_section_info *section,
f1902523 8541 struct dwarf2_section_info *abbrev_section,
b76e467d 8542 unsigned int is_dwz)
ae038cb0 8543{
d521ce57 8544 const gdb_byte *info_ptr;
ed2dc618 8545 struct objfile *objfile = dwarf2_per_objfile->objfile;
be391dca 8546
b4f54984 8547 if (dwarf_read_debug)
bf6af496 8548 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
8549 get_section_name (section),
8550 get_section_file_name (section));
bf6af496 8551
36586728 8552 dwarf2_read_section (objfile, section);
ae038cb0 8553
36586728 8554 info_ptr = section->buffer;
6e70227d 8555
36586728 8556 while (info_ptr < section->buffer + section->size)
ae038cb0 8557 {
ae038cb0 8558 struct dwarf2_per_cu_data *this_cu;
ae038cb0 8559
9c541725 8560 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 8561
f1902523 8562 comp_unit_head cu_header;
ed2dc618
SM
8563 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8564 abbrev_section, info_ptr,
8565 rcuh_kind::COMPILE);
ae038cb0
DJ
8566
8567 /* Save the compilation unit for later lookup. */
f1902523
JK
8568 if (cu_header.unit_type != DW_UT_type)
8569 {
8570 this_cu = XOBNEW (&objfile->objfile_obstack,
8571 struct dwarf2_per_cu_data);
8572 memset (this_cu, 0, sizeof (*this_cu));
8573 }
8574 else
8575 {
8576 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8577 struct signatured_type);
8578 memset (sig_type, 0, sizeof (*sig_type));
8579 sig_type->signature = cu_header.signature;
8580 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8581 this_cu = &sig_type->per_cu;
8582 }
8583 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 8584 this_cu->sect_off = sect_off;
f1902523 8585 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 8586 this_cu->is_dwz = is_dwz;
e3b94546 8587 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8a0459fd 8588 this_cu->section = section;
ae038cb0 8589
b76e467d 8590 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
ae038cb0
DJ
8591
8592 info_ptr = info_ptr + this_cu->length;
8593 }
36586728
TT
8594}
8595
8596/* Create a list of all compilation units in OBJFILE.
8597 This is only done for -readnow and building partial symtabs. */
8598
8599static void
ed2dc618 8600create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 8601{
b76e467d 8602 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
ed2dc618 8603 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
b76e467d 8604 &dwarf2_per_objfile->abbrev, 0);
36586728 8605
b76e467d 8606 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 8607 if (dwz != NULL)
ed2dc618 8608 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
b76e467d 8609 1);
c906108c
SS
8610}
8611
5734ee8b 8612/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 8613 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 8614 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
8615 DW_AT_ranges). See the comments of add_partial_subprogram on how
8616 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 8617
72bf9492
DJ
8618static void
8619scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
8620 CORE_ADDR *highpc, int set_addrmap,
8621 struct dwarf2_cu *cu)
c906108c 8622{
72bf9492 8623 struct partial_die_info *pdi;
c906108c 8624
91c24f0a
DC
8625 /* Now, march along the PDI's, descending into ones which have
8626 interesting children but skipping the children of the other ones,
8627 until we reach the end of the compilation unit. */
c906108c 8628
72bf9492 8629 pdi = first_die;
91c24f0a 8630
72bf9492
DJ
8631 while (pdi != NULL)
8632 {
52356b79 8633 pdi->fixup (cu);
c906108c 8634
f55ee35c 8635 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
8636 children, so we need to look at them. Ditto for anonymous
8637 enums. */
933c6fe4 8638
72bf9492 8639 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad 8640 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
b1dc1806
XR
8641 || pdi->tag == DW_TAG_imported_unit
8642 || pdi->tag == DW_TAG_inlined_subroutine)
c906108c 8643 {
72bf9492 8644 switch (pdi->tag)
c906108c
SS
8645 {
8646 case DW_TAG_subprogram:
b1dc1806 8647 case DW_TAG_inlined_subroutine:
cdc07690 8648 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 8649 break;
72929c62 8650 case DW_TAG_constant:
c906108c
SS
8651 case DW_TAG_variable:
8652 case DW_TAG_typedef:
91c24f0a 8653 case DW_TAG_union_type:
72bf9492 8654 if (!pdi->is_declaration)
63d06c5c 8655 {
72bf9492 8656 add_partial_symbol (pdi, cu);
63d06c5c
DC
8657 }
8658 break;
c906108c 8659 case DW_TAG_class_type:
680b30c7 8660 case DW_TAG_interface_type:
c906108c 8661 case DW_TAG_structure_type:
72bf9492 8662 if (!pdi->is_declaration)
c906108c 8663 {
72bf9492 8664 add_partial_symbol (pdi, cu);
c906108c 8665 }
b7fee5a3
KS
8666 if ((cu->language == language_rust
8667 || cu->language == language_cplus) && pdi->has_children)
e98c9e7c
TT
8668 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8669 set_addrmap, cu);
c906108c 8670 break;
91c24f0a 8671 case DW_TAG_enumeration_type:
72bf9492
DJ
8672 if (!pdi->is_declaration)
8673 add_partial_enumeration (pdi, cu);
c906108c
SS
8674 break;
8675 case DW_TAG_base_type:
a02abb62 8676 case DW_TAG_subrange_type:
c906108c 8677 /* File scope base type definitions are added to the partial
c5aa993b 8678 symbol table. */
72bf9492 8679 add_partial_symbol (pdi, cu);
c906108c 8680 break;
d9fa45fe 8681 case DW_TAG_namespace:
cdc07690 8682 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 8683 break;
5d7cb8df 8684 case DW_TAG_module:
cdc07690 8685 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 8686 break;
95554aad
TT
8687 case DW_TAG_imported_unit:
8688 {
8689 struct dwarf2_per_cu_data *per_cu;
8690
f4dc4d17
DE
8691 /* For now we don't handle imported units in type units. */
8692 if (cu->per_cu->is_debug_types)
8693 {
8694 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8695 " supported in type units [in module %s]"),
518817b3 8696 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
8697 }
8698
e3b94546
SM
8699 per_cu = dwarf2_find_containing_comp_unit
8700 (pdi->d.sect_off, pdi->is_dwz,
518817b3 8701 cu->per_cu->dwarf2_per_objfile);
95554aad
TT
8702
8703 /* Go read the partial unit, if needed. */
8704 if (per_cu->v.psymtab == NULL)
b93601f3 8705 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 8706
f4dc4d17 8707 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 8708 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
8709 }
8710 break;
74921315
KS
8711 case DW_TAG_imported_declaration:
8712 add_partial_symbol (pdi, cu);
8713 break;
c906108c
SS
8714 default:
8715 break;
8716 }
8717 }
8718
72bf9492
DJ
8719 /* If the die has a sibling, skip to the sibling. */
8720
8721 pdi = pdi->die_sibling;
8722 }
8723}
8724
8725/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 8726
72bf9492 8727 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 8728 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
8729 Enumerators are an exception; they use the scope of their parent
8730 enumeration type, i.e. the name of the enumeration type is not
8731 prepended to the enumerator.
91c24f0a 8732
72bf9492
DJ
8733 There are two complexities. One is DW_AT_specification; in this
8734 case "parent" means the parent of the target of the specification,
8735 instead of the direct parent of the DIE. The other is compilers
8736 which do not emit DW_TAG_namespace; in this case we try to guess
8737 the fully qualified name of structure types from their members'
8738 linkage names. This must be done using the DIE's children rather
8739 than the children of any DW_AT_specification target. We only need
8740 to do this for structures at the top level, i.e. if the target of
8741 any DW_AT_specification (if any; otherwise the DIE itself) does not
8742 have a parent. */
8743
8744/* Compute the scope prefix associated with PDI's parent, in
8745 compilation unit CU. The result will be allocated on CU's
8746 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8747 field. NULL is returned if no prefix is necessary. */
15d034d0 8748static const char *
72bf9492
DJ
8749partial_die_parent_scope (struct partial_die_info *pdi,
8750 struct dwarf2_cu *cu)
8751{
15d034d0 8752 const char *grandparent_scope;
72bf9492 8753 struct partial_die_info *parent, *real_pdi;
91c24f0a 8754
72bf9492
DJ
8755 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8756 then this means the parent of the specification DIE. */
8757
8758 real_pdi = pdi;
72bf9492 8759 while (real_pdi->has_specification)
36586728
TT
8760 real_pdi = find_partial_die (real_pdi->spec_offset,
8761 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
8762
8763 parent = real_pdi->die_parent;
8764 if (parent == NULL)
8765 return NULL;
8766
8767 if (parent->scope_set)
8768 return parent->scope;
8769
52356b79 8770 parent->fixup (cu);
72bf9492 8771
10b3939b 8772 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 8773
acebe513
UW
8774 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8775 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8776 Work around this problem here. */
8777 if (cu->language == language_cplus
6e70227d 8778 && parent->tag == DW_TAG_namespace
acebe513
UW
8779 && strcmp (parent->name, "::") == 0
8780 && grandparent_scope == NULL)
8781 {
8782 parent->scope = NULL;
8783 parent->scope_set = 1;
8784 return NULL;
8785 }
8786
9c6c53f7
SA
8787 if (pdi->tag == DW_TAG_enumerator)
8788 /* Enumerators should not get the name of the enumeration as a prefix. */
8789 parent->scope = grandparent_scope;
8790 else if (parent->tag == DW_TAG_namespace
f55ee35c 8791 || parent->tag == DW_TAG_module
72bf9492
DJ
8792 || parent->tag == DW_TAG_structure_type
8793 || parent->tag == DW_TAG_class_type
680b30c7 8794 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
8795 || parent->tag == DW_TAG_union_type
8796 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
8797 {
8798 if (grandparent_scope == NULL)
8799 parent->scope = parent->name;
8800 else
3e43a32a
MS
8801 parent->scope = typename_concat (&cu->comp_unit_obstack,
8802 grandparent_scope,
f55ee35c 8803 parent->name, 0, cu);
72bf9492 8804 }
72bf9492
DJ
8805 else
8806 {
8807 /* FIXME drow/2004-04-01: What should we be doing with
8808 function-local names? For partial symbols, we should probably be
8809 ignoring them. */
b98664d3 8810 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
9d8780f0 8811 parent->tag, sect_offset_str (pdi->sect_off));
72bf9492 8812 parent->scope = grandparent_scope;
c906108c
SS
8813 }
8814
72bf9492
DJ
8815 parent->scope_set = 1;
8816 return parent->scope;
8817}
8818
8819/* Return the fully scoped name associated with PDI, from compilation unit
8820 CU. The result will be allocated with malloc. */
4568ecf9 8821
72bf9492
DJ
8822static char *
8823partial_die_full_name (struct partial_die_info *pdi,
8824 struct dwarf2_cu *cu)
8825{
15d034d0 8826 const char *parent_scope;
72bf9492 8827
98bfdba5
PA
8828 /* If this is a template instantiation, we can not work out the
8829 template arguments from partial DIEs. So, unfortunately, we have
8830 to go through the full DIEs. At least any work we do building
8831 types here will be reused if full symbols are loaded later. */
8832 if (pdi->has_template_arguments)
8833 {
52356b79 8834 pdi->fixup (cu);
98bfdba5
PA
8835
8836 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8837 {
8838 struct die_info *die;
8839 struct attribute attr;
8840 struct dwarf2_cu *ref_cu = cu;
8841
b64f50a1 8842 /* DW_FORM_ref_addr is using section offset. */
b4069958 8843 attr.name = (enum dwarf_attribute) 0;
98bfdba5 8844 attr.form = DW_FORM_ref_addr;
9c541725 8845 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
8846 die = follow_die_ref (NULL, &attr, &ref_cu);
8847
8848 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8849 }
8850 }
8851
72bf9492
DJ
8852 parent_scope = partial_die_parent_scope (pdi, cu);
8853 if (parent_scope == NULL)
8854 return NULL;
8855 else
f55ee35c 8856 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
8857}
8858
8859static void
72bf9492 8860add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 8861{
518817b3
SM
8862 struct dwarf2_per_objfile *dwarf2_per_objfile
8863 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 8864 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 8865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 8866 CORE_ADDR addr = 0;
15d034d0 8867 const char *actual_name = NULL;
e142c38c 8868 CORE_ADDR baseaddr;
15d034d0 8869 char *built_actual_name;
e142c38c
DJ
8870
8871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8872
15d034d0
TT
8873 built_actual_name = partial_die_full_name (pdi, cu);
8874 if (built_actual_name != NULL)
8875 actual_name = built_actual_name;
63d06c5c 8876
72bf9492
DJ
8877 if (actual_name == NULL)
8878 actual_name = pdi->name;
8879
c906108c
SS
8880 switch (pdi->tag)
8881 {
b1dc1806 8882 case DW_TAG_inlined_subroutine:
c906108c 8883 case DW_TAG_subprogram:
79748972
TT
8884 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8885 - baseaddr);
2cfa0c8d 8886 if (pdi->is_external || cu->language == language_ada)
c906108c 8887 {
2cfa0c8d
JB
8888 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8889 of the global scope. But in Ada, we want to be able to access
8890 nested procedures globally. So all Ada subprograms are stored
8891 in the global scope. */
f47fb265 8892 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8893 built_actual_name != NULL,
f47fb265 8894 VAR_DOMAIN, LOC_BLOCK,
79748972 8895 SECT_OFF_TEXT (objfile),
f47fb265 8896 &objfile->global_psymbols,
79748972
TT
8897 addr,
8898 cu->language, objfile);
c906108c
SS
8899 }
8900 else
8901 {
f47fb265 8902 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8903 built_actual_name != NULL,
f47fb265 8904 VAR_DOMAIN, LOC_BLOCK,
79748972 8905 SECT_OFF_TEXT (objfile),
f47fb265 8906 &objfile->static_psymbols,
1762568f 8907 addr, cu->language, objfile);
c906108c 8908 }
0c1b455e
TT
8909
8910 if (pdi->main_subprogram && actual_name != NULL)
8911 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 8912 break;
72929c62
JB
8913 case DW_TAG_constant:
8914 {
af5bf4ad 8915 std::vector<partial_symbol *> *list;
72929c62
JB
8916
8917 if (pdi->is_external)
8918 list = &objfile->global_psymbols;
8919 else
8920 list = &objfile->static_psymbols;
f47fb265 8921 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8922 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
79748972 8923 -1, list, 0, cu->language, objfile);
72929c62
JB
8924 }
8925 break;
c906108c 8926 case DW_TAG_variable:
95554aad
TT
8927 if (pdi->d.locdesc)
8928 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 8929
95554aad 8930 if (pdi->d.locdesc
caac4577
JG
8931 && addr == 0
8932 && !dwarf2_per_objfile->has_section_at_zero)
8933 {
8934 /* A global or static variable may also have been stripped
8935 out by the linker if unused, in which case its address
8936 will be nullified; do not add such variables into partial
8937 symbol table then. */
8938 }
8939 else if (pdi->is_external)
c906108c
SS
8940 {
8941 /* Global Variable.
8942 Don't enter into the minimal symbol tables as there is
8943 a minimal symbol table entry from the ELF symbols already.
8944 Enter into partial symbol table if it has a location
8945 descriptor or a type.
8946 If the location descriptor is missing, new_symbol will create
8947 a LOC_UNRESOLVED symbol, the address of the variable will then
8948 be determined from the minimal symbol table whenever the variable
8949 is referenced.
8950 The address for the partial symbol table entry is not
8951 used by GDB, but it comes in handy for debugging partial symbol
8952 table building. */
8953
95554aad 8954 if (pdi->d.locdesc || pdi->has_type)
f47fb265 8955 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8956 built_actual_name != NULL,
f47fb265 8957 VAR_DOMAIN, LOC_STATIC,
79748972 8958 SECT_OFF_TEXT (objfile),
f47fb265 8959 &objfile->global_psymbols,
79748972 8960 addr, cu->language, objfile);
c906108c
SS
8961 }
8962 else
8963 {
ff908ebf
AW
8964 int has_loc = pdi->d.locdesc != NULL;
8965
8966 /* Static Variable. Skip symbols whose value we cannot know (those
8967 without location descriptors or constant values). */
8968 if (!has_loc && !pdi->has_const_value)
decbce07 8969 {
15d034d0 8970 xfree (built_actual_name);
decbce07
MS
8971 return;
8972 }
ff908ebf 8973
f47fb265 8974 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8975 built_actual_name != NULL,
f47fb265 8976 VAR_DOMAIN, LOC_STATIC,
79748972 8977 SECT_OFF_TEXT (objfile),
f47fb265 8978 &objfile->static_psymbols,
79748972 8979 has_loc ? addr : 0,
f47fb265 8980 cu->language, objfile);
c906108c
SS
8981 }
8982 break;
8983 case DW_TAG_typedef:
8984 case DW_TAG_base_type:
a02abb62 8985 case DW_TAG_subrange_type:
38d518c9 8986 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8987 built_actual_name != NULL,
79748972 8988 VAR_DOMAIN, LOC_TYPEDEF, -1,
c906108c 8989 &objfile->static_psymbols,
1762568f 8990 0, cu->language, objfile);
c906108c 8991 break;
74921315 8992 case DW_TAG_imported_declaration:
72bf9492
DJ
8993 case DW_TAG_namespace:
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8995 built_actual_name != NULL,
79748972 8996 VAR_DOMAIN, LOC_TYPEDEF, -1,
72bf9492 8997 &objfile->global_psymbols,
1762568f 8998 0, cu->language, objfile);
72bf9492 8999 break;
530e8392
KB
9000 case DW_TAG_module:
9001 add_psymbol_to_list (actual_name, strlen (actual_name),
9002 built_actual_name != NULL,
79748972 9003 MODULE_DOMAIN, LOC_TYPEDEF, -1,
530e8392 9004 &objfile->global_psymbols,
1762568f 9005 0, cu->language, objfile);
530e8392 9006 break;
c906108c 9007 case DW_TAG_class_type:
680b30c7 9008 case DW_TAG_interface_type:
c906108c
SS
9009 case DW_TAG_structure_type:
9010 case DW_TAG_union_type:
9011 case DW_TAG_enumeration_type:
fa4028e9
JB
9012 /* Skip external references. The DWARF standard says in the section
9013 about "Structure, Union, and Class Type Entries": "An incomplete
9014 structure, union or class type is represented by a structure,
9015 union or class entry that does not have a byte size attribute
9016 and that has a DW_AT_declaration attribute." */
9017 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 9018 {
15d034d0 9019 xfree (built_actual_name);
decbce07
MS
9020 return;
9021 }
fa4028e9 9022
63d06c5c
DC
9023 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9024 static vs. global. */
38d518c9 9025 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9026 built_actual_name != NULL,
79748972 9027 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9c37b5ae 9028 cu->language == language_cplus
63d06c5c
DC
9029 ? &objfile->global_psymbols
9030 : &objfile->static_psymbols,
1762568f 9031 0, cu->language, objfile);
c906108c 9032
c906108c
SS
9033 break;
9034 case DW_TAG_enumerator:
38d518c9 9035 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9036 built_actual_name != NULL,
79748972 9037 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 9038 cu->language == language_cplus
f6fe98ef
DJ
9039 ? &objfile->global_psymbols
9040 : &objfile->static_psymbols,
1762568f 9041 0, cu->language, objfile);
c906108c
SS
9042 break;
9043 default:
9044 break;
9045 }
5c4e30ca 9046
15d034d0 9047 xfree (built_actual_name);
c906108c
SS
9048}
9049
5c4e30ca
DC
9050/* Read a partial die corresponding to a namespace; also, add a symbol
9051 corresponding to that namespace to the symbol table. NAMESPACE is
9052 the name of the enclosing namespace. */
91c24f0a 9053
72bf9492
DJ
9054static void
9055add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 9056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9057 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 9058{
72bf9492 9059 /* Add a symbol for the namespace. */
e7c27a73 9060
72bf9492 9061 add_partial_symbol (pdi, cu);
5c4e30ca
DC
9062
9063 /* Now scan partial symbols in that namespace. */
9064
91c24f0a 9065 if (pdi->has_children)
cdc07690 9066 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
9067}
9068
5d7cb8df
JK
9069/* Read a partial die corresponding to a Fortran module. */
9070
9071static void
9072add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 9073 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 9074{
530e8392
KB
9075 /* Add a symbol for the namespace. */
9076
9077 add_partial_symbol (pdi, cu);
9078
f55ee35c 9079 /* Now scan partial symbols in that module. */
5d7cb8df
JK
9080
9081 if (pdi->has_children)
cdc07690 9082 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
9083}
9084
b1dc1806
XR
9085/* Read a partial die corresponding to a subprogram or an inlined
9086 subprogram and create a partial symbol for that subprogram.
9087 When the CU language allows it, this routine also defines a partial
9088 symbol for each nested subprogram that this subprogram contains.
9089 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9090 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
6e70227d 9091
cdc07690
YQ
9092 PDI may also be a lexical block, in which case we simply search
9093 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
9094 Again, this is only performed when the CU language allows this
9095 type of definitions. */
9096
9097static void
9098add_partial_subprogram (struct partial_die_info *pdi,
9099 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9100 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58 9101{
b1dc1806 9102 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
bc30ff58
JB
9103 {
9104 if (pdi->has_pc_info)
9105 {
9106 if (pdi->lowpc < *lowpc)
9107 *lowpc = pdi->lowpc;
9108 if (pdi->highpc > *highpc)
9109 *highpc = pdi->highpc;
cdc07690 9110 if (set_addrmap)
5734ee8b 9111 {
518817b3 9112 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a
MR
9113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9114 CORE_ADDR baseaddr;
9115 CORE_ADDR highpc;
9116 CORE_ADDR lowpc;
5734ee8b
DJ
9117
9118 baseaddr = ANOFFSET (objfile->section_offsets,
9119 SECT_OFF_TEXT (objfile));
79748972
TT
9120 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
9121 pdi->lowpc + baseaddr)
9122 - baseaddr);
9123 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
9124 pdi->highpc + baseaddr)
9125 - baseaddr);
3e29f34a 9126 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 9127 cu->per_cu->v.psymtab);
5734ee8b 9128 }
481860b3
GB
9129 }
9130
9131 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9132 {
bc30ff58 9133 if (!pdi->is_declaration)
e8d05480
JB
9134 /* Ignore subprogram DIEs that do not have a name, they are
9135 illegal. Do not emit a complaint at this point, we will
9136 do so when we convert this psymtab into a symtab. */
9137 if (pdi->name)
9138 add_partial_symbol (pdi, cu);
bc30ff58
JB
9139 }
9140 }
6e70227d 9141
bc30ff58
JB
9142 if (! pdi->has_children)
9143 return;
9144
9145 if (cu->language == language_ada)
9146 {
9147 pdi = pdi->die_child;
9148 while (pdi != NULL)
9149 {
52356b79 9150 pdi->fixup (cu);
bc30ff58 9151 if (pdi->tag == DW_TAG_subprogram
b1dc1806 9152 || pdi->tag == DW_TAG_inlined_subroutine
bc30ff58 9153 || pdi->tag == DW_TAG_lexical_block)
cdc07690 9154 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
9155 pdi = pdi->die_sibling;
9156 }
9157 }
9158}
9159
91c24f0a
DC
9160/* Read a partial die corresponding to an enumeration type. */
9161
72bf9492
DJ
9162static void
9163add_partial_enumeration (struct partial_die_info *enum_pdi,
9164 struct dwarf2_cu *cu)
91c24f0a 9165{
72bf9492 9166 struct partial_die_info *pdi;
91c24f0a
DC
9167
9168 if (enum_pdi->name != NULL)
72bf9492
DJ
9169 add_partial_symbol (enum_pdi, cu);
9170
9171 pdi = enum_pdi->die_child;
9172 while (pdi)
91c24f0a 9173 {
72bf9492 9174 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
b98664d3 9175 complaint (_("malformed enumerator DIE ignored"));
91c24f0a 9176 else
72bf9492
DJ
9177 add_partial_symbol (pdi, cu);
9178 pdi = pdi->die_sibling;
91c24f0a 9179 }
91c24f0a
DC
9180}
9181
6caca83c
CC
9182/* Return the initial uleb128 in the die at INFO_PTR. */
9183
9184static unsigned int
d521ce57 9185peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
9186{
9187 unsigned int bytes_read;
9188
9189 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9190}
9191
685af9cd
TT
9192/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9193 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9194
4bb7a0a7
DJ
9195 Return the corresponding abbrev, or NULL if the number is zero (indicating
9196 an empty DIE). In either case *BYTES_READ will be set to the length of
9197 the initial number. */
9198
9199static struct abbrev_info *
685af9cd
TT
9200peek_die_abbrev (const die_reader_specs &reader,
9201 const gdb_byte *info_ptr, unsigned int *bytes_read)
4bb7a0a7 9202{
685af9cd 9203 dwarf2_cu *cu = reader.cu;
518817b3 9204 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
685af9cd
TT
9205 unsigned int abbrev_number
9206 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4bb7a0a7
DJ
9207
9208 if (abbrev_number == 0)
9209 return NULL;
9210
685af9cd 9211 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
4bb7a0a7
DJ
9212 if (!abbrev)
9213 {
422b9917 9214 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9d8780f0 9215 " at offset %s [in module %s]"),
422b9917 9216 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9d8780f0 9217 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
9218 }
9219
9220 return abbrev;
9221}
9222
93311388
DE
9223/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9224 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
9225 DIE. Any children of the skipped DIEs will also be skipped. */
9226
d521ce57
TT
9227static const gdb_byte *
9228skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 9229{
4bb7a0a7
DJ
9230 while (1)
9231 {
685af9cd
TT
9232 unsigned int bytes_read;
9233 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9234
4bb7a0a7
DJ
9235 if (abbrev == NULL)
9236 return info_ptr + bytes_read;
9237 else
dee91e82 9238 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
9239 }
9240}
9241
93311388
DE
9242/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9243 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
9244 abbrev corresponding to that skipped uleb128 should be passed in
9245 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9246 children. */
9247
d521ce57
TT
9248static const gdb_byte *
9249skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 9250 struct abbrev_info *abbrev)
4bb7a0a7
DJ
9251{
9252 unsigned int bytes_read;
9253 struct attribute attr;
dee91e82
DE
9254 bfd *abfd = reader->abfd;
9255 struct dwarf2_cu *cu = reader->cu;
d521ce57 9256 const gdb_byte *buffer = reader->buffer;
f664829e 9257 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
9258 unsigned int form, i;
9259
9260 for (i = 0; i < abbrev->num_attrs; i++)
9261 {
9262 /* The only abbrev we care about is DW_AT_sibling. */
9263 if (abbrev->attrs[i].name == DW_AT_sibling)
9264 {
dee91e82 9265 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 9266 if (attr.form == DW_FORM_ref_addr)
b98664d3 9267 complaint (_("ignoring absolute DW_AT_sibling"));
4bb7a0a7 9268 else
b9502d3f 9269 {
9c541725
PA
9270 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9271 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
9272
9273 if (sibling_ptr < info_ptr)
b98664d3 9274 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
9275 else if (sibling_ptr > reader->buffer_end)
9276 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
9277 else
9278 return sibling_ptr;
9279 }
4bb7a0a7
DJ
9280 }
9281
9282 /* If it isn't DW_AT_sibling, skip this attribute. */
9283 form = abbrev->attrs[i].form;
9284 skip_attribute:
9285 switch (form)
9286 {
4bb7a0a7 9287 case DW_FORM_ref_addr:
ae411497
TT
9288 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9289 and later it is offset sized. */
9290 if (cu->header.version == 2)
9291 info_ptr += cu->header.addr_size;
9292 else
9293 info_ptr += cu->header.offset_size;
9294 break;
36586728
TT
9295 case DW_FORM_GNU_ref_alt:
9296 info_ptr += cu->header.offset_size;
9297 break;
ae411497 9298 case DW_FORM_addr:
4bb7a0a7
DJ
9299 info_ptr += cu->header.addr_size;
9300 break;
9301 case DW_FORM_data1:
9302 case DW_FORM_ref1:
9303 case DW_FORM_flag:
9304 info_ptr += 1;
9305 break;
2dc7f7b3 9306 case DW_FORM_flag_present:
43988095 9307 case DW_FORM_implicit_const:
2dc7f7b3 9308 break;
4bb7a0a7
DJ
9309 case DW_FORM_data2:
9310 case DW_FORM_ref2:
9311 info_ptr += 2;
9312 break;
9313 case DW_FORM_data4:
9314 case DW_FORM_ref4:
9315 info_ptr += 4;
9316 break;
9317 case DW_FORM_data8:
9318 case DW_FORM_ref8:
55f1336d 9319 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
9320 info_ptr += 8;
9321 break;
0224619f
JK
9322 case DW_FORM_data16:
9323 info_ptr += 16;
9324 break;
4bb7a0a7 9325 case DW_FORM_string:
9b1c24c8 9326 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
9327 info_ptr += bytes_read;
9328 break;
2dc7f7b3 9329 case DW_FORM_sec_offset:
4bb7a0a7 9330 case DW_FORM_strp:
36586728 9331 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
9332 info_ptr += cu->header.offset_size;
9333 break;
2dc7f7b3 9334 case DW_FORM_exprloc:
4bb7a0a7
DJ
9335 case DW_FORM_block:
9336 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9337 info_ptr += bytes_read;
9338 break;
9339 case DW_FORM_block1:
9340 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9341 break;
9342 case DW_FORM_block2:
9343 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9344 break;
9345 case DW_FORM_block4:
9346 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9347 break;
9348 case DW_FORM_sdata:
9349 case DW_FORM_udata:
9350 case DW_FORM_ref_udata:
3019eac3
DE
9351 case DW_FORM_GNU_addr_index:
9352 case DW_FORM_GNU_str_index:
d521ce57 9353 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
9354 break;
9355 case DW_FORM_indirect:
9356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9357 info_ptr += bytes_read;
9358 /* We need to continue parsing from here, so just go back to
9359 the top. */
9360 goto skip_attribute;
9361
9362 default:
3e43a32a
MS
9363 error (_("Dwarf Error: Cannot handle %s "
9364 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
9365 dwarf_form_name (form),
9366 bfd_get_filename (abfd));
9367 }
9368 }
9369
9370 if (abbrev->has_children)
dee91e82 9371 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
9372 else
9373 return info_ptr;
9374}
9375
93311388 9376/* Locate ORIG_PDI's sibling.
dee91e82 9377 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 9378
d521ce57 9379static const gdb_byte *
dee91e82
DE
9380locate_pdi_sibling (const struct die_reader_specs *reader,
9381 struct partial_die_info *orig_pdi,
d521ce57 9382 const gdb_byte *info_ptr)
91c24f0a
DC
9383{
9384 /* Do we know the sibling already? */
72bf9492 9385
91c24f0a
DC
9386 if (orig_pdi->sibling)
9387 return orig_pdi->sibling;
9388
9389 /* Are there any children to deal with? */
9390
9391 if (!orig_pdi->has_children)
9392 return info_ptr;
9393
4bb7a0a7 9394 /* Skip the children the long way. */
91c24f0a 9395
dee91e82 9396 return skip_children (reader, info_ptr);
91c24f0a
DC
9397}
9398
257e7a09 9399/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 9400 not NULL. */
c906108c
SS
9401
9402static void
257e7a09
YQ
9403dwarf2_read_symtab (struct partial_symtab *self,
9404 struct objfile *objfile)
c906108c 9405{
ed2dc618
SM
9406 struct dwarf2_per_objfile *dwarf2_per_objfile
9407 = get_dwarf2_per_objfile (objfile);
9408
257e7a09 9409 if (self->readin)
c906108c 9410 {
442e4d9c 9411 warning (_("bug: psymtab for %s is already read in."),
257e7a09 9412 self->filename);
442e4d9c
YQ
9413 }
9414 else
9415 {
9416 if (info_verbose)
c906108c 9417 {
442e4d9c 9418 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 9419 self->filename);
442e4d9c 9420 gdb_flush (gdb_stdout);
c906108c 9421 }
c906108c 9422
442e4d9c
YQ
9423 /* If this psymtab is constructed from a debug-only objfile, the
9424 has_section_at_zero flag will not necessarily be correct. We
9425 can get the correct value for this flag by looking at the data
9426 associated with the (presumably stripped) associated objfile. */
9427 if (objfile->separate_debug_objfile_backlink)
9428 {
9429 struct dwarf2_per_objfile *dpo_backlink
ed2dc618 9430 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9a619af0 9431
442e4d9c
YQ
9432 dwarf2_per_objfile->has_section_at_zero
9433 = dpo_backlink->has_section_at_zero;
9434 }
b2ab525c 9435
442e4d9c 9436 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 9437
257e7a09 9438 psymtab_to_symtab_1 (self);
c906108c 9439
442e4d9c
YQ
9440 /* Finish up the debug error message. */
9441 if (info_verbose)
9442 printf_filtered (_("done.\n"));
c906108c 9443 }
95554aad 9444
ed2dc618 9445 process_cu_includes (dwarf2_per_objfile);
c906108c 9446}
9cdd5dbd
DE
9447\f
9448/* Reading in full CUs. */
c906108c 9449
10b3939b
DJ
9450/* Add PER_CU to the queue. */
9451
9452static void
95554aad
TT
9453queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9454 enum language pretend_language)
10b3939b
DJ
9455{
9456 struct dwarf2_queue_item *item;
9457
9458 per_cu->queued = 1;
8d749320 9459 item = XNEW (struct dwarf2_queue_item);
10b3939b 9460 item->per_cu = per_cu;
95554aad 9461 item->pretend_language = pretend_language;
10b3939b
DJ
9462 item->next = NULL;
9463
9464 if (dwarf2_queue == NULL)
9465 dwarf2_queue = item;
9466 else
9467 dwarf2_queue_tail->next = item;
9468
9469 dwarf2_queue_tail = item;
9470}
9471
89e63ee4
DE
9472/* If PER_CU is not yet queued, add it to the queue.
9473 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9474 dependency.
0907af0c 9475 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
9476 meaning either PER_CU is already queued or it is already loaded.
9477
9478 N.B. There is an invariant here that if a CU is queued then it is loaded.
9479 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
9480
9481static int
89e63ee4 9482maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
9483 struct dwarf2_per_cu_data *per_cu,
9484 enum language pretend_language)
9485{
9486 /* We may arrive here during partial symbol reading, if we need full
9487 DIEs to process an unusual case (e.g. template arguments). Do
9488 not queue PER_CU, just tell our caller to load its DIEs. */
ed2dc618 9489 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
0907af0c
DE
9490 {
9491 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9492 return 1;
9493 return 0;
9494 }
9495
9496 /* Mark the dependence relation so that we don't flush PER_CU
9497 too early. */
89e63ee4
DE
9498 if (dependent_cu != NULL)
9499 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
9500
9501 /* If it's already on the queue, we have nothing to do. */
9502 if (per_cu->queued)
9503 return 0;
9504
9505 /* If the compilation unit is already loaded, just mark it as
9506 used. */
9507 if (per_cu->cu != NULL)
9508 {
9509 per_cu->cu->last_used = 0;
9510 return 0;
9511 }
9512
9513 /* Add it to the queue. */
9514 queue_comp_unit (per_cu, pretend_language);
9515
9516 return 1;
9517}
9518
10b3939b
DJ
9519/* Process the queue. */
9520
9521static void
ed2dc618 9522process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
10b3939b
DJ
9523{
9524 struct dwarf2_queue_item *item, *next_item;
9525
b4f54984 9526 if (dwarf_read_debug)
45cfd468
DE
9527 {
9528 fprintf_unfiltered (gdb_stdlog,
9529 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 9530 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
9531 }
9532
03dd20cc
DJ
9533 /* The queue starts out with one item, but following a DIE reference
9534 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
9535 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9536 {
cc12ce38
DE
9537 if ((dwarf2_per_objfile->using_index
9538 ? !item->per_cu->v.quick->compunit_symtab
9539 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9540 /* Skip dummy CUs. */
9541 && item->per_cu->cu != NULL)
f4dc4d17
DE
9542 {
9543 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 9544 unsigned int debug_print_threshold;
247f5c4f 9545 char buf[100];
f4dc4d17 9546
247f5c4f 9547 if (per_cu->is_debug_types)
f4dc4d17 9548 {
247f5c4f
DE
9549 struct signatured_type *sig_type =
9550 (struct signatured_type *) per_cu;
9551
9d8780f0 9552 sprintf (buf, "TU %s at offset %s",
73be47f5 9553 hex_string (sig_type->signature),
9d8780f0 9554 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9555 /* There can be 100s of TUs.
9556 Only print them in verbose mode. */
9557 debug_print_threshold = 2;
f4dc4d17 9558 }
247f5c4f 9559 else
73be47f5 9560 {
9d8780f0
SM
9561 sprintf (buf, "CU at offset %s",
9562 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9563 debug_print_threshold = 1;
9564 }
247f5c4f 9565
b4f54984 9566 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9567 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
9568
9569 if (per_cu->is_debug_types)
9570 process_full_type_unit (per_cu, item->pretend_language);
9571 else
9572 process_full_comp_unit (per_cu, item->pretend_language);
9573
b4f54984 9574 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9575 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 9576 }
10b3939b
DJ
9577
9578 item->per_cu->queued = 0;
9579 next_item = item->next;
9580 xfree (item);
9581 }
9582
9583 dwarf2_queue_tail = NULL;
45cfd468 9584
b4f54984 9585 if (dwarf_read_debug)
45cfd468
DE
9586 {
9587 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 9588 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 9589 }
10b3939b
DJ
9590}
9591
10b3939b
DJ
9592/* Read in full symbols for PST, and anything it depends on. */
9593
c906108c 9594static void
fba45db2 9595psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 9596{
10b3939b 9597 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
9598 int i;
9599
95554aad
TT
9600 if (pst->readin)
9601 return;
9602
aaa75496 9603 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
9604 if (!pst->dependencies[i]->readin
9605 && pst->dependencies[i]->user == NULL)
aaa75496
JB
9606 {
9607 /* Inform about additional files that need to be read in. */
9608 if (info_verbose)
9609 {
a3f17187 9610 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
9611 fputs_filtered (" ", gdb_stdout);
9612 wrap_here ("");
9613 fputs_filtered ("and ", gdb_stdout);
9614 wrap_here ("");
9615 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 9616 wrap_here (""); /* Flush output. */
aaa75496
JB
9617 gdb_flush (gdb_stdout);
9618 }
9619 psymtab_to_symtab_1 (pst->dependencies[i]);
9620 }
9621
9a3c8263 9622 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
9623
9624 if (per_cu == NULL)
aaa75496
JB
9625 {
9626 /* It's an include file, no symbols to read for it.
9627 Everything is in the parent symtab. */
9628 pst->readin = 1;
9629 return;
9630 }
c906108c 9631
58f0c718 9632 dw2_do_instantiate_symtab (per_cu, false);
10b3939b
DJ
9633}
9634
dee91e82
DE
9635/* Trivial hash function for die_info: the hash value of a DIE
9636 is its offset in .debug_info for this objfile. */
10b3939b 9637
dee91e82
DE
9638static hashval_t
9639die_hash (const void *item)
10b3939b 9640{
9a3c8263 9641 const struct die_info *die = (const struct die_info *) item;
6502dd73 9642
9c541725 9643 return to_underlying (die->sect_off);
dee91e82 9644}
63d06c5c 9645
dee91e82
DE
9646/* Trivial comparison function for die_info structures: two DIEs
9647 are equal if they have the same offset. */
98bfdba5 9648
dee91e82
DE
9649static int
9650die_eq (const void *item_lhs, const void *item_rhs)
9651{
9a3c8263
SM
9652 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9653 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 9654
9c541725 9655 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 9656}
c906108c 9657
dee91e82
DE
9658/* die_reader_func for load_full_comp_unit.
9659 This is identical to read_signatured_type_reader,
9660 but is kept separate for now. */
c906108c 9661
dee91e82
DE
9662static void
9663load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 9664 const gdb_byte *info_ptr,
dee91e82
DE
9665 struct die_info *comp_unit_die,
9666 int has_children,
9667 void *data)
9668{
9669 struct dwarf2_cu *cu = reader->cu;
9a3c8263 9670 enum language *language_ptr = (enum language *) data;
6caca83c 9671
dee91e82
DE
9672 gdb_assert (cu->die_hash == NULL);
9673 cu->die_hash =
9674 htab_create_alloc_ex (cu->header.length / 12,
9675 die_hash,
9676 die_eq,
9677 NULL,
9678 &cu->comp_unit_obstack,
9679 hashtab_obstack_allocate,
9680 dummy_obstack_deallocate);
e142c38c 9681
dee91e82
DE
9682 if (has_children)
9683 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9684 &info_ptr, comp_unit_die);
9685 cu->dies = comp_unit_die;
9686 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
9687
9688 /* We try not to read any attributes in this function, because not
9cdd5dbd 9689 all CUs needed for references have been loaded yet, and symbol
10b3939b 9690 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
9691 or we won't be able to build types correctly.
9692 Similarly, if we do not read the producer, we can not apply
9693 producer-specific interpretation. */
95554aad 9694 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 9695}
10b3939b 9696
dee91e82 9697/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 9698
dee91e82 9699static void
95554aad 9700load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
58f0c718 9701 bool skip_partial,
95554aad 9702 enum language pretend_language)
dee91e82 9703{
3019eac3 9704 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 9705
58f0c718 9706 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
f4dc4d17 9707 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
9708}
9709
3da10d80
KS
9710/* Add a DIE to the delayed physname list. */
9711
9712static void
9713add_to_method_list (struct type *type, int fnfield_index, int index,
9714 const char *name, struct die_info *die,
9715 struct dwarf2_cu *cu)
9716{
9717 struct delayed_method_info mi;
9718 mi.type = type;
9719 mi.fnfield_index = fnfield_index;
9720 mi.index = index;
9721 mi.name = name;
9722 mi.die = die;
c89b44cd 9723 cu->method_list.push_back (mi);
3da10d80
KS
9724}
9725
3693fdb3
PA
9726/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9727 "const" / "volatile". If so, decrements LEN by the length of the
9728 modifier and return true. Otherwise return false. */
9729
9730template<size_t N>
9731static bool
9732check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9733{
9734 size_t mod_len = sizeof (mod) - 1;
9735 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9736 {
9737 len -= mod_len;
9738 return true;
9739 }
9740 return false;
9741}
9742
3da10d80
KS
9743/* Compute the physnames of any methods on the CU's method list.
9744
9745 The computation of method physnames is delayed in order to avoid the
9746 (bad) condition that one of the method's formal parameters is of an as yet
9747 incomplete type. */
9748
9749static void
9750compute_delayed_physnames (struct dwarf2_cu *cu)
9751{
3693fdb3 9752 /* Only C++ delays computing physnames. */
c89b44cd 9753 if (cu->method_list.empty ())
3693fdb3
PA
9754 return;
9755 gdb_assert (cu->language == language_cplus);
9756
52941706 9757 for (const delayed_method_info &mi : cu->method_list)
3da10d80 9758 {
1d06ead6 9759 const char *physname;
3da10d80 9760 struct fn_fieldlist *fn_flp
c89b44cd
TT
9761 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9762 physname = dwarf2_physname (mi.name, mi.die, cu);
9763 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
005e54bb 9764 = physname ? physname : "";
3693fdb3
PA
9765
9766 /* Since there's no tag to indicate whether a method is a
9767 const/volatile overload, extract that information out of the
9768 demangled name. */
9769 if (physname != NULL)
9770 {
9771 size_t len = strlen (physname);
9772
9773 while (1)
9774 {
9775 if (physname[len] == ')') /* shortcut */
9776 break;
9777 else if (check_modifier (physname, len, " const"))
c89b44cd 9778 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
3693fdb3 9779 else if (check_modifier (physname, len, " volatile"))
c89b44cd 9780 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
3693fdb3
PA
9781 else
9782 break;
9783 }
9784 }
3da10d80 9785 }
c89b44cd
TT
9786
9787 /* The list is no longer needed. */
9788 cu->method_list.clear ();
3da10d80
KS
9789}
9790
380618d6
KS
9791/* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9792 the same as all other symbols in LISTHEAD. If a new symbol is added
9793 with a different language, this function asserts. */
9794
9795static inline void
9796dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9797{
9798 /* Only assert if LISTHEAD already contains symbols of a different
9799 language (dict_create_hashed/insert_symbol_hashed requires that all
9800 symbols in this list are of the same language). */
9801 gdb_assert ((*listhead) == NULL
9802 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9803 == SYMBOL_LANGUAGE (symbol)));
9804
9805 add_symbol_to_list (symbol, listhead);
9806}
9807
a766d390
DE
9808/* Go objects should be embedded in a DW_TAG_module DIE,
9809 and it's not clear if/how imported objects will appear.
9810 To keep Go support simple until that's worked out,
9811 go back through what we've read and create something usable.
9812 We could do this while processing each DIE, and feels kinda cleaner,
9813 but that way is more invasive.
9814 This is to, for example, allow the user to type "p var" or "b main"
9815 without having to specify the package name, and allow lookups
9816 of module.object to work in contexts that use the expression
9817 parser. */
9818
9819static void
9820fixup_go_packaging (struct dwarf2_cu *cu)
9821{
9822 char *package_name = NULL;
9823 struct pending *list;
9824 int i;
9825
804d2729
TT
9826 for (list = *cu->builder->get_global_symbols ();
9827 list != NULL;
9828 list = list->next)
a766d390
DE
9829 {
9830 for (i = 0; i < list->nsyms; ++i)
9831 {
9832 struct symbol *sym = list->symbol[i];
9833
9834 if (SYMBOL_LANGUAGE (sym) == language_go
9835 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9836 {
9837 char *this_package_name = go_symbol_package_name (sym);
9838
9839 if (this_package_name == NULL)
9840 continue;
9841 if (package_name == NULL)
9842 package_name = this_package_name;
9843 else
9844 {
518817b3
SM
9845 struct objfile *objfile
9846 = cu->per_cu->dwarf2_per_objfile->objfile;
a766d390 9847 if (strcmp (package_name, this_package_name) != 0)
b98664d3 9848 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
9849 (symbol_symtab (sym) != NULL
9850 ? symtab_to_filename_for_display
9851 (symbol_symtab (sym))
e3b94546 9852 : objfile_name (objfile)),
a766d390
DE
9853 this_package_name, package_name);
9854 xfree (this_package_name);
9855 }
9856 }
9857 }
9858 }
9859
9860 if (package_name != NULL)
9861 {
518817b3 9862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
34a68019 9863 const char *saved_package_name
224c3ddb
SM
9864 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9865 package_name,
9866 strlen (package_name));
19f392bc
UW
9867 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9868 saved_package_name);
a766d390
DE
9869 struct symbol *sym;
9870
e623cf5d 9871 sym = allocate_symbol (objfile);
f85f34ed 9872 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
9873 SYMBOL_SET_NAMES (sym, saved_package_name,
9874 strlen (saved_package_name), 0, objfile);
a766d390
DE
9875 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9876 e.g., "main" finds the "main" module and not C's main(). */
9877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 9878 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
9879 SYMBOL_TYPE (sym) = type;
9880
380618d6 9881 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
a766d390
DE
9882
9883 xfree (package_name);
9884 }
9885}
9886
c9317f21
TT
9887/* Allocate a fully-qualified name consisting of the two parts on the
9888 obstack. */
9889
9890static const char *
9891rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9892{
9893 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9894}
9895
9896/* A helper that allocates a struct discriminant_info to attach to a
9897 union type. */
9898
9899static struct discriminant_info *
9900alloc_discriminant_info (struct type *type, int discriminant_index,
9901 int default_index)
9902{
9903 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
c7b15a66
TT
9904 gdb_assert (discriminant_index == -1
9905 || (discriminant_index >= 0
9906 && discriminant_index < TYPE_NFIELDS (type)));
c9317f21 9907 gdb_assert (default_index == -1
c7b15a66 9908 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
c9317f21
TT
9909
9910 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9911
9912 struct discriminant_info *disc
9913 = ((struct discriminant_info *)
9914 TYPE_ZALLOC (type,
9915 offsetof (struct discriminant_info, discriminants)
9916 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9917 disc->default_index = default_index;
9918 disc->discriminant_index = discriminant_index;
9919
9920 struct dynamic_prop prop;
9921 prop.kind = PROP_UNDEFINED;
9922 prop.data.baton = disc;
9923
9924 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9925
9926 return disc;
9927}
9928
9929/* Some versions of rustc emitted enums in an unusual way.
9930
9931 Ordinary enums were emitted as unions. The first element of each
9932 structure in the union was named "RUST$ENUM$DISR". This element
9933 held the discriminant.
9934
9935 These versions of Rust also implemented the "non-zero"
9936 optimization. When the enum had two values, and one is empty and
9937 the other holds a pointer that cannot be zero, the pointer is used
9938 as the discriminant, with a zero value meaning the empty variant.
9939 Here, the union's first member is of the form
9940 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9941 where the fieldnos are the indices of the fields that should be
9942 traversed in order to find the field (which may be several fields deep)
9943 and the variantname is the name of the variant of the case when the
9944 field is zero.
9945
9946 This function recognizes whether TYPE is of one of these forms,
9947 and, if so, smashes it to be a variant type. */
9948
9949static void
9950quirk_rust_enum (struct type *type, struct objfile *objfile)
9951{
9952 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9953
9954 /* We don't need to deal with empty enums. */
9955 if (TYPE_NFIELDS (type) == 0)
9956 return;
9957
9958#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9959 if (TYPE_NFIELDS (type) == 1
9960 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9961 {
9962 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9963
9964 /* Decode the field name to find the offset of the
9965 discriminant. */
9966 ULONGEST bit_offset = 0;
9967 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9968 while (name[0] >= '0' && name[0] <= '9')
9969 {
9970 char *tail;
9971 unsigned long index = strtoul (name, &tail, 10);
9972 name = tail;
9973 if (*name != '$'
9974 || index >= TYPE_NFIELDS (field_type)
9975 || (TYPE_FIELD_LOC_KIND (field_type, index)
9976 != FIELD_LOC_KIND_BITPOS))
9977 {
b98664d3 9978 complaint (_("Could not parse Rust enum encoding string \"%s\""
c9317f21
TT
9979 "[in module %s]"),
9980 TYPE_FIELD_NAME (type, 0),
9981 objfile_name (objfile));
9982 return;
9983 }
9984 ++name;
9985
9986 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9987 field_type = TYPE_FIELD_TYPE (field_type, index);
9988 }
9989
9990 /* Make a union to hold the variants. */
9991 struct type *union_type = alloc_type (objfile);
9992 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9993 TYPE_NFIELDS (union_type) = 3;
9994 TYPE_FIELDS (union_type)
9995 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9996 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 9997 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
9998
9999 /* Put the discriminant must at index 0. */
10000 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10001 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10002 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10003 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10004
10005 /* The order of fields doesn't really matter, so put the real
10006 field at index 1 and the data-less field at index 2. */
10007 struct discriminant_info *disc
10008 = alloc_discriminant_info (union_type, 0, 1);
10009 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10010 TYPE_FIELD_NAME (union_type, 1)
10011 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10012 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10013 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10014 TYPE_FIELD_NAME (union_type, 1));
10015
10016 const char *dataless_name
10017 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10018 name);
10019 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10020 dataless_name);
10021 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10022 /* NAME points into the original discriminant name, which
10023 already has the correct lifetime. */
10024 TYPE_FIELD_NAME (union_type, 2) = name;
10025 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10026 disc->discriminants[2] = 0;
10027
10028 /* Smash this type to be a structure type. We have to do this
10029 because the type has already been recorded. */
10030 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10031 TYPE_NFIELDS (type) = 1;
10032 TYPE_FIELDS (type)
10033 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10034
10035 /* Install the variant part. */
10036 TYPE_FIELD_TYPE (type, 0) = union_type;
10037 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10038 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10039 }
10040 else if (TYPE_NFIELDS (type) == 1)
10041 {
10042 /* We assume that a union with a single field is a univariant
10043 enum. */
10044 /* Smash this type to be a structure type. We have to do this
10045 because the type has already been recorded. */
10046 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10047
10048 /* Make a union to hold the variants. */
10049 struct type *union_type = alloc_type (objfile);
10050 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10051 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10052 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10053 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10054 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10055
10056 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (field_type));
10059 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10060 TYPE_NAME (field_type)
10061 = rust_fully_qualify (&objfile->objfile_obstack,
c7b15a66 10062 TYPE_NAME (type), variant_name);
c9317f21
TT
10063
10064 /* Install the union in the outer struct type. */
10065 TYPE_NFIELDS (type) = 1;
10066 TYPE_FIELDS (type)
10067 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10068 TYPE_FIELD_TYPE (type, 0) = union_type;
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10071
10072 alloc_discriminant_info (union_type, -1, 0);
10073 }
10074 else
10075 {
10076 struct type *disr_type = nullptr;
10077 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10078 {
10079 disr_type = TYPE_FIELD_TYPE (type, i);
10080
a037790e
TT
10081 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10082 {
10083 /* All fields of a true enum will be structs. */
10084 return;
10085 }
10086 else if (TYPE_NFIELDS (disr_type) == 0)
c9317f21
TT
10087 {
10088 /* Could be data-less variant, so keep going. */
a037790e 10089 disr_type = nullptr;
c9317f21
TT
10090 }
10091 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10092 "RUST$ENUM$DISR") != 0)
10093 {
10094 /* Not a Rust enum. */
10095 return;
10096 }
10097 else
10098 {
10099 /* Found one. */
10100 break;
10101 }
10102 }
10103
10104 /* If we got here without a discriminant, then it's probably
10105 just a union. */
10106 if (disr_type == nullptr)
10107 return;
10108
10109 /* Smash this type to be a structure type. We have to do this
10110 because the type has already been recorded. */
10111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10112
10113 /* Make a union to hold the variants. */
10114 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10115 struct type *union_type = alloc_type (objfile);
10116 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10117 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10118 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10119 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10120 TYPE_FIELDS (union_type)
10121 = (struct field *) TYPE_ZALLOC (union_type,
10122 (TYPE_NFIELDS (union_type)
10123 * sizeof (struct field)));
10124
10125 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10126 TYPE_NFIELDS (type) * sizeof (struct field));
10127
10128 /* Install the discriminant at index 0 in the union. */
10129 TYPE_FIELD (union_type, 0) = *disr_field;
10130 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10131 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10132
10133 /* Install the union in the outer struct type. */
10134 TYPE_FIELD_TYPE (type, 0) = union_type;
10135 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10136 TYPE_NFIELDS (type) = 1;
10137
10138 /* Set the size and offset of the union type. */
10139 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10140
10141 /* We need a way to find the correct discriminant given a
10142 variant name. For convenience we build a map here. */
10143 struct type *enum_type = FIELD_TYPE (*disr_field);
10144 std::unordered_map<std::string, ULONGEST> discriminant_map;
10145 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10146 {
10147 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10148 {
10149 const char *name
10150 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10151 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10152 }
10153 }
10154
10155 int n_fields = TYPE_NFIELDS (union_type);
10156 struct discriminant_info *disc
10157 = alloc_discriminant_info (union_type, 0, -1);
10158 /* Skip the discriminant here. */
10159 for (int i = 1; i < n_fields; ++i)
10160 {
10161 /* Find the final word in the name of this variant's type.
10162 That name can be used to look up the correct
10163 discriminant. */
10164 const char *variant_name
10165 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10166 i)));
10167
10168 auto iter = discriminant_map.find (variant_name);
10169 if (iter != discriminant_map.end ())
10170 disc->discriminants[i] = iter->second;
10171
bedda9ac 10172 /* Remove the discriminant field, if it exists. */
c9317f21 10173 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
bedda9ac
TT
10174 if (TYPE_NFIELDS (sub_type) > 0)
10175 {
10176 --TYPE_NFIELDS (sub_type);
10177 ++TYPE_FIELDS (sub_type);
10178 }
c9317f21
TT
10179 TYPE_FIELD_NAME (union_type, i) = variant_name;
10180 TYPE_NAME (sub_type)
10181 = rust_fully_qualify (&objfile->objfile_obstack,
10182 TYPE_NAME (type), variant_name);
10183 }
10184 }
10185}
10186
10187/* Rewrite some Rust unions to be structures with variants parts. */
10188
10189static void
10190rust_union_quirks (struct dwarf2_cu *cu)
10191{
10192 gdb_assert (cu->language == language_rust);
52941706
SM
10193 for (type *type_ : cu->rust_unions)
10194 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
2d79090e
TT
10195 /* We don't need this any more. */
10196 cu->rust_unions.clear ();
c9317f21
TT
10197}
10198
95554aad
TT
10199/* Return the symtab for PER_CU. This works properly regardless of
10200 whether we're using the index or psymtabs. */
10201
43f3e411
DE
10202static struct compunit_symtab *
10203get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad 10204{
ed2dc618 10205 return (per_cu->dwarf2_per_objfile->using_index
43f3e411
DE
10206 ? per_cu->v.quick->compunit_symtab
10207 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
10208}
10209
10210/* A helper function for computing the list of all symbol tables
10211 included by PER_CU. */
10212
10213static void
43f3e411 10214recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 10215 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 10216 struct dwarf2_per_cu_data *per_cu,
43f3e411 10217 struct compunit_symtab *immediate_parent)
95554aad
TT
10218{
10219 void **slot;
10220 int ix;
43f3e411 10221 struct compunit_symtab *cust;
95554aad
TT
10222 struct dwarf2_per_cu_data *iter;
10223
10224 slot = htab_find_slot (all_children, per_cu, INSERT);
10225 if (*slot != NULL)
10226 {
10227 /* This inclusion and its children have been processed. */
10228 return;
10229 }
10230
10231 *slot = per_cu;
10232 /* Only add a CU if it has a symbol table. */
43f3e411
DE
10233 cust = get_compunit_symtab (per_cu);
10234 if (cust != NULL)
ec94af83
DE
10235 {
10236 /* If this is a type unit only add its symbol table if we haven't
10237 seen it yet (type unit per_cu's can share symtabs). */
10238 if (per_cu->is_debug_types)
10239 {
43f3e411 10240 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
10241 if (*slot == NULL)
10242 {
43f3e411
DE
10243 *slot = cust;
10244 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10245 if (cust->user == NULL)
10246 cust->user = immediate_parent;
ec94af83
DE
10247 }
10248 }
10249 else
f9125b6c 10250 {
43f3e411
DE
10251 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
f9125b6c 10254 }
ec94af83 10255 }
95554aad
TT
10256
10257 for (ix = 0;
796a7ff8 10258 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 10259 ++ix)
ec94af83
DE
10260 {
10261 recursively_compute_inclusions (result, all_children,
43f3e411 10262 all_type_symtabs, iter, cust);
ec94af83 10263 }
95554aad
TT
10264}
10265
43f3e411 10266/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
10267 PER_CU. */
10268
10269static void
43f3e411 10270compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 10271{
f4dc4d17
DE
10272 gdb_assert (! per_cu->is_debug_types);
10273
796a7ff8 10274 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
10275 {
10276 int ix, len;
ec94af83 10277 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
10278 struct compunit_symtab *compunit_symtab_iter;
10279 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 10280 htab_t all_children, all_type_symtabs;
43f3e411 10281 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
10282
10283 /* If we don't have a symtab, we can just skip this case. */
43f3e411 10284 if (cust == NULL)
95554aad
TT
10285 return;
10286
10287 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10288 NULL, xcalloc, xfree);
ec94af83
DE
10289 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10290 NULL, xcalloc, xfree);
95554aad
TT
10291
10292 for (ix = 0;
796a7ff8 10293 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 10294 ix, per_cu_iter);
95554aad 10295 ++ix)
ec94af83
DE
10296 {
10297 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 10298 all_type_symtabs, per_cu_iter,
43f3e411 10299 cust);
ec94af83 10300 }
95554aad 10301
ec94af83 10302 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
10303 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10304 cust->includes
ed2dc618 10305 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
8d749320 10306 struct compunit_symtab *, len + 1);
95554aad 10307 for (ix = 0;
43f3e411
DE
10308 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10309 compunit_symtab_iter);
95554aad 10310 ++ix)
43f3e411
DE
10311 cust->includes[ix] = compunit_symtab_iter;
10312 cust->includes[len] = NULL;
95554aad 10313
43f3e411 10314 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 10315 htab_delete (all_children);
ec94af83 10316 htab_delete (all_type_symtabs);
95554aad
TT
10317 }
10318}
10319
10320/* Compute the 'includes' field for the symtabs of all the CUs we just
10321 read. */
10322
10323static void
ed2dc618 10324process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 10325{
71b73764 10326 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
f4dc4d17
DE
10327 {
10328 if (! iter->is_debug_types)
43f3e411 10329 compute_compunit_symtab_includes (iter);
f4dc4d17 10330 }
95554aad 10331
c5d0225d 10332 dwarf2_per_objfile->just_read_cus.clear ();
95554aad
TT
10333}
10334
9cdd5dbd 10335/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
10336 already been loaded into memory. */
10337
10338static void
95554aad
TT
10339process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10340 enum language pretend_language)
10b3939b 10341{
10b3939b 10342 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10343 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10344 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 10345 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 10346 CORE_ADDR lowpc, highpc;
43f3e411 10347 struct compunit_symtab *cust;
10b3939b 10348 CORE_ADDR baseaddr;
4359dff1 10349 struct block *static_block;
3e29f34a 10350 CORE_ADDR addr;
10b3939b
DJ
10351
10352 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10353
c89b44cd
TT
10354 /* Clear the list here in case something was left over. */
10355 cu->method_list.clear ();
10b3939b 10356
95554aad
TT
10357 cu->language = pretend_language;
10358 cu->language_defn = language_def (cu->language);
10359
c906108c 10360 /* Do line number decoding in read_file_scope () */
10b3939b 10361 process_die (cu->dies, cu);
c906108c 10362
a766d390
DE
10363 /* For now fudge the Go package. */
10364 if (cu->language == language_go)
10365 fixup_go_packaging (cu);
10366
3da10d80
KS
10367 /* Now that we have processed all the DIEs in the CU, all the types
10368 should be complete, and it should now be safe to compute all of the
10369 physnames. */
10370 compute_delayed_physnames (cu);
3da10d80 10371
c9317f21
TT
10372 if (cu->language == language_rust)
10373 rust_union_quirks (cu);
10374
fae299cd
DC
10375 /* Some compilers don't define a DW_AT_high_pc attribute for the
10376 compilation unit. If the DW_AT_high_pc is missing, synthesize
10377 it, by scanning the DIE's below the compilation unit. */
10b3939b 10378 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 10379
3e29f34a 10380 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
804d2729 10381 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
10382
10383 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10384 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10385 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10386 addrmap to help ensure it has an accurate map of pc values belonging to
10387 this comp unit. */
10388 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10389
804d2729
TT
10390 cust = cu->builder->end_symtab_from_static_block (static_block,
10391 SECT_OFF_TEXT (objfile),
10392 0);
c906108c 10393
43f3e411 10394 if (cust != NULL)
c906108c 10395 {
df15bd07 10396 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 10397
8be455d7
JK
10398 /* Set symtab language to language from DW_AT_language. If the
10399 compilation is from a C file generated by language preprocessors, do
10400 not set the language if it was already deduced by start_subfile. */
43f3e411 10401 if (!(cu->language == language_c
40e3ad0e 10402 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 10403 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
10404
10405 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10406 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
10407 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10408 there were bugs in prologue debug info, fixed later in GCC-4.5
10409 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
10410
10411 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10412 needed, it would be wrong due to missing DW_AT_producer there.
10413
10414 Still one can confuse GDB by using non-standard GCC compilation
10415 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10416 */
ab260dad 10417 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 10418 cust->locations_valid = 1;
e0d00bc7
JK
10419
10420 if (gcc_4_minor >= 5)
43f3e411 10421 cust->epilogue_unwind_valid = 1;
96408a79 10422
43f3e411 10423 cust->call_site_htab = cu->call_site_htab;
c906108c 10424 }
9291a0cd
TT
10425
10426 if (dwarf2_per_objfile->using_index)
43f3e411 10427 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
10428 else
10429 {
10430 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10431 pst->compunit_symtab = cust;
9291a0cd
TT
10432 pst->readin = 1;
10433 }
c906108c 10434
95554aad 10435 /* Push it for inclusion processing later. */
c5d0225d 10436 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
804d2729
TT
10437
10438 /* Not needed any more. */
10439 cu->builder.reset ();
f4dc4d17 10440}
45cfd468 10441
f4dc4d17
DE
10442/* Generate full symbol information for type unit PER_CU, whose DIEs have
10443 already been loaded into memory. */
10444
10445static void
10446process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10447 enum language pretend_language)
10448{
10449 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10450 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10451 struct objfile *objfile = dwarf2_per_objfile->objfile;
43f3e411 10452 struct compunit_symtab *cust;
0186c6a7
DE
10453 struct signatured_type *sig_type;
10454
10455 gdb_assert (per_cu->is_debug_types);
10456 sig_type = (struct signatured_type *) per_cu;
f4dc4d17 10457
c89b44cd
TT
10458 /* Clear the list here in case something was left over. */
10459 cu->method_list.clear ();
f4dc4d17 10460
f4dc4d17
DE
10461 cu->language = pretend_language;
10462 cu->language_defn = language_def (cu->language);
10463
10464 /* The symbol tables are set up in read_type_unit_scope. */
10465 process_die (cu->dies, cu);
10466
10467 /* For now fudge the Go package. */
10468 if (cu->language == language_go)
10469 fixup_go_packaging (cu);
10470
10471 /* Now that we have processed all the DIEs in the CU, all the types
10472 should be complete, and it should now be safe to compute all of the
10473 physnames. */
10474 compute_delayed_physnames (cu);
f4dc4d17 10475
c9317f21
TT
10476 if (cu->language == language_rust)
10477 rust_union_quirks (cu);
10478
f4dc4d17
DE
10479 /* TUs share symbol tables.
10480 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
10481 of it with end_expandable_symtab. Otherwise, complete the addition of
10482 this TU's symbols to the existing symtab. */
43f3e411 10483 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 10484 {
804d2729 10485 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
43f3e411 10486 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 10487
43f3e411 10488 if (cust != NULL)
f4dc4d17
DE
10489 {
10490 /* Set symtab language to language from DW_AT_language. If the
10491 compilation is from a C file generated by language preprocessors,
10492 do not set the language if it was already deduced by
10493 start_subfile. */
43f3e411
DE
10494 if (!(cu->language == language_c
10495 && COMPUNIT_FILETABS (cust)->language != language_c))
10496 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
10497 }
10498 }
10499 else
10500 {
804d2729 10501 cu->builder->augment_type_symtab ();
43f3e411 10502 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
10503 }
10504
10505 if (dwarf2_per_objfile->using_index)
43f3e411 10506 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
10507 else
10508 {
10509 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10510 pst->compunit_symtab = cust;
f4dc4d17 10511 pst->readin = 1;
45cfd468 10512 }
804d2729
TT
10513
10514 /* Not needed any more. */
10515 cu->builder.reset ();
c906108c
SS
10516}
10517
95554aad
TT
10518/* Process an imported unit DIE. */
10519
10520static void
10521process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10522{
10523 struct attribute *attr;
10524
f4dc4d17
DE
10525 /* For now we don't handle imported units in type units. */
10526 if (cu->per_cu->is_debug_types)
10527 {
10528 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10529 " supported in type units [in module %s]"),
518817b3 10530 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
10531 }
10532
95554aad
TT
10533 attr = dwarf2_attr (die, DW_AT_import, cu);
10534 if (attr != NULL)
10535 {
9c541725
PA
10536 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10537 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10538 dwarf2_per_cu_data *per_cu
e3b94546 10539 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
518817b3 10540 cu->per_cu->dwarf2_per_objfile);
95554aad 10541
69d751e3 10542 /* If necessary, add it to the queue and load its DIEs. */
95554aad 10543 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 10544 load_full_comp_unit (per_cu, false, cu->language);
95554aad 10545
796a7ff8 10546 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
10547 per_cu);
10548 }
10549}
10550
4c8aa72d
PA
10551/* RAII object that represents a process_die scope: i.e.,
10552 starts/finishes processing a DIE. */
10553class process_die_scope
adde2bff 10554{
4c8aa72d
PA
10555public:
10556 process_die_scope (die_info *die, dwarf2_cu *cu)
10557 : m_die (die), m_cu (cu)
10558 {
10559 /* We should only be processing DIEs not already in process. */
10560 gdb_assert (!m_die->in_process);
10561 m_die->in_process = true;
10562 }
8c3cb9fa 10563
4c8aa72d
PA
10564 ~process_die_scope ()
10565 {
10566 m_die->in_process = false;
10567
10568 /* If we're done processing the DIE for the CU that owns the line
10569 header, we don't need the line header anymore. */
10570 if (m_cu->line_header_die_owner == m_die)
10571 {
10572 delete m_cu->line_header;
10573 m_cu->line_header = NULL;
10574 m_cu->line_header_die_owner = NULL;
10575 }
10576 }
10577
10578private:
10579 die_info *m_die;
10580 dwarf2_cu *m_cu;
10581};
adde2bff 10582
c906108c
SS
10583/* Process a die and its children. */
10584
10585static void
e7c27a73 10586process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10587{
4c8aa72d 10588 process_die_scope scope (die, cu);
adde2bff 10589
c906108c
SS
10590 switch (die->tag)
10591 {
10592 case DW_TAG_padding:
10593 break;
10594 case DW_TAG_compile_unit:
95554aad 10595 case DW_TAG_partial_unit:
e7c27a73 10596 read_file_scope (die, cu);
c906108c 10597 break;
348e048f
DE
10598 case DW_TAG_type_unit:
10599 read_type_unit_scope (die, cu);
10600 break;
c906108c 10601 case DW_TAG_subprogram:
c906108c 10602 case DW_TAG_inlined_subroutine:
edb3359d 10603 read_func_scope (die, cu);
c906108c
SS
10604 break;
10605 case DW_TAG_lexical_block:
14898363
L
10606 case DW_TAG_try_block:
10607 case DW_TAG_catch_block:
e7c27a73 10608 read_lexical_block_scope (die, cu);
c906108c 10609 break;
216f72a1 10610 case DW_TAG_call_site:
96408a79
SA
10611 case DW_TAG_GNU_call_site:
10612 read_call_site_scope (die, cu);
10613 break;
c906108c 10614 case DW_TAG_class_type:
680b30c7 10615 case DW_TAG_interface_type:
c906108c
SS
10616 case DW_TAG_structure_type:
10617 case DW_TAG_union_type:
134d01f1 10618 process_structure_scope (die, cu);
c906108c
SS
10619 break;
10620 case DW_TAG_enumeration_type:
134d01f1 10621 process_enumeration_scope (die, cu);
c906108c 10622 break;
134d01f1 10623
f792889a
DJ
10624 /* These dies have a type, but processing them does not create
10625 a symbol or recurse to process the children. Therefore we can
10626 read them on-demand through read_type_die. */
c906108c 10627 case DW_TAG_subroutine_type:
72019c9c 10628 case DW_TAG_set_type:
c906108c 10629 case DW_TAG_array_type:
c906108c 10630 case DW_TAG_pointer_type:
c906108c 10631 case DW_TAG_ptr_to_member_type:
c906108c 10632 case DW_TAG_reference_type:
4297a3f0 10633 case DW_TAG_rvalue_reference_type:
c906108c 10634 case DW_TAG_string_type:
c906108c 10635 break;
134d01f1 10636
c906108c 10637 case DW_TAG_base_type:
a02abb62 10638 case DW_TAG_subrange_type:
cb249c71 10639 case DW_TAG_typedef:
134d01f1
DJ
10640 /* Add a typedef symbol for the type definition, if it has a
10641 DW_AT_name. */
f792889a 10642 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 10643 break;
c906108c 10644 case DW_TAG_common_block:
e7c27a73 10645 read_common_block (die, cu);
c906108c
SS
10646 break;
10647 case DW_TAG_common_inclusion:
10648 break;
d9fa45fe 10649 case DW_TAG_namespace:
4d4ec4e5 10650 cu->processing_has_namespace_info = 1;
e7c27a73 10651 read_namespace (die, cu);
d9fa45fe 10652 break;
5d7cb8df 10653 case DW_TAG_module:
4d4ec4e5 10654 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
10655 read_module (die, cu);
10656 break;
d9fa45fe 10657 case DW_TAG_imported_declaration:
74921315
KS
10658 cu->processing_has_namespace_info = 1;
10659 if (read_namespace_alias (die, cu))
10660 break;
86a73007
TT
10661 /* The declaration is not a global namespace alias. */
10662 /* Fall through. */
d9fa45fe 10663 case DW_TAG_imported_module:
4d4ec4e5 10664 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
10665 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10666 || cu->language != language_fortran))
b98664d3 10667 complaint (_("Tag '%s' has unexpected children"),
27aa8d6a
SW
10668 dwarf_tag_name (die->tag));
10669 read_import_statement (die, cu);
d9fa45fe 10670 break;
95554aad
TT
10671
10672 case DW_TAG_imported_unit:
10673 process_imported_unit_die (die, cu);
10674 break;
10675
71a3c369
TT
10676 case DW_TAG_variable:
10677 read_variable (die, cu);
10678 break;
10679
c906108c 10680 default:
e7c27a73 10681 new_symbol (die, NULL, cu);
c906108c
SS
10682 break;
10683 }
10684}
ca69b9e6
DE
10685\f
10686/* DWARF name computation. */
c906108c 10687
94af9270
KS
10688/* A helper function for dwarf2_compute_name which determines whether DIE
10689 needs to have the name of the scope prepended to the name listed in the
10690 die. */
10691
10692static int
10693die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10694{
1c809c68
TT
10695 struct attribute *attr;
10696
94af9270
KS
10697 switch (die->tag)
10698 {
10699 case DW_TAG_namespace:
10700 case DW_TAG_typedef:
10701 case DW_TAG_class_type:
10702 case DW_TAG_interface_type:
10703 case DW_TAG_structure_type:
10704 case DW_TAG_union_type:
10705 case DW_TAG_enumeration_type:
10706 case DW_TAG_enumerator:
10707 case DW_TAG_subprogram:
08a76f8a 10708 case DW_TAG_inlined_subroutine:
94af9270 10709 case DW_TAG_member:
74921315 10710 case DW_TAG_imported_declaration:
94af9270
KS
10711 return 1;
10712
10713 case DW_TAG_variable:
c2b0a229 10714 case DW_TAG_constant:
94af9270
KS
10715 /* We only need to prefix "globally" visible variables. These include
10716 any variable marked with DW_AT_external or any variable that
10717 lives in a namespace. [Variables in anonymous namespaces
10718 require prefixing, but they are not DW_AT_external.] */
10719
10720 if (dwarf2_attr (die, DW_AT_specification, cu))
10721 {
10722 struct dwarf2_cu *spec_cu = cu;
9a619af0 10723
94af9270
KS
10724 return die_needs_namespace (die_specification (die, &spec_cu),
10725 spec_cu);
10726 }
10727
1c809c68 10728 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
10729 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10730 && die->parent->tag != DW_TAG_module)
1c809c68
TT
10731 return 0;
10732 /* A variable in a lexical block of some kind does not need a
10733 namespace, even though in C++ such variables may be external
10734 and have a mangled name. */
10735 if (die->parent->tag == DW_TAG_lexical_block
10736 || die->parent->tag == DW_TAG_try_block
1054b214
TT
10737 || die->parent->tag == DW_TAG_catch_block
10738 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
10739 return 0;
10740 return 1;
94af9270
KS
10741
10742 default:
10743 return 0;
10744 }
10745}
10746
73b9be8b
KS
10747/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10748 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10749 defined for the given DIE. */
10750
10751static struct attribute *
10752dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10753{
10754 struct attribute *attr;
10755
10756 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10757 if (attr == NULL)
10758 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10759
10760 return attr;
10761}
10762
10763/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10764 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10765 defined for the given DIE. */
10766
10767static const char *
10768dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10769{
10770 const char *linkage_name;
10771
10772 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10773 if (linkage_name == NULL)
10774 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10775
10776 return linkage_name;
10777}
10778
94af9270 10779/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 10780 compute the physname for the object, which include a method's:
9c37b5ae 10781 - formal parameters (C++),
a766d390 10782 - receiver type (Go),
a766d390
DE
10783
10784 The term "physname" is a bit confusing.
10785 For C++, for example, it is the demangled name.
10786 For Go, for example, it's the mangled name.
94af9270 10787
af6b7be1
JB
10788 For Ada, return the DIE's linkage name rather than the fully qualified
10789 name. PHYSNAME is ignored..
10790
94af9270
KS
10791 The result is allocated on the objfile_obstack and canonicalized. */
10792
10793static const char *
15d034d0
TT
10794dwarf2_compute_name (const char *name,
10795 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
10796 int physname)
10797{
518817b3 10798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
bb5ed363 10799
94af9270
KS
10800 if (name == NULL)
10801 name = dwarf2_name (die, cu);
10802
2ee7123e
DE
10803 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10804 but otherwise compute it by typename_concat inside GDB.
10805 FIXME: Actually this is not really true, or at least not always true.
10806 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
5e2db402 10807 Fortran names because there is no mangling standard. So new_symbol
2ee7123e
DE
10808 will set the demangled name to the result of dwarf2_full_name, and it is
10809 the demangled name that GDB uses if it exists. */
f55ee35c
JK
10810 if (cu->language == language_ada
10811 || (cu->language == language_fortran && physname))
10812 {
10813 /* For Ada unit, we prefer the linkage name over the name, as
10814 the former contains the exported name, which the user expects
10815 to be able to reference. Ideally, we want the user to be able
10816 to reference this entity using either natural or linkage name,
10817 but we haven't started looking at this enhancement yet. */
73b9be8b 10818 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 10819
2ee7123e
DE
10820 if (linkage_name != NULL)
10821 return linkage_name;
f55ee35c
JK
10822 }
10823
94af9270
KS
10824 /* These are the only languages we know how to qualify names in. */
10825 if (name != NULL
9c37b5ae 10826 && (cu->language == language_cplus
c44af4eb
TT
10827 || cu->language == language_fortran || cu->language == language_d
10828 || cu->language == language_rust))
94af9270
KS
10829 {
10830 if (die_needs_namespace (die, cu))
10831 {
0d5cff50 10832 const char *prefix;
34a68019 10833 const char *canonical_name = NULL;
94af9270 10834
d7e74731
PA
10835 string_file buf;
10836
94af9270 10837 prefix = determine_prefix (die, cu);
94af9270
KS
10838 if (*prefix != '\0')
10839 {
f55ee35c
JK
10840 char *prefixed_name = typename_concat (NULL, prefix, name,
10841 physname, cu);
9a619af0 10842
d7e74731 10843 buf.puts (prefixed_name);
94af9270
KS
10844 xfree (prefixed_name);
10845 }
10846 else
d7e74731 10847 buf.puts (name);
94af9270 10848
98bfdba5
PA
10849 /* Template parameters may be specified in the DIE's DW_AT_name, or
10850 as children with DW_TAG_template_type_param or
10851 DW_TAG_value_type_param. If the latter, add them to the name
10852 here. If the name already has template parameters, then
10853 skip this step; some versions of GCC emit both, and
10854 it is more efficient to use the pre-computed name.
10855
10856 Something to keep in mind about this process: it is very
10857 unlikely, or in some cases downright impossible, to produce
10858 something that will match the mangled name of a function.
10859 If the definition of the function has the same debug info,
10860 we should be able to match up with it anyway. But fallbacks
10861 using the minimal symbol, for instance to find a method
10862 implemented in a stripped copy of libstdc++, will not work.
10863 If we do not have debug info for the definition, we will have to
10864 match them up some other way.
10865
10866 When we do name matching there is a related problem with function
10867 templates; two instantiated function templates are allowed to
10868 differ only by their return types, which we do not add here. */
10869
10870 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10871 {
10872 struct attribute *attr;
10873 struct die_info *child;
10874 int first = 1;
10875
10876 die->building_fullname = 1;
10877
10878 for (child = die->child; child != NULL; child = child->sibling)
10879 {
10880 struct type *type;
12df843f 10881 LONGEST value;
d521ce57 10882 const gdb_byte *bytes;
98bfdba5
PA
10883 struct dwarf2_locexpr_baton *baton;
10884 struct value *v;
10885
10886 if (child->tag != DW_TAG_template_type_param
10887 && child->tag != DW_TAG_template_value_param)
10888 continue;
10889
10890 if (first)
10891 {
d7e74731 10892 buf.puts ("<");
98bfdba5
PA
10893 first = 0;
10894 }
10895 else
d7e74731 10896 buf.puts (", ");
98bfdba5
PA
10897
10898 attr = dwarf2_attr (child, DW_AT_type, cu);
10899 if (attr == NULL)
10900 {
b98664d3 10901 complaint (_("template parameter missing DW_AT_type"));
d7e74731 10902 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
10903 continue;
10904 }
10905 type = die_type (child, cu);
10906
10907 if (child->tag == DW_TAG_template_type_param)
10908 {
c1ec8cea
TT
10909 c_print_type (type, "", &buf, -1, 0, cu->language,
10910 &type_print_raw_options);
98bfdba5
PA
10911 continue;
10912 }
10913
10914 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10915 if (attr == NULL)
10916 {
b98664d3 10917 complaint (_("template parameter missing "
3e43a32a 10918 "DW_AT_const_value"));
d7e74731 10919 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
10920 continue;
10921 }
10922
10923 dwarf2_const_value_attr (attr, type, name,
10924 &cu->comp_unit_obstack, cu,
10925 &value, &bytes, &baton);
10926
10927 if (TYPE_NOSIGN (type))
10928 /* GDB prints characters as NUMBER 'CHAR'. If that's
10929 changed, this can use value_print instead. */
d7e74731 10930 c_printchar (value, type, &buf);
98bfdba5
PA
10931 else
10932 {
10933 struct value_print_options opts;
10934
10935 if (baton != NULL)
10936 v = dwarf2_evaluate_loc_desc (type, NULL,
10937 baton->data,
10938 baton->size,
10939 baton->per_cu);
10940 else if (bytes != NULL)
10941 {
10942 v = allocate_value (type);
10943 memcpy (value_contents_writeable (v), bytes,
10944 TYPE_LENGTH (type));
10945 }
10946 else
10947 v = value_from_longest (type, value);
10948
3e43a32a
MS
10949 /* Specify decimal so that we do not depend on
10950 the radix. */
98bfdba5
PA
10951 get_formatted_print_options (&opts, 'd');
10952 opts.raw = 1;
d7e74731 10953 value_print (v, &buf, &opts);
98bfdba5 10954 release_value (v);
98bfdba5
PA
10955 }
10956 }
10957
10958 die->building_fullname = 0;
10959
10960 if (!first)
10961 {
10962 /* Close the argument list, with a space if necessary
10963 (nested templates). */
d7e74731
PA
10964 if (!buf.empty () && buf.string ().back () == '>')
10965 buf.puts (" >");
98bfdba5 10966 else
d7e74731 10967 buf.puts (">");
98bfdba5
PA
10968 }
10969 }
10970
9c37b5ae 10971 /* For C++ methods, append formal parameter type
94af9270 10972 information, if PHYSNAME. */
6e70227d 10973
94af9270 10974 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 10975 && cu->language == language_cplus)
94af9270
KS
10976 {
10977 struct type *type = read_type_die (die, cu);
10978
d7e74731 10979 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 10980 &type_print_raw_options);
94af9270 10981
9c37b5ae 10982 if (cu->language == language_cplus)
94af9270 10983 {
60430eff
DJ
10984 /* Assume that an artificial first parameter is
10985 "this", but do not crash if it is not. RealView
10986 marks unnamed (and thus unused) parameters as
10987 artificial; there is no way to differentiate
10988 the two cases. */
94af9270
KS
10989 if (TYPE_NFIELDS (type) > 0
10990 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 10991 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
10992 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10993 0))))
d7e74731 10994 buf.puts (" const");
94af9270
KS
10995 }
10996 }
10997
d7e74731 10998 const std::string &intermediate_name = buf.string ();
94af9270
KS
10999
11000 if (cu->language == language_cplus)
34a68019 11001 canonical_name
322a8516 11002 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
11003 &objfile->per_bfd->storage_obstack);
11004
11005 /* If we only computed INTERMEDIATE_NAME, or if
11006 INTERMEDIATE_NAME is already canonical, then we need to
11007 copy it to the appropriate obstack. */
322a8516 11008 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
11009 name = ((const char *)
11010 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
11011 intermediate_name.c_str (),
11012 intermediate_name.length ()));
34a68019
TT
11013 else
11014 name = canonical_name;
94af9270
KS
11015 }
11016 }
11017
11018 return name;
11019}
11020
0114d602
DJ
11021/* Return the fully qualified name of DIE, based on its DW_AT_name.
11022 If scope qualifiers are appropriate they will be added. The result
34a68019 11023 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
11024 not have a name. NAME may either be from a previous call to
11025 dwarf2_name or NULL.
11026
9c37b5ae 11027 The output string will be canonicalized (if C++). */
0114d602
DJ
11028
11029static const char *
15d034d0 11030dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 11031{
94af9270
KS
11032 return dwarf2_compute_name (name, die, cu, 0);
11033}
0114d602 11034
94af9270
KS
11035/* Construct a physname for the given DIE in CU. NAME may either be
11036 from a previous call to dwarf2_name or NULL. The result will be
11037 allocated on the objfile_objstack or NULL if the DIE does not have a
11038 name.
0114d602 11039
9c37b5ae 11040 The output string will be canonicalized (if C++). */
0114d602 11041
94af9270 11042static const char *
15d034d0 11043dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 11044{
518817b3 11045 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
900e11f9 11046 const char *retval, *mangled = NULL, *canon = NULL;
900e11f9
JK
11047 int need_copy = 1;
11048
11049 /* In this case dwarf2_compute_name is just a shortcut not building anything
11050 on its own. */
11051 if (!die_needs_namespace (die, cu))
11052 return dwarf2_compute_name (name, die, cu, 1);
11053
73b9be8b 11054 mangled = dw2_linkage_name (die, cu);
900e11f9 11055
e98c9e7c
TT
11056 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11057 See https://github.com/rust-lang/rust/issues/32925. */
11058 if (cu->language == language_rust && mangled != NULL
11059 && strchr (mangled, '{') != NULL)
11060 mangled = NULL;
11061
900e11f9
JK
11062 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11063 has computed. */
791afaa2 11064 gdb::unique_xmalloc_ptr<char> demangled;
7d45c7c3 11065 if (mangled != NULL)
900e11f9 11066 {
900e11f9 11067
59cc4834
JB
11068 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11069 {
11070 /* Do nothing (do not demangle the symbol name). */
11071 }
11072 else if (cu->language == language_go)
a766d390 11073 {
5e2db402
TT
11074 /* This is a lie, but we already lie to the caller new_symbol.
11075 new_symbol assumes we return the mangled name.
a766d390 11076 This just undoes that lie until things are cleaned up. */
a766d390
DE
11077 }
11078 else
11079 {
0eb876f5
JB
11080 /* Use DMGL_RET_DROP for C++ template functions to suppress
11081 their return type. It is easier for GDB users to search
11082 for such functions as `name(params)' than `long name(params)'.
11083 In such case the minimal symbol names do not match the full
11084 symbol names but for template functions there is never a need
11085 to look up their definition from their declaration so
11086 the only disadvantage remains the minimal symbol variant
11087 `long name(params)' does not have the proper inferior type. */
791afaa2
TT
11088 demangled.reset (gdb_demangle (mangled,
11089 (DMGL_PARAMS | DMGL_ANSI
11090 | DMGL_RET_DROP)));
a766d390 11091 }
900e11f9 11092 if (demangled)
791afaa2 11093 canon = demangled.get ();
900e11f9
JK
11094 else
11095 {
11096 canon = mangled;
11097 need_copy = 0;
11098 }
11099 }
11100
11101 if (canon == NULL || check_physname)
11102 {
11103 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11104
11105 if (canon != NULL && strcmp (physname, canon) != 0)
11106 {
11107 /* It may not mean a bug in GDB. The compiler could also
11108 compute DW_AT_linkage_name incorrectly. But in such case
11109 GDB would need to be bug-to-bug compatible. */
11110
b98664d3 11111 complaint (_("Computed physname <%s> does not match demangled <%s> "
9d8780f0
SM
11112 "(from linkage <%s>) - DIE at %s [in module %s]"),
11113 physname, canon, mangled, sect_offset_str (die->sect_off),
4262abfb 11114 objfile_name (objfile));
900e11f9
JK
11115
11116 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11117 is available here - over computed PHYSNAME. It is safer
11118 against both buggy GDB and buggy compilers. */
11119
11120 retval = canon;
11121 }
11122 else
11123 {
11124 retval = physname;
11125 need_copy = 0;
11126 }
11127 }
11128 else
11129 retval = canon;
11130
11131 if (need_copy)
224c3ddb
SM
11132 retval = ((const char *)
11133 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11134 retval, strlen (retval)));
900e11f9 11135
900e11f9 11136 return retval;
0114d602
DJ
11137}
11138
74921315
KS
11139/* Inspect DIE in CU for a namespace alias. If one exists, record
11140 a new symbol for it.
11141
11142 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11143
11144static int
11145read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11146{
11147 struct attribute *attr;
11148
11149 /* If the die does not have a name, this is not a namespace
11150 alias. */
11151 attr = dwarf2_attr (die, DW_AT_name, cu);
11152 if (attr != NULL)
11153 {
11154 int num;
11155 struct die_info *d = die;
11156 struct dwarf2_cu *imported_cu = cu;
11157
11158 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11159 keep inspecting DIEs until we hit the underlying import. */
11160#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11161 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11162 {
11163 attr = dwarf2_attr (d, DW_AT_import, cu);
11164 if (attr == NULL)
11165 break;
11166
11167 d = follow_die_ref (d, attr, &imported_cu);
11168 if (d->tag != DW_TAG_imported_declaration)
11169 break;
11170 }
11171
11172 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11173 {
b98664d3 11174 complaint (_("DIE at %s has too many recursively imported "
9d8780f0 11175 "declarations"), sect_offset_str (d->sect_off));
74921315
KS
11176 return 0;
11177 }
11178
11179 if (attr != NULL)
11180 {
11181 struct type *type;
9c541725 11182 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 11183
9c541725 11184 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
11185 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11186 {
11187 /* This declaration is a global namespace alias. Add
11188 a symbol for it whose type is the aliased namespace. */
11189 new_symbol (die, type, cu);
11190 return 1;
11191 }
11192 }
11193 }
11194
11195 return 0;
11196}
11197
22cee43f 11198/* Return the using directives repository (global or local?) to use in the
804d2729 11199 current context for CU.
22cee43f
PMR
11200
11201 For Ada, imported declarations can materialize renamings, which *may* be
11202 global. However it is impossible (for now?) in DWARF to distinguish
11203 "external" imported declarations and "static" ones. As all imported
11204 declarations seem to be static in all other languages, make them all CU-wide
11205 global only in Ada. */
11206
11207static struct using_direct **
804d2729 11208using_directives (struct dwarf2_cu *cu)
22cee43f 11209{
804d2729
TT
11210 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11211 return cu->builder->get_global_using_directives ();
22cee43f 11212 else
804d2729 11213 return cu->builder->get_local_using_directives ();
22cee43f
PMR
11214}
11215
27aa8d6a
SW
11216/* Read the import statement specified by the given die and record it. */
11217
11218static void
11219read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11220{
518817b3 11221 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
27aa8d6a 11222 struct attribute *import_attr;
32019081 11223 struct die_info *imported_die, *child_die;
de4affc9 11224 struct dwarf2_cu *imported_cu;
27aa8d6a 11225 const char *imported_name;
794684b6 11226 const char *imported_name_prefix;
13387711
SW
11227 const char *canonical_name;
11228 const char *import_alias;
11229 const char *imported_declaration = NULL;
794684b6 11230 const char *import_prefix;
eb1e02fd 11231 std::vector<const char *> excludes;
13387711 11232
27aa8d6a
SW
11233 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11234 if (import_attr == NULL)
11235 {
b98664d3 11236 complaint (_("Tag '%s' has no DW_AT_import"),
27aa8d6a
SW
11237 dwarf_tag_name (die->tag));
11238 return;
11239 }
11240
de4affc9
CC
11241 imported_cu = cu;
11242 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11243 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
11244 if (imported_name == NULL)
11245 {
11246 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11247
11248 The import in the following code:
11249 namespace A
11250 {
11251 typedef int B;
11252 }
11253
11254 int main ()
11255 {
11256 using A::B;
11257 B b;
11258 return b;
11259 }
11260
11261 ...
11262 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11263 <52> DW_AT_decl_file : 1
11264 <53> DW_AT_decl_line : 6
11265 <54> DW_AT_import : <0x75>
11266 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11267 <59> DW_AT_name : B
11268 <5b> DW_AT_decl_file : 1
11269 <5c> DW_AT_decl_line : 2
11270 <5d> DW_AT_type : <0x6e>
11271 ...
11272 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11273 <76> DW_AT_byte_size : 4
11274 <77> DW_AT_encoding : 5 (signed)
11275
11276 imports the wrong die ( 0x75 instead of 0x58 ).
11277 This case will be ignored until the gcc bug is fixed. */
11278 return;
11279 }
11280
82856980
SW
11281 /* Figure out the local name after import. */
11282 import_alias = dwarf2_name (die, cu);
27aa8d6a 11283
794684b6
SW
11284 /* Figure out where the statement is being imported to. */
11285 import_prefix = determine_prefix (die, cu);
11286
11287 /* Figure out what the scope of the imported die is and prepend it
11288 to the name of the imported die. */
de4affc9 11289 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 11290
f55ee35c
JK
11291 if (imported_die->tag != DW_TAG_namespace
11292 && imported_die->tag != DW_TAG_module)
794684b6 11293 {
13387711
SW
11294 imported_declaration = imported_name;
11295 canonical_name = imported_name_prefix;
794684b6 11296 }
13387711 11297 else if (strlen (imported_name_prefix) > 0)
12aaed36 11298 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
11299 imported_name_prefix,
11300 (cu->language == language_d ? "." : "::"),
11301 imported_name, (char *) NULL);
13387711
SW
11302 else
11303 canonical_name = imported_name;
794684b6 11304
32019081
JK
11305 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11306 for (child_die = die->child; child_die && child_die->tag;
11307 child_die = sibling_die (child_die))
11308 {
11309 /* DWARF-4: A Fortran use statement with a “rename list” may be
11310 represented by an imported module entry with an import attribute
11311 referring to the module and owned entries corresponding to those
11312 entities that are renamed as part of being imported. */
11313
11314 if (child_die->tag != DW_TAG_imported_declaration)
11315 {
b98664d3 11316 complaint (_("child DW_TAG_imported_declaration expected "
9d8780f0
SM
11317 "- DIE at %s [in module %s]"),
11318 sect_offset_str (child_die->sect_off),
11319 objfile_name (objfile));
32019081
JK
11320 continue;
11321 }
11322
11323 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11324 if (import_attr == NULL)
11325 {
b98664d3 11326 complaint (_("Tag '%s' has no DW_AT_import"),
32019081
JK
11327 dwarf_tag_name (child_die->tag));
11328 continue;
11329 }
11330
11331 imported_cu = cu;
11332 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11333 &imported_cu);
11334 imported_name = dwarf2_name (imported_die, imported_cu);
11335 if (imported_name == NULL)
11336 {
b98664d3 11337 complaint (_("child DW_TAG_imported_declaration has unknown "
9d8780f0
SM
11338 "imported name - DIE at %s [in module %s]"),
11339 sect_offset_str (child_die->sect_off),
11340 objfile_name (objfile));
32019081
JK
11341 continue;
11342 }
11343
eb1e02fd 11344 excludes.push_back (imported_name);
32019081
JK
11345
11346 process_die (child_die, cu);
11347 }
11348
804d2729 11349 add_using_directive (using_directives (cu),
22cee43f
PMR
11350 import_prefix,
11351 canonical_name,
11352 import_alias,
11353 imported_declaration,
11354 excludes,
11355 0,
11356 &objfile->objfile_obstack);
27aa8d6a
SW
11357}
11358
5230b05a
WT
11359/* ICC<14 does not output the required DW_AT_declaration on incomplete
11360 types, but gives them a size of zero. Starting with version 14,
11361 ICC is compatible with GCC. */
11362
11363static int
11364producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11365{
11366 if (!cu->checked_producer)
11367 check_producer (cu);
11368
11369 return cu->producer_is_icc_lt_14;
11370}
11371
1b80a9fa
JK
11372/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11373 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11374 this, it was first present in GCC release 4.3.0. */
11375
11376static int
11377producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11378{
11379 if (!cu->checked_producer)
11380 check_producer (cu);
11381
11382 return cu->producer_is_gcc_lt_4_3;
11383}
11384
d721ba37
PA
11385static file_and_directory
11386find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 11387{
d721ba37
PA
11388 file_and_directory res;
11389
9291a0cd
TT
11390 /* Find the filename. Do not use dwarf2_name here, since the filename
11391 is not a source language identifier. */
d721ba37
PA
11392 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11393 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 11394
d721ba37
PA
11395 if (res.comp_dir == NULL
11396 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11397 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 11398 {
d721ba37
PA
11399 res.comp_dir_storage = ldirname (res.name);
11400 if (!res.comp_dir_storage.empty ())
11401 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 11402 }
d721ba37 11403 if (res.comp_dir != NULL)
9291a0cd
TT
11404 {
11405 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11406 directory, get rid of it. */
d721ba37 11407 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 11408
d721ba37
PA
11409 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11410 res.comp_dir = cp + 1;
9291a0cd
TT
11411 }
11412
d721ba37
PA
11413 if (res.name == NULL)
11414 res.name = "<unknown>";
11415
11416 return res;
9291a0cd
TT
11417}
11418
f4dc4d17
DE
11419/* Handle DW_AT_stmt_list for a compilation unit.
11420 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
11421 COMP_DIR is the compilation directory. LOWPC is passed to
11422 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
11423
11424static void
11425handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 11426 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 11427{
518817b3
SM
11428 struct dwarf2_per_objfile *dwarf2_per_objfile
11429 = cu->per_cu->dwarf2_per_objfile;
527f3840 11430 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 11431 struct attribute *attr;
527f3840
JK
11432 struct line_header line_header_local;
11433 hashval_t line_header_local_hash;
527f3840
JK
11434 void **slot;
11435 int decode_mapping;
2ab95328 11436
f4dc4d17
DE
11437 gdb_assert (! cu->per_cu->is_debug_types);
11438
2ab95328 11439 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
11440 if (attr == NULL)
11441 return;
11442
9c541725 11443 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
11444
11445 /* The line header hash table is only created if needed (it exists to
11446 prevent redundant reading of the line table for partial_units).
11447 If we're given a partial_unit, we'll need it. If we're given a
11448 compile_unit, then use the line header hash table if it's already
11449 created, but don't create one just yet. */
11450
11451 if (dwarf2_per_objfile->line_header_hash == NULL
11452 && die->tag == DW_TAG_partial_unit)
2ab95328 11453 {
527f3840
JK
11454 dwarf2_per_objfile->line_header_hash
11455 = htab_create_alloc_ex (127, line_header_hash_voidp,
11456 line_header_eq_voidp,
11457 free_line_header_voidp,
11458 &objfile->objfile_obstack,
11459 hashtab_obstack_allocate,
11460 dummy_obstack_deallocate);
11461 }
2ab95328 11462
9c541725 11463 line_header_local.sect_off = line_offset;
527f3840
JK
11464 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11465 line_header_local_hash = line_header_hash (&line_header_local);
11466 if (dwarf2_per_objfile->line_header_hash != NULL)
11467 {
11468 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11469 &line_header_local,
11470 line_header_local_hash, NO_INSERT);
11471
11472 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11473 is not present in *SLOT (since if there is something in *SLOT then
11474 it will be for a partial_unit). */
11475 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 11476 {
527f3840 11477 gdb_assert (*slot != NULL);
9a3c8263 11478 cu->line_header = (struct line_header *) *slot;
527f3840 11479 return;
dee91e82 11480 }
2ab95328 11481 }
527f3840
JK
11482
11483 /* dwarf_decode_line_header does not yet provide sufficient information.
11484 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
11485 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11486 if (lh == NULL)
527f3840 11487 return;
4c8aa72d
PA
11488
11489 cu->line_header = lh.release ();
11490 cu->line_header_die_owner = die;
527f3840
JK
11491
11492 if (dwarf2_per_objfile->line_header_hash == NULL)
11493 slot = NULL;
11494 else
11495 {
11496 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11497 &line_header_local,
11498 line_header_local_hash, INSERT);
11499 gdb_assert (slot != NULL);
11500 }
11501 if (slot != NULL && *slot == NULL)
11502 {
11503 /* This newly decoded line number information unit will be owned
11504 by line_header_hash hash table. */
11505 *slot = cu->line_header;
4c8aa72d 11506 cu->line_header_die_owner = NULL;
527f3840
JK
11507 }
11508 else
11509 {
11510 /* We cannot free any current entry in (*slot) as that struct line_header
11511 may be already used by multiple CUs. Create only temporary decoded
11512 line_header for this CU - it may happen at most once for each line
11513 number information unit. And if we're not using line_header_hash
11514 then this is what we want as well. */
11515 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
11516 }
11517 decode_mapping = (die->tag != DW_TAG_partial_unit);
11518 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11519 decode_mapping);
fff8551c 11520
2ab95328
TT
11521}
11522
95554aad 11523/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 11524
c906108c 11525static void
e7c27a73 11526read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11527{
518817b3
SM
11528 struct dwarf2_per_objfile *dwarf2_per_objfile
11529 = cu->per_cu->dwarf2_per_objfile;
dee91e82 11530 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 11531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 11532 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
11533 CORE_ADDR highpc = ((CORE_ADDR) 0);
11534 struct attribute *attr;
c906108c 11535 struct die_info *child_die;
e142c38c 11536 CORE_ADDR baseaddr;
6e70227d 11537
380618d6 11538 prepare_one_comp_unit (cu, die, cu->language);
e142c38c 11539 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11540
fae299cd 11541 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
11542
11543 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11544 from finish_block. */
2acceee2 11545 if (lowpc == ((CORE_ADDR) -1))
c906108c 11546 lowpc = highpc;
3e29f34a 11547 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 11548
d721ba37 11549 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 11550
f4b8a18d
KW
11551 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11552 standardised yet. As a workaround for the language detection we fall
11553 back to the DW_AT_producer string. */
11554 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11555 cu->language = language_opencl;
11556
3019eac3
DE
11557 /* Similar hack for Go. */
11558 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11559 set_cu_language (DW_LANG_Go, cu);
11560
d721ba37 11561 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
11562
11563 /* Decode line number information if present. We do this before
11564 processing child DIEs, so that the line header table is available
11565 for DW_AT_decl_file. */
d721ba37 11566 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
11567
11568 /* Process all dies in compilation unit. */
11569 if (die->child != NULL)
11570 {
11571 child_die = die->child;
11572 while (child_die && child_die->tag)
11573 {
11574 process_die (child_die, cu);
11575 child_die = sibling_die (child_die);
11576 }
11577 }
11578
11579 /* Decode macro information, if present. Dwarf 2 macro information
11580 refers to information in the line number info statement program
11581 header, so we can only read it if we've read the header
11582 successfully. */
0af92d60
JK
11583 attr = dwarf2_attr (die, DW_AT_macros, cu);
11584 if (attr == NULL)
11585 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
11586 if (attr && cu->line_header)
11587 {
11588 if (dwarf2_attr (die, DW_AT_macro_info, cu))
b98664d3 11589 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 11590
43f3e411 11591 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
11592 }
11593 else
11594 {
11595 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11596 if (attr && cu->line_header)
11597 {
11598 unsigned int macro_offset = DW_UNSND (attr);
11599
43f3e411 11600 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
11601 }
11602 }
3019eac3
DE
11603}
11604
f4dc4d17
DE
11605/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11606 Create the set of symtabs used by this TU, or if this TU is sharing
11607 symtabs with another TU and the symtabs have already been created
11608 then restore those symtabs in the line header.
11609 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
11610
11611static void
f4dc4d17 11612setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 11613{
f4dc4d17
DE
11614 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11615 struct type_unit_group *tu_group;
11616 int first_time;
3019eac3 11617 struct attribute *attr;
9c541725 11618 unsigned int i;
0186c6a7 11619 struct signatured_type *sig_type;
3019eac3 11620
f4dc4d17 11621 gdb_assert (per_cu->is_debug_types);
0186c6a7 11622 sig_type = (struct signatured_type *) per_cu;
3019eac3 11623
f4dc4d17 11624 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 11625
f4dc4d17 11626 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 11627 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
11628 if (sig_type->type_unit_group == NULL)
11629 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11630 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
11631
11632 /* If we've already processed this stmt_list there's no real need to
11633 do it again, we could fake it and just recreate the part we need
11634 (file name,index -> symtab mapping). If data shows this optimization
11635 is useful we can do it then. */
43f3e411 11636 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
11637
11638 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11639 debug info. */
fff8551c 11640 line_header_up lh;
f4dc4d17 11641 if (attr != NULL)
3019eac3 11642 {
9c541725 11643 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
11644 lh = dwarf_decode_line_header (line_offset, cu);
11645 }
11646 if (lh == NULL)
11647 {
11648 if (first_time)
11649 dwarf2_start_symtab (cu, "", NULL, 0);
11650 else
11651 {
11652 gdb_assert (tu_group->symtabs == NULL);
804d2729
TT
11653 gdb_assert (cu->builder == nullptr);
11654 struct compunit_symtab *cust = tu_group->compunit_symtab;
11655 cu->builder.reset (new struct buildsym_compunit
11656 (COMPUNIT_OBJFILE (cust), "",
11657 COMPUNIT_DIRNAME (cust),
11658 compunit_language (cust),
11659 0, cust));
f4dc4d17 11660 }
f4dc4d17 11661 return;
3019eac3
DE
11662 }
11663
4c8aa72d
PA
11664 cu->line_header = lh.release ();
11665 cu->line_header_die_owner = die;
3019eac3 11666
f4dc4d17
DE
11667 if (first_time)
11668 {
43f3e411 11669 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 11670
1fd60fc0
DE
11671 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11672 still initializing it, and our caller (a few levels up)
11673 process_full_type_unit still needs to know if this is the first
11674 time. */
11675
4c8aa72d
PA
11676 tu_group->num_symtabs = cu->line_header->file_names.size ();
11677 tu_group->symtabs = XNEWVEC (struct symtab *,
11678 cu->line_header->file_names.size ());
3019eac3 11679
4c8aa72d 11680 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 11681 {
4c8aa72d 11682 file_entry &fe = cu->line_header->file_names[i];
3019eac3 11683
804d2729 11684 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
3019eac3 11685
804d2729 11686 if (cu->builder->get_current_subfile ()->symtab == NULL)
f4dc4d17 11687 {
4c8aa72d
PA
11688 /* NOTE: start_subfile will recognize when it's been
11689 passed a file it has already seen. So we can't
11690 assume there's a simple mapping from
11691 cu->line_header->file_names to subfiles, plus
11692 cu->line_header->file_names may contain dups. */
804d2729
TT
11693 cu->builder->get_current_subfile ()->symtab
11694 = allocate_symtab (cust,
11695 cu->builder->get_current_subfile ()->name);
f4dc4d17
DE
11696 }
11697
804d2729 11698 fe.symtab = cu->builder->get_current_subfile ()->symtab;
8c43009f 11699 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
11700 }
11701 }
11702 else
3019eac3 11703 {
804d2729
TT
11704 gdb_assert (cu->builder == nullptr);
11705 struct compunit_symtab *cust = tu_group->compunit_symtab;
11706 cu->builder.reset (new struct buildsym_compunit
11707 (COMPUNIT_OBJFILE (cust), "",
11708 COMPUNIT_DIRNAME (cust),
11709 compunit_language (cust),
11710 0, cust));
f4dc4d17 11711
4c8aa72d 11712 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 11713 {
4c8aa72d 11714 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 11715
4c8aa72d 11716 fe.symtab = tu_group->symtabs[i];
f4dc4d17 11717 }
3019eac3
DE
11718 }
11719
f4dc4d17
DE
11720 /* The main symtab is allocated last. Type units don't have DW_AT_name
11721 so they don't have a "real" (so to speak) symtab anyway.
11722 There is later code that will assign the main symtab to all symbols
11723 that don't have one. We need to handle the case of a symbol with a
11724 missing symtab (DW_AT_decl_file) anyway. */
11725}
3019eac3 11726
f4dc4d17
DE
11727/* Process DW_TAG_type_unit.
11728 For TUs we want to skip the first top level sibling if it's not the
11729 actual type being defined by this TU. In this case the first top
11730 level sibling is there to provide context only. */
3019eac3 11731
f4dc4d17
DE
11732static void
11733read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11734{
11735 struct die_info *child_die;
3019eac3 11736
f4dc4d17
DE
11737 prepare_one_comp_unit (cu, die, language_minimal);
11738
11739 /* Initialize (or reinitialize) the machinery for building symtabs.
11740 We do this before processing child DIEs, so that the line header table
11741 is available for DW_AT_decl_file. */
11742 setup_type_unit_groups (die, cu);
11743
11744 if (die->child != NULL)
11745 {
11746 child_die = die->child;
11747 while (child_die && child_die->tag)
11748 {
11749 process_die (child_die, cu);
11750 child_die = sibling_die (child_die);
11751 }
11752 }
3019eac3
DE
11753}
11754\f
80626a55
DE
11755/* DWO/DWP files.
11756
11757 http://gcc.gnu.org/wiki/DebugFission
11758 http://gcc.gnu.org/wiki/DebugFissionDWP
11759
11760 To simplify handling of both DWO files ("object" files with the DWARF info)
11761 and DWP files (a file with the DWOs packaged up into one file), we treat
11762 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
11763
11764static hashval_t
11765hash_dwo_file (const void *item)
11766{
9a3c8263 11767 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 11768 hashval_t hash;
3019eac3 11769
a2ce51a0
DE
11770 hash = htab_hash_string (dwo_file->dwo_name);
11771 if (dwo_file->comp_dir != NULL)
11772 hash += htab_hash_string (dwo_file->comp_dir);
11773 return hash;
3019eac3
DE
11774}
11775
11776static int
11777eq_dwo_file (const void *item_lhs, const void *item_rhs)
11778{
9a3c8263
SM
11779 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11780 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 11781
a2ce51a0
DE
11782 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11783 return 0;
11784 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11785 return lhs->comp_dir == rhs->comp_dir;
11786 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
11787}
11788
11789/* Allocate a hash table for DWO files. */
11790
11791static htab_t
ed2dc618 11792allocate_dwo_file_hash_table (struct objfile *objfile)
3019eac3 11793{
3019eac3
DE
11794 return htab_create_alloc_ex (41,
11795 hash_dwo_file,
11796 eq_dwo_file,
11797 NULL,
11798 &objfile->objfile_obstack,
11799 hashtab_obstack_allocate,
11800 dummy_obstack_deallocate);
11801}
11802
80626a55
DE
11803/* Lookup DWO file DWO_NAME. */
11804
11805static void **
ed2dc618
SM
11806lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11807 const char *dwo_name,
11808 const char *comp_dir)
80626a55
DE
11809{
11810 struct dwo_file find_entry;
11811 void **slot;
11812
11813 if (dwarf2_per_objfile->dwo_files == NULL)
ed2dc618
SM
11814 dwarf2_per_objfile->dwo_files
11815 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
80626a55
DE
11816
11817 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
11818 find_entry.dwo_name = dwo_name;
11819 find_entry.comp_dir = comp_dir;
80626a55
DE
11820 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11821
11822 return slot;
11823}
11824
3019eac3
DE
11825static hashval_t
11826hash_dwo_unit (const void *item)
11827{
9a3c8263 11828 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
11829
11830 /* This drops the top 32 bits of the id, but is ok for a hash. */
11831 return dwo_unit->signature;
11832}
11833
11834static int
11835eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11836{
9a3c8263
SM
11837 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11838 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
11839
11840 /* The signature is assumed to be unique within the DWO file.
11841 So while object file CU dwo_id's always have the value zero,
11842 that's OK, assuming each object file DWO file has only one CU,
11843 and that's the rule for now. */
11844 return lhs->signature == rhs->signature;
11845}
11846
11847/* Allocate a hash table for DWO CUs,TUs.
11848 There is one of these tables for each of CUs,TUs for each DWO file. */
11849
11850static htab_t
11851allocate_dwo_unit_table (struct objfile *objfile)
11852{
11853 /* Start out with a pretty small number.
11854 Generally DWO files contain only one CU and maybe some TUs. */
11855 return htab_create_alloc_ex (3,
11856 hash_dwo_unit,
11857 eq_dwo_unit,
11858 NULL,
11859 &objfile->objfile_obstack,
11860 hashtab_obstack_allocate,
11861 dummy_obstack_deallocate);
11862}
11863
80626a55 11864/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 11865
19c3d4c9 11866struct create_dwo_cu_data
3019eac3
DE
11867{
11868 struct dwo_file *dwo_file;
19c3d4c9 11869 struct dwo_unit dwo_unit;
3019eac3
DE
11870};
11871
19c3d4c9 11872/* die_reader_func for create_dwo_cu. */
3019eac3
DE
11873
11874static void
19c3d4c9
DE
11875create_dwo_cu_reader (const struct die_reader_specs *reader,
11876 const gdb_byte *info_ptr,
11877 struct die_info *comp_unit_die,
11878 int has_children,
11879 void *datap)
3019eac3
DE
11880{
11881 struct dwarf2_cu *cu = reader->cu;
9c541725 11882 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 11883 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 11884 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 11885 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 11886 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 11887 struct attribute *attr;
3019eac3
DE
11888
11889 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11890 if (attr == NULL)
11891 {
b98664d3 11892 complaint (_("Dwarf Error: debug entry at offset %s is missing"
19c3d4c9 11893 " its dwo_id [in module %s]"),
9d8780f0 11894 sect_offset_str (sect_off), dwo_file->dwo_name);
3019eac3
DE
11895 return;
11896 }
11897
3019eac3
DE
11898 dwo_unit->dwo_file = dwo_file;
11899 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 11900 dwo_unit->section = section;
9c541725 11901 dwo_unit->sect_off = sect_off;
3019eac3
DE
11902 dwo_unit->length = cu->per_cu->length;
11903
b4f54984 11904 if (dwarf_read_debug)
9d8780f0
SM
11905 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11906 sect_offset_str (sect_off),
9c541725 11907 hex_string (dwo_unit->signature));
3019eac3
DE
11908}
11909
33c5cd75 11910/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 11911 Note: This function processes DWO files only, not DWP files. */
3019eac3 11912
33c5cd75 11913static void
ed2dc618
SM
11914create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11915 struct dwo_file &dwo_file, dwarf2_section_info &section,
33c5cd75 11916 htab_t &cus_htab)
3019eac3
DE
11917{
11918 struct objfile *objfile = dwarf2_per_objfile->objfile;
d521ce57 11919 const gdb_byte *info_ptr, *end_ptr;
3019eac3 11920
33c5cd75
DB
11921 dwarf2_read_section (objfile, &section);
11922 info_ptr = section.buffer;
3019eac3
DE
11923
11924 if (info_ptr == NULL)
33c5cd75 11925 return;
3019eac3 11926
b4f54984 11927 if (dwarf_read_debug)
19c3d4c9
DE
11928 {
11929 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
11930 get_section_name (&section),
11931 get_section_file_name (&section));
19c3d4c9 11932 }
3019eac3 11933
33c5cd75 11934 end_ptr = info_ptr + section.size;
3019eac3
DE
11935 while (info_ptr < end_ptr)
11936 {
11937 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
11938 struct create_dwo_cu_data create_dwo_cu_data;
11939 struct dwo_unit *dwo_unit;
11940 void **slot;
11941 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 11942
19c3d4c9
DE
11943 memset (&create_dwo_cu_data.dwo_unit, 0,
11944 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3 11945 memset (&per_cu, 0, sizeof (per_cu));
e3b94546 11946 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3019eac3 11947 per_cu.is_debug_types = 0;
33c5cd75
DB
11948 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11949 per_cu.section = &section;
c5ed0576 11950 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
11951
11952 init_cutu_and_read_dies_no_follow (
11953 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11954 info_ptr += per_cu.length;
11955
11956 // If the unit could not be parsed, skip it.
11957 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11958 continue;
3019eac3 11959
33c5cd75
DB
11960 if (cus_htab == NULL)
11961 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 11962
33c5cd75
DB
11963 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11964 *dwo_unit = create_dwo_cu_data.dwo_unit;
11965 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11966 gdb_assert (slot != NULL);
11967 if (*slot != NULL)
19c3d4c9 11968 {
33c5cd75
DB
11969 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11970 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 11971
b98664d3 11972 complaint (_("debug cu entry at offset %s is duplicate to"
9d8780f0
SM
11973 " the entry at offset %s, signature %s"),
11974 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
33c5cd75 11975 hex_string (dwo_unit->signature));
19c3d4c9 11976 }
33c5cd75 11977 *slot = (void *)dwo_unit;
3019eac3 11978 }
3019eac3
DE
11979}
11980
80626a55
DE
11981/* DWP file .debug_{cu,tu}_index section format:
11982 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11983
d2415c6c
DE
11984 DWP Version 1:
11985
80626a55
DE
11986 Both index sections have the same format, and serve to map a 64-bit
11987 signature to a set of section numbers. Each section begins with a header,
11988 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11989 indexes, and a pool of 32-bit section numbers. The index sections will be
11990 aligned at 8-byte boundaries in the file.
11991
d2415c6c
DE
11992 The index section header consists of:
11993
11994 V, 32 bit version number
11995 -, 32 bits unused
11996 N, 32 bit number of compilation units or type units in the index
11997 M, 32 bit number of slots in the hash table
80626a55 11998
d2415c6c 11999 Numbers are recorded using the byte order of the application binary.
80626a55 12000
d2415c6c
DE
12001 The hash table begins at offset 16 in the section, and consists of an array
12002 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12003 order of the application binary). Unused slots in the hash table are 0.
12004 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 12005
d2415c6c
DE
12006 The parallel table begins immediately after the hash table
12007 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12008 array of 32-bit indexes (using the byte order of the application binary),
12009 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12010 table contains a 32-bit index into the pool of section numbers. For unused
12011 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 12012
73869dc2
DE
12013 The pool of section numbers begins immediately following the hash table
12014 (at offset 16 + 12 * M from the beginning of the section). The pool of
12015 section numbers consists of an array of 32-bit words (using the byte order
12016 of the application binary). Each item in the array is indexed starting
12017 from 0. The hash table entry provides the index of the first section
12018 number in the set. Additional section numbers in the set follow, and the
12019 set is terminated by a 0 entry (section number 0 is not used in ELF).
12020
12021 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12022 section must be the first entry in the set, and the .debug_abbrev.dwo must
12023 be the second entry. Other members of the set may follow in any order.
12024
12025 ---
12026
12027 DWP Version 2:
12028
12029 DWP Version 2 combines all the .debug_info, etc. sections into one,
12030 and the entries in the index tables are now offsets into these sections.
12031 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12032 section.
12033
12034 Index Section Contents:
12035 Header
12036 Hash Table of Signatures dwp_hash_table.hash_table
12037 Parallel Table of Indices dwp_hash_table.unit_table
12038 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12039 Table of Section Sizes dwp_hash_table.v2.sizes
12040
12041 The index section header consists of:
12042
12043 V, 32 bit version number
12044 L, 32 bit number of columns in the table of section offsets
12045 N, 32 bit number of compilation units or type units in the index
12046 M, 32 bit number of slots in the hash table
12047
12048 Numbers are recorded using the byte order of the application binary.
12049
12050 The hash table has the same format as version 1.
12051 The parallel table of indices has the same format as version 1,
12052 except that the entries are origin-1 indices into the table of sections
12053 offsets and the table of section sizes.
12054
12055 The table of offsets begins immediately following the parallel table
12056 (at offset 16 + 12 * M from the beginning of the section). The table is
12057 a two-dimensional array of 32-bit words (using the byte order of the
12058 application binary), with L columns and N+1 rows, in row-major order.
12059 Each row in the array is indexed starting from 0. The first row provides
12060 a key to the remaining rows: each column in this row provides an identifier
12061 for a debug section, and the offsets in the same column of subsequent rows
12062 refer to that section. The section identifiers are:
12063
12064 DW_SECT_INFO 1 .debug_info.dwo
12065 DW_SECT_TYPES 2 .debug_types.dwo
12066 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12067 DW_SECT_LINE 4 .debug_line.dwo
12068 DW_SECT_LOC 5 .debug_loc.dwo
12069 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12070 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12071 DW_SECT_MACRO 8 .debug_macro.dwo
12072
12073 The offsets provided by the CU and TU index sections are the base offsets
12074 for the contributions made by each CU or TU to the corresponding section
12075 in the package file. Each CU and TU header contains an abbrev_offset
12076 field, used to find the abbreviations table for that CU or TU within the
12077 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12078 be interpreted as relative to the base offset given in the index section.
12079 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12080 should be interpreted as relative to the base offset for .debug_line.dwo,
12081 and offsets into other debug sections obtained from DWARF attributes should
12082 also be interpreted as relative to the corresponding base offset.
12083
12084 The table of sizes begins immediately following the table of offsets.
12085 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12086 with L columns and N rows, in row-major order. Each row in the array is
12087 indexed starting from 1 (row 0 is shared by the two tables).
12088
12089 ---
12090
12091 Hash table lookup is handled the same in version 1 and 2:
12092
12093 We assume that N and M will not exceed 2^32 - 1.
12094 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12095
d2415c6c
DE
12096 Given a 64-bit compilation unit signature or a type signature S, an entry
12097 in the hash table is located as follows:
80626a55 12098
d2415c6c
DE
12099 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12100 the low-order k bits all set to 1.
80626a55 12101
d2415c6c 12102 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 12103
d2415c6c
DE
12104 3) If the hash table entry at index H matches the signature, use that
12105 entry. If the hash table entry at index H is unused (all zeroes),
12106 terminate the search: the signature is not present in the table.
80626a55 12107
d2415c6c 12108 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 12109
d2415c6c 12110 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 12111 to stop at an unused slot or find the match. */
80626a55
DE
12112
12113/* Create a hash table to map DWO IDs to their CU/TU entry in
12114 .debug_{info,types}.dwo in DWP_FILE.
12115 Returns NULL if there isn't one.
12116 Note: This function processes DWP files only, not DWO files. */
12117
12118static struct dwp_hash_table *
ed2dc618
SM
12119create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12120 struct dwp_file *dwp_file, int is_debug_types)
80626a55
DE
12121{
12122 struct objfile *objfile = dwarf2_per_objfile->objfile;
400174b1 12123 bfd *dbfd = dwp_file->dbfd.get ();
948f8e3d 12124 const gdb_byte *index_ptr, *index_end;
80626a55 12125 struct dwarf2_section_info *index;
73869dc2 12126 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
12127 struct dwp_hash_table *htab;
12128
12129 if (is_debug_types)
12130 index = &dwp_file->sections.tu_index;
12131 else
12132 index = &dwp_file->sections.cu_index;
12133
12134 if (dwarf2_section_empty_p (index))
12135 return NULL;
12136 dwarf2_read_section (objfile, index);
12137
12138 index_ptr = index->buffer;
12139 index_end = index_ptr + index->size;
12140
12141 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
12142 index_ptr += 4;
12143 if (version == 2)
12144 nr_columns = read_4_bytes (dbfd, index_ptr);
12145 else
12146 nr_columns = 0;
12147 index_ptr += 4;
80626a55
DE
12148 nr_units = read_4_bytes (dbfd, index_ptr);
12149 index_ptr += 4;
12150 nr_slots = read_4_bytes (dbfd, index_ptr);
12151 index_ptr += 4;
12152
73869dc2 12153 if (version != 1 && version != 2)
80626a55 12154 {
21aa081e 12155 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 12156 " [in module %s]"),
21aa081e 12157 pulongest (version), dwp_file->name);
80626a55
DE
12158 }
12159 if (nr_slots != (nr_slots & -nr_slots))
12160 {
21aa081e 12161 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 12162 " is not power of 2 [in module %s]"),
21aa081e 12163 pulongest (nr_slots), dwp_file->name);
80626a55
DE
12164 }
12165
12166 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
12167 htab->version = version;
12168 htab->nr_columns = nr_columns;
80626a55
DE
12169 htab->nr_units = nr_units;
12170 htab->nr_slots = nr_slots;
12171 htab->hash_table = index_ptr;
12172 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
12173
12174 /* Exit early if the table is empty. */
12175 if (nr_slots == 0 || nr_units == 0
12176 || (version == 2 && nr_columns == 0))
12177 {
12178 /* All must be zero. */
12179 if (nr_slots != 0 || nr_units != 0
12180 || (version == 2 && nr_columns != 0))
12181 {
b98664d3 12182 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
73869dc2
DE
12183 " all zero [in modules %s]"),
12184 dwp_file->name);
12185 }
12186 return htab;
12187 }
12188
12189 if (version == 1)
12190 {
12191 htab->section_pool.v1.indices =
12192 htab->unit_table + sizeof (uint32_t) * nr_slots;
12193 /* It's harder to decide whether the section is too small in v1.
12194 V1 is deprecated anyway so we punt. */
12195 }
12196 else
12197 {
12198 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12199 int *ids = htab->section_pool.v2.section_ids;
12200 /* Reverse map for error checking. */
12201 int ids_seen[DW_SECT_MAX + 1];
12202 int i;
12203
12204 if (nr_columns < 2)
12205 {
12206 error (_("Dwarf Error: bad DWP hash table, too few columns"
12207 " in section table [in module %s]"),
12208 dwp_file->name);
12209 }
12210 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12211 {
12212 error (_("Dwarf Error: bad DWP hash table, too many columns"
12213 " in section table [in module %s]"),
12214 dwp_file->name);
12215 }
12216 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12217 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12218 for (i = 0; i < nr_columns; ++i)
12219 {
12220 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12221
12222 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12225 " in section table [in module %s]"),
12226 id, dwp_file->name);
12227 }
12228 if (ids_seen[id] != -1)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12231 " id %d in section table [in module %s]"),
12232 id, dwp_file->name);
12233 }
12234 ids_seen[id] = i;
12235 ids[i] = id;
12236 }
12237 /* Must have exactly one info or types section. */
12238 if (((ids_seen[DW_SECT_INFO] != -1)
12239 + (ids_seen[DW_SECT_TYPES] != -1))
12240 != 1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12243 " DWO info/types section [in module %s]"),
12244 dwp_file->name);
12245 }
12246 /* Must have an abbrev section. */
12247 if (ids_seen[DW_SECT_ABBREV] == -1)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12250 " section [in module %s]"),
12251 dwp_file->name);
12252 }
12253 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12254 htab->section_pool.v2.sizes =
12255 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12256 * nr_units * nr_columns);
12257 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12258 * nr_units * nr_columns))
12259 > index_end)
12260 {
12261 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12262 " [in module %s]"),
12263 dwp_file->name);
12264 }
12265 }
80626a55
DE
12266
12267 return htab;
12268}
12269
12270/* Update SECTIONS with the data from SECTP.
12271
12272 This function is like the other "locate" section routines that are
12273 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 12274 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
12275
12276 The result is non-zero for success, or zero if an error was found. */
12277
12278static int
73869dc2
DE
12279locate_v1_virtual_dwo_sections (asection *sectp,
12280 struct virtual_v1_dwo_sections *sections)
80626a55
DE
12281{
12282 const struct dwop_section_names *names = &dwop_section_names;
12283
12284 if (section_is_p (sectp->name, &names->abbrev_dwo))
12285 {
12286 /* There can be only one. */
049412e3 12287 if (sections->abbrev.s.section != NULL)
80626a55 12288 return 0;
049412e3 12289 sections->abbrev.s.section = sectp;
80626a55
DE
12290 sections->abbrev.size = bfd_get_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->info_dwo)
12293 || section_is_p (sectp->name, &names->types_dwo))
12294 {
12295 /* There can be only one. */
049412e3 12296 if (sections->info_or_types.s.section != NULL)
80626a55 12297 return 0;
049412e3 12298 sections->info_or_types.s.section = sectp;
80626a55
DE
12299 sections->info_or_types.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->line_dwo))
12302 {
12303 /* There can be only one. */
049412e3 12304 if (sections->line.s.section != NULL)
80626a55 12305 return 0;
049412e3 12306 sections->line.s.section = sectp;
80626a55
DE
12307 sections->line.size = bfd_get_section_size (sectp);
12308 }
12309 else if (section_is_p (sectp->name, &names->loc_dwo))
12310 {
12311 /* There can be only one. */
049412e3 12312 if (sections->loc.s.section != NULL)
80626a55 12313 return 0;
049412e3 12314 sections->loc.s.section = sectp;
80626a55
DE
12315 sections->loc.size = bfd_get_section_size (sectp);
12316 }
12317 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12318 {
12319 /* There can be only one. */
049412e3 12320 if (sections->macinfo.s.section != NULL)
80626a55 12321 return 0;
049412e3 12322 sections->macinfo.s.section = sectp;
80626a55
DE
12323 sections->macinfo.size = bfd_get_section_size (sectp);
12324 }
12325 else if (section_is_p (sectp->name, &names->macro_dwo))
12326 {
12327 /* There can be only one. */
049412e3 12328 if (sections->macro.s.section != NULL)
80626a55 12329 return 0;
049412e3 12330 sections->macro.s.section = sectp;
80626a55
DE
12331 sections->macro.size = bfd_get_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12334 {
12335 /* There can be only one. */
049412e3 12336 if (sections->str_offsets.s.section != NULL)
80626a55 12337 return 0;
049412e3 12338 sections->str_offsets.s.section = sectp;
80626a55
DE
12339 sections->str_offsets.size = bfd_get_section_size (sectp);
12340 }
12341 else
12342 {
12343 /* No other kind of section is valid. */
12344 return 0;
12345 }
12346
12347 return 1;
12348}
12349
73869dc2
DE
12350/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12351 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12352 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12353 This is for DWP version 1 files. */
80626a55
DE
12354
12355static struct dwo_unit *
ed2dc618
SM
12356create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12357 struct dwp_file *dwp_file,
73869dc2
DE
12358 uint32_t unit_index,
12359 const char *comp_dir,
12360 ULONGEST signature, int is_debug_types)
80626a55
DE
12361{
12362 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
12363 const struct dwp_hash_table *dwp_htab =
12364 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12365 bfd *dbfd = dwp_file->dbfd.get ();
80626a55
DE
12366 const char *kind = is_debug_types ? "TU" : "CU";
12367 struct dwo_file *dwo_file;
12368 struct dwo_unit *dwo_unit;
73869dc2 12369 struct virtual_v1_dwo_sections sections;
80626a55 12370 void **dwo_file_slot;
80626a55
DE
12371 int i;
12372
73869dc2
DE
12373 gdb_assert (dwp_file->version == 1);
12374
b4f54984 12375 if (dwarf_read_debug)
80626a55 12376 {
73869dc2 12377 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 12378 kind,
73869dc2 12379 pulongest (unit_index), hex_string (signature),
80626a55
DE
12380 dwp_file->name);
12381 }
12382
19ac8c2e 12383 /* Fetch the sections of this DWO unit.
80626a55
DE
12384 Put a limit on the number of sections we look for so that bad data
12385 doesn't cause us to loop forever. */
12386
73869dc2 12387#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
12388 (1 /* .debug_info or .debug_types */ \
12389 + 1 /* .debug_abbrev */ \
12390 + 1 /* .debug_line */ \
12391 + 1 /* .debug_loc */ \
12392 + 1 /* .debug_str_offsets */ \
19ac8c2e 12393 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
12394 + 1 /* trailing zero */)
12395
12396 memset (&sections, 0, sizeof (sections));
80626a55 12397
73869dc2 12398 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
12399 {
12400 asection *sectp;
12401 uint32_t section_nr =
12402 read_4_bytes (dbfd,
73869dc2
DE
12403 dwp_htab->section_pool.v1.indices
12404 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
12405
12406 if (section_nr == 0)
12407 break;
12408 if (section_nr >= dwp_file->num_sections)
12409 {
12410 error (_("Dwarf Error: bad DWP hash table, section number too large"
12411 " [in module %s]"),
12412 dwp_file->name);
12413 }
12414
12415 sectp = dwp_file->elf_sections[section_nr];
73869dc2 12416 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
12417 {
12418 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12419 " [in module %s]"),
12420 dwp_file->name);
12421 }
12422 }
12423
12424 if (i < 2
a32a8923
DE
12425 || dwarf2_section_empty_p (&sections.info_or_types)
12426 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
73869dc2 12432 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
12433 {
12434 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12435 " [in module %s]"),
12436 dwp_file->name);
12437 }
12438
12439 /* It's easier for the rest of the code if we fake a struct dwo_file and
12440 have dwo_unit "live" in that. At least for now.
12441
12442 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 12443 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
12444 file, we can combine them back into a virtual DWO file to save space
12445 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
12446 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12447
791afaa2
TT
12448 std::string virtual_dwo_name =
12449 string_printf ("virtual-dwo/%d-%d-%d-%d",
12450 get_section_id (&sections.abbrev),
12451 get_section_id (&sections.line),
12452 get_section_id (&sections.loc),
12453 get_section_id (&sections.str_offsets));
80626a55 12454 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12455 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12456 virtual_dwo_name.c_str (),
12457 comp_dir);
80626a55
DE
12458 /* Create one if necessary. */
12459 if (*dwo_file_slot == NULL)
12460 {
b4f54984 12461 if (dwarf_read_debug)
80626a55
DE
12462 {
12463 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12464 virtual_dwo_name.c_str ());
80626a55
DE
12465 }
12466 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
12467 dwo_file->dwo_name
12468 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
12469 virtual_dwo_name.c_str (),
12470 virtual_dwo_name.size ());
0ac5b59e 12471 dwo_file->comp_dir = comp_dir;
80626a55
DE
12472 dwo_file->sections.abbrev = sections.abbrev;
12473 dwo_file->sections.line = sections.line;
12474 dwo_file->sections.loc = sections.loc;
12475 dwo_file->sections.macinfo = sections.macinfo;
12476 dwo_file->sections.macro = sections.macro;
12477 dwo_file->sections.str_offsets = sections.str_offsets;
12478 /* The "str" section is global to the entire DWP file. */
12479 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 12480 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
12481 there's no need to record it in dwo_file.
12482 Also, we can't simply record type sections in dwo_file because
12483 we record a pointer into the vector in dwo_unit. As we collect more
12484 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
12485 for it, invalidating all copies of pointers into the previous
12486 contents. */
80626a55
DE
12487 *dwo_file_slot = dwo_file;
12488 }
12489 else
12490 {
b4f54984 12491 if (dwarf_read_debug)
80626a55
DE
12492 {
12493 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12494 virtual_dwo_name.c_str ());
80626a55 12495 }
9a3c8263 12496 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55 12497 }
80626a55
DE
12498
12499 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12500 dwo_unit->dwo_file = dwo_file;
12501 dwo_unit->signature = signature;
8d749320
SM
12502 dwo_unit->section =
12503 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 12504 *dwo_unit->section = sections.info_or_types;
57d63ce2 12505 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
12506
12507 return dwo_unit;
12508}
12509
73869dc2
DE
12510/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12511 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12512 piece within that section used by a TU/CU, return a virtual section
12513 of just that piece. */
12514
12515static struct dwarf2_section_info
ed2dc618
SM
12516create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12517 struct dwarf2_section_info *section,
73869dc2
DE
12518 bfd_size_type offset, bfd_size_type size)
12519{
12520 struct dwarf2_section_info result;
12521 asection *sectp;
12522
12523 gdb_assert (section != NULL);
12524 gdb_assert (!section->is_virtual);
12525
12526 memset (&result, 0, sizeof (result));
12527 result.s.containing_section = section;
12528 result.is_virtual = 1;
12529
12530 if (size == 0)
12531 return result;
12532
12533 sectp = get_section_bfd_section (section);
12534
12535 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12536 bounds of the real section. This is a pretty-rare event, so just
12537 flag an error (easier) instead of a warning and trying to cope. */
12538 if (sectp == NULL
12539 || offset + size > bfd_get_section_size (sectp))
12540 {
73869dc2
DE
12541 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12542 " in section %s [in module %s]"),
12543 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12544 objfile_name (dwarf2_per_objfile->objfile));
12545 }
12546
12547 result.virtual_offset = offset;
12548 result.size = size;
12549 return result;
12550}
12551
12552/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12553 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12554 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12555 This is for DWP version 2 files. */
12556
12557static struct dwo_unit *
ed2dc618
SM
12558create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12559 struct dwp_file *dwp_file,
73869dc2
DE
12560 uint32_t unit_index,
12561 const char *comp_dir,
12562 ULONGEST signature, int is_debug_types)
12563{
12564 struct objfile *objfile = dwarf2_per_objfile->objfile;
12565 const struct dwp_hash_table *dwp_htab =
12566 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12567 bfd *dbfd = dwp_file->dbfd.get ();
73869dc2
DE
12568 const char *kind = is_debug_types ? "TU" : "CU";
12569 struct dwo_file *dwo_file;
12570 struct dwo_unit *dwo_unit;
12571 struct virtual_v2_dwo_sections sections;
12572 void **dwo_file_slot;
73869dc2
DE
12573 int i;
12574
12575 gdb_assert (dwp_file->version == 2);
12576
b4f54984 12577 if (dwarf_read_debug)
73869dc2
DE
12578 {
12579 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12580 kind,
12581 pulongest (unit_index), hex_string (signature),
12582 dwp_file->name);
12583 }
12584
12585 /* Fetch the section offsets of this DWO unit. */
12586
12587 memset (&sections, 0, sizeof (sections));
73869dc2
DE
12588
12589 for (i = 0; i < dwp_htab->nr_columns; ++i)
12590 {
12591 uint32_t offset = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.offsets
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12594 + i)
12595 * sizeof (uint32_t)));
12596 uint32_t size = read_4_bytes (dbfd,
12597 dwp_htab->section_pool.v2.sizes
12598 + (((unit_index - 1) * dwp_htab->nr_columns
12599 + i)
12600 * sizeof (uint32_t)));
12601
12602 switch (dwp_htab->section_pool.v2.section_ids[i])
12603 {
12604 case DW_SECT_INFO:
12605 case DW_SECT_TYPES:
12606 sections.info_or_types_offset = offset;
12607 sections.info_or_types_size = size;
12608 break;
12609 case DW_SECT_ABBREV:
12610 sections.abbrev_offset = offset;
12611 sections.abbrev_size = size;
12612 break;
12613 case DW_SECT_LINE:
12614 sections.line_offset = offset;
12615 sections.line_size = size;
12616 break;
12617 case DW_SECT_LOC:
12618 sections.loc_offset = offset;
12619 sections.loc_size = size;
12620 break;
12621 case DW_SECT_STR_OFFSETS:
12622 sections.str_offsets_offset = offset;
12623 sections.str_offsets_size = size;
12624 break;
12625 case DW_SECT_MACINFO:
12626 sections.macinfo_offset = offset;
12627 sections.macinfo_size = size;
12628 break;
12629 case DW_SECT_MACRO:
12630 sections.macro_offset = offset;
12631 sections.macro_size = size;
12632 break;
12633 }
12634 }
12635
12636 /* It's easier for the rest of the code if we fake a struct dwo_file and
12637 have dwo_unit "live" in that. At least for now.
12638
12639 The DWP file can be made up of a random collection of CUs and TUs.
12640 However, for each CU + set of TUs that came from the same original DWO
12641 file, we can combine them back into a virtual DWO file to save space
12642 (fewer struct dwo_file objects to allocate). Remember that for really
12643 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12644
791afaa2
TT
12645 std::string virtual_dwo_name =
12646 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12647 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12648 (long) (sections.line_size ? sections.line_offset : 0),
12649 (long) (sections.loc_size ? sections.loc_offset : 0),
12650 (long) (sections.str_offsets_size
12651 ? sections.str_offsets_offset : 0));
73869dc2 12652 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12653 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12654 virtual_dwo_name.c_str (),
12655 comp_dir);
73869dc2
DE
12656 /* Create one if necessary. */
12657 if (*dwo_file_slot == NULL)
12658 {
b4f54984 12659 if (dwarf_read_debug)
73869dc2
DE
12660 {
12661 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12662 virtual_dwo_name.c_str ());
73869dc2
DE
12663 }
12664 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
12665 dwo_file->dwo_name
12666 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
12667 virtual_dwo_name.c_str (),
12668 virtual_dwo_name.size ());
73869dc2
DE
12669 dwo_file->comp_dir = comp_dir;
12670 dwo_file->sections.abbrev =
ed2dc618 12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
73869dc2
DE
12672 sections.abbrev_offset, sections.abbrev_size);
12673 dwo_file->sections.line =
ed2dc618 12674 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
73869dc2
DE
12675 sections.line_offset, sections.line_size);
12676 dwo_file->sections.loc =
ed2dc618 12677 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
73869dc2
DE
12678 sections.loc_offset, sections.loc_size);
12679 dwo_file->sections.macinfo =
ed2dc618 12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
73869dc2
DE
12681 sections.macinfo_offset, sections.macinfo_size);
12682 dwo_file->sections.macro =
ed2dc618 12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
73869dc2
DE
12684 sections.macro_offset, sections.macro_size);
12685 dwo_file->sections.str_offsets =
ed2dc618
SM
12686 create_dwp_v2_section (dwarf2_per_objfile,
12687 &dwp_file->sections.str_offsets,
73869dc2
DE
12688 sections.str_offsets_offset,
12689 sections.str_offsets_size);
12690 /* The "str" section is global to the entire DWP file. */
12691 dwo_file->sections.str = dwp_file->sections.str;
12692 /* The info or types section is assigned below to dwo_unit,
12693 there's no need to record it in dwo_file.
12694 Also, we can't simply record type sections in dwo_file because
12695 we record a pointer into the vector in dwo_unit. As we collect more
12696 types we'll grow the vector and eventually have to reallocate space
12697 for it, invalidating all copies of pointers into the previous
12698 contents. */
12699 *dwo_file_slot = dwo_file;
12700 }
12701 else
12702 {
b4f54984 12703 if (dwarf_read_debug)
73869dc2
DE
12704 {
12705 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12706 virtual_dwo_name.c_str ());
73869dc2 12707 }
9a3c8263 12708 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2 12709 }
73869dc2
DE
12710
12711 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12712 dwo_unit->dwo_file = dwo_file;
12713 dwo_unit->signature = signature;
8d749320
SM
12714 dwo_unit->section =
12715 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
ed2dc618
SM
12716 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12717 is_debug_types
73869dc2
DE
12718 ? &dwp_file->sections.types
12719 : &dwp_file->sections.info,
12720 sections.info_or_types_offset,
12721 sections.info_or_types_size);
12722 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12723
12724 return dwo_unit;
12725}
12726
57d63ce2
DE
12727/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12728 Returns NULL if the signature isn't found. */
80626a55
DE
12729
12730static struct dwo_unit *
ed2dc618
SM
12731lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12732 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 12733 ULONGEST signature, int is_debug_types)
80626a55 12734{
57d63ce2
DE
12735 const struct dwp_hash_table *dwp_htab =
12736 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12737 bfd *dbfd = dwp_file->dbfd.get ();
57d63ce2 12738 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
12739 uint32_t hash = signature & mask;
12740 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12741 unsigned int i;
12742 void **slot;
870f88f7 12743 struct dwo_unit find_dwo_cu;
80626a55
DE
12744
12745 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12746 find_dwo_cu.signature = signature;
19ac8c2e
DE
12747 slot = htab_find_slot (is_debug_types
12748 ? dwp_file->loaded_tus
12749 : dwp_file->loaded_cus,
12750 &find_dwo_cu, INSERT);
80626a55
DE
12751
12752 if (*slot != NULL)
9a3c8263 12753 return (struct dwo_unit *) *slot;
80626a55
DE
12754
12755 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 12756 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
12757 {
12758 ULONGEST signature_in_table;
12759
12760 signature_in_table =
57d63ce2 12761 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
12762 if (signature_in_table == signature)
12763 {
57d63ce2
DE
12764 uint32_t unit_index =
12765 read_4_bytes (dbfd,
12766 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 12767
73869dc2
DE
12768 if (dwp_file->version == 1)
12769 {
ed2dc618
SM
12770 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12771 dwp_file, unit_index,
73869dc2
DE
12772 comp_dir, signature,
12773 is_debug_types);
12774 }
12775 else
12776 {
ed2dc618
SM
12777 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
73869dc2
DE
12779 comp_dir, signature,
12780 is_debug_types);
12781 }
9a3c8263 12782 return (struct dwo_unit *) *slot;
80626a55
DE
12783 }
12784 if (signature_in_table == 0)
12785 return NULL;
12786 hash = (hash + hash2) & mask;
12787 }
12788
12789 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12790 " [in module %s]"),
12791 dwp_file->name);
12792}
12793
ab5088bf 12794/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
12795 Open the file specified by FILE_NAME and hand it off to BFD for
12796 preliminary analysis. Return a newly initialized bfd *, which
12797 includes a canonicalized copy of FILE_NAME.
80626a55 12798 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
12799 SEARCH_CWD is true if the current directory is to be searched.
12800 It will be searched before debug-file-directory.
13aaf454
DE
12801 If successful, the file is added to the bfd include table of the
12802 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 12803 If unable to find/open the file, return NULL.
3019eac3
DE
12804 NOTE: This function is derived from symfile_bfd_open. */
12805
192b62ce 12806static gdb_bfd_ref_ptr
ed2dc618
SM
12807try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12808 const char *file_name, int is_dwp, int search_cwd)
3019eac3 12809{
24b9144d 12810 int desc;
9c02c129
DE
12811 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12812 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12813 to debug_file_directory. */
e0cc99a6 12814 const char *search_path;
9c02c129
DE
12815 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12816
e0cc99a6 12817 gdb::unique_xmalloc_ptr<char> search_path_holder;
6ac97d4c
DE
12818 if (search_cwd)
12819 {
12820 if (*debug_file_directory != '\0')
e0cc99a6
TT
12821 {
12822 search_path_holder.reset (concat (".", dirname_separator_string,
12823 debug_file_directory,
12824 (char *) NULL));
12825 search_path = search_path_holder.get ();
12826 }
6ac97d4c 12827 else
e0cc99a6 12828 search_path = ".";
6ac97d4c 12829 }
9c02c129 12830 else
e0cc99a6 12831 search_path = debug_file_directory;
3019eac3 12832
24b9144d 12833 openp_flags flags = OPF_RETURN_REALPATH;
80626a55
DE
12834 if (is_dwp)
12835 flags |= OPF_SEARCH_IN_PATH;
e0cc99a6
TT
12836
12837 gdb::unique_xmalloc_ptr<char> absolute_name;
9c02c129 12838 desc = openp (search_path, flags, file_name,
3019eac3
DE
12839 O_RDONLY | O_BINARY, &absolute_name);
12840 if (desc < 0)
12841 return NULL;
12842
e0cc99a6
TT
12843 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12844 gnutarget, desc));
9c02c129
DE
12845 if (sym_bfd == NULL)
12846 return NULL;
192b62ce 12847 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 12848
192b62ce
TT
12849 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12850 return NULL;
3019eac3 12851
13aaf454
DE
12852 /* Success. Record the bfd as having been included by the objfile's bfd.
12853 This is important because things like demangled_names_hash lives in the
12854 objfile's per_bfd space and may have references to things like symbol
12855 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 12856 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 12857
3019eac3
DE
12858 return sym_bfd;
12859}
12860
ab5088bf 12861/* Try to open DWO file FILE_NAME.
3019eac3
DE
12862 COMP_DIR is the DW_AT_comp_dir attribute.
12863 The result is the bfd handle of the file.
12864 If there is a problem finding or opening the file, return NULL.
12865 Upon success, the canonicalized path of the file is stored in the bfd,
12866 same as symfile_bfd_open. */
12867
192b62ce 12868static gdb_bfd_ref_ptr
ed2dc618
SM
12869open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12870 const char *file_name, const char *comp_dir)
3019eac3 12871{
80626a55 12872 if (IS_ABSOLUTE_PATH (file_name))
ed2dc618
SM
12873 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12874 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
12875
12876 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12877
12878 if (comp_dir != NULL)
12879 {
b36cec19
PA
12880 char *path_to_try = concat (comp_dir, SLASH_STRING,
12881 file_name, (char *) NULL);
3019eac3
DE
12882
12883 /* NOTE: If comp_dir is a relative path, this will also try the
12884 search path, which seems useful. */
ed2dc618
SM
12885 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12886 path_to_try,
12887 0 /*is_dwp*/,
192b62ce 12888 1 /*search_cwd*/));
3019eac3
DE
12889 xfree (path_to_try);
12890 if (abfd != NULL)
12891 return abfd;
12892 }
12893
12894 /* That didn't work, try debug-file-directory, which, despite its name,
12895 is a list of paths. */
12896
12897 if (*debug_file_directory == '\0')
12898 return NULL;
12899
ed2dc618
SM
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
12902}
12903
80626a55
DE
12904/* This function is mapped across the sections and remembers the offset and
12905 size of each of the DWO debugging sections we are interested in. */
12906
12907static void
12908dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12909{
9a3c8263 12910 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
12911 const struct dwop_section_names *names = &dwop_section_names;
12912
12913 if (section_is_p (sectp->name, &names->abbrev_dwo))
12914 {
049412e3 12915 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
12916 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12917 }
12918 else if (section_is_p (sectp->name, &names->info_dwo))
12919 {
049412e3 12920 dwo_sections->info.s.section = sectp;
80626a55
DE
12921 dwo_sections->info.size = bfd_get_section_size (sectp);
12922 }
12923 else if (section_is_p (sectp->name, &names->line_dwo))
12924 {
049412e3 12925 dwo_sections->line.s.section = sectp;
80626a55
DE
12926 dwo_sections->line.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->loc_dwo))
12929 {
049412e3 12930 dwo_sections->loc.s.section = sectp;
80626a55
DE
12931 dwo_sections->loc.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12934 {
049412e3 12935 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
12936 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->macro_dwo))
12939 {
049412e3 12940 dwo_sections->macro.s.section = sectp;
80626a55
DE
12941 dwo_sections->macro.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->str_dwo))
12944 {
049412e3 12945 dwo_sections->str.s.section = sectp;
80626a55
DE
12946 dwo_sections->str.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12949 {
049412e3 12950 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
12951 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->types_dwo))
12954 {
12955 struct dwarf2_section_info type_section;
12956
12957 memset (&type_section, 0, sizeof (type_section));
049412e3 12958 type_section.s.section = sectp;
80626a55
DE
12959 type_section.size = bfd_get_section_size (sectp);
12960 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12961 &type_section);
12962 }
12963}
12964
ab5088bf 12965/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 12966 by PER_CU. This is for the non-DWP case.
80626a55 12967 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
12968
12969static struct dwo_file *
0ac5b59e
DE
12970open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12971 const char *dwo_name, const char *comp_dir)
3019eac3 12972{
ed2dc618 12973 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3 12974 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 12975
ed2dc618 12976 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
80626a55
DE
12977 if (dbfd == NULL)
12978 {
b4f54984 12979 if (dwarf_read_debug)
80626a55
DE
12980 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12981 return NULL;
12982 }
263db9a1
TT
12983
12984 /* We use a unique pointer here, despite the obstack allocation,
12985 because a dwo_file needs some cleanup if it is abandoned. */
12986 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12987 struct dwo_file));
0ac5b59e
DE
12988 dwo_file->dwo_name = dwo_name;
12989 dwo_file->comp_dir = comp_dir;
192b62ce 12990 dwo_file->dbfd = dbfd.release ();
3019eac3 12991
192b62ce
TT
12992 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12993 &dwo_file->sections);
3019eac3 12994
ed2dc618
SM
12995 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12996 dwo_file->cus);
3019eac3 12997
263db9a1 12998 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
ed2dc618 12999 dwo_file->sections.types, dwo_file->tus);
3019eac3 13000
b4f54984 13001 if (dwarf_read_debug)
80626a55
DE
13002 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13003
263db9a1 13004 return dwo_file.release ();
3019eac3
DE
13005}
13006
80626a55 13007/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
13008 size of each of the DWP debugging sections common to version 1 and 2 that
13009 we are interested in. */
3019eac3 13010
80626a55 13011static void
73869dc2
DE
13012dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13013 void *dwp_file_ptr)
3019eac3 13014{
9a3c8263 13015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
13016 const struct dwop_section_names *names = &dwop_section_names;
13017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 13018
80626a55 13019 /* Record the ELF section number for later lookup: this is what the
73869dc2 13020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
13021 gdb_assert (elf_section_nr < dwp_file->num_sections);
13022 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 13023
80626a55
DE
13024 /* Look for specific sections that we need. */
13025 if (section_is_p (sectp->name, &names->str_dwo))
13026 {
049412e3 13027 dwp_file->sections.str.s.section = sectp;
80626a55
DE
13028 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->cu_index))
13031 {
049412e3 13032 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
13033 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13034 }
13035 else if (section_is_p (sectp->name, &names->tu_index))
13036 {
049412e3 13037 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
13038 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13039 }
13040}
3019eac3 13041
73869dc2
DE
13042/* This function is mapped across the sections and remembers the offset and
13043 size of each of the DWP version 2 debugging sections that we are interested
13044 in. This is split into a separate function because we don't know if we
13045 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13046
13047static void
13048dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13049{
9a3c8263 13050 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
13051 const struct dwop_section_names *names = &dwop_section_names;
13052 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13053
13054 /* Record the ELF section number for later lookup: this is what the
13055 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13056 gdb_assert (elf_section_nr < dwp_file->num_sections);
13057 dwp_file->elf_sections[elf_section_nr] = sectp;
13058
13059 /* Look for specific sections that we need. */
13060 if (section_is_p (sectp->name, &names->abbrev_dwo))
13061 {
049412e3 13062 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
13063 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->info_dwo))
13066 {
049412e3 13067 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
13068 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13069 }
13070 else if (section_is_p (sectp->name, &names->line_dwo))
13071 {
049412e3 13072 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
13073 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->loc_dwo))
13076 {
049412e3 13077 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
13078 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13081 {
049412e3 13082 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
13083 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->macro_dwo))
13086 {
049412e3 13087 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
13088 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13091 {
049412e3 13092 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
13093 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->types_dwo))
13096 {
049412e3 13097 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
13098 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13099 }
13100}
13101
80626a55 13102/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 13103
80626a55
DE
13104static hashval_t
13105hash_dwp_loaded_cutus (const void *item)
13106{
9a3c8263 13107 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 13108
80626a55
DE
13109 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13110 return dwo_unit->signature;
3019eac3
DE
13111}
13112
80626a55 13113/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 13114
80626a55
DE
13115static int
13116eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 13117{
9a3c8263
SM
13118 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13119 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 13120
80626a55
DE
13121 return dua->signature == dub->signature;
13122}
3019eac3 13123
80626a55 13124/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 13125
80626a55
DE
13126static htab_t
13127allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13128{
13129 return htab_create_alloc_ex (3,
13130 hash_dwp_loaded_cutus,
13131 eq_dwp_loaded_cutus,
13132 NULL,
13133 &objfile->objfile_obstack,
13134 hashtab_obstack_allocate,
13135 dummy_obstack_deallocate);
13136}
3019eac3 13137
ab5088bf
DE
13138/* Try to open DWP file FILE_NAME.
13139 The result is the bfd handle of the file.
13140 If there is a problem finding or opening the file, return NULL.
13141 Upon success, the canonicalized path of the file is stored in the bfd,
13142 same as symfile_bfd_open. */
13143
192b62ce 13144static gdb_bfd_ref_ptr
ed2dc618
SM
13145open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13146 const char *file_name)
ab5088bf 13147{
ed2dc618
SM
13148 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13149 1 /*is_dwp*/,
192b62ce 13150 1 /*search_cwd*/));
6ac97d4c
DE
13151 if (abfd != NULL)
13152 return abfd;
13153
13154 /* Work around upstream bug 15652.
13155 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13156 [Whether that's a "bug" is debatable, but it is getting in our way.]
13157 We have no real idea where the dwp file is, because gdb's realpath-ing
13158 of the executable's path may have discarded the needed info.
13159 [IWBN if the dwp file name was recorded in the executable, akin to
13160 .gnu_debuglink, but that doesn't exist yet.]
13161 Strip the directory from FILE_NAME and search again. */
13162 if (*debug_file_directory != '\0')
13163 {
13164 /* Don't implicitly search the current directory here.
13165 If the user wants to search "." to handle this case,
13166 it must be added to debug-file-directory. */
ed2dc618
SM
13167 return try_open_dwop_file (dwarf2_per_objfile,
13168 lbasename (file_name), 1 /*is_dwp*/,
6ac97d4c
DE
13169 0 /*search_cwd*/);
13170 }
13171
13172 return NULL;
ab5088bf
DE
13173}
13174
80626a55
DE
13175/* Initialize the use of the DWP file for the current objfile.
13176 By convention the name of the DWP file is ${objfile}.dwp.
13177 The result is NULL if it can't be found. */
a766d390 13178
400174b1 13179static std::unique_ptr<struct dwp_file>
ed2dc618 13180open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
80626a55
DE
13181{
13182 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 13183
82bf32bc
JK
13184 /* Try to find first .dwp for the binary file before any symbolic links
13185 resolving. */
6c447423
DE
13186
13187 /* If the objfile is a debug file, find the name of the real binary
13188 file and get the name of dwp file from there. */
d721ba37 13189 std::string dwp_name;
6c447423
DE
13190 if (objfile->separate_debug_objfile_backlink != NULL)
13191 {
13192 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13193 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 13194
d721ba37 13195 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
13196 }
13197 else
d721ba37
PA
13198 dwp_name = objfile->original_name;
13199
13200 dwp_name += ".dwp";
80626a55 13201
ed2dc618 13202 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
82bf32bc
JK
13203 if (dbfd == NULL
13204 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13205 {
13206 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
13207 dwp_name = objfile_name (objfile);
13208 dwp_name += ".dwp";
ed2dc618 13209 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
82bf32bc
JK
13210 }
13211
80626a55
DE
13212 if (dbfd == NULL)
13213 {
b4f54984 13214 if (dwarf_read_debug)
d721ba37 13215 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
400174b1 13216 return std::unique_ptr<dwp_file> ();
3019eac3 13217 }
400174b1
TT
13218
13219 const char *name = bfd_get_filename (dbfd.get ());
13220 std::unique_ptr<struct dwp_file> dwp_file
13221 (new struct dwp_file (name, std::move (dbfd)));
c906108c 13222
80626a55 13223 /* +1: section 0 is unused */
192b62ce 13224 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
13225 dwp_file->elf_sections =
13226 OBSTACK_CALLOC (&objfile->objfile_obstack,
13227 dwp_file->num_sections, asection *);
13228
400174b1
TT
13229 bfd_map_over_sections (dwp_file->dbfd.get (),
13230 dwarf2_locate_common_dwp_sections,
13231 dwp_file.get ());
80626a55 13232
400174b1
TT
13233 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13234 0);
80626a55 13235
400174b1
TT
13236 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13237 1);
80626a55 13238
73869dc2 13239 /* The DWP file version is stored in the hash table. Oh well. */
08302ed2
DE
13240 if (dwp_file->cus && dwp_file->tus
13241 && dwp_file->cus->version != dwp_file->tus->version)
73869dc2
DE
13242 {
13243 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 13244 pretty bizarre. We use pulongest here because that's the established
4d65956b 13245 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
13246 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13247 " TU version %s [in DWP file %s]"),
13248 pulongest (dwp_file->cus->version),
d721ba37 13249 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2 13250 }
08302ed2
DE
13251
13252 if (dwp_file->cus)
13253 dwp_file->version = dwp_file->cus->version;
13254 else if (dwp_file->tus)
13255 dwp_file->version = dwp_file->tus->version;
13256 else
13257 dwp_file->version = 2;
73869dc2
DE
13258
13259 if (dwp_file->version == 2)
400174b1
TT
13260 bfd_map_over_sections (dwp_file->dbfd.get (),
13261 dwarf2_locate_v2_dwp_sections,
13262 dwp_file.get ());
73869dc2 13263
19ac8c2e
DE
13264 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13265 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 13266
b4f54984 13267 if (dwarf_read_debug)
80626a55
DE
13268 {
13269 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13270 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
13271 " %s CUs, %s TUs\n",
13272 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13273 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
13274 }
13275
13276 return dwp_file;
3019eac3 13277}
c906108c 13278
ab5088bf
DE
13279/* Wrapper around open_and_init_dwp_file, only open it once. */
13280
13281static struct dwp_file *
ed2dc618 13282get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
ab5088bf
DE
13283{
13284 if (! dwarf2_per_objfile->dwp_checked)
13285 {
ed2dc618
SM
13286 dwarf2_per_objfile->dwp_file
13287 = open_and_init_dwp_file (dwarf2_per_objfile);
ab5088bf
DE
13288 dwarf2_per_objfile->dwp_checked = 1;
13289 }
400174b1 13290 return dwarf2_per_objfile->dwp_file.get ();
ab5088bf
DE
13291}
13292
80626a55
DE
13293/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13294 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13295 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 13296 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
13297 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13298
13299 This is called, for example, when wanting to read a variable with a
13300 complex location. Therefore we don't want to do file i/o for every call.
13301 Therefore we don't want to look for a DWO file on every call.
13302 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13303 then we check if we've already seen DWO_NAME, and only THEN do we check
13304 for a DWO file.
13305
1c658ad5 13306 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 13307 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 13308
3019eac3 13309static struct dwo_unit *
80626a55
DE
13310lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13311 const char *dwo_name, const char *comp_dir,
13312 ULONGEST signature, int is_debug_types)
3019eac3 13313{
ed2dc618 13314 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
3019eac3 13315 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
13316 const char *kind = is_debug_types ? "TU" : "CU";
13317 void **dwo_file_slot;
3019eac3 13318 struct dwo_file *dwo_file;
80626a55 13319 struct dwp_file *dwp_file;
cb1df416 13320
6a506a2d
DE
13321 /* First see if there's a DWP file.
13322 If we have a DWP file but didn't find the DWO inside it, don't
13323 look for the original DWO file. It makes gdb behave differently
13324 depending on whether one is debugging in the build tree. */
cf2c3c16 13325
ed2dc618 13326 dwp_file = get_dwp_file (dwarf2_per_objfile);
80626a55 13327 if (dwp_file != NULL)
cf2c3c16 13328 {
80626a55
DE
13329 const struct dwp_hash_table *dwp_htab =
13330 is_debug_types ? dwp_file->tus : dwp_file->cus;
13331
13332 if (dwp_htab != NULL)
13333 {
13334 struct dwo_unit *dwo_cutu =
ed2dc618 13335 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
57d63ce2 13336 signature, is_debug_types);
80626a55
DE
13337
13338 if (dwo_cutu != NULL)
13339 {
b4f54984 13340 if (dwarf_read_debug)
80626a55
DE
13341 {
13342 fprintf_unfiltered (gdb_stdlog,
13343 "Virtual DWO %s %s found: @%s\n",
13344 kind, hex_string (signature),
13345 host_address_to_string (dwo_cutu));
13346 }
13347 return dwo_cutu;
13348 }
13349 }
13350 }
6a506a2d 13351 else
80626a55 13352 {
6a506a2d 13353 /* No DWP file, look for the DWO file. */
80626a55 13354
ed2dc618
SM
13355 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13356 dwo_name, comp_dir);
6a506a2d 13357 if (*dwo_file_slot == NULL)
80626a55 13358 {
6a506a2d
DE
13359 /* Read in the file and build a table of the CUs/TUs it contains. */
13360 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 13361 }
6a506a2d 13362 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 13363 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 13364
6a506a2d 13365 if (dwo_file != NULL)
19c3d4c9 13366 {
6a506a2d
DE
13367 struct dwo_unit *dwo_cutu = NULL;
13368
13369 if (is_debug_types && dwo_file->tus)
13370 {
13371 struct dwo_unit find_dwo_cutu;
13372
13373 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13374 find_dwo_cutu.signature = signature;
9a3c8263
SM
13375 dwo_cutu
13376 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 13377 }
33c5cd75 13378 else if (!is_debug_types && dwo_file->cus)
80626a55 13379 {
33c5cd75
DB
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13385 &find_dwo_cutu);
6a506a2d
DE
13386 }
13387
13388 if (dwo_cutu != NULL)
13389 {
b4f54984 13390 if (dwarf_read_debug)
6a506a2d
DE
13391 {
13392 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13393 kind, dwo_name, hex_string (signature),
13394 host_address_to_string (dwo_cutu));
13395 }
13396 return dwo_cutu;
80626a55
DE
13397 }
13398 }
2e276125 13399 }
9cdd5dbd 13400
80626a55
DE
13401 /* We didn't find it. This could mean a dwo_id mismatch, or
13402 someone deleted the DWO/DWP file, or the search path isn't set up
13403 correctly to find the file. */
13404
b4f54984 13405 if (dwarf_read_debug)
80626a55
DE
13406 {
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13408 kind, dwo_name, hex_string (signature));
13409 }
3019eac3 13410
6656a72d
DE
13411 /* This is a warning and not a complaint because it can be caused by
13412 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
13413 {
13414 /* Print the name of the DWP file if we looked there, helps the user
13415 better diagnose the problem. */
791afaa2 13416 std::string dwp_text;
43942612
DE
13417
13418 if (dwp_file != NULL)
791afaa2
TT
13419 dwp_text = string_printf (" [in DWP file %s]",
13420 lbasename (dwp_file->name));
43942612 13421
9d8780f0 13422 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
43942612
DE
13423 " [in module %s]"),
13424 kind, dwo_name, hex_string (signature),
791afaa2 13425 dwp_text.c_str (),
43942612 13426 this_unit->is_debug_types ? "TU" : "CU",
9d8780f0 13427 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
43942612 13428 }
3019eac3 13429 return NULL;
5fb290d7
DJ
13430}
13431
80626a55
DE
13432/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13433 See lookup_dwo_cutu_unit for details. */
13434
13435static struct dwo_unit *
13436lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13437 const char *dwo_name, const char *comp_dir,
13438 ULONGEST signature)
13439{
13440 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13441}
13442
13443/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13444 See lookup_dwo_cutu_unit for details. */
13445
13446static struct dwo_unit *
13447lookup_dwo_type_unit (struct signatured_type *this_tu,
13448 const char *dwo_name, const char *comp_dir)
13449{
13450 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13451}
13452
89e63ee4
DE
13453/* Traversal function for queue_and_load_all_dwo_tus. */
13454
13455static int
13456queue_and_load_dwo_tu (void **slot, void *info)
13457{
13458 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13459 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13460 ULONGEST signature = dwo_unit->signature;
13461 struct signatured_type *sig_type =
13462 lookup_dwo_signatured_type (per_cu->cu, signature);
13463
13464 if (sig_type != NULL)
13465 {
13466 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13467
13468 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13469 a real dependency of PER_CU on SIG_TYPE. That is detected later
13470 while processing PER_CU. */
13471 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13472 load_full_type_unit (sig_cu);
13473 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13474 }
13475
13476 return 1;
13477}
13478
13479/* Queue all TUs contained in the DWO of PER_CU to be read in.
13480 The DWO may have the only definition of the type, though it may not be
13481 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13482 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13483
13484static void
13485queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13486{
13487 struct dwo_unit *dwo_unit;
13488 struct dwo_file *dwo_file;
13489
13490 gdb_assert (!per_cu->is_debug_types);
ed2dc618 13491 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
89e63ee4
DE
13492 gdb_assert (per_cu->cu != NULL);
13493
13494 dwo_unit = per_cu->cu->dwo_unit;
13495 gdb_assert (dwo_unit != NULL);
13496
13497 dwo_file = dwo_unit->dwo_file;
13498 if (dwo_file->tus != NULL)
13499 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13500}
13501
3019eac3 13502/* Free all resources associated with DWO_FILE.
5dafb3d1 13503 Close the DWO file and munmap the sections. */
348e048f
DE
13504
13505static void
5dafb3d1 13506free_dwo_file (struct dwo_file *dwo_file)
348e048f 13507{
5c6fa7ab 13508 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 13509 gdb_bfd_unref (dwo_file->dbfd);
348e048f 13510
3019eac3
DE
13511 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13512}
348e048f 13513
3019eac3 13514/* Traversal function for free_dwo_files. */
2ab95328 13515
3019eac3
DE
13516static int
13517free_dwo_file_from_slot (void **slot, void *info)
13518{
13519 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
348e048f 13520
5dafb3d1 13521 free_dwo_file (dwo_file);
348e048f 13522
3019eac3
DE
13523 return 1;
13524}
348e048f 13525
3019eac3 13526/* Free all resources associated with DWO_FILES. */
348e048f 13527
3019eac3
DE
13528static void
13529free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13530{
13531 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 13532}
3019eac3
DE
13533\f
13534/* Read in various DIEs. */
348e048f 13535
d389af10 13536/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
13537 Inherit only the children of the DW_AT_abstract_origin DIE not being
13538 already referenced by DW_AT_abstract_origin from the children of the
13539 current DIE. */
d389af10
JK
13540
13541static void
13542inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13543{
13544 struct die_info *child_die;
791afaa2 13545 sect_offset *offsetp;
d389af10
JK
13546 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13547 struct die_info *origin_die;
13548 /* Iterator of the ORIGIN_DIE children. */
13549 struct die_info *origin_child_die;
d389af10 13550 struct attribute *attr;
cd02d79d
PA
13551 struct dwarf2_cu *origin_cu;
13552 struct pending **origin_previous_list_in_scope;
d389af10
JK
13553
13554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13555 if (!attr)
13556 return;
13557
cd02d79d
PA
13558 /* Note that following die references may follow to a die in a
13559 different cu. */
13560
13561 origin_cu = cu;
13562 origin_die = follow_die_ref (die, attr, &origin_cu);
13563
13564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13565 symbols in. */
13566 origin_previous_list_in_scope = origin_cu->list_in_scope;
13567 origin_cu->list_in_scope = cu->list_in_scope;
13568
edb3359d
DJ
13569 if (die->tag != origin_die->tag
13570 && !(die->tag == DW_TAG_inlined_subroutine
13571 && origin_die->tag == DW_TAG_subprogram))
b98664d3 13572 complaint (_("DIE %s and its abstract origin %s have different tags"),
9d8780f0
SM
13573 sect_offset_str (die->sect_off),
13574 sect_offset_str (origin_die->sect_off));
d389af10 13575
791afaa2 13576 std::vector<sect_offset> offsets;
d389af10 13577
3ea89b92
PMR
13578 for (child_die = die->child;
13579 child_die && child_die->tag;
13580 child_die = sibling_die (child_die))
13581 {
13582 struct die_info *child_origin_die;
13583 struct dwarf2_cu *child_origin_cu;
13584
13585 /* We are trying to process concrete instance entries:
216f72a1 13586 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
13587 it's not relevant to our analysis here. i.e. detecting DIEs that are
13588 present in the abstract instance but not referenced in the concrete
13589 one. */
216f72a1
JK
13590 if (child_die->tag == DW_TAG_call_site
13591 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
13592 continue;
13593
c38f313d
DJ
13594 /* For each CHILD_DIE, find the corresponding child of
13595 ORIGIN_DIE. If there is more than one layer of
13596 DW_AT_abstract_origin, follow them all; there shouldn't be,
13597 but GCC versions at least through 4.4 generate this (GCC PR
13598 40573). */
3ea89b92
PMR
13599 child_origin_die = child_die;
13600 child_origin_cu = cu;
c38f313d
DJ
13601 while (1)
13602 {
cd02d79d
PA
13603 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13604 child_origin_cu);
c38f313d
DJ
13605 if (attr == NULL)
13606 break;
cd02d79d
PA
13607 child_origin_die = follow_die_ref (child_origin_die, attr,
13608 &child_origin_cu);
c38f313d
DJ
13609 }
13610
d389af10
JK
13611 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13612 counterpart may exist. */
c38f313d 13613 if (child_origin_die != child_die)
d389af10 13614 {
edb3359d
DJ
13615 if (child_die->tag != child_origin_die->tag
13616 && !(child_die->tag == DW_TAG_inlined_subroutine
13617 && child_origin_die->tag == DW_TAG_subprogram))
b98664d3 13618 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13619 "different tags"),
9d8780f0
SM
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
c38f313d 13622 if (child_origin_die->parent != origin_die)
b98664d3 13623 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13624 "different parents"),
9d8780f0
SM
13625 sect_offset_str (child_die->sect_off),
13626 sect_offset_str (child_origin_die->sect_off));
c38f313d 13627 else
791afaa2 13628 offsets.push_back (child_origin_die->sect_off);
d389af10 13629 }
d389af10 13630 }
791afaa2
TT
13631 std::sort (offsets.begin (), offsets.end ());
13632 sect_offset *offsets_end = offsets.data () + offsets.size ();
13633 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
9c541725 13634 if (offsetp[-1] == *offsetp)
b98664d3 13635 complaint (_("Multiple children of DIE %s refer "
9d8780f0
SM
13636 "to DIE %s as their abstract origin"),
13637 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
d389af10 13638
791afaa2 13639 offsetp = offsets.data ();
d389af10
JK
13640 origin_child_die = origin_die->child;
13641 while (origin_child_die && origin_child_die->tag)
13642 {
13643 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 13644 while (offsetp < offsets_end
9c541725 13645 && *offsetp < origin_child_die->sect_off)
d389af10 13646 offsetp++;
b64f50a1 13647 if (offsetp >= offsets_end
9c541725 13648 || *offsetp > origin_child_die->sect_off)
d389af10 13649 {
adde2bff
DE
13650 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13651 Check whether we're already processing ORIGIN_CHILD_DIE.
13652 This can happen with mutually referenced abstract_origins.
13653 PR 16581. */
13654 if (!origin_child_die->in_process)
13655 process_die (origin_child_die, origin_cu);
d389af10
JK
13656 }
13657 origin_child_die = sibling_die (origin_child_die);
13658 }
cd02d79d 13659 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
13660}
13661
c906108c 13662static void
e7c27a73 13663read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13664{
518817b3 13665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 13667 struct context_stack *newobj;
c906108c
SS
13668 CORE_ADDR lowpc;
13669 CORE_ADDR highpc;
13670 struct die_info *child_die;
edb3359d 13671 struct attribute *attr, *call_line, *call_file;
15d034d0 13672 const char *name;
e142c38c 13673 CORE_ADDR baseaddr;
801e3a5b 13674 struct block *block;
edb3359d 13675 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
2f4732b0 13676 std::vector<struct symbol *> template_args;
34eaf542 13677 struct template_symbol *templ_func = NULL;
edb3359d
DJ
13678
13679 if (inlined_func)
13680 {
13681 /* If we do not have call site information, we can't show the
13682 caller of this inlined function. That's too confusing, so
13683 only use the scope for local variables. */
13684 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13685 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13686 if (call_line == NULL || call_file == NULL)
13687 {
13688 read_lexical_block_scope (die, cu);
13689 return;
13690 }
13691 }
c906108c 13692
e142c38c
DJ
13693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13694
94af9270 13695 name = dwarf2_name (die, cu);
c906108c 13696
e8d05480
JB
13697 /* Ignore functions with missing or empty names. These are actually
13698 illegal according to the DWARF standard. */
13699 if (name == NULL)
13700 {
b98664d3 13701 complaint (_("missing name for subprogram DIE at %s"),
9d8780f0 13702 sect_offset_str (die->sect_off));
e8d05480
JB
13703 return;
13704 }
13705
13706 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 13707 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 13708 <= PC_BOUNDS_INVALID)
e8d05480 13709 {
ae4d0c03
PM
13710 attr = dwarf2_attr (die, DW_AT_external, cu);
13711 if (!attr || !DW_UNSND (attr))
b98664d3 13712 complaint (_("cannot get low and high bounds "
9d8780f0
SM
13713 "for subprogram DIE at %s"),
13714 sect_offset_str (die->sect_off));
e8d05480
JB
13715 return;
13716 }
c906108c 13717
3e29f34a
MR
13718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13720
34eaf542
TT
13721 /* If we have any template arguments, then we must allocate a
13722 different sort of symbol. */
13723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13724 {
13725 if (child_die->tag == DW_TAG_template_type_param
13726 || child_die->tag == DW_TAG_template_value_param)
13727 {
e623cf5d 13728 templ_func = allocate_template_symbol (objfile);
cf724bc9 13729 templ_func->subclass = SYMBOL_TEMPLATE;
34eaf542
TT
13730 break;
13731 }
13732 }
13733
804d2729 13734 newobj = cu->builder->push_context (0, lowpc);
5e2db402
TT
13735 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13736 (struct symbol *) templ_func);
4c2df51b 13737
4cecd739
DJ
13738 /* If there is a location expression for DW_AT_frame_base, record
13739 it. */
e142c38c 13740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 13741 if (attr)
fe978cb0 13742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 13743
63e43d3a
PMR
13744 /* If there is a location for the static link, record it. */
13745 newobj->static_link = NULL;
13746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13747 if (attr)
13748 {
224c3ddb
SM
13749 newobj->static_link
13750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
13751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13752 }
13753
804d2729 13754 cu->list_in_scope = cu->builder->get_local_symbols ();
c906108c 13755
639d11d3 13756 if (die->child != NULL)
c906108c 13757 {
639d11d3 13758 child_die = die->child;
c906108c
SS
13759 while (child_die && child_die->tag)
13760 {
34eaf542
TT
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13763 {
13764 struct symbol *arg = new_symbol (child_die, NULL, cu);
13765
f1078f66 13766 if (arg != NULL)
2f4732b0 13767 template_args.push_back (arg);
34eaf542
TT
13768 }
13769 else
13770 process_die (child_die, cu);
c906108c
SS
13771 child_die = sibling_die (child_die);
13772 }
13773 }
13774
d389af10
JK
13775 inherit_abstract_dies (die, cu);
13776
4a811a97
UW
13777 /* If we have a DW_AT_specification, we might need to import using
13778 directives from the context of the specification DIE. See the
13779 comment in determine_prefix. */
13780 if (cu->language == language_cplus
13781 && dwarf2_attr (die, DW_AT_specification, cu))
13782 {
13783 struct dwarf2_cu *spec_cu = cu;
13784 struct die_info *spec_die = die_specification (die, &spec_cu);
13785
13786 while (spec_die)
13787 {
13788 child_die = spec_die->child;
13789 while (child_die && child_die->tag)
13790 {
13791 if (child_die->tag == DW_TAG_imported_module)
13792 process_die (child_die, spec_cu);
13793 child_die = sibling_die (child_die);
13794 }
13795
13796 /* In some cases, GCC generates specification DIEs that
13797 themselves contain DW_AT_specification attributes. */
13798 spec_die = die_specification (spec_die, &spec_cu);
13799 }
13800 }
13801
804d2729 13802 struct context_stack cstk = cu->builder->pop_context ();
c906108c 13803 /* Make a block for the local symbols within. */
804d2729
TT
13804 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13805 cstk.static_link, lowpc, highpc);
801e3a5b 13806
df8a16a1 13807 /* For C++, set the block's scope. */
45280282
IB
13808 if ((cu->language == language_cplus
13809 || cu->language == language_fortran
c44af4eb
TT
13810 || cu->language == language_d
13811 || cu->language == language_rust)
4d4ec4e5 13812 && cu->processing_has_namespace_info)
195a3f6c
TT
13813 block_set_scope (block, determine_prefix (die, cu),
13814 &objfile->objfile_obstack);
df8a16a1 13815
801e3a5b
JB
13816 /* If we have address ranges, record them. */
13817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 13818
a60f3166 13819 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
3e29f34a 13820
34eaf542 13821 /* Attach template arguments to function. */
2f4732b0 13822 if (!template_args.empty ())
34eaf542
TT
13823 {
13824 gdb_assert (templ_func != NULL);
13825
2f4732b0 13826 templ_func->n_template_arguments = template_args.size ();
34eaf542 13827 templ_func->template_arguments
8d749320
SM
13828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13829 templ_func->n_template_arguments);
34eaf542 13830 memcpy (templ_func->template_arguments,
2f4732b0 13831 template_args.data (),
34eaf542 13832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
3e1d3d8c
TT
13833
13834 /* Make sure that the symtab is set on the new symbols. Even
13835 though they don't appear in this symtab directly, other parts
13836 of gdb assume that symbols do, and this is reasonably
13837 true. */
13838 for (struct symbol *sym : template_args)
13839 symbol_set_symtab (sym, symbol_symtab (templ_func));
34eaf542
TT
13840 }
13841
208d8187
JB
13842 /* In C++, we can have functions nested inside functions (e.g., when
13843 a function declares a class that has methods). This means that
13844 when we finish processing a function scope, we may need to go
13845 back to building a containing block's symbol lists. */
804d2729
TT
13846 *cu->builder->get_local_symbols () = cstk.locals;
13847 cu->builder->set_local_using_directives (cstk.local_using_directives);
208d8187 13848
921e78cf
JB
13849 /* If we've finished processing a top-level function, subsequent
13850 symbols go in the file symbol list. */
804d2729
TT
13851 if (cu->builder->outermost_context_p ())
13852 cu->list_in_scope = cu->builder->get_file_symbols ();
c906108c
SS
13853}
13854
13855/* Process all the DIES contained within a lexical block scope. Start
13856 a new scope, process the dies, and then close the scope. */
13857
13858static void
e7c27a73 13859read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13860{
518817b3 13861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
13863 CORE_ADDR lowpc, highpc;
13864 struct die_info *child_die;
e142c38c
DJ
13865 CORE_ADDR baseaddr;
13866
13867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
13868
13869 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
13870 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13871 as multiple lexical blocks? Handling children in a sane way would
6e70227d 13872 be nasty. Might be easier to properly extend generic blocks to
af34e669 13873 describe ranges. */
e385593e
JK
13874 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13875 {
13876 case PC_BOUNDS_NOT_PRESENT:
13877 /* DW_TAG_lexical_block has no attributes, process its children as if
13878 there was no wrapping by that DW_TAG_lexical_block.
13879 GCC does no longer produces such DWARF since GCC r224161. */
13880 for (child_die = die->child;
13881 child_die != NULL && child_die->tag;
13882 child_die = sibling_die (child_die))
13883 process_die (child_die, cu);
13884 return;
13885 case PC_BOUNDS_INVALID:
13886 return;
13887 }
3e29f34a
MR
13888 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13889 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13890
804d2729 13891 cu->builder->push_context (0, lowpc);
639d11d3 13892 if (die->child != NULL)
c906108c 13893 {
639d11d3 13894 child_die = die->child;
c906108c
SS
13895 while (child_die && child_die->tag)
13896 {
e7c27a73 13897 process_die (child_die, cu);
c906108c
SS
13898 child_die = sibling_die (child_die);
13899 }
13900 }
3ea89b92 13901 inherit_abstract_dies (die, cu);
804d2729 13902 struct context_stack cstk = cu->builder->pop_context ();
c906108c 13903
804d2729
TT
13904 if (*cu->builder->get_local_symbols () != NULL
13905 || (*cu->builder->get_local_using_directives ()) != NULL)
c906108c 13906 {
801e3a5b 13907 struct block *block
804d2729
TT
13908 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13909 cstk.start_addr, highpc);
801e3a5b
JB
13910
13911 /* Note that recording ranges after traversing children, as we
13912 do here, means that recording a parent's ranges entails
13913 walking across all its children's ranges as they appear in
13914 the address map, which is quadratic behavior.
13915
13916 It would be nicer to record the parent's ranges before
13917 traversing its children, simply overriding whatever you find
13918 there. But since we don't even decide whether to create a
13919 block until after we've traversed its children, that's hard
13920 to do. */
13921 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 13922 }
804d2729
TT
13923 *cu->builder->get_local_symbols () = cstk.locals;
13924 cu->builder->set_local_using_directives (cstk.local_using_directives);
c906108c
SS
13925}
13926
216f72a1 13927/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
13928
13929static void
13930read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13931{
518817b3 13932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
96408a79
SA
13933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13934 CORE_ADDR pc, baseaddr;
13935 struct attribute *attr;
13936 struct call_site *call_site, call_site_local;
13937 void **slot;
13938 int nparams;
13939 struct die_info *child_die;
13940
13941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13942
216f72a1
JK
13943 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13944 if (attr == NULL)
13945 {
13946 /* This was a pre-DWARF-5 GNU extension alias
13947 for DW_AT_call_return_pc. */
13948 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13949 }
96408a79
SA
13950 if (!attr)
13951 {
b98664d3 13952 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
9d8780f0
SM
13953 "DIE %s [in module %s]"),
13954 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
13955 return;
13956 }
31aa7e4e 13957 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 13958 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
13959
13960 if (cu->call_site_htab == NULL)
13961 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13962 NULL, &objfile->objfile_obstack,
13963 hashtab_obstack_allocate, NULL);
13964 call_site_local.pc = pc;
13965 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13966 if (*slot != NULL)
13967 {
b98664d3 13968 complaint (_("Duplicate PC %s for DW_TAG_call_site "
9d8780f0
SM
13969 "DIE %s [in module %s]"),
13970 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
4262abfb 13971 objfile_name (objfile));
96408a79
SA
13972 return;
13973 }
13974
13975 /* Count parameters at the caller. */
13976
13977 nparams = 0;
13978 for (child_die = die->child; child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
216f72a1
JK
13981 if (child_die->tag != DW_TAG_call_site_parameter
13982 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79 13983 {
b98664d3 13984 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
9d8780f0
SM
13985 "DW_TAG_call_site child DIE %s [in module %s]"),
13986 child_die->tag, sect_offset_str (child_die->sect_off),
4262abfb 13987 objfile_name (objfile));
96408a79
SA
13988 continue;
13989 }
13990
13991 nparams++;
13992 }
13993
224c3ddb
SM
13994 call_site
13995 = ((struct call_site *)
13996 obstack_alloc (&objfile->objfile_obstack,
13997 sizeof (*call_site)
13998 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
13999 *slot = call_site;
14000 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14001 call_site->pc = pc;
14002
216f72a1
JK
14003 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14004 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
14005 {
14006 struct die_info *func_die;
14007
14008 /* Skip also over DW_TAG_inlined_subroutine. */
14009 for (func_die = die->parent;
14010 func_die && func_die->tag != DW_TAG_subprogram
14011 && func_die->tag != DW_TAG_subroutine_type;
14012 func_die = func_die->parent);
14013
216f72a1
JK
14014 /* DW_AT_call_all_calls is a superset
14015 of DW_AT_call_all_tail_calls. */
96408a79 14016 if (func_die
216f72a1 14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14021 {
14022 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14023 not complete. But keep CALL_SITE for look ups via call_site_htab,
14024 both the initial caller containing the real return address PC and
14025 the final callee containing the current PC of a chain of tail
14026 calls do not need to have the tail call list complete. But any
14027 function candidate for a virtual tail call frame searched via
14028 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14029 determined unambiguously. */
14030 }
14031 else
14032 {
14033 struct type *func_type = NULL;
14034
14035 if (func_die)
14036 func_type = get_die_type (func_die, cu);
14037 if (func_type != NULL)
14038 {
14039 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14040
14041 /* Enlist this call site to the function. */
14042 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14043 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14044 }
14045 else
b98664d3 14046 complaint (_("Cannot find function owning DW_TAG_call_site "
9d8780f0
SM
14047 "DIE %s [in module %s]"),
14048 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14049 }
14050 }
14051
216f72a1
JK
14052 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14053 if (attr == NULL)
14054 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 14057 if (attr == NULL)
216f72a1
JK
14058 {
14059 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14060 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14061 }
96408a79
SA
14062 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14063 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14064 /* Keep NULL DWARF_BLOCK. */;
14065 else if (attr_form_is_block (attr))
14066 {
14067 struct dwarf2_locexpr_baton *dlbaton;
14068
8d749320 14069 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
14070 dlbaton->data = DW_BLOCK (attr)->data;
14071 dlbaton->size = DW_BLOCK (attr)->size;
14072 dlbaton->per_cu = cu->per_cu;
14073
14074 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14075 }
7771576e 14076 else if (attr_form_is_ref (attr))
96408a79 14077 {
96408a79
SA
14078 struct dwarf2_cu *target_cu = cu;
14079 struct die_info *target_die;
14080
ac9ec31b 14081 target_die = follow_die_ref (die, attr, &target_cu);
518817b3 14082 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
96408a79
SA
14083 if (die_is_declaration (target_die, target_cu))
14084 {
7d45c7c3 14085 const char *target_physname;
9112db09
JK
14086
14087 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 14088 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 14089 if (target_physname == NULL)
9112db09 14090 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79 14091 if (target_physname == NULL)
b98664d3 14092 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14093 "physname, for referencing DIE %s [in module %s]"),
14094 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14095 else
7d455152 14096 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
14097 }
14098 else
14099 {
14100 CORE_ADDR lowpc;
14101
14102 /* DW_AT_entry_pc should be preferred. */
3a2b436a 14103 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 14104 <= PC_BOUNDS_INVALID)
b98664d3 14105 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14106 "low pc, for referencing DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14108 else
3e29f34a
MR
14109 {
14110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14112 }
96408a79
SA
14113 }
14114 }
14115 else
b98664d3 14116 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
9d8780f0
SM
14117 "block nor reference, for DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14119
14120 call_site->per_cu = cu->per_cu;
14121
14122 for (child_die = die->child;
14123 child_die && child_die->tag;
14124 child_die = sibling_die (child_die))
14125 {
96408a79 14126 struct call_site_parameter *parameter;
1788b2d3 14127 struct attribute *loc, *origin;
96408a79 14128
216f72a1
JK
14129 if (child_die->tag != DW_TAG_call_site_parameter
14130 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
14131 {
14132 /* Already printed the complaint above. */
14133 continue;
14134 }
14135
14136 gdb_assert (call_site->parameter_count < nparams);
14137 parameter = &call_site->parameter[call_site->parameter_count];
14138
1788b2d3
JK
14139 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14140 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 14141 register is contained in DW_AT_call_value. */
96408a79 14142
24c5c679 14143 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
14144 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14145 if (origin == NULL)
14146 {
14147 /* This was a pre-DWARF-5 GNU extension alias
14148 for DW_AT_call_parameter. */
14149 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14150 }
7771576e 14151 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 14152 {
1788b2d3 14153 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
14154
14155 sect_offset sect_off
14156 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14157 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
14158 {
14159 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14160 binding can be done only inside one CU. Such referenced DIE
14161 therefore cannot be even moved to DW_TAG_partial_unit. */
b98664d3 14162 complaint (_("DW_AT_call_parameter offset is not in CU for "
9d8780f0
SM
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
9c541725 14165 objfile_name (objfile));
d76b7dbc
JK
14166 continue;
14167 }
9c541725
PA
14168 parameter->u.param_cu_off
14169 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
14170 }
14171 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79 14172 {
b98664d3 14173 complaint (_("No DW_FORM_block* DW_AT_location for "
9d8780f0
SM
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off), objfile_name (objfile));
96408a79
SA
14176 continue;
14177 }
24c5c679 14178 else
96408a79 14179 {
24c5c679
JK
14180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14182 if (parameter->u.dwarf_reg != -1)
14183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14186 &parameter->u.fb_offset))
14187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14188 else
14189 {
b98664d3 14190 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
24c5c679 14191 "for DW_FORM_block* DW_AT_location is supported for "
9d8780f0 14192 "DW_TAG_call_site child DIE %s "
24c5c679 14193 "[in module %s]"),
9d8780f0 14194 sect_offset_str (child_die->sect_off),
9c541725 14195 objfile_name (objfile));
24c5c679
JK
14196 continue;
14197 }
96408a79
SA
14198 }
14199
216f72a1
JK
14200 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14201 if (attr == NULL)
14202 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
14203 if (!attr_form_is_block (attr))
14204 {
b98664d3 14205 complaint (_("No DW_FORM_block* DW_AT_call_value for "
9d8780f0
SM
14206 "DW_TAG_call_site child DIE %s [in module %s]"),
14207 sect_offset_str (child_die->sect_off),
9c541725 14208 objfile_name (objfile));
96408a79
SA
14209 continue;
14210 }
14211 parameter->value = DW_BLOCK (attr)->data;
14212 parameter->value_size = DW_BLOCK (attr)->size;
14213
14214 /* Parameters are not pre-cleared by memset above. */
14215 parameter->data_value = NULL;
14216 parameter->data_value_size = 0;
14217 call_site->parameter_count++;
14218
216f72a1
JK
14219 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14220 if (attr == NULL)
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
14222 if (attr)
14223 {
14224 if (!attr_form_is_block (attr))
b98664d3 14225 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
9d8780f0
SM
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
9c541725 14228 objfile_name (objfile));
96408a79
SA
14229 else
14230 {
14231 parameter->data_value = DW_BLOCK (attr)->data;
14232 parameter->data_value_size = DW_BLOCK (attr)->size;
14233 }
14234 }
14235 }
14236}
14237
71a3c369
TT
14238/* Helper function for read_variable. If DIE represents a virtual
14239 table, then return the type of the concrete object that is
14240 associated with the virtual table. Otherwise, return NULL. */
14241
14242static struct type *
14243rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14244{
14245 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14246 if (attr == NULL)
14247 return NULL;
14248
14249 /* Find the type DIE. */
14250 struct die_info *type_die = NULL;
14251 struct dwarf2_cu *type_cu = cu;
14252
14253 if (attr_form_is_ref (attr))
14254 type_die = follow_die_ref (die, attr, &type_cu);
14255 if (type_die == NULL)
14256 return NULL;
14257
14258 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14259 return NULL;
14260 return die_containing_type (type_die, type_cu);
14261}
14262
14263/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14264
14265static void
14266read_variable (struct die_info *die, struct dwarf2_cu *cu)
14267{
14268 struct rust_vtable_symbol *storage = NULL;
14269
14270 if (cu->language == language_rust)
14271 {
14272 struct type *containing_type = rust_containing_type (die, cu);
14273
14274 if (containing_type != NULL)
14275 {
518817b3 14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
71a3c369
TT
14277
14278 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14279 struct rust_vtable_symbol);
14280 initialize_objfile_symbol (storage);
14281 storage->concrete_type = containing_type;
cf724bc9 14282 storage->subclass = SYMBOL_RUST_VTABLE;
71a3c369
TT
14283 }
14284 }
14285
5e2db402 14286 new_symbol (die, NULL, cu, storage);
71a3c369
TT
14287}
14288
43988095
JK
14289/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14290 reading .debug_rnglists.
14291 Callback's type should be:
14292 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14293 Return true if the attributes are present and valid, otherwise,
14294 return false. */
14295
14296template <typename Callback>
14297static bool
14298dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14299 Callback &&callback)
14300{
ed2dc618 14301 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14302 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14303 struct objfile *objfile = dwarf2_per_objfile->objfile;
43988095 14304 bfd *obfd = objfile->obfd;
43988095
JK
14305 /* Base address selection entry. */
14306 CORE_ADDR base;
14307 int found_base;
43988095 14308 const gdb_byte *buffer;
43988095
JK
14309 CORE_ADDR baseaddr;
14310 bool overflow = false;
14311
14312 found_base = cu->base_known;
14313 base = cu->base_address;
14314
14315 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14316 if (offset >= dwarf2_per_objfile->rnglists.size)
14317 {
b98664d3 14318 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43988095
JK
14319 offset);
14320 return false;
14321 }
14322 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14323
14324 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14325
14326 while (1)
14327 {
7814882a
JK
14328 /* Initialize it due to a false compiler warning. */
14329 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
14330 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14331 + dwarf2_per_objfile->rnglists.size);
14332 unsigned int bytes_read;
14333
14334 if (buffer == buf_end)
14335 {
14336 overflow = true;
14337 break;
14338 }
14339 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14340 switch (rlet)
14341 {
14342 case DW_RLE_end_of_list:
14343 break;
14344 case DW_RLE_base_address:
14345 if (buffer + cu->header.addr_size > buf_end)
14346 {
14347 overflow = true;
14348 break;
14349 }
14350 base = read_address (obfd, buffer, cu, &bytes_read);
14351 found_base = 1;
14352 buffer += bytes_read;
14353 break;
14354 case DW_RLE_start_length:
14355 if (buffer + cu->header.addr_size > buf_end)
14356 {
14357 overflow = true;
14358 break;
14359 }
14360 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14361 buffer += bytes_read;
14362 range_end = (range_beginning
14363 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14364 buffer += bytes_read;
14365 if (buffer > buf_end)
14366 {
14367 overflow = true;
14368 break;
14369 }
14370 break;
14371 case DW_RLE_offset_pair:
14372 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14373 buffer += bytes_read;
14374 if (buffer > buf_end)
14375 {
14376 overflow = true;
14377 break;
14378 }
14379 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14380 buffer += bytes_read;
14381 if (buffer > buf_end)
14382 {
14383 overflow = true;
14384 break;
14385 }
14386 break;
14387 case DW_RLE_start_end:
14388 if (buffer + 2 * cu->header.addr_size > buf_end)
14389 {
14390 overflow = true;
14391 break;
14392 }
14393 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14394 buffer += bytes_read;
14395 range_end = read_address (obfd, buffer, cu, &bytes_read);
14396 buffer += bytes_read;
14397 break;
14398 default:
b98664d3 14399 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14400 return false;
14401 }
14402 if (rlet == DW_RLE_end_of_list || overflow)
14403 break;
14404 if (rlet == DW_RLE_base_address)
14405 continue;
14406
14407 if (!found_base)
14408 {
14409 /* We have no valid base address for the ranges
14410 data. */
b98664d3 14411 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14412 return false;
14413 }
14414
14415 if (range_beginning > range_end)
14416 {
14417 /* Inverted range entries are invalid. */
b98664d3 14418 complaint (_("Invalid .debug_rnglists data (inverted range)"));
43988095
JK
14419 return false;
14420 }
14421
14422 /* Empty range entries have no effect. */
14423 if (range_beginning == range_end)
14424 continue;
14425
14426 range_beginning += base;
14427 range_end += base;
14428
14429 /* A not-uncommon case of bad debug info.
14430 Don't pollute the addrmap with bad data. */
14431 if (range_beginning + baseaddr == 0
14432 && !dwarf2_per_objfile->has_section_at_zero)
14433 {
b98664d3 14434 complaint (_(".debug_rnglists entry has start address of zero"
43988095
JK
14435 " [in module %s]"), objfile_name (objfile));
14436 continue;
14437 }
14438
14439 callback (range_beginning, range_end);
14440 }
14441
14442 if (overflow)
14443 {
b98664d3 14444 complaint (_("Offset %d is not terminated "
43988095
JK
14445 "for DW_AT_ranges attribute"),
14446 offset);
14447 return false;
14448 }
14449
14450 return true;
14451}
14452
14453/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14454 Callback's type should be:
14455 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 14456 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 14457
43988095 14458template <typename Callback>
43039443 14459static int
5f46c5a5 14460dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 14461 Callback &&callback)
43039443 14462{
ed2dc618 14463 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14464 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14465 struct objfile *objfile = dwarf2_per_objfile->objfile;
43039443
JK
14466 struct comp_unit_head *cu_header = &cu->header;
14467 bfd *obfd = objfile->obfd;
14468 unsigned int addr_size = cu_header->addr_size;
14469 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14470 /* Base address selection entry. */
14471 CORE_ADDR base;
14472 int found_base;
14473 unsigned int dummy;
d521ce57 14474 const gdb_byte *buffer;
ff013f42 14475 CORE_ADDR baseaddr;
43039443 14476
43988095
JK
14477 if (cu_header->version >= 5)
14478 return dwarf2_rnglists_process (offset, cu, callback);
14479
d00adf39
DE
14480 found_base = cu->base_known;
14481 base = cu->base_address;
43039443 14482
be391dca 14483 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 14484 if (offset >= dwarf2_per_objfile->ranges.size)
43039443 14485 {
b98664d3 14486 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43039443
JK
14487 offset);
14488 return 0;
14489 }
dce234bc 14490 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 14491
e7030f15 14492 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 14493
43039443
JK
14494 while (1)
14495 {
14496 CORE_ADDR range_beginning, range_end;
14497
14498 range_beginning = read_address (obfd, buffer, cu, &dummy);
14499 buffer += addr_size;
14500 range_end = read_address (obfd, buffer, cu, &dummy);
14501 buffer += addr_size;
14502 offset += 2 * addr_size;
14503
14504 /* An end of list marker is a pair of zero addresses. */
14505 if (range_beginning == 0 && range_end == 0)
14506 /* Found the end of list entry. */
14507 break;
14508
14509 /* Each base address selection entry is a pair of 2 values.
14510 The first is the largest possible address, the second is
14511 the base address. Check for a base address here. */
14512 if ((range_beginning & mask) == mask)
14513 {
28d2bfb9
AB
14514 /* If we found the largest possible address, then we already
14515 have the base address in range_end. */
14516 base = range_end;
43039443
JK
14517 found_base = 1;
14518 continue;
14519 }
14520
14521 if (!found_base)
14522 {
14523 /* We have no valid base address for the ranges
14524 data. */
b98664d3 14525 complaint (_("Invalid .debug_ranges data (no base address)"));
43039443
JK
14526 return 0;
14527 }
14528
9277c30c
UW
14529 if (range_beginning > range_end)
14530 {
14531 /* Inverted range entries are invalid. */
b98664d3 14532 complaint (_("Invalid .debug_ranges data (inverted range)"));
9277c30c
UW
14533 return 0;
14534 }
14535
14536 /* Empty range entries have no effect. */
14537 if (range_beginning == range_end)
14538 continue;
14539
43039443
JK
14540 range_beginning += base;
14541 range_end += base;
14542
01093045
DE
14543 /* A not-uncommon case of bad debug info.
14544 Don't pollute the addrmap with bad data. */
14545 if (range_beginning + baseaddr == 0
14546 && !dwarf2_per_objfile->has_section_at_zero)
14547 {
b98664d3 14548 complaint (_(".debug_ranges entry has start address of zero"
4262abfb 14549 " [in module %s]"), objfile_name (objfile));
01093045
DE
14550 continue;
14551 }
14552
5f46c5a5
JK
14553 callback (range_beginning, range_end);
14554 }
14555
14556 return 1;
14557}
14558
14559/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14560 Return 1 if the attributes are present and valid, otherwise, return 0.
14561 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14562
14563static int
14564dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14565 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14566 struct partial_symtab *ranges_pst)
14567{
518817b3 14568 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5f46c5a5
JK
14569 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14570 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14571 SECT_OFF_TEXT (objfile));
14572 int low_set = 0;
14573 CORE_ADDR low = 0;
14574 CORE_ADDR high = 0;
14575 int retval;
14576
14577 retval = dwarf2_ranges_process (offset, cu,
14578 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14579 {
9277c30c 14580 if (ranges_pst != NULL)
3e29f34a
MR
14581 {
14582 CORE_ADDR lowpc;
14583 CORE_ADDR highpc;
14584
79748972
TT
14585 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14586 range_beginning + baseaddr)
14587 - baseaddr);
14588 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14589 range_end + baseaddr)
14590 - baseaddr);
3e29f34a
MR
14591 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14592 ranges_pst);
14593 }
ff013f42 14594
43039443
JK
14595 /* FIXME: This is recording everything as a low-high
14596 segment of consecutive addresses. We should have a
14597 data structure for discontiguous block ranges
14598 instead. */
14599 if (! low_set)
14600 {
14601 low = range_beginning;
14602 high = range_end;
14603 low_set = 1;
14604 }
14605 else
14606 {
14607 if (range_beginning < low)
14608 low = range_beginning;
14609 if (range_end > high)
14610 high = range_end;
14611 }
5f46c5a5
JK
14612 });
14613 if (!retval)
14614 return 0;
43039443
JK
14615
14616 if (! low_set)
14617 /* If the first entry is an end-of-list marker, the range
14618 describes an empty scope, i.e. no instructions. */
14619 return 0;
14620
14621 if (low_return)
14622 *low_return = low;
14623 if (high_return)
14624 *high_return = high;
14625 return 1;
14626}
14627
3a2b436a
JK
14628/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14629 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 14630 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 14631
3a2b436a 14632static enum pc_bounds_kind
af34e669 14633dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
14634 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14635 struct partial_symtab *pst)
c906108c 14636{
518817b3
SM
14637 struct dwarf2_per_objfile *dwarf2_per_objfile
14638 = cu->per_cu->dwarf2_per_objfile;
c906108c 14639 struct attribute *attr;
91da1414 14640 struct attribute *attr_high;
af34e669
DJ
14641 CORE_ADDR low = 0;
14642 CORE_ADDR high = 0;
e385593e 14643 enum pc_bounds_kind ret;
c906108c 14644
91da1414
MW
14645 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14646 if (attr_high)
af34e669 14647 {
e142c38c 14648 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 14649 if (attr)
91da1414 14650 {
31aa7e4e
JB
14651 low = attr_value_as_address (attr);
14652 high = attr_value_as_address (attr_high);
14653 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14654 high += low;
91da1414 14655 }
af34e669
DJ
14656 else
14657 /* Found high w/o low attribute. */
e385593e 14658 return PC_BOUNDS_INVALID;
af34e669
DJ
14659
14660 /* Found consecutive range of addresses. */
3a2b436a 14661 ret = PC_BOUNDS_HIGH_LOW;
af34e669 14662 }
c906108c 14663 else
af34e669 14664 {
e142c38c 14665 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
14666 if (attr != NULL)
14667 {
ab435259
DE
14668 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14669 We take advantage of the fact that DW_AT_ranges does not appear
14670 in DW_TAG_compile_unit of DWO files. */
14671 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14672 unsigned int ranges_offset = (DW_UNSND (attr)
14673 + (need_ranges_base
14674 ? cu->ranges_base
14675 : 0));
2e3cf129 14676
af34e669 14677 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 14678 .debug_ranges section. */
2e3cf129 14679 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 14680 return PC_BOUNDS_INVALID;
43039443 14681 /* Found discontinuous range of addresses. */
3a2b436a 14682 ret = PC_BOUNDS_RANGES;
af34e669 14683 }
e385593e
JK
14684 else
14685 return PC_BOUNDS_NOT_PRESENT;
af34e669 14686 }
c906108c 14687
48fbe735 14688 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
9373cf26 14689 if (high <= low)
e385593e 14690 return PC_BOUNDS_INVALID;
c906108c
SS
14691
14692 /* When using the GNU linker, .gnu.linkonce. sections are used to
14693 eliminate duplicate copies of functions and vtables and such.
14694 The linker will arbitrarily choose one and discard the others.
14695 The AT_*_pc values for such functions refer to local labels in
14696 these sections. If the section from that file was discarded, the
14697 labels are not in the output, so the relocs get a value of 0.
14698 If this is a discarded function, mark the pc bounds as invalid,
14699 so that GDB will ignore it. */
72dca2f5 14700 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 14701 return PC_BOUNDS_INVALID;
c906108c
SS
14702
14703 *lowpc = low;
96408a79
SA
14704 if (highpc)
14705 *highpc = high;
af34e669 14706 return ret;
c906108c
SS
14707}
14708
b084d499
JB
14709/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14710 its low and high PC addresses. Do nothing if these addresses could not
14711 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14712 and HIGHPC to the high address if greater than HIGHPC. */
14713
14714static void
14715dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14716 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14717 struct dwarf2_cu *cu)
14718{
14719 CORE_ADDR low, high;
14720 struct die_info *child = die->child;
14721
e385593e 14722 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 14723 {
325fac50
PA
14724 *lowpc = std::min (*lowpc, low);
14725 *highpc = std::max (*highpc, high);
b084d499
JB
14726 }
14727
14728 /* If the language does not allow nested subprograms (either inside
14729 subprograms or lexical blocks), we're done. */
14730 if (cu->language != language_ada)
14731 return;
6e70227d 14732
b084d499
JB
14733 /* Check all the children of the given DIE. If it contains nested
14734 subprograms, then check their pc bounds. Likewise, we need to
14735 check lexical blocks as well, as they may also contain subprogram
14736 definitions. */
14737 while (child && child->tag)
14738 {
14739 if (child->tag == DW_TAG_subprogram
14740 || child->tag == DW_TAG_lexical_block)
14741 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14742 child = sibling_die (child);
14743 }
14744}
14745
fae299cd
DC
14746/* Get the low and high pc's represented by the scope DIE, and store
14747 them in *LOWPC and *HIGHPC. If the correct values can't be
14748 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14749
14750static void
14751get_scope_pc_bounds (struct die_info *die,
14752 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14753 struct dwarf2_cu *cu)
14754{
14755 CORE_ADDR best_low = (CORE_ADDR) -1;
14756 CORE_ADDR best_high = (CORE_ADDR) 0;
14757 CORE_ADDR current_low, current_high;
14758
3a2b436a 14759 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 14760 >= PC_BOUNDS_RANGES)
fae299cd
DC
14761 {
14762 best_low = current_low;
14763 best_high = current_high;
14764 }
14765 else
14766 {
14767 struct die_info *child = die->child;
14768
14769 while (child && child->tag)
14770 {
14771 switch (child->tag) {
14772 case DW_TAG_subprogram:
b084d499 14773 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
14774 break;
14775 case DW_TAG_namespace:
f55ee35c 14776 case DW_TAG_module:
fae299cd
DC
14777 /* FIXME: carlton/2004-01-16: Should we do this for
14778 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14779 that current GCC's always emit the DIEs corresponding
14780 to definitions of methods of classes as children of a
14781 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14782 the DIEs giving the declarations, which could be
14783 anywhere). But I don't see any reason why the
14784 standards says that they have to be there. */
14785 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14786
14787 if (current_low != ((CORE_ADDR) -1))
14788 {
325fac50
PA
14789 best_low = std::min (best_low, current_low);
14790 best_high = std::max (best_high, current_high);
fae299cd
DC
14791 }
14792 break;
14793 default:
0963b4bd 14794 /* Ignore. */
fae299cd
DC
14795 break;
14796 }
14797
14798 child = sibling_die (child);
14799 }
14800 }
14801
14802 *lowpc = best_low;
14803 *highpc = best_high;
14804}
14805
801e3a5b
JB
14806/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14807 in DIE. */
380bca97 14808
801e3a5b
JB
14809static void
14810dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14811 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14812{
518817b3 14813 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 14814 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 14815 struct attribute *attr;
91da1414 14816 struct attribute *attr_high;
801e3a5b 14817
91da1414
MW
14818 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14819 if (attr_high)
801e3a5b 14820 {
801e3a5b
JB
14821 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14822 if (attr)
14823 {
31aa7e4e
JB
14824 CORE_ADDR low = attr_value_as_address (attr);
14825 CORE_ADDR high = attr_value_as_address (attr_high);
14826
14827 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14828 high += low;
9a619af0 14829
3e29f34a
MR
14830 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14831 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
804d2729 14832 cu->builder->record_block_range (block, low, high - 1);
801e3a5b
JB
14833 }
14834 }
14835
14836 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14837 if (attr)
14838 {
ab435259
DE
14839 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14840 We take advantage of the fact that DW_AT_ranges does not appear
14841 in DW_TAG_compile_unit of DWO files. */
14842 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
14843
14844 /* The value of the DW_AT_ranges attribute is the offset of the
14845 address range list in the .debug_ranges section. */
ab435259
DE
14846 unsigned long offset = (DW_UNSND (attr)
14847 + (need_ranges_base ? cu->ranges_base : 0));
801e3a5b 14848
2d5f09ec 14849 std::vector<blockrange> blockvec;
5f46c5a5
JK
14850 dwarf2_ranges_process (offset, cu,
14851 [&] (CORE_ADDR start, CORE_ADDR end)
14852 {
58fdfd2c
JK
14853 start += baseaddr;
14854 end += baseaddr;
5f46c5a5
JK
14855 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14856 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
804d2729 14857 cu->builder->record_block_range (block, start, end - 1);
2d5f09ec 14858 blockvec.emplace_back (start, end);
5f46c5a5 14859 });
2d5f09ec
KB
14860
14861 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
801e3a5b
JB
14862 }
14863}
14864
685b1105
JK
14865/* Check whether the producer field indicates either of GCC < 4.6, or the
14866 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 14867
685b1105
JK
14868static void
14869check_producer (struct dwarf2_cu *cu)
60d5a603 14870{
38360086 14871 int major, minor;
60d5a603
JK
14872
14873 if (cu->producer == NULL)
14874 {
14875 /* For unknown compilers expect their behavior is DWARF version
14876 compliant.
14877
14878 GCC started to support .debug_types sections by -gdwarf-4 since
14879 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14880 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14881 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14882 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 14883 }
b1ffba5a 14884 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 14885 {
38360086
MW
14886 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14887 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 14888 }
5230b05a
WT
14889 else if (producer_is_icc (cu->producer, &major, &minor))
14890 cu->producer_is_icc_lt_14 = major < 14;
685b1105
JK
14891 else
14892 {
14893 /* For other non-GCC compilers, expect their behavior is DWARF version
14894 compliant. */
60d5a603
JK
14895 }
14896
ba919b58 14897 cu->checked_producer = 1;
685b1105 14898}
ba919b58 14899
685b1105
JK
14900/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14901 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14902 during 4.6.0 experimental. */
14903
14904static int
14905producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14906{
14907 if (!cu->checked_producer)
14908 check_producer (cu);
14909
14910 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
14911}
14912
14913/* Return the default accessibility type if it is not overriden by
14914 DW_AT_accessibility. */
14915
14916static enum dwarf_access_attribute
14917dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14918{
14919 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14920 {
14921 /* The default DWARF 2 accessibility for members is public, the default
14922 accessibility for inheritance is private. */
14923
14924 if (die->tag != DW_TAG_inheritance)
14925 return DW_ACCESS_public;
14926 else
14927 return DW_ACCESS_private;
14928 }
14929 else
14930 {
14931 /* DWARF 3+ defines the default accessibility a different way. The same
14932 rules apply now for DW_TAG_inheritance as for the members and it only
14933 depends on the container kind. */
14934
14935 if (die->parent->tag == DW_TAG_class_type)
14936 return DW_ACCESS_private;
14937 else
14938 return DW_ACCESS_public;
14939 }
14940}
14941
74ac6d43
TT
14942/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14943 offset. If the attribute was not found return 0, otherwise return
14944 1. If it was found but could not properly be handled, set *OFFSET
14945 to 0. */
14946
14947static int
14948handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14949 LONGEST *offset)
14950{
14951 struct attribute *attr;
14952
14953 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14954 if (attr != NULL)
14955 {
14956 *offset = 0;
14957
14958 /* Note that we do not check for a section offset first here.
14959 This is because DW_AT_data_member_location is new in DWARF 4,
14960 so if we see it, we can assume that a constant form is really
14961 a constant and not a section offset. */
14962 if (attr_form_is_constant (attr))
14963 *offset = dwarf2_get_attr_constant_value (attr, 0);
14964 else if (attr_form_is_section_offset (attr))
14965 dwarf2_complex_location_expr_complaint ();
14966 else if (attr_form_is_block (attr))
14967 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14968 else
14969 dwarf2_complex_location_expr_complaint ();
14970
14971 return 1;
14972 }
14973
14974 return 0;
14975}
14976
c906108c
SS
14977/* Add an aggregate field to the field list. */
14978
14979static void
107d2387 14980dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 14981 struct dwarf2_cu *cu)
6e70227d 14982{
518817b3 14983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5e2b427d 14984 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14985 struct nextfield *new_field;
14986 struct attribute *attr;
14987 struct field *fp;
15d034d0 14988 const char *fieldname = "";
c906108c 14989
7d0ccb61
DJ
14990 if (die->tag == DW_TAG_inheritance)
14991 {
be2daae6
TT
14992 fip->baseclasses.emplace_back ();
14993 new_field = &fip->baseclasses.back ();
7d0ccb61
DJ
14994 }
14995 else
14996 {
be2daae6
TT
14997 fip->fields.emplace_back ();
14998 new_field = &fip->fields.back ();
7d0ccb61 14999 }
be2daae6 15000
c906108c
SS
15001 fip->nfields++;
15002
e142c38c 15003 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
15004 if (attr)
15005 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
15006 else
15007 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
15008 if (new_field->accessibility != DW_ACCESS_public)
15009 fip->non_public_fields = 1;
60d5a603 15010
e142c38c 15011 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
15012 if (attr)
15013 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
15014 else
15015 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
15016
15017 fp = &new_field->field;
a9a9bd0f 15018
e142c38c 15019 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 15020 {
74ac6d43
TT
15021 LONGEST offset;
15022
a9a9bd0f 15023 /* Data member other than a C++ static data member. */
6e70227d 15024
c906108c 15025 /* Get type of field. */
e7c27a73 15026 fp->type = die_type (die, cu);
c906108c 15027
d6a843b5 15028 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 15029
c906108c 15030 /* Get bit size of field (zero if none). */
e142c38c 15031 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
15032 if (attr)
15033 {
15034 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15035 }
15036 else
15037 {
15038 FIELD_BITSIZE (*fp) = 0;
15039 }
15040
15041 /* Get bit offset of field. */
74ac6d43
TT
15042 if (handle_data_member_location (die, cu, &offset))
15043 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 15044 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
15045 if (attr)
15046 {
5e2b427d 15047 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
15048 {
15049 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
15050 additional bit offset from the MSB of the containing
15051 anonymous object to the MSB of the field. We don't
15052 have to do anything special since we don't need to
15053 know the size of the anonymous object. */
f41f5e61 15054 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
15055 }
15056 else
15057 {
15058 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
15059 MSB of the anonymous object, subtract off the number of
15060 bits from the MSB of the field to the MSB of the
15061 object, and then subtract off the number of bits of
15062 the field itself. The result is the bit offset of
15063 the LSB of the field. */
c906108c
SS
15064 int anonymous_size;
15065 int bit_offset = DW_UNSND (attr);
15066
e142c38c 15067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15068 if (attr)
15069 {
15070 /* The size of the anonymous object containing
15071 the bit field is explicit, so use the
15072 indicated size (in bytes). */
15073 anonymous_size = DW_UNSND (attr);
15074 }
15075 else
15076 {
15077 /* The size of the anonymous object containing
15078 the bit field must be inferred from the type
15079 attribute of the data member containing the
15080 bit field. */
15081 anonymous_size = TYPE_LENGTH (fp->type);
15082 }
f41f5e61
PA
15083 SET_FIELD_BITPOS (*fp,
15084 (FIELD_BITPOS (*fp)
15085 + anonymous_size * bits_per_byte
15086 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
15087 }
15088 }
da5b30da
AA
15089 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15090 if (attr != NULL)
15091 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15092 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
15093
15094 /* Get name of field. */
39cbfefa
DJ
15095 fieldname = dwarf2_name (die, cu);
15096 if (fieldname == NULL)
15097 fieldname = "";
d8151005
DJ
15098
15099 /* The name is already allocated along with this objfile, so we don't
15100 need to duplicate it for the type. */
15101 fp->name = fieldname;
c906108c
SS
15102
15103 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 15104 pointer or virtual base class pointer) to private. */
e142c38c 15105 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 15106 {
d48cc9dd 15107 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
15108 new_field->accessibility = DW_ACCESS_private;
15109 fip->non_public_fields = 1;
15110 }
15111 }
a9a9bd0f 15112 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 15113 {
a9a9bd0f
DC
15114 /* C++ static member. */
15115
15116 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15117 is a declaration, but all versions of G++ as of this writing
15118 (so through at least 3.2.1) incorrectly generate
15119 DW_TAG_variable tags. */
6e70227d 15120
ff355380 15121 const char *physname;
c906108c 15122
a9a9bd0f 15123 /* Get name of field. */
39cbfefa
DJ
15124 fieldname = dwarf2_name (die, cu);
15125 if (fieldname == NULL)
c906108c
SS
15126 return;
15127
254e6b9e 15128 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
15129 if (attr
15130 /* Only create a symbol if this is an external value.
15131 new_symbol checks this and puts the value in the global symbol
15132 table, which we want. If it is not external, new_symbol
15133 will try to put the value in cu->list_in_scope which is wrong. */
15134 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
15135 {
15136 /* A static const member, not much different than an enum as far as
15137 we're concerned, except that we can support more types. */
15138 new_symbol (die, NULL, cu);
15139 }
15140
2df3850c 15141 /* Get physical name. */
ff355380 15142 physname = dwarf2_physname (fieldname, die, cu);
c906108c 15143
d8151005
DJ
15144 /* The name is already allocated along with this objfile, so we don't
15145 need to duplicate it for the type. */
15146 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 15147 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 15148 FIELD_NAME (*fp) = fieldname;
c906108c
SS
15149 }
15150 else if (die->tag == DW_TAG_inheritance)
15151 {
74ac6d43 15152 LONGEST offset;
d4b96c9a 15153
74ac6d43
TT
15154 /* C++ base class field. */
15155 if (handle_data_member_location (die, cu, &offset))
15156 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 15157 FIELD_BITSIZE (*fp) = 0;
e7c27a73 15158 FIELD_TYPE (*fp) = die_type (die, cu);
a737d952 15159 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
c906108c 15160 }
2ddeaf8a
TT
15161 else if (die->tag == DW_TAG_variant_part)
15162 {
15163 /* process_structure_scope will treat this DIE as a union. */
15164 process_structure_scope (die, cu);
15165
15166 /* The variant part is relative to the start of the enclosing
15167 structure. */
15168 SET_FIELD_BITPOS (*fp, 0);
15169 fp->type = get_die_type (die, cu);
15170 fp->artificial = 1;
15171 fp->name = "<<variant>>";
c8c81635
TT
15172
15173 /* Normally a DW_TAG_variant_part won't have a size, but our
15174 representation requires one, so set it to the maximum of the
15175 child sizes. */
15176 if (TYPE_LENGTH (fp->type) == 0)
15177 {
15178 unsigned max = 0;
15179 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15180 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15181 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15182 TYPE_LENGTH (fp->type) = max;
15183 }
2ddeaf8a
TT
15184 }
15185 else
15186 gdb_assert_not_reached ("missing case in dwarf2_add_field");
c906108c
SS
15187}
15188
883fd55a
KS
15189/* Can the type given by DIE define another type? */
15190
15191static bool
15192type_can_define_types (const struct die_info *die)
15193{
15194 switch (die->tag)
15195 {
15196 case DW_TAG_typedef:
15197 case DW_TAG_class_type:
15198 case DW_TAG_structure_type:
15199 case DW_TAG_union_type:
15200 case DW_TAG_enumeration_type:
15201 return true;
15202
15203 default:
15204 return false;
15205 }
15206}
15207
15208/* Add a type definition defined in the scope of the FIP's class. */
98751a41
JK
15209
15210static void
883fd55a
KS
15211dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15212 struct dwarf2_cu *cu)
6e70227d 15213{
be2daae6
TT
15214 struct decl_field fp;
15215 memset (&fp, 0, sizeof (fp));
98751a41 15216
883fd55a 15217 gdb_assert (type_can_define_types (die));
98751a41 15218
883fd55a 15219 /* Get name of field. NULL is okay here, meaning an anonymous type. */
be2daae6
TT
15220 fp.name = dwarf2_name (die, cu);
15221 fp.type = read_type_die (die, cu);
98751a41 15222
c191a687
KS
15223 /* Save accessibility. */
15224 enum dwarf_access_attribute accessibility;
15225 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15226 if (attr != NULL)
15227 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15228 else
15229 accessibility = dwarf2_default_access_attribute (die, cu);
15230 switch (accessibility)
15231 {
15232 case DW_ACCESS_public:
15233 /* The assumed value if neither private nor protected. */
15234 break;
15235 case DW_ACCESS_private:
be2daae6 15236 fp.is_private = 1;
c191a687
KS
15237 break;
15238 case DW_ACCESS_protected:
be2daae6 15239 fp.is_protected = 1;
c191a687
KS
15240 break;
15241 default:
b98664d3 15242 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
c191a687
KS
15243 }
15244
883fd55a 15245 if (die->tag == DW_TAG_typedef)
be2daae6 15246 fip->typedef_field_list.push_back (fp);
883fd55a 15247 else
be2daae6 15248 fip->nested_types_list.push_back (fp);
98751a41
JK
15249}
15250
c906108c
SS
15251/* Create the vector of fields, and attach it to the type. */
15252
15253static void
fba45db2 15254dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15255 struct dwarf2_cu *cu)
c906108c
SS
15256{
15257 int nfields = fip->nfields;
15258
15259 /* Record the field count, allocate space for the array of fields,
15260 and create blank accessibility bitfields if necessary. */
15261 TYPE_NFIELDS (type) = nfields;
15262 TYPE_FIELDS (type) = (struct field *)
be2daae6 15263 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
c906108c 15264
b4ba55a1 15265 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
15266 {
15267 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15268
15269 TYPE_FIELD_PRIVATE_BITS (type) =
15270 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15271 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15272
15273 TYPE_FIELD_PROTECTED_BITS (type) =
15274 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15275 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15276
774b6a14
TT
15277 TYPE_FIELD_IGNORE_BITS (type) =
15278 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15279 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
15280 }
15281
15282 /* If the type has baseclasses, allocate and clear a bit vector for
15283 TYPE_FIELD_VIRTUAL_BITS. */
be2daae6 15284 if (!fip->baseclasses.empty () && cu->language != language_ada)
c906108c 15285 {
be2daae6 15286 int num_bytes = B_BYTES (fip->baseclasses.size ());
fe1b8b76 15287 unsigned char *pointer;
c906108c
SS
15288
15289 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 15290 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 15291 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
be2daae6
TT
15292 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15293 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
c906108c
SS
15294 }
15295
2ddeaf8a
TT
15296 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15297 {
15298 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15299
be2daae6 15300 for (int index = 0; index < nfields; ++index)
2ddeaf8a 15301 {
be2daae6
TT
15302 struct nextfield &field = fip->fields[index];
15303
15304 if (field.variant.is_discriminant)
2ddeaf8a 15305 di->discriminant_index = index;
be2daae6 15306 else if (field.variant.default_branch)
2ddeaf8a
TT
15307 di->default_index = index;
15308 else
be2daae6 15309 di->discriminants[index] = field.variant.discriminant_value;
2ddeaf8a
TT
15310 }
15311 }
15312
be2daae6
TT
15313 /* Copy the saved-up fields into the field vector. */
15314 for (int i = 0; i < nfields; ++i)
c906108c 15315 {
be2daae6
TT
15316 struct nextfield &field
15317 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15318 : fip->fields[i - fip->baseclasses.size ()]);
7d0ccb61 15319
be2daae6
TT
15320 TYPE_FIELD (type, i) = field.field;
15321 switch (field.accessibility)
c906108c 15322 {
c5aa993b 15323 case DW_ACCESS_private:
b4ba55a1 15324 if (cu->language != language_ada)
be2daae6 15325 SET_TYPE_FIELD_PRIVATE (type, i);
c5aa993b 15326 break;
c906108c 15327
c5aa993b 15328 case DW_ACCESS_protected:
b4ba55a1 15329 if (cu->language != language_ada)
be2daae6 15330 SET_TYPE_FIELD_PROTECTED (type, i);
c5aa993b 15331 break;
c906108c 15332
c5aa993b
JM
15333 case DW_ACCESS_public:
15334 break;
c906108c 15335
c5aa993b
JM
15336 default:
15337 /* Unknown accessibility. Complain and treat it as public. */
15338 {
b98664d3 15339 complaint (_("unsupported accessibility %d"),
be2daae6 15340 field.accessibility);
c5aa993b
JM
15341 }
15342 break;
c906108c 15343 }
be2daae6 15344 if (i < fip->baseclasses.size ())
c906108c 15345 {
be2daae6 15346 switch (field.virtuality)
c906108c 15347 {
c5aa993b
JM
15348 case DW_VIRTUALITY_virtual:
15349 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 15350 if (cu->language == language_ada)
a73c6dcd 15351 error (_("unexpected virtuality in component of Ada type"));
be2daae6 15352 SET_TYPE_FIELD_VIRTUAL (type, i);
c5aa993b 15353 break;
c906108c
SS
15354 }
15355 }
c906108c
SS
15356 }
15357}
15358
7d27a96d
TT
15359/* Return true if this member function is a constructor, false
15360 otherwise. */
15361
15362static int
15363dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15364{
15365 const char *fieldname;
fe978cb0 15366 const char *type_name;
7d27a96d
TT
15367 int len;
15368
15369 if (die->parent == NULL)
15370 return 0;
15371
15372 if (die->parent->tag != DW_TAG_structure_type
15373 && die->parent->tag != DW_TAG_union_type
15374 && die->parent->tag != DW_TAG_class_type)
15375 return 0;
15376
15377 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
15378 type_name = dwarf2_name (die->parent, cu);
15379 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
15380 return 0;
15381
15382 len = strlen (fieldname);
fe978cb0
PA
15383 return (strncmp (fieldname, type_name, len) == 0
15384 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
15385}
15386
c906108c
SS
15387/* Add a member function to the proper fieldlist. */
15388
15389static void
107d2387 15390dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 15391 struct type *type, struct dwarf2_cu *cu)
c906108c 15392{
518817b3 15393 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 15394 struct attribute *attr;
c906108c 15395 int i;
be2daae6 15396 struct fnfieldlist *flp = nullptr;
c906108c 15397 struct fn_field *fnp;
15d034d0 15398 const char *fieldname;
f792889a 15399 struct type *this_type;
60d5a603 15400 enum dwarf_access_attribute accessibility;
c906108c 15401
b4ba55a1 15402 if (cu->language == language_ada)
a73c6dcd 15403 error (_("unexpected member function in Ada type"));
b4ba55a1 15404
2df3850c 15405 /* Get name of member function. */
39cbfefa
DJ
15406 fieldname = dwarf2_name (die, cu);
15407 if (fieldname == NULL)
2df3850c 15408 return;
c906108c 15409
c906108c 15410 /* Look up member function name in fieldlist. */
be2daae6 15411 for (i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15412 {
27bfe10e 15413 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
be2daae6
TT
15414 {
15415 flp = &fip->fnfieldlists[i];
15416 break;
15417 }
c906108c
SS
15418 }
15419
be2daae6
TT
15420 /* Create a new fnfieldlist if necessary. */
15421 if (flp == nullptr)
c906108c 15422 {
be2daae6
TT
15423 fip->fnfieldlists.emplace_back ();
15424 flp = &fip->fnfieldlists.back ();
c906108c 15425 flp->name = fieldname;
be2daae6 15426 i = fip->fnfieldlists.size () - 1;
c906108c
SS
15427 }
15428
be2daae6
TT
15429 /* Create a new member function field and add it to the vector of
15430 fnfieldlists. */
15431 flp->fnfields.emplace_back ();
15432 fnp = &flp->fnfields.back ();
3da10d80
KS
15433
15434 /* Delay processing of the physname until later. */
9c37b5ae 15435 if (cu->language == language_cplus)
be2daae6
TT
15436 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15437 die, cu);
3da10d80
KS
15438 else
15439 {
1d06ead6 15440 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
15441 fnp->physname = physname ? physname : "";
15442 }
15443
c906108c 15444 fnp->type = alloc_type (objfile);
f792889a
DJ
15445 this_type = read_type_die (die, cu);
15446 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 15447 {
f792889a 15448 int nparams = TYPE_NFIELDS (this_type);
c906108c 15449
f792889a 15450 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
15451 of the method itself (TYPE_CODE_METHOD). */
15452 smash_to_method_type (fnp->type, type,
f792889a
DJ
15453 TYPE_TARGET_TYPE (this_type),
15454 TYPE_FIELDS (this_type),
15455 TYPE_NFIELDS (this_type),
15456 TYPE_VARARGS (this_type));
c906108c
SS
15457
15458 /* Handle static member functions.
c5aa993b 15459 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
15460 member functions. G++ helps GDB by marking the first
15461 parameter for non-static member functions (which is the this
15462 pointer) as artificial. We obtain this information from
15463 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 15464 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
15465 fnp->voffset = VOFFSET_STATIC;
15466 }
15467 else
b98664d3 15468 complaint (_("member function type missing for '%s'"),
3da10d80 15469 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
15470
15471 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 15472 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 15473 fnp->fcontext = die_containing_type (die, cu);
c906108c 15474
3e43a32a
MS
15475 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15476 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
15477
15478 /* Get accessibility. */
e142c38c 15479 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 15480 if (attr)
aead7601 15481 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
15482 else
15483 accessibility = dwarf2_default_access_attribute (die, cu);
15484 switch (accessibility)
c906108c 15485 {
60d5a603
JK
15486 case DW_ACCESS_private:
15487 fnp->is_private = 1;
15488 break;
15489 case DW_ACCESS_protected:
15490 fnp->is_protected = 1;
15491 break;
c906108c
SS
15492 }
15493
b02dede2 15494 /* Check for artificial methods. */
e142c38c 15495 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
15496 if (attr && DW_UNSND (attr) != 0)
15497 fnp->is_artificial = 1;
15498
7d27a96d
TT
15499 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15500
0d564a31 15501 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
15502 function. For older versions of GCC, this is an offset in the
15503 appropriate virtual table, as specified by DW_AT_containing_type.
15504 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
15505 to the object address. */
15506
e142c38c 15507 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 15508 if (attr)
8e19ed76 15509 {
aec5aa8b 15510 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 15511 {
aec5aa8b
TT
15512 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15513 {
15514 /* Old-style GCC. */
15515 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15516 }
15517 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15518 || (DW_BLOCK (attr)->size > 1
15519 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15520 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15521 {
aec5aa8b
TT
15522 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15523 if ((fnp->voffset % cu->header.addr_size) != 0)
15524 dwarf2_complex_location_expr_complaint ();
15525 else
15526 fnp->voffset /= cu->header.addr_size;
15527 fnp->voffset += 2;
15528 }
15529 else
15530 dwarf2_complex_location_expr_complaint ();
15531
15532 if (!fnp->fcontext)
7e993ebf
KS
15533 {
15534 /* If there is no `this' field and no DW_AT_containing_type,
15535 we cannot actually find a base class context for the
15536 vtable! */
15537 if (TYPE_NFIELDS (this_type) == 0
15538 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15539 {
b98664d3 15540 complaint (_("cannot determine context for virtual member "
9d8780f0
SM
15541 "function \"%s\" (offset %s)"),
15542 fieldname, sect_offset_str (die->sect_off));
7e993ebf
KS
15543 }
15544 else
15545 {
15546 fnp->fcontext
15547 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15548 }
15549 }
aec5aa8b 15550 }
3690dd37 15551 else if (attr_form_is_section_offset (attr))
8e19ed76 15552 {
4d3c2250 15553 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15554 }
15555 else
15556 {
4d3c2250
KB
15557 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15558 fieldname);
8e19ed76 15559 }
0d564a31 15560 }
d48cc9dd
DJ
15561 else
15562 {
15563 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15564 if (attr && DW_UNSND (attr))
15565 {
15566 /* GCC does this, as of 2008-08-25; PR debug/37237. */
b98664d3 15567 complaint (_("Member function \"%s\" (offset %s) is virtual "
3e43a32a 15568 "but the vtable offset is not specified"),
9d8780f0 15569 fieldname, sect_offset_str (die->sect_off));
9655fd1a 15570 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
15571 TYPE_CPLUS_DYNAMIC (type) = 1;
15572 }
15573 }
c906108c
SS
15574}
15575
15576/* Create the vector of member function fields, and attach it to the type. */
15577
15578static void
fba45db2 15579dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15580 struct dwarf2_cu *cu)
c906108c 15581{
b4ba55a1 15582 if (cu->language == language_ada)
a73c6dcd 15583 error (_("unexpected member functions in Ada type"));
b4ba55a1 15584
c906108c
SS
15585 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15586 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
be2daae6
TT
15587 TYPE_ALLOC (type,
15588 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
c906108c 15589
be2daae6 15590 for (int i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15591 {
be2daae6 15592 struct fnfieldlist &nf = fip->fnfieldlists[i];
c906108c 15593 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
c906108c 15594
be2daae6
TT
15595 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15596 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
c906108c 15597 fn_flp->fn_fields = (struct fn_field *)
be2daae6
TT
15598 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15599
15600 for (int k = 0; k < nf.fnfields.size (); ++k)
15601 fn_flp->fn_fields[k] = nf.fnfields[k];
c906108c
SS
15602 }
15603
be2daae6 15604 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
c906108c
SS
15605}
15606
1168df01
JB
15607/* Returns non-zero if NAME is the name of a vtable member in CU's
15608 language, zero otherwise. */
15609static int
15610is_vtable_name (const char *name, struct dwarf2_cu *cu)
15611{
15612 static const char vptr[] = "_vptr";
15613
9c37b5ae
TT
15614 /* Look for the C++ form of the vtable. */
15615 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
15616 return 1;
15617
15618 return 0;
15619}
15620
c0dd20ea 15621/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
15622 functions, with the ABI-specified layout. If TYPE describes
15623 such a structure, smash it into a member function type.
61049d3b
DJ
15624
15625 GCC shouldn't do this; it should just output pointer to member DIEs.
15626 This is GCC PR debug/28767. */
c0dd20ea 15627
0b92b5bb
TT
15628static void
15629quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 15630{
09e2d7c7 15631 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
15632
15633 /* Check for a structure with no name and two children. */
0b92b5bb
TT
15634 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15635 return;
c0dd20ea
DJ
15636
15637 /* Check for __pfn and __delta members. */
0b92b5bb
TT
15638 if (TYPE_FIELD_NAME (type, 0) == NULL
15639 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15640 || TYPE_FIELD_NAME (type, 1) == NULL
15641 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15642 return;
c0dd20ea
DJ
15643
15644 /* Find the type of the method. */
0b92b5bb 15645 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
15646 if (pfn_type == NULL
15647 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15648 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 15649 return;
c0dd20ea
DJ
15650
15651 /* Look for the "this" argument. */
15652 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15653 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 15654 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 15655 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 15656 return;
c0dd20ea 15657
09e2d7c7 15658 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 15659 new_type = alloc_type (objfile);
09e2d7c7 15660 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
15661 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15662 TYPE_VARARGS (pfn_type));
0b92b5bb 15663 smash_to_methodptr_type (type, new_type);
c0dd20ea 15664}
1168df01 15665
2b4424c3
TT
15666/* If the DIE has a DW_AT_alignment attribute, return its value, doing
15667 appropriate error checking and issuing complaints if there is a
15668 problem. */
15669
15670static ULONGEST
15671get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15672{
15673 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15674
15675 if (attr == nullptr)
15676 return 0;
15677
15678 if (!attr_form_is_constant (attr))
15679 {
b98664d3 15680 complaint (_("DW_AT_alignment must have constant form"
2b4424c3
TT
15681 " - DIE at %s [in module %s]"),
15682 sect_offset_str (die->sect_off),
15683 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15684 return 0;
15685 }
15686
15687 ULONGEST align;
15688 if (attr->form == DW_FORM_sdata)
15689 {
15690 LONGEST val = DW_SND (attr);
15691 if (val < 0)
15692 {
b98664d3 15693 complaint (_("DW_AT_alignment value must not be negative"
2b4424c3
TT
15694 " - DIE at %s [in module %s]"),
15695 sect_offset_str (die->sect_off),
15696 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15697 return 0;
15698 }
15699 align = val;
15700 }
15701 else
15702 align = DW_UNSND (attr);
15703
15704 if (align == 0)
15705 {
b98664d3 15706 complaint (_("DW_AT_alignment value must not be zero"
2b4424c3
TT
15707 " - DIE at %s [in module %s]"),
15708 sect_offset_str (die->sect_off),
15709 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15710 return 0;
15711 }
15712 if ((align & (align - 1)) != 0)
15713 {
b98664d3 15714 complaint (_("DW_AT_alignment value must be a power of 2"
2b4424c3
TT
15715 " - DIE at %s [in module %s]"),
15716 sect_offset_str (die->sect_off),
15717 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15718 return 0;
15719 }
15720
15721 return align;
15722}
15723
15724/* If the DIE has a DW_AT_alignment attribute, use its value to set
15725 the alignment for TYPE. */
15726
15727static void
15728maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15729 struct type *type)
15730{
15731 if (!set_type_align (type, get_alignment (cu, die)))
b98664d3 15732 complaint (_("DW_AT_alignment value too large"
2b4424c3
TT
15733 " - DIE at %s [in module %s]"),
15734 sect_offset_str (die->sect_off),
15735 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15736}
685b1105 15737
c906108c 15738/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
15739 (definition) to create a type for the structure or union. Fill in
15740 the type's name and general properties; the members will not be
83655187
DE
15741 processed until process_structure_scope. A symbol table entry for
15742 the type will also not be done until process_structure_scope (assuming
15743 the type has a name).
c906108c 15744
c767944b
DJ
15745 NOTE: we need to call these functions regardless of whether or not the
15746 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 15747 structure or union. This gets the type entered into our set of
83655187 15748 user defined types. */
c906108c 15749
f792889a 15750static struct type *
134d01f1 15751read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15752{
518817b3 15753 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
15754 struct type *type;
15755 struct attribute *attr;
15d034d0 15756 const char *name;
c906108c 15757
348e048f
DE
15758 /* If the definition of this type lives in .debug_types, read that type.
15759 Don't follow DW_AT_specification though, that will take us back up
15760 the chain and we want to go down. */
45e58e77 15761 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
15762 if (attr)
15763 {
ac9ec31b 15764 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 15765
ac9ec31b 15766 /* The type's CU may not be the same as CU.
02142a6c 15767 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
15768 return set_die_type (die, type, cu);
15769 }
15770
c0dd20ea 15771 type = alloc_type (objfile);
c906108c 15772 INIT_CPLUS_SPECIFIC (type);
93311388 15773
39cbfefa
DJ
15774 name = dwarf2_name (die, cu);
15775 if (name != NULL)
c906108c 15776 {
987504bb 15777 if (cu->language == language_cplus
c44af4eb
TT
15778 || cu->language == language_d
15779 || cu->language == language_rust)
63d06c5c 15780 {
15d034d0 15781 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
15782
15783 /* dwarf2_full_name might have already finished building the DIE's
15784 type. If so, there is no need to continue. */
15785 if (get_die_type (die, cu) != NULL)
15786 return get_die_type (die, cu);
15787
e86ca25f 15788 TYPE_NAME (type) = full_name;
63d06c5c
DC
15789 }
15790 else
15791 {
d8151005
DJ
15792 /* The name is already allocated along with this objfile, so
15793 we don't need to duplicate it for the type. */
e86ca25f 15794 TYPE_NAME (type) = name;
63d06c5c 15795 }
c906108c
SS
15796 }
15797
15798 if (die->tag == DW_TAG_structure_type)
15799 {
15800 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15801 }
15802 else if (die->tag == DW_TAG_union_type)
15803 {
15804 TYPE_CODE (type) = TYPE_CODE_UNION;
15805 }
2ddeaf8a
TT
15806 else if (die->tag == DW_TAG_variant_part)
15807 {
15808 TYPE_CODE (type) = TYPE_CODE_UNION;
15809 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15810 }
c906108c
SS
15811 else
15812 {
4753d33b 15813 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
15814 }
15815
0cc2414c
TT
15816 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15817 TYPE_DECLARED_CLASS (type) = 1;
15818
e142c38c 15819 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15820 if (attr)
15821 {
155bfbd3
JB
15822 if (attr_form_is_constant (attr))
15823 TYPE_LENGTH (type) = DW_UNSND (attr);
15824 else
15825 {
15826 /* For the moment, dynamic type sizes are not supported
15827 by GDB's struct type. The actual size is determined
15828 on-demand when resolving the type of a given object,
15829 so set the type's length to zero for now. Otherwise,
15830 we record an expression as the length, and that expression
15831 could lead to a very large value, which could eventually
15832 lead to us trying to allocate that much memory when creating
15833 a value of that type. */
15834 TYPE_LENGTH (type) = 0;
15835 }
c906108c
SS
15836 }
15837 else
15838 {
15839 TYPE_LENGTH (type) = 0;
15840 }
15841
2b4424c3
TT
15842 maybe_set_alignment (cu, die, type);
15843
5230b05a 15844 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 15845 {
5230b05a
WT
15846 /* ICC<14 does not output the required DW_AT_declaration on
15847 incomplete types, but gives them a size of zero. */
422b1cb0 15848 TYPE_STUB (type) = 1;
685b1105
JK
15849 }
15850 else
15851 TYPE_STUB_SUPPORTED (type) = 1;
15852
dc718098 15853 if (die_is_declaration (die, cu))
876cecd0 15854 TYPE_STUB (type) = 1;
a6c727b2
DJ
15855 else if (attr == NULL && die->child == NULL
15856 && producer_is_realview (cu->producer))
15857 /* RealView does not output the required DW_AT_declaration
15858 on incomplete types. */
15859 TYPE_STUB (type) = 1;
dc718098 15860
c906108c
SS
15861 /* We need to add the type field to the die immediately so we don't
15862 infinitely recurse when dealing with pointers to the structure
0963b4bd 15863 type within the structure itself. */
1c379e20 15864 set_die_type (die, type, cu);
c906108c 15865
7e314c57
JK
15866 /* set_die_type should be already done. */
15867 set_descriptive_type (type, die, cu);
15868
c767944b
DJ
15869 return type;
15870}
15871
2ddeaf8a
TT
15872/* A helper for process_structure_scope that handles a single member
15873 DIE. */
15874
15875static void
15876handle_struct_member_die (struct die_info *child_die, struct type *type,
15877 struct field_info *fi,
15878 std::vector<struct symbol *> *template_args,
15879 struct dwarf2_cu *cu)
15880{
15881 if (child_die->tag == DW_TAG_member
15882 || child_die->tag == DW_TAG_variable
15883 || child_die->tag == DW_TAG_variant_part)
15884 {
15885 /* NOTE: carlton/2002-11-05: A C++ static data member
15886 should be a DW_TAG_member that is a declaration, but
15887 all versions of G++ as of this writing (so through at
15888 least 3.2.1) incorrectly generate DW_TAG_variable
15889 tags for them instead. */
15890 dwarf2_add_field (fi, child_die, cu);
15891 }
15892 else if (child_die->tag == DW_TAG_subprogram)
15893 {
15894 /* Rust doesn't have member functions in the C++ sense.
15895 However, it does emit ordinary functions as children
15896 of a struct DIE. */
15897 if (cu->language == language_rust)
15898 read_func_scope (child_die, cu);
15899 else
15900 {
15901 /* C++ member function. */
15902 dwarf2_add_member_fn (fi, child_die, type, cu);
15903 }
15904 }
15905 else if (child_die->tag == DW_TAG_inheritance)
15906 {
15907 /* C++ base class field. */
15908 dwarf2_add_field (fi, child_die, cu);
15909 }
15910 else if (type_can_define_types (child_die))
15911 dwarf2_add_type_defn (fi, child_die, cu);
15912 else if (child_die->tag == DW_TAG_template_type_param
15913 || child_die->tag == DW_TAG_template_value_param)
15914 {
15915 struct symbol *arg = new_symbol (child_die, NULL, cu);
15916
15917 if (arg != NULL)
15918 template_args->push_back (arg);
15919 }
15920 else if (child_die->tag == DW_TAG_variant)
15921 {
15922 /* In a variant we want to get the discriminant and also add a
15923 field for our sole member child. */
15924 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15925
15926 for (struct die_info *variant_child = child_die->child;
15927 variant_child != NULL;
15928 variant_child = sibling_die (variant_child))
15929 {
15930 if (variant_child->tag == DW_TAG_member)
15931 {
15932 handle_struct_member_die (variant_child, type, fi,
15933 template_args, cu);
15934 /* Only handle the one. */
15935 break;
15936 }
15937 }
15938
15939 /* We don't handle this but we might as well report it if we see
15940 it. */
15941 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
b98664d3 15942 complaint (_("DW_AT_discr_list is not supported yet"
2ddeaf8a
TT
15943 " - DIE at %s [in module %s]"),
15944 sect_offset_str (child_die->sect_off),
15945 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15946
15947 /* The first field was just added, so we can stash the
15948 discriminant there. */
be2daae6 15949 gdb_assert (!fi->fields.empty ());
2ddeaf8a 15950 if (discr == NULL)
be2daae6 15951 fi->fields.back ().variant.default_branch = true;
2ddeaf8a 15952 else
be2daae6 15953 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
2ddeaf8a
TT
15954 }
15955}
15956
c767944b
DJ
15957/* Finish creating a structure or union type, including filling in
15958 its members and creating a symbol for it. */
15959
15960static void
15961process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15962{
518817b3 15963 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
ca040673 15964 struct die_info *child_die;
c767944b
DJ
15965 struct type *type;
15966
15967 type = get_die_type (die, cu);
15968 if (type == NULL)
15969 type = read_structure_type (die, cu);
15970
2ddeaf8a
TT
15971 /* When reading a DW_TAG_variant_part, we need to notice when we
15972 read the discriminant member, so we can record it later in the
15973 discriminant_info. */
15974 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15975 sect_offset discr_offset;
3e1d3d8c 15976 bool has_template_parameters = false;
2ddeaf8a
TT
15977
15978 if (is_variant_part)
15979 {
15980 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15981 if (discr == NULL)
15982 {
15983 /* Maybe it's a univariant form, an extension we support.
15984 In this case arrange not to check the offset. */
15985 is_variant_part = false;
15986 }
15987 else if (attr_form_is_ref (discr))
15988 {
15989 struct dwarf2_cu *target_cu = cu;
15990 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15991
15992 discr_offset = target_die->sect_off;
15993 }
15994 else
15995 {
b98664d3 15996 complaint (_("DW_AT_discr does not have DIE reference form"
2ddeaf8a
TT
15997 " - DIE at %s [in module %s]"),
15998 sect_offset_str (die->sect_off),
15999 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16000 is_variant_part = false;
16001 }
16002 }
16003
e142c38c 16004 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
16005 {
16006 struct field_info fi;
2f4732b0 16007 std::vector<struct symbol *> template_args;
c906108c 16008
639d11d3 16009 child_die = die->child;
c906108c
SS
16010
16011 while (child_die && child_die->tag)
16012 {
2ddeaf8a 16013 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
34eaf542 16014
2ddeaf8a 16015 if (is_variant_part && discr_offset == child_die->sect_off)
be2daae6 16016 fi.fields.back ().variant.is_discriminant = true;
34eaf542 16017
c906108c
SS
16018 child_die = sibling_die (child_die);
16019 }
16020
34eaf542 16021 /* Attach template arguments to type. */
2f4732b0 16022 if (!template_args.empty ())
34eaf542 16023 {
3e1d3d8c 16024 has_template_parameters = true;
34eaf542 16025 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2f4732b0 16026 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
34eaf542 16027 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
16028 = XOBNEWVEC (&objfile->objfile_obstack,
16029 struct symbol *,
16030 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542 16031 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
2f4732b0 16032 template_args.data (),
34eaf542
TT
16033 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16034 * sizeof (struct symbol *)));
34eaf542
TT
16035 }
16036
c906108c
SS
16037 /* Attach fields and member functions to the type. */
16038 if (fi.nfields)
e7c27a73 16039 dwarf2_attach_fields_to_type (&fi, type, cu);
be2daae6 16040 if (!fi.fnfieldlists.empty ())
c906108c 16041 {
e7c27a73 16042 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 16043
c5aa993b 16044 /* Get the type which refers to the base class (possibly this
c906108c 16045 class itself) which contains the vtable pointer for the current
0d564a31
DJ
16046 class from the DW_AT_containing_type attribute. This use of
16047 DW_AT_containing_type is a GNU extension. */
c906108c 16048
e142c38c 16049 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 16050 {
e7c27a73 16051 struct type *t = die_containing_type (die, cu);
c906108c 16052
ae6ae975 16053 set_type_vptr_basetype (type, t);
c906108c
SS
16054 if (type == t)
16055 {
c906108c
SS
16056 int i;
16057
16058 /* Our own class provides vtbl ptr. */
16059 for (i = TYPE_NFIELDS (t) - 1;
16060 i >= TYPE_N_BASECLASSES (t);
16061 --i)
16062 {
0d5cff50 16063 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 16064
1168df01 16065 if (is_vtable_name (fieldname, cu))
c906108c 16066 {
ae6ae975 16067 set_type_vptr_fieldno (type, i);
c906108c
SS
16068 break;
16069 }
16070 }
16071
16072 /* Complain if virtual function table field not found. */
16073 if (i < TYPE_N_BASECLASSES (t))
b98664d3 16074 complaint (_("virtual function table pointer "
3e43a32a 16075 "not found when defining class '%s'"),
e86ca25f 16076 TYPE_NAME (type) ? TYPE_NAME (type) : "");
c906108c
SS
16077 }
16078 else
16079 {
ae6ae975 16080 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
16081 }
16082 }
f6235d4c 16083 else if (cu->producer
61012eef 16084 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
16085 {
16086 /* The IBM XLC compiler does not provide direct indication
16087 of the containing type, but the vtable pointer is
16088 always named __vfp. */
16089
16090 int i;
16091
16092 for (i = TYPE_NFIELDS (type) - 1;
16093 i >= TYPE_N_BASECLASSES (type);
16094 --i)
16095 {
16096 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16097 {
ae6ae975
DE
16098 set_type_vptr_fieldno (type, i);
16099 set_type_vptr_basetype (type, type);
f6235d4c
EZ
16100 break;
16101 }
16102 }
16103 }
c906108c 16104 }
98751a41
JK
16105
16106 /* Copy fi.typedef_field_list linked list elements content into the
16107 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
be2daae6 16108 if (!fi.typedef_field_list.empty ())
98751a41 16109 {
be2daae6 16110 int count = fi.typedef_field_list.size ();
98751a41 16111
a0d7a4ff 16112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 16113 TYPE_TYPEDEF_FIELD_ARRAY (type)
883fd55a 16114 = ((struct decl_field *)
be2daae6
TT
16115 TYPE_ALLOC (type,
16116 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16117 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
6e70227d 16118
be2daae6
TT
16119 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16120 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
98751a41 16121 }
c767944b 16122
883fd55a
KS
16123 /* Copy fi.nested_types_list linked list elements content into the
16124 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
be2daae6 16125 if (!fi.nested_types_list.empty () && cu->language != language_ada)
883fd55a 16126 {
be2daae6 16127 int count = fi.nested_types_list.size ();
883fd55a
KS
16128
16129 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16130 TYPE_NESTED_TYPES_ARRAY (type)
16131 = ((struct decl_field *)
be2daae6
TT
16132 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16133 TYPE_NESTED_TYPES_COUNT (type) = count;
883fd55a 16134
be2daae6
TT
16135 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16136 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
883fd55a 16137 }
c906108c 16138 }
63d06c5c 16139
bb5ed363 16140 quirk_gcc_member_function_pointer (type, objfile);
c9317f21
TT
16141 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16142 cu->rust_unions.push_back (type);
0b92b5bb 16143
90aeadfc
DC
16144 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16145 snapshots) has been known to create a die giving a declaration
16146 for a class that has, as a child, a die giving a definition for a
16147 nested class. So we have to process our children even if the
16148 current die is a declaration. Normally, of course, a declaration
16149 won't have any children at all. */
134d01f1 16150
ca040673
DE
16151 child_die = die->child;
16152
90aeadfc
DC
16153 while (child_die != NULL && child_die->tag)
16154 {
16155 if (child_die->tag == DW_TAG_member
16156 || child_die->tag == DW_TAG_variable
34eaf542
TT
16157 || child_die->tag == DW_TAG_inheritance
16158 || child_die->tag == DW_TAG_template_value_param
16159 || child_die->tag == DW_TAG_template_type_param)
134d01f1 16160 {
90aeadfc 16161 /* Do nothing. */
134d01f1 16162 }
90aeadfc
DC
16163 else
16164 process_die (child_die, cu);
134d01f1 16165
90aeadfc 16166 child_die = sibling_die (child_die);
134d01f1
DJ
16167 }
16168
fa4028e9
JB
16169 /* Do not consider external references. According to the DWARF standard,
16170 these DIEs are identified by the fact that they have no byte_size
16171 attribute, and a declaration attribute. */
16172 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16173 || !die_is_declaration (die, cu))
3e1d3d8c
TT
16174 {
16175 struct symbol *sym = new_symbol (die, type, cu);
16176
16177 if (has_template_parameters)
16178 {
16179 /* Make sure that the symtab is set on the new symbols.
16180 Even though they don't appear in this symtab directly,
16181 other parts of gdb assume that symbols do, and this is
16182 reasonably true. */
16183 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16184 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16185 symbol_symtab (sym));
16186 }
16187 }
134d01f1
DJ
16188}
16189
55426c9d
JB
16190/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16191 update TYPE using some information only available in DIE's children. */
16192
16193static void
16194update_enumeration_type_from_children (struct die_info *die,
16195 struct type *type,
16196 struct dwarf2_cu *cu)
16197{
60f7655a 16198 struct die_info *child_die;
55426c9d
JB
16199 int unsigned_enum = 1;
16200 int flag_enum = 1;
16201 ULONGEST mask = 0;
55426c9d 16202
8268c778 16203 auto_obstack obstack;
55426c9d 16204
60f7655a
DE
16205 for (child_die = die->child;
16206 child_die != NULL && child_die->tag;
16207 child_die = sibling_die (child_die))
55426c9d
JB
16208 {
16209 struct attribute *attr;
16210 LONGEST value;
16211 const gdb_byte *bytes;
16212 struct dwarf2_locexpr_baton *baton;
16213 const char *name;
60f7655a 16214
55426c9d
JB
16215 if (child_die->tag != DW_TAG_enumerator)
16216 continue;
16217
16218 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16219 if (attr == NULL)
16220 continue;
16221
16222 name = dwarf2_name (child_die, cu);
16223 if (name == NULL)
16224 name = "<anonymous enumerator>";
16225
16226 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16227 &value, &bytes, &baton);
16228 if (value < 0)
16229 {
16230 unsigned_enum = 0;
16231 flag_enum = 0;
16232 }
16233 else if ((mask & value) != 0)
16234 flag_enum = 0;
16235 else
16236 mask |= value;
16237
16238 /* If we already know that the enum type is neither unsigned, nor
16239 a flag type, no need to look at the rest of the enumerates. */
16240 if (!unsigned_enum && !flag_enum)
16241 break;
55426c9d
JB
16242 }
16243
16244 if (unsigned_enum)
16245 TYPE_UNSIGNED (type) = 1;
16246 if (flag_enum)
16247 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
16248}
16249
134d01f1
DJ
16250/* Given a DW_AT_enumeration_type die, set its type. We do not
16251 complete the type's fields yet, or create any symbols. */
c906108c 16252
f792889a 16253static struct type *
134d01f1 16254read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16255{
518817b3 16256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16257 struct type *type;
c906108c 16258 struct attribute *attr;
0114d602 16259 const char *name;
134d01f1 16260
348e048f
DE
16261 /* If the definition of this type lives in .debug_types, read that type.
16262 Don't follow DW_AT_specification though, that will take us back up
16263 the chain and we want to go down. */
45e58e77 16264 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
16265 if (attr)
16266 {
ac9ec31b 16267 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 16268
ac9ec31b 16269 /* The type's CU may not be the same as CU.
02142a6c 16270 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
16271 return set_die_type (die, type, cu);
16272 }
16273
c906108c
SS
16274 type = alloc_type (objfile);
16275
16276 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 16277 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 16278 if (name != NULL)
e86ca25f 16279 TYPE_NAME (type) = name;
c906108c 16280
0626fc76
TT
16281 attr = dwarf2_attr (die, DW_AT_type, cu);
16282 if (attr != NULL)
16283 {
16284 struct type *underlying_type = die_type (die, cu);
16285
16286 TYPE_TARGET_TYPE (type) = underlying_type;
16287 }
16288
e142c38c 16289 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
16290 if (attr)
16291 {
16292 TYPE_LENGTH (type) = DW_UNSND (attr);
16293 }
16294 else
16295 {
16296 TYPE_LENGTH (type) = 0;
16297 }
16298
2b4424c3
TT
16299 maybe_set_alignment (cu, die, type);
16300
137033e9
JB
16301 /* The enumeration DIE can be incomplete. In Ada, any type can be
16302 declared as private in the package spec, and then defined only
16303 inside the package body. Such types are known as Taft Amendment
16304 Types. When another package uses such a type, an incomplete DIE
16305 may be generated by the compiler. */
02eb380e 16306 if (die_is_declaration (die, cu))
876cecd0 16307 TYPE_STUB (type) = 1;
02eb380e 16308
0626fc76
TT
16309 /* Finish the creation of this type by using the enum's children.
16310 We must call this even when the underlying type has been provided
16311 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
16312 update_enumeration_type_from_children (die, type, cu);
16313
0626fc76
TT
16314 /* If this type has an underlying type that is not a stub, then we
16315 may use its attributes. We always use the "unsigned" attribute
16316 in this situation, because ordinarily we guess whether the type
16317 is unsigned -- but the guess can be wrong and the underlying type
16318 can tell us the reality. However, we defer to a local size
16319 attribute if one exists, because this lets the compiler override
16320 the underlying type if needed. */
16321 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16322 {
16323 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16324 if (TYPE_LENGTH (type) == 0)
16325 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
2b4424c3
TT
16326 if (TYPE_RAW_ALIGN (type) == 0
16327 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16328 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
0626fc76
TT
16329 }
16330
3d567982
TT
16331 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16332
f792889a 16333 return set_die_type (die, type, cu);
134d01f1
DJ
16334}
16335
16336/* Given a pointer to a die which begins an enumeration, process all
16337 the dies that define the members of the enumeration, and create the
16338 symbol for the enumeration type.
16339
16340 NOTE: We reverse the order of the element list. */
16341
16342static void
16343process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16344{
f792889a 16345 struct type *this_type;
134d01f1 16346
f792889a
DJ
16347 this_type = get_die_type (die, cu);
16348 if (this_type == NULL)
16349 this_type = read_enumeration_type (die, cu);
9dc481d3 16350
639d11d3 16351 if (die->child != NULL)
c906108c 16352 {
9dc481d3
DE
16353 struct die_info *child_die;
16354 struct symbol *sym;
16355 struct field *fields = NULL;
16356 int num_fields = 0;
15d034d0 16357 const char *name;
9dc481d3 16358
639d11d3 16359 child_die = die->child;
c906108c
SS
16360 while (child_die && child_die->tag)
16361 {
16362 if (child_die->tag != DW_TAG_enumerator)
16363 {
e7c27a73 16364 process_die (child_die, cu);
c906108c
SS
16365 }
16366 else
16367 {
39cbfefa
DJ
16368 name = dwarf2_name (child_die, cu);
16369 if (name)
c906108c 16370 {
f792889a 16371 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
16372
16373 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16374 {
16375 fields = (struct field *)
16376 xrealloc (fields,
16377 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 16378 * sizeof (struct field));
c906108c
SS
16379 }
16380
3567439c 16381 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 16382 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 16383 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
16384 FIELD_BITSIZE (fields[num_fields]) = 0;
16385
16386 num_fields++;
16387 }
16388 }
16389
16390 child_die = sibling_die (child_die);
16391 }
16392
16393 if (num_fields)
16394 {
f792889a
DJ
16395 TYPE_NFIELDS (this_type) = num_fields;
16396 TYPE_FIELDS (this_type) = (struct field *)
16397 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16398 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 16399 sizeof (struct field) * num_fields);
b8c9b27d 16400 xfree (fields);
c906108c 16401 }
c906108c 16402 }
134d01f1 16403
6c83ed52
TT
16404 /* If we are reading an enum from a .debug_types unit, and the enum
16405 is a declaration, and the enum is not the signatured type in the
16406 unit, then we do not want to add a symbol for it. Adding a
16407 symbol would in some cases obscure the true definition of the
16408 enum, giving users an incomplete type when the definition is
16409 actually available. Note that we do not want to do this for all
16410 enums which are just declarations, because C++0x allows forward
16411 enum declarations. */
3019eac3 16412 if (cu->per_cu->is_debug_types
6c83ed52
TT
16413 && die_is_declaration (die, cu))
16414 {
52dc124a 16415 struct signatured_type *sig_type;
6c83ed52 16416
c0f78cd4 16417 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
16418 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16419 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
16420 return;
16421 }
16422
f792889a 16423 new_symbol (die, this_type, cu);
c906108c
SS
16424}
16425
16426/* Extract all information from a DW_TAG_array_type DIE and put it in
16427 the DIE's type field. For now, this only handles one dimensional
16428 arrays. */
16429
f792889a 16430static struct type *
e7c27a73 16431read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16432{
518817b3 16433 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16434 struct die_info *child_die;
7e314c57 16435 struct type *type;
c906108c 16436 struct type *element_type, *range_type, *index_type;
c906108c 16437 struct attribute *attr;
15d034d0 16438 const char *name;
a405673c 16439 struct dynamic_prop *byte_stride_prop = NULL;
dc53a7ad 16440 unsigned int bit_stride = 0;
c906108c 16441
e7c27a73 16442 element_type = die_type (die, cu);
c906108c 16443
7e314c57
JK
16444 /* The die_type call above may have already set the type for this DIE. */
16445 type = get_die_type (die, cu);
16446 if (type)
16447 return type;
16448
dc53a7ad
JB
16449 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16450 if (attr != NULL)
a405673c
JB
16451 {
16452 int stride_ok;
16453
16454 byte_stride_prop
16455 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16456 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16457 if (!stride_ok)
16458 {
b98664d3 16459 complaint (_("unable to read array DW_AT_byte_stride "
9d8780f0
SM
16460 " - DIE at %s [in module %s]"),
16461 sect_offset_str (die->sect_off),
518817b3 16462 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a405673c
JB
16463 /* Ignore this attribute. We will likely not be able to print
16464 arrays of this type correctly, but there is little we can do
16465 to help if we cannot read the attribute's value. */
16466 byte_stride_prop = NULL;
16467 }
16468 }
dc53a7ad
JB
16469
16470 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16471 if (attr != NULL)
16472 bit_stride = DW_UNSND (attr);
16473
c906108c
SS
16474 /* Irix 6.2 native cc creates array types without children for
16475 arrays with unspecified length. */
639d11d3 16476 if (die->child == NULL)
c906108c 16477 {
46bf5051 16478 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 16479 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad 16480 type = create_array_type_with_stride (NULL, element_type, range_type,
a405673c 16481 byte_stride_prop, bit_stride);
f792889a 16482 return set_die_type (die, type, cu);
c906108c
SS
16483 }
16484
791afaa2 16485 std::vector<struct type *> range_types;
639d11d3 16486 child_die = die->child;
c906108c
SS
16487 while (child_die && child_die->tag)
16488 {
16489 if (child_die->tag == DW_TAG_subrange_type)
16490 {
f792889a 16491 struct type *child_type = read_type_die (child_die, cu);
9a619af0 16492
f792889a 16493 if (child_type != NULL)
a02abb62 16494 {
0963b4bd
MS
16495 /* The range type was succesfully read. Save it for the
16496 array type creation. */
791afaa2 16497 range_types.push_back (child_type);
a02abb62 16498 }
c906108c
SS
16499 }
16500 child_die = sibling_die (child_die);
16501 }
16502
16503 /* Dwarf2 dimensions are output from left to right, create the
16504 necessary array types in backwards order. */
7ca2d3a3 16505
c906108c 16506 type = element_type;
7ca2d3a3
DL
16507
16508 if (read_array_order (die, cu) == DW_ORD_col_major)
16509 {
16510 int i = 0;
9a619af0 16511
791afaa2 16512 while (i < range_types.size ())
dc53a7ad 16513 type = create_array_type_with_stride (NULL, type, range_types[i++],
a405673c 16514 byte_stride_prop, bit_stride);
7ca2d3a3
DL
16515 }
16516 else
16517 {
791afaa2 16518 size_t ndim = range_types.size ();
7ca2d3a3 16519 while (ndim-- > 0)
dc53a7ad 16520 type = create_array_type_with_stride (NULL, type, range_types[ndim],
a405673c 16521 byte_stride_prop, bit_stride);
7ca2d3a3 16522 }
c906108c 16523
f5f8a009
EZ
16524 /* Understand Dwarf2 support for vector types (like they occur on
16525 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16526 array type. This is not part of the Dwarf2/3 standard yet, but a
16527 custom vendor extension. The main difference between a regular
16528 array and the vector variant is that vectors are passed by value
16529 to functions. */
e142c38c 16530 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 16531 if (attr)
ea37ba09 16532 make_vector_type (type);
f5f8a009 16533
dbc98a8b
KW
16534 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16535 implementation may choose to implement triple vectors using this
16536 attribute. */
16537 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16538 if (attr)
16539 {
16540 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16541 TYPE_LENGTH (type) = DW_UNSND (attr);
16542 else
b98664d3 16543 complaint (_("DW_AT_byte_size for array type smaller "
3e43a32a 16544 "than the total size of elements"));
dbc98a8b
KW
16545 }
16546
39cbfefa
DJ
16547 name = dwarf2_name (die, cu);
16548 if (name)
16549 TYPE_NAME (type) = name;
6e70227d 16550
2b4424c3
TT
16551 maybe_set_alignment (cu, die, type);
16552
0963b4bd 16553 /* Install the type in the die. */
7e314c57
JK
16554 set_die_type (die, type, cu);
16555
16556 /* set_die_type should be already done. */
b4ba55a1
JB
16557 set_descriptive_type (type, die, cu);
16558
7e314c57 16559 return type;
c906108c
SS
16560}
16561
7ca2d3a3 16562static enum dwarf_array_dim_ordering
6e70227d 16563read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
16564{
16565 struct attribute *attr;
16566
16567 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16568
aead7601
SM
16569 if (attr)
16570 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 16571
0963b4bd
MS
16572 /* GNU F77 is a special case, as at 08/2004 array type info is the
16573 opposite order to the dwarf2 specification, but data is still
16574 laid out as per normal fortran.
7ca2d3a3 16575
0963b4bd
MS
16576 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16577 version checking. */
7ca2d3a3 16578
905e0470
PM
16579 if (cu->language == language_fortran
16580 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
16581 {
16582 return DW_ORD_row_major;
16583 }
16584
6e70227d 16585 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
16586 {
16587 case array_column_major:
16588 return DW_ORD_col_major;
16589 case array_row_major:
16590 default:
16591 return DW_ORD_row_major;
16592 };
16593}
16594
72019c9c 16595/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 16596 the DIE's type field. */
72019c9c 16597
f792889a 16598static struct type *
72019c9c
GM
16599read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16600{
7e314c57
JK
16601 struct type *domain_type, *set_type;
16602 struct attribute *attr;
f792889a 16603
7e314c57
JK
16604 domain_type = die_type (die, cu);
16605
16606 /* The die_type call above may have already set the type for this DIE. */
16607 set_type = get_die_type (die, cu);
16608 if (set_type)
16609 return set_type;
16610
16611 set_type = create_set_type (NULL, domain_type);
16612
16613 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
16614 if (attr)
16615 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 16616
2b4424c3
TT
16617 maybe_set_alignment (cu, die, set_type);
16618
f792889a 16619 return set_die_type (die, set_type, cu);
72019c9c 16620}
7ca2d3a3 16621
0971de02
TT
16622/* A helper for read_common_block that creates a locexpr baton.
16623 SYM is the symbol which we are marking as computed.
16624 COMMON_DIE is the DIE for the common block.
16625 COMMON_LOC is the location expression attribute for the common
16626 block itself.
16627 MEMBER_LOC is the location expression attribute for the particular
16628 member of the common block that we are processing.
16629 CU is the CU from which the above come. */
16630
16631static void
16632mark_common_block_symbol_computed (struct symbol *sym,
16633 struct die_info *common_die,
16634 struct attribute *common_loc,
16635 struct attribute *member_loc,
16636 struct dwarf2_cu *cu)
16637{
518817b3
SM
16638 struct dwarf2_per_objfile *dwarf2_per_objfile
16639 = cu->per_cu->dwarf2_per_objfile;
0971de02
TT
16640 struct objfile *objfile = dwarf2_per_objfile->objfile;
16641 struct dwarf2_locexpr_baton *baton;
16642 gdb_byte *ptr;
16643 unsigned int cu_off;
16644 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16645 LONGEST offset = 0;
16646
16647 gdb_assert (common_loc && member_loc);
16648 gdb_assert (attr_form_is_block (common_loc));
16649 gdb_assert (attr_form_is_block (member_loc)
16650 || attr_form_is_constant (member_loc));
16651
8d749320 16652 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
16653 baton->per_cu = cu->per_cu;
16654 gdb_assert (baton->per_cu);
16655
16656 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16657
16658 if (attr_form_is_constant (member_loc))
16659 {
16660 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16661 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16662 }
16663 else
16664 baton->size += DW_BLOCK (member_loc)->size;
16665
224c3ddb 16666 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
16667 baton->data = ptr;
16668
16669 *ptr++ = DW_OP_call4;
9c541725 16670 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
16671 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16672 ptr += 4;
16673
16674 if (attr_form_is_constant (member_loc))
16675 {
16676 *ptr++ = DW_OP_addr;
16677 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16678 ptr += cu->header.addr_size;
16679 }
16680 else
16681 {
16682 /* We have to copy the data here, because DW_OP_call4 will only
16683 use a DW_AT_location attribute. */
16684 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16685 ptr += DW_BLOCK (member_loc)->size;
16686 }
16687
16688 *ptr++ = DW_OP_plus;
16689 gdb_assert (ptr - baton->data == baton->size);
16690
0971de02 16691 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16692 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
16693}
16694
4357ac6c
TT
16695/* Create appropriate locally-scoped variables for all the
16696 DW_TAG_common_block entries. Also create a struct common_block
16697 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16698 is used to sepate the common blocks name namespace from regular
16699 variable names. */
c906108c
SS
16700
16701static void
e7c27a73 16702read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16703{
0971de02
TT
16704 struct attribute *attr;
16705
16706 attr = dwarf2_attr (die, DW_AT_location, cu);
16707 if (attr)
16708 {
16709 /* Support the .debug_loc offsets. */
16710 if (attr_form_is_block (attr))
16711 {
16712 /* Ok. */
16713 }
16714 else if (attr_form_is_section_offset (attr))
16715 {
16716 dwarf2_complex_location_expr_complaint ();
16717 attr = NULL;
16718 }
16719 else
16720 {
16721 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16722 "common block member");
16723 attr = NULL;
16724 }
16725 }
16726
639d11d3 16727 if (die->child != NULL)
c906108c 16728 {
518817b3 16729 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
4357ac6c
TT
16730 struct die_info *child_die;
16731 size_t n_entries = 0, size;
16732 struct common_block *common_block;
16733 struct symbol *sym;
74ac6d43 16734
4357ac6c
TT
16735 for (child_die = die->child;
16736 child_die && child_die->tag;
16737 child_die = sibling_die (child_die))
16738 ++n_entries;
16739
16740 size = (sizeof (struct common_block)
16741 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
16742 common_block
16743 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16744 size);
4357ac6c
TT
16745 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16746 common_block->n_entries = 0;
16747
16748 for (child_die = die->child;
16749 child_die && child_die->tag;
16750 child_die = sibling_die (child_die))
16751 {
16752 /* Create the symbol in the DW_TAG_common_block block in the current
16753 symbol scope. */
e7c27a73 16754 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
16755 if (sym != NULL)
16756 {
16757 struct attribute *member_loc;
16758
16759 common_block->contents[common_block->n_entries++] = sym;
16760
16761 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16762 cu);
16763 if (member_loc)
16764 {
16765 /* GDB has handled this for a long time, but it is
16766 not specified by DWARF. It seems to have been
16767 emitted by gfortran at least as recently as:
16768 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
b98664d3 16769 complaint (_("Variable in common block has "
0971de02 16770 "DW_AT_data_member_location "
9d8780f0
SM
16771 "- DIE at %s [in module %s]"),
16772 sect_offset_str (child_die->sect_off),
518817b3 16773 objfile_name (objfile));
0971de02
TT
16774
16775 if (attr_form_is_section_offset (member_loc))
16776 dwarf2_complex_location_expr_complaint ();
16777 else if (attr_form_is_constant (member_loc)
16778 || attr_form_is_block (member_loc))
16779 {
16780 if (attr)
16781 mark_common_block_symbol_computed (sym, die, attr,
16782 member_loc, cu);
16783 }
16784 else
16785 dwarf2_complex_location_expr_complaint ();
16786 }
16787 }
c906108c 16788 }
4357ac6c
TT
16789
16790 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16791 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
16792 }
16793}
16794
0114d602 16795/* Create a type for a C++ namespace. */
d9fa45fe 16796
0114d602
DJ
16797static struct type *
16798read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 16799{
518817b3 16800 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16801 const char *previous_prefix, *name;
9219021c 16802 int is_anonymous;
0114d602
DJ
16803 struct type *type;
16804
16805 /* For extensions, reuse the type of the original namespace. */
16806 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16807 {
16808 struct die_info *ext_die;
16809 struct dwarf2_cu *ext_cu = cu;
9a619af0 16810
0114d602
DJ
16811 ext_die = dwarf2_extension (die, &ext_cu);
16812 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
16813
16814 /* EXT_CU may not be the same as CU.
02142a6c 16815 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
16816 return set_die_type (die, type, cu);
16817 }
9219021c 16818
e142c38c 16819 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
16820
16821 /* Now build the name of the current namespace. */
16822
0114d602
DJ
16823 previous_prefix = determine_prefix (die, cu);
16824 if (previous_prefix[0] != '\0')
16825 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 16826 previous_prefix, name, 0, cu);
0114d602
DJ
16827
16828 /* Create the type. */
19f392bc 16829 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602 16830
60531b24 16831 return set_die_type (die, type, cu);
0114d602
DJ
16832}
16833
22cee43f 16834/* Read a namespace scope. */
0114d602
DJ
16835
16836static void
16837read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16838{
518817b3 16839 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16840 int is_anonymous;
9219021c 16841
5c4e30ca
DC
16842 /* Add a symbol associated to this if we haven't seen the namespace
16843 before. Also, add a using directive if it's an anonymous
16844 namespace. */
9219021c 16845
f2f0e013 16846 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
16847 {
16848 struct type *type;
16849
0114d602 16850 type = read_type_die (die, cu);
e7c27a73 16851 new_symbol (die, type, cu);
5c4e30ca 16852
e8e80198 16853 namespace_name (die, &is_anonymous, cu);
5c4e30ca 16854 if (is_anonymous)
0114d602
DJ
16855 {
16856 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 16857
eb1e02fd 16858 std::vector<const char *> excludes;
804d2729 16859 add_using_directive (using_directives (cu),
22cee43f 16860 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 16861 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 16862 }
5c4e30ca 16863 }
9219021c 16864
639d11d3 16865 if (die->child != NULL)
d9fa45fe 16866 {
639d11d3 16867 struct die_info *child_die = die->child;
6e70227d 16868
d9fa45fe
DC
16869 while (child_die && child_die->tag)
16870 {
e7c27a73 16871 process_die (child_die, cu);
d9fa45fe
DC
16872 child_die = sibling_die (child_die);
16873 }
16874 }
38d518c9
EZ
16875}
16876
f55ee35c
JK
16877/* Read a Fortran module as type. This DIE can be only a declaration used for
16878 imported module. Still we need that type as local Fortran "use ... only"
16879 declaration imports depend on the created type in determine_prefix. */
16880
16881static struct type *
16882read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16883{
518817b3 16884 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15d034d0 16885 const char *module_name;
f55ee35c
JK
16886 struct type *type;
16887
16888 module_name = dwarf2_name (die, cu);
16889 if (!module_name)
b98664d3 16890 complaint (_("DW_TAG_module has no name, offset %s"),
9d8780f0 16891 sect_offset_str (die->sect_off));
19f392bc 16892 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c 16893
f55ee35c
JK
16894 return set_die_type (die, type, cu);
16895}
16896
5d7cb8df
JK
16897/* Read a Fortran module. */
16898
16899static void
16900read_module (struct die_info *die, struct dwarf2_cu *cu)
16901{
16902 struct die_info *child_die = die->child;
530e8392
KB
16903 struct type *type;
16904
16905 type = read_type_die (die, cu);
16906 new_symbol (die, type, cu);
5d7cb8df 16907
5d7cb8df
JK
16908 while (child_die && child_die->tag)
16909 {
16910 process_die (child_die, cu);
16911 child_die = sibling_die (child_die);
16912 }
16913}
16914
38d518c9
EZ
16915/* Return the name of the namespace represented by DIE. Set
16916 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16917 namespace. */
16918
16919static const char *
e142c38c 16920namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
16921{
16922 struct die_info *current_die;
16923 const char *name = NULL;
16924
16925 /* Loop through the extensions until we find a name. */
16926
16927 for (current_die = die;
16928 current_die != NULL;
f2f0e013 16929 current_die = dwarf2_extension (die, &cu))
38d518c9 16930 {
96553a0c
DE
16931 /* We don't use dwarf2_name here so that we can detect the absence
16932 of a name -> anonymous namespace. */
7d45c7c3 16933 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 16934
38d518c9
EZ
16935 if (name != NULL)
16936 break;
16937 }
16938
16939 /* Is it an anonymous namespace? */
16940
16941 *is_anonymous = (name == NULL);
16942 if (*is_anonymous)
2b1dbab0 16943 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
16944
16945 return name;
d9fa45fe
DC
16946}
16947
c906108c
SS
16948/* Extract all information from a DW_TAG_pointer_type DIE and add to
16949 the user defined type vector. */
16950
f792889a 16951static struct type *
e7c27a73 16952read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16953{
518817b3
SM
16954 struct gdbarch *gdbarch
16955 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
e7c27a73 16956 struct comp_unit_head *cu_header = &cu->header;
c906108c 16957 struct type *type;
8b2dbe47
KB
16958 struct attribute *attr_byte_size;
16959 struct attribute *attr_address_class;
16960 int byte_size, addr_class;
7e314c57
JK
16961 struct type *target_type;
16962
16963 target_type = die_type (die, cu);
c906108c 16964
7e314c57
JK
16965 /* The die_type call above may have already set the type for this DIE. */
16966 type = get_die_type (die, cu);
16967 if (type)
16968 return type;
16969
16970 type = lookup_pointer_type (target_type);
8b2dbe47 16971
e142c38c 16972 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
16973 if (attr_byte_size)
16974 byte_size = DW_UNSND (attr_byte_size);
c906108c 16975 else
8b2dbe47
KB
16976 byte_size = cu_header->addr_size;
16977
e142c38c 16978 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
16979 if (attr_address_class)
16980 addr_class = DW_UNSND (attr_address_class);
16981 else
16982 addr_class = DW_ADDR_none;
16983
2b4424c3
TT
16984 ULONGEST alignment = get_alignment (cu, die);
16985
16986 /* If the pointer size, alignment, or address class is different
16987 than the default, create a type variant marked as such and set
16988 the length accordingly. */
16989 if (TYPE_LENGTH (type) != byte_size
16990 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16991 && alignment != TYPE_RAW_ALIGN (type))
16992 || addr_class != DW_ADDR_none)
c906108c 16993 {
5e2b427d 16994 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
16995 {
16996 int type_flags;
16997
849957d9 16998 type_flags = gdbarch_address_class_type_flags
5e2b427d 16999 (gdbarch, byte_size, addr_class);
876cecd0
TT
17000 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17001 == 0);
8b2dbe47
KB
17002 type = make_type_with_address_space (type, type_flags);
17003 }
17004 else if (TYPE_LENGTH (type) != byte_size)
17005 {
b98664d3 17006 complaint (_("invalid pointer size %d"), byte_size);
8b2dbe47 17007 }
2b4424c3
TT
17008 else if (TYPE_RAW_ALIGN (type) != alignment)
17009 {
b98664d3 17010 complaint (_("Invalid DW_AT_alignment"
2b4424c3
TT
17011 " - DIE at %s [in module %s]"),
17012 sect_offset_str (die->sect_off),
17013 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17014 }
6e70227d 17015 else
9a619af0
MS
17016 {
17017 /* Should we also complain about unhandled address classes? */
17018 }
c906108c 17019 }
8b2dbe47
KB
17020
17021 TYPE_LENGTH (type) = byte_size;
2b4424c3 17022 set_type_align (type, alignment);
f792889a 17023 return set_die_type (die, type, cu);
c906108c
SS
17024}
17025
17026/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17027 the user defined type vector. */
17028
f792889a 17029static struct type *
e7c27a73 17030read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
17031{
17032 struct type *type;
17033 struct type *to_type;
17034 struct type *domain;
17035
e7c27a73
DJ
17036 to_type = die_type (die, cu);
17037 domain = die_containing_type (die, cu);
0d5de010 17038
7e314c57
JK
17039 /* The calls above may have already set the type for this DIE. */
17040 type = get_die_type (die, cu);
17041 if (type)
17042 return type;
17043
0d5de010
DJ
17044 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17045 type = lookup_methodptr_type (to_type);
7078baeb
TT
17046 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17047 {
518817b3
SM
17048 struct type *new_type
17049 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
7078baeb
TT
17050
17051 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17052 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17053 TYPE_VARARGS (to_type));
17054 type = lookup_methodptr_type (new_type);
17055 }
0d5de010
DJ
17056 else
17057 type = lookup_memberptr_type (to_type, domain);
c906108c 17058
f792889a 17059 return set_die_type (die, type, cu);
c906108c
SS
17060}
17061
4297a3f0 17062/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
17063 the user defined type vector. */
17064
f792889a 17065static struct type *
4297a3f0
AV
17066read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17067 enum type_code refcode)
c906108c 17068{
e7c27a73 17069 struct comp_unit_head *cu_header = &cu->header;
7e314c57 17070 struct type *type, *target_type;
c906108c
SS
17071 struct attribute *attr;
17072
4297a3f0
AV
17073 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17074
7e314c57
JK
17075 target_type = die_type (die, cu);
17076
17077 /* The die_type call above may have already set the type for this DIE. */
17078 type = get_die_type (die, cu);
17079 if (type)
17080 return type;
17081
4297a3f0 17082 type = lookup_reference_type (target_type, refcode);
e142c38c 17083 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17084 if (attr)
17085 {
17086 TYPE_LENGTH (type) = DW_UNSND (attr);
17087 }
17088 else
17089 {
107d2387 17090 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 17091 }
2b4424c3 17092 maybe_set_alignment (cu, die, type);
f792889a 17093 return set_die_type (die, type, cu);
c906108c
SS
17094}
17095
cf363f18
MW
17096/* Add the given cv-qualifiers to the element type of the array. GCC
17097 outputs DWARF type qualifiers that apply to an array, not the
17098 element type. But GDB relies on the array element type to carry
17099 the cv-qualifiers. This mimics section 6.7.3 of the C99
17100 specification. */
17101
17102static struct type *
17103add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17104 struct type *base_type, int cnst, int voltl)
17105{
17106 struct type *el_type, *inner_array;
17107
17108 base_type = copy_type (base_type);
17109 inner_array = base_type;
17110
17111 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17112 {
17113 TYPE_TARGET_TYPE (inner_array) =
17114 copy_type (TYPE_TARGET_TYPE (inner_array));
17115 inner_array = TYPE_TARGET_TYPE (inner_array);
17116 }
17117
17118 el_type = TYPE_TARGET_TYPE (inner_array);
17119 cnst |= TYPE_CONST (el_type);
17120 voltl |= TYPE_VOLATILE (el_type);
17121 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17122
17123 return set_die_type (die, base_type, cu);
17124}
17125
f792889a 17126static struct type *
e7c27a73 17127read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17128{
f792889a 17129 struct type *base_type, *cv_type;
c906108c 17130
e7c27a73 17131 base_type = die_type (die, cu);
7e314c57
JK
17132
17133 /* The die_type call above may have already set the type for this DIE. */
17134 cv_type = get_die_type (die, cu);
17135 if (cv_type)
17136 return cv_type;
17137
2f608a3a
KW
17138 /* In case the const qualifier is applied to an array type, the element type
17139 is so qualified, not the array type (section 6.7.3 of C99). */
17140 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 17141 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 17142
f792889a
DJ
17143 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17144 return set_die_type (die, cv_type, cu);
c906108c
SS
17145}
17146
f792889a 17147static struct type *
e7c27a73 17148read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17149{
f792889a 17150 struct type *base_type, *cv_type;
c906108c 17151
e7c27a73 17152 base_type = die_type (die, cu);
7e314c57
JK
17153
17154 /* The die_type call above may have already set the type for this DIE. */
17155 cv_type = get_die_type (die, cu);
17156 if (cv_type)
17157 return cv_type;
17158
cf363f18
MW
17159 /* In case the volatile qualifier is applied to an array type, the
17160 element type is so qualified, not the array type (section 6.7.3
17161 of C99). */
17162 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17163 return add_array_cv_type (die, cu, base_type, 0, 1);
17164
f792889a
DJ
17165 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17166 return set_die_type (die, cv_type, cu);
c906108c
SS
17167}
17168
06d66ee9
TT
17169/* Handle DW_TAG_restrict_type. */
17170
17171static struct type *
17172read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17173{
17174 struct type *base_type, *cv_type;
17175
17176 base_type = die_type (die, cu);
17177
17178 /* The die_type call above may have already set the type for this DIE. */
17179 cv_type = get_die_type (die, cu);
17180 if (cv_type)
17181 return cv_type;
17182
17183 cv_type = make_restrict_type (base_type);
17184 return set_die_type (die, cv_type, cu);
17185}
17186
a2c2acaf
MW
17187/* Handle DW_TAG_atomic_type. */
17188
17189static struct type *
17190read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17191{
17192 struct type *base_type, *cv_type;
17193
17194 base_type = die_type (die, cu);
17195
17196 /* The die_type call above may have already set the type for this DIE. */
17197 cv_type = get_die_type (die, cu);
17198 if (cv_type)
17199 return cv_type;
17200
17201 cv_type = make_atomic_type (base_type);
17202 return set_die_type (die, cv_type, cu);
17203}
17204
c906108c
SS
17205/* Extract all information from a DW_TAG_string_type DIE and add to
17206 the user defined type vector. It isn't really a user defined type,
17207 but it behaves like one, with other DIE's using an AT_user_def_type
17208 attribute to reference it. */
17209
f792889a 17210static struct type *
e7c27a73 17211read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17212{
518817b3 17213 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3b7538c0 17214 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
17215 struct type *type, *range_type, *index_type, *char_type;
17216 struct attribute *attr;
17217 unsigned int length;
17218
e142c38c 17219 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
17220 if (attr)
17221 {
17222 length = DW_UNSND (attr);
17223 }
17224 else
17225 {
0963b4bd 17226 /* Check for the DW_AT_byte_size attribute. */
e142c38c 17227 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
17228 if (attr)
17229 {
17230 length = DW_UNSND (attr);
17231 }
17232 else
17233 {
17234 length = 1;
17235 }
c906108c 17236 }
6ccb9162 17237
46bf5051 17238 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 17239 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
17240 char_type = language_string_char_type (cu->language_defn, gdbarch);
17241 type = create_string_type (NULL, char_type, range_type);
6ccb9162 17242
f792889a 17243 return set_die_type (die, type, cu);
c906108c
SS
17244}
17245
4d804846
JB
17246/* Assuming that DIE corresponds to a function, returns nonzero
17247 if the function is prototyped. */
17248
17249static int
17250prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17251{
17252 struct attribute *attr;
17253
17254 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17255 if (attr && (DW_UNSND (attr) != 0))
17256 return 1;
17257
17258 /* The DWARF standard implies that the DW_AT_prototyped attribute
17259 is only meaninful for C, but the concept also extends to other
17260 languages that allow unprototyped functions (Eg: Objective C).
17261 For all other languages, assume that functions are always
17262 prototyped. */
17263 if (cu->language != language_c
17264 && cu->language != language_objc
17265 && cu->language != language_opencl)
17266 return 1;
17267
17268 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17269 prototyped and unprototyped functions; default to prototyped,
17270 since that is more common in modern code (and RealView warns
17271 about unprototyped functions). */
17272 if (producer_is_realview (cu->producer))
17273 return 1;
17274
17275 return 0;
17276}
17277
c906108c
SS
17278/* Handle DIES due to C code like:
17279
17280 struct foo
c5aa993b
JM
17281 {
17282 int (*funcp)(int a, long l);
17283 int b;
17284 };
c906108c 17285
0963b4bd 17286 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 17287
f792889a 17288static struct type *
e7c27a73 17289read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17290{
518817b3 17291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0963b4bd
MS
17292 struct type *type; /* Type that this function returns. */
17293 struct type *ftype; /* Function that returns above type. */
c906108c
SS
17294 struct attribute *attr;
17295
e7c27a73 17296 type = die_type (die, cu);
7e314c57
JK
17297
17298 /* The die_type call above may have already set the type for this DIE. */
17299 ftype = get_die_type (die, cu);
17300 if (ftype)
17301 return ftype;
17302
0c8b41f1 17303 ftype = lookup_function_type (type);
c906108c 17304
4d804846 17305 if (prototyped_function_p (die, cu))
a6c727b2 17306 TYPE_PROTOTYPED (ftype) = 1;
c906108c 17307
c055b101
CV
17308 /* Store the calling convention in the type if it's available in
17309 the subroutine die. Otherwise set the calling convention to
17310 the default value DW_CC_normal. */
17311 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
17312 if (attr)
17313 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17314 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17315 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17316 else
17317 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 17318
743649fd
MW
17319 /* Record whether the function returns normally to its caller or not
17320 if the DWARF producer set that information. */
17321 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17322 if (attr && (DW_UNSND (attr) != 0))
17323 TYPE_NO_RETURN (ftype) = 1;
17324
76c10ea2
GM
17325 /* We need to add the subroutine type to the die immediately so
17326 we don't infinitely recurse when dealing with parameters
0963b4bd 17327 declared as the same subroutine type. */
76c10ea2 17328 set_die_type (die, ftype, cu);
6e70227d 17329
639d11d3 17330 if (die->child != NULL)
c906108c 17331 {
bb5ed363 17332 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 17333 struct die_info *child_die;
8072405b 17334 int nparams, iparams;
c906108c
SS
17335
17336 /* Count the number of parameters.
17337 FIXME: GDB currently ignores vararg functions, but knows about
17338 vararg member functions. */
8072405b 17339 nparams = 0;
639d11d3 17340 child_die = die->child;
c906108c
SS
17341 while (child_die && child_die->tag)
17342 {
17343 if (child_die->tag == DW_TAG_formal_parameter)
17344 nparams++;
17345 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 17346 TYPE_VARARGS (ftype) = 1;
c906108c
SS
17347 child_die = sibling_die (child_die);
17348 }
17349
17350 /* Allocate storage for parameters and fill them in. */
17351 TYPE_NFIELDS (ftype) = nparams;
17352 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 17353 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 17354
8072405b
JK
17355 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17356 even if we error out during the parameters reading below. */
17357 for (iparams = 0; iparams < nparams; iparams++)
17358 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17359
17360 iparams = 0;
639d11d3 17361 child_die = die->child;
c906108c
SS
17362 while (child_die && child_die->tag)
17363 {
17364 if (child_die->tag == DW_TAG_formal_parameter)
17365 {
3ce3b1ba
PA
17366 struct type *arg_type;
17367
17368 /* DWARF version 2 has no clean way to discern C++
17369 static and non-static member functions. G++ helps
17370 GDB by marking the first parameter for non-static
17371 member functions (which is the this pointer) as
17372 artificial. We pass this information to
17373 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17374
17375 DWARF version 3 added DW_AT_object_pointer, which GCC
17376 4.5 does not yet generate. */
e142c38c 17377 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
17378 if (attr)
17379 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17380 else
9c37b5ae 17381 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
17382 arg_type = die_type (child_die, cu);
17383
17384 /* RealView does not mark THIS as const, which the testsuite
17385 expects. GCC marks THIS as const in method definitions,
17386 but not in the class specifications (GCC PR 43053). */
17387 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17388 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17389 {
17390 int is_this = 0;
17391 struct dwarf2_cu *arg_cu = cu;
17392 const char *name = dwarf2_name (child_die, cu);
17393
17394 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17395 if (attr)
17396 {
17397 /* If the compiler emits this, use it. */
17398 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17399 is_this = 1;
17400 }
17401 else if (name && strcmp (name, "this") == 0)
17402 /* Function definitions will have the argument names. */
17403 is_this = 1;
17404 else if (name == NULL && iparams == 0)
17405 /* Declarations may not have the names, so like
17406 elsewhere in GDB, assume an artificial first
17407 argument is "this". */
17408 is_this = 1;
17409
17410 if (is_this)
17411 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17412 arg_type, 0);
17413 }
17414
17415 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
17416 iparams++;
17417 }
17418 child_die = sibling_die (child_die);
17419 }
17420 }
17421
76c10ea2 17422 return ftype;
c906108c
SS
17423}
17424
f792889a 17425static struct type *
e7c27a73 17426read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17427{
518817b3 17428 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 17429 const char *name = NULL;
3c8e0968 17430 struct type *this_type, *target_type;
c906108c 17431
94af9270 17432 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
17433 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17434 TYPE_TARGET_STUB (this_type) = 1;
f792889a 17435 set_die_type (die, this_type, cu);
3c8e0968
DE
17436 target_type = die_type (die, cu);
17437 if (target_type != this_type)
17438 TYPE_TARGET_TYPE (this_type) = target_type;
17439 else
17440 {
17441 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17442 spec and cause infinite loops in GDB. */
b98664d3 17443 complaint (_("Self-referential DW_TAG_typedef "
9d8780f0
SM
17444 "- DIE at %s [in module %s]"),
17445 sect_offset_str (die->sect_off), objfile_name (objfile));
3c8e0968
DE
17446 TYPE_TARGET_TYPE (this_type) = NULL;
17447 }
f792889a 17448 return this_type;
c906108c
SS
17449}
17450
9b790ce7
UW
17451/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17452 (which may be different from NAME) to the architecture back-end to allow
17453 it to guess the correct format if necessary. */
17454
17455static struct type *
17456dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17457 const char *name_hint)
17458{
17459 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17460 const struct floatformat **format;
17461 struct type *type;
17462
17463 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17464 if (format)
17465 type = init_float_type (objfile, bits, name, format);
17466 else
77b7c781 17467 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
9b790ce7
UW
17468
17469 return type;
17470}
17471
c906108c
SS
17472/* Find a representation of a given base type and install
17473 it in the TYPE field of the die. */
17474
f792889a 17475static struct type *
e7c27a73 17476read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17477{
518817b3 17478 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
17479 struct type *type;
17480 struct attribute *attr;
19f392bc 17481 int encoding = 0, bits = 0;
15d034d0 17482 const char *name;
c906108c 17483
e142c38c 17484 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
17485 if (attr)
17486 {
17487 encoding = DW_UNSND (attr);
17488 }
e142c38c 17489 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17490 if (attr)
17491 {
19f392bc 17492 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 17493 }
39cbfefa 17494 name = dwarf2_name (die, cu);
6ccb9162 17495 if (!name)
c906108c 17496 {
b98664d3 17497 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
c906108c 17498 }
6ccb9162
UW
17499
17500 switch (encoding)
c906108c 17501 {
6ccb9162
UW
17502 case DW_ATE_address:
17503 /* Turn DW_ATE_address into a void * pointer. */
77b7c781 17504 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
19f392bc 17505 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
17506 break;
17507 case DW_ATE_boolean:
19f392bc 17508 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
17509 break;
17510 case DW_ATE_complex_float:
9b790ce7 17511 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 17512 type = init_complex_type (objfile, name, type);
6ccb9162
UW
17513 break;
17514 case DW_ATE_decimal_float:
19f392bc 17515 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
17516 break;
17517 case DW_ATE_float:
9b790ce7 17518 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
17519 break;
17520 case DW_ATE_signed:
19f392bc 17521 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
17522 break;
17523 case DW_ATE_unsigned:
3b2b8fea
TT
17524 if (cu->language == language_fortran
17525 && name
61012eef 17526 && startswith (name, "character("))
19f392bc
UW
17527 type = init_character_type (objfile, bits, 1, name);
17528 else
17529 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
17530 break;
17531 case DW_ATE_signed_char:
6e70227d 17532 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
17533 || cu->language == language_pascal
17534 || cu->language == language_fortran)
19f392bc
UW
17535 type = init_character_type (objfile, bits, 0, name);
17536 else
17537 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
17538 break;
17539 case DW_ATE_unsigned_char:
868a0084 17540 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 17541 || cu->language == language_pascal
c44af4eb
TT
17542 || cu->language == language_fortran
17543 || cu->language == language_rust)
19f392bc
UW
17544 type = init_character_type (objfile, bits, 1, name);
17545 else
17546 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 17547 break;
75079b2b 17548 case DW_ATE_UTF:
53e710ac
PA
17549 {
17550 gdbarch *arch = get_objfile_arch (objfile);
17551
17552 if (bits == 16)
17553 type = builtin_type (arch)->builtin_char16;
17554 else if (bits == 32)
17555 type = builtin_type (arch)->builtin_char32;
17556 else
17557 {
b98664d3 17558 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
53e710ac
PA
17559 bits);
17560 type = init_integer_type (objfile, bits, 1, name);
17561 }
17562 return set_die_type (die, type, cu);
17563 }
75079b2b
TT
17564 break;
17565
6ccb9162 17566 default:
b98664d3 17567 complaint (_("unsupported DW_AT_encoding: '%s'"),
6ccb9162 17568 dwarf_type_encoding_name (encoding));
77b7c781 17569 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
6ccb9162 17570 break;
c906108c 17571 }
6ccb9162 17572
0114d602 17573 if (name && strcmp (name, "char") == 0)
876cecd0 17574 TYPE_NOSIGN (type) = 1;
0114d602 17575
2b4424c3
TT
17576 maybe_set_alignment (cu, die, type);
17577
f792889a 17578 return set_die_type (die, type, cu);
c906108c
SS
17579}
17580
80180f79
SA
17581/* Parse dwarf attribute if it's a block, reference or constant and put the
17582 resulting value of the attribute into struct bound_prop.
17583 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17584
17585static int
17586attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17587 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17588{
17589 struct dwarf2_property_baton *baton;
518817b3
SM
17590 struct obstack *obstack
17591 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
80180f79
SA
17592
17593 if (attr == NULL || prop == NULL)
17594 return 0;
17595
17596 if (attr_form_is_block (attr))
17597 {
8d749320 17598 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
17599 baton->referenced_type = NULL;
17600 baton->locexpr.per_cu = cu->per_cu;
17601 baton->locexpr.size = DW_BLOCK (attr)->size;
17602 baton->locexpr.data = DW_BLOCK (attr)->data;
17603 prop->data.baton = baton;
17604 prop->kind = PROP_LOCEXPR;
17605 gdb_assert (prop->data.baton != NULL);
17606 }
17607 else if (attr_form_is_ref (attr))
17608 {
17609 struct dwarf2_cu *target_cu = cu;
17610 struct die_info *target_die;
17611 struct attribute *target_attr;
17612
17613 target_die = follow_die_ref (die, attr, &target_cu);
17614 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
17615 if (target_attr == NULL)
17616 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17617 target_cu);
80180f79
SA
17618 if (target_attr == NULL)
17619 return 0;
17620
df25ebbd 17621 switch (target_attr->name)
80180f79 17622 {
df25ebbd
JB
17623 case DW_AT_location:
17624 if (attr_form_is_section_offset (target_attr))
17625 {
8d749320 17626 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
17627 baton->referenced_type = die_type (target_die, target_cu);
17628 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17629 prop->data.baton = baton;
17630 prop->kind = PROP_LOCLIST;
17631 gdb_assert (prop->data.baton != NULL);
17632 }
17633 else if (attr_form_is_block (target_attr))
17634 {
8d749320 17635 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
17636 baton->referenced_type = die_type (target_die, target_cu);
17637 baton->locexpr.per_cu = cu->per_cu;
17638 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17639 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17640 prop->data.baton = baton;
17641 prop->kind = PROP_LOCEXPR;
17642 gdb_assert (prop->data.baton != NULL);
17643 }
17644 else
17645 {
17646 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17647 "dynamic property");
17648 return 0;
17649 }
17650 break;
17651 case DW_AT_data_member_location:
17652 {
17653 LONGEST offset;
17654
17655 if (!handle_data_member_location (target_die, target_cu,
17656 &offset))
17657 return 0;
17658
8d749320 17659 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
17660 baton->referenced_type = read_type_die (target_die->parent,
17661 target_cu);
df25ebbd
JB
17662 baton->offset_info.offset = offset;
17663 baton->offset_info.type = die_type (target_die, target_cu);
17664 prop->data.baton = baton;
17665 prop->kind = PROP_ADDR_OFFSET;
17666 break;
17667 }
80180f79
SA
17668 }
17669 }
17670 else if (attr_form_is_constant (attr))
17671 {
17672 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17673 prop->kind = PROP_CONST;
17674 }
17675 else
17676 {
17677 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17678 dwarf2_name (die, cu));
17679 return 0;
17680 }
17681
17682 return 1;
17683}
17684
a02abb62
JB
17685/* Read the given DW_AT_subrange DIE. */
17686
f792889a 17687static struct type *
a02abb62
JB
17688read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17689{
4c9ad8c2 17690 struct type *base_type, *orig_base_type;
a02abb62
JB
17691 struct type *range_type;
17692 struct attribute *attr;
729efb13 17693 struct dynamic_prop low, high;
4fae6e18 17694 int low_default_is_valid;
c451ebe5 17695 int high_bound_is_count = 0;
15d034d0 17696 const char *name;
43bbcdc2 17697 LONGEST negative_mask;
e77813c8 17698
4c9ad8c2
TT
17699 orig_base_type = die_type (die, cu);
17700 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17701 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17702 creating the range type, but we use the result of check_typedef
17703 when examining properties of the type. */
17704 base_type = check_typedef (orig_base_type);
a02abb62 17705
7e314c57
JK
17706 /* The die_type call above may have already set the type for this DIE. */
17707 range_type = get_die_type (die, cu);
17708 if (range_type)
17709 return range_type;
17710
729efb13
SA
17711 low.kind = PROP_CONST;
17712 high.kind = PROP_CONST;
17713 high.data.const_val = 0;
17714
4fae6e18
JK
17715 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17716 omitting DW_AT_lower_bound. */
17717 switch (cu->language)
6e70227d 17718 {
4fae6e18
JK
17719 case language_c:
17720 case language_cplus:
729efb13 17721 low.data.const_val = 0;
4fae6e18
JK
17722 low_default_is_valid = 1;
17723 break;
17724 case language_fortran:
729efb13 17725 low.data.const_val = 1;
4fae6e18
JK
17726 low_default_is_valid = 1;
17727 break;
17728 case language_d:
4fae6e18 17729 case language_objc:
c44af4eb 17730 case language_rust:
729efb13 17731 low.data.const_val = 0;
4fae6e18
JK
17732 low_default_is_valid = (cu->header.version >= 4);
17733 break;
17734 case language_ada:
17735 case language_m2:
17736 case language_pascal:
729efb13 17737 low.data.const_val = 1;
4fae6e18
JK
17738 low_default_is_valid = (cu->header.version >= 4);
17739 break;
17740 default:
729efb13 17741 low.data.const_val = 0;
4fae6e18
JK
17742 low_default_is_valid = 0;
17743 break;
a02abb62
JB
17744 }
17745
e142c38c 17746 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 17747 if (attr)
11c1ba78 17748 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18 17749 else if (!low_default_is_valid)
b98664d3 17750 complaint (_("Missing DW_AT_lower_bound "
9d8780f0
SM
17751 "- DIE at %s [in module %s]"),
17752 sect_offset_str (die->sect_off),
518817b3 17753 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a02abb62 17754
506f5c41
TV
17755 struct attribute *attr_ub, *attr_count;
17756 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 17757 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8 17758 {
506f5c41 17759 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 17760 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 17761 {
c451ebe5
SA
17762 /* If bounds are constant do the final calculation here. */
17763 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17764 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17765 else
17766 high_bound_is_count = 1;
c2ff108b 17767 }
506f5c41
TV
17768 else
17769 {
17770 if (attr_ub != NULL)
17771 complaint (_("Unresolved DW_AT_upper_bound "
17772 "- DIE at %s [in module %s]"),
17773 sect_offset_str (die->sect_off),
17774 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17775 if (attr_count != NULL)
17776 complaint (_("Unresolved DW_AT_count "
17777 "- DIE at %s [in module %s]"),
17778 sect_offset_str (die->sect_off),
17779 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17780 }
17781
e77813c8
PM
17782 }
17783
17784 /* Dwarf-2 specifications explicitly allows to create subrange types
17785 without specifying a base type.
17786 In that case, the base type must be set to the type of
17787 the lower bound, upper bound or count, in that order, if any of these
17788 three attributes references an object that has a type.
17789 If no base type is found, the Dwarf-2 specifications say that
17790 a signed integer type of size equal to the size of an address should
17791 be used.
17792 For the following C code: `extern char gdb_int [];'
17793 GCC produces an empty range DIE.
17794 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 17795 high bound or count are not yet handled by this code. */
e77813c8
PM
17796 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17797 {
518817b3 17798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e77813c8
PM
17799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17800 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17801 struct type *int_type = objfile_type (objfile)->builtin_int;
17802
17803 /* Test "int", "long int", and "long long int" objfile types,
17804 and select the first one having a size above or equal to the
17805 architecture address size. */
17806 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17807 base_type = int_type;
17808 else
17809 {
17810 int_type = objfile_type (objfile)->builtin_long;
17811 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17812 base_type = int_type;
17813 else
17814 {
17815 int_type = objfile_type (objfile)->builtin_long_long;
17816 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17817 base_type = int_type;
17818 }
17819 }
17820 }
a02abb62 17821
dbb9c2b1
JB
17822 /* Normally, the DWARF producers are expected to use a signed
17823 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17824 But this is unfortunately not always the case, as witnessed
17825 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17826 is used instead. To work around that ambiguity, we treat
17827 the bounds as signed, and thus sign-extend their values, when
17828 the base type is signed. */
6e70227d 17829 negative_mask =
66c6502d 17830 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
17831 if (low.kind == PROP_CONST
17832 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17833 low.data.const_val |= negative_mask;
17834 if (high.kind == PROP_CONST
17835 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17836 high.data.const_val |= negative_mask;
43bbcdc2 17837
729efb13 17838 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 17839
c451ebe5
SA
17840 if (high_bound_is_count)
17841 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17842
c2ff108b
JK
17843 /* Ada expects an empty array on no boundary attributes. */
17844 if (attr == NULL && cu->language != language_ada)
729efb13 17845 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 17846
39cbfefa
DJ
17847 name = dwarf2_name (die, cu);
17848 if (name)
17849 TYPE_NAME (range_type) = name;
6e70227d 17850
e142c38c 17851 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
17852 if (attr)
17853 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17854
2b4424c3
TT
17855 maybe_set_alignment (cu, die, range_type);
17856
7e314c57
JK
17857 set_die_type (die, range_type, cu);
17858
17859 /* set_die_type should be already done. */
b4ba55a1
JB
17860 set_descriptive_type (range_type, die, cu);
17861
7e314c57 17862 return range_type;
a02abb62 17863}
6e70227d 17864
f792889a 17865static struct type *
81a17f79
JB
17866read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17867{
17868 struct type *type;
81a17f79 17869
518817b3
SM
17870 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17871 NULL);
0114d602 17872 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 17873
74a2f8ff
JB
17874 /* In Ada, an unspecified type is typically used when the description
17875 of the type is defered to a different unit. When encountering
17876 such a type, we treat it as a stub, and try to resolve it later on,
17877 when needed. */
17878 if (cu->language == language_ada)
17879 TYPE_STUB (type) = 1;
17880
f792889a 17881 return set_die_type (die, type, cu);
81a17f79 17882}
a02abb62 17883
639d11d3
DC
17884/* Read a single die and all its descendents. Set the die's sibling
17885 field to NULL; set other fields in the die correctly, and set all
17886 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17887 location of the info_ptr after reading all of those dies. PARENT
17888 is the parent of the die in question. */
17889
17890static struct die_info *
dee91e82 17891read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
17892 const gdb_byte *info_ptr,
17893 const gdb_byte **new_info_ptr,
dee91e82 17894 struct die_info *parent)
639d11d3
DC
17895{
17896 struct die_info *die;
d521ce57 17897 const gdb_byte *cur_ptr;
639d11d3
DC
17898 int has_children;
17899
bf6af496 17900 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
17901 if (die == NULL)
17902 {
17903 *new_info_ptr = cur_ptr;
17904 return NULL;
17905 }
93311388 17906 store_in_ref_table (die, reader->cu);
639d11d3
DC
17907
17908 if (has_children)
bf6af496 17909 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
17910 else
17911 {
17912 die->child = NULL;
17913 *new_info_ptr = cur_ptr;
17914 }
17915
17916 die->sibling = NULL;
17917 die->parent = parent;
17918 return die;
17919}
17920
17921/* Read a die, all of its descendents, and all of its siblings; set
17922 all of the fields of all of the dies correctly. Arguments are as
17923 in read_die_and_children. */
17924
17925static struct die_info *
bf6af496 17926read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
17927 const gdb_byte *info_ptr,
17928 const gdb_byte **new_info_ptr,
bf6af496 17929 struct die_info *parent)
639d11d3
DC
17930{
17931 struct die_info *first_die, *last_sibling;
d521ce57 17932 const gdb_byte *cur_ptr;
639d11d3 17933
c906108c 17934 cur_ptr = info_ptr;
639d11d3
DC
17935 first_die = last_sibling = NULL;
17936
17937 while (1)
c906108c 17938 {
639d11d3 17939 struct die_info *die
dee91e82 17940 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 17941
1d325ec1 17942 if (die == NULL)
c906108c 17943 {
639d11d3
DC
17944 *new_info_ptr = cur_ptr;
17945 return first_die;
c906108c 17946 }
1d325ec1
DJ
17947
17948 if (!first_die)
17949 first_die = die;
c906108c 17950 else
1d325ec1
DJ
17951 last_sibling->sibling = die;
17952
17953 last_sibling = die;
c906108c 17954 }
c906108c
SS
17955}
17956
bf6af496
DE
17957/* Read a die, all of its descendents, and all of its siblings; set
17958 all of the fields of all of the dies correctly. Arguments are as
17959 in read_die_and_children.
17960 This the main entry point for reading a DIE and all its children. */
17961
17962static struct die_info *
17963read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
17964 const gdb_byte *info_ptr,
17965 const gdb_byte **new_info_ptr,
bf6af496
DE
17966 struct die_info *parent)
17967{
17968 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17969 new_info_ptr, parent);
17970
b4f54984 17971 if (dwarf_die_debug)
bf6af496
DE
17972 {
17973 fprintf_unfiltered (gdb_stdlog,
17974 "Read die from %s@0x%x of %s:\n",
a32a8923 17975 get_section_name (reader->die_section),
bf6af496
DE
17976 (unsigned) (info_ptr - reader->die_section->buffer),
17977 bfd_get_filename (reader->abfd));
b4f54984 17978 dump_die (die, dwarf_die_debug);
bf6af496
DE
17979 }
17980
17981 return die;
17982}
17983
3019eac3
DE
17984/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17985 attributes.
17986 The caller is responsible for filling in the extra attributes
17987 and updating (*DIEP)->num_attrs.
17988 Set DIEP to point to a newly allocated die with its information,
17989 except for its child, sibling, and parent fields.
17990 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 17991
d521ce57 17992static const gdb_byte *
3019eac3 17993read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 17994 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 17995 int *has_children, int num_extra_attrs)
93311388 17996{
b64f50a1 17997 unsigned int abbrev_number, bytes_read, i;
93311388
DE
17998 struct abbrev_info *abbrev;
17999 struct die_info *die;
18000 struct dwarf2_cu *cu = reader->cu;
18001 bfd *abfd = reader->abfd;
18002
9c541725 18003 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
18004 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18005 info_ptr += bytes_read;
18006 if (!abbrev_number)
18007 {
18008 *diep = NULL;
18009 *has_children = 0;
18010 return info_ptr;
18011 }
18012
685af9cd 18013 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
93311388 18014 if (!abbrev)
348e048f
DE
18015 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18016 abbrev_number,
18017 bfd_get_filename (abfd));
18018
3019eac3 18019 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 18020 die->sect_off = sect_off;
93311388
DE
18021 die->tag = abbrev->tag;
18022 die->abbrev = abbrev_number;
18023
3019eac3
DE
18024 /* Make the result usable.
18025 The caller needs to update num_attrs after adding the extra
18026 attributes. */
93311388
DE
18027 die->num_attrs = abbrev->num_attrs;
18028
18029 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
18030 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18031 info_ptr);
93311388
DE
18032
18033 *diep = die;
18034 *has_children = abbrev->has_children;
18035 return info_ptr;
18036}
18037
3019eac3
DE
18038/* Read a die and all its attributes.
18039 Set DIEP to point to a newly allocated die with its information,
18040 except for its child, sibling, and parent fields.
18041 Set HAS_CHILDREN to tell whether the die has children or not. */
18042
d521ce57 18043static const gdb_byte *
3019eac3 18044read_full_die (const struct die_reader_specs *reader,
d521ce57 18045 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
18046 int *has_children)
18047{
d521ce57 18048 const gdb_byte *result;
bf6af496
DE
18049
18050 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18051
b4f54984 18052 if (dwarf_die_debug)
bf6af496
DE
18053 {
18054 fprintf_unfiltered (gdb_stdlog,
18055 "Read die from %s@0x%x of %s:\n",
a32a8923 18056 get_section_name (reader->die_section),
bf6af496
DE
18057 (unsigned) (info_ptr - reader->die_section->buffer),
18058 bfd_get_filename (reader->abfd));
b4f54984 18059 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
18060 }
18061
18062 return result;
3019eac3 18063}
433df2d4
DE
18064\f
18065/* Abbreviation tables.
3019eac3 18066
433df2d4 18067 In DWARF version 2, the description of the debugging information is
c906108c
SS
18068 stored in a separate .debug_abbrev section. Before we read any
18069 dies from a section we read in all abbreviations and install them
433df2d4
DE
18070 in a hash table. */
18071
18072/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18073
685af9cd
TT
18074struct abbrev_info *
18075abbrev_table::alloc_abbrev ()
433df2d4
DE
18076{
18077 struct abbrev_info *abbrev;
18078
685af9cd 18079 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
433df2d4 18080 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 18081
433df2d4
DE
18082 return abbrev;
18083}
18084
18085/* Add an abbreviation to the table. */
c906108c 18086
685af9cd
TT
18087void
18088abbrev_table::add_abbrev (unsigned int abbrev_number,
18089 struct abbrev_info *abbrev)
433df2d4
DE
18090{
18091 unsigned int hash_number;
18092
18093 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768
YQ
18094 abbrev->next = m_abbrevs[hash_number];
18095 m_abbrevs[hash_number] = abbrev;
433df2d4 18096}
dee91e82 18097
433df2d4
DE
18098/* Look up an abbrev in the table.
18099 Returns NULL if the abbrev is not found. */
18100
685af9cd
TT
18101struct abbrev_info *
18102abbrev_table::lookup_abbrev (unsigned int abbrev_number)
c906108c 18103{
433df2d4
DE
18104 unsigned int hash_number;
18105 struct abbrev_info *abbrev;
18106
18107 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768 18108 abbrev = m_abbrevs[hash_number];
433df2d4
DE
18109
18110 while (abbrev)
18111 {
18112 if (abbrev->number == abbrev_number)
18113 return abbrev;
18114 abbrev = abbrev->next;
18115 }
18116 return NULL;
18117}
18118
18119/* Read in an abbrev table. */
18120
685af9cd 18121static abbrev_table_up
ed2dc618
SM
18122abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18123 struct dwarf2_section_info *section,
9c541725 18124 sect_offset sect_off)
433df2d4
DE
18125{
18126 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 18127 bfd *abfd = get_section_bfd_owner (section);
d521ce57 18128 const gdb_byte *abbrev_ptr;
c906108c
SS
18129 struct abbrev_info *cur_abbrev;
18130 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 18131 unsigned int abbrev_form;
f3dd6933
DJ
18132 struct attr_abbrev *cur_attrs;
18133 unsigned int allocated_attrs;
c906108c 18134
685af9cd 18135 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
c906108c 18136
433df2d4 18137 dwarf2_read_section (objfile, section);
9c541725 18138 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
18139 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18140 abbrev_ptr += bytes_read;
18141
f3dd6933 18142 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 18143 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 18144
0963b4bd 18145 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
18146 while (abbrev_number)
18147 {
685af9cd 18148 cur_abbrev = abbrev_table->alloc_abbrev ();
c906108c
SS
18149
18150 /* read in abbrev header */
18151 cur_abbrev->number = abbrev_number;
aead7601
SM
18152 cur_abbrev->tag
18153 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
18154 abbrev_ptr += bytes_read;
18155 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18156 abbrev_ptr += 1;
18157
18158 /* now read in declarations */
22d2f3ab 18159 for (;;)
c906108c 18160 {
43988095
JK
18161 LONGEST implicit_const;
18162
22d2f3ab
JK
18163 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18164 abbrev_ptr += bytes_read;
18165 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18166 abbrev_ptr += bytes_read;
43988095
JK
18167 if (abbrev_form == DW_FORM_implicit_const)
18168 {
18169 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18170 &bytes_read);
18171 abbrev_ptr += bytes_read;
18172 }
18173 else
18174 {
18175 /* Initialize it due to a false compiler warning. */
18176 implicit_const = -1;
18177 }
22d2f3ab
JK
18178
18179 if (abbrev_name == 0)
18180 break;
18181
f3dd6933 18182 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 18183 {
f3dd6933
DJ
18184 allocated_attrs += ATTR_ALLOC_CHUNK;
18185 cur_attrs
224c3ddb 18186 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 18187 }
ae038cb0 18188
aead7601
SM
18189 cur_attrs[cur_abbrev->num_attrs].name
18190 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 18191 cur_attrs[cur_abbrev->num_attrs].form
aead7601 18192 = (enum dwarf_form) abbrev_form;
43988095 18193 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 18194 ++cur_abbrev->num_attrs;
c906108c
SS
18195 }
18196
8d749320
SM
18197 cur_abbrev->attrs =
18198 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18199 cur_abbrev->num_attrs);
f3dd6933
DJ
18200 memcpy (cur_abbrev->attrs, cur_attrs,
18201 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18202
685af9cd 18203 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
c906108c
SS
18204
18205 /* Get next abbreviation.
18206 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
18207 always properly terminated with an abbrev number of 0.
18208 Exit loop if we encounter an abbreviation which we have
18209 already read (which means we are about to read the abbreviations
18210 for the next compile unit) or if the end of the abbreviation
18211 table is reached. */
433df2d4 18212 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
18213 break;
18214 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18215 abbrev_ptr += bytes_read;
685af9cd 18216 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
c906108c
SS
18217 break;
18218 }
f3dd6933
DJ
18219
18220 xfree (cur_attrs);
433df2d4 18221 return abbrev_table;
c906108c
SS
18222}
18223
72bf9492
DJ
18224/* Returns nonzero if TAG represents a type that we might generate a partial
18225 symbol for. */
18226
18227static int
18228is_type_tag_for_partial (int tag)
18229{
18230 switch (tag)
18231 {
18232#if 0
18233 /* Some types that would be reasonable to generate partial symbols for,
18234 that we don't at present. */
18235 case DW_TAG_array_type:
18236 case DW_TAG_file_type:
18237 case DW_TAG_ptr_to_member_type:
18238 case DW_TAG_set_type:
18239 case DW_TAG_string_type:
18240 case DW_TAG_subroutine_type:
18241#endif
18242 case DW_TAG_base_type:
18243 case DW_TAG_class_type:
680b30c7 18244 case DW_TAG_interface_type:
72bf9492
DJ
18245 case DW_TAG_enumeration_type:
18246 case DW_TAG_structure_type:
18247 case DW_TAG_subrange_type:
18248 case DW_TAG_typedef:
18249 case DW_TAG_union_type:
18250 return 1;
18251 default:
18252 return 0;
18253 }
18254}
18255
18256/* Load all DIEs that are interesting for partial symbols into memory. */
18257
18258static struct partial_die_info *
dee91e82 18259load_partial_dies (const struct die_reader_specs *reader,
d521ce57 18260 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 18261{
dee91e82 18262 struct dwarf2_cu *cu = reader->cu;
518817b3 18263 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
72bf9492 18264 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
72bf9492 18265 unsigned int bytes_read;
5afb4e99 18266 unsigned int load_all = 0;
72bf9492
DJ
18267 int nesting_level = 1;
18268
18269 parent_die = NULL;
18270 last_die = NULL;
18271
7adf1e79
DE
18272 gdb_assert (cu->per_cu != NULL);
18273 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
18274 load_all = 1;
18275
72bf9492
DJ
18276 cu->partial_dies
18277 = htab_create_alloc_ex (cu->header.length / 12,
18278 partial_die_hash,
18279 partial_die_eq,
18280 NULL,
18281 &cu->comp_unit_obstack,
18282 hashtab_obstack_allocate,
18283 dummy_obstack_deallocate);
18284
72bf9492
DJ
18285 while (1)
18286 {
685af9cd 18287 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
72bf9492
DJ
18288
18289 /* A NULL abbrev means the end of a series of children. */
18290 if (abbrev == NULL)
18291 {
18292 if (--nesting_level == 0)
cd9983dd
YQ
18293 return first_die;
18294
72bf9492
DJ
18295 info_ptr += bytes_read;
18296 last_die = parent_die;
18297 parent_die = parent_die->die_parent;
18298 continue;
18299 }
18300
98bfdba5
PA
18301 /* Check for template arguments. We never save these; if
18302 they're seen, we just mark the parent, and go on our way. */
18303 if (parent_die != NULL
18304 && cu->language == language_cplus
18305 && (abbrev->tag == DW_TAG_template_type_param
18306 || abbrev->tag == DW_TAG_template_value_param))
18307 {
18308 parent_die->has_template_arguments = 1;
18309
18310 if (!load_all)
18311 {
18312 /* We don't need a partial DIE for the template argument. */
dee91e82 18313 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18314 continue;
18315 }
18316 }
18317
0d99eb77 18318 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
18319 Skip their other children. */
18320 if (!load_all
18321 && cu->language == language_cplus
18322 && parent_die != NULL
18323 && parent_die->tag == DW_TAG_subprogram)
18324 {
dee91e82 18325 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18326 continue;
18327 }
18328
5afb4e99
DJ
18329 /* Check whether this DIE is interesting enough to save. Normally
18330 we would not be interested in members here, but there may be
18331 later variables referencing them via DW_AT_specification (for
18332 static members). */
18333 if (!load_all
18334 && !is_type_tag_for_partial (abbrev->tag)
72929c62 18335 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
18336 && abbrev->tag != DW_TAG_enumerator
18337 && abbrev->tag != DW_TAG_subprogram
b1dc1806 18338 && abbrev->tag != DW_TAG_inlined_subroutine
bc30ff58 18339 && abbrev->tag != DW_TAG_lexical_block
72bf9492 18340 && abbrev->tag != DW_TAG_variable
5afb4e99 18341 && abbrev->tag != DW_TAG_namespace
f55ee35c 18342 && abbrev->tag != DW_TAG_module
95554aad 18343 && abbrev->tag != DW_TAG_member
74921315
KS
18344 && abbrev->tag != DW_TAG_imported_unit
18345 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
18346 {
18347 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18348 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
18349 continue;
18350 }
18351
6f06d47b
YQ
18352 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18353 abbrev);
cd9983dd 18354
48fbe735 18355 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
72bf9492
DJ
18356
18357 /* This two-pass algorithm for processing partial symbols has a
18358 high cost in cache pressure. Thus, handle some simple cases
18359 here which cover the majority of C partial symbols. DIEs
18360 which neither have specification tags in them, nor could have
18361 specification tags elsewhere pointing at them, can simply be
18362 processed and discarded.
18363
18364 This segment is also optional; scan_partial_symbols and
18365 add_partial_symbol will handle these DIEs if we chain
18366 them in normally. When compilers which do not emit large
18367 quantities of duplicate debug information are more common,
18368 this code can probably be removed. */
18369
18370 /* Any complete simple types at the top level (pretty much all
18371 of them, for a language without namespaces), can be processed
18372 directly. */
18373 if (parent_die == NULL
cd9983dd
YQ
18374 && pdi.has_specification == 0
18375 && pdi.is_declaration == 0
18376 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18377 || pdi.tag == DW_TAG_base_type
18378 || pdi.tag == DW_TAG_subrange_type))
72bf9492 18379 {
cd9983dd
YQ
18380 if (building_psymtab && pdi.name != NULL)
18381 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
79748972 18382 VAR_DOMAIN, LOC_TYPEDEF, -1,
bb5ed363 18383 &objfile->static_psymbols,
1762568f 18384 0, cu->language, objfile);
cd9983dd 18385 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18386 continue;
18387 }
18388
d8228535
JK
18389 /* The exception for DW_TAG_typedef with has_children above is
18390 a workaround of GCC PR debug/47510. In the case of this complaint
a737d952 18391 type_name_or_error will error on such types later.
d8228535
JK
18392
18393 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18394 it could not find the child DIEs referenced later, this is checked
18395 above. In correct DWARF DW_TAG_typedef should have no children. */
18396
cd9983dd 18397 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
b98664d3 18398 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9d8780f0 18399 "- DIE at %s [in module %s]"),
cd9983dd 18400 sect_offset_str (pdi.sect_off), objfile_name (objfile));
d8228535 18401
72bf9492
DJ
18402 /* If we're at the second level, and we're an enumerator, and
18403 our parent has no specification (meaning possibly lives in a
18404 namespace elsewhere), then we can add the partial symbol now
18405 instead of queueing it. */
cd9983dd 18406 if (pdi.tag == DW_TAG_enumerator
72bf9492
DJ
18407 && parent_die != NULL
18408 && parent_die->die_parent == NULL
18409 && parent_die->tag == DW_TAG_enumeration_type
18410 && parent_die->has_specification == 0)
18411 {
cd9983dd 18412 if (pdi.name == NULL)
b98664d3 18413 complaint (_("malformed enumerator DIE ignored"));
72bf9492 18414 else if (building_psymtab)
cd9983dd 18415 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
79748972 18416 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 18417 cu->language == language_cplus
bb5ed363
DE
18418 ? &objfile->global_psymbols
18419 : &objfile->static_psymbols,
1762568f 18420 0, cu->language, objfile);
72bf9492 18421
cd9983dd 18422 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18423 continue;
18424 }
18425
cd9983dd 18426 struct partial_die_info *part_die
6f06d47b 18427 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
cd9983dd 18428
72bf9492
DJ
18429 /* We'll save this DIE so link it in. */
18430 part_die->die_parent = parent_die;
18431 part_die->die_sibling = NULL;
18432 part_die->die_child = NULL;
18433
18434 if (last_die && last_die == parent_die)
18435 last_die->die_child = part_die;
18436 else if (last_die)
18437 last_die->die_sibling = part_die;
18438
18439 last_die = part_die;
18440
18441 if (first_die == NULL)
18442 first_die = part_die;
18443
18444 /* Maybe add the DIE to the hash table. Not all DIEs that we
18445 find interesting need to be in the hash table, because we
18446 also have the parent/sibling/child chains; only those that we
18447 might refer to by offset later during partial symbol reading.
18448
18449 For now this means things that might have be the target of a
18450 DW_AT_specification, DW_AT_abstract_origin, or
18451 DW_AT_extension. DW_AT_extension will refer only to
18452 namespaces; DW_AT_abstract_origin refers to functions (and
18453 many things under the function DIE, but we do not recurse
18454 into function DIEs during partial symbol reading) and
18455 possibly variables as well; DW_AT_specification refers to
18456 declarations. Declarations ought to have the DW_AT_declaration
18457 flag. It happens that GCC forgets to put it in sometimes, but
18458 only for functions, not for types.
18459
18460 Adding more things than necessary to the hash table is harmless
18461 except for the performance cost. Adding too few will result in
5afb4e99
DJ
18462 wasted time in find_partial_die, when we reread the compilation
18463 unit with load_all_dies set. */
72bf9492 18464
5afb4e99 18465 if (load_all
72929c62 18466 || abbrev->tag == DW_TAG_constant
5afb4e99 18467 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
18468 || abbrev->tag == DW_TAG_variable
18469 || abbrev->tag == DW_TAG_namespace
18470 || part_die->is_declaration)
18471 {
18472 void **slot;
18473
18474 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
18475 to_underlying (part_die->sect_off),
18476 INSERT);
72bf9492
DJ
18477 *slot = part_die;
18478 }
18479
72bf9492 18480 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 18481 we have no reason to follow the children of structures; for other
98bfdba5
PA
18482 languages we have to, so that we can get at method physnames
18483 to infer fully qualified class names, for DW_AT_specification,
18484 and for C++ template arguments. For C++, we also look one level
18485 inside functions to find template arguments (if the name of the
18486 function does not already contain the template arguments).
bc30ff58
JB
18487
18488 For Ada, we need to scan the children of subprograms and lexical
18489 blocks as well because Ada allows the definition of nested
18490 entities that could be interesting for the debugger, such as
18491 nested subprograms for instance. */
72bf9492 18492 if (last_die->has_children
5afb4e99
DJ
18493 && (load_all
18494 || last_die->tag == DW_TAG_namespace
f55ee35c 18495 || last_die->tag == DW_TAG_module
72bf9492 18496 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
18497 || (cu->language == language_cplus
18498 && last_die->tag == DW_TAG_subprogram
18499 && (last_die->name == NULL
18500 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
18501 || (cu->language != language_c
18502 && (last_die->tag == DW_TAG_class_type
680b30c7 18503 || last_die->tag == DW_TAG_interface_type
72bf9492 18504 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
18505 || last_die->tag == DW_TAG_union_type))
18506 || (cu->language == language_ada
18507 && (last_die->tag == DW_TAG_subprogram
18508 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
18509 {
18510 nesting_level++;
18511 parent_die = last_die;
18512 continue;
18513 }
18514
18515 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18516 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
18517
18518 /* Back to the top, do it again. */
18519 }
18520}
18521
6f06d47b
YQ
18522partial_die_info::partial_die_info (sect_offset sect_off_,
18523 struct abbrev_info *abbrev)
18524 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18525{
18526}
18527
35cc7ed7
YQ
18528/* Read a minimal amount of information into the minimal die structure.
18529 INFO_PTR should point just after the initial uleb128 of a DIE. */
c906108c 18530
48fbe735
YQ
18531const gdb_byte *
18532partial_die_info::read (const struct die_reader_specs *reader,
18533 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
c906108c 18534{
dee91e82 18535 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
18536 struct dwarf2_per_objfile *dwarf2_per_objfile
18537 = cu->per_cu->dwarf2_per_objfile;
fa238c03 18538 unsigned int i;
c5aa993b 18539 int has_low_pc_attr = 0;
c906108c 18540 int has_high_pc_attr = 0;
91da1414 18541 int high_pc_relative = 0;
c906108c 18542
fd0a254f 18543 for (i = 0; i < abbrev.num_attrs; ++i)
c906108c 18544 {
48fbe735
YQ
18545 struct attribute attr;
18546
fd0a254f 18547 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
c906108c
SS
18548
18549 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 18550 partial symbol table. */
c906108c
SS
18551 switch (attr.name)
18552 {
18553 case DW_AT_name:
48fbe735 18554 switch (tag)
71c25dea
TT
18555 {
18556 case DW_TAG_compile_unit:
95554aad 18557 case DW_TAG_partial_unit:
348e048f 18558 case DW_TAG_type_unit:
71c25dea
TT
18559 /* Compilation units have a DW_AT_name that is a filename, not
18560 a source language identifier. */
18561 case DW_TAG_enumeration_type:
18562 case DW_TAG_enumerator:
18563 /* These tags always have simple identifiers already; no need
18564 to canonicalize them. */
48fbe735 18565 name = DW_STRING (&attr);
71c25dea
TT
18566 break;
18567 default:
48fbe735
YQ
18568 {
18569 struct objfile *objfile = dwarf2_per_objfile->objfile;
18570
18571 name
18572 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18573 &objfile->per_bfd->storage_obstack);
18574 }
71c25dea
TT
18575 break;
18576 }
c906108c 18577 break;
31ef98ae 18578 case DW_AT_linkage_name:
c906108c 18579 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
18580 /* Note that both forms of linkage name might appear. We
18581 assume they will be the same, and we only store the last
18582 one we see. */
94af9270 18583 if (cu->language == language_ada)
48fbe735
YQ
18584 name = DW_STRING (&attr);
18585 linkage_name = DW_STRING (&attr);
c906108c
SS
18586 break;
18587 case DW_AT_low_pc:
18588 has_low_pc_attr = 1;
48fbe735 18589 lowpc = attr_value_as_address (&attr);
c906108c
SS
18590 break;
18591 case DW_AT_high_pc:
18592 has_high_pc_attr = 1;
48fbe735 18593 highpc = attr_value_as_address (&attr);
31aa7e4e
JB
18594 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18595 high_pc_relative = 1;
c906108c
SS
18596 break;
18597 case DW_AT_location:
0963b4bd 18598 /* Support the .debug_loc offsets. */
8e19ed76
PS
18599 if (attr_form_is_block (&attr))
18600 {
48fbe735 18601 d.locdesc = DW_BLOCK (&attr);
8e19ed76 18602 }
3690dd37 18603 else if (attr_form_is_section_offset (&attr))
8e19ed76 18604 {
4d3c2250 18605 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
18606 }
18607 else
18608 {
4d3c2250
KB
18609 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18610 "partial symbol information");
8e19ed76 18611 }
c906108c 18612 break;
c906108c 18613 case DW_AT_external:
48fbe735 18614 is_external = DW_UNSND (&attr);
c906108c
SS
18615 break;
18616 case DW_AT_declaration:
48fbe735 18617 is_declaration = DW_UNSND (&attr);
c906108c
SS
18618 break;
18619 case DW_AT_type:
48fbe735 18620 has_type = 1;
c906108c
SS
18621 break;
18622 case DW_AT_abstract_origin:
18623 case DW_AT_specification:
72bf9492 18624 case DW_AT_extension:
48fbe735
YQ
18625 has_specification = 1;
18626 spec_offset = dwarf2_get_ref_die_offset (&attr);
18627 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728 18628 || cu->per_cu->is_dwz);
c906108c
SS
18629 break;
18630 case DW_AT_sibling:
18631 /* Ignore absolute siblings, they might point outside of
18632 the current compile unit. */
18633 if (attr.form == DW_FORM_ref_addr)
b98664d3 18634 complaint (_("ignoring absolute DW_AT_sibling"));
c906108c 18635 else
b9502d3f 18636 {
48fbe735 18637 const gdb_byte *buffer = reader->buffer;
9c541725
PA
18638 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18639 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
18640
18641 if (sibling_ptr < info_ptr)
b98664d3 18642 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
18643 else if (sibling_ptr > reader->buffer_end)
18644 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f 18645 else
48fbe735 18646 sibling = sibling_ptr;
b9502d3f 18647 }
c906108c 18648 break;
fa4028e9 18649 case DW_AT_byte_size:
48fbe735 18650 has_byte_size = 1;
fa4028e9 18651 break;
ff908ebf 18652 case DW_AT_const_value:
48fbe735 18653 has_const_value = 1;
ff908ebf 18654 break;
68511cec
CES
18655 case DW_AT_calling_convention:
18656 /* DWARF doesn't provide a way to identify a program's source-level
18657 entry point. DW_AT_calling_convention attributes are only meant
18658 to describe functions' calling conventions.
18659
18660 However, because it's a necessary piece of information in
0c1b455e
TT
18661 Fortran, and before DWARF 4 DW_CC_program was the only
18662 piece of debugging information whose definition refers to
18663 a 'main program' at all, several compilers marked Fortran
18664 main programs with DW_CC_program --- even when those
18665 functions use the standard calling conventions.
18666
18667 Although DWARF now specifies a way to provide this
18668 information, we support this practice for backward
18669 compatibility. */
68511cec 18670 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e 18671 && cu->language == language_fortran)
48fbe735 18672 main_subprogram = 1;
68511cec 18673 break;
481860b3
GB
18674 case DW_AT_inline:
18675 if (DW_UNSND (&attr) == DW_INL_inlined
18676 || DW_UNSND (&attr) == DW_INL_declared_inlined)
48fbe735 18677 may_be_inlined = 1;
481860b3 18678 break;
95554aad
TT
18679
18680 case DW_AT_import:
48fbe735 18681 if (tag == DW_TAG_imported_unit)
36586728 18682 {
48fbe735
YQ
18683 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18684 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728
TT
18685 || cu->per_cu->is_dwz);
18686 }
95554aad
TT
18687 break;
18688
0c1b455e 18689 case DW_AT_main_subprogram:
48fbe735 18690 main_subprogram = DW_UNSND (&attr);
0c1b455e
TT
18691 break;
18692
c906108c
SS
18693 default:
18694 break;
18695 }
18696 }
18697
91da1414 18698 if (high_pc_relative)
48fbe735 18699 highpc += lowpc;
91da1414 18700
9373cf26
JK
18701 if (has_low_pc_attr && has_high_pc_attr)
18702 {
18703 /* When using the GNU linker, .gnu.linkonce. sections are used to
18704 eliminate duplicate copies of functions and vtables and such.
18705 The linker will arbitrarily choose one and discard the others.
18706 The AT_*_pc values for such functions refer to local labels in
18707 these sections. If the section from that file was discarded, the
18708 labels are not in the output, so the relocs get a value of 0.
18709 If this is a discarded function, mark the pc bounds as invalid,
18710 so that GDB will ignore it. */
48fbe735 18711 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9373cf26 18712 {
48fbe735 18713 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18714 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18715
b98664d3 18716 complaint (_("DW_AT_low_pc %s is zero "
9d8780f0 18717 "for DIE at %s [in module %s]"),
48fbe735
YQ
18718 paddress (gdbarch, lowpc),
18719 sect_offset_str (sect_off),
9d8780f0 18720 objfile_name (objfile));
9373cf26
JK
18721 }
18722 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
48fbe735 18723 else if (lowpc >= highpc)
9373cf26 18724 {
48fbe735 18725 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18726 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18727
b98664d3 18728 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9d8780f0 18729 "for DIE at %s [in module %s]"),
48fbe735
YQ
18730 paddress (gdbarch, lowpc),
18731 paddress (gdbarch, highpc),
18732 sect_offset_str (sect_off),
9c541725 18733 objfile_name (objfile));
9373cf26
JK
18734 }
18735 else
48fbe735 18736 has_pc_info = 1;
9373cf26 18737 }
85cbf3d3 18738
c906108c
SS
18739 return info_ptr;
18740}
18741
72bf9492
DJ
18742/* Find a cached partial DIE at OFFSET in CU. */
18743
d590ff25
YQ
18744struct partial_die_info *
18745dwarf2_cu::find_partial_die (sect_offset sect_off)
72bf9492
DJ
18746{
18747 struct partial_die_info *lookup_die = NULL;
6f06d47b 18748 struct partial_die_info part_die (sect_off);
72bf9492 18749
9a3c8263 18750 lookup_die = ((struct partial_die_info *)
d590ff25 18751 htab_find_with_hash (partial_dies, &part_die,
9c541725 18752 to_underlying (sect_off)));
72bf9492 18753
72bf9492
DJ
18754 return lookup_die;
18755}
18756
348e048f
DE
18757/* Find a partial DIE at OFFSET, which may or may not be in CU,
18758 except in the case of .debug_types DIEs which do not reference
18759 outside their CU (they do however referencing other types via
55f1336d 18760 DW_FORM_ref_sig8). */
72bf9492
DJ
18761
18762static struct partial_die_info *
9c541725 18763find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 18764{
518817b3
SM
18765 struct dwarf2_per_objfile *dwarf2_per_objfile
18766 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 18767 struct objfile *objfile = dwarf2_per_objfile->objfile;
5afb4e99
DJ
18768 struct dwarf2_per_cu_data *per_cu = NULL;
18769 struct partial_die_info *pd = NULL;
72bf9492 18770
36586728 18771 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 18772 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 18773 {
d590ff25 18774 pd = cu->find_partial_die (sect_off);
5afb4e99
DJ
18775 if (pd != NULL)
18776 return pd;
0d99eb77
DE
18777 /* We missed recording what we needed.
18778 Load all dies and try again. */
18779 per_cu = cu->per_cu;
5afb4e99 18780 }
0d99eb77
DE
18781 else
18782 {
18783 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 18784 if (cu->per_cu->is_debug_types)
0d99eb77 18785 {
9d8780f0
SM
18786 error (_("Dwarf Error: Type Unit at offset %s contains"
18787 " external reference to offset %s [in module %s].\n"),
18788 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
0d99eb77
DE
18789 bfd_get_filename (objfile->obfd));
18790 }
9c541725 18791 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 18792 dwarf2_per_objfile);
72bf9492 18793
0d99eb77
DE
18794 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18795 load_partial_comp_unit (per_cu);
ae038cb0 18796
0d99eb77 18797 per_cu->cu->last_used = 0;
d590ff25 18798 pd = per_cu->cu->find_partial_die (sect_off);
0d99eb77 18799 }
5afb4e99 18800
dee91e82
DE
18801 /* If we didn't find it, and not all dies have been loaded,
18802 load them all and try again. */
18803
5afb4e99
DJ
18804 if (pd == NULL && per_cu->load_all_dies == 0)
18805 {
5afb4e99 18806 per_cu->load_all_dies = 1;
fd820528
DE
18807
18808 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18809 THIS_CU->cu may already be in use. So we can't just free it and
18810 replace its DIEs with the ones we read in. Instead, we leave those
18811 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18812 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18813 set. */
dee91e82 18814 load_partial_comp_unit (per_cu);
5afb4e99 18815
d590ff25 18816 pd = per_cu->cu->find_partial_die (sect_off);
5afb4e99
DJ
18817 }
18818
18819 if (pd == NULL)
18820 internal_error (__FILE__, __LINE__,
9d8780f0 18821 _("could not find partial DIE %s "
3e43a32a 18822 "in cache [from module %s]\n"),
9d8780f0 18823 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 18824 return pd;
72bf9492
DJ
18825}
18826
abc72ce4
DE
18827/* See if we can figure out if the class lives in a namespace. We do
18828 this by looking for a member function; its demangled name will
18829 contain namespace info, if there is any. */
18830
18831static void
18832guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18833 struct dwarf2_cu *cu)
18834{
18835 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18836 what template types look like, because the demangler
18837 frequently doesn't give the same name as the debug info. We
18838 could fix this by only using the demangled name to get the
18839 prefix (but see comment in read_structure_type). */
18840
18841 struct partial_die_info *real_pdi;
18842 struct partial_die_info *child_pdi;
18843
18844 /* If this DIE (this DIE's specification, if any) has a parent, then
18845 we should not do this. We'll prepend the parent's fully qualified
18846 name when we create the partial symbol. */
18847
18848 real_pdi = struct_pdi;
18849 while (real_pdi->has_specification)
36586728
TT
18850 real_pdi = find_partial_die (real_pdi->spec_offset,
18851 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
18852
18853 if (real_pdi->die_parent != NULL)
18854 return;
18855
18856 for (child_pdi = struct_pdi->die_child;
18857 child_pdi != NULL;
18858 child_pdi = child_pdi->die_sibling)
18859 {
18860 if (child_pdi->tag == DW_TAG_subprogram
18861 && child_pdi->linkage_name != NULL)
18862 {
18863 char *actual_class_name
18864 = language_class_name_from_physname (cu->language_defn,
18865 child_pdi->linkage_name);
18866 if (actual_class_name != NULL)
18867 {
518817b3 18868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4 18869 struct_pdi->name
224c3ddb 18870 = ((const char *)
e3b94546 18871 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb
SM
18872 actual_class_name,
18873 strlen (actual_class_name)));
abc72ce4
DE
18874 xfree (actual_class_name);
18875 }
18876 break;
18877 }
18878 }
18879}
18880
52356b79
YQ
18881void
18882partial_die_info::fixup (struct dwarf2_cu *cu)
72bf9492 18883{
abc72ce4
DE
18884 /* Once we've fixed up a die, there's no point in doing so again.
18885 This also avoids a memory leak if we were to call
18886 guess_partial_die_structure_name multiple times. */
52356b79 18887 if (fixup_called)
abc72ce4
DE
18888 return;
18889
72bf9492
DJ
18890 /* If we found a reference attribute and the DIE has no name, try
18891 to find a name in the referred to DIE. */
18892
52356b79 18893 if (name == NULL && has_specification)
72bf9492
DJ
18894 {
18895 struct partial_die_info *spec_die;
72bf9492 18896
52356b79 18897 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
72bf9492 18898
52356b79 18899 spec_die->fixup (cu);
72bf9492
DJ
18900
18901 if (spec_die->name)
18902 {
52356b79 18903 name = spec_die->name;
72bf9492
DJ
18904
18905 /* Copy DW_AT_external attribute if it is set. */
18906 if (spec_die->is_external)
52356b79 18907 is_external = spec_die->is_external;
72bf9492
DJ
18908 }
18909 }
18910
18911 /* Set default names for some unnamed DIEs. */
72bf9492 18912
52356b79
YQ
18913 if (name == NULL && tag == DW_TAG_namespace)
18914 name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 18915
abc72ce4
DE
18916 /* If there is no parent die to provide a namespace, and there are
18917 children, see if we can determine the namespace from their linkage
122d1940 18918 name. */
abc72ce4 18919 if (cu->language == language_cplus
518817b3
SM
18920 && !VEC_empty (dwarf2_section_info_def,
18921 cu->per_cu->dwarf2_per_objfile->types)
52356b79
YQ
18922 && die_parent == NULL
18923 && has_children
18924 && (tag == DW_TAG_class_type
18925 || tag == DW_TAG_structure_type
18926 || tag == DW_TAG_union_type))
18927 guess_partial_die_structure_name (this, cu);
abc72ce4 18928
53832f31
TT
18929 /* GCC might emit a nameless struct or union that has a linkage
18930 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
52356b79
YQ
18931 if (name == NULL
18932 && (tag == DW_TAG_class_type
18933 || tag == DW_TAG_interface_type
18934 || tag == DW_TAG_structure_type
18935 || tag == DW_TAG_union_type)
18936 && linkage_name != NULL)
53832f31
TT
18937 {
18938 char *demangled;
18939
52356b79 18940 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
53832f31
TT
18941 if (demangled)
18942 {
96408a79
SA
18943 const char *base;
18944
18945 /* Strip any leading namespaces/classes, keep only the base name.
18946 DW_AT_name for named DIEs does not contain the prefixes. */
18947 base = strrchr (demangled, ':');
18948 if (base && base > demangled && base[-1] == ':')
18949 base++;
18950 else
18951 base = demangled;
18952
518817b3 18953 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
52356b79 18954 name
224c3ddb 18955 = ((const char *)
e3b94546 18956 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb 18957 base, strlen (base)));
53832f31
TT
18958 xfree (demangled);
18959 }
18960 }
18961
52356b79 18962 fixup_called = 1;
72bf9492
DJ
18963}
18964
a8329558 18965/* Read an attribute value described by an attribute form. */
c906108c 18966
d521ce57 18967static const gdb_byte *
dee91e82
DE
18968read_attribute_value (const struct die_reader_specs *reader,
18969 struct attribute *attr, unsigned form,
43988095 18970 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 18971{
dee91e82 18972 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
18973 struct dwarf2_per_objfile *dwarf2_per_objfile
18974 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 18975 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 18976 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 18977 bfd *abfd = reader->abfd;
e7c27a73 18978 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
18979 unsigned int bytes_read;
18980 struct dwarf_block *blk;
18981
aead7601 18982 attr->form = (enum dwarf_form) form;
a8329558 18983 switch (form)
c906108c 18984 {
c906108c 18985 case DW_FORM_ref_addr:
ae411497 18986 if (cu->header.version == 2)
4568ecf9 18987 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 18988 else
4568ecf9
DE
18989 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18990 &cu->header, &bytes_read);
ae411497
TT
18991 info_ptr += bytes_read;
18992 break;
36586728
TT
18993 case DW_FORM_GNU_ref_alt:
18994 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18995 info_ptr += bytes_read;
18996 break;
ae411497 18997 case DW_FORM_addr:
e7c27a73 18998 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 18999 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 19000 info_ptr += bytes_read;
c906108c
SS
19001 break;
19002 case DW_FORM_block2:
7b5a2f43 19003 blk = dwarf_alloc_block (cu);
c906108c
SS
19004 blk->size = read_2_bytes (abfd, info_ptr);
19005 info_ptr += 2;
19006 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19007 info_ptr += blk->size;
19008 DW_BLOCK (attr) = blk;
19009 break;
19010 case DW_FORM_block4:
7b5a2f43 19011 blk = dwarf_alloc_block (cu);
c906108c
SS
19012 blk->size = read_4_bytes (abfd, info_ptr);
19013 info_ptr += 4;
19014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19015 info_ptr += blk->size;
19016 DW_BLOCK (attr) = blk;
19017 break;
19018 case DW_FORM_data2:
19019 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19020 info_ptr += 2;
19021 break;
19022 case DW_FORM_data4:
19023 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19024 info_ptr += 4;
19025 break;
19026 case DW_FORM_data8:
19027 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19028 info_ptr += 8;
19029 break;
0224619f
JK
19030 case DW_FORM_data16:
19031 blk = dwarf_alloc_block (cu);
19032 blk->size = 16;
19033 blk->data = read_n_bytes (abfd, info_ptr, 16);
19034 info_ptr += 16;
19035 DW_BLOCK (attr) = blk;
19036 break;
2dc7f7b3
TT
19037 case DW_FORM_sec_offset:
19038 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19039 info_ptr += bytes_read;
19040 break;
c906108c 19041 case DW_FORM_string:
9b1c24c8 19042 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 19043 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
19044 info_ptr += bytes_read;
19045 break;
4bdf3d34 19046 case DW_FORM_strp:
36586728
TT
19047 if (!cu->per_cu->is_dwz)
19048 {
ed2dc618
SM
19049 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19050 abfd, info_ptr, cu_header,
36586728
TT
19051 &bytes_read);
19052 DW_STRING_IS_CANONICAL (attr) = 0;
19053 info_ptr += bytes_read;
19054 break;
19055 }
19056 /* FALLTHROUGH */
43988095
JK
19057 case DW_FORM_line_strp:
19058 if (!cu->per_cu->is_dwz)
19059 {
ed2dc618
SM
19060 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19061 abfd, info_ptr,
43988095
JK
19062 cu_header, &bytes_read);
19063 DW_STRING_IS_CANONICAL (attr) = 0;
19064 info_ptr += bytes_read;
19065 break;
19066 }
19067 /* FALLTHROUGH */
36586728
TT
19068 case DW_FORM_GNU_strp_alt:
19069 {
ed2dc618 19070 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
19071 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19072 &bytes_read);
19073
ed2dc618
SM
19074 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19075 dwz, str_offset);
36586728
TT
19076 DW_STRING_IS_CANONICAL (attr) = 0;
19077 info_ptr += bytes_read;
19078 }
4bdf3d34 19079 break;
2dc7f7b3 19080 case DW_FORM_exprloc:
c906108c 19081 case DW_FORM_block:
7b5a2f43 19082 blk = dwarf_alloc_block (cu);
c906108c
SS
19083 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19084 info_ptr += bytes_read;
19085 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19086 info_ptr += blk->size;
19087 DW_BLOCK (attr) = blk;
19088 break;
19089 case DW_FORM_block1:
7b5a2f43 19090 blk = dwarf_alloc_block (cu);
c906108c
SS
19091 blk->size = read_1_byte (abfd, info_ptr);
19092 info_ptr += 1;
19093 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19094 info_ptr += blk->size;
19095 DW_BLOCK (attr) = blk;
19096 break;
19097 case DW_FORM_data1:
19098 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19099 info_ptr += 1;
19100 break;
19101 case DW_FORM_flag:
19102 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19103 info_ptr += 1;
19104 break;
2dc7f7b3
TT
19105 case DW_FORM_flag_present:
19106 DW_UNSND (attr) = 1;
19107 break;
c906108c
SS
19108 case DW_FORM_sdata:
19109 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19110 info_ptr += bytes_read;
19111 break;
19112 case DW_FORM_udata:
19113 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19114 info_ptr += bytes_read;
19115 break;
19116 case DW_FORM_ref1:
9c541725 19117 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19118 + read_1_byte (abfd, info_ptr));
c906108c
SS
19119 info_ptr += 1;
19120 break;
19121 case DW_FORM_ref2:
9c541725 19122 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19123 + read_2_bytes (abfd, info_ptr));
c906108c
SS
19124 info_ptr += 2;
19125 break;
19126 case DW_FORM_ref4:
9c541725 19127 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19128 + read_4_bytes (abfd, info_ptr));
c906108c
SS
19129 info_ptr += 4;
19130 break;
613e1657 19131 case DW_FORM_ref8:
9c541725 19132 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19133 + read_8_bytes (abfd, info_ptr));
613e1657
KB
19134 info_ptr += 8;
19135 break;
55f1336d 19136 case DW_FORM_ref_sig8:
ac9ec31b 19137 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
19138 info_ptr += 8;
19139 break;
c906108c 19140 case DW_FORM_ref_udata:
9c541725 19141 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19142 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
19143 info_ptr += bytes_read;
19144 break;
c906108c 19145 case DW_FORM_indirect:
a8329558
KW
19146 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19147 info_ptr += bytes_read;
43988095
JK
19148 if (form == DW_FORM_implicit_const)
19149 {
19150 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19151 info_ptr += bytes_read;
19152 }
19153 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19154 info_ptr);
19155 break;
19156 case DW_FORM_implicit_const:
19157 DW_SND (attr) = implicit_const;
a8329558 19158 break;
3019eac3
DE
19159 case DW_FORM_GNU_addr_index:
19160 if (reader->dwo_file == NULL)
19161 {
19162 /* For now flag a hard error.
19163 Later we can turn this into a complaint. */
19164 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19165 dwarf_form_name (form),
19166 bfd_get_filename (abfd));
19167 }
19168 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19169 info_ptr += bytes_read;
19170 break;
19171 case DW_FORM_GNU_str_index:
19172 if (reader->dwo_file == NULL)
19173 {
19174 /* For now flag a hard error.
19175 Later we can turn this into a complaint if warranted. */
19176 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19177 dwarf_form_name (form),
19178 bfd_get_filename (abfd));
19179 }
19180 {
19181 ULONGEST str_index =
19182 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19183
342587c4 19184 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
19185 DW_STRING_IS_CANONICAL (attr) = 0;
19186 info_ptr += bytes_read;
19187 }
19188 break;
c906108c 19189 default:
8a3fe4f8 19190 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
19191 dwarf_form_name (form),
19192 bfd_get_filename (abfd));
c906108c 19193 }
28e94949 19194
36586728 19195 /* Super hack. */
7771576e 19196 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
19197 attr->form = DW_FORM_GNU_ref_alt;
19198
28e94949
JB
19199 /* We have seen instances where the compiler tried to emit a byte
19200 size attribute of -1 which ended up being encoded as an unsigned
19201 0xffffffff. Although 0xffffffff is technically a valid size value,
19202 an object of this size seems pretty unlikely so we can relatively
19203 safely treat these cases as if the size attribute was invalid and
19204 treat them as zero by default. */
19205 if (attr->name == DW_AT_byte_size
19206 && form == DW_FORM_data4
19207 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
19208 {
19209 complaint
b98664d3 19210 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
43bbcdc2 19211 hex_string (DW_UNSND (attr)));
01c66ae6
JB
19212 DW_UNSND (attr) = 0;
19213 }
28e94949 19214
c906108c
SS
19215 return info_ptr;
19216}
19217
a8329558
KW
19218/* Read an attribute described by an abbreviated attribute. */
19219
d521ce57 19220static const gdb_byte *
dee91e82
DE
19221read_attribute (const struct die_reader_specs *reader,
19222 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 19223 const gdb_byte *info_ptr)
a8329558
KW
19224{
19225 attr->name = abbrev->name;
43988095
JK
19226 return read_attribute_value (reader, attr, abbrev->form,
19227 abbrev->implicit_const, info_ptr);
a8329558
KW
19228}
19229
0963b4bd 19230/* Read dwarf information from a buffer. */
c906108c
SS
19231
19232static unsigned int
a1855c1d 19233read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19234{
fe1b8b76 19235 return bfd_get_8 (abfd, buf);
c906108c
SS
19236}
19237
19238static int
a1855c1d 19239read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19240{
fe1b8b76 19241 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
19242}
19243
19244static unsigned int
a1855c1d 19245read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19246{
fe1b8b76 19247 return bfd_get_16 (abfd, buf);
c906108c
SS
19248}
19249
21ae7a4d 19250static int
a1855c1d 19251read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19252{
19253 return bfd_get_signed_16 (abfd, buf);
19254}
19255
c906108c 19256static unsigned int
a1855c1d 19257read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19258{
fe1b8b76 19259 return bfd_get_32 (abfd, buf);
c906108c
SS
19260}
19261
21ae7a4d 19262static int
a1855c1d 19263read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19264{
19265 return bfd_get_signed_32 (abfd, buf);
19266}
19267
93311388 19268static ULONGEST
a1855c1d 19269read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19270{
fe1b8b76 19271 return bfd_get_64 (abfd, buf);
c906108c
SS
19272}
19273
19274static CORE_ADDR
d521ce57 19275read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 19276 unsigned int *bytes_read)
c906108c 19277{
e7c27a73 19278 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19279 CORE_ADDR retval = 0;
19280
107d2387 19281 if (cu_header->signed_addr_p)
c906108c 19282 {
107d2387
AC
19283 switch (cu_header->addr_size)
19284 {
19285 case 2:
fe1b8b76 19286 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
19287 break;
19288 case 4:
fe1b8b76 19289 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
19290 break;
19291 case 8:
fe1b8b76 19292 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
19293 break;
19294 default:
8e65ff28 19295 internal_error (__FILE__, __LINE__,
e2e0b3e5 19296 _("read_address: bad switch, signed [in module %s]"),
659b0389 19297 bfd_get_filename (abfd));
107d2387
AC
19298 }
19299 }
19300 else
19301 {
19302 switch (cu_header->addr_size)
19303 {
19304 case 2:
fe1b8b76 19305 retval = bfd_get_16 (abfd, buf);
107d2387
AC
19306 break;
19307 case 4:
fe1b8b76 19308 retval = bfd_get_32 (abfd, buf);
107d2387
AC
19309 break;
19310 case 8:
fe1b8b76 19311 retval = bfd_get_64 (abfd, buf);
107d2387
AC
19312 break;
19313 default:
8e65ff28 19314 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
19315 _("read_address: bad switch, "
19316 "unsigned [in module %s]"),
659b0389 19317 bfd_get_filename (abfd));
107d2387 19318 }
c906108c 19319 }
64367e0a 19320
107d2387
AC
19321 *bytes_read = cu_header->addr_size;
19322 return retval;
c906108c
SS
19323}
19324
f7ef9339 19325/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
19326 specification allows the initial length to take up either 4 bytes
19327 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19328 bytes describe the length and all offsets will be 8 bytes in length
19329 instead of 4.
19330
f7ef9339
KB
19331 An older, non-standard 64-bit format is also handled by this
19332 function. The older format in question stores the initial length
19333 as an 8-byte quantity without an escape value. Lengths greater
19334 than 2^32 aren't very common which means that the initial 4 bytes
19335 is almost always zero. Since a length value of zero doesn't make
19336 sense for the 32-bit format, this initial zero can be considered to
19337 be an escape value which indicates the presence of the older 64-bit
19338 format. As written, the code can't detect (old format) lengths
917c78fc
MK
19339 greater than 4GB. If it becomes necessary to handle lengths
19340 somewhat larger than 4GB, we could allow other small values (such
19341 as the non-sensical values of 1, 2, and 3) to also be used as
19342 escape values indicating the presence of the old format.
f7ef9339 19343
917c78fc
MK
19344 The value returned via bytes_read should be used to increment the
19345 relevant pointer after calling read_initial_length().
c764a876 19346
613e1657
KB
19347 [ Note: read_initial_length() and read_offset() are based on the
19348 document entitled "DWARF Debugging Information Format", revision
f7ef9339 19349 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
19350 from:
19351
f7ef9339 19352 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 19353
613e1657
KB
19354 This document is only a draft and is subject to change. (So beware.)
19355
f7ef9339 19356 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
19357 determined empirically by examining 64-bit ELF files produced by
19358 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
19359
19360 - Kevin, July 16, 2002
613e1657
KB
19361 ] */
19362
19363static LONGEST
d521ce57 19364read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 19365{
fe1b8b76 19366 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 19367
dd373385 19368 if (length == 0xffffffff)
613e1657 19369 {
fe1b8b76 19370 length = bfd_get_64 (abfd, buf + 4);
613e1657 19371 *bytes_read = 12;
613e1657 19372 }
dd373385 19373 else if (length == 0)
f7ef9339 19374 {
dd373385 19375 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 19376 length = bfd_get_64 (abfd, buf);
f7ef9339 19377 *bytes_read = 8;
f7ef9339 19378 }
613e1657
KB
19379 else
19380 {
19381 *bytes_read = 4;
613e1657
KB
19382 }
19383
c764a876
DE
19384 return length;
19385}
dd373385 19386
c764a876
DE
19387/* Cover function for read_initial_length.
19388 Returns the length of the object at BUF, and stores the size of the
19389 initial length in *BYTES_READ and stores the size that offsets will be in
19390 *OFFSET_SIZE.
19391 If the initial length size is not equivalent to that specified in
19392 CU_HEADER then issue a complaint.
19393 This is useful when reading non-comp-unit headers. */
dd373385 19394
c764a876 19395static LONGEST
d521ce57 19396read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
19397 const struct comp_unit_head *cu_header,
19398 unsigned int *bytes_read,
19399 unsigned int *offset_size)
19400{
19401 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19402
19403 gdb_assert (cu_header->initial_length_size == 4
19404 || cu_header->initial_length_size == 8
19405 || cu_header->initial_length_size == 12);
19406
19407 if (cu_header->initial_length_size != *bytes_read)
b98664d3 19408 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 19409
c764a876 19410 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 19411 return length;
613e1657
KB
19412}
19413
19414/* Read an offset from the data stream. The size of the offset is
917c78fc 19415 given by cu_header->offset_size. */
613e1657
KB
19416
19417static LONGEST
d521ce57
TT
19418read_offset (bfd *abfd, const gdb_byte *buf,
19419 const struct comp_unit_head *cu_header,
891d2f0b 19420 unsigned int *bytes_read)
c764a876
DE
19421{
19422 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 19423
c764a876
DE
19424 *bytes_read = cu_header->offset_size;
19425 return offset;
19426}
19427
19428/* Read an offset from the data stream. */
19429
19430static LONGEST
d521ce57 19431read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
19432{
19433 LONGEST retval = 0;
19434
c764a876 19435 switch (offset_size)
613e1657
KB
19436 {
19437 case 4:
fe1b8b76 19438 retval = bfd_get_32 (abfd, buf);
613e1657
KB
19439 break;
19440 case 8:
fe1b8b76 19441 retval = bfd_get_64 (abfd, buf);
613e1657
KB
19442 break;
19443 default:
8e65ff28 19444 internal_error (__FILE__, __LINE__,
c764a876 19445 _("read_offset_1: bad switch [in module %s]"),
659b0389 19446 bfd_get_filename (abfd));
613e1657
KB
19447 }
19448
917c78fc 19449 return retval;
613e1657
KB
19450}
19451
d521ce57
TT
19452static const gdb_byte *
19453read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
19454{
19455 /* If the size of a host char is 8 bits, we can return a pointer
19456 to the buffer, otherwise we have to copy the data to a buffer
19457 allocated on the temporary obstack. */
4bdf3d34 19458 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 19459 return buf;
c906108c
SS
19460}
19461
d521ce57
TT
19462static const char *
19463read_direct_string (bfd *abfd, const gdb_byte *buf,
19464 unsigned int *bytes_read_ptr)
c906108c
SS
19465{
19466 /* If the size of a host char is 8 bits, we can return a pointer
19467 to the string, otherwise we have to copy the string to a buffer
19468 allocated on the temporary obstack. */
4bdf3d34 19469 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
19470 if (*buf == '\0')
19471 {
19472 *bytes_read_ptr = 1;
19473 return NULL;
19474 }
d521ce57
TT
19475 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19476 return (const char *) buf;
4bdf3d34
JJ
19477}
19478
43988095
JK
19479/* Return pointer to string at section SECT offset STR_OFFSET with error
19480 reporting strings FORM_NAME and SECT_NAME. */
19481
d521ce57 19482static const char *
ed2dc618
SM
19483read_indirect_string_at_offset_from (struct objfile *objfile,
19484 bfd *abfd, LONGEST str_offset,
43988095
JK
19485 struct dwarf2_section_info *sect,
19486 const char *form_name,
19487 const char *sect_name)
19488{
ed2dc618 19489 dwarf2_read_section (objfile, sect);
43988095
JK
19490 if (sect->buffer == NULL)
19491 error (_("%s used without %s section [in module %s]"),
19492 form_name, sect_name, bfd_get_filename (abfd));
19493 if (str_offset >= sect->size)
19494 error (_("%s pointing outside of %s section [in module %s]"),
19495 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 19496 gdb_assert (HOST_CHAR_BIT == 8);
43988095 19497 if (sect->buffer[str_offset] == '\0')
4bdf3d34 19498 return NULL;
43988095
JK
19499 return (const char *) (sect->buffer + str_offset);
19500}
19501
19502/* Return pointer to string at .debug_str offset STR_OFFSET. */
19503
19504static const char *
ed2dc618
SM
19505read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19506 bfd *abfd, LONGEST str_offset)
43988095 19507{
ed2dc618
SM
19508 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19509 abfd, str_offset,
43988095
JK
19510 &dwarf2_per_objfile->str,
19511 "DW_FORM_strp", ".debug_str");
19512}
19513
19514/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19515
19516static const char *
ed2dc618
SM
19517read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19518 bfd *abfd, LONGEST str_offset)
43988095 19519{
ed2dc618
SM
19520 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19521 abfd, str_offset,
43988095
JK
19522 &dwarf2_per_objfile->line_str,
19523 "DW_FORM_line_strp",
19524 ".debug_line_str");
c906108c
SS
19525}
19526
36586728
TT
19527/* Read a string at offset STR_OFFSET in the .debug_str section from
19528 the .dwz file DWZ. Throw an error if the offset is too large. If
19529 the string consists of a single NUL byte, return NULL; otherwise
19530 return a pointer to the string. */
19531
d521ce57 19532static const char *
ed2dc618
SM
19533read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19534 LONGEST str_offset)
36586728 19535{
ed2dc618 19536 dwarf2_read_section (objfile, &dwz->str);
36586728
TT
19537
19538 if (dwz->str.buffer == NULL)
19539 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19540 "section [in module %s]"),
19541 bfd_get_filename (dwz->dwz_bfd));
19542 if (str_offset >= dwz->str.size)
19543 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19544 ".debug_str section [in module %s]"),
19545 bfd_get_filename (dwz->dwz_bfd));
19546 gdb_assert (HOST_CHAR_BIT == 8);
19547 if (dwz->str.buffer[str_offset] == '\0')
19548 return NULL;
d521ce57 19549 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
19550}
19551
43988095
JK
19552/* Return pointer to string at .debug_str offset as read from BUF.
19553 BUF is assumed to be in a compilation unit described by CU_HEADER.
19554 Return *BYTES_READ_PTR count of bytes read from BUF. */
19555
d521ce57 19556static const char *
ed2dc618
SM
19557read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19558 const gdb_byte *buf,
cf2c3c16
TT
19559 const struct comp_unit_head *cu_header,
19560 unsigned int *bytes_read_ptr)
19561{
19562 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19563
ed2dc618 19564 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
cf2c3c16
TT
19565}
19566
43988095
JK
19567/* Return pointer to string at .debug_line_str offset as read from BUF.
19568 BUF is assumed to be in a compilation unit described by CU_HEADER.
19569 Return *BYTES_READ_PTR count of bytes read from BUF. */
19570
19571static const char *
ed2dc618
SM
19572read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19573 bfd *abfd, const gdb_byte *buf,
43988095
JK
19574 const struct comp_unit_head *cu_header,
19575 unsigned int *bytes_read_ptr)
19576{
19577 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19578
ed2dc618
SM
19579 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19580 str_offset);
43988095
JK
19581}
19582
19583ULONGEST
d521ce57 19584read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 19585 unsigned int *bytes_read_ptr)
c906108c 19586{
12df843f 19587 ULONGEST result;
ce5d95e1 19588 unsigned int num_read;
870f88f7 19589 int shift;
c906108c
SS
19590 unsigned char byte;
19591
19592 result = 0;
19593 shift = 0;
19594 num_read = 0;
c906108c
SS
19595 while (1)
19596 {
fe1b8b76 19597 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19598 buf++;
19599 num_read++;
12df843f 19600 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
19601 if ((byte & 128) == 0)
19602 {
19603 break;
19604 }
19605 shift += 7;
19606 }
19607 *bytes_read_ptr = num_read;
19608 return result;
19609}
19610
12df843f 19611static LONGEST
d521ce57
TT
19612read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19613 unsigned int *bytes_read_ptr)
c906108c 19614{
12df843f 19615 LONGEST result;
870f88f7 19616 int shift, num_read;
c906108c
SS
19617 unsigned char byte;
19618
19619 result = 0;
19620 shift = 0;
c906108c 19621 num_read = 0;
c906108c
SS
19622 while (1)
19623 {
fe1b8b76 19624 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19625 buf++;
19626 num_read++;
12df843f 19627 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
19628 shift += 7;
19629 if ((byte & 128) == 0)
19630 {
19631 break;
19632 }
19633 }
77e0b926 19634 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 19635 result |= -(((LONGEST) 1) << shift);
c906108c
SS
19636 *bytes_read_ptr = num_read;
19637 return result;
19638}
19639
3019eac3
DE
19640/* Given index ADDR_INDEX in .debug_addr, fetch the value.
19641 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19642 ADDR_SIZE is the size of addresses from the CU header. */
19643
19644static CORE_ADDR
ed2dc618
SM
19645read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19646 unsigned int addr_index, ULONGEST addr_base, int addr_size)
3019eac3
DE
19647{
19648 struct objfile *objfile = dwarf2_per_objfile->objfile;
19649 bfd *abfd = objfile->obfd;
19650 const gdb_byte *info_ptr;
19651
19652 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19653 if (dwarf2_per_objfile->addr.buffer == NULL)
19654 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 19655 objfile_name (objfile));
3019eac3
DE
19656 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19657 error (_("DW_FORM_addr_index pointing outside of "
19658 ".debug_addr section [in module %s]"),
4262abfb 19659 objfile_name (objfile));
3019eac3
DE
19660 info_ptr = (dwarf2_per_objfile->addr.buffer
19661 + addr_base + addr_index * addr_size);
19662 if (addr_size == 4)
19663 return bfd_get_32 (abfd, info_ptr);
19664 else
19665 return bfd_get_64 (abfd, info_ptr);
19666}
19667
19668/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19669
19670static CORE_ADDR
19671read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19672{
518817b3
SM
19673 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19674 cu->addr_base, cu->header.addr_size);
3019eac3
DE
19675}
19676
19677/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19678
19679static CORE_ADDR
d521ce57 19680read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
19681 unsigned int *bytes_read)
19682{
518817b3 19683 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
3019eac3
DE
19684 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19685
19686 return read_addr_index (cu, addr_index);
19687}
19688
19689/* Data structure to pass results from dwarf2_read_addr_index_reader
19690 back to dwarf2_read_addr_index. */
19691
19692struct dwarf2_read_addr_index_data
19693{
19694 ULONGEST addr_base;
19695 int addr_size;
19696};
19697
19698/* die_reader_func for dwarf2_read_addr_index. */
19699
19700static void
19701dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 19702 const gdb_byte *info_ptr,
3019eac3
DE
19703 struct die_info *comp_unit_die,
19704 int has_children,
19705 void *data)
19706{
19707 struct dwarf2_cu *cu = reader->cu;
19708 struct dwarf2_read_addr_index_data *aidata =
19709 (struct dwarf2_read_addr_index_data *) data;
19710
19711 aidata->addr_base = cu->addr_base;
19712 aidata->addr_size = cu->header.addr_size;
19713}
19714
19715/* Given an index in .debug_addr, fetch the value.
19716 NOTE: This can be called during dwarf expression evaluation,
19717 long after the debug information has been read, and thus per_cu->cu
19718 may no longer exist. */
19719
19720CORE_ADDR
19721dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19722 unsigned int addr_index)
19723{
ed2dc618 19724 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3
DE
19725 struct dwarf2_cu *cu = per_cu->cu;
19726 ULONGEST addr_base;
19727 int addr_size;
19728
3019eac3
DE
19729 /* We need addr_base and addr_size.
19730 If we don't have PER_CU->cu, we have to get it.
19731 Nasty, but the alternative is storing the needed info in PER_CU,
19732 which at this point doesn't seem justified: it's not clear how frequently
19733 it would get used and it would increase the size of every PER_CU.
19734 Entry points like dwarf2_per_cu_addr_size do a similar thing
19735 so we're not in uncharted territory here.
19736 Alas we need to be a bit more complicated as addr_base is contained
19737 in the DIE.
19738
19739 We don't need to read the entire CU(/TU).
19740 We just need the header and top level die.
a1b64ce1 19741
3019eac3 19742 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 19743 For now we skip this optimization. */
3019eac3
DE
19744
19745 if (cu != NULL)
19746 {
19747 addr_base = cu->addr_base;
19748 addr_size = cu->header.addr_size;
19749 }
19750 else
19751 {
19752 struct dwarf2_read_addr_index_data aidata;
19753
a1b64ce1
DE
19754 /* Note: We can't use init_cutu_and_read_dies_simple here,
19755 we need addr_base. */
58f0c718 19756 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
a1b64ce1 19757 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
19758 addr_base = aidata.addr_base;
19759 addr_size = aidata.addr_size;
19760 }
19761
ed2dc618
SM
19762 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19763 addr_size);
3019eac3
DE
19764}
19765
57d63ce2
DE
19766/* Given a DW_FORM_GNU_str_index, fetch the string.
19767 This is only used by the Fission support. */
3019eac3 19768
d521ce57 19769static const char *
342587c4 19770read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3 19771{
ed2dc618 19772 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
19773 struct dwarf2_per_objfile *dwarf2_per_objfile
19774 = cu->per_cu->dwarf2_per_objfile;
3019eac3 19775 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 19776 const char *objf_name = objfile_name (objfile);
3019eac3 19777 bfd *abfd = objfile->obfd;
73869dc2
DE
19778 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19779 struct dwarf2_section_info *str_offsets_section =
19780 &reader->dwo_file->sections.str_offsets;
d521ce57 19781 const gdb_byte *info_ptr;
3019eac3 19782 ULONGEST str_offset;
57d63ce2 19783 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 19784
73869dc2
DE
19785 dwarf2_read_section (objfile, str_section);
19786 dwarf2_read_section (objfile, str_offsets_section);
19787 if (str_section->buffer == NULL)
57d63ce2 19788 error (_("%s used without .debug_str.dwo section"
9d8780f0
SM
19789 " in CU at offset %s [in module %s]"),
19790 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19791 if (str_offsets_section->buffer == NULL)
57d63ce2 19792 error (_("%s used without .debug_str_offsets.dwo section"
9d8780f0
SM
19793 " in CU at offset %s [in module %s]"),
19794 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19795 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 19796 error (_("%s pointing outside of .debug_str_offsets.dwo"
9d8780f0
SM
19797 " section in CU at offset %s [in module %s]"),
19798 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19799 info_ptr = (str_offsets_section->buffer
3019eac3
DE
19800 + str_index * cu->header.offset_size);
19801 if (cu->header.offset_size == 4)
19802 str_offset = bfd_get_32 (abfd, info_ptr);
19803 else
19804 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 19805 if (str_offset >= str_section->size)
57d63ce2 19806 error (_("Offset from %s pointing outside of"
9d8780f0
SM
19807 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19808 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19809 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
19810}
19811
3019eac3
DE
19812/* Return the length of an LEB128 number in BUF. */
19813
19814static int
19815leb128_size (const gdb_byte *buf)
19816{
19817 const gdb_byte *begin = buf;
19818 gdb_byte byte;
19819
19820 while (1)
19821 {
19822 byte = *buf++;
19823 if ((byte & 128) == 0)
19824 return buf - begin;
19825 }
19826}
19827
c906108c 19828static void
e142c38c 19829set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
19830{
19831 switch (lang)
19832 {
19833 case DW_LANG_C89:
76bee0cc 19834 case DW_LANG_C99:
0cfd832f 19835 case DW_LANG_C11:
c906108c 19836 case DW_LANG_C:
d1be3247 19837 case DW_LANG_UPC:
e142c38c 19838 cu->language = language_c;
c906108c 19839 break;
9c37b5ae 19840 case DW_LANG_Java:
c906108c 19841 case DW_LANG_C_plus_plus:
0cfd832f
MW
19842 case DW_LANG_C_plus_plus_11:
19843 case DW_LANG_C_plus_plus_14:
e142c38c 19844 cu->language = language_cplus;
c906108c 19845 break;
6aecb9c2
JB
19846 case DW_LANG_D:
19847 cu->language = language_d;
19848 break;
c906108c
SS
19849 case DW_LANG_Fortran77:
19850 case DW_LANG_Fortran90:
b21b22e0 19851 case DW_LANG_Fortran95:
f7de9aab
MW
19852 case DW_LANG_Fortran03:
19853 case DW_LANG_Fortran08:
e142c38c 19854 cu->language = language_fortran;
c906108c 19855 break;
a766d390
DE
19856 case DW_LANG_Go:
19857 cu->language = language_go;
19858 break;
c906108c 19859 case DW_LANG_Mips_Assembler:
e142c38c 19860 cu->language = language_asm;
c906108c
SS
19861 break;
19862 case DW_LANG_Ada83:
8aaf0b47 19863 case DW_LANG_Ada95:
bc5f45f8
JB
19864 cu->language = language_ada;
19865 break;
72019c9c
GM
19866 case DW_LANG_Modula2:
19867 cu->language = language_m2;
19868 break;
fe8e67fd
PM
19869 case DW_LANG_Pascal83:
19870 cu->language = language_pascal;
19871 break;
22566fbd
DJ
19872 case DW_LANG_ObjC:
19873 cu->language = language_objc;
19874 break;
c44af4eb
TT
19875 case DW_LANG_Rust:
19876 case DW_LANG_Rust_old:
19877 cu->language = language_rust;
19878 break;
c906108c
SS
19879 case DW_LANG_Cobol74:
19880 case DW_LANG_Cobol85:
c906108c 19881 default:
e142c38c 19882 cu->language = language_minimal;
c906108c
SS
19883 break;
19884 }
e142c38c 19885 cu->language_defn = language_def (cu->language);
c906108c
SS
19886}
19887
19888/* Return the named attribute or NULL if not there. */
19889
19890static struct attribute *
e142c38c 19891dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 19892{
a48e046c 19893 for (;;)
c906108c 19894 {
a48e046c
TT
19895 unsigned int i;
19896 struct attribute *spec = NULL;
19897
19898 for (i = 0; i < die->num_attrs; ++i)
19899 {
19900 if (die->attrs[i].name == name)
19901 return &die->attrs[i];
19902 if (die->attrs[i].name == DW_AT_specification
19903 || die->attrs[i].name == DW_AT_abstract_origin)
19904 spec = &die->attrs[i];
19905 }
19906
19907 if (!spec)
19908 break;
c906108c 19909
f2f0e013 19910 die = follow_die_ref (die, spec, &cu);
f2f0e013 19911 }
c5aa993b 19912
c906108c
SS
19913 return NULL;
19914}
19915
348e048f
DE
19916/* Return the named attribute or NULL if not there,
19917 but do not follow DW_AT_specification, etc.
19918 This is for use in contexts where we're reading .debug_types dies.
19919 Following DW_AT_specification, DW_AT_abstract_origin will take us
19920 back up the chain, and we want to go down. */
19921
19922static struct attribute *
45e58e77 19923dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
19924{
19925 unsigned int i;
19926
19927 for (i = 0; i < die->num_attrs; ++i)
19928 if (die->attrs[i].name == name)
19929 return &die->attrs[i];
19930
19931 return NULL;
19932}
19933
7d45c7c3
KB
19934/* Return the string associated with a string-typed attribute, or NULL if it
19935 is either not found or is of an incorrect type. */
19936
19937static const char *
19938dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19939{
19940 struct attribute *attr;
19941 const char *str = NULL;
19942
19943 attr = dwarf2_attr (die, name, cu);
19944
19945 if (attr != NULL)
19946 {
43988095 19947 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
19948 || attr->form == DW_FORM_string
19949 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 19950 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
19951 str = DW_STRING (attr);
19952 else
b98664d3 19953 complaint (_("string type expected for attribute %s for "
9d8780f0
SM
19954 "DIE at %s in module %s"),
19955 dwarf_attr_name (name), sect_offset_str (die->sect_off),
518817b3 19956 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7d45c7c3
KB
19957 }
19958
19959 return str;
19960}
19961
05cf31d1
JB
19962/* Return non-zero iff the attribute NAME is defined for the given DIE,
19963 and holds a non-zero value. This function should only be used for
2dc7f7b3 19964 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
19965
19966static int
19967dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19968{
19969 struct attribute *attr = dwarf2_attr (die, name, cu);
19970
19971 return (attr && DW_UNSND (attr));
19972}
19973
3ca72b44 19974static int
e142c38c 19975die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 19976{
05cf31d1
JB
19977 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19978 which value is non-zero. However, we have to be careful with
19979 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19980 (via dwarf2_flag_true_p) follows this attribute. So we may
19981 end up accidently finding a declaration attribute that belongs
19982 to a different DIE referenced by the specification attribute,
19983 even though the given DIE does not have a declaration attribute. */
19984 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19985 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
19986}
19987
63d06c5c 19988/* Return the die giving the specification for DIE, if there is
f2f0e013 19989 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
19990 containing the return value on output. If there is no
19991 specification, but there is an abstract origin, that is
19992 returned. */
63d06c5c
DC
19993
19994static struct die_info *
f2f0e013 19995die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 19996{
f2f0e013
DJ
19997 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19998 *spec_cu);
63d06c5c 19999
edb3359d
DJ
20000 if (spec_attr == NULL)
20001 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20002
63d06c5c
DC
20003 if (spec_attr == NULL)
20004 return NULL;
20005 else
f2f0e013 20006 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 20007}
c906108c 20008
527f3840
JK
20009/* Stub for free_line_header to match void * callback types. */
20010
20011static void
20012free_line_header_voidp (void *arg)
20013{
9a3c8263 20014 struct line_header *lh = (struct line_header *) arg;
527f3840 20015
fff8551c 20016 delete lh;
527f3840
JK
20017}
20018
fff8551c
PA
20019void
20020line_header::add_include_dir (const char *include_dir)
c906108c 20021{
27e0867f 20022 if (dwarf_line_debug >= 2)
fff8551c
PA
20023 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20024 include_dirs.size () + 1, include_dir);
27e0867f 20025
fff8551c 20026 include_dirs.push_back (include_dir);
debd256d 20027}
6e70227d 20028
fff8551c
PA
20029void
20030line_header::add_file_name (const char *name,
ecfb656c 20031 dir_index d_index,
fff8551c
PA
20032 unsigned int mod_time,
20033 unsigned int length)
debd256d 20034{
27e0867f
DE
20035 if (dwarf_line_debug >= 2)
20036 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 20037 (unsigned) file_names.size () + 1, name);
27e0867f 20038
ecfb656c 20039 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 20040}
6e70227d 20041
83769d0b 20042/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
20043
20044static struct dwarf2_section_info *
20045get_debug_line_section (struct dwarf2_cu *cu)
20046{
20047 struct dwarf2_section_info *section;
518817b3
SM
20048 struct dwarf2_per_objfile *dwarf2_per_objfile
20049 = cu->per_cu->dwarf2_per_objfile;
36586728
TT
20050
20051 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20052 DWO file. */
20053 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20054 section = &cu->dwo_unit->dwo_file->sections.line;
20055 else if (cu->per_cu->is_dwz)
20056 {
ed2dc618 20057 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
20058
20059 section = &dwz->line;
20060 }
20061 else
20062 section = &dwarf2_per_objfile->line;
20063
20064 return section;
20065}
20066
43988095
JK
20067/* Read directory or file name entry format, starting with byte of
20068 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20069 entries count and the entries themselves in the described entry
20070 format. */
20071
20072static void
ed2dc618
SM
20073read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20074 bfd *abfd, const gdb_byte **bufp,
43988095
JK
20075 struct line_header *lh,
20076 const struct comp_unit_head *cu_header,
20077 void (*callback) (struct line_header *lh,
20078 const char *name,
ecfb656c 20079 dir_index d_index,
43988095
JK
20080 unsigned int mod_time,
20081 unsigned int length))
20082{
20083 gdb_byte format_count, formati;
20084 ULONGEST data_count, datai;
20085 const gdb_byte *buf = *bufp;
20086 const gdb_byte *format_header_data;
43988095
JK
20087 unsigned int bytes_read;
20088
20089 format_count = read_1_byte (abfd, buf);
20090 buf += 1;
20091 format_header_data = buf;
20092 for (formati = 0; formati < format_count; formati++)
20093 {
20094 read_unsigned_leb128 (abfd, buf, &bytes_read);
20095 buf += bytes_read;
20096 read_unsigned_leb128 (abfd, buf, &bytes_read);
20097 buf += bytes_read;
20098 }
20099
20100 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20101 buf += bytes_read;
20102 for (datai = 0; datai < data_count; datai++)
20103 {
20104 const gdb_byte *format = format_header_data;
20105 struct file_entry fe;
20106
43988095
JK
20107 for (formati = 0; formati < format_count; formati++)
20108 {
ecfb656c 20109 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20110 format += bytes_read;
43988095 20111
ecfb656c 20112 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20113 format += bytes_read;
ecfb656c
PA
20114
20115 gdb::optional<const char *> string;
20116 gdb::optional<unsigned int> uint;
20117
43988095
JK
20118 switch (form)
20119 {
20120 case DW_FORM_string:
ecfb656c 20121 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
20122 buf += bytes_read;
20123 break;
20124
20125 case DW_FORM_line_strp:
ed2dc618
SM
20126 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20127 abfd, buf,
ecfb656c
PA
20128 cu_header,
20129 &bytes_read));
43988095
JK
20130 buf += bytes_read;
20131 break;
20132
20133 case DW_FORM_data1:
ecfb656c 20134 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
20135 buf += 1;
20136 break;
20137
20138 case DW_FORM_data2:
ecfb656c 20139 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
20140 buf += 2;
20141 break;
20142
20143 case DW_FORM_data4:
ecfb656c 20144 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
20145 buf += 4;
20146 break;
20147
20148 case DW_FORM_data8:
ecfb656c 20149 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
20150 buf += 8;
20151 break;
20152
20153 case DW_FORM_udata:
ecfb656c 20154 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
20155 buf += bytes_read;
20156 break;
20157
20158 case DW_FORM_block:
20159 /* It is valid only for DW_LNCT_timestamp which is ignored by
20160 current GDB. */
20161 break;
20162 }
ecfb656c
PA
20163
20164 switch (content_type)
20165 {
20166 case DW_LNCT_path:
20167 if (string.has_value ())
20168 fe.name = *string;
20169 break;
20170 case DW_LNCT_directory_index:
20171 if (uint.has_value ())
20172 fe.d_index = (dir_index) *uint;
20173 break;
20174 case DW_LNCT_timestamp:
20175 if (uint.has_value ())
20176 fe.mod_time = *uint;
20177 break;
20178 case DW_LNCT_size:
20179 if (uint.has_value ())
20180 fe.length = *uint;
20181 break;
20182 case DW_LNCT_MD5:
20183 break;
20184 default:
b98664d3 20185 complaint (_("Unknown format content type %s"),
ecfb656c
PA
20186 pulongest (content_type));
20187 }
43988095
JK
20188 }
20189
ecfb656c 20190 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
20191 }
20192
20193 *bufp = buf;
20194}
20195
debd256d 20196/* Read the statement program header starting at OFFSET in
3019eac3 20197 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 20198 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
20199 Returns NULL if there is a problem reading the header, e.g., if it
20200 has a version we don't understand.
debd256d
JB
20201
20202 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
20203 the returned object point into the dwarf line section buffer,
20204 and must not be freed. */
ae2de4f8 20205
fff8551c 20206static line_header_up
9c541725 20207dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 20208{
d521ce57 20209 const gdb_byte *line_ptr;
c764a876 20210 unsigned int bytes_read, offset_size;
debd256d 20211 int i;
d521ce57 20212 const char *cur_dir, *cur_file;
3019eac3
DE
20213 struct dwarf2_section_info *section;
20214 bfd *abfd;
518817b3
SM
20215 struct dwarf2_per_objfile *dwarf2_per_objfile
20216 = cu->per_cu->dwarf2_per_objfile;
3019eac3 20217
36586728 20218 section = get_debug_line_section (cu);
3019eac3
DE
20219 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20220 if (section->buffer == NULL)
debd256d 20221 {
3019eac3 20222 if (cu->dwo_unit && cu->per_cu->is_debug_types)
b98664d3 20223 complaint (_("missing .debug_line.dwo section"));
3019eac3 20224 else
b98664d3 20225 complaint (_("missing .debug_line section"));
debd256d
JB
20226 return 0;
20227 }
20228
fceca515
DE
20229 /* We can't do this until we know the section is non-empty.
20230 Only then do we know we have such a section. */
a32a8923 20231 abfd = get_section_bfd_owner (section);
fceca515 20232
a738430d
MK
20233 /* Make sure that at least there's room for the total_length field.
20234 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 20235 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 20236 {
4d3c2250 20237 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20238 return 0;
20239 }
20240
fff8551c 20241 line_header_up lh (new line_header ());
debd256d 20242
9c541725 20243 lh->sect_off = sect_off;
527f3840
JK
20244 lh->offset_in_dwz = cu->per_cu->is_dwz;
20245
9c541725 20246 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 20247
a738430d 20248 /* Read in the header. */
6e70227d 20249 lh->total_length =
c764a876
DE
20250 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20251 &bytes_read, &offset_size);
debd256d 20252 line_ptr += bytes_read;
3019eac3 20253 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 20254 {
4d3c2250 20255 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20256 return 0;
20257 }
20258 lh->statement_program_end = line_ptr + lh->total_length;
20259 lh->version = read_2_bytes (abfd, line_ptr);
20260 line_ptr += 2;
43988095 20261 if (lh->version > 5)
cd366ee8
DE
20262 {
20263 /* This is a version we don't understand. The format could have
20264 changed in ways we don't handle properly so just punt. */
b98664d3 20265 complaint (_("unsupported version in .debug_line section"));
cd366ee8
DE
20266 return NULL;
20267 }
43988095
JK
20268 if (lh->version >= 5)
20269 {
20270 gdb_byte segment_selector_size;
20271
20272 /* Skip address size. */
20273 read_1_byte (abfd, line_ptr);
20274 line_ptr += 1;
20275
20276 segment_selector_size = read_1_byte (abfd, line_ptr);
20277 line_ptr += 1;
20278 if (segment_selector_size != 0)
20279 {
b98664d3 20280 complaint (_("unsupported segment selector size %u "
43988095
JK
20281 "in .debug_line section"),
20282 segment_selector_size);
20283 return NULL;
20284 }
20285 }
c764a876
DE
20286 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20287 line_ptr += offset_size;
debd256d
JB
20288 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20289 line_ptr += 1;
2dc7f7b3
TT
20290 if (lh->version >= 4)
20291 {
20292 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20293 line_ptr += 1;
20294 }
20295 else
20296 lh->maximum_ops_per_instruction = 1;
20297
20298 if (lh->maximum_ops_per_instruction == 0)
20299 {
20300 lh->maximum_ops_per_instruction = 1;
b98664d3 20301 complaint (_("invalid maximum_ops_per_instruction "
3e43a32a 20302 "in `.debug_line' section"));
2dc7f7b3
TT
20303 }
20304
debd256d
JB
20305 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20306 line_ptr += 1;
20307 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20308 line_ptr += 1;
20309 lh->line_range = read_1_byte (abfd, line_ptr);
20310 line_ptr += 1;
20311 lh->opcode_base = read_1_byte (abfd, line_ptr);
20312 line_ptr += 1;
fff8551c 20313 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
20314
20315 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20316 for (i = 1; i < lh->opcode_base; ++i)
20317 {
20318 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20319 line_ptr += 1;
20320 }
20321
43988095 20322 if (lh->version >= 5)
debd256d 20323 {
43988095 20324 /* Read directory table. */
ed2dc618
SM
20325 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20326 &cu->header,
fff8551c 20327 [] (struct line_header *lh, const char *name,
ecfb656c 20328 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20329 unsigned int length)
20330 {
20331 lh->add_include_dir (name);
20332 });
debd256d 20333
43988095 20334 /* Read file name table. */
ed2dc618
SM
20335 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20336 &cu->header,
fff8551c 20337 [] (struct line_header *lh, const char *name,
ecfb656c 20338 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20339 unsigned int length)
20340 {
ecfb656c 20341 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 20342 });
43988095
JK
20343 }
20344 else
debd256d 20345 {
43988095
JK
20346 /* Read directory table. */
20347 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20348 {
20349 line_ptr += bytes_read;
fff8551c 20350 lh->add_include_dir (cur_dir);
43988095 20351 }
debd256d
JB
20352 line_ptr += bytes_read;
20353
43988095
JK
20354 /* Read file name table. */
20355 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20356 {
ecfb656c
PA
20357 unsigned int mod_time, length;
20358 dir_index d_index;
43988095
JK
20359
20360 line_ptr += bytes_read;
ecfb656c 20361 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
20362 line_ptr += bytes_read;
20363 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20364 line_ptr += bytes_read;
20365 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20366 line_ptr += bytes_read;
20367
ecfb656c 20368 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
20369 }
20370 line_ptr += bytes_read;
debd256d 20371 }
6e70227d 20372 lh->statement_program_start = line_ptr;
debd256d 20373
3019eac3 20374 if (line_ptr > (section->buffer + section->size))
b98664d3 20375 complaint (_("line number info header doesn't "
3e43a32a 20376 "fit in `.debug_line' section"));
debd256d 20377
debd256d
JB
20378 return lh;
20379}
c906108c 20380
c6da4cef
DE
20381/* Subroutine of dwarf_decode_lines to simplify it.
20382 Return the file name of the psymtab for included file FILE_INDEX
20383 in line header LH of PST.
20384 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
c89b44cd
TT
20385 If space for the result is malloc'd, *NAME_HOLDER will be set.
20386 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
c6da4cef 20387
d521ce57 20388static const char *
c6da4cef
DE
20389psymtab_include_file_name (const struct line_header *lh, int file_index,
20390 const struct partial_symtab *pst,
c89b44cd
TT
20391 const char *comp_dir,
20392 gdb::unique_xmalloc_ptr<char> *name_holder)
c6da4cef 20393{
8c43009f 20394 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
20395 const char *include_name = fe.name;
20396 const char *include_name_to_compare = include_name;
72b9f47f 20397 const char *pst_filename;
c6da4cef
DE
20398 int file_is_pst;
20399
8c43009f 20400 const char *dir_name = fe.include_dir (lh);
c6da4cef 20401
c89b44cd 20402 gdb::unique_xmalloc_ptr<char> hold_compare;
c6da4cef
DE
20403 if (!IS_ABSOLUTE_PATH (include_name)
20404 && (dir_name != NULL || comp_dir != NULL))
20405 {
20406 /* Avoid creating a duplicate psymtab for PST.
20407 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20408 Before we do the comparison, however, we need to account
20409 for DIR_NAME and COMP_DIR.
20410 First prepend dir_name (if non-NULL). If we still don't
20411 have an absolute path prepend comp_dir (if non-NULL).
20412 However, the directory we record in the include-file's
20413 psymtab does not contain COMP_DIR (to match the
20414 corresponding symtab(s)).
20415
20416 Example:
20417
20418 bash$ cd /tmp
20419 bash$ gcc -g ./hello.c
20420 include_name = "hello.c"
20421 dir_name = "."
20422 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
20423 DW_AT_name = "./hello.c"
20424
20425 */
c6da4cef
DE
20426
20427 if (dir_name != NULL)
20428 {
c89b44cd
TT
20429 name_holder->reset (concat (dir_name, SLASH_STRING,
20430 include_name, (char *) NULL));
20431 include_name = name_holder->get ();
c6da4cef 20432 include_name_to_compare = include_name;
c6da4cef
DE
20433 }
20434 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20435 {
c89b44cd
TT
20436 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20437 include_name, (char *) NULL));
20438 include_name_to_compare = hold_compare.get ();
c6da4cef
DE
20439 }
20440 }
20441
20442 pst_filename = pst->filename;
c89b44cd 20443 gdb::unique_xmalloc_ptr<char> copied_name;
c6da4cef
DE
20444 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20445 {
c89b44cd
TT
20446 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20447 pst_filename, (char *) NULL));
20448 pst_filename = copied_name.get ();
c6da4cef
DE
20449 }
20450
1e3fad37 20451 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 20452
c6da4cef
DE
20453 if (file_is_pst)
20454 return NULL;
20455 return include_name;
20456}
20457
d9b3de22
DE
20458/* State machine to track the state of the line number program. */
20459
6f77053d 20460class lnp_state_machine
d9b3de22 20461{
6f77053d
PA
20462public:
20463 /* Initialize a machine state for the start of a line number
20464 program. */
804d2729
TT
20465 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20466 bool record_lines_p);
6f77053d 20467
8c43009f
PA
20468 file_entry *current_file ()
20469 {
20470 /* lh->file_names is 0-based, but the file name numbers in the
20471 statement program are 1-based. */
6f77053d
PA
20472 return m_line_header->file_name_at (m_file);
20473 }
20474
20475 /* Record the line in the state machine. END_SEQUENCE is true if
20476 we're processing the end of a sequence. */
20477 void record_line (bool end_sequence);
20478
7ab6656f
OJ
20479 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20480 nop-out rest of the lines in this sequence. */
6f77053d
PA
20481 void check_line_address (struct dwarf2_cu *cu,
20482 const gdb_byte *line_ptr,
7ab6656f 20483 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
6f77053d
PA
20484
20485 void handle_set_discriminator (unsigned int discriminator)
20486 {
20487 m_discriminator = discriminator;
20488 m_line_has_non_zero_discriminator |= discriminator != 0;
20489 }
20490
20491 /* Handle DW_LNE_set_address. */
20492 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20493 {
20494 m_op_index = 0;
20495 address += baseaddr;
20496 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20497 }
20498
20499 /* Handle DW_LNS_advance_pc. */
20500 void handle_advance_pc (CORE_ADDR adjust);
20501
20502 /* Handle a special opcode. */
20503 void handle_special_opcode (unsigned char op_code);
20504
20505 /* Handle DW_LNS_advance_line. */
20506 void handle_advance_line (int line_delta)
20507 {
20508 advance_line (line_delta);
20509 }
20510
20511 /* Handle DW_LNS_set_file. */
20512 void handle_set_file (file_name_index file);
20513
20514 /* Handle DW_LNS_negate_stmt. */
20515 void handle_negate_stmt ()
20516 {
20517 m_is_stmt = !m_is_stmt;
20518 }
20519
20520 /* Handle DW_LNS_const_add_pc. */
20521 void handle_const_add_pc ();
20522
20523 /* Handle DW_LNS_fixed_advance_pc. */
20524 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20525 {
20526 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20527 m_op_index = 0;
20528 }
20529
20530 /* Handle DW_LNS_copy. */
20531 void handle_copy ()
20532 {
20533 record_line (false);
20534 m_discriminator = 0;
20535 }
20536
20537 /* Handle DW_LNE_end_sequence. */
20538 void handle_end_sequence ()
20539 {
804d2729 20540 m_currently_recording_lines = true;
6f77053d
PA
20541 }
20542
20543private:
20544 /* Advance the line by LINE_DELTA. */
20545 void advance_line (int line_delta)
20546 {
20547 m_line += line_delta;
20548
20549 if (line_delta != 0)
20550 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
20551 }
20552
804d2729
TT
20553 struct dwarf2_cu *m_cu;
20554
6f77053d
PA
20555 gdbarch *m_gdbarch;
20556
20557 /* True if we're recording lines.
20558 Otherwise we're building partial symtabs and are just interested in
20559 finding include files mentioned by the line number program. */
20560 bool m_record_lines_p;
20561
8c43009f 20562 /* The line number header. */
6f77053d 20563 line_header *m_line_header;
8c43009f 20564
6f77053d
PA
20565 /* These are part of the standard DWARF line number state machine,
20566 and initialized according to the DWARF spec. */
d9b3de22 20567
6f77053d 20568 unsigned char m_op_index = 0;
8c43009f 20569 /* The line table index (1-based) of the current file. */
6f77053d
PA
20570 file_name_index m_file = (file_name_index) 1;
20571 unsigned int m_line = 1;
20572
20573 /* These are initialized in the constructor. */
20574
20575 CORE_ADDR m_address;
20576 bool m_is_stmt;
20577 unsigned int m_discriminator;
d9b3de22
DE
20578
20579 /* Additional bits of state we need to track. */
20580
20581 /* The last file that we called dwarf2_start_subfile for.
20582 This is only used for TLLs. */
6f77053d 20583 unsigned int m_last_file = 0;
d9b3de22 20584 /* The last file a line number was recorded for. */
6f77053d 20585 struct subfile *m_last_subfile = NULL;
d9b3de22 20586
804d2729
TT
20587 /* When true, record the lines we decode. */
20588 bool m_currently_recording_lines = false;
d9b3de22
DE
20589
20590 /* The last line number that was recorded, used to coalesce
20591 consecutive entries for the same line. This can happen, for
20592 example, when discriminators are present. PR 17276. */
6f77053d
PA
20593 unsigned int m_last_line = 0;
20594 bool m_line_has_non_zero_discriminator = false;
8c43009f 20595};
d9b3de22 20596
6f77053d
PA
20597void
20598lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20599{
20600 CORE_ADDR addr_adj = (((m_op_index + adjust)
20601 / m_line_header->maximum_ops_per_instruction)
20602 * m_line_header->minimum_instruction_length);
20603 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20604 m_op_index = ((m_op_index + adjust)
20605 % m_line_header->maximum_ops_per_instruction);
20606}
d9b3de22 20607
6f77053d
PA
20608void
20609lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 20610{
6f77053d
PA
20611 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20612 CORE_ADDR addr_adj = (((m_op_index
20613 + (adj_opcode / m_line_header->line_range))
20614 / m_line_header->maximum_ops_per_instruction)
20615 * m_line_header->minimum_instruction_length);
20616 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20617 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20618 % m_line_header->maximum_ops_per_instruction);
d9b3de22 20619
6f77053d
PA
20620 int line_delta = (m_line_header->line_base
20621 + (adj_opcode % m_line_header->line_range));
20622 advance_line (line_delta);
20623 record_line (false);
20624 m_discriminator = 0;
20625}
d9b3de22 20626
6f77053d
PA
20627void
20628lnp_state_machine::handle_set_file (file_name_index file)
20629{
20630 m_file = file;
20631
20632 const file_entry *fe = current_file ();
20633 if (fe == NULL)
20634 dwarf2_debug_line_missing_file_complaint ();
20635 else if (m_record_lines_p)
20636 {
20637 const char *dir = fe->include_dir (m_line_header);
20638
804d2729 20639 m_last_subfile = m_cu->builder->get_current_subfile ();
6f77053d 20640 m_line_has_non_zero_discriminator = m_discriminator != 0;
804d2729 20641 dwarf2_start_subfile (m_cu, fe->name, dir);
6f77053d
PA
20642 }
20643}
20644
20645void
20646lnp_state_machine::handle_const_add_pc ()
20647{
20648 CORE_ADDR adjust
20649 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20650
20651 CORE_ADDR addr_adj
20652 = (((m_op_index + adjust)
20653 / m_line_header->maximum_ops_per_instruction)
20654 * m_line_header->minimum_instruction_length);
20655
20656 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20657 m_op_index = ((m_op_index + adjust)
20658 % m_line_header->maximum_ops_per_instruction);
20659}
d9b3de22 20660
a05a36a5
DE
20661/* Return non-zero if we should add LINE to the line number table.
20662 LINE is the line to add, LAST_LINE is the last line that was added,
20663 LAST_SUBFILE is the subfile for LAST_LINE.
20664 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20665 had a non-zero discriminator.
20666
20667 We have to be careful in the presence of discriminators.
20668 E.g., for this line:
20669
20670 for (i = 0; i < 100000; i++);
20671
20672 clang can emit four line number entries for that one line,
20673 each with a different discriminator.
20674 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20675
20676 However, we want gdb to coalesce all four entries into one.
20677 Otherwise the user could stepi into the middle of the line and
20678 gdb would get confused about whether the pc really was in the
20679 middle of the line.
20680
20681 Things are further complicated by the fact that two consecutive
20682 line number entries for the same line is a heuristic used by gcc
20683 to denote the end of the prologue. So we can't just discard duplicate
20684 entries, we have to be selective about it. The heuristic we use is
20685 that we only collapse consecutive entries for the same line if at least
20686 one of those entries has a non-zero discriminator. PR 17276.
20687
20688 Note: Addresses in the line number state machine can never go backwards
20689 within one sequence, thus this coalescing is ok. */
20690
20691static int
804d2729
TT
20692dwarf_record_line_p (struct dwarf2_cu *cu,
20693 unsigned int line, unsigned int last_line,
a05a36a5
DE
20694 int line_has_non_zero_discriminator,
20695 struct subfile *last_subfile)
20696{
804d2729 20697 if (cu->builder->get_current_subfile () != last_subfile)
a05a36a5
DE
20698 return 1;
20699 if (line != last_line)
20700 return 1;
20701 /* Same line for the same file that we've seen already.
20702 As a last check, for pr 17276, only record the line if the line
20703 has never had a non-zero discriminator. */
20704 if (!line_has_non_zero_discriminator)
20705 return 1;
20706 return 0;
20707}
20708
804d2729
TT
20709/* Use the CU's builder to record line number LINE beginning at
20710 address ADDRESS in the line table of subfile SUBFILE. */
252a6764
DE
20711
20712static void
d9b3de22
DE
20713dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20714 unsigned int line, CORE_ADDR address,
804d2729 20715 struct dwarf2_cu *cu)
252a6764
DE
20716{
20717 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20718
27e0867f
DE
20719 if (dwarf_line_debug)
20720 {
20721 fprintf_unfiltered (gdb_stdlog,
20722 "Recording line %u, file %s, address %s\n",
20723 line, lbasename (subfile->name),
20724 paddress (gdbarch, address));
20725 }
20726
804d2729
TT
20727 if (cu != nullptr)
20728 cu->builder->record_line (subfile, line, addr);
252a6764
DE
20729}
20730
20731/* Subroutine of dwarf_decode_lines_1 to simplify it.
20732 Mark the end of a set of line number records.
d9b3de22 20733 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
20734 If SUBFILE is NULL the request is ignored. */
20735
20736static void
20737dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
804d2729 20738 CORE_ADDR address, struct dwarf2_cu *cu)
252a6764 20739{
27e0867f
DE
20740 if (subfile == NULL)
20741 return;
20742
20743 if (dwarf_line_debug)
20744 {
20745 fprintf_unfiltered (gdb_stdlog,
20746 "Finishing current line, file %s, address %s\n",
20747 lbasename (subfile->name),
20748 paddress (gdbarch, address));
20749 }
20750
804d2729 20751 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
d9b3de22
DE
20752}
20753
6f77053d
PA
20754void
20755lnp_state_machine::record_line (bool end_sequence)
d9b3de22 20756{
d9b3de22
DE
20757 if (dwarf_line_debug)
20758 {
20759 fprintf_unfiltered (gdb_stdlog,
20760 "Processing actual line %u: file %u,"
20761 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
20762 m_line, to_underlying (m_file),
20763 paddress (m_gdbarch, m_address),
20764 m_is_stmt, m_discriminator);
d9b3de22
DE
20765 }
20766
6f77053d 20767 file_entry *fe = current_file ();
8c43009f
PA
20768
20769 if (fe == NULL)
d9b3de22
DE
20770 dwarf2_debug_line_missing_file_complaint ();
20771 /* For now we ignore lines not starting on an instruction boundary.
20772 But not when processing end_sequence for compatibility with the
20773 previous version of the code. */
6f77053d 20774 else if (m_op_index == 0 || end_sequence)
d9b3de22 20775 {
8c43009f 20776 fe->included_p = 1;
6f77053d 20777 if (m_record_lines_p && m_is_stmt)
d9b3de22 20778 {
804d2729
TT
20779 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20780 || end_sequence)
d9b3de22 20781 {
804d2729
TT
20782 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20783 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22
DE
20784 }
20785
20786 if (!end_sequence)
20787 {
804d2729 20788 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
6f77053d
PA
20789 m_line_has_non_zero_discriminator,
20790 m_last_subfile))
d9b3de22 20791 {
804d2729
TT
20792 dwarf_record_line_1 (m_gdbarch,
20793 m_cu->builder->get_current_subfile (),
6f77053d 20794 m_line, m_address,
804d2729 20795 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22 20796 }
804d2729 20797 m_last_subfile = m_cu->builder->get_current_subfile ();
6f77053d 20798 m_last_line = m_line;
d9b3de22
DE
20799 }
20800 }
20801 }
20802}
20803
804d2729
TT
20804lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20805 line_header *lh, bool record_lines_p)
d9b3de22 20806{
804d2729 20807 m_cu = cu;
6f77053d
PA
20808 m_gdbarch = arch;
20809 m_record_lines_p = record_lines_p;
20810 m_line_header = lh;
d9b3de22 20811
804d2729 20812 m_currently_recording_lines = true;
d9b3de22 20813
d9b3de22
DE
20814 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20815 was a line entry for it so that the backend has a chance to adjust it
20816 and also record it in case it needs it. This is currently used by MIPS
20817 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
20818 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20819 m_is_stmt = lh->default_is_stmt;
20820 m_discriminator = 0;
252a6764
DE
20821}
20822
6f77053d
PA
20823void
20824lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20825 const gdb_byte *line_ptr,
7ab6656f 20826 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
924c2928 20827{
7ab6656f
OJ
20828 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20829 the pc range of the CU. However, we restrict the test to only ADDRESS
20830 values of zero to preserve GDB's previous behaviour which is to handle
20831 the specific case of a function being GC'd by the linker. */
924c2928 20832
7ab6656f 20833 if (address == 0 && address < unrelocated_lowpc)
924c2928
DE
20834 {
20835 /* This line table is for a function which has been
20836 GCd by the linker. Ignore it. PR gdb/12528 */
20837
518817b3 20838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
924c2928
DE
20839 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20840
b98664d3 20841 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
924c2928 20842 line_offset, objfile_name (objfile));
804d2729
TT
20843 m_currently_recording_lines = false;
20844 /* Note: m_currently_recording_lines is left as false until we see
20845 DW_LNE_end_sequence. */
924c2928
DE
20846 }
20847}
20848
f3f5162e 20849/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
20850 Process the line number information in LH.
20851 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20852 program in order to set included_p for every referenced header. */
debd256d 20853
c906108c 20854static void
43f3e411
DE
20855dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20856 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 20857{
d521ce57
TT
20858 const gdb_byte *line_ptr, *extended_end;
20859 const gdb_byte *line_end;
a8c50c1f 20860 unsigned int bytes_read, extended_len;
699ca60a 20861 unsigned char op_code, extended_op;
e142c38c 20862 CORE_ADDR baseaddr;
518817b3 20863 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 20864 bfd *abfd = objfile->obfd;
fbf65064 20865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
20866 /* True if we're recording line info (as opposed to building partial
20867 symtabs and just interested in finding include files mentioned by
20868 the line number program). */
20869 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
20870
20871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 20872
debd256d
JB
20873 line_ptr = lh->statement_program_start;
20874 line_end = lh->statement_program_end;
c906108c
SS
20875
20876 /* Read the statement sequences until there's nothing left. */
20877 while (line_ptr < line_end)
20878 {
6f77053d
PA
20879 /* The DWARF line number program state machine. Reset the state
20880 machine at the start of each sequence. */
804d2729 20881 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
6f77053d 20882 bool end_sequence = false;
d9b3de22 20883
8c43009f 20884 if (record_lines_p)
c906108c 20885 {
8c43009f
PA
20886 /* Start a subfile for the current file of the state
20887 machine. */
20888 const file_entry *fe = state_machine.current_file ();
20889
20890 if (fe != NULL)
804d2729 20891 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
c906108c
SS
20892 }
20893
a738430d 20894 /* Decode the table. */
d9b3de22 20895 while (line_ptr < line_end && !end_sequence)
c906108c
SS
20896 {
20897 op_code = read_1_byte (abfd, line_ptr);
20898 line_ptr += 1;
9aa1fe7e 20899
debd256d 20900 if (op_code >= lh->opcode_base)
6e70227d 20901 {
8e07a239 20902 /* Special opcode. */
6f77053d 20903 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
20904 }
20905 else switch (op_code)
c906108c
SS
20906 {
20907 case DW_LNS_extended_op:
3e43a32a
MS
20908 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20909 &bytes_read);
473b7be6 20910 line_ptr += bytes_read;
a8c50c1f 20911 extended_end = line_ptr + extended_len;
c906108c
SS
20912 extended_op = read_1_byte (abfd, line_ptr);
20913 line_ptr += 1;
20914 switch (extended_op)
20915 {
20916 case DW_LNE_end_sequence:
6f77053d
PA
20917 state_machine.handle_end_sequence ();
20918 end_sequence = true;
c906108c
SS
20919 break;
20920 case DW_LNE_set_address:
d9b3de22
DE
20921 {
20922 CORE_ADDR address
20923 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 20924 line_ptr += bytes_read;
6f77053d
PA
20925
20926 state_machine.check_line_address (cu, line_ptr,
7ab6656f 20927 lowpc - baseaddr, address);
6f77053d 20928 state_machine.handle_set_address (baseaddr, address);
d9b3de22 20929 }
c906108c
SS
20930 break;
20931 case DW_LNE_define_file:
debd256d 20932 {
d521ce57 20933 const char *cur_file;
ecfb656c
PA
20934 unsigned int mod_time, length;
20935 dir_index dindex;
6e70227d 20936
3e43a32a
MS
20937 cur_file = read_direct_string (abfd, line_ptr,
20938 &bytes_read);
debd256d 20939 line_ptr += bytes_read;
ecfb656c 20940 dindex = (dir_index)
debd256d
JB
20941 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20942 line_ptr += bytes_read;
20943 mod_time =
20944 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20945 line_ptr += bytes_read;
20946 length =
20947 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20948 line_ptr += bytes_read;
ecfb656c 20949 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 20950 }
c906108c 20951 break;
d0c6ba3d 20952 case DW_LNE_set_discriminator:
6f77053d
PA
20953 {
20954 /* The discriminator is not interesting to the
20955 debugger; just ignore it. We still need to
20956 check its value though:
20957 if there are consecutive entries for the same
20958 (non-prologue) line we want to coalesce them.
20959 PR 17276. */
20960 unsigned int discr
20961 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20962 line_ptr += bytes_read;
20963
20964 state_machine.handle_set_discriminator (discr);
20965 }
d0c6ba3d 20966 break;
c906108c 20967 default:
b98664d3 20968 complaint (_("mangled .debug_line section"));
debd256d 20969 return;
c906108c 20970 }
a8c50c1f
DJ
20971 /* Make sure that we parsed the extended op correctly. If e.g.
20972 we expected a different address size than the producer used,
20973 we may have read the wrong number of bytes. */
20974 if (line_ptr != extended_end)
20975 {
b98664d3 20976 complaint (_("mangled .debug_line section"));
a8c50c1f
DJ
20977 return;
20978 }
c906108c
SS
20979 break;
20980 case DW_LNS_copy:
6f77053d 20981 state_machine.handle_copy ();
c906108c
SS
20982 break;
20983 case DW_LNS_advance_pc:
2dc7f7b3
TT
20984 {
20985 CORE_ADDR adjust
20986 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 20987 line_ptr += bytes_read;
6f77053d
PA
20988
20989 state_machine.handle_advance_pc (adjust);
2dc7f7b3 20990 }
c906108c
SS
20991 break;
20992 case DW_LNS_advance_line:
a05a36a5
DE
20993 {
20994 int line_delta
20995 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 20996 line_ptr += bytes_read;
6f77053d
PA
20997
20998 state_machine.handle_advance_line (line_delta);
a05a36a5 20999 }
c906108c
SS
21000 break;
21001 case DW_LNS_set_file:
d9b3de22 21002 {
6f77053d 21003 file_name_index file
ecfb656c
PA
21004 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21005 &bytes_read);
d9b3de22 21006 line_ptr += bytes_read;
8c43009f 21007
6f77053d 21008 state_machine.handle_set_file (file);
d9b3de22 21009 }
c906108c
SS
21010 break;
21011 case DW_LNS_set_column:
0ad93d4f 21012 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
21013 line_ptr += bytes_read;
21014 break;
21015 case DW_LNS_negate_stmt:
6f77053d 21016 state_machine.handle_negate_stmt ();
c906108c
SS
21017 break;
21018 case DW_LNS_set_basic_block:
c906108c 21019 break;
c2c6d25f
JM
21020 /* Add to the address register of the state machine the
21021 address increment value corresponding to special opcode
a738430d
MK
21022 255. I.e., this value is scaled by the minimum
21023 instruction length since special opcode 255 would have
b021a221 21024 scaled the increment. */
c906108c 21025 case DW_LNS_const_add_pc:
6f77053d 21026 state_machine.handle_const_add_pc ();
c906108c
SS
21027 break;
21028 case DW_LNS_fixed_advance_pc:
3e29f34a 21029 {
6f77053d 21030 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 21031 line_ptr += 2;
6f77053d
PA
21032
21033 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 21034 }
c906108c 21035 break;
9aa1fe7e 21036 default:
a738430d
MK
21037 {
21038 /* Unknown standard opcode, ignore it. */
9aa1fe7e 21039 int i;
a738430d 21040
debd256d 21041 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
21042 {
21043 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21044 line_ptr += bytes_read;
21045 }
21046 }
c906108c
SS
21047 }
21048 }
d9b3de22
DE
21049
21050 if (!end_sequence)
21051 dwarf2_debug_line_missing_end_sequence_complaint ();
21052
21053 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21054 in which case we still finish recording the last line). */
6f77053d 21055 state_machine.record_line (true);
c906108c 21056 }
f3f5162e
DE
21057}
21058
21059/* Decode the Line Number Program (LNP) for the given line_header
21060 structure and CU. The actual information extracted and the type
21061 of structures created from the LNP depends on the value of PST.
21062
21063 1. If PST is NULL, then this procedure uses the data from the program
21064 to create all necessary symbol tables, and their linetables.
21065
21066 2. If PST is not NULL, this procedure reads the program to determine
21067 the list of files included by the unit represented by PST, and
21068 builds all the associated partial symbol tables.
21069
21070 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21071 It is used for relative paths in the line table.
21072 NOTE: When processing partial symtabs (pst != NULL),
21073 comp_dir == pst->dirname.
21074
21075 NOTE: It is important that psymtabs have the same file name (via strcmp)
21076 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21077 symtab we don't use it in the name of the psymtabs we create.
21078 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
21079 A good testcase for this is mb-inline.exp.
21080
527f3840
JK
21081 LOWPC is the lowest address in CU (or 0 if not known).
21082
21083 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21084 for its PC<->lines mapping information. Otherwise only the filename
21085 table is read in. */
f3f5162e
DE
21086
21087static void
21088dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 21089 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 21090 CORE_ADDR lowpc, int decode_mapping)
f3f5162e 21091{
518817b3 21092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 21093 const int decode_for_pst_p = (pst != NULL);
f3f5162e 21094
527f3840
JK
21095 if (decode_mapping)
21096 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
21097
21098 if (decode_for_pst_p)
21099 {
21100 int file_index;
21101
21102 /* Now that we're done scanning the Line Header Program, we can
21103 create the psymtab of each included file. */
fff8551c 21104 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
21105 if (lh->file_names[file_index].included_p == 1)
21106 {
c89b44cd 21107 gdb::unique_xmalloc_ptr<char> name_holder;
d521ce57 21108 const char *include_name =
c89b44cd
TT
21109 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21110 &name_holder);
c6da4cef 21111 if (include_name != NULL)
aaa75496
JB
21112 dwarf2_create_include_psymtab (include_name, pst, objfile);
21113 }
21114 }
cb1df416
DJ
21115 else
21116 {
21117 /* Make sure a symtab is created for every file, even files
21118 which contain only variables (i.e. no code with associated
21119 line numbers). */
804d2729 21120 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
cb1df416 21121 int i;
cb1df416 21122
fff8551c 21123 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 21124 {
8c43009f 21125 file_entry &fe = lh->file_names[i];
9a619af0 21126
804d2729 21127 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
cb1df416 21128
804d2729 21129 if (cu->builder->get_current_subfile ()->symtab == NULL)
43f3e411 21130 {
804d2729
TT
21131 cu->builder->get_current_subfile ()->symtab
21132 = allocate_symtab (cust,
21133 cu->builder->get_current_subfile ()->name);
43f3e411 21134 }
804d2729 21135 fe.symtab = cu->builder->get_current_subfile ()->symtab;
cb1df416
DJ
21136 }
21137 }
c906108c
SS
21138}
21139
21140/* Start a subfile for DWARF. FILENAME is the name of the file and
21141 DIRNAME the name of the source directory which contains FILENAME
4d663531 21142 or NULL if not known.
c906108c
SS
21143 This routine tries to keep line numbers from identical absolute and
21144 relative file names in a common subfile.
21145
21146 Using the `list' example from the GDB testsuite, which resides in
21147 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21148 of /srcdir/list0.c yields the following debugging information for list0.c:
21149
c5aa993b 21150 DW_AT_name: /srcdir/list0.c
4d663531 21151 DW_AT_comp_dir: /compdir
357e46e7 21152 files.files[0].name: list0.h
c5aa993b 21153 files.files[0].dir: /srcdir
357e46e7 21154 files.files[1].name: list0.c
c5aa993b 21155 files.files[1].dir: /srcdir
c906108c
SS
21156
21157 The line number information for list0.c has to end up in a single
4f1520fb
FR
21158 subfile, so that `break /srcdir/list0.c:1' works as expected.
21159 start_subfile will ensure that this happens provided that we pass the
21160 concatenation of files.files[1].dir and files.files[1].name as the
21161 subfile's name. */
c906108c
SS
21162
21163static void
804d2729
TT
21164dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21165 const char *dirname)
c906108c 21166{
d521ce57 21167 char *copy = NULL;
4f1520fb 21168
4d663531 21169 /* In order not to lose the line information directory,
4f1520fb
FR
21170 we concatenate it to the filename when it makes sense.
21171 Note that the Dwarf3 standard says (speaking of filenames in line
21172 information): ``The directory index is ignored for file names
21173 that represent full path names''. Thus ignoring dirname in the
21174 `else' branch below isn't an issue. */
c906108c 21175
d5166ae1 21176 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
21177 {
21178 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21179 filename = copy;
21180 }
c906108c 21181
804d2729 21182 cu->builder->start_subfile (filename);
4f1520fb 21183
d521ce57
TT
21184 if (copy != NULL)
21185 xfree (copy);
c906108c
SS
21186}
21187
804d2729
TT
21188/* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21189 buildsym_compunit constructor. */
f4dc4d17 21190
43f3e411 21191static struct compunit_symtab *
f4dc4d17 21192dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 21193 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 21194{
804d2729 21195 gdb_assert (cu->builder == nullptr);
43f3e411 21196
804d2729
TT
21197 cu->builder.reset (new struct buildsym_compunit
21198 (cu->per_cu->dwarf2_per_objfile->objfile,
21199 name, comp_dir, cu->language, low_pc));
93b8bea4 21200
804d2729
TT
21201 cu->list_in_scope = cu->builder->get_file_symbols ();
21202
21203 cu->builder->record_debugformat ("DWARF 2");
21204 cu->builder->record_producer (cu->producer);
f4dc4d17 21205
4d4ec4e5 21206 cu->processing_has_namespace_info = 0;
43f3e411 21207
804d2729 21208 return cu->builder->get_compunit_symtab ();
f4dc4d17
DE
21209}
21210
4c2df51b
DJ
21211static void
21212var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 21213 struct dwarf2_cu *cu)
4c2df51b 21214{
518817b3 21215 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e7c27a73
DJ
21216 struct comp_unit_head *cu_header = &cu->header;
21217
4c2df51b
DJ
21218 /* NOTE drow/2003-01-30: There used to be a comment and some special
21219 code here to turn a symbol with DW_AT_external and a
21220 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21221 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21222 with some versions of binutils) where shared libraries could have
21223 relocations against symbols in their debug information - the
21224 minimal symbol would have the right address, but the debug info
21225 would not. It's no longer necessary, because we will explicitly
21226 apply relocations when we read in the debug information now. */
21227
21228 /* A DW_AT_location attribute with no contents indicates that a
21229 variable has been optimized away. */
21230 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21231 {
f1e6e072 21232 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
21233 return;
21234 }
21235
21236 /* Handle one degenerate form of location expression specially, to
21237 preserve GDB's previous behavior when section offsets are
3019eac3
DE
21238 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21239 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
21240
21241 if (attr_form_is_block (attr)
3019eac3
DE
21242 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21243 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21244 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21245 && (DW_BLOCK (attr)->size
21246 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 21247 {
891d2f0b 21248 unsigned int dummy;
4c2df51b 21249
3019eac3
DE
21250 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21251 SYMBOL_VALUE_ADDRESS (sym) =
21252 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21253 else
21254 SYMBOL_VALUE_ADDRESS (sym) =
21255 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 21256 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
21257 fixup_symbol_section (sym, objfile);
21258 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21259 SYMBOL_SECTION (sym));
4c2df51b
DJ
21260 return;
21261 }
21262
21263 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21264 expression evaluator, and use LOC_COMPUTED only when necessary
21265 (i.e. when the value of a register or memory location is
21266 referenced, or a thread-local block, etc.). Then again, it might
21267 not be worthwhile. I'm assuming that it isn't unless performance
21268 or memory numbers show me otherwise. */
21269
f1e6e072 21270 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 21271
f1e6e072 21272 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 21273 cu->has_loclist = 1;
4c2df51b
DJ
21274}
21275
c906108c
SS
21276/* Given a pointer to a DWARF information entry, figure out if we need
21277 to make a symbol table entry for it, and if so, create a new entry
21278 and return a pointer to it.
21279 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
21280 used the passed type.
21281 If SPACE is not NULL, use it to hold the new symbol. If it is
21282 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
21283
21284static struct symbol *
5e2db402
TT
21285new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21286 struct symbol *space)
c906108c 21287{
518817b3
SM
21288 struct dwarf2_per_objfile *dwarf2_per_objfile
21289 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 21290 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 21291 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 21292 struct symbol *sym = NULL;
15d034d0 21293 const char *name;
c906108c
SS
21294 struct attribute *attr = NULL;
21295 struct attribute *attr2 = NULL;
e142c38c 21296 CORE_ADDR baseaddr;
e37fd15a
SW
21297 struct pending **list_to_add = NULL;
21298
edb3359d 21299 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
21300
21301 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 21302
94af9270 21303 name = dwarf2_name (die, cu);
c906108c
SS
21304 if (name)
21305 {
94af9270 21306 const char *linkagename;
34eaf542 21307 int suppress_add = 0;
94af9270 21308
34eaf542
TT
21309 if (space)
21310 sym = space;
21311 else
e623cf5d 21312 sym = allocate_symbol (objfile);
c906108c 21313 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
21314
21315 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 21316 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
21317 linkagename = dwarf2_physname (name, die, cu);
21318 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 21319
f55ee35c
JK
21320 /* Fortran does not have mangling standard and the mangling does differ
21321 between gfortran, iFort etc. */
21322 if (cu->language == language_fortran
b250c185 21323 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 21324 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 21325 dwarf2_full_name (name, die, cu),
29df156d 21326 NULL);
f55ee35c 21327
c906108c 21328 /* Default assumptions.
c5aa993b 21329 Use the passed type or decode it from the die. */
176620f1 21330 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 21331 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
21332 if (type != NULL)
21333 SYMBOL_TYPE (sym) = type;
21334 else
e7c27a73 21335 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
21336 attr = dwarf2_attr (die,
21337 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21338 cu);
c906108c
SS
21339 if (attr)
21340 {
21341 SYMBOL_LINE (sym) = DW_UNSND (attr);
21342 }
cb1df416 21343
edb3359d
DJ
21344 attr = dwarf2_attr (die,
21345 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21346 cu);
cb1df416
DJ
21347 if (attr)
21348 {
ecfb656c 21349 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 21350 struct file_entry *fe;
9a619af0 21351
ecfb656c
PA
21352 if (cu->line_header != NULL)
21353 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
21354 else
21355 fe = NULL;
21356
21357 if (fe == NULL)
b98664d3 21358 complaint (_("file index out of range"));
8c43009f
PA
21359 else
21360 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
21361 }
21362
c906108c
SS
21363 switch (die->tag)
21364 {
21365 case DW_TAG_label:
e142c38c 21366 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 21367 if (attr)
3e29f34a
MR
21368 {
21369 CORE_ADDR addr;
21370
21371 addr = attr_value_as_address (attr);
21372 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21373 SYMBOL_VALUE_ADDRESS (sym) = addr;
21374 }
0f5238ed
TT
21375 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21376 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 21377 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
380618d6 21378 dw2_add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
21379 break;
21380 case DW_TAG_subprogram:
21381 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21382 finish_block. */
f1e6e072 21383 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 21384 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
21385 if ((attr2 && (DW_UNSND (attr2) != 0))
21386 || cu->language == language_ada)
c906108c 21387 {
2cfa0c8d
JB
21388 /* Subprograms marked external are stored as a global symbol.
21389 Ada subprograms, whether marked external or not, are always
21390 stored as a global symbol, because we want to be able to
21391 access them globally. For instance, we want to be able
21392 to break on a nested subprogram without having to
21393 specify the context. */
804d2729 21394 list_to_add = cu->builder->get_global_symbols ();
c906108c
SS
21395 }
21396 else
21397 {
e37fd15a 21398 list_to_add = cu->list_in_scope;
c906108c
SS
21399 }
21400 break;
edb3359d
DJ
21401 case DW_TAG_inlined_subroutine:
21402 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21403 finish_block. */
f1e6e072 21404 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 21405 SYMBOL_INLINED (sym) = 1;
481860b3 21406 list_to_add = cu->list_in_scope;
edb3359d 21407 break;
34eaf542
TT
21408 case DW_TAG_template_value_param:
21409 suppress_add = 1;
21410 /* Fall through. */
72929c62 21411 case DW_TAG_constant:
c906108c 21412 case DW_TAG_variable:
254e6b9e 21413 case DW_TAG_member:
0963b4bd
MS
21414 /* Compilation with minimal debug info may result in
21415 variables with missing type entries. Change the
21416 misleading `void' type to something sensible. */
c906108c 21417 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 21418 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 21419
e142c38c 21420 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
21421 /* In the case of DW_TAG_member, we should only be called for
21422 static const members. */
21423 if (die->tag == DW_TAG_member)
21424 {
3863f96c
DE
21425 /* dwarf2_add_field uses die_is_declaration,
21426 so we do the same. */
254e6b9e
DE
21427 gdb_assert (die_is_declaration (die, cu));
21428 gdb_assert (attr);
21429 }
c906108c
SS
21430 if (attr)
21431 {
e7c27a73 21432 dwarf2_const_value (attr, sym, cu);
e142c38c 21433 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 21434 if (!suppress_add)
34eaf542
TT
21435 {
21436 if (attr2 && (DW_UNSND (attr2) != 0))
804d2729 21437 list_to_add = cu->builder->get_global_symbols ();
34eaf542 21438 else
e37fd15a 21439 list_to_add = cu->list_in_scope;
34eaf542 21440 }
c906108c
SS
21441 break;
21442 }
e142c38c 21443 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
21444 if (attr)
21445 {
e7c27a73 21446 var_decode_location (attr, sym, cu);
e142c38c 21447 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
21448
21449 /* Fortran explicitly imports any global symbols to the local
21450 scope by DW_TAG_common_block. */
21451 if (cu->language == language_fortran && die->parent
21452 && die->parent->tag == DW_TAG_common_block)
21453 attr2 = NULL;
21454
caac4577
JG
21455 if (SYMBOL_CLASS (sym) == LOC_STATIC
21456 && SYMBOL_VALUE_ADDRESS (sym) == 0
21457 && !dwarf2_per_objfile->has_section_at_zero)
21458 {
21459 /* When a static variable is eliminated by the linker,
21460 the corresponding debug information is not stripped
21461 out, but the variable address is set to null;
21462 do not add such variables into symbol table. */
21463 }
21464 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 21465 {
f55ee35c
JK
21466 /* Workaround gfortran PR debug/40040 - it uses
21467 DW_AT_location for variables in -fPIC libraries which may
21468 get overriden by other libraries/executable and get
21469 a different address. Resolve it by the minimal symbol
21470 which may come from inferior's executable using copy
21471 relocation. Make this workaround only for gfortran as for
21472 other compilers GDB cannot guess the minimal symbol
21473 Fortran mangling kind. */
21474 if (cu->language == language_fortran && die->parent
21475 && die->parent->tag == DW_TAG_module
21476 && cu->producer
28586665 21477 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 21478 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 21479
1c809c68
TT
21480 /* A variable with DW_AT_external is never static,
21481 but it may be block-scoped. */
804d2729
TT
21482 list_to_add
21483 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21484 ? cu->builder->get_global_symbols ()
21485 : cu->list_in_scope);
1c809c68 21486 }
c906108c 21487 else
e37fd15a 21488 list_to_add = cu->list_in_scope;
c906108c
SS
21489 }
21490 else
21491 {
21492 /* We do not know the address of this symbol.
c5aa993b
JM
21493 If it is an external symbol and we have type information
21494 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21495 The address of the variable will then be determined from
21496 the minimal symbol table whenever the variable is
21497 referenced. */
e142c38c 21498 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
21499
21500 /* Fortran explicitly imports any global symbols to the local
21501 scope by DW_TAG_common_block. */
21502 if (cu->language == language_fortran && die->parent
21503 && die->parent->tag == DW_TAG_common_block)
21504 {
21505 /* SYMBOL_CLASS doesn't matter here because
21506 read_common_block is going to reset it. */
21507 if (!suppress_add)
21508 list_to_add = cu->list_in_scope;
21509 }
21510 else if (attr2 && (DW_UNSND (attr2) != 0)
21511 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 21512 {
0fe7935b
DJ
21513 /* A variable with DW_AT_external is never static, but it
21514 may be block-scoped. */
804d2729
TT
21515 list_to_add
21516 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21517 ? cu->builder->get_global_symbols ()
21518 : cu->list_in_scope);
0fe7935b 21519
f1e6e072 21520 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 21521 }
442ddf59
JK
21522 else if (!die_is_declaration (die, cu))
21523 {
21524 /* Use the default LOC_OPTIMIZED_OUT class. */
21525 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
21526 if (!suppress_add)
21527 list_to_add = cu->list_in_scope;
442ddf59 21528 }
c906108c
SS
21529 }
21530 break;
21531 case DW_TAG_formal_parameter:
a60f3166
TT
21532 {
21533 /* If we are inside a function, mark this as an argument. If
21534 not, we might be looking at an argument to an inlined function
21535 when we do not have enough information to show inlined frames;
21536 pretend it's a local variable in that case so that the user can
21537 still see it. */
804d2729
TT
21538 struct context_stack *curr
21539 = cu->builder->get_current_context_stack ();
a60f3166
TT
21540 if (curr != nullptr && curr->name != nullptr)
21541 SYMBOL_IS_ARGUMENT (sym) = 1;
21542 attr = dwarf2_attr (die, DW_AT_location, cu);
21543 if (attr)
21544 {
21545 var_decode_location (attr, sym, cu);
21546 }
21547 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21548 if (attr)
21549 {
21550 dwarf2_const_value (attr, sym, cu);
21551 }
f346a30d 21552
a60f3166
TT
21553 list_to_add = cu->list_in_scope;
21554 }
c906108c
SS
21555 break;
21556 case DW_TAG_unspecified_parameters:
21557 /* From varargs functions; gdb doesn't seem to have any
21558 interest in this information, so just ignore it for now.
21559 (FIXME?) */
21560 break;
34eaf542
TT
21561 case DW_TAG_template_type_param:
21562 suppress_add = 1;
21563 /* Fall through. */
c906108c 21564 case DW_TAG_class_type:
680b30c7 21565 case DW_TAG_interface_type:
c906108c
SS
21566 case DW_TAG_structure_type:
21567 case DW_TAG_union_type:
72019c9c 21568 case DW_TAG_set_type:
c906108c 21569 case DW_TAG_enumeration_type:
f1e6e072 21570 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21571 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 21572
63d06c5c 21573 {
9c37b5ae 21574 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
21575 really ever be static objects: otherwise, if you try
21576 to, say, break of a class's method and you're in a file
21577 which doesn't mention that class, it won't work unless
21578 the check for all static symbols in lookup_symbol_aux
21579 saves you. See the OtherFileClass tests in
21580 gdb.c++/namespace.exp. */
21581
e37fd15a 21582 if (!suppress_add)
34eaf542 21583 {
804d2729
TT
21584 list_to_add
21585 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21586 && cu->language == language_cplus
21587 ? cu->builder->get_global_symbols ()
21588 : cu->list_in_scope);
63d06c5c 21589
64382290 21590 /* The semantics of C++ state that "struct foo {
9c37b5ae 21591 ... }" also defines a typedef for "foo". */
64382290 21592 if (cu->language == language_cplus
45280282 21593 || cu->language == language_ada
c44af4eb
TT
21594 || cu->language == language_d
21595 || cu->language == language_rust)
64382290
TT
21596 {
21597 /* The symbol's name is already allocated along
21598 with this objfile, so we don't need to
21599 duplicate it for the type. */
21600 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21601 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21602 }
63d06c5c
DC
21603 }
21604 }
c906108c
SS
21605 break;
21606 case DW_TAG_typedef:
f1e6e072 21607 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 21608 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21609 list_to_add = cu->list_in_scope;
63d06c5c 21610 break;
c906108c 21611 case DW_TAG_base_type:
a02abb62 21612 case DW_TAG_subrange_type:
f1e6e072 21613 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21614 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21615 list_to_add = cu->list_in_scope;
c906108c
SS
21616 break;
21617 case DW_TAG_enumerator:
e142c38c 21618 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
21619 if (attr)
21620 {
e7c27a73 21621 dwarf2_const_value (attr, sym, cu);
c906108c 21622 }
63d06c5c
DC
21623 {
21624 /* NOTE: carlton/2003-11-10: See comment above in the
21625 DW_TAG_class_type, etc. block. */
21626
804d2729
TT
21627 list_to_add
21628 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21629 && cu->language == language_cplus
21630 ? cu->builder->get_global_symbols ()
21631 : cu->list_in_scope);
63d06c5c 21632 }
c906108c 21633 break;
74921315 21634 case DW_TAG_imported_declaration:
5c4e30ca 21635 case DW_TAG_namespace:
f1e6e072 21636 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
804d2729 21637 list_to_add = cu->builder->get_global_symbols ();
5c4e30ca 21638 break;
530e8392
KB
21639 case DW_TAG_module:
21640 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21641 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
804d2729 21642 list_to_add = cu->builder->get_global_symbols ();
530e8392 21643 break;
4357ac6c 21644 case DW_TAG_common_block:
f1e6e072 21645 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c 21646 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
380618d6 21647 dw2_add_symbol_to_list (sym, cu->list_in_scope);
4357ac6c 21648 break;
c906108c
SS
21649 default:
21650 /* Not a tag we recognize. Hopefully we aren't processing
21651 trash data, but since we must specifically ignore things
21652 we don't recognize, there is nothing else we should do at
0963b4bd 21653 this point. */
b98664d3 21654 complaint (_("unsupported tag: '%s'"),
4d3c2250 21655 dwarf_tag_name (die->tag));
c906108c
SS
21656 break;
21657 }
df8a16a1 21658
e37fd15a
SW
21659 if (suppress_add)
21660 {
21661 sym->hash_next = objfile->template_symbols;
21662 objfile->template_symbols = sym;
21663 list_to_add = NULL;
21664 }
21665
21666 if (list_to_add != NULL)
380618d6 21667 dw2_add_symbol_to_list (sym, list_to_add);
e37fd15a 21668
df8a16a1
DJ
21669 /* For the benefit of old versions of GCC, check for anonymous
21670 namespaces based on the demangled name. */
4d4ec4e5 21671 if (!cu->processing_has_namespace_info
94af9270 21672 && cu->language == language_cplus)
804d2729 21673 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
c906108c
SS
21674 }
21675 return (sym);
21676}
21677
98bfdba5
PA
21678/* Given an attr with a DW_FORM_dataN value in host byte order,
21679 zero-extend it as appropriate for the symbol's type. The DWARF
21680 standard (v4) is not entirely clear about the meaning of using
21681 DW_FORM_dataN for a constant with a signed type, where the type is
21682 wider than the data. The conclusion of a discussion on the DWARF
21683 list was that this is unspecified. We choose to always zero-extend
21684 because that is the interpretation long in use by GCC. */
c906108c 21685
98bfdba5 21686static gdb_byte *
ff39bb5e 21687dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 21688 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 21689{
518817b3 21690 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e17a4113
UW
21691 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21692 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
21693 LONGEST l = DW_UNSND (attr);
21694
21695 if (bits < sizeof (*value) * 8)
21696 {
21697 l &= ((LONGEST) 1 << bits) - 1;
21698 *value = l;
21699 }
21700 else if (bits == sizeof (*value) * 8)
21701 *value = l;
21702 else
21703 {
224c3ddb 21704 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
21705 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21706 return bytes;
21707 }
21708
21709 return NULL;
21710}
21711
21712/* Read a constant value from an attribute. Either set *VALUE, or if
21713 the value does not fit in *VALUE, set *BYTES - either already
21714 allocated on the objfile obstack, or newly allocated on OBSTACK,
21715 or, set *BATON, if we translated the constant to a location
21716 expression. */
21717
21718static void
ff39bb5e 21719dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
21720 const char *name, struct obstack *obstack,
21721 struct dwarf2_cu *cu,
d521ce57 21722 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
21723 struct dwarf2_locexpr_baton **baton)
21724{
518817b3 21725 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
98bfdba5 21726 struct comp_unit_head *cu_header = &cu->header;
c906108c 21727 struct dwarf_block *blk;
98bfdba5
PA
21728 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21729 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21730
21731 *value = 0;
21732 *bytes = NULL;
21733 *baton = NULL;
c906108c
SS
21734
21735 switch (attr->form)
21736 {
21737 case DW_FORM_addr:
3019eac3 21738 case DW_FORM_GNU_addr_index:
ac56253d 21739 {
ac56253d
TT
21740 gdb_byte *data;
21741
98bfdba5
PA
21742 if (TYPE_LENGTH (type) != cu_header->addr_size)
21743 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 21744 cu_header->addr_size,
98bfdba5 21745 TYPE_LENGTH (type));
ac56253d
TT
21746 /* Symbols of this form are reasonably rare, so we just
21747 piggyback on the existing location code rather than writing
21748 a new implementation of symbol_computed_ops. */
8d749320 21749 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
21750 (*baton)->per_cu = cu->per_cu;
21751 gdb_assert ((*baton)->per_cu);
ac56253d 21752
98bfdba5 21753 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 21754 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 21755 (*baton)->data = data;
ac56253d
TT
21756
21757 data[0] = DW_OP_addr;
21758 store_unsigned_integer (&data[1], cu_header->addr_size,
21759 byte_order, DW_ADDR (attr));
21760 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 21761 }
c906108c 21762 break;
4ac36638 21763 case DW_FORM_string:
93b5768b 21764 case DW_FORM_strp:
3019eac3 21765 case DW_FORM_GNU_str_index:
36586728 21766 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
21767 /* DW_STRING is already allocated on the objfile obstack, point
21768 directly to it. */
d521ce57 21769 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 21770 break;
c906108c
SS
21771 case DW_FORM_block1:
21772 case DW_FORM_block2:
21773 case DW_FORM_block4:
21774 case DW_FORM_block:
2dc7f7b3 21775 case DW_FORM_exprloc:
0224619f 21776 case DW_FORM_data16:
c906108c 21777 blk = DW_BLOCK (attr);
98bfdba5
PA
21778 if (TYPE_LENGTH (type) != blk->size)
21779 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21780 TYPE_LENGTH (type));
21781 *bytes = blk->data;
c906108c 21782 break;
2df3850c
JM
21783
21784 /* The DW_AT_const_value attributes are supposed to carry the
21785 symbol's value "represented as it would be on the target
21786 architecture." By the time we get here, it's already been
21787 converted to host endianness, so we just need to sign- or
21788 zero-extend it as appropriate. */
21789 case DW_FORM_data1:
3aef2284 21790 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 21791 break;
c906108c 21792 case DW_FORM_data2:
3aef2284 21793 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 21794 break;
c906108c 21795 case DW_FORM_data4:
3aef2284 21796 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 21797 break;
c906108c 21798 case DW_FORM_data8:
3aef2284 21799 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
21800 break;
21801
c906108c 21802 case DW_FORM_sdata:
663c44ac 21803 case DW_FORM_implicit_const:
98bfdba5 21804 *value = DW_SND (attr);
2df3850c
JM
21805 break;
21806
c906108c 21807 case DW_FORM_udata:
98bfdba5 21808 *value = DW_UNSND (attr);
c906108c 21809 break;
2df3850c 21810
c906108c 21811 default:
b98664d3 21812 complaint (_("unsupported const value attribute form: '%s'"),
4d3c2250 21813 dwarf_form_name (attr->form));
98bfdba5 21814 *value = 0;
c906108c
SS
21815 break;
21816 }
21817}
21818
2df3850c 21819
98bfdba5
PA
21820/* Copy constant value from an attribute to a symbol. */
21821
2df3850c 21822static void
ff39bb5e 21823dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 21824 struct dwarf2_cu *cu)
2df3850c 21825{
518817b3 21826 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12df843f 21827 LONGEST value;
d521ce57 21828 const gdb_byte *bytes;
98bfdba5 21829 struct dwarf2_locexpr_baton *baton;
2df3850c 21830
98bfdba5
PA
21831 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21832 SYMBOL_PRINT_NAME (sym),
21833 &objfile->objfile_obstack, cu,
21834 &value, &bytes, &baton);
2df3850c 21835
98bfdba5
PA
21836 if (baton != NULL)
21837 {
98bfdba5 21838 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 21839 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
21840 }
21841 else if (bytes != NULL)
21842 {
21843 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 21844 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
21845 }
21846 else
21847 {
21848 SYMBOL_VALUE (sym) = value;
f1e6e072 21849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 21850 }
2df3850c
JM
21851}
21852
c906108c
SS
21853/* Return the type of the die in question using its DW_AT_type attribute. */
21854
21855static struct type *
e7c27a73 21856die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21857{
c906108c 21858 struct attribute *type_attr;
c906108c 21859
e142c38c 21860 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
21861 if (!type_attr)
21862 {
518817b3 21863 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 21864 /* A missing DW_AT_type represents a void type. */
518817b3 21865 return objfile_type (objfile)->builtin_void;
c906108c 21866 }
348e048f 21867
673bfd45 21868 return lookup_die_type (die, type_attr, cu);
c906108c
SS
21869}
21870
b4ba55a1
JB
21871/* True iff CU's producer generates GNAT Ada auxiliary information
21872 that allows to find parallel types through that information instead
21873 of having to do expensive parallel lookups by type name. */
21874
21875static int
21876need_gnat_info (struct dwarf2_cu *cu)
21877{
de4cb04a
JB
21878 /* Assume that the Ada compiler was GNAT, which always produces
21879 the auxiliary information. */
21880 return (cu->language == language_ada);
b4ba55a1
JB
21881}
21882
b4ba55a1
JB
21883/* Return the auxiliary type of the die in question using its
21884 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21885 attribute is not present. */
21886
21887static struct type *
21888die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21889{
b4ba55a1 21890 struct attribute *type_attr;
b4ba55a1
JB
21891
21892 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21893 if (!type_attr)
21894 return NULL;
21895
673bfd45 21896 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
21897}
21898
21899/* If DIE has a descriptive_type attribute, then set the TYPE's
21900 descriptive type accordingly. */
21901
21902static void
21903set_descriptive_type (struct type *type, struct die_info *die,
21904 struct dwarf2_cu *cu)
21905{
21906 struct type *descriptive_type = die_descriptive_type (die, cu);
21907
21908 if (descriptive_type)
21909 {
21910 ALLOCATE_GNAT_AUX_TYPE (type);
21911 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21912 }
21913}
21914
c906108c
SS
21915/* Return the containing type of the die in question using its
21916 DW_AT_containing_type attribute. */
21917
21918static struct type *
e7c27a73 21919die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21920{
c906108c 21921 struct attribute *type_attr;
518817b3 21922 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 21923
e142c38c 21924 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
21925 if (!type_attr)
21926 error (_("Dwarf Error: Problem turning containing type into gdb type "
518817b3 21927 "[in module %s]"), objfile_name (objfile));
33ac96f0 21928
673bfd45 21929 return lookup_die_type (die, type_attr, cu);
c906108c
SS
21930}
21931
ac9ec31b
DE
21932/* Return an error marker type to use for the ill formed type in DIE/CU. */
21933
21934static struct type *
21935build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21936{
518817b3
SM
21937 struct dwarf2_per_objfile *dwarf2_per_objfile
21938 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b 21939 struct objfile *objfile = dwarf2_per_objfile->objfile;
528e1572 21940 char *saved;
ac9ec31b 21941
528e1572
SM
21942 std::string message
21943 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21944 objfile_name (objfile),
21945 sect_offset_str (cu->header.sect_off),
21946 sect_offset_str (die->sect_off));
224c3ddb 21947 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
528e1572 21948 message.c_str (), message.length ());
ac9ec31b 21949
19f392bc 21950 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
21951}
21952
673bfd45 21953/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
21954 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21955 DW_AT_containing_type.
673bfd45
DE
21956 If there is no type substitute an error marker. */
21957
c906108c 21958static struct type *
ff39bb5e 21959lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 21960 struct dwarf2_cu *cu)
c906108c 21961{
518817b3
SM
21962 struct dwarf2_per_objfile *dwarf2_per_objfile
21963 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 21964 struct objfile *objfile = dwarf2_per_objfile->objfile;
f792889a
DJ
21965 struct type *this_type;
21966
ac9ec31b
DE
21967 gdb_assert (attr->name == DW_AT_type
21968 || attr->name == DW_AT_GNAT_descriptive_type
21969 || attr->name == DW_AT_containing_type);
21970
673bfd45
DE
21971 /* First see if we have it cached. */
21972
36586728
TT
21973 if (attr->form == DW_FORM_GNU_ref_alt)
21974 {
21975 struct dwarf2_per_cu_data *per_cu;
9c541725 21976 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 21977
ed2dc618
SM
21978 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21979 dwarf2_per_objfile);
9c541725 21980 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 21981 }
7771576e 21982 else if (attr_form_is_ref (attr))
673bfd45 21983 {
9c541725 21984 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 21985
9c541725 21986 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 21987 }
55f1336d 21988 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 21989 {
ac9ec31b 21990 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 21991
ac9ec31b 21992 return get_signatured_type (die, signature, cu);
673bfd45
DE
21993 }
21994 else
21995 {
b98664d3 21996 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
9d8780f0
SM
21997 " at %s [in module %s]"),
21998 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
4262abfb 21999 objfile_name (objfile));
ac9ec31b 22000 return build_error_marker_type (cu, die);
673bfd45
DE
22001 }
22002
22003 /* If not cached we need to read it in. */
22004
22005 if (this_type == NULL)
22006 {
ac9ec31b 22007 struct die_info *type_die = NULL;
673bfd45
DE
22008 struct dwarf2_cu *type_cu = cu;
22009
7771576e 22010 if (attr_form_is_ref (attr))
ac9ec31b
DE
22011 type_die = follow_die_ref (die, attr, &type_cu);
22012 if (type_die == NULL)
22013 return build_error_marker_type (cu, die);
22014 /* If we find the type now, it's probably because the type came
3019eac3
DE
22015 from an inter-CU reference and the type's CU got expanded before
22016 ours. */
ac9ec31b 22017 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
22018 }
22019
22020 /* If we still don't have a type use an error marker. */
22021
22022 if (this_type == NULL)
ac9ec31b 22023 return build_error_marker_type (cu, die);
673bfd45 22024
f792889a 22025 return this_type;
c906108c
SS
22026}
22027
673bfd45
DE
22028/* Return the type in DIE, CU.
22029 Returns NULL for invalid types.
22030
02142a6c 22031 This first does a lookup in die_type_hash,
673bfd45
DE
22032 and only reads the die in if necessary.
22033
22034 NOTE: This can be called when reading in partial or full symbols. */
22035
f792889a 22036static struct type *
e7c27a73 22037read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22038{
f792889a
DJ
22039 struct type *this_type;
22040
22041 this_type = get_die_type (die, cu);
22042 if (this_type)
22043 return this_type;
22044
673bfd45
DE
22045 return read_type_die_1 (die, cu);
22046}
22047
22048/* Read the type in DIE, CU.
22049 Returns NULL for invalid types. */
22050
22051static struct type *
22052read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22053{
22054 struct type *this_type = NULL;
22055
c906108c
SS
22056 switch (die->tag)
22057 {
22058 case DW_TAG_class_type:
680b30c7 22059 case DW_TAG_interface_type:
c906108c
SS
22060 case DW_TAG_structure_type:
22061 case DW_TAG_union_type:
f792889a 22062 this_type = read_structure_type (die, cu);
c906108c
SS
22063 break;
22064 case DW_TAG_enumeration_type:
f792889a 22065 this_type = read_enumeration_type (die, cu);
c906108c
SS
22066 break;
22067 case DW_TAG_subprogram:
22068 case DW_TAG_subroutine_type:
edb3359d 22069 case DW_TAG_inlined_subroutine:
f792889a 22070 this_type = read_subroutine_type (die, cu);
c906108c
SS
22071 break;
22072 case DW_TAG_array_type:
f792889a 22073 this_type = read_array_type (die, cu);
c906108c 22074 break;
72019c9c 22075 case DW_TAG_set_type:
f792889a 22076 this_type = read_set_type (die, cu);
72019c9c 22077 break;
c906108c 22078 case DW_TAG_pointer_type:
f792889a 22079 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
22080 break;
22081 case DW_TAG_ptr_to_member_type:
f792889a 22082 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
22083 break;
22084 case DW_TAG_reference_type:
4297a3f0
AV
22085 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22086 break;
22087 case DW_TAG_rvalue_reference_type:
22088 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
22089 break;
22090 case DW_TAG_const_type:
f792889a 22091 this_type = read_tag_const_type (die, cu);
c906108c
SS
22092 break;
22093 case DW_TAG_volatile_type:
f792889a 22094 this_type = read_tag_volatile_type (die, cu);
c906108c 22095 break;
06d66ee9
TT
22096 case DW_TAG_restrict_type:
22097 this_type = read_tag_restrict_type (die, cu);
22098 break;
c906108c 22099 case DW_TAG_string_type:
f792889a 22100 this_type = read_tag_string_type (die, cu);
c906108c
SS
22101 break;
22102 case DW_TAG_typedef:
f792889a 22103 this_type = read_typedef (die, cu);
c906108c 22104 break;
a02abb62 22105 case DW_TAG_subrange_type:
f792889a 22106 this_type = read_subrange_type (die, cu);
a02abb62 22107 break;
c906108c 22108 case DW_TAG_base_type:
f792889a 22109 this_type = read_base_type (die, cu);
c906108c 22110 break;
81a17f79 22111 case DW_TAG_unspecified_type:
f792889a 22112 this_type = read_unspecified_type (die, cu);
81a17f79 22113 break;
0114d602
DJ
22114 case DW_TAG_namespace:
22115 this_type = read_namespace_type (die, cu);
22116 break;
f55ee35c
JK
22117 case DW_TAG_module:
22118 this_type = read_module_type (die, cu);
22119 break;
a2c2acaf
MW
22120 case DW_TAG_atomic_type:
22121 this_type = read_tag_atomic_type (die, cu);
22122 break;
c906108c 22123 default:
b98664d3 22124 complaint (_("unexpected tag in read_type_die: '%s'"),
4d3c2250 22125 dwarf_tag_name (die->tag));
c906108c
SS
22126 break;
22127 }
63d06c5c 22128
f792889a 22129 return this_type;
63d06c5c
DC
22130}
22131
abc72ce4
DE
22132/* See if we can figure out if the class lives in a namespace. We do
22133 this by looking for a member function; its demangled name will
22134 contain namespace info, if there is any.
22135 Return the computed name or NULL.
22136 Space for the result is allocated on the objfile's obstack.
22137 This is the full-die version of guess_partial_die_structure_name.
22138 In this case we know DIE has no useful parent. */
22139
22140static char *
22141guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22142{
22143 struct die_info *spec_die;
22144 struct dwarf2_cu *spec_cu;
22145 struct die_info *child;
518817b3 22146 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4
DE
22147
22148 spec_cu = cu;
22149 spec_die = die_specification (die, &spec_cu);
22150 if (spec_die != NULL)
22151 {
22152 die = spec_die;
22153 cu = spec_cu;
22154 }
22155
22156 for (child = die->child;
22157 child != NULL;
22158 child = child->sibling)
22159 {
22160 if (child->tag == DW_TAG_subprogram)
22161 {
73b9be8b 22162 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 22163
7d45c7c3 22164 if (linkage_name != NULL)
abc72ce4
DE
22165 {
22166 char *actual_name
22167 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 22168 linkage_name);
abc72ce4
DE
22169 char *name = NULL;
22170
22171 if (actual_name != NULL)
22172 {
15d034d0 22173 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
22174
22175 if (die_name != NULL
22176 && strcmp (die_name, actual_name) != 0)
22177 {
22178 /* Strip off the class name from the full name.
22179 We want the prefix. */
22180 int die_name_len = strlen (die_name);
22181 int actual_name_len = strlen (actual_name);
22182
22183 /* Test for '::' as a sanity check. */
22184 if (actual_name_len > die_name_len + 2
3e43a32a
MS
22185 && actual_name[actual_name_len
22186 - die_name_len - 1] == ':')
224c3ddb 22187 name = (char *) obstack_copy0 (
e3b94546 22188 &objfile->per_bfd->storage_obstack,
224c3ddb 22189 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
22190 }
22191 }
22192 xfree (actual_name);
22193 return name;
22194 }
22195 }
22196 }
22197
22198 return NULL;
22199}
22200
96408a79
SA
22201/* GCC might emit a nameless typedef that has a linkage name. Determine the
22202 prefix part in such case. See
22203 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22204
a121b7c1 22205static const char *
96408a79
SA
22206anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22207{
22208 struct attribute *attr;
e6a959d6 22209 const char *base;
96408a79
SA
22210
22211 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22212 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22213 return NULL;
22214
7d45c7c3 22215 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
22216 return NULL;
22217
73b9be8b 22218 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
22219 if (attr == NULL || DW_STRING (attr) == NULL)
22220 return NULL;
22221
22222 /* dwarf2_name had to be already called. */
22223 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22224
22225 /* Strip the base name, keep any leading namespaces/classes. */
22226 base = strrchr (DW_STRING (attr), ':');
22227 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22228 return "";
22229
518817b3 22230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e3b94546 22231 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb
SM
22232 DW_STRING (attr),
22233 &base[-1] - DW_STRING (attr));
96408a79
SA
22234}
22235
fdde2d81 22236/* Return the name of the namespace/class that DIE is defined within,
0114d602 22237 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 22238
0114d602
DJ
22239 For example, if we're within the method foo() in the following
22240 code:
22241
22242 namespace N {
22243 class C {
22244 void foo () {
22245 }
22246 };
22247 }
22248
22249 then determine_prefix on foo's die will return "N::C". */
fdde2d81 22250
0d5cff50 22251static const char *
e142c38c 22252determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 22253{
518817b3
SM
22254 struct dwarf2_per_objfile *dwarf2_per_objfile
22255 = cu->per_cu->dwarf2_per_objfile;
0114d602
DJ
22256 struct die_info *parent, *spec_die;
22257 struct dwarf2_cu *spec_cu;
22258 struct type *parent_type;
a121b7c1 22259 const char *retval;
63d06c5c 22260
9c37b5ae 22261 if (cu->language != language_cplus
c44af4eb
TT
22262 && cu->language != language_fortran && cu->language != language_d
22263 && cu->language != language_rust)
0114d602
DJ
22264 return "";
22265
96408a79
SA
22266 retval = anonymous_struct_prefix (die, cu);
22267 if (retval)
22268 return retval;
22269
0114d602
DJ
22270 /* We have to be careful in the presence of DW_AT_specification.
22271 For example, with GCC 3.4, given the code
22272
22273 namespace N {
22274 void foo() {
22275 // Definition of N::foo.
22276 }
22277 }
22278
22279 then we'll have a tree of DIEs like this:
22280
22281 1: DW_TAG_compile_unit
22282 2: DW_TAG_namespace // N
22283 3: DW_TAG_subprogram // declaration of N::foo
22284 4: DW_TAG_subprogram // definition of N::foo
22285 DW_AT_specification // refers to die #3
22286
22287 Thus, when processing die #4, we have to pretend that we're in
22288 the context of its DW_AT_specification, namely the contex of die
22289 #3. */
22290 spec_cu = cu;
22291 spec_die = die_specification (die, &spec_cu);
22292 if (spec_die == NULL)
22293 parent = die->parent;
22294 else
63d06c5c 22295 {
0114d602
DJ
22296 parent = spec_die->parent;
22297 cu = spec_cu;
63d06c5c 22298 }
0114d602
DJ
22299
22300 if (parent == NULL)
22301 return "";
98bfdba5
PA
22302 else if (parent->building_fullname)
22303 {
22304 const char *name;
22305 const char *parent_name;
22306
22307 /* It has been seen on RealView 2.2 built binaries,
22308 DW_TAG_template_type_param types actually _defined_ as
22309 children of the parent class:
22310
22311 enum E {};
22312 template class <class Enum> Class{};
22313 Class<enum E> class_e;
22314
22315 1: DW_TAG_class_type (Class)
22316 2: DW_TAG_enumeration_type (E)
22317 3: DW_TAG_enumerator (enum1:0)
22318 3: DW_TAG_enumerator (enum2:1)
22319 ...
22320 2: DW_TAG_template_type_param
22321 DW_AT_type DW_FORM_ref_udata (E)
22322
22323 Besides being broken debug info, it can put GDB into an
22324 infinite loop. Consider:
22325
22326 When we're building the full name for Class<E>, we'll start
22327 at Class, and go look over its template type parameters,
22328 finding E. We'll then try to build the full name of E, and
22329 reach here. We're now trying to build the full name of E,
22330 and look over the parent DIE for containing scope. In the
22331 broken case, if we followed the parent DIE of E, we'd again
22332 find Class, and once again go look at its template type
22333 arguments, etc., etc. Simply don't consider such parent die
22334 as source-level parent of this die (it can't be, the language
22335 doesn't allow it), and break the loop here. */
22336 name = dwarf2_name (die, cu);
22337 parent_name = dwarf2_name (parent, cu);
b98664d3 22338 complaint (_("template param type '%s' defined within parent '%s'"),
98bfdba5
PA
22339 name ? name : "<unknown>",
22340 parent_name ? parent_name : "<unknown>");
22341 return "";
22342 }
63d06c5c 22343 else
0114d602
DJ
22344 switch (parent->tag)
22345 {
63d06c5c 22346 case DW_TAG_namespace:
0114d602 22347 parent_type = read_type_die (parent, cu);
acebe513
UW
22348 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22349 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22350 Work around this problem here. */
22351 if (cu->language == language_cplus
e86ca25f 22352 && strcmp (TYPE_NAME (parent_type), "::") == 0)
acebe513 22353 return "";
0114d602 22354 /* We give a name to even anonymous namespaces. */
e86ca25f 22355 return TYPE_NAME (parent_type);
63d06c5c 22356 case DW_TAG_class_type:
680b30c7 22357 case DW_TAG_interface_type:
63d06c5c 22358 case DW_TAG_structure_type:
0114d602 22359 case DW_TAG_union_type:
f55ee35c 22360 case DW_TAG_module:
0114d602 22361 parent_type = read_type_die (parent, cu);
e86ca25f
TT
22362 if (TYPE_NAME (parent_type) != NULL)
22363 return TYPE_NAME (parent_type);
0114d602
DJ
22364 else
22365 /* An anonymous structure is only allowed non-static data
22366 members; no typedefs, no member functions, et cetera.
22367 So it does not need a prefix. */
22368 return "";
abc72ce4 22369 case DW_TAG_compile_unit:
95554aad 22370 case DW_TAG_partial_unit:
abc72ce4
DE
22371 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22372 if (cu->language == language_cplus
8b70b953 22373 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
22374 && die->child != NULL
22375 && (die->tag == DW_TAG_class_type
22376 || die->tag == DW_TAG_structure_type
22377 || die->tag == DW_TAG_union_type))
22378 {
22379 char *name = guess_full_die_structure_name (die, cu);
22380 if (name != NULL)
22381 return name;
22382 }
22383 return "";
3d567982
TT
22384 case DW_TAG_enumeration_type:
22385 parent_type = read_type_die (parent, cu);
22386 if (TYPE_DECLARED_CLASS (parent_type))
22387 {
e86ca25f
TT
22388 if (TYPE_NAME (parent_type) != NULL)
22389 return TYPE_NAME (parent_type);
3d567982
TT
22390 return "";
22391 }
22392 /* Fall through. */
63d06c5c 22393 default:
8176b9b8 22394 return determine_prefix (parent, cu);
63d06c5c 22395 }
63d06c5c
DC
22396}
22397
3e43a32a
MS
22398/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22399 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22400 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22401 an obconcat, otherwise allocate storage for the result. The CU argument is
22402 used to determine the language and hence, the appropriate separator. */
987504bb 22403
f55ee35c 22404#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
22405
22406static char *
f55ee35c
JK
22407typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22408 int physname, struct dwarf2_cu *cu)
63d06c5c 22409{
f55ee35c 22410 const char *lead = "";
5c315b68 22411 const char *sep;
63d06c5c 22412
3e43a32a
MS
22413 if (suffix == NULL || suffix[0] == '\0'
22414 || prefix == NULL || prefix[0] == '\0')
987504bb 22415 sep = "";
45280282
IB
22416 else if (cu->language == language_d)
22417 {
22418 /* For D, the 'main' function could be defined in any module, but it
22419 should never be prefixed. */
22420 if (strcmp (suffix, "D main") == 0)
22421 {
22422 prefix = "";
22423 sep = "";
22424 }
22425 else
22426 sep = ".";
22427 }
f55ee35c
JK
22428 else if (cu->language == language_fortran && physname)
22429 {
22430 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22431 DW_AT_MIPS_linkage_name is preferred and used instead. */
22432
22433 lead = "__";
22434 sep = "_MOD_";
22435 }
987504bb
JJ
22436 else
22437 sep = "::";
63d06c5c 22438
6dd47d34
DE
22439 if (prefix == NULL)
22440 prefix = "";
22441 if (suffix == NULL)
22442 suffix = "";
22443
987504bb
JJ
22444 if (obs == NULL)
22445 {
3e43a32a 22446 char *retval
224c3ddb
SM
22447 = ((char *)
22448 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 22449
f55ee35c
JK
22450 strcpy (retval, lead);
22451 strcat (retval, prefix);
6dd47d34
DE
22452 strcat (retval, sep);
22453 strcat (retval, suffix);
63d06c5c
DC
22454 return retval;
22455 }
987504bb
JJ
22456 else
22457 {
22458 /* We have an obstack. */
f55ee35c 22459 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 22460 }
63d06c5c
DC
22461}
22462
c906108c
SS
22463/* Return sibling of die, NULL if no sibling. */
22464
f9aca02d 22465static struct die_info *
fba45db2 22466sibling_die (struct die_info *die)
c906108c 22467{
639d11d3 22468 return die->sibling;
c906108c
SS
22469}
22470
71c25dea
TT
22471/* Get name of a die, return NULL if not found. */
22472
15d034d0
TT
22473static const char *
22474dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
22475 struct obstack *obstack)
22476{
22477 if (name && cu->language == language_cplus)
22478 {
2f408ecb 22479 std::string canon_name = cp_canonicalize_string (name);
71c25dea 22480
2f408ecb 22481 if (!canon_name.empty ())
71c25dea 22482 {
2f408ecb
PA
22483 if (canon_name != name)
22484 name = (const char *) obstack_copy0 (obstack,
22485 canon_name.c_str (),
22486 canon_name.length ());
71c25dea
TT
22487 }
22488 }
22489
22490 return name;
c906108c
SS
22491}
22492
96553a0c
DE
22493/* Get name of a die, return NULL if not found.
22494 Anonymous namespaces are converted to their magic string. */
9219021c 22495
15d034d0 22496static const char *
e142c38c 22497dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
22498{
22499 struct attribute *attr;
518817b3 22500 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9219021c 22501
e142c38c 22502 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 22503 if ((!attr || !DW_STRING (attr))
96553a0c 22504 && die->tag != DW_TAG_namespace
53832f31
TT
22505 && die->tag != DW_TAG_class_type
22506 && die->tag != DW_TAG_interface_type
22507 && die->tag != DW_TAG_structure_type
22508 && die->tag != DW_TAG_union_type)
71c25dea
TT
22509 return NULL;
22510
22511 switch (die->tag)
22512 {
22513 case DW_TAG_compile_unit:
95554aad 22514 case DW_TAG_partial_unit:
71c25dea
TT
22515 /* Compilation units have a DW_AT_name that is a filename, not
22516 a source language identifier. */
22517 case DW_TAG_enumeration_type:
22518 case DW_TAG_enumerator:
22519 /* These tags always have simple identifiers already; no need
22520 to canonicalize them. */
22521 return DW_STRING (attr);
907af001 22522
96553a0c
DE
22523 case DW_TAG_namespace:
22524 if (attr != NULL && DW_STRING (attr) != NULL)
22525 return DW_STRING (attr);
22526 return CP_ANONYMOUS_NAMESPACE_STR;
22527
907af001
UW
22528 case DW_TAG_class_type:
22529 case DW_TAG_interface_type:
22530 case DW_TAG_structure_type:
22531 case DW_TAG_union_type:
22532 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22533 structures or unions. These were of the form "._%d" in GCC 4.1,
22534 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22535 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 22536 if (attr && DW_STRING (attr)
61012eef
GB
22537 && (startswith (DW_STRING (attr), "._")
22538 || startswith (DW_STRING (attr), "<anonymous")))
907af001 22539 return NULL;
53832f31
TT
22540
22541 /* GCC might emit a nameless typedef that has a linkage name. See
22542 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22543 if (!attr || DW_STRING (attr) == NULL)
22544 {
df5c6c50 22545 char *demangled = NULL;
53832f31 22546
73b9be8b 22547 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
22548 if (attr == NULL || DW_STRING (attr) == NULL)
22549 return NULL;
22550
df5c6c50
JK
22551 /* Avoid demangling DW_STRING (attr) the second time on a second
22552 call for the same DIE. */
22553 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 22554 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
22555
22556 if (demangled)
22557 {
e6a959d6 22558 const char *base;
96408a79 22559
53832f31 22560 /* FIXME: we already did this for the partial symbol... */
34a68019 22561 DW_STRING (attr)
224c3ddb 22562 = ((const char *)
e3b94546 22563 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb 22564 demangled, strlen (demangled)));
53832f31
TT
22565 DW_STRING_IS_CANONICAL (attr) = 1;
22566 xfree (demangled);
96408a79
SA
22567
22568 /* Strip any leading namespaces/classes, keep only the base name.
22569 DW_AT_name for named DIEs does not contain the prefixes. */
22570 base = strrchr (DW_STRING (attr), ':');
22571 if (base && base > DW_STRING (attr) && base[-1] == ':')
22572 return &base[1];
22573 else
22574 return DW_STRING (attr);
53832f31
TT
22575 }
22576 }
907af001
UW
22577 break;
22578
71c25dea 22579 default:
907af001
UW
22580 break;
22581 }
22582
22583 if (!DW_STRING_IS_CANONICAL (attr))
22584 {
22585 DW_STRING (attr)
22586 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
e3b94546 22587 &objfile->per_bfd->storage_obstack);
907af001 22588 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 22589 }
907af001 22590 return DW_STRING (attr);
9219021c
DC
22591}
22592
22593/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
22594 is none. *EXT_CU is the CU containing DIE on input, and the CU
22595 containing the return value on output. */
9219021c
DC
22596
22597static struct die_info *
f2f0e013 22598dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
22599{
22600 struct attribute *attr;
9219021c 22601
f2f0e013 22602 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
22603 if (attr == NULL)
22604 return NULL;
22605
f2f0e013 22606 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
22607}
22608
c906108c
SS
22609/* Convert a DIE tag into its string name. */
22610
f39c6ffd 22611static const char *
aa1ee363 22612dwarf_tag_name (unsigned tag)
c906108c 22613{
f39c6ffd
TT
22614 const char *name = get_DW_TAG_name (tag);
22615
22616 if (name == NULL)
22617 return "DW_TAG_<unknown>";
22618
22619 return name;
c906108c
SS
22620}
22621
22622/* Convert a DWARF attribute code into its string name. */
22623
f39c6ffd 22624static const char *
aa1ee363 22625dwarf_attr_name (unsigned attr)
c906108c 22626{
f39c6ffd
TT
22627 const char *name;
22628
c764a876 22629#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
22630 if (attr == DW_AT_MIPS_fde)
22631 return "DW_AT_MIPS_fde";
22632#else
22633 if (attr == DW_AT_HP_block_index)
22634 return "DW_AT_HP_block_index";
c764a876 22635#endif
f39c6ffd
TT
22636
22637 name = get_DW_AT_name (attr);
22638
22639 if (name == NULL)
22640 return "DW_AT_<unknown>";
22641
22642 return name;
c906108c
SS
22643}
22644
22645/* Convert a DWARF value form code into its string name. */
22646
f39c6ffd 22647static const char *
aa1ee363 22648dwarf_form_name (unsigned form)
c906108c 22649{
f39c6ffd
TT
22650 const char *name = get_DW_FORM_name (form);
22651
22652 if (name == NULL)
22653 return "DW_FORM_<unknown>";
22654
22655 return name;
c906108c
SS
22656}
22657
a121b7c1 22658static const char *
fba45db2 22659dwarf_bool_name (unsigned mybool)
c906108c
SS
22660{
22661 if (mybool)
22662 return "TRUE";
22663 else
22664 return "FALSE";
22665}
22666
22667/* Convert a DWARF type code into its string name. */
22668
f39c6ffd 22669static const char *
aa1ee363 22670dwarf_type_encoding_name (unsigned enc)
c906108c 22671{
f39c6ffd 22672 const char *name = get_DW_ATE_name (enc);
c906108c 22673
f39c6ffd
TT
22674 if (name == NULL)
22675 return "DW_ATE_<unknown>";
c906108c 22676
f39c6ffd 22677 return name;
c906108c 22678}
c906108c 22679
f9aca02d 22680static void
d97bc12b 22681dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
22682{
22683 unsigned int i;
22684
d97bc12b 22685 print_spaces (indent, f);
9d8780f0 22686 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
9c541725 22687 dwarf_tag_name (die->tag), die->abbrev,
9d8780f0 22688 sect_offset_str (die->sect_off));
d97bc12b
DE
22689
22690 if (die->parent != NULL)
22691 {
22692 print_spaces (indent, f);
9d8780f0
SM
22693 fprintf_unfiltered (f, " parent at offset: %s\n",
22694 sect_offset_str (die->parent->sect_off));
d97bc12b
DE
22695 }
22696
22697 print_spaces (indent, f);
22698 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 22699 dwarf_bool_name (die->child != NULL));
c906108c 22700
d97bc12b
DE
22701 print_spaces (indent, f);
22702 fprintf_unfiltered (f, " attributes:\n");
22703
c906108c
SS
22704 for (i = 0; i < die->num_attrs; ++i)
22705 {
d97bc12b
DE
22706 print_spaces (indent, f);
22707 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
22708 dwarf_attr_name (die->attrs[i].name),
22709 dwarf_form_name (die->attrs[i].form));
d97bc12b 22710
c906108c
SS
22711 switch (die->attrs[i].form)
22712 {
c906108c 22713 case DW_FORM_addr:
3019eac3 22714 case DW_FORM_GNU_addr_index:
d97bc12b 22715 fprintf_unfiltered (f, "address: ");
5af949e3 22716 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
22717 break;
22718 case DW_FORM_block2:
22719 case DW_FORM_block4:
22720 case DW_FORM_block:
22721 case DW_FORM_block1:
56eb65bd
SP
22722 fprintf_unfiltered (f, "block: size %s",
22723 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 22724 break;
2dc7f7b3 22725 case DW_FORM_exprloc:
56eb65bd
SP
22726 fprintf_unfiltered (f, "expression: size %s",
22727 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 22728 break;
0224619f
JK
22729 case DW_FORM_data16:
22730 fprintf_unfiltered (f, "constant of 16 bytes");
22731 break;
4568ecf9
DE
22732 case DW_FORM_ref_addr:
22733 fprintf_unfiltered (f, "ref address: ");
22734 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22735 break;
36586728
TT
22736 case DW_FORM_GNU_ref_alt:
22737 fprintf_unfiltered (f, "alt ref address: ");
22738 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22739 break;
10b3939b
DJ
22740 case DW_FORM_ref1:
22741 case DW_FORM_ref2:
22742 case DW_FORM_ref4:
4568ecf9
DE
22743 case DW_FORM_ref8:
22744 case DW_FORM_ref_udata:
d97bc12b 22745 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 22746 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 22747 break;
c906108c
SS
22748 case DW_FORM_data1:
22749 case DW_FORM_data2:
22750 case DW_FORM_data4:
ce5d95e1 22751 case DW_FORM_data8:
c906108c
SS
22752 case DW_FORM_udata:
22753 case DW_FORM_sdata:
43bbcdc2
PH
22754 fprintf_unfiltered (f, "constant: %s",
22755 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 22756 break;
2dc7f7b3
TT
22757 case DW_FORM_sec_offset:
22758 fprintf_unfiltered (f, "section offset: %s",
22759 pulongest (DW_UNSND (&die->attrs[i])));
22760 break;
55f1336d 22761 case DW_FORM_ref_sig8:
ac9ec31b
DE
22762 fprintf_unfiltered (f, "signature: %s",
22763 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 22764 break;
c906108c 22765 case DW_FORM_string:
4bdf3d34 22766 case DW_FORM_strp:
43988095 22767 case DW_FORM_line_strp:
3019eac3 22768 case DW_FORM_GNU_str_index:
36586728 22769 case DW_FORM_GNU_strp_alt:
8285870a 22770 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 22771 DW_STRING (&die->attrs[i])
8285870a
JK
22772 ? DW_STRING (&die->attrs[i]) : "",
22773 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
22774 break;
22775 case DW_FORM_flag:
22776 if (DW_UNSND (&die->attrs[i]))
d97bc12b 22777 fprintf_unfiltered (f, "flag: TRUE");
c906108c 22778 else
d97bc12b 22779 fprintf_unfiltered (f, "flag: FALSE");
c906108c 22780 break;
2dc7f7b3
TT
22781 case DW_FORM_flag_present:
22782 fprintf_unfiltered (f, "flag: TRUE");
22783 break;
a8329558 22784 case DW_FORM_indirect:
0963b4bd
MS
22785 /* The reader will have reduced the indirect form to
22786 the "base form" so this form should not occur. */
3e43a32a
MS
22787 fprintf_unfiltered (f,
22788 "unexpected attribute form: DW_FORM_indirect");
a8329558 22789 break;
663c44ac
JK
22790 case DW_FORM_implicit_const:
22791 fprintf_unfiltered (f, "constant: %s",
22792 plongest (DW_SND (&die->attrs[i])));
22793 break;
c906108c 22794 default:
d97bc12b 22795 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 22796 die->attrs[i].form);
d97bc12b 22797 break;
c906108c 22798 }
d97bc12b 22799 fprintf_unfiltered (f, "\n");
c906108c
SS
22800 }
22801}
22802
f9aca02d 22803static void
d97bc12b 22804dump_die_for_error (struct die_info *die)
c906108c 22805{
d97bc12b
DE
22806 dump_die_shallow (gdb_stderr, 0, die);
22807}
22808
22809static void
22810dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22811{
22812 int indent = level * 4;
22813
22814 gdb_assert (die != NULL);
22815
22816 if (level >= max_level)
22817 return;
22818
22819 dump_die_shallow (f, indent, die);
22820
22821 if (die->child != NULL)
c906108c 22822 {
d97bc12b
DE
22823 print_spaces (indent, f);
22824 fprintf_unfiltered (f, " Children:");
22825 if (level + 1 < max_level)
22826 {
22827 fprintf_unfiltered (f, "\n");
22828 dump_die_1 (f, level + 1, max_level, die->child);
22829 }
22830 else
22831 {
3e43a32a
MS
22832 fprintf_unfiltered (f,
22833 " [not printed, max nesting level reached]\n");
d97bc12b
DE
22834 }
22835 }
22836
22837 if (die->sibling != NULL && level > 0)
22838 {
22839 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
22840 }
22841}
22842
d97bc12b
DE
22843/* This is called from the pdie macro in gdbinit.in.
22844 It's not static so gcc will keep a copy callable from gdb. */
22845
22846void
22847dump_die (struct die_info *die, int max_level)
22848{
22849 dump_die_1 (gdb_stdlog, 0, max_level, die);
22850}
22851
f9aca02d 22852static void
51545339 22853store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22854{
51545339 22855 void **slot;
c906108c 22856
9c541725
PA
22857 slot = htab_find_slot_with_hash (cu->die_hash, die,
22858 to_underlying (die->sect_off),
b64f50a1 22859 INSERT);
51545339
DJ
22860
22861 *slot = die;
c906108c
SS
22862}
22863
b64f50a1
JK
22864/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22865 required kind. */
22866
22867static sect_offset
ff39bb5e 22868dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 22869{
7771576e 22870 if (attr_form_is_ref (attr))
9c541725 22871 return (sect_offset) DW_UNSND (attr);
93311388 22872
b98664d3 22873 complaint (_("unsupported die ref attribute form: '%s'"),
93311388 22874 dwarf_form_name (attr->form));
9c541725 22875 return {};
c906108c
SS
22876}
22877
43bbcdc2
PH
22878/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22879 * the value held by the attribute is not constant. */
a02abb62 22880
43bbcdc2 22881static LONGEST
ff39bb5e 22882dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 22883{
663c44ac 22884 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
22885 return DW_SND (attr);
22886 else if (attr->form == DW_FORM_udata
22887 || attr->form == DW_FORM_data1
22888 || attr->form == DW_FORM_data2
22889 || attr->form == DW_FORM_data4
22890 || attr->form == DW_FORM_data8)
22891 return DW_UNSND (attr);
22892 else
22893 {
0224619f 22894 /* For DW_FORM_data16 see attr_form_is_constant. */
b98664d3 22895 complaint (_("Attribute value is not a constant (%s)"),
a02abb62
JB
22896 dwarf_form_name (attr->form));
22897 return default_value;
22898 }
22899}
22900
348e048f
DE
22901/* Follow reference or signature attribute ATTR of SRC_DIE.
22902 On entry *REF_CU is the CU of SRC_DIE.
22903 On exit *REF_CU is the CU of the result. */
22904
22905static struct die_info *
ff39bb5e 22906follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
22907 struct dwarf2_cu **ref_cu)
22908{
22909 struct die_info *die;
22910
7771576e 22911 if (attr_form_is_ref (attr))
348e048f 22912 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 22913 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
22914 die = follow_die_sig (src_die, attr, ref_cu);
22915 else
22916 {
22917 dump_die_for_error (src_die);
22918 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
518817b3 22919 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
348e048f
DE
22920 }
22921
22922 return die;
03dd20cc
DJ
22923}
22924
5c631832 22925/* Follow reference OFFSET.
673bfd45
DE
22926 On entry *REF_CU is the CU of the source die referencing OFFSET.
22927 On exit *REF_CU is the CU of the result.
22928 Returns NULL if OFFSET is invalid. */
f504f079 22929
f9aca02d 22930static struct die_info *
9c541725 22931follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 22932 struct dwarf2_cu **ref_cu)
c906108c 22933{
10b3939b 22934 struct die_info temp_die;
f2f0e013 22935 struct dwarf2_cu *target_cu, *cu = *ref_cu;
518817b3
SM
22936 struct dwarf2_per_objfile *dwarf2_per_objfile
22937 = cu->per_cu->dwarf2_per_objfile;
10b3939b 22938
348e048f
DE
22939 gdb_assert (cu->per_cu != NULL);
22940
98bfdba5
PA
22941 target_cu = cu;
22942
3019eac3 22943 if (cu->per_cu->is_debug_types)
348e048f
DE
22944 {
22945 /* .debug_types CUs cannot reference anything outside their CU.
22946 If they need to, they have to reference a signatured type via
55f1336d 22947 DW_FORM_ref_sig8. */
9c541725 22948 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 22949 return NULL;
348e048f 22950 }
36586728 22951 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 22952 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
22953 {
22954 struct dwarf2_per_cu_data *per_cu;
9a619af0 22955
9c541725 22956 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 22957 dwarf2_per_objfile);
03dd20cc
DJ
22958
22959 /* If necessary, add it to the queue and load its DIEs. */
95554aad 22960 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 22961 load_full_comp_unit (per_cu, false, cu->language);
03dd20cc 22962
10b3939b
DJ
22963 target_cu = per_cu->cu;
22964 }
98bfdba5
PA
22965 else if (cu->dies == NULL)
22966 {
22967 /* We're loading full DIEs during partial symbol reading. */
22968 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
58f0c718 22969 load_full_comp_unit (cu->per_cu, false, language_minimal);
98bfdba5 22970 }
c906108c 22971
f2f0e013 22972 *ref_cu = target_cu;
9c541725 22973 temp_die.sect_off = sect_off;
9a3c8263 22974 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
22975 &temp_die,
22976 to_underlying (sect_off));
5c631832 22977}
10b3939b 22978
5c631832
JK
22979/* Follow reference attribute ATTR of SRC_DIE.
22980 On entry *REF_CU is the CU of SRC_DIE.
22981 On exit *REF_CU is the CU of the result. */
22982
22983static struct die_info *
ff39bb5e 22984follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
22985 struct dwarf2_cu **ref_cu)
22986{
9c541725 22987 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
22988 struct dwarf2_cu *cu = *ref_cu;
22989 struct die_info *die;
22990
9c541725 22991 die = follow_die_offset (sect_off,
36586728
TT
22992 (attr->form == DW_FORM_GNU_ref_alt
22993 || cu->per_cu->is_dwz),
22994 ref_cu);
5c631832 22995 if (!die)
9d8780f0
SM
22996 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22997 "at %s [in module %s]"),
22998 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
518817b3 22999 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
348e048f 23000
5c631832
JK
23001 return die;
23002}
23003
9c541725 23004/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b 23005 Returned value is intended for DW_OP_call*. Returned
e3b94546
SM
23006 dwarf2_locexpr_baton->data has lifetime of
23007 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
5c631832
JK
23008
23009struct dwarf2_locexpr_baton
9c541725 23010dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
23011 struct dwarf2_per_cu_data *per_cu,
23012 CORE_ADDR (*get_frame_pc) (void *baton),
23013 void *baton)
5c631832 23014{
918dd910 23015 struct dwarf2_cu *cu;
5c631832
JK
23016 struct die_info *die;
23017 struct attribute *attr;
23018 struct dwarf2_locexpr_baton retval;
12359b5e
SM
23019 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23020 struct objfile *objfile = dwarf2_per_objfile->objfile;
8cf6f0b1 23021
918dd910 23022 if (per_cu->cu == NULL)
58f0c718 23023 load_cu (per_cu, false);
918dd910 23024 cu = per_cu->cu;
cc12ce38
DE
23025 if (cu == NULL)
23026 {
23027 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23028 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23029 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23030 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23031 }
918dd910 23032
9c541725 23033 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832 23034 if (!die)
9d8780f0
SM
23035 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23036 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23037
23038 attr = dwarf2_attr (die, DW_AT_location, cu);
23039 if (!attr)
23040 {
e103e986
JK
23041 /* DWARF: "If there is no such attribute, then there is no effect.".
23042 DATA is ignored if SIZE is 0. */
5c631832 23043
e103e986 23044 retval.data = NULL;
5c631832
JK
23045 retval.size = 0;
23046 }
8cf6f0b1
TT
23047 else if (attr_form_is_section_offset (attr))
23048 {
23049 struct dwarf2_loclist_baton loclist_baton;
23050 CORE_ADDR pc = (*get_frame_pc) (baton);
23051 size_t size;
23052
23053 fill_in_loclist_baton (cu, &loclist_baton, attr);
23054
23055 retval.data = dwarf2_find_location_expression (&loclist_baton,
23056 &size, pc);
23057 retval.size = size;
23058 }
5c631832
JK
23059 else
23060 {
23061 if (!attr_form_is_block (attr))
9d8780f0 23062 error (_("Dwarf Error: DIE at %s referenced in module %s "
5c631832 23063 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9d8780f0 23064 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23065
23066 retval.data = DW_BLOCK (attr)->data;
23067 retval.size = DW_BLOCK (attr)->size;
23068 }
23069 retval.per_cu = cu->per_cu;
918dd910 23070
ed2dc618 23071 age_cached_comp_units (dwarf2_per_objfile);
918dd910 23072
5c631832 23073 return retval;
348e048f
DE
23074}
23075
8b9737bf
TT
23076/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23077 offset. */
23078
23079struct dwarf2_locexpr_baton
23080dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23081 struct dwarf2_per_cu_data *per_cu,
23082 CORE_ADDR (*get_frame_pc) (void *baton),
23083 void *baton)
23084{
9c541725 23085 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 23086
9c541725 23087 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
23088}
23089
b6807d98
TT
23090/* Write a constant of a given type as target-ordered bytes into
23091 OBSTACK. */
23092
23093static const gdb_byte *
23094write_constant_as_bytes (struct obstack *obstack,
23095 enum bfd_endian byte_order,
23096 struct type *type,
23097 ULONGEST value,
23098 LONGEST *len)
23099{
23100 gdb_byte *result;
23101
23102 *len = TYPE_LENGTH (type);
224c3ddb 23103 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23104 store_unsigned_integer (result, *len, byte_order, value);
23105
23106 return result;
23107}
23108
23109/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23110 pointer to the constant bytes and set LEN to the length of the
23111 data. If memory is needed, allocate it on OBSTACK. If the DIE
23112 does not have a DW_AT_const_value, return NULL. */
23113
23114const gdb_byte *
9c541725 23115dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
23116 struct dwarf2_per_cu_data *per_cu,
23117 struct obstack *obstack,
23118 LONGEST *len)
23119{
23120 struct dwarf2_cu *cu;
23121 struct die_info *die;
23122 struct attribute *attr;
23123 const gdb_byte *result = NULL;
23124 struct type *type;
23125 LONGEST value;
23126 enum bfd_endian byte_order;
e3b94546 23127 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
b6807d98 23128
b6807d98 23129 if (per_cu->cu == NULL)
58f0c718 23130 load_cu (per_cu, false);
b6807d98 23131 cu = per_cu->cu;
cc12ce38
DE
23132 if (cu == NULL)
23133 {
23134 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23135 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23136 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23137 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23138 }
b6807d98 23139
9c541725 23140 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98 23141 if (!die)
9d8780f0
SM
23142 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23143 sect_offset_str (sect_off), objfile_name (objfile));
b6807d98
TT
23144
23145 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23146 if (attr == NULL)
23147 return NULL;
23148
e3b94546 23149 byte_order = (bfd_big_endian (objfile->obfd)
b6807d98
TT
23150 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23151
23152 switch (attr->form)
23153 {
23154 case DW_FORM_addr:
23155 case DW_FORM_GNU_addr_index:
23156 {
23157 gdb_byte *tem;
23158
23159 *len = cu->header.addr_size;
224c3ddb 23160 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23161 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23162 result = tem;
23163 }
23164 break;
23165 case DW_FORM_string:
23166 case DW_FORM_strp:
23167 case DW_FORM_GNU_str_index:
23168 case DW_FORM_GNU_strp_alt:
23169 /* DW_STRING is already allocated on the objfile obstack, point
23170 directly to it. */
23171 result = (const gdb_byte *) DW_STRING (attr);
23172 *len = strlen (DW_STRING (attr));
23173 break;
23174 case DW_FORM_block1:
23175 case DW_FORM_block2:
23176 case DW_FORM_block4:
23177 case DW_FORM_block:
23178 case DW_FORM_exprloc:
0224619f 23179 case DW_FORM_data16:
b6807d98
TT
23180 result = DW_BLOCK (attr)->data;
23181 *len = DW_BLOCK (attr)->size;
23182 break;
23183
23184 /* The DW_AT_const_value attributes are supposed to carry the
23185 symbol's value "represented as it would be on the target
23186 architecture." By the time we get here, it's already been
23187 converted to host endianness, so we just need to sign- or
23188 zero-extend it as appropriate. */
23189 case DW_FORM_data1:
23190 type = die_type (die, cu);
23191 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23192 if (result == NULL)
23193 result = write_constant_as_bytes (obstack, byte_order,
23194 type, value, len);
23195 break;
23196 case DW_FORM_data2:
23197 type = die_type (die, cu);
23198 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23199 if (result == NULL)
23200 result = write_constant_as_bytes (obstack, byte_order,
23201 type, value, len);
23202 break;
23203 case DW_FORM_data4:
23204 type = die_type (die, cu);
23205 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23206 if (result == NULL)
23207 result = write_constant_as_bytes (obstack, byte_order,
23208 type, value, len);
23209 break;
23210 case DW_FORM_data8:
23211 type = die_type (die, cu);
23212 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23213 if (result == NULL)
23214 result = write_constant_as_bytes (obstack, byte_order,
23215 type, value, len);
23216 break;
23217
23218 case DW_FORM_sdata:
663c44ac 23219 case DW_FORM_implicit_const:
b6807d98
TT
23220 type = die_type (die, cu);
23221 result = write_constant_as_bytes (obstack, byte_order,
23222 type, DW_SND (attr), len);
23223 break;
23224
23225 case DW_FORM_udata:
23226 type = die_type (die, cu);
23227 result = write_constant_as_bytes (obstack, byte_order,
23228 type, DW_UNSND (attr), len);
23229 break;
23230
23231 default:
b98664d3 23232 complaint (_("unsupported const value attribute form: '%s'"),
b6807d98
TT
23233 dwarf_form_name (attr->form));
23234 break;
23235 }
23236
23237 return result;
23238}
23239
7942e96e
AA
23240/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23241 valid type for this die is found. */
23242
23243struct type *
9c541725 23244dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
23245 struct dwarf2_per_cu_data *per_cu)
23246{
23247 struct dwarf2_cu *cu;
23248 struct die_info *die;
23249
7942e96e 23250 if (per_cu->cu == NULL)
58f0c718 23251 load_cu (per_cu, false);
7942e96e
AA
23252 cu = per_cu->cu;
23253 if (!cu)
23254 return NULL;
23255
9c541725 23256 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
23257 if (!die)
23258 return NULL;
23259
23260 return die_type (die, cu);
23261}
23262
8a9b8146
TT
23263/* Return the type of the DIE at DIE_OFFSET in the CU named by
23264 PER_CU. */
23265
23266struct type *
b64f50a1 23267dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
23268 struct dwarf2_per_cu_data *per_cu)
23269{
9c541725 23270 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 23271 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
23272}
23273
ac9ec31b 23274/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 23275 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
23276 On exit *REF_CU is the CU of the result.
23277 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
23278
23279static struct die_info *
ac9ec31b
DE
23280follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23281 struct dwarf2_cu **ref_cu)
348e048f 23282{
348e048f 23283 struct die_info temp_die;
348e048f
DE
23284 struct dwarf2_cu *sig_cu;
23285 struct die_info *die;
23286
ac9ec31b
DE
23287 /* While it might be nice to assert sig_type->type == NULL here,
23288 we can get here for DW_AT_imported_declaration where we need
23289 the DIE not the type. */
348e048f
DE
23290
23291 /* If necessary, add it to the queue and load its DIEs. */
23292
95554aad 23293 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 23294 read_signatured_type (sig_type);
348e048f 23295
348e048f 23296 sig_cu = sig_type->per_cu.cu;
69d751e3 23297 gdb_assert (sig_cu != NULL);
9c541725
PA
23298 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23299 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 23300 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 23301 to_underlying (temp_die.sect_off));
348e048f
DE
23302 if (die)
23303 {
ed2dc618 23304 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 23305 = (*ref_cu)->per_cu->dwarf2_per_objfile;
ed2dc618 23306
796a7ff8
DE
23307 /* For .gdb_index version 7 keep track of included TUs.
23308 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23309 if (dwarf2_per_objfile->index_table != NULL
23310 && dwarf2_per_objfile->index_table->version <= 7)
23311 {
23312 VEC_safe_push (dwarf2_per_cu_ptr,
23313 (*ref_cu)->per_cu->imported_symtabs,
23314 sig_cu->per_cu);
23315 }
23316
348e048f
DE
23317 *ref_cu = sig_cu;
23318 return die;
23319 }
23320
ac9ec31b
DE
23321 return NULL;
23322}
23323
23324/* Follow signatured type referenced by ATTR in SRC_DIE.
23325 On entry *REF_CU is the CU of SRC_DIE.
23326 On exit *REF_CU is the CU of the result.
23327 The result is the DIE of the type.
23328 If the referenced type cannot be found an error is thrown. */
23329
23330static struct die_info *
ff39bb5e 23331follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
23332 struct dwarf2_cu **ref_cu)
23333{
23334 ULONGEST signature = DW_SIGNATURE (attr);
23335 struct signatured_type *sig_type;
23336 struct die_info *die;
23337
23338 gdb_assert (attr->form == DW_FORM_ref_sig8);
23339
a2ce51a0 23340 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
23341 /* sig_type will be NULL if the signatured type is missing from
23342 the debug info. */
23343 if (sig_type == NULL)
23344 {
23345 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23346 " from DIE at %s [in module %s]"),
23347 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23348 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23349 }
23350
23351 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23352 if (die == NULL)
23353 {
23354 dump_die_for_error (src_die);
23355 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23356 " from DIE at %s [in module %s]"),
23357 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23358 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23359 }
23360
23361 return die;
23362}
23363
23364/* Get the type specified by SIGNATURE referenced in DIE/CU,
23365 reading in and processing the type unit if necessary. */
23366
23367static struct type *
23368get_signatured_type (struct die_info *die, ULONGEST signature,
23369 struct dwarf2_cu *cu)
23370{
518817b3
SM
23371 struct dwarf2_per_objfile *dwarf2_per_objfile
23372 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b
DE
23373 struct signatured_type *sig_type;
23374 struct dwarf2_cu *type_cu;
23375 struct die_info *type_die;
23376 struct type *type;
23377
a2ce51a0 23378 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
23379 /* sig_type will be NULL if the signatured type is missing from
23380 the debug info. */
23381 if (sig_type == NULL)
23382 {
b98664d3 23383 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23384 " from DIE at %s [in module %s]"),
23385 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23386 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23387 return build_error_marker_type (cu, die);
23388 }
23389
23390 /* If we already know the type we're done. */
23391 if (sig_type->type != NULL)
23392 return sig_type->type;
23393
23394 type_cu = cu;
23395 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23396 if (type_die != NULL)
23397 {
23398 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23399 is created. This is important, for example, because for c++ classes
23400 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23401 type = read_type_die (type_die, type_cu);
23402 if (type == NULL)
23403 {
b98664d3 23404 complaint (_("Dwarf Error: Cannot build signatured type %s"
9d8780f0
SM
23405 " referenced from DIE at %s [in module %s]"),
23406 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23407 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23408 type = build_error_marker_type (cu, die);
23409 }
23410 }
23411 else
23412 {
b98664d3 23413 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23414 " from DIE at %s [in module %s]"),
23415 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23416 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23417 type = build_error_marker_type (cu, die);
23418 }
23419 sig_type->type = type;
23420
23421 return type;
23422}
23423
23424/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23425 reading in and processing the type unit if necessary. */
23426
23427static struct type *
ff39bb5e 23428get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 23429 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
23430{
23431 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 23432 if (attr_form_is_ref (attr))
ac9ec31b
DE
23433 {
23434 struct dwarf2_cu *type_cu = cu;
23435 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23436
23437 return read_type_die (type_die, type_cu);
23438 }
23439 else if (attr->form == DW_FORM_ref_sig8)
23440 {
23441 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23442 }
23443 else
23444 {
518817b3
SM
23445 struct dwarf2_per_objfile *dwarf2_per_objfile
23446 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 23447
b98664d3 23448 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
9d8780f0
SM
23449 " at %s [in module %s]"),
23450 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
4262abfb 23451 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23452 return build_error_marker_type (cu, die);
23453 }
348e048f
DE
23454}
23455
e5fe5e75 23456/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
23457
23458static void
e5fe5e75 23459load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 23460{
52dc124a 23461 struct signatured_type *sig_type;
348e048f 23462
f4dc4d17
DE
23463 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23464 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23465
6721b2ec
DE
23466 /* We have the per_cu, but we need the signatured_type.
23467 Fortunately this is an easy translation. */
23468 gdb_assert (per_cu->is_debug_types);
23469 sig_type = (struct signatured_type *) per_cu;
348e048f 23470
6721b2ec 23471 gdb_assert (per_cu->cu == NULL);
348e048f 23472
52dc124a 23473 read_signatured_type (sig_type);
348e048f 23474
6721b2ec 23475 gdb_assert (per_cu->cu != NULL);
348e048f
DE
23476}
23477
dee91e82
DE
23478/* die_reader_func for read_signatured_type.
23479 This is identical to load_full_comp_unit_reader,
23480 but is kept separate for now. */
348e048f
DE
23481
23482static void
dee91e82 23483read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 23484 const gdb_byte *info_ptr,
dee91e82
DE
23485 struct die_info *comp_unit_die,
23486 int has_children,
23487 void *data)
348e048f 23488{
dee91e82 23489 struct dwarf2_cu *cu = reader->cu;
348e048f 23490
dee91e82
DE
23491 gdb_assert (cu->die_hash == NULL);
23492 cu->die_hash =
23493 htab_create_alloc_ex (cu->header.length / 12,
23494 die_hash,
23495 die_eq,
23496 NULL,
23497 &cu->comp_unit_obstack,
23498 hashtab_obstack_allocate,
23499 dummy_obstack_deallocate);
348e048f 23500
dee91e82
DE
23501 if (has_children)
23502 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23503 &info_ptr, comp_unit_die);
23504 cu->dies = comp_unit_die;
23505 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
23506
23507 /* We try not to read any attributes in this function, because not
9cdd5dbd 23508 all CUs needed for references have been loaded yet, and symbol
348e048f 23509 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
23510 or we won't be able to build types correctly.
23511 Similarly, if we do not read the producer, we can not apply
23512 producer-specific interpretation. */
95554aad 23513 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 23514}
348e048f 23515
3019eac3
DE
23516/* Read in a signatured type and build its CU and DIEs.
23517 If the type is a stub for the real type in a DWO file,
23518 read in the real type from the DWO file as well. */
dee91e82
DE
23519
23520static void
23521read_signatured_type (struct signatured_type *sig_type)
23522{
23523 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 23524
3019eac3 23525 gdb_assert (per_cu->is_debug_types);
dee91e82 23526 gdb_assert (per_cu->cu == NULL);
348e048f 23527
58f0c718 23528 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
f4dc4d17 23529 read_signatured_type_reader, NULL);
7ee85ab1 23530 sig_type->per_cu.tu_read = 1;
c906108c
SS
23531}
23532
c906108c
SS
23533/* Decode simple location descriptions.
23534 Given a pointer to a dwarf block that defines a location, compute
23535 the location and return the value.
23536
4cecd739
DJ
23537 NOTE drow/2003-11-18: This function is called in two situations
23538 now: for the address of static or global variables (partial symbols
23539 only) and for offsets into structures which are expected to be
23540 (more or less) constant. The partial symbol case should go away,
23541 and only the constant case should remain. That will let this
23542 function complain more accurately. A few special modes are allowed
23543 without complaint for global variables (for instance, global
23544 register values and thread-local values).
c906108c
SS
23545
23546 A location description containing no operations indicates that the
4cecd739 23547 object is optimized out. The return value is 0 for that case.
6b992462
DJ
23548 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23549 callers will only want a very basic result and this can become a
21ae7a4d
JK
23550 complaint.
23551
23552 Note that stack[0] is unused except as a default error return. */
c906108c
SS
23553
23554static CORE_ADDR
e7c27a73 23555decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 23556{
518817b3 23557 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
56eb65bd
SP
23558 size_t i;
23559 size_t size = blk->size;
d521ce57 23560 const gdb_byte *data = blk->data;
21ae7a4d
JK
23561 CORE_ADDR stack[64];
23562 int stacki;
23563 unsigned int bytes_read, unsnd;
23564 gdb_byte op;
c906108c 23565
21ae7a4d
JK
23566 i = 0;
23567 stacki = 0;
23568 stack[stacki] = 0;
23569 stack[++stacki] = 0;
23570
23571 while (i < size)
23572 {
23573 op = data[i++];
23574 switch (op)
23575 {
23576 case DW_OP_lit0:
23577 case DW_OP_lit1:
23578 case DW_OP_lit2:
23579 case DW_OP_lit3:
23580 case DW_OP_lit4:
23581 case DW_OP_lit5:
23582 case DW_OP_lit6:
23583 case DW_OP_lit7:
23584 case DW_OP_lit8:
23585 case DW_OP_lit9:
23586 case DW_OP_lit10:
23587 case DW_OP_lit11:
23588 case DW_OP_lit12:
23589 case DW_OP_lit13:
23590 case DW_OP_lit14:
23591 case DW_OP_lit15:
23592 case DW_OP_lit16:
23593 case DW_OP_lit17:
23594 case DW_OP_lit18:
23595 case DW_OP_lit19:
23596 case DW_OP_lit20:
23597 case DW_OP_lit21:
23598 case DW_OP_lit22:
23599 case DW_OP_lit23:
23600 case DW_OP_lit24:
23601 case DW_OP_lit25:
23602 case DW_OP_lit26:
23603 case DW_OP_lit27:
23604 case DW_OP_lit28:
23605 case DW_OP_lit29:
23606 case DW_OP_lit30:
23607 case DW_OP_lit31:
23608 stack[++stacki] = op - DW_OP_lit0;
23609 break;
f1bea926 23610
21ae7a4d
JK
23611 case DW_OP_reg0:
23612 case DW_OP_reg1:
23613 case DW_OP_reg2:
23614 case DW_OP_reg3:
23615 case DW_OP_reg4:
23616 case DW_OP_reg5:
23617 case DW_OP_reg6:
23618 case DW_OP_reg7:
23619 case DW_OP_reg8:
23620 case DW_OP_reg9:
23621 case DW_OP_reg10:
23622 case DW_OP_reg11:
23623 case DW_OP_reg12:
23624 case DW_OP_reg13:
23625 case DW_OP_reg14:
23626 case DW_OP_reg15:
23627 case DW_OP_reg16:
23628 case DW_OP_reg17:
23629 case DW_OP_reg18:
23630 case DW_OP_reg19:
23631 case DW_OP_reg20:
23632 case DW_OP_reg21:
23633 case DW_OP_reg22:
23634 case DW_OP_reg23:
23635 case DW_OP_reg24:
23636 case DW_OP_reg25:
23637 case DW_OP_reg26:
23638 case DW_OP_reg27:
23639 case DW_OP_reg28:
23640 case DW_OP_reg29:
23641 case DW_OP_reg30:
23642 case DW_OP_reg31:
23643 stack[++stacki] = op - DW_OP_reg0;
23644 if (i < size)
23645 dwarf2_complex_location_expr_complaint ();
23646 break;
c906108c 23647
21ae7a4d
JK
23648 case DW_OP_regx:
23649 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23650 i += bytes_read;
23651 stack[++stacki] = unsnd;
23652 if (i < size)
23653 dwarf2_complex_location_expr_complaint ();
23654 break;
c906108c 23655
21ae7a4d
JK
23656 case DW_OP_addr:
23657 stack[++stacki] = read_address (objfile->obfd, &data[i],
23658 cu, &bytes_read);
23659 i += bytes_read;
23660 break;
d53d4ac5 23661
21ae7a4d
JK
23662 case DW_OP_const1u:
23663 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23664 i += 1;
23665 break;
23666
23667 case DW_OP_const1s:
23668 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23669 i += 1;
23670 break;
23671
23672 case DW_OP_const2u:
23673 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23674 i += 2;
23675 break;
23676
23677 case DW_OP_const2s:
23678 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23679 i += 2;
23680 break;
d53d4ac5 23681
21ae7a4d
JK
23682 case DW_OP_const4u:
23683 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23684 i += 4;
23685 break;
23686
23687 case DW_OP_const4s:
23688 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23689 i += 4;
23690 break;
23691
585861ea
JK
23692 case DW_OP_const8u:
23693 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23694 i += 8;
23695 break;
23696
21ae7a4d
JK
23697 case DW_OP_constu:
23698 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23699 &bytes_read);
23700 i += bytes_read;
23701 break;
23702
23703 case DW_OP_consts:
23704 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23705 i += bytes_read;
23706 break;
23707
23708 case DW_OP_dup:
23709 stack[stacki + 1] = stack[stacki];
23710 stacki++;
23711 break;
23712
23713 case DW_OP_plus:
23714 stack[stacki - 1] += stack[stacki];
23715 stacki--;
23716 break;
23717
23718 case DW_OP_plus_uconst:
23719 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23720 &bytes_read);
23721 i += bytes_read;
23722 break;
23723
23724 case DW_OP_minus:
23725 stack[stacki - 1] -= stack[stacki];
23726 stacki--;
23727 break;
23728
23729 case DW_OP_deref:
23730 /* If we're not the last op, then we definitely can't encode
23731 this using GDB's address_class enum. This is valid for partial
23732 global symbols, although the variable's address will be bogus
23733 in the psymtab. */
23734 if (i < size)
23735 dwarf2_complex_location_expr_complaint ();
23736 break;
23737
23738 case DW_OP_GNU_push_tls_address:
4aa4e28b 23739 case DW_OP_form_tls_address:
21ae7a4d
JK
23740 /* The top of the stack has the offset from the beginning
23741 of the thread control block at which the variable is located. */
23742 /* Nothing should follow this operator, so the top of stack would
23743 be returned. */
23744 /* This is valid for partial global symbols, but the variable's
585861ea
JK
23745 address will be bogus in the psymtab. Make it always at least
23746 non-zero to not look as a variable garbage collected by linker
23747 which have DW_OP_addr 0. */
21ae7a4d
JK
23748 if (i < size)
23749 dwarf2_complex_location_expr_complaint ();
585861ea 23750 stack[stacki]++;
21ae7a4d
JK
23751 break;
23752
23753 case DW_OP_GNU_uninit:
23754 break;
23755
3019eac3 23756 case DW_OP_GNU_addr_index:
49f6c839 23757 case DW_OP_GNU_const_index:
3019eac3
DE
23758 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23759 &bytes_read);
23760 i += bytes_read;
23761 break;
23762
21ae7a4d
JK
23763 default:
23764 {
f39c6ffd 23765 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
23766
23767 if (name)
b98664d3 23768 complaint (_("unsupported stack op: '%s'"),
21ae7a4d
JK
23769 name);
23770 else
b98664d3 23771 complaint (_("unsupported stack op: '%02x'"),
21ae7a4d
JK
23772 op);
23773 }
23774
23775 return (stack[stacki]);
d53d4ac5 23776 }
3c6e0cb3 23777
21ae7a4d
JK
23778 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23779 outside of the allocated space. Also enforce minimum>0. */
23780 if (stacki >= ARRAY_SIZE (stack) - 1)
23781 {
b98664d3 23782 complaint (_("location description stack overflow"));
21ae7a4d
JK
23783 return 0;
23784 }
23785
23786 if (stacki <= 0)
23787 {
b98664d3 23788 complaint (_("location description stack underflow"));
21ae7a4d
JK
23789 return 0;
23790 }
23791 }
23792 return (stack[stacki]);
c906108c
SS
23793}
23794
23795/* memory allocation interface */
23796
c906108c 23797static struct dwarf_block *
7b5a2f43 23798dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 23799{
8d749320 23800 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
23801}
23802
c906108c 23803static struct die_info *
b60c80d6 23804dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
23805{
23806 struct die_info *die;
b60c80d6
DJ
23807 size_t size = sizeof (struct die_info);
23808
23809 if (num_attrs > 1)
23810 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 23811
b60c80d6 23812 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
23813 memset (die, 0, sizeof (struct die_info));
23814 return (die);
23815}
2e276125
JB
23816
23817\f
23818/* Macro support. */
23819
233d95b5
JK
23820/* Return file name relative to the compilation directory of file number I in
23821 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 23822 responsible for freeing it. */
233d95b5 23823
2e276125 23824static char *
233d95b5 23825file_file_name (int file, struct line_header *lh)
2e276125 23826{
6a83a1e6
EZ
23827 /* Is the file number a valid index into the line header's file name
23828 table? Remember that file numbers start with one, not zero. */
fff8551c 23829 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 23830 {
8c43009f 23831 const file_entry &fe = lh->file_names[file - 1];
6e70227d 23832
8c43009f
PA
23833 if (!IS_ABSOLUTE_PATH (fe.name))
23834 {
23835 const char *dir = fe.include_dir (lh);
23836 if (dir != NULL)
23837 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23838 }
23839 return xstrdup (fe.name);
6a83a1e6 23840 }
2e276125
JB
23841 else
23842 {
6a83a1e6
EZ
23843 /* The compiler produced a bogus file number. We can at least
23844 record the macro definitions made in the file, even if we
23845 won't be able to find the file by name. */
23846 char fake_name[80];
9a619af0 23847
8c042590
PM
23848 xsnprintf (fake_name, sizeof (fake_name),
23849 "<bad macro file number %d>", file);
2e276125 23850
b98664d3 23851 complaint (_("bad file number in macro information (%d)"),
6a83a1e6 23852 file);
2e276125 23853
6a83a1e6 23854 return xstrdup (fake_name);
2e276125
JB
23855 }
23856}
23857
233d95b5
JK
23858/* Return the full name of file number I in *LH's file name table.
23859 Use COMP_DIR as the name of the current directory of the
23860 compilation. The result is allocated using xmalloc; the caller is
23861 responsible for freeing it. */
23862static char *
23863file_full_name (int file, struct line_header *lh, const char *comp_dir)
23864{
23865 /* Is the file number a valid index into the line header's file name
23866 table? Remember that file numbers start with one, not zero. */
fff8551c 23867 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
23868 {
23869 char *relative = file_file_name (file, lh);
23870
23871 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23872 return relative;
b36cec19
PA
23873 return reconcat (relative, comp_dir, SLASH_STRING,
23874 relative, (char *) NULL);
233d95b5
JK
23875 }
23876 else
23877 return file_file_name (file, lh);
23878}
23879
2e276125
JB
23880
23881static struct macro_source_file *
804d2729
TT
23882macro_start_file (struct dwarf2_cu *cu,
23883 int file, int line,
2e276125 23884 struct macro_source_file *current_file,
43f3e411 23885 struct line_header *lh)
2e276125 23886{
233d95b5
JK
23887 /* File name relative to the compilation directory of this source file. */
23888 char *file_name = file_file_name (file, lh);
2e276125 23889
2e276125 23890 if (! current_file)
abc9d0dc 23891 {
fc474241
DE
23892 /* Note: We don't create a macro table for this compilation unit
23893 at all until we actually get a filename. */
804d2729 23894 struct macro_table *macro_table = cu->builder->get_macro_table ();
fc474241 23895
abc9d0dc
TT
23896 /* If we have no current file, then this must be the start_file
23897 directive for the compilation unit's main source file. */
fc474241
DE
23898 current_file = macro_set_main (macro_table, file_name);
23899 macro_define_special (macro_table);
abc9d0dc 23900 }
2e276125 23901 else
233d95b5 23902 current_file = macro_include (current_file, line, file_name);
2e276125 23903
233d95b5 23904 xfree (file_name);
6e70227d 23905
2e276125
JB
23906 return current_file;
23907}
23908
2e276125
JB
23909static const char *
23910consume_improper_spaces (const char *p, const char *body)
23911{
23912 if (*p == ' ')
23913 {
b98664d3 23914 complaint (_("macro definition contains spaces "
3e43a32a 23915 "in formal argument list:\n`%s'"),
4d3c2250 23916 body);
2e276125
JB
23917
23918 while (*p == ' ')
23919 p++;
23920 }
23921
23922 return p;
23923}
23924
23925
23926static void
23927parse_macro_definition (struct macro_source_file *file, int line,
23928 const char *body)
23929{
23930 const char *p;
23931
23932 /* The body string takes one of two forms. For object-like macro
23933 definitions, it should be:
23934
23935 <macro name> " " <definition>
23936
23937 For function-like macro definitions, it should be:
23938
23939 <macro name> "() " <definition>
23940 or
23941 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23942
23943 Spaces may appear only where explicitly indicated, and in the
23944 <definition>.
23945
23946 The Dwarf 2 spec says that an object-like macro's name is always
23947 followed by a space, but versions of GCC around March 2002 omit
6e70227d 23948 the space when the macro's definition is the empty string.
2e276125
JB
23949
23950 The Dwarf 2 spec says that there should be no spaces between the
23951 formal arguments in a function-like macro's formal argument list,
23952 but versions of GCC around March 2002 include spaces after the
23953 commas. */
23954
23955
23956 /* Find the extent of the macro name. The macro name is terminated
23957 by either a space or null character (for an object-like macro) or
23958 an opening paren (for a function-like macro). */
23959 for (p = body; *p; p++)
23960 if (*p == ' ' || *p == '(')
23961 break;
23962
23963 if (*p == ' ' || *p == '\0')
23964 {
23965 /* It's an object-like macro. */
23966 int name_len = p - body;
3f8a7804 23967 char *name = savestring (body, name_len);
2e276125
JB
23968 const char *replacement;
23969
23970 if (*p == ' ')
23971 replacement = body + name_len + 1;
23972 else
23973 {
4d3c2250 23974 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
23975 replacement = body + name_len;
23976 }
6e70227d 23977
2e276125
JB
23978 macro_define_object (file, line, name, replacement);
23979
23980 xfree (name);
23981 }
23982 else if (*p == '(')
23983 {
23984 /* It's a function-like macro. */
3f8a7804 23985 char *name = savestring (body, p - body);
2e276125
JB
23986 int argc = 0;
23987 int argv_size = 1;
8d749320 23988 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
23989
23990 p++;
23991
23992 p = consume_improper_spaces (p, body);
23993
23994 /* Parse the formal argument list. */
23995 while (*p && *p != ')')
23996 {
23997 /* Find the extent of the current argument name. */
23998 const char *arg_start = p;
23999
24000 while (*p && *p != ',' && *p != ')' && *p != ' ')
24001 p++;
24002
24003 if (! *p || p == arg_start)
4d3c2250 24004 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24005 else
24006 {
24007 /* Make sure argv has room for the new argument. */
24008 if (argc >= argv_size)
24009 {
24010 argv_size *= 2;
224c3ddb 24011 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
24012 }
24013
3f8a7804 24014 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
24015 }
24016
24017 p = consume_improper_spaces (p, body);
24018
24019 /* Consume the comma, if present. */
24020 if (*p == ',')
24021 {
24022 p++;
24023
24024 p = consume_improper_spaces (p, body);
24025 }
24026 }
24027
24028 if (*p == ')')
24029 {
24030 p++;
24031
24032 if (*p == ' ')
24033 /* Perfectly formed definition, no complaints. */
24034 macro_define_function (file, line, name,
6e70227d 24035 argc, (const char **) argv,
2e276125
JB
24036 p + 1);
24037 else if (*p == '\0')
24038 {
24039 /* Complain, but do define it. */
4d3c2250 24040 dwarf2_macro_malformed_definition_complaint (body);
2e276125 24041 macro_define_function (file, line, name,
6e70227d 24042 argc, (const char **) argv,
2e276125
JB
24043 p);
24044 }
24045 else
24046 /* Just complain. */
4d3c2250 24047 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24048 }
24049 else
24050 /* Just complain. */
4d3c2250 24051 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24052
24053 xfree (name);
24054 {
24055 int i;
24056
24057 for (i = 0; i < argc; i++)
24058 xfree (argv[i]);
24059 }
24060 xfree (argv);
24061 }
24062 else
4d3c2250 24063 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24064}
24065
cf2c3c16
TT
24066/* Skip some bytes from BYTES according to the form given in FORM.
24067 Returns the new pointer. */
2e276125 24068
d521ce57
TT
24069static const gdb_byte *
24070skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
24071 enum dwarf_form form,
24072 unsigned int offset_size,
24073 struct dwarf2_section_info *section)
2e276125 24074{
cf2c3c16 24075 unsigned int bytes_read;
2e276125 24076
cf2c3c16 24077 switch (form)
2e276125 24078 {
cf2c3c16
TT
24079 case DW_FORM_data1:
24080 case DW_FORM_flag:
24081 ++bytes;
24082 break;
24083
24084 case DW_FORM_data2:
24085 bytes += 2;
24086 break;
24087
24088 case DW_FORM_data4:
24089 bytes += 4;
24090 break;
24091
24092 case DW_FORM_data8:
24093 bytes += 8;
24094 break;
24095
0224619f
JK
24096 case DW_FORM_data16:
24097 bytes += 16;
24098 break;
24099
cf2c3c16
TT
24100 case DW_FORM_string:
24101 read_direct_string (abfd, bytes, &bytes_read);
24102 bytes += bytes_read;
24103 break;
24104
24105 case DW_FORM_sec_offset:
24106 case DW_FORM_strp:
36586728 24107 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
24108 bytes += offset_size;
24109 break;
24110
24111 case DW_FORM_block:
24112 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24113 bytes += bytes_read;
24114 break;
24115
24116 case DW_FORM_block1:
24117 bytes += 1 + read_1_byte (abfd, bytes);
24118 break;
24119 case DW_FORM_block2:
24120 bytes += 2 + read_2_bytes (abfd, bytes);
24121 break;
24122 case DW_FORM_block4:
24123 bytes += 4 + read_4_bytes (abfd, bytes);
24124 break;
24125
24126 case DW_FORM_sdata:
24127 case DW_FORM_udata:
3019eac3
DE
24128 case DW_FORM_GNU_addr_index:
24129 case DW_FORM_GNU_str_index:
d521ce57 24130 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
24131 if (bytes == NULL)
24132 {
24133 dwarf2_section_buffer_overflow_complaint (section);
24134 return NULL;
24135 }
cf2c3c16
TT
24136 break;
24137
663c44ac
JK
24138 case DW_FORM_implicit_const:
24139 break;
24140
cf2c3c16
TT
24141 default:
24142 {
b98664d3 24143 complaint (_("invalid form 0x%x in `%s'"),
a32a8923 24144 form, get_section_name (section));
cf2c3c16
TT
24145 return NULL;
24146 }
2e276125
JB
24147 }
24148
cf2c3c16
TT
24149 return bytes;
24150}
757a13d0 24151
cf2c3c16
TT
24152/* A helper for dwarf_decode_macros that handles skipping an unknown
24153 opcode. Returns an updated pointer to the macro data buffer; or,
24154 on error, issues a complaint and returns NULL. */
757a13d0 24155
d521ce57 24156static const gdb_byte *
cf2c3c16 24157skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
24158 const gdb_byte **opcode_definitions,
24159 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
24160 bfd *abfd,
24161 unsigned int offset_size,
24162 struct dwarf2_section_info *section)
24163{
24164 unsigned int bytes_read, i;
24165 unsigned long arg;
d521ce57 24166 const gdb_byte *defn;
2e276125 24167
cf2c3c16 24168 if (opcode_definitions[opcode] == NULL)
2e276125 24169 {
b98664d3 24170 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
cf2c3c16
TT
24171 opcode);
24172 return NULL;
24173 }
2e276125 24174
cf2c3c16
TT
24175 defn = opcode_definitions[opcode];
24176 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24177 defn += bytes_read;
2e276125 24178
cf2c3c16
TT
24179 for (i = 0; i < arg; ++i)
24180 {
aead7601
SM
24181 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24182 (enum dwarf_form) defn[i], offset_size,
f664829e 24183 section);
cf2c3c16
TT
24184 if (mac_ptr == NULL)
24185 {
24186 /* skip_form_bytes already issued the complaint. */
24187 return NULL;
24188 }
24189 }
757a13d0 24190
cf2c3c16
TT
24191 return mac_ptr;
24192}
757a13d0 24193
cf2c3c16
TT
24194/* A helper function which parses the header of a macro section.
24195 If the macro section is the extended (for now called "GNU") type,
24196 then this updates *OFFSET_SIZE. Returns a pointer to just after
24197 the header, or issues a complaint and returns NULL on error. */
757a13d0 24198
d521ce57
TT
24199static const gdb_byte *
24200dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 24201 bfd *abfd,
d521ce57 24202 const gdb_byte *mac_ptr,
cf2c3c16
TT
24203 unsigned int *offset_size,
24204 int section_is_gnu)
24205{
24206 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 24207
cf2c3c16
TT
24208 if (section_is_gnu)
24209 {
24210 unsigned int version, flags;
757a13d0 24211
cf2c3c16 24212 version = read_2_bytes (abfd, mac_ptr);
0af92d60 24213 if (version != 4 && version != 5)
cf2c3c16 24214 {
b98664d3 24215 complaint (_("unrecognized version `%d' in .debug_macro section"),
cf2c3c16
TT
24216 version);
24217 return NULL;
24218 }
24219 mac_ptr += 2;
757a13d0 24220
cf2c3c16
TT
24221 flags = read_1_byte (abfd, mac_ptr);
24222 ++mac_ptr;
24223 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 24224
cf2c3c16
TT
24225 if ((flags & 2) != 0)
24226 /* We don't need the line table offset. */
24227 mac_ptr += *offset_size;
757a13d0 24228
cf2c3c16
TT
24229 /* Vendor opcode descriptions. */
24230 if ((flags & 4) != 0)
24231 {
24232 unsigned int i, count;
757a13d0 24233
cf2c3c16
TT
24234 count = read_1_byte (abfd, mac_ptr);
24235 ++mac_ptr;
24236 for (i = 0; i < count; ++i)
24237 {
24238 unsigned int opcode, bytes_read;
24239 unsigned long arg;
24240
24241 opcode = read_1_byte (abfd, mac_ptr);
24242 ++mac_ptr;
24243 opcode_definitions[opcode] = mac_ptr;
24244 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24245 mac_ptr += bytes_read;
24246 mac_ptr += arg;
24247 }
757a13d0 24248 }
cf2c3c16 24249 }
757a13d0 24250
cf2c3c16
TT
24251 return mac_ptr;
24252}
757a13d0 24253
cf2c3c16 24254/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 24255 including DW_MACRO_import. */
cf2c3c16
TT
24256
24257static void
804d2729 24258dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
ed2dc618 24259 bfd *abfd,
d521ce57 24260 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 24261 struct macro_source_file *current_file,
43f3e411 24262 struct line_header *lh,
cf2c3c16 24263 struct dwarf2_section_info *section,
36586728 24264 int section_is_gnu, int section_is_dwz,
cf2c3c16 24265 unsigned int offset_size,
8fc3fc34 24266 htab_t include_hash)
cf2c3c16 24267{
804d2729
TT
24268 struct dwarf2_per_objfile *dwarf2_per_objfile
24269 = cu->per_cu->dwarf2_per_objfile;
4d663531 24270 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
24271 enum dwarf_macro_record_type macinfo_type;
24272 int at_commandline;
d521ce57 24273 const gdb_byte *opcode_definitions[256];
757a13d0 24274
cf2c3c16
TT
24275 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24276 &offset_size, section_is_gnu);
24277 if (mac_ptr == NULL)
24278 {
24279 /* We already issued a complaint. */
24280 return;
24281 }
757a13d0
JK
24282
24283 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24284 GDB is still reading the definitions from command line. First
24285 DW_MACINFO_start_file will need to be ignored as it was already executed
24286 to create CURRENT_FILE for the main source holding also the command line
24287 definitions. On first met DW_MACINFO_start_file this flag is reset to
24288 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24289
24290 at_commandline = 1;
24291
24292 do
24293 {
24294 /* Do we at least have room for a macinfo type byte? */
24295 if (mac_ptr >= mac_end)
24296 {
f664829e 24297 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
24298 break;
24299 }
24300
aead7601 24301 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
24302 mac_ptr++;
24303
cf2c3c16
TT
24304 /* Note that we rely on the fact that the corresponding GNU and
24305 DWARF constants are the same. */
132448f8
SM
24306 DIAGNOSTIC_PUSH
24307 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
757a13d0
JK
24308 switch (macinfo_type)
24309 {
24310 /* A zero macinfo type indicates the end of the macro
24311 information. */
24312 case 0:
24313 break;
2e276125 24314
0af92d60
JK
24315 case DW_MACRO_define:
24316 case DW_MACRO_undef:
24317 case DW_MACRO_define_strp:
24318 case DW_MACRO_undef_strp:
24319 case DW_MACRO_define_sup:
24320 case DW_MACRO_undef_sup:
2e276125 24321 {
891d2f0b 24322 unsigned int bytes_read;
2e276125 24323 int line;
d521ce57 24324 const char *body;
cf2c3c16 24325 int is_define;
2e276125 24326
cf2c3c16
TT
24327 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24328 mac_ptr += bytes_read;
24329
0af92d60
JK
24330 if (macinfo_type == DW_MACRO_define
24331 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
24332 {
24333 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24334 mac_ptr += bytes_read;
24335 }
24336 else
24337 {
24338 LONGEST str_offset;
24339
24340 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24341 mac_ptr += offset_size;
2e276125 24342
0af92d60
JK
24343 if (macinfo_type == DW_MACRO_define_sup
24344 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 24345 || section_is_dwz)
36586728 24346 {
ed2dc618
SM
24347 struct dwz_file *dwz
24348 = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728 24349
ed2dc618
SM
24350 body = read_indirect_string_from_dwz (objfile,
24351 dwz, str_offset);
36586728
TT
24352 }
24353 else
ed2dc618
SM
24354 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24355 abfd, str_offset);
cf2c3c16
TT
24356 }
24357
0af92d60
JK
24358 is_define = (macinfo_type == DW_MACRO_define
24359 || macinfo_type == DW_MACRO_define_strp
24360 || macinfo_type == DW_MACRO_define_sup);
2e276125 24361 if (! current_file)
757a13d0
JK
24362 {
24363 /* DWARF violation as no main source is present. */
b98664d3 24364 complaint (_("debug info with no main source gives macro %s "
757a13d0 24365 "on line %d: %s"),
cf2c3c16
TT
24366 is_define ? _("definition") : _("undefinition"),
24367 line, body);
757a13d0
JK
24368 break;
24369 }
3e43a32a
MS
24370 if ((line == 0 && !at_commandline)
24371 || (line != 0 && at_commandline))
b98664d3 24372 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
757a13d0 24373 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 24374 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
24375 line == 0 ? _("zero") : _("non-zero"), line, body);
24376
cf2c3c16 24377 if (is_define)
757a13d0 24378 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
24379 else
24380 {
0af92d60
JK
24381 gdb_assert (macinfo_type == DW_MACRO_undef
24382 || macinfo_type == DW_MACRO_undef_strp
24383 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
24384 macro_undef (current_file, line, body);
24385 }
2e276125
JB
24386 }
24387 break;
24388
0af92d60 24389 case DW_MACRO_start_file:
2e276125 24390 {
891d2f0b 24391 unsigned int bytes_read;
2e276125
JB
24392 int line, file;
24393
24394 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24395 mac_ptr += bytes_read;
24396 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24397 mac_ptr += bytes_read;
24398
3e43a32a
MS
24399 if ((line == 0 && !at_commandline)
24400 || (line != 0 && at_commandline))
b98664d3 24401 complaint (_("debug info gives source %d included "
757a13d0
JK
24402 "from %s at %s line %d"),
24403 file, at_commandline ? _("command-line") : _("file"),
24404 line == 0 ? _("zero") : _("non-zero"), line);
24405
24406 if (at_commandline)
24407 {
0af92d60 24408 /* This DW_MACRO_start_file was executed in the
cf2c3c16 24409 pass one. */
757a13d0
JK
24410 at_commandline = 0;
24411 }
24412 else
804d2729
TT
24413 current_file = macro_start_file (cu, file, line, current_file,
24414 lh);
2e276125
JB
24415 }
24416 break;
24417
0af92d60 24418 case DW_MACRO_end_file:
2e276125 24419 if (! current_file)
b98664d3 24420 complaint (_("macro debug info has an unmatched "
3e43a32a 24421 "`close_file' directive"));
2e276125
JB
24422 else
24423 {
24424 current_file = current_file->included_by;
24425 if (! current_file)
24426 {
cf2c3c16 24427 enum dwarf_macro_record_type next_type;
2e276125
JB
24428
24429 /* GCC circa March 2002 doesn't produce the zero
24430 type byte marking the end of the compilation
24431 unit. Complain if it's not there, but exit no
24432 matter what. */
24433
24434 /* Do we at least have room for a macinfo type byte? */
24435 if (mac_ptr >= mac_end)
24436 {
f664829e 24437 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
24438 return;
24439 }
24440
24441 /* We don't increment mac_ptr here, so this is just
24442 a look-ahead. */
aead7601
SM
24443 next_type
24444 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24445 mac_ptr);
2e276125 24446 if (next_type != 0)
b98664d3 24447 complaint (_("no terminating 0-type entry for "
3e43a32a 24448 "macros in `.debug_macinfo' section"));
2e276125
JB
24449
24450 return;
24451 }
24452 }
24453 break;
24454
0af92d60
JK
24455 case DW_MACRO_import:
24456 case DW_MACRO_import_sup:
cf2c3c16
TT
24457 {
24458 LONGEST offset;
8fc3fc34 24459 void **slot;
a036ba48
TT
24460 bfd *include_bfd = abfd;
24461 struct dwarf2_section_info *include_section = section;
d521ce57 24462 const gdb_byte *include_mac_end = mac_end;
a036ba48 24463 int is_dwz = section_is_dwz;
d521ce57 24464 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
24465
24466 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24467 mac_ptr += offset_size;
24468
0af92d60 24469 if (macinfo_type == DW_MACRO_import_sup)
a036ba48 24470 {
ed2dc618 24471 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
a036ba48 24472
4d663531 24473 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 24474
a036ba48 24475 include_section = &dwz->macro;
a32a8923 24476 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
24477 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24478 is_dwz = 1;
24479 }
24480
24481 new_mac_ptr = include_section->buffer + offset;
24482 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24483
8fc3fc34
TT
24484 if (*slot != NULL)
24485 {
24486 /* This has actually happened; see
24487 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
b98664d3 24488 complaint (_("recursive DW_MACRO_import in "
8fc3fc34
TT
24489 ".debug_macro section"));
24490 }
24491 else
24492 {
d521ce57 24493 *slot = (void *) new_mac_ptr;
36586728 24494
804d2729 24495 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
43f3e411 24496 include_mac_end, current_file, lh,
36586728 24497 section, section_is_gnu, is_dwz,
4d663531 24498 offset_size, include_hash);
8fc3fc34 24499
d521ce57 24500 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 24501 }
cf2c3c16
TT
24502 }
24503 break;
24504
2e276125 24505 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
24506 if (!section_is_gnu)
24507 {
24508 unsigned int bytes_read;
2e276125 24509
ac298888
TT
24510 /* This reads the constant, but since we don't recognize
24511 any vendor extensions, we ignore it. */
24512 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
24513 mac_ptr += bytes_read;
24514 read_direct_string (abfd, mac_ptr, &bytes_read);
24515 mac_ptr += bytes_read;
2e276125 24516
cf2c3c16
TT
24517 /* We don't recognize any vendor extensions. */
24518 break;
24519 }
24520 /* FALLTHROUGH */
24521
24522 default:
24523 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24524 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24525 section);
24526 if (mac_ptr == NULL)
24527 return;
24528 break;
2e276125 24529 }
132448f8 24530 DIAGNOSTIC_POP
757a13d0 24531 } while (macinfo_type != 0);
2e276125 24532}
8e19ed76 24533
cf2c3c16 24534static void
09262596 24535dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 24536 int section_is_gnu)
cf2c3c16 24537{
518817b3
SM
24538 struct dwarf2_per_objfile *dwarf2_per_objfile
24539 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24540 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
24541 struct line_header *lh = cu->line_header;
24542 bfd *abfd;
d521ce57 24543 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
24544 struct macro_source_file *current_file = 0;
24545 enum dwarf_macro_record_type macinfo_type;
24546 unsigned int offset_size = cu->header.offset_size;
d521ce57 24547 const gdb_byte *opcode_definitions[256];
8fc3fc34 24548 void **slot;
09262596
DE
24549 struct dwarf2_section_info *section;
24550 const char *section_name;
24551
24552 if (cu->dwo_unit != NULL)
24553 {
24554 if (section_is_gnu)
24555 {
24556 section = &cu->dwo_unit->dwo_file->sections.macro;
24557 section_name = ".debug_macro.dwo";
24558 }
24559 else
24560 {
24561 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24562 section_name = ".debug_macinfo.dwo";
24563 }
24564 }
24565 else
24566 {
24567 if (section_is_gnu)
24568 {
24569 section = &dwarf2_per_objfile->macro;
24570 section_name = ".debug_macro";
24571 }
24572 else
24573 {
24574 section = &dwarf2_per_objfile->macinfo;
24575 section_name = ".debug_macinfo";
24576 }
24577 }
cf2c3c16 24578
bb5ed363 24579 dwarf2_read_section (objfile, section);
cf2c3c16
TT
24580 if (section->buffer == NULL)
24581 {
b98664d3 24582 complaint (_("missing %s section"), section_name);
cf2c3c16
TT
24583 return;
24584 }
a32a8923 24585 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
24586
24587 /* First pass: Find the name of the base filename.
24588 This filename is needed in order to process all macros whose definition
24589 (or undefinition) comes from the command line. These macros are defined
24590 before the first DW_MACINFO_start_file entry, and yet still need to be
24591 associated to the base file.
24592
24593 To determine the base file name, we scan the macro definitions until we
24594 reach the first DW_MACINFO_start_file entry. We then initialize
24595 CURRENT_FILE accordingly so that any macro definition found before the
24596 first DW_MACINFO_start_file can still be associated to the base file. */
24597
24598 mac_ptr = section->buffer + offset;
24599 mac_end = section->buffer + section->size;
24600
24601 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24602 &offset_size, section_is_gnu);
24603 if (mac_ptr == NULL)
24604 {
24605 /* We already issued a complaint. */
24606 return;
24607 }
24608
24609 do
24610 {
24611 /* Do we at least have room for a macinfo type byte? */
24612 if (mac_ptr >= mac_end)
24613 {
24614 /* Complaint is printed during the second pass as GDB will probably
24615 stop the first pass earlier upon finding
24616 DW_MACINFO_start_file. */
24617 break;
24618 }
24619
aead7601 24620 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
24621 mac_ptr++;
24622
24623 /* Note that we rely on the fact that the corresponding GNU and
24624 DWARF constants are the same. */
132448f8
SM
24625 DIAGNOSTIC_PUSH
24626 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
cf2c3c16
TT
24627 switch (macinfo_type)
24628 {
24629 /* A zero macinfo type indicates the end of the macro
24630 information. */
24631 case 0:
24632 break;
24633
0af92d60
JK
24634 case DW_MACRO_define:
24635 case DW_MACRO_undef:
cf2c3c16
TT
24636 /* Only skip the data by MAC_PTR. */
24637 {
24638 unsigned int bytes_read;
24639
24640 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24641 mac_ptr += bytes_read;
24642 read_direct_string (abfd, mac_ptr, &bytes_read);
24643 mac_ptr += bytes_read;
24644 }
24645 break;
24646
0af92d60 24647 case DW_MACRO_start_file:
cf2c3c16
TT
24648 {
24649 unsigned int bytes_read;
24650 int line, file;
24651
24652 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24653 mac_ptr += bytes_read;
24654 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24655 mac_ptr += bytes_read;
24656
804d2729 24657 current_file = macro_start_file (cu, file, line, current_file, lh);
cf2c3c16
TT
24658 }
24659 break;
24660
0af92d60 24661 case DW_MACRO_end_file:
cf2c3c16
TT
24662 /* No data to skip by MAC_PTR. */
24663 break;
24664
0af92d60
JK
24665 case DW_MACRO_define_strp:
24666 case DW_MACRO_undef_strp:
24667 case DW_MACRO_define_sup:
24668 case DW_MACRO_undef_sup:
cf2c3c16
TT
24669 {
24670 unsigned int bytes_read;
24671
24672 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24673 mac_ptr += bytes_read;
24674 mac_ptr += offset_size;
24675 }
24676 break;
24677
0af92d60
JK
24678 case DW_MACRO_import:
24679 case DW_MACRO_import_sup:
cf2c3c16 24680 /* Note that, according to the spec, a transparent include
0af92d60 24681 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
24682 skip this opcode. */
24683 mac_ptr += offset_size;
24684 break;
24685
24686 case DW_MACINFO_vendor_ext:
24687 /* Only skip the data by MAC_PTR. */
24688 if (!section_is_gnu)
24689 {
24690 unsigned int bytes_read;
24691
24692 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24693 mac_ptr += bytes_read;
24694 read_direct_string (abfd, mac_ptr, &bytes_read);
24695 mac_ptr += bytes_read;
24696 }
24697 /* FALLTHROUGH */
24698
24699 default:
24700 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24701 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24702 section);
24703 if (mac_ptr == NULL)
24704 return;
24705 break;
24706 }
132448f8 24707 DIAGNOSTIC_POP
cf2c3c16
TT
24708 } while (macinfo_type != 0 && current_file == NULL);
24709
24710 /* Second pass: Process all entries.
24711
24712 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24713 command-line macro definitions/undefinitions. This flag is unset when we
24714 reach the first DW_MACINFO_start_file entry. */
24715
fc4007c9
TT
24716 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24717 htab_eq_pointer,
24718 NULL, xcalloc, xfree));
8fc3fc34 24719 mac_ptr = section->buffer + offset;
fc4007c9 24720 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 24721 *slot = (void *) mac_ptr;
804d2729 24722 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
43f3e411 24723 current_file, lh, section,
fc4007c9
TT
24724 section_is_gnu, 0, offset_size,
24725 include_hash.get ());
cf2c3c16
TT
24726}
24727
8e19ed76 24728/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 24729 if so return true else false. */
380bca97 24730
8e19ed76 24731static int
6e5a29e1 24732attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
24733{
24734 return (attr == NULL ? 0 :
24735 attr->form == DW_FORM_block1
24736 || attr->form == DW_FORM_block2
24737 || attr->form == DW_FORM_block4
2dc7f7b3
TT
24738 || attr->form == DW_FORM_block
24739 || attr->form == DW_FORM_exprloc);
8e19ed76 24740}
4c2df51b 24741
c6a0999f
JB
24742/* Return non-zero if ATTR's value is a section offset --- classes
24743 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24744 You may use DW_UNSND (attr) to retrieve such offsets.
24745
24746 Section 7.5.4, "Attribute Encodings", explains that no attribute
24747 may have a value that belongs to more than one of these classes; it
24748 would be ambiguous if we did, because we use the same forms for all
24749 of them. */
380bca97 24750
3690dd37 24751static int
6e5a29e1 24752attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
24753{
24754 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
24755 || attr->form == DW_FORM_data8
24756 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
24757}
24758
3690dd37
JB
24759/* Return non-zero if ATTR's value falls in the 'constant' class, or
24760 zero otherwise. When this function returns true, you can apply
24761 dwarf2_get_attr_constant_value to it.
24762
24763 However, note that for some attributes you must check
24764 attr_form_is_section_offset before using this test. DW_FORM_data4
24765 and DW_FORM_data8 are members of both the constant class, and of
24766 the classes that contain offsets into other debug sections
24767 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24768 that, if an attribute's can be either a constant or one of the
24769 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
24770 taken as section offsets, not constants.
24771
24772 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24773 cannot handle that. */
380bca97 24774
3690dd37 24775static int
6e5a29e1 24776attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
24777{
24778 switch (attr->form)
24779 {
24780 case DW_FORM_sdata:
24781 case DW_FORM_udata:
24782 case DW_FORM_data1:
24783 case DW_FORM_data2:
24784 case DW_FORM_data4:
24785 case DW_FORM_data8:
663c44ac 24786 case DW_FORM_implicit_const:
3690dd37
JB
24787 return 1;
24788 default:
24789 return 0;
24790 }
24791}
24792
7771576e
SA
24793
24794/* DW_ADDR is always stored already as sect_offset; despite for the forms
24795 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24796
24797static int
6e5a29e1 24798attr_form_is_ref (const struct attribute *attr)
7771576e
SA
24799{
24800 switch (attr->form)
24801 {
24802 case DW_FORM_ref_addr:
24803 case DW_FORM_ref1:
24804 case DW_FORM_ref2:
24805 case DW_FORM_ref4:
24806 case DW_FORM_ref8:
24807 case DW_FORM_ref_udata:
24808 case DW_FORM_GNU_ref_alt:
24809 return 1;
24810 default:
24811 return 0;
24812 }
24813}
24814
3019eac3
DE
24815/* Return the .debug_loc section to use for CU.
24816 For DWO files use .debug_loc.dwo. */
24817
24818static struct dwarf2_section_info *
24819cu_debug_loc_section (struct dwarf2_cu *cu)
24820{
518817b3
SM
24821 struct dwarf2_per_objfile *dwarf2_per_objfile
24822 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 24823
3019eac3 24824 if (cu->dwo_unit)
43988095
JK
24825 {
24826 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24827
24828 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24829 }
24830 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24831 : &dwarf2_per_objfile->loc);
3019eac3
DE
24832}
24833
8cf6f0b1
TT
24834/* A helper function that fills in a dwarf2_loclist_baton. */
24835
24836static void
24837fill_in_loclist_baton (struct dwarf2_cu *cu,
24838 struct dwarf2_loclist_baton *baton,
ff39bb5e 24839 const struct attribute *attr)
8cf6f0b1 24840{
518817b3
SM
24841 struct dwarf2_per_objfile *dwarf2_per_objfile
24842 = cu->per_cu->dwarf2_per_objfile;
3019eac3
DE
24843 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24844
24845 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
24846
24847 baton->per_cu = cu->per_cu;
24848 gdb_assert (baton->per_cu);
24849 /* We don't know how long the location list is, but make sure we
24850 don't run off the edge of the section. */
3019eac3
DE
24851 baton->size = section->size - DW_UNSND (attr);
24852 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 24853 baton->base_address = cu->base_address;
f664829e 24854 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
24855}
24856
4c2df51b 24857static void
ff39bb5e 24858dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 24859 struct dwarf2_cu *cu, int is_block)
4c2df51b 24860{
518817b3
SM
24861 struct dwarf2_per_objfile *dwarf2_per_objfile
24862 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24863 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 24864 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 24865
3690dd37 24866 if (attr_form_is_section_offset (attr)
3019eac3 24867 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
24868 the section. If so, fall through to the complaint in the
24869 other branch. */
3019eac3 24870 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 24871 {
0d53c4c4 24872 struct dwarf2_loclist_baton *baton;
4c2df51b 24873
8d749320 24874 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 24875
8cf6f0b1 24876 fill_in_loclist_baton (cu, baton, attr);
be391dca 24877
d00adf39 24878 if (cu->base_known == 0)
b98664d3 24879 complaint (_("Location list used without "
3e43a32a 24880 "specifying the CU base address."));
4c2df51b 24881
f1e6e072
TT
24882 SYMBOL_ACLASS_INDEX (sym) = (is_block
24883 ? dwarf2_loclist_block_index
24884 : dwarf2_loclist_index);
0d53c4c4
DJ
24885 SYMBOL_LOCATION_BATON (sym) = baton;
24886 }
24887 else
24888 {
24889 struct dwarf2_locexpr_baton *baton;
24890
8d749320 24891 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
24892 baton->per_cu = cu->per_cu;
24893 gdb_assert (baton->per_cu);
0d53c4c4
DJ
24894
24895 if (attr_form_is_block (attr))
24896 {
24897 /* Note that we're just copying the block's data pointer
24898 here, not the actual data. We're still pointing into the
6502dd73
DJ
24899 info_buffer for SYM's objfile; right now we never release
24900 that buffer, but when we do clean up properly this may
24901 need to change. */
0d53c4c4
DJ
24902 baton->size = DW_BLOCK (attr)->size;
24903 baton->data = DW_BLOCK (attr)->data;
24904 }
24905 else
24906 {
24907 dwarf2_invalid_attrib_class_complaint ("location description",
24908 SYMBOL_NATURAL_NAME (sym));
24909 baton->size = 0;
0d53c4c4 24910 }
6e70227d 24911
f1e6e072
TT
24912 SYMBOL_ACLASS_INDEX (sym) = (is_block
24913 ? dwarf2_locexpr_block_index
24914 : dwarf2_locexpr_index);
0d53c4c4
DJ
24915 SYMBOL_LOCATION_BATON (sym) = baton;
24916 }
4c2df51b 24917}
6502dd73 24918
9aa1f1e3
TT
24919/* Return the OBJFILE associated with the compilation unit CU. If CU
24920 came from a separate debuginfo file, then the master objfile is
24921 returned. */
ae0d2f24
UW
24922
24923struct objfile *
24924dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24925{
e3b94546 24926 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
ae0d2f24
UW
24927
24928 /* Return the master objfile, so that we can report and look up the
24929 correct file containing this variable. */
24930 if (objfile->separate_debug_objfile_backlink)
24931 objfile = objfile->separate_debug_objfile_backlink;
24932
24933 return objfile;
24934}
24935
96408a79
SA
24936/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24937 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24938 CU_HEADERP first. */
24939
24940static const struct comp_unit_head *
24941per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24942 struct dwarf2_per_cu_data *per_cu)
24943{
d521ce57 24944 const gdb_byte *info_ptr;
96408a79
SA
24945
24946 if (per_cu->cu)
24947 return &per_cu->cu->header;
24948
9c541725 24949 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
24950
24951 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
24952 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24953 rcuh_kind::COMPILE);
96408a79
SA
24954
24955 return cu_headerp;
24956}
24957
ae0d2f24
UW
24958/* Return the address size given in the compilation unit header for CU. */
24959
98714339 24960int
ae0d2f24
UW
24961dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24962{
96408a79
SA
24963 struct comp_unit_head cu_header_local;
24964 const struct comp_unit_head *cu_headerp;
c471e790 24965
96408a79
SA
24966 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24967
24968 return cu_headerp->addr_size;
ae0d2f24
UW
24969}
24970
9eae7c52
TT
24971/* Return the offset size given in the compilation unit header for CU. */
24972
24973int
24974dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24975{
96408a79
SA
24976 struct comp_unit_head cu_header_local;
24977 const struct comp_unit_head *cu_headerp;
9c6c53f7 24978
96408a79
SA
24979 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24980
24981 return cu_headerp->offset_size;
24982}
24983
24984/* See its dwarf2loc.h declaration. */
24985
24986int
24987dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24988{
24989 struct comp_unit_head cu_header_local;
24990 const struct comp_unit_head *cu_headerp;
24991
24992 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24993
24994 if (cu_headerp->version == 2)
24995 return cu_headerp->addr_size;
24996 else
24997 return cu_headerp->offset_size;
181cebd4
JK
24998}
24999
9aa1f1e3
TT
25000/* Return the text offset of the CU. The returned offset comes from
25001 this CU's objfile. If this objfile came from a separate debuginfo
25002 file, then the offset may be different from the corresponding
25003 offset in the parent objfile. */
25004
25005CORE_ADDR
25006dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25007{
e3b94546 25008 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
9aa1f1e3
TT
25009
25010 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25011}
25012
43988095
JK
25013/* Return DWARF version number of PER_CU. */
25014
25015short
25016dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25017{
25018 return per_cu->dwarf_version;
25019}
25020
348e048f
DE
25021/* Locate the .debug_info compilation unit from CU's objfile which contains
25022 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
25023
25024static struct dwarf2_per_cu_data *
9c541725 25025dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 25026 unsigned int offset_in_dwz,
ed2dc618 25027 struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25028{
25029 struct dwarf2_per_cu_data *this_cu;
25030 int low, high;
36586728 25031 const sect_offset *cu_off;
ae038cb0 25032
ae038cb0 25033 low = 0;
b76e467d 25034 high = dwarf2_per_objfile->all_comp_units.size () - 1;
ae038cb0
DJ
25035 while (high > low)
25036 {
36586728 25037 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 25038 int mid = low + (high - low) / 2;
9a619af0 25039
36586728 25040 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 25041 cu_off = &mid_cu->sect_off;
36586728 25042 if (mid_cu->is_dwz > offset_in_dwz
9c541725 25043 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
25044 high = mid;
25045 else
25046 low = mid + 1;
25047 }
25048 gdb_assert (low == high);
36586728 25049 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
25050 cu_off = &this_cu->sect_off;
25051 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 25052 {
36586728 25053 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 25054 error (_("Dwarf Error: could not find partial DIE containing "
9d8780f0
SM
25055 "offset %s [in module %s]"),
25056 sect_offset_str (sect_off),
ed2dc618 25057 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
10b3939b 25058
9c541725
PA
25059 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25060 <= sect_off);
ae038cb0
DJ
25061 return dwarf2_per_objfile->all_comp_units[low-1];
25062 }
25063 else
25064 {
25065 this_cu = dwarf2_per_objfile->all_comp_units[low];
b76e467d 25066 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
9c541725 25067 && sect_off >= this_cu->sect_off + this_cu->length)
9d8780f0 25068 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
9c541725 25069 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
25070 return this_cu;
25071 }
25072}
25073
23745b47 25074/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 25075
fcd3b13d
SM
25076dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25077 : per_cu (per_cu_),
25078 mark (0),
25079 has_loclist (0),
25080 checked_producer (0),
25081 producer_is_gxx_lt_4_6 (0),
25082 producer_is_gcc_lt_4_3 (0),
25083 producer_is_icc_lt_14 (0),
25084 processing_has_namespace_info (0)
93311388 25085{
fcd3b13d
SM
25086 per_cu->cu = this;
25087}
25088
25089/* Destroy a dwarf2_cu. */
25090
25091dwarf2_cu::~dwarf2_cu ()
25092{
25093 per_cu->cu = NULL;
9816fde3
JK
25094}
25095
25096/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25097
25098static void
95554aad
TT
25099prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25100 enum language pretend_language)
9816fde3
JK
25101{
25102 struct attribute *attr;
25103
25104 /* Set the language we're debugging. */
25105 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25106 if (attr)
25107 set_cu_language (DW_UNSND (attr), cu);
25108 else
9cded63f 25109 {
95554aad 25110 cu->language = pretend_language;
9cded63f
TT
25111 cu->language_defn = language_def (cu->language);
25112 }
dee91e82 25113
7d45c7c3 25114 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
25115}
25116
ae038cb0
DJ
25117/* Increase the age counter on each cached compilation unit, and free
25118 any that are too old. */
25119
25120static void
ed2dc618 25121age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25122{
25123 struct dwarf2_per_cu_data *per_cu, **last_chain;
25124
25125 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25126 per_cu = dwarf2_per_objfile->read_in_chain;
25127 while (per_cu != NULL)
25128 {
25129 per_cu->cu->last_used ++;
b4f54984 25130 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
25131 dwarf2_mark (per_cu->cu);
25132 per_cu = per_cu->cu->read_in_chain;
25133 }
25134
25135 per_cu = dwarf2_per_objfile->read_in_chain;
25136 last_chain = &dwarf2_per_objfile->read_in_chain;
25137 while (per_cu != NULL)
25138 {
25139 struct dwarf2_per_cu_data *next_cu;
25140
25141 next_cu = per_cu->cu->read_in_chain;
25142
25143 if (!per_cu->cu->mark)
25144 {
fcd3b13d 25145 delete per_cu->cu;
ae038cb0
DJ
25146 *last_chain = next_cu;
25147 }
25148 else
25149 last_chain = &per_cu->cu->read_in_chain;
25150
25151 per_cu = next_cu;
25152 }
25153}
25154
25155/* Remove a single compilation unit from the cache. */
25156
25157static void
dee91e82 25158free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
25159{
25160 struct dwarf2_per_cu_data *per_cu, **last_chain;
ed2dc618
SM
25161 struct dwarf2_per_objfile *dwarf2_per_objfile
25162 = target_per_cu->dwarf2_per_objfile;
ae038cb0
DJ
25163
25164 per_cu = dwarf2_per_objfile->read_in_chain;
25165 last_chain = &dwarf2_per_objfile->read_in_chain;
25166 while (per_cu != NULL)
25167 {
25168 struct dwarf2_per_cu_data *next_cu;
25169
25170 next_cu = per_cu->cu->read_in_chain;
25171
dee91e82 25172 if (per_cu == target_per_cu)
ae038cb0 25173 {
fcd3b13d 25174 delete per_cu->cu;
dee91e82 25175 per_cu->cu = NULL;
ae038cb0
DJ
25176 *last_chain = next_cu;
25177 break;
25178 }
25179 else
25180 last_chain = &per_cu->cu->read_in_chain;
25181
25182 per_cu = next_cu;
25183 }
25184}
25185
d95d3aef 25186/* Cleanup function for the dwarf2_per_objfile data. */
fe3e1990 25187
d95d3aef
TT
25188static void
25189dwarf2_free_objfile (struct objfile *objfile, void *datum)
fe3e1990 25190{
ed2dc618 25191 struct dwarf2_per_objfile *dwarf2_per_objfile
d95d3aef 25192 = static_cast<struct dwarf2_per_objfile *> (datum);
fe3e1990 25193
fd90ace4 25194 delete dwarf2_per_objfile;
fe3e1990
DJ
25195}
25196
dee91e82
DE
25197/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25198 We store these in a hash table separate from the DIEs, and preserve them
25199 when the DIEs are flushed out of cache.
25200
25201 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 25202 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
25203 or the type may come from a DWO file. Furthermore, while it's more logical
25204 to use per_cu->section+offset, with Fission the section with the data is in
25205 the DWO file but we don't know that section at the point we need it.
25206 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25207 because we can enter the lookup routine, get_die_type_at_offset, from
25208 outside this file, and thus won't necessarily have PER_CU->cu.
25209 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 25210
dee91e82 25211struct dwarf2_per_cu_offset_and_type
1c379e20 25212{
dee91e82 25213 const struct dwarf2_per_cu_data *per_cu;
9c541725 25214 sect_offset sect_off;
1c379e20
DJ
25215 struct type *type;
25216};
25217
dee91e82 25218/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25219
25220static hashval_t
dee91e82 25221per_cu_offset_and_type_hash (const void *item)
1c379e20 25222{
9a3c8263
SM
25223 const struct dwarf2_per_cu_offset_and_type *ofs
25224 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 25225
9c541725 25226 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
25227}
25228
dee91e82 25229/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25230
25231static int
dee91e82 25232per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 25233{
9a3c8263
SM
25234 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25235 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25236 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25237 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 25238
dee91e82 25239 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 25240 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
25241}
25242
25243/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
25244 table if necessary. For convenience, return TYPE.
25245
25246 The DIEs reading must have careful ordering to:
25247 * Not cause infite loops trying to read in DIEs as a prerequisite for
25248 reading current DIE.
25249 * Not trying to dereference contents of still incompletely read in types
25250 while reading in other DIEs.
25251 * Enable referencing still incompletely read in types just by a pointer to
25252 the type without accessing its fields.
25253
25254 Therefore caller should follow these rules:
25255 * Try to fetch any prerequisite types we may need to build this DIE type
25256 before building the type and calling set_die_type.
e71ec853 25257 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
25258 possible before fetching more types to complete the current type.
25259 * Make the type as complete as possible before fetching more types. */
1c379e20 25260
f792889a 25261static struct type *
1c379e20
DJ
25262set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25263{
518817b3
SM
25264 struct dwarf2_per_objfile *dwarf2_per_objfile
25265 = cu->per_cu->dwarf2_per_objfile;
dee91e82 25266 struct dwarf2_per_cu_offset_and_type **slot, ofs;
ed2dc618 25267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3cdcd0ce
JB
25268 struct attribute *attr;
25269 struct dynamic_prop prop;
1c379e20 25270
b4ba55a1
JB
25271 /* For Ada types, make sure that the gnat-specific data is always
25272 initialized (if not already set). There are a few types where
25273 we should not be doing so, because the type-specific area is
25274 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25275 where the type-specific area is used to store the floatformat).
25276 But this is not a problem, because the gnat-specific information
25277 is actually not needed for these types. */
25278 if (need_gnat_info (cu)
25279 && TYPE_CODE (type) != TYPE_CODE_FUNC
25280 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
25281 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25282 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25283 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
25284 && !HAVE_GNAT_AUX_INFO (type))
25285 INIT_GNAT_SPECIFIC (type);
25286
3f2f83dd
KB
25287 /* Read DW_AT_allocated and set in type. */
25288 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25289 if (attr_form_is_block (attr))
25290 {
25291 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25292 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
3f2f83dd
KB
25293 }
25294 else if (attr != NULL)
25295 {
b98664d3 25296 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
9c541725 25297 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25298 sect_offset_str (die->sect_off));
3f2f83dd
KB
25299 }
25300
25301 /* Read DW_AT_associated and set in type. */
25302 attr = dwarf2_attr (die, DW_AT_associated, cu);
25303 if (attr_form_is_block (attr))
25304 {
25305 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25306 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
3f2f83dd
KB
25307 }
25308 else if (attr != NULL)
25309 {
b98664d3 25310 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
9c541725 25311 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25312 sect_offset_str (die->sect_off));
3f2f83dd
KB
25313 }
25314
3cdcd0ce
JB
25315 /* Read DW_AT_data_location and set in type. */
25316 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25317 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25318 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
3cdcd0ce 25319
dee91e82 25320 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25321 {
dee91e82
DE
25322 dwarf2_per_objfile->die_type_hash =
25323 htab_create_alloc_ex (127,
25324 per_cu_offset_and_type_hash,
25325 per_cu_offset_and_type_eq,
25326 NULL,
25327 &objfile->objfile_obstack,
25328 hashtab_obstack_allocate,
25329 dummy_obstack_deallocate);
f792889a 25330 }
1c379e20 25331
dee91e82 25332 ofs.per_cu = cu->per_cu;
9c541725 25333 ofs.sect_off = die->sect_off;
1c379e20 25334 ofs.type = type;
dee91e82
DE
25335 slot = (struct dwarf2_per_cu_offset_and_type **)
25336 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57 25337 if (*slot)
b98664d3 25338 complaint (_("A problem internal to GDB: DIE %s has type already set"),
9d8780f0 25339 sect_offset_str (die->sect_off));
8d749320
SM
25340 *slot = XOBNEW (&objfile->objfile_obstack,
25341 struct dwarf2_per_cu_offset_and_type);
1c379e20 25342 **slot = ofs;
f792889a 25343 return type;
1c379e20
DJ
25344}
25345
9c541725 25346/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 25347 or return NULL if the die does not have a saved type. */
1c379e20
DJ
25348
25349static struct type *
9c541725 25350get_die_type_at_offset (sect_offset sect_off,
673bfd45 25351 struct dwarf2_per_cu_data *per_cu)
1c379e20 25352{
dee91e82 25353 struct dwarf2_per_cu_offset_and_type *slot, ofs;
ed2dc618 25354 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
f792889a 25355
dee91e82 25356 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25357 return NULL;
1c379e20 25358
dee91e82 25359 ofs.per_cu = per_cu;
9c541725 25360 ofs.sect_off = sect_off;
9a3c8263
SM
25361 slot = ((struct dwarf2_per_cu_offset_and_type *)
25362 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
25363 if (slot)
25364 return slot->type;
25365 else
25366 return NULL;
25367}
25368
02142a6c 25369/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
25370 or return NULL if DIE does not have a saved type. */
25371
25372static struct type *
25373get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25374{
9c541725 25375 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
25376}
25377
10b3939b
DJ
25378/* Add a dependence relationship from CU to REF_PER_CU. */
25379
25380static void
25381dwarf2_add_dependence (struct dwarf2_cu *cu,
25382 struct dwarf2_per_cu_data *ref_per_cu)
25383{
25384 void **slot;
25385
25386 if (cu->dependencies == NULL)
25387 cu->dependencies
25388 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25389 NULL, &cu->comp_unit_obstack,
25390 hashtab_obstack_allocate,
25391 dummy_obstack_deallocate);
25392
25393 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25394 if (*slot == NULL)
25395 *slot = ref_per_cu;
25396}
1c379e20 25397
f504f079
DE
25398/* Subroutine of dwarf2_mark to pass to htab_traverse.
25399 Set the mark field in every compilation unit in the
ae038cb0
DJ
25400 cache that we must keep because we are keeping CU. */
25401
10b3939b
DJ
25402static int
25403dwarf2_mark_helper (void **slot, void *data)
25404{
25405 struct dwarf2_per_cu_data *per_cu;
25406
25407 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
25408
25409 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25410 reading of the chain. As such dependencies remain valid it is not much
25411 useful to track and undo them during QUIT cleanups. */
25412 if (per_cu->cu == NULL)
25413 return 1;
25414
10b3939b
DJ
25415 if (per_cu->cu->mark)
25416 return 1;
25417 per_cu->cu->mark = 1;
25418
25419 if (per_cu->cu->dependencies != NULL)
25420 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25421
25422 return 1;
25423}
25424
f504f079
DE
25425/* Set the mark field in CU and in every other compilation unit in the
25426 cache that we must keep because we are keeping CU. */
25427
ae038cb0
DJ
25428static void
25429dwarf2_mark (struct dwarf2_cu *cu)
25430{
25431 if (cu->mark)
25432 return;
25433 cu->mark = 1;
10b3939b
DJ
25434 if (cu->dependencies != NULL)
25435 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
25436}
25437
25438static void
25439dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25440{
25441 while (per_cu)
25442 {
25443 per_cu->cu->mark = 0;
25444 per_cu = per_cu->cu->read_in_chain;
25445 }
72bf9492
DJ
25446}
25447
72bf9492
DJ
25448/* Trivial hash function for partial_die_info: the hash value of a DIE
25449 is its offset in .debug_info for this objfile. */
25450
25451static hashval_t
25452partial_die_hash (const void *item)
25453{
9a3c8263
SM
25454 const struct partial_die_info *part_die
25455 = (const struct partial_die_info *) item;
9a619af0 25456
9c541725 25457 return to_underlying (part_die->sect_off);
72bf9492
DJ
25458}
25459
25460/* Trivial comparison function for partial_die_info structures: two DIEs
25461 are equal if they have the same offset. */
25462
25463static int
25464partial_die_eq (const void *item_lhs, const void *item_rhs)
25465{
9a3c8263
SM
25466 const struct partial_die_info *part_die_lhs
25467 = (const struct partial_die_info *) item_lhs;
25468 const struct partial_die_info *part_die_rhs
25469 = (const struct partial_die_info *) item_rhs;
9a619af0 25470
9c541725 25471 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
25472}
25473
3c3bb058
AB
25474struct cmd_list_element *set_dwarf_cmdlist;
25475struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
25476
25477static void
981a3fb3 25478set_dwarf_cmd (const char *args, int from_tty)
ae038cb0 25479{
b4f54984 25480 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 25481 gdb_stdout);
ae038cb0
DJ
25482}
25483
25484static void
981a3fb3 25485show_dwarf_cmd (const char *args, int from_tty)
6e70227d 25486{
b4f54984 25487 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
25488}
25489
cd4fb1b2 25490int dwarf_always_disassemble;
437afbb8 25491
437afbb8 25492static void
cd4fb1b2
SM
25493show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25494 struct cmd_list_element *c, const char *value)
9291a0cd 25495{
cd4fb1b2
SM
25496 fprintf_filtered (file,
25497 _("Whether to always disassemble "
25498 "DWARF expressions is %s.\n"),
25499 value);
9291a0cd
TT
25500}
25501
9291a0cd 25502static void
cd4fb1b2
SM
25503show_check_physname (struct ui_file *file, int from_tty,
25504 struct cmd_list_element *c, const char *value)
9291a0cd 25505{
cd4fb1b2
SM
25506 fprintf_filtered (file,
25507 _("Whether to check \"physname\" is %s.\n"),
25508 value);
9291a0cd
TT
25509}
25510
cd4fb1b2
SM
25511void
25512_initialize_dwarf2_read (void)
9291a0cd 25513{
d95d3aef
TT
25514 dwarf2_objfile_data_key
25515 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
156942c7 25516
cd4fb1b2
SM
25517 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25518Set DWARF specific variables.\n\
25519Configure DWARF variables such as the cache size"),
25520 &set_dwarf_cmdlist, "maintenance set dwarf ",
25521 0/*allow-unknown*/, &maintenance_set_cmdlist);
156942c7 25522
cd4fb1b2
SM
25523 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25524Show DWARF specific variables\n\
25525Show DWARF variables such as the cache size"),
25526 &show_dwarf_cmdlist, "maintenance show dwarf ",
25527 0/*allow-unknown*/, &maintenance_show_cmdlist);
156942c7 25528
cd4fb1b2
SM
25529 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25530 &dwarf_max_cache_age, _("\
25531Set the upper bound on the age of cached DWARF compilation units."), _("\
25532Show the upper bound on the age of cached DWARF compilation units."), _("\
25533A higher limit means that cached compilation units will be stored\n\
25534in memory longer, and more total memory will be used. Zero disables\n\
25535caching, which can slow down startup."),
25536 NULL,
25537 show_dwarf_max_cache_age,
25538 &set_dwarf_cmdlist,
25539 &show_dwarf_cmdlist);
156942c7 25540
cd4fb1b2
SM
25541 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25542 &dwarf_always_disassemble, _("\
25543Set whether `info address' always disassembles DWARF expressions."), _("\
25544Show whether `info address' always disassembles DWARF expressions."), _("\
25545When enabled, DWARF expressions are always printed in an assembly-like\n\
25546syntax. When disabled, expressions will be printed in a more\n\
25547conversational style, when possible."),
25548 NULL,
25549 show_dwarf_always_disassemble,
25550 &set_dwarf_cmdlist,
25551 &show_dwarf_cmdlist);
9291a0cd 25552
cd4fb1b2
SM
25553 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25554Set debugging of the DWARF reader."), _("\
25555Show debugging of the DWARF reader."), _("\
25556When enabled (non-zero), debugging messages are printed during DWARF\n\
25557reading and symtab expansion. A value of 1 (one) provides basic\n\
25558information. A value greater than 1 provides more verbose information."),
25559 NULL,
25560 NULL,
25561 &setdebuglist, &showdebuglist);
9291a0cd 25562
cd4fb1b2
SM
25563 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25564Set debugging of the DWARF DIE reader."), _("\
25565Show debugging of the DWARF DIE reader."), _("\
25566When enabled (non-zero), DIEs are dumped after they are read in.\n\
25567The value is the maximum depth to print."),
25568 NULL,
25569 NULL,
25570 &setdebuglist, &showdebuglist);
9291a0cd 25571
cd4fb1b2
SM
25572 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25573Set debugging of the dwarf line reader."), _("\
25574Show debugging of the dwarf line reader."), _("\
25575When enabled (non-zero), line number entries are dumped as they are read in.\n\
25576A value of 1 (one) provides basic information.\n\
25577A value greater than 1 provides more verbose information."),
25578 NULL,
25579 NULL,
25580 &setdebuglist, &showdebuglist);
437afbb8 25581
cd4fb1b2
SM
25582 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25583Set cross-checking of \"physname\" code against demangler."), _("\
25584Show cross-checking of \"physname\" code against demangler."), _("\
25585When enabled, GDB's internal \"physname\" code is checked against\n\
25586the demangler."),
25587 NULL, show_check_physname,
25588 &setdebuglist, &showdebuglist);
900e11f9 25589
e615022a
DE
25590 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25591 no_class, &use_deprecated_index_sections, _("\
25592Set whether to use deprecated gdb_index sections."), _("\
25593Show whether to use deprecated gdb_index sections."), _("\
25594When enabled, deprecated .gdb_index sections are used anyway.\n\
25595Normally they are ignored either because of a missing feature or\n\
25596performance issue.\n\
25597Warning: This option must be enabled before gdb reads the file."),
25598 NULL,
25599 NULL,
25600 &setlist, &showlist);
25601
f1e6e072
TT
25602 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25603 &dwarf2_locexpr_funcs);
25604 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25605 &dwarf2_loclist_funcs);
25606
25607 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25608 &dwarf2_block_frame_base_locexpr_funcs);
25609 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25610 &dwarf2_block_frame_base_loclist_funcs);
c62446b1
PA
25611
25612#if GDB_SELF_TEST
25613 selftests::register_test ("dw2_expand_symtabs_matching",
25614 selftests::dw2_expand_symtabs_matching::run_test);
25615#endif
6502dd73 25616}
This page took 5.77692 seconds and 4 git commands to generate.