remove long long printf crash
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
436d4143
JL
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
1ab3bf1b 4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7This file is part of GDB.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
6c9638b4 21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
35f5886e
FF
22
23/*
24
9745ba07
JK
25FIXME: Do we need to generate dependencies in partial symtabs?
26(Perhaps we don't need to).
35f5886e 27
35f5886e
FF
28FIXME: Resolve minor differences between what information we put in the
29partial symbol table and what dbxread puts in. For example, we don't yet
30put enum constants there. And dbxread seems to invent a lot of typedefs
31we never see. Use the new printpsym command to see the partial symbol table
32contents.
33
35f5886e
FF
34FIXME: Figure out a better way to tell gdb about the name of the function
35contain the user's entry point (I.E. main())
36
35f5886e
FF
37FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38other things to work on, if you get bored. :-)
39
40*/
4d315a07 41
d747e0af 42#include "defs.h"
35f5886e 43#include "symtab.h"
1ab3bf1b 44#include "gdbtypes.h"
35f5886e 45#include "symfile.h"
5e2e79f8 46#include "objfiles.h"
f5f0679a 47#include "elf/dwarf.h"
4d315a07 48#include "buildsym.h"
2dbde378 49#include "demangle.h"
bf229b4e
FF
50#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51#include "language.h"
51b80b00 52#include "complaints.h"
35f5886e 53
d5931d79 54#include <fcntl.h>
2b576293 55#include "gdb_string.h"
51b80b00 56
51b80b00
FF
57/* Some macros to provide DIE info for complaints. */
58
59#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62/* Complaints that can be issued during DWARF debug info reading. */
63
64struct complaint no_bfd_get_N =
65{
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67};
68
69struct complaint malformed_die =
70{
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72};
73
74struct complaint bad_die_ref =
75{
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77};
78
79struct complaint unknown_attribute_form =
80{
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82};
83
84struct complaint unknown_attribute_length =
85{
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87};
88
89struct complaint unexpected_fund_type =
90{
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92};
93
94struct complaint unknown_type_modifier =
95{
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97};
98
99struct complaint volatile_ignored =
100{
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102};
103
104struct complaint const_ignored =
105{
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107};
108
109struct complaint botched_modified_type =
110{
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112};
113
114struct complaint op_deref2 =
115{
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117};
118
119struct complaint op_deref4 =
120{
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122};
123
124struct complaint basereg_not_handled =
125{
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127};
128
129struct complaint dup_user_type_allocation =
130{
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132};
133
134struct complaint dup_user_type_definition =
135{
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137};
138
139struct complaint missing_tag =
140{
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142};
143
144struct complaint bad_array_element_type =
145{
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147};
148
149struct complaint subscript_data_items =
150{
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152};
153
154struct complaint unhandled_array_subscript_format =
155{
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157};
158
159struct complaint unknown_array_subscript_format =
160{
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162};
163
164struct complaint not_row_major =
165{
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167};
35f5886e 168
255181a9
PS
169struct complaint missing_at_name =
170{
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172};
173
13b5a7ff 174typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 175
4d315a07
FF
176#ifndef GCC_PRODUCER
177#define GCC_PRODUCER "GNU C "
178#endif
35f5886e 179
2dbde378
FF
180#ifndef GPLUS_PRODUCER
181#define GPLUS_PRODUCER "GNU C++ "
182#endif
183
184#ifndef LCC_PRODUCER
3dc755fb 185#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
186#endif
187
93bb6e65
FF
188#ifndef CHILL_PRODUCER
189#define CHILL_PRODUCER "GNU Chill "
190#endif
93bb6e65 191
84bdfea6
PS
192/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193#ifndef DWARF_REG_TO_REGNUM
194#define DWARF_REG_TO_REGNUM(num) (num)
195#endif
196
13b5a7ff
FF
197/* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204#define GET_UNSIGNED 0 /* No sign extension required */
205#define GET_SIGNED 1 /* Sign extension required */
206
207/* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211#define SIZEOF_DIE_LENGTH 4
212#define SIZEOF_DIE_TAG 2
213#define SIZEOF_ATTRIBUTE 2
214#define SIZEOF_FORMAT_SPECIFIER 1
215#define SIZEOF_FMT_FT 2
216#define SIZEOF_LINETBL_LENGTH 4
217#define SIZEOF_LINETBL_LINENO 4
218#define SIZEOF_LINETBL_STMT 2
219#define SIZEOF_LINETBL_DELTA 4
220#define SIZEOF_LOC_ATOM_CODE 1
221
222#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224/* Macros that return the sizes of various types of data in the target
225 environment.
226
2d6d969c
FF
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 236
768be6e1
FF
237/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244#define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246/* External variables referenced. */
247
35f5886e 248extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 249extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
250
251/* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
13b5a7ff 257 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
2d6186f4 273 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
274 we need someway to note that we found such an attribute.
275
276 */
277
278typedef char BLOCK;
279
280struct dieinfo {
13b5a7ff
FF
281 char * die; /* Pointer to the raw DIE data */
282 unsigned long die_length; /* Length of the raw DIE data */
283 DIE_REF die_ref; /* Offset of this DIE */
284 unsigned short die_tag; /* Tag for this DIE */
285 unsigned long at_padding;
286 unsigned long at_sibling;
287 BLOCK * at_location;
288 char * at_name;
289 unsigned short at_fund_type;
290 BLOCK * at_mod_fund_type;
291 unsigned long at_user_def_type;
292 BLOCK * at_mod_u_d_type;
293 unsigned short at_ordering;
294 BLOCK * at_subscr_data;
295 unsigned long at_byte_size;
296 unsigned short at_bit_offset;
297 unsigned long at_bit_size;
298 BLOCK * at_element_list;
299 unsigned long at_stmt_list;
306d27ca
DE
300 CORE_ADDR at_low_pc;
301 CORE_ADDR at_high_pc;
13b5a7ff
FF
302 unsigned long at_language;
303 unsigned long at_member;
304 unsigned long at_discr;
305 BLOCK * at_discr_value;
13b5a7ff
FF
306 BLOCK * at_string_length;
307 char * at_comp_dir;
308 char * at_producer;
13b5a7ff
FF
309 unsigned long at_start_scope;
310 unsigned long at_stride_size;
311 unsigned long at_src_info;
312 char * at_prototyped;
313 unsigned int has_at_low_pc:1;
314 unsigned int has_at_stmt_list:1;
50055e94 315 unsigned int has_at_byte_size:1;
13b5a7ff 316 unsigned int short_element_list:1;
705ebd92
FF
317
318 /* Kludge to identify register variables */
319
320 unsigned int isreg;
321
322 /* Kludge to identify optimized out variables */
323
324 unsigned int optimized_out;
325
326 /* Kludge to identify basereg references.
327 Nonzero if we have an offset relative to a basereg. */
328
329 unsigned int offreg;
330
331 /* Kludge to identify which base register is it relative to. */
332
333 unsigned int basereg;
35f5886e
FF
334};
335
336static int diecount; /* Approximate count of dies for compilation unit */
337static struct dieinfo *curdie; /* For warnings and such */
338
339static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 340static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
341static int dbroff; /* Relative offset from start of .debug section */
342static char *lnbase; /* Base pointer to line section */
35f5886e 343
2670f34d 344/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
345 the section_offsets structure used by dbxread (once this is done,
346 pass the appropriate section number to end_symtab). */
35f5886e
FF
347static CORE_ADDR baseaddr; /* Add to each symbol value */
348
2670f34d
JG
349/* The section offsets used in the current psymtab or symtab. FIXME,
350 only used to pass one value (baseaddr) at the moment. */
351static struct section_offsets *base_section_offsets;
352
f133a597
JK
353/* We put a pointer to this structure in the read_symtab_private field
354 of the psymtab. */
35f5886e
FF
355
356struct dwfinfo {
989d9cba
JK
357 /* Always the absolute file offset to the start of the ".debug"
358 section for the file containing the DIE's being accessed. */
359 file_ptr dbfoff;
360 /* Relative offset from the start of the ".debug" section to the
361 first DIE to be accessed. When building the partial symbol
362 table, this value will be zero since we are accessing the
363 entire ".debug" section. When expanding a partial symbol
364 table entry, this value will be the offset to the first
365 DIE for the compilation unit containing the symbol that
366 triggers the expansion. */
367 int dbroff;
368 /* The size of the chunk of DIE's being examined, in bytes. */
369 int dblength;
370 /* The absolute file offset to the line table fragment. Ignored
371 when building partial symbol tables, but used when expanding
372 them, and contains the absolute file offset to the fragment
373 of the ".line" section containing the line numbers for the
374 current compilation unit. */
375 file_ptr lnfoff;
35f5886e
FF
376};
377
378#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
4d315a07
FF
383/* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 387
4d315a07
FF
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 391
99140c31 392struct pending **list_in_scope = &file_symbols;
35f5886e
FF
393
394/* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
35f5886e
FF
419
420static struct type **utypes; /* Pointer to array of user type pointers */
421static int numutypes; /* Max number of user type pointers */
422
bf229b4e
FF
423/* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
95ff889e
FF
435/* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
95ff889e
FF
444
445static enum language cu_language;
bf229b4e 446static const struct language_defn *cu_language_defn;
95ff889e 447
35f5886e 448/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
449 about ordering within this file. */
450
b607efe7
FF
451static void
452free_utypes PARAMS ((PTR));
453
13b5a7ff
FF
454static int
455attribute_size PARAMS ((unsigned int));
456
306d27ca 457static CORE_ADDR
13b5a7ff 458target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 459
1ab3bf1b
JG
460static void
461add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
462
2dbde378
FF
463static void
464handle_producer PARAMS ((char *));
465
1ab3bf1b
JG
466static void
467read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 468
58050209 469static void
1ab3bf1b 470read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
471
472static void
1ab3bf1b
JG
473read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
474 struct objfile *));
35f5886e 475
35f5886e 476static void
1ab3bf1b 477scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 478
35f5886e 479static void
d5931d79
JG
480scan_compilation_units PARAMS ((char *, char *, file_ptr,
481 file_ptr, struct objfile *));
35f5886e
FF
482
483static void
1ab3bf1b 484add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 485
35f5886e 486static void
95967e73 487basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
488
489static void
95967e73 490completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
491
492static void
493dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495static void
496psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 497
c701c14c 498static void
1ab3bf1b 499read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
500
501static void
1ab3bf1b 502process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
503
504static void
1ab3bf1b
JG
505read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
35f5886e
FF
507
508static struct type *
84ffdec2 509decode_array_element_type PARAMS ((char *));
35f5886e
FF
510
511static struct type *
85f0a848 512decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
513
514static void
1ab3bf1b 515dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 516
9e4c1921 517static void
1ab3bf1b 518read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 519
ec16f701
FF
520static void
521read_tag_string_type PARAMS ((struct dieinfo *dip));
522
35f5886e 523static void
1ab3bf1b 524read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
525
526static void
1ab3bf1b 527read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
528
529static struct type *
1ab3bf1b 530struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
531
532static struct type *
1ab3bf1b 533enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 534
35f5886e 535static void
1ab3bf1b 536decode_line_numbers PARAMS ((char *));
35f5886e
FF
537
538static struct type *
1ab3bf1b 539decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
540
541static struct type *
1ab3bf1b 542decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
543
544static struct type *
1ab3bf1b 545decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
546
547static struct type *
1c92ca6f 548decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
549
550static struct type *
1ab3bf1b 551decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
552
553static char *
1ab3bf1b 554create_name PARAMS ((char *, struct obstack *));
35f5886e 555
35f5886e 556static struct type *
13b5a7ff 557lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
558
559static struct type *
13b5a7ff 560alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
561
562static struct symbol *
1ab3bf1b 563new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 564
95ff889e
FF
565static void
566synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
35f5886e 569static int
705ebd92 570locval PARAMS ((struct dieinfo *));
35f5886e 571
95ff889e
FF
572static void
573set_cu_language PARAMS ((struct dieinfo *));
574
bf229b4e
FF
575static struct type *
576dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579/*
580
581LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607RETURNS
608
609 Pointer to a fundamental type.
610
611*/
612
613static struct type *
614dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617{
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633}
634
95ff889e
FF
635/*
636
637LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652RETURNS
653
654 No return value.
655
656 */
657
658static void
659set_cu_language (dip)
660 struct dieinfo *dip;
661{
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
e58de8a2
FF
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
7074cd4e
SS
677 case LANG_FORTRAN77:
678 case LANG_FORTRAN90:
679 cu_language = language_fortran;
680 break;
95ff889e
FF
681 case LANG_ADA83:
682 case LANG_COBOL74:
683 case LANG_COBOL85:
95ff889e 684 case LANG_PASCAL83:
2e4964ad 685 /* We don't know anything special about these yet. */
95ff889e
FF
686 cu_language = language_unknown;
687 break;
2e4964ad
FF
688 default:
689 /* If no at_language, try to deduce one from the filename */
690 cu_language = deduce_language_from_filename (dip -> at_name);
691 break;
95ff889e 692 }
bf229b4e 693 cu_language_defn = language_def (cu_language);
95ff889e
FF
694}
695
35f5886e
FF
696/*
697
698GLOBAL FUNCTION
699
700 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
701
702SYNOPSIS
703
d5931d79 704 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 705 struct section_offsets *section_offsets,
d5931d79
JG
706 int mainline, file_ptr dbfoff, unsigned int dbfsize,
707 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
708
709DESCRIPTION
710
711 This function is called upon to build partial symtabs from files
712 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
713
d5931d79 714 It is passed a bfd* containing the DIES
35f5886e
FF
715 and line number information, the corresponding filename for that
716 file, a base address for relocating the symbols, a flag indicating
717 whether or not this debugging information is from a "main symbol
718 table" rather than a shared library or dynamically linked file,
719 and file offset/size pairs for the DIE information and line number
720 information.
721
722RETURNS
723
724 No return value.
725
726 */
727
728void
d5931d79
JG
729dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
730 lnoffset, lnsize)
731 struct objfile *objfile;
2670f34d 732 struct section_offsets *section_offsets;
1ab3bf1b 733 int mainline;
d5931d79 734 file_ptr dbfoff;
4090fe1c 735 unsigned int dbfsize;
d5931d79 736 file_ptr lnoffset;
1ab3bf1b 737 unsigned int lnsize;
35f5886e 738{
d5931d79 739 bfd *abfd = objfile->obfd;
35f5886e
FF
740 struct cleanup *back_to;
741
95967e73 742 current_objfile = objfile;
4090fe1c 743 dbsize = dbfsize;
35f5886e
FF
744 dbbase = xmalloc (dbsize);
745 dbroff = 0;
987622b5 746 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
d5931d79 747 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
748 {
749 free (dbbase);
d5931d79 750 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
751 }
752 back_to = make_cleanup (free, dbbase);
753
754 /* If we are reinitializing, or if we have never loaded syms yet, init.
755 Since we have no idea how many DIES we are looking at, we just guess
756 some arbitrary value. */
757
13b5a7ff
FF
758 if (mainline || objfile -> global_psymbols.size == 0 ||
759 objfile -> static_psymbols.size == 0)
35f5886e 760 {
1ab3bf1b 761 init_psymbol_list (objfile, 1024);
35f5886e
FF
762 }
763
84ffdec2 764 /* Save the relocation factor where everybody can see it. */
f8b76e70 765
2670f34d
JG
766 base_section_offsets = section_offsets;
767 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 768
35f5886e
FF
769 /* Follow the compilation unit sibling chain, building a partial symbol
770 table entry for each one. Save enough information about each compilation
771 unit to locate the full DWARF information later. */
772
d5931d79 773 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 774
35f5886e 775 do_cleanups (back_to);
95967e73 776 current_objfile = NULL;
35f5886e
FF
777}
778
35f5886e
FF
779/*
780
35f5886e
FF
781LOCAL FUNCTION
782
783 read_lexical_block_scope -- process all dies in a lexical block
784
785SYNOPSIS
786
787 static void read_lexical_block_scope (struct dieinfo *dip,
788 char *thisdie, char *enddie)
789
790DESCRIPTION
791
792 Process all the DIES contained within a lexical block scope.
793 Start a new scope, process the dies, and then close the scope.
794
795 */
796
797static void
1ab3bf1b
JG
798read_lexical_block_scope (dip, thisdie, enddie, objfile)
799 struct dieinfo *dip;
800 char *thisdie;
801 char *enddie;
802 struct objfile *objfile;
35f5886e 803{
4d315a07
FF
804 register struct context_stack *new;
805
4ed3a9ea 806 push_context (0, dip -> at_low_pc);
13b5a7ff 807 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
808 new = pop_context ();
809 if (local_symbols != NULL)
810 {
811 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 812 dip -> at_high_pc, objfile);
4d315a07
FF
813 }
814 local_symbols = new -> locals;
35f5886e
FF
815}
816
817/*
818
819LOCAL FUNCTION
820
821 lookup_utype -- look up a user defined type from die reference
822
823SYNOPSIS
824
13b5a7ff 825 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
826
827DESCRIPTION
828
829 Given a DIE reference, lookup the user defined type associated with
830 that DIE, if it has been registered already. If not registered, then
831 return NULL. Alloc_utype() can be called to register an empty
832 type for this reference, which will be filled in later when the
833 actual referenced DIE is processed.
834 */
835
836static struct type *
13b5a7ff
FF
837lookup_utype (die_ref)
838 DIE_REF die_ref;
35f5886e
FF
839{
840 struct type *type = NULL;
841 int utypeidx;
842
13b5a7ff 843 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
844 if ((utypeidx < 0) || (utypeidx >= numutypes))
845 {
51b80b00 846 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
847 }
848 else
849 {
850 type = *(utypes + utypeidx);
851 }
852 return (type);
853}
854
855
856/*
857
858LOCAL FUNCTION
859
860 alloc_utype -- add a user defined type for die reference
861
862SYNOPSIS
863
13b5a7ff 864 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
865
866DESCRIPTION
867
13b5a7ff 868 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
869 defined type UTYPEP, register that this reference has a user
870 defined type and either use the specified type in UTYPEP or
871 make a new empty type that will be filled in later.
872
873 We should only be called after calling lookup_utype() to verify that
13b5a7ff 874 there is not currently a type registered for DIE_REF.
35f5886e
FF
875 */
876
877static struct type *
13b5a7ff
FF
878alloc_utype (die_ref, utypep)
879 DIE_REF die_ref;
1ab3bf1b 880 struct type *utypep;
35f5886e
FF
881{
882 struct type **typep;
883 int utypeidx;
884
13b5a7ff 885 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
886 typep = utypes + utypeidx;
887 if ((utypeidx < 0) || (utypeidx >= numutypes))
888 {
bf229b4e 889 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 890 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
891 }
892 else if (*typep != NULL)
893 {
894 utypep = *typep;
51b80b00 895 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
896 }
897 else
898 {
899 if (utypep == NULL)
900 {
8050a57b 901 utypep = alloc_type (current_objfile);
35f5886e
FF
902 }
903 *typep = utypep;
904 }
905 return (utypep);
906}
907
4a1d2ce2
FF
908/*
909
910LOCAL FUNCTION
911
912 free_utypes -- free the utypes array and reset pointer & count
913
914SYNOPSIS
915
916 static void free_utypes (PTR dummy)
917
918DESCRIPTION
919
920 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
921 and set numutypes back to zero. This ensures that the utypes does not get
922 referenced after being freed.
923 */
924
925static void
926free_utypes (dummy)
927 PTR dummy;
928{
929 free (utypes);
930 utypes = NULL;
931 numutypes = 0;
932}
933
934
35f5886e
FF
935/*
936
937LOCAL FUNCTION
938
939 decode_die_type -- return a type for a specified die
940
941SYNOPSIS
942
943 static struct type *decode_die_type (struct dieinfo *dip)
944
945DESCRIPTION
946
947 Given a pointer to a die information structure DIP, decode the
948 type of the die and return a pointer to the decoded type. All
949 dies without specific types default to type int.
950 */
951
952static struct type *
1ab3bf1b
JG
953decode_die_type (dip)
954 struct dieinfo *dip;
35f5886e
FF
955{
956 struct type *type = NULL;
957
958 if (dip -> at_fund_type != 0)
959 {
960 type = decode_fund_type (dip -> at_fund_type);
961 }
962 else if (dip -> at_mod_fund_type != NULL)
963 {
964 type = decode_mod_fund_type (dip -> at_mod_fund_type);
965 }
966 else if (dip -> at_user_def_type)
967 {
968 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
969 {
970 type = alloc_utype (dip -> at_user_def_type, NULL);
971 }
972 }
973 else if (dip -> at_mod_u_d_type)
974 {
975 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
976 }
977 else
978 {
ac954805 979 type = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
980 }
981 return (type);
982}
983
984/*
985
986LOCAL FUNCTION
987
988 struct_type -- compute and return the type for a struct or union
989
990SYNOPSIS
991
992 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 993 char *enddie, struct objfile *objfile)
35f5886e
FF
994
995DESCRIPTION
996
997 Given pointer to a die information structure for a die which
715cafcb
FF
998 defines a union or structure (and MUST define one or the other),
999 and pointers to the raw die data that define the range of dies which
1000 define the members, compute and return the user defined type for the
1001 structure or union.
35f5886e
FF
1002 */
1003
1004static struct type *
1ab3bf1b
JG
1005struct_type (dip, thisdie, enddie, objfile)
1006 struct dieinfo *dip;
1007 char *thisdie;
1008 char *enddie;
1009 struct objfile *objfile;
35f5886e
FF
1010{
1011 struct type *type;
1012 struct nextfield {
1013 struct nextfield *next;
1014 struct field field;
1015 };
1016 struct nextfield *list = NULL;
1017 struct nextfield *new;
1018 int nfields = 0;
1019 int n;
35f5886e 1020 struct dieinfo mbr;
8b5b6fae 1021 char *nextdie;
50055e94 1022 int anonymous_size;
35f5886e 1023
13b5a7ff 1024 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1025 {
5edf98d7 1026 /* No forward references created an empty type, so install one now */
13b5a7ff 1027 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1028 }
a3723a43 1029 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1030 switch (dip -> die_tag)
35f5886e 1031 {
95ff889e
FF
1032 case TAG_class_type:
1033 TYPE_CODE (type) = TYPE_CODE_CLASS;
95ff889e 1034 break;
715cafcb 1035 case TAG_structure_type:
5edf98d7 1036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1037 break;
1038 case TAG_union_type:
1039 TYPE_CODE (type) = TYPE_CODE_UNION;
715cafcb
FF
1040 break;
1041 default:
1042 /* Should never happen */
1043 TYPE_CODE (type) = TYPE_CODE_UNDEF;
51b80b00 1044 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1045 break;
35f5886e 1046 }
5edf98d7
FF
1047 /* Some compilers try to be helpful by inventing "fake" names for
1048 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1049 Thanks, but no thanks... */
715cafcb
FF
1050 if (dip -> at_name != NULL
1051 && *dip -> at_name != '~'
1052 && *dip -> at_name != '.')
35f5886e 1053 {
b2bebdb0
JK
1054 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1055 "", "", dip -> at_name);
35f5886e 1056 }
50055e94
FF
1057 /* Use whatever size is known. Zero is a valid size. We might however
1058 wish to check has_at_byte_size to make sure that some byte size was
1059 given explicitly, but DWARF doesn't specify that explicit sizes of
1060 zero have to present, so complaining about missing sizes should
1061 probably not be the default. */
1062 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1063 thisdie += dip -> die_length;
35f5886e
FF
1064 while (thisdie < enddie)
1065 {
95967e73
FF
1066 basicdieinfo (&mbr, thisdie, objfile);
1067 completedieinfo (&mbr, objfile);
13b5a7ff 1068 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1069 {
1070 break;
1071 }
8b5b6fae
FF
1072 else if (mbr.at_sibling != 0)
1073 {
1074 nextdie = dbbase + mbr.at_sibling - dbroff;
1075 }
1076 else
1077 {
13b5a7ff 1078 nextdie = thisdie + mbr.die_length;
8b5b6fae 1079 }
13b5a7ff 1080 switch (mbr.die_tag)
35f5886e
FF
1081 {
1082 case TAG_member:
1083 /* Get space to record the next field's data. */
1084 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1085 new -> next = list;
1086 list = new;
1087 /* Save the data. */
50e0dc41
FF
1088 list -> field.name =
1089 obsavestring (mbr.at_name, strlen (mbr.at_name),
1090 &objfile -> type_obstack);
f7f37388
PB
1091 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1092 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
4db8e515 1093 /* Handle bit fields. */
f7f37388 1094 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
b8176214 1095 if (BITS_BIG_ENDIAN)
4db8e515 1096 {
b8176214
ILT
1097 /* For big endian bits, the at_bit_offset gives the
1098 additional bit offset from the MSB of the containing
1099 anonymous object to the MSB of the field. We don't
1100 have to do anything special since we don't need to
1101 know the size of the anonymous object. */
f7f37388 1102 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
b8176214
ILT
1103 }
1104 else
1105 {
1106 /* For little endian bits, we need to have a non-zero
1107 at_bit_size, so that we know we are in fact dealing
1108 with a bitfield. Compute the bit offset to the MSB
1109 of the anonymous object, subtract off the number of
1110 bits from the MSB of the field to the MSB of the
1111 object, and then subtract off the number of bits of
1112 the field itself. The result is the bit offset of
1113 the LSB of the field. */
1114 if (mbr.at_bit_size > 0)
50055e94 1115 {
b8176214
ILT
1116 if (mbr.has_at_byte_size)
1117 {
1118 /* The size of the anonymous object containing
1119 the bit field is explicit, so use the
1120 indicated size (in bytes). */
1121 anonymous_size = mbr.at_byte_size;
1122 }
1123 else
1124 {
1125 /* The size of the anonymous object containing
1126 the bit field matches the size of an object
1127 of the bit field's type. DWARF allows
1128 at_byte_size to be left out in such cases, as
1129 a debug information size optimization. */
1130 anonymous_size = TYPE_LENGTH (list -> field.type);
1131 }
f7f37388 1132 FIELD_BITPOS (list->field) +=
b8176214 1133 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
50055e94 1134 }
4db8e515 1135 }
35f5886e
FF
1136 nfields++;
1137 break;
1138 default:
8b5b6fae 1139 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1140 break;
1141 }
8b5b6fae 1142 thisdie = nextdie;
35f5886e 1143 }
5edf98d7
FF
1144 /* Now create the vector of fields, and record how big it is. We may
1145 not even have any fields, if this DIE was generated due to a reference
1146 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1147 set, which clues gdb in to the fact that it needs to search elsewhere
1148 for the full structure definition. */
1149 if (nfields == 0)
35f5886e 1150 {
5edf98d7
FF
1151 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1152 }
1153 else
1154 {
1155 TYPE_NFIELDS (type) = nfields;
1156 TYPE_FIELDS (type) = (struct field *)
dac9734e 1157 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1158 /* Copy the saved-up fields into the field vector. */
1159 for (n = nfields; list; list = list -> next)
1160 {
1161 TYPE_FIELD (type, --n) = list -> field;
1162 }
1163 }
35f5886e
FF
1164 return (type);
1165}
1166
1167/*
1168
1169LOCAL FUNCTION
1170
1171 read_structure_scope -- process all dies within struct or union
1172
1173SYNOPSIS
1174
1175 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1176 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1177
1178DESCRIPTION
1179
1180 Called when we find the DIE that starts a structure or union
1181 scope (definition) to process all dies that define the members
1182 of the structure or union. DIP is a pointer to the die info
1183 struct for the DIE that names the structure or union.
1184
1185NOTES
1186
1187 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1188 the DIE has an at_name attribute, since it might be an anonymous
1189 structure or union. This gets the type entered into our set of
1190 user defined types.
1191
1192 However, if the structure is incomplete (an opaque struct/union)
1193 then suppress creating a symbol table entry for it since gdb only
1194 wants to find the one with the complete definition. Note that if
1195 it is complete, we just call new_symbol, which does it's own
1196 checking about whether the struct/union is anonymous or not (and
1197 suppresses creating a symbol table entry itself).
1198
35f5886e
FF
1199 */
1200
1201static void
1ab3bf1b
JG
1202read_structure_scope (dip, thisdie, enddie, objfile)
1203 struct dieinfo *dip;
1204 char *thisdie;
1205 char *enddie;
1206 struct objfile *objfile;
35f5886e
FF
1207{
1208 struct type *type;
1209 struct symbol *sym;
1210
8b5b6fae 1211 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1212 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1213 {
95ff889e
FF
1214 sym = new_symbol (dip, objfile);
1215 if (sym != NULL)
84ce6717
FF
1216 {
1217 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1218 if (cu_language == language_cplus)
1219 {
1220 synthesize_typedef (dip, objfile, type);
1221 }
84ce6717 1222 }
35f5886e
FF
1223 }
1224}
1225
1226/*
1227
1228LOCAL FUNCTION
1229
1230 decode_array_element_type -- decode type of the array elements
1231
1232SYNOPSIS
1233
1234 static struct type *decode_array_element_type (char *scan, char *end)
1235
1236DESCRIPTION
1237
1238 As the last step in decoding the array subscript information for an
1239 array DIE, we need to decode the type of the array elements. We are
1240 passed a pointer to this last part of the subscript information and
1241 must return the appropriate type. If the type attribute is not
1242 recognized, just warn about the problem and return type int.
1243 */
1244
1245static struct type *
84ffdec2 1246decode_array_element_type (scan)
1ab3bf1b 1247 char *scan;
35f5886e
FF
1248{
1249 struct type *typep;
13b5a7ff
FF
1250 DIE_REF die_ref;
1251 unsigned short attribute;
35f5886e 1252 unsigned short fundtype;
13b5a7ff 1253 int nbytes;
35f5886e 1254
13b5a7ff
FF
1255 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1256 current_objfile);
1257 scan += SIZEOF_ATTRIBUTE;
1258 if ((nbytes = attribute_size (attribute)) == -1)
1259 {
51b80b00 1260 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1261 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1262 }
1263 else
1264 {
1265 switch (attribute)
1266 {
1267 case AT_fund_type:
1268 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1269 current_objfile);
1270 typep = decode_fund_type (fundtype);
1271 break;
1272 case AT_mod_fund_type:
1273 typep = decode_mod_fund_type (scan);
1274 break;
1275 case AT_user_def_type:
1276 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1277 current_objfile);
1278 if ((typep = lookup_utype (die_ref)) == NULL)
1279 {
1280 typep = alloc_utype (die_ref, NULL);
1281 }
1282 break;
1283 case AT_mod_u_d_type:
1284 typep = decode_mod_u_d_type (scan);
1285 break;
1286 default:
51b80b00 1287 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1288 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1289 break;
1290 }
35f5886e
FF
1291 }
1292 return (typep);
1293}
1294
1295/*
1296
1297LOCAL FUNCTION
1298
85f0a848 1299 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1300
1301SYNOPSIS
1302
85f0a848
FF
1303 static struct type *
1304 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1305
1306DESCRIPTION
1307
1308 The array subscripts and the data type of the elements of an
1309 array are described by a list of data items, stored as a block
1310 of contiguous bytes. There is a data item describing each array
1311 dimension, and a final data item describing the element type.
1312 The data items are ordered the same as their appearance in the
1313 source (I.E. leftmost dimension first, next to leftmost second,
1314 etc).
1315
85f0a848
FF
1316 The data items describing each array dimension consist of four
1317 parts: (1) a format specifier, (2) type type of the subscript
1318 index, (3) a description of the low bound of the array dimension,
1319 and (4) a description of the high bound of the array dimension.
1320
1321 The last data item is the description of the type of each of
1322 the array elements.
1323
35f5886e 1324 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1325 containing the remaining data items, and a pointer to the first
1326 byte past the data. This function recursively decodes the
1327 remaining data items and returns a type.
1328
1329 If we somehow fail to decode some data, we complain about it
1330 and return a type "array of int".
35f5886e
FF
1331
1332BUGS
1333 FIXME: This code only implements the forms currently used
1334 by the AT&T and GNU C compilers.
1335
1336 The end pointer is supplied for error checking, maybe we should
1337 use it for that...
1338 */
1339
1340static struct type *
85f0a848 1341decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1342 char *scan;
1343 char *end;
35f5886e 1344{
85f0a848
FF
1345 struct type *typep = NULL; /* Array type we are building */
1346 struct type *nexttype; /* Type of each element (may be array) */
1347 struct type *indextype; /* Type of this index */
a8a69e63 1348 struct type *rangetype;
13b5a7ff
FF
1349 unsigned int format;
1350 unsigned short fundtype;
1351 unsigned long lowbound;
1352 unsigned long highbound;
1353 int nbytes;
35f5886e 1354
13b5a7ff
FF
1355 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1356 current_objfile);
1357 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1358 switch (format)
1359 {
1360 case FMT_ET:
84ffdec2 1361 typep = decode_array_element_type (scan);
35f5886e
FF
1362 break;
1363 case FMT_FT_C_C:
13b5a7ff
FF
1364 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1365 current_objfile);
85f0a848 1366 indextype = decode_fund_type (fundtype);
13b5a7ff 1367 scan += SIZEOF_FMT_FT;
160be0de
FF
1368 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1369 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1370 scan += nbytes;
1371 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1372 scan += nbytes;
85f0a848
FF
1373 nexttype = decode_subscript_data_item (scan, end);
1374 if (nexttype == NULL)
35f5886e 1375 {
85f0a848 1376 /* Munged subscript data or other problem, fake it. */
51b80b00 1377 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1378 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1379 }
a8a69e63
FF
1380 rangetype = create_range_type ((struct type *) NULL, indextype,
1381 lowbound, highbound);
1382 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1383 break;
1384 case FMT_FT_C_X:
1385 case FMT_FT_X_C:
1386 case FMT_FT_X_X:
1387 case FMT_UT_C_C:
1388 case FMT_UT_C_X:
1389 case FMT_UT_X_C:
1390 case FMT_UT_X_X:
51b80b00 1391 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1392 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1393 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1394 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1395 break;
1396 default:
51b80b00 1397 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1398 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1399 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1400 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1401 break;
1402 }
1403 return (typep);
1404}
1405
1406/*
1407
1408LOCAL FUNCTION
1409
4d315a07 1410 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1411
1412SYNOPSIS
1413
4d315a07 1414 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1415
1416DESCRIPTION
1417
1418 Extract all information from a TAG_array_type DIE and add to
1419 the user defined type vector.
1420 */
1421
1422static void
1ab3bf1b
JG
1423dwarf_read_array_type (dip)
1424 struct dieinfo *dip;
35f5886e
FF
1425{
1426 struct type *type;
af213624 1427 struct type *utype;
35f5886e
FF
1428 char *sub;
1429 char *subend;
13b5a7ff
FF
1430 unsigned short blocksz;
1431 int nbytes;
35f5886e
FF
1432
1433 if (dip -> at_ordering != ORD_row_major)
1434 {
1435 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1436 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1437 }
1438 if ((sub = dip -> at_subscr_data) != NULL)
1439 {
13b5a7ff
FF
1440 nbytes = attribute_size (AT_subscr_data);
1441 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1442 subend = sub + nbytes + blocksz;
1443 sub += nbytes;
85f0a848
FF
1444 type = decode_subscript_data_item (sub, subend);
1445 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1446 {
85f0a848
FF
1447 /* Install user defined type that has not been referenced yet. */
1448 alloc_utype (dip -> die_ref, type);
1449 }
1450 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1451 {
1452 /* Ick! A forward ref has already generated a blank type in our
1453 slot, and this type probably already has things pointing to it
1454 (which is what caused it to be created in the first place).
1455 If it's just a place holder we can plop our fully defined type
1456 on top of it. We can't recover the space allocated for our
1457 new type since it might be on an obstack, but we could reuse
1458 it if we kept a list of them, but it might not be worth it
1459 (FIXME). */
1460 *utype = *type;
35f5886e
FF
1461 }
1462 else
1463 {
85f0a848
FF
1464 /* Double ick! Not only is a type already in our slot, but
1465 someone has decorated it. Complain and leave it alone. */
51b80b00 1466 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1467 }
1468 }
1469}
1470
1471/*
1472
9e4c1921
FF
1473LOCAL FUNCTION
1474
1475 read_tag_pointer_type -- read TAG_pointer_type DIE
1476
1477SYNOPSIS
1478
1479 static void read_tag_pointer_type (struct dieinfo *dip)
1480
1481DESCRIPTION
1482
1483 Extract all information from a TAG_pointer_type DIE and add to
1484 the user defined type vector.
1485 */
1486
1487static void
1ab3bf1b
JG
1488read_tag_pointer_type (dip)
1489 struct dieinfo *dip;
9e4c1921
FF
1490{
1491 struct type *type;
1492 struct type *utype;
9e4c1921
FF
1493
1494 type = decode_die_type (dip);
13b5a7ff 1495 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1496 {
1497 utype = lookup_pointer_type (type);
4ed3a9ea 1498 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1499 }
1500 else
1501 {
1502 TYPE_TARGET_TYPE (utype) = type;
1503 TYPE_POINTER_TYPE (type) = utype;
1504
1505 /* We assume the machine has only one representation for pointers! */
1506 /* FIXME: This confuses host<->target data representations, and is a
1507 poor assumption besides. */
1508
1509 TYPE_LENGTH (utype) = sizeof (char *);
1510 TYPE_CODE (utype) = TYPE_CODE_PTR;
1511 }
1512}
1513
1514/*
1515
ec16f701
FF
1516LOCAL FUNCTION
1517
1518 read_tag_string_type -- read TAG_string_type DIE
1519
1520SYNOPSIS
1521
1522 static void read_tag_string_type (struct dieinfo *dip)
1523
1524DESCRIPTION
1525
1526 Extract all information from a TAG_string_type DIE and add to
1527 the user defined type vector. It isn't really a user defined
1528 type, but it behaves like one, with other DIE's using an
1529 AT_user_def_type attribute to reference it.
1530 */
1531
1532static void
1533read_tag_string_type (dip)
1534 struct dieinfo *dip;
1535{
1536 struct type *utype;
1537 struct type *indextype;
1538 struct type *rangetype;
1539 unsigned long lowbound = 0;
1540 unsigned long highbound;
1541
b6236d6e 1542 if (dip -> has_at_byte_size)
ec16f701 1543 {
b6236d6e
FF
1544 /* A fixed bounds string */
1545 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1546 }
1547 else
1548 {
b6236d6e
FF
1549 /* A varying length string. Stub for now. (FIXME) */
1550 highbound = 1;
1551 }
1552 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1553 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1554 highbound);
1555
1556 utype = lookup_utype (dip -> die_ref);
1557 if (utype == NULL)
1558 {
1559 /* No type defined, go ahead and create a blank one to use. */
1560 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1561 }
1562 else
1563 {
1564 /* Already a type in our slot due to a forward reference. Make sure it
1565 is a blank one. If not, complain and leave it alone. */
1566 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1567 {
b6236d6e
FF
1568 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1569 return;
ec16f701 1570 }
ec16f701 1571 }
b6236d6e
FF
1572
1573 /* Create the string type using the blank type we either found or created. */
1574 utype = create_string_type (utype, rangetype);
ec16f701
FF
1575}
1576
1577/*
1578
35f5886e
FF
1579LOCAL FUNCTION
1580
1581 read_subroutine_type -- process TAG_subroutine_type dies
1582
1583SYNOPSIS
1584
1585 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1586 char *enddie)
1587
1588DESCRIPTION
1589
1590 Handle DIES due to C code like:
1591
1592 struct foo {
1593 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1594 int b;
1595 };
1596
1597NOTES
1598
1599 The parameter DIES are currently ignored. See if gdb has a way to
1600 include this info in it's type system, and decode them if so. Is
1601 this what the type structure's "arg_types" field is for? (FIXME)
1602 */
1603
1604static void
1ab3bf1b
JG
1605read_subroutine_type (dip, thisdie, enddie)
1606 struct dieinfo *dip;
1607 char *thisdie;
1608 char *enddie;
35f5886e 1609{
af213624
FF
1610 struct type *type; /* Type that this function returns */
1611 struct type *ftype; /* Function that returns above type */
35f5886e 1612
af213624
FF
1613 /* Decode the type that this subroutine returns */
1614
35f5886e 1615 type = decode_die_type (dip);
af213624
FF
1616
1617 /* Check to see if we already have a partially constructed user
1618 defined type for this DIE, from a forward reference. */
1619
13b5a7ff 1620 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1621 {
1622 /* This is the first reference to one of these types. Make
1623 a new one and place it in the user defined types. */
1624 ftype = lookup_function_type (type);
4ed3a9ea 1625 alloc_utype (dip -> die_ref, ftype);
af213624 1626 }
85f0a848 1627 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1628 {
1629 /* We have an existing partially constructed type, so bash it
1630 into the correct type. */
1631 TYPE_TARGET_TYPE (ftype) = type;
af213624
FF
1632 TYPE_LENGTH (ftype) = 1;
1633 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1634 }
85f0a848
FF
1635 else
1636 {
51b80b00 1637 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1638 }
35f5886e
FF
1639}
1640
1641/*
1642
1643LOCAL FUNCTION
1644
1645 read_enumeration -- process dies which define an enumeration
1646
1647SYNOPSIS
1648
1649 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1650 char *enddie, struct objfile *objfile)
35f5886e
FF
1651
1652DESCRIPTION
1653
1654 Given a pointer to a die which begins an enumeration, process all
1655 the dies that define the members of the enumeration.
1656
1657NOTES
1658
1659 Note that we need to call enum_type regardless of whether or not we
1660 have a symbol, since we might have an enum without a tag name (thus
1661 no symbol for the tagname).
1662 */
1663
1664static void
1ab3bf1b
JG
1665read_enumeration (dip, thisdie, enddie, objfile)
1666 struct dieinfo *dip;
1667 char *thisdie;
1668 char *enddie;
1669 struct objfile *objfile;
35f5886e
FF
1670{
1671 struct type *type;
1672 struct symbol *sym;
1673
1ab3bf1b 1674 type = enum_type (dip, objfile);
95ff889e
FF
1675 sym = new_symbol (dip, objfile);
1676 if (sym != NULL)
35f5886e
FF
1677 {
1678 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1679 if (cu_language == language_cplus)
1680 {
1681 synthesize_typedef (dip, objfile, type);
1682 }
35f5886e
FF
1683 }
1684}
1685
1686/*
1687
1688LOCAL FUNCTION
1689
1690 enum_type -- decode and return a type for an enumeration
1691
1692SYNOPSIS
1693
1ab3bf1b 1694 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1695
1696DESCRIPTION
1697
1698 Given a pointer to a die information structure for the die which
1699 starts an enumeration, process all the dies that define the members
1700 of the enumeration and return a type pointer for the enumeration.
98618bf7 1701
715cafcb
FF
1702 At the same time, for each member of the enumeration, create a
1703 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1704 and give it the type of the enumeration itself.
1705
1706NOTES
1707
98618bf7
FF
1708 Note that the DWARF specification explicitly mandates that enum
1709 constants occur in reverse order from the source program order,
1710 for "consistency" and because this ordering is easier for many
1ab3bf1b 1711 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1712 Entries). Because gdb wants to see the enum members in program
1713 source order, we have to ensure that the order gets reversed while
98618bf7 1714 we are processing them.
35f5886e
FF
1715 */
1716
1717static struct type *
1ab3bf1b
JG
1718enum_type (dip, objfile)
1719 struct dieinfo *dip;
1720 struct objfile *objfile;
35f5886e
FF
1721{
1722 struct type *type;
1723 struct nextfield {
1724 struct nextfield *next;
1725 struct field field;
1726 };
1727 struct nextfield *list = NULL;
1728 struct nextfield *new;
1729 int nfields = 0;
1730 int n;
35f5886e
FF
1731 char *scan;
1732 char *listend;
13b5a7ff 1733 unsigned short blocksz;
715cafcb 1734 struct symbol *sym;
13b5a7ff 1735 int nbytes;
09af5868 1736 int unsigned_enum = 1;
35f5886e 1737
13b5a7ff 1738 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1739 {
84ce6717 1740 /* No forward references created an empty type, so install one now */
13b5a7ff 1741 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1742 }
1743 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1744 /* Some compilers try to be helpful by inventing "fake" names for
1745 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1746 Thanks, but no thanks... */
715cafcb
FF
1747 if (dip -> at_name != NULL
1748 && *dip -> at_name != '~'
1749 && *dip -> at_name != '.')
35f5886e 1750 {
b2bebdb0
JK
1751 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1752 "", "", dip -> at_name);
35f5886e 1753 }
715cafcb 1754 if (dip -> at_byte_size != 0)
35f5886e
FF
1755 {
1756 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1757 }
35f5886e
FF
1758 if ((scan = dip -> at_element_list) != NULL)
1759 {
768be6e1
FF
1760 if (dip -> short_element_list)
1761 {
13b5a7ff 1762 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1763 }
1764 else
1765 {
13b5a7ff 1766 nbytes = attribute_size (AT_element_list);
768be6e1 1767 }
13b5a7ff
FF
1768 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1769 listend = scan + nbytes + blocksz;
1770 scan += nbytes;
35f5886e
FF
1771 while (scan < listend)
1772 {
1773 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1774 new -> next = list;
1775 list = new;
f7f37388
PB
1776 FIELD_TYPE (list->field) = NULL;
1777 FIELD_BITSIZE (list->field) = 0;
1778 FIELD_BITPOS (list->field) =
13b5a7ff
FF
1779 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1780 objfile);
1781 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1782 list -> field.name = obsavestring (scan, strlen (scan),
1783 &objfile -> type_obstack);
35f5886e
FF
1784 scan += strlen (scan) + 1;
1785 nfields++;
715cafcb 1786 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1787 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1788 sizeof (struct symbol));
4ed3a9ea 1789 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1790 SYMBOL_NAME (sym) = create_name (list -> field.name,
1791 &objfile->symbol_obstack);
7532cf10 1792 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1793 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1794 SYMBOL_CLASS (sym) = LOC_CONST;
1795 SYMBOL_TYPE (sym) = type;
f7f37388 1796 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
09af5868
PS
1797 if (SYMBOL_VALUE (sym) < 0)
1798 unsigned_enum = 0;
4d315a07 1799 add_symbol_to_list (sym, list_in_scope);
35f5886e 1800 }
84ce6717 1801 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1802 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1803 reverse order from how they were inserted. If we have no fields
1804 (this is apparently possible in C++) then skip building a field
1805 vector. */
1806 if (nfields > 0)
1807 {
09af5868
PS
1808 if (unsigned_enum)
1809 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
84ce6717
FF
1810 TYPE_NFIELDS (type) = nfields;
1811 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1812 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1813 /* Copy the saved-up fields into the field vector. */
1814 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1815 {
1816 TYPE_FIELD (type, n++) = list -> field;
1817 }
1818 }
35f5886e 1819 }
35f5886e
FF
1820 return (type);
1821}
1822
1823/*
1824
1825LOCAL FUNCTION
1826
1827 read_func_scope -- process all dies within a function scope
1828
35f5886e
FF
1829DESCRIPTION
1830
1831 Process all dies within a given function scope. We are passed
1832 a die information structure pointer DIP for the die which
1833 starts the function scope, and pointers into the raw die data
1834 that define the dies within the function scope.
1835
1836 For now, we ignore lexical block scopes within the function.
1837 The problem is that AT&T cc does not define a DWARF lexical
1838 block scope for the function itself, while gcc defines a
1839 lexical block scope for the function. We need to think about
1840 how to handle this difference, or if it is even a problem.
1841 (FIXME)
1842 */
1843
1844static void
1ab3bf1b
JG
1845read_func_scope (dip, thisdie, enddie, objfile)
1846 struct dieinfo *dip;
1847 char *thisdie;
1848 char *enddie;
1849 struct objfile *objfile;
35f5886e 1850{
4d315a07 1851 register struct context_stack *new;
35f5886e 1852
255181a9
PS
1853 /* AT_name is absent if the function is described with an
1854 AT_abstract_origin tag.
1855 Ignore the function description for now to avoid GDB core dumps.
1856 FIXME: Add code to handle AT_abstract_origin tags properly. */
1857 if (dip -> at_name == NULL)
1858 {
1859 complain (&missing_at_name, DIE_ID);
1860 return;
1861 }
1862
5e2e79f8
FF
1863 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1864 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1865 {
5e2e79f8
FF
1866 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1867 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1868 }
4d315a07 1869 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1870 {
5e2e79f8
FF
1871 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1872 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1873 }
4d315a07 1874 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1875 new -> name = new_symbol (dip, objfile);
4d315a07 1876 list_in_scope = &local_symbols;
13b5a7ff 1877 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1878 new = pop_context ();
1879 /* Make a block for the local symbols within. */
1880 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1881 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1882 list_in_scope = &file_symbols;
35f5886e
FF
1883}
1884
2dbde378
FF
1885
1886/*
1887
1888LOCAL FUNCTION
1889
1890 handle_producer -- process the AT_producer attribute
1891
1892DESCRIPTION
1893
1894 Perform any operations that depend on finding a particular
1895 AT_producer attribute.
1896
1897 */
1898
1899static void
1900handle_producer (producer)
1901 char *producer;
1902{
1903
1904 /* If this compilation unit was compiled with g++ or gcc, then set the
1905 processing_gcc_compilation flag. */
1906
1907 processing_gcc_compilation =
1908 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1909 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1910 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1911
1912 /* Select a demangling style if we can identify the producer and if
1913 the current style is auto. We leave the current style alone if it
1914 is not auto. We also leave the demangling style alone if we find a
1915 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1916
3dc755fb 1917 if (AUTO_DEMANGLING)
2dbde378
FF
1918 {
1919 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1920 {
1921 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1922 }
1923 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1924 {
1925 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1926 }
2dbde378 1927 }
2dbde378
FF
1928}
1929
1930
35f5886e
FF
1931/*
1932
1933LOCAL FUNCTION
1934
1935 read_file_scope -- process all dies within a file scope
1936
35f5886e
FF
1937DESCRIPTION
1938
1939 Process all dies within a given file scope. We are passed a
1940 pointer to the die information structure for the die which
1941 starts the file scope, and pointers into the raw die data which
1942 mark the range of dies within the file scope.
1943
1944 When the partial symbol table is built, the file offset for the line
1945 number table for each compilation unit is saved in the partial symbol
1946 table entry for that compilation unit. As the symbols for each
1947 compilation unit are read, the line number table is read into memory
1948 and the variable lnbase is set to point to it. Thus all we have to
1949 do is use lnbase to access the line number table for the current
1950 compilation unit.
1951 */
1952
1953static void
1ab3bf1b
JG
1954read_file_scope (dip, thisdie, enddie, objfile)
1955 struct dieinfo *dip;
1956 char *thisdie;
1957 char *enddie;
1958 struct objfile *objfile;
35f5886e
FF
1959{
1960 struct cleanup *back_to;
4d315a07 1961 struct symtab *symtab;
35f5886e 1962
5e2e79f8
FF
1963 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1964 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1965 {
5e2e79f8
FF
1966 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1967 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1968 }
95ff889e 1969 set_cu_language (dip);
4d315a07
FF
1970 if (dip -> at_producer != NULL)
1971 {
2dbde378 1972 handle_producer (dip -> at_producer);
4d315a07 1973 }
35f5886e
FF
1974 numutypes = (enddie - thisdie) / 4;
1975 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
4a1d2ce2 1976 back_to = make_cleanup (free_utypes, NULL);
4ed3a9ea 1977 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1978 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1979 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
609fd033 1980 record_debugformat ("DWARF 1");
35f5886e 1981 decode_line_numbers (lnbase);
13b5a7ff 1982 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b 1983
436d4143 1984 symtab = end_symtab (dip -> at_high_pc, objfile, 0);
7b5d9650 1985 if (symtab != NULL)
4d315a07 1986 {
95ff889e 1987 symtab -> language = cu_language;
7b5d9650 1988 }
35f5886e 1989 do_cleanups (back_to);
35f5886e
FF
1990}
1991
1992/*
1993
35f5886e
FF
1994LOCAL FUNCTION
1995
1996 process_dies -- process a range of DWARF Information Entries
1997
1998SYNOPSIS
1999
8b5b6fae
FF
2000 static void process_dies (char *thisdie, char *enddie,
2001 struct objfile *objfile)
35f5886e
FF
2002
2003DESCRIPTION
2004
2005 Process all DIE's in a specified range. May be (and almost
2006 certainly will be) called recursively.
2007 */
2008
2009static void
1ab3bf1b
JG
2010process_dies (thisdie, enddie, objfile)
2011 char *thisdie;
2012 char *enddie;
2013 struct objfile *objfile;
35f5886e
FF
2014{
2015 char *nextdie;
2016 struct dieinfo di;
2017
2018 while (thisdie < enddie)
2019 {
95967e73 2020 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2021 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2022 {
2023 break;
2024 }
13b5a7ff 2025 else if (di.die_tag == TAG_padding)
35f5886e 2026 {
13b5a7ff 2027 nextdie = thisdie + di.die_length;
35f5886e
FF
2028 }
2029 else
2030 {
95967e73 2031 completedieinfo (&di, objfile);
35f5886e
FF
2032 if (di.at_sibling != 0)
2033 {
2034 nextdie = dbbase + di.at_sibling - dbroff;
2035 }
2036 else
2037 {
13b5a7ff 2038 nextdie = thisdie + di.die_length;
35f5886e 2039 }
9fdb3f7a
JK
2040#ifdef SMASH_TEXT_ADDRESS
2041 /* I think that these are always text, not data, addresses. */
2042 SMASH_TEXT_ADDRESS (di.at_low_pc);
2043 SMASH_TEXT_ADDRESS (di.at_high_pc);
2044#endif
13b5a7ff 2045 switch (di.die_tag)
35f5886e
FF
2046 {
2047 case TAG_compile_unit:
4386eff2
PS
2048 /* Skip Tag_compile_unit if we are already inside a compilation
2049 unit, we are unable to handle nested compilation units
2050 properly (FIXME). */
2051 if (current_subfile == NULL)
2052 read_file_scope (&di, thisdie, nextdie, objfile);
2053 else
2054 nextdie = thisdie + di.die_length;
35f5886e
FF
2055 break;
2056 case TAG_global_subroutine:
2057 case TAG_subroutine:
2d6186f4 2058 if (di.has_at_low_pc)
35f5886e 2059 {
a048c8f5 2060 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2061 }
2062 break;
2063 case TAG_lexical_block:
a048c8f5 2064 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2065 break;
95ff889e 2066 case TAG_class_type:
35f5886e
FF
2067 case TAG_structure_type:
2068 case TAG_union_type:
8b5b6fae 2069 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2070 break;
2071 case TAG_enumeration_type:
1ab3bf1b 2072 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2073 break;
2074 case TAG_subroutine_type:
2075 read_subroutine_type (&di, thisdie, nextdie);
2076 break;
2077 case TAG_array_type:
4d315a07 2078 dwarf_read_array_type (&di);
35f5886e 2079 break;
9e4c1921
FF
2080 case TAG_pointer_type:
2081 read_tag_pointer_type (&di);
2082 break;
ec16f701
FF
2083 case TAG_string_type:
2084 read_tag_string_type (&di);
2085 break;
35f5886e 2086 default:
4ed3a9ea 2087 new_symbol (&di, objfile);
35f5886e
FF
2088 break;
2089 }
2090 }
2091 thisdie = nextdie;
2092 }
2093}
2094
2095/*
2096
35f5886e
FF
2097LOCAL FUNCTION
2098
2099 decode_line_numbers -- decode a line number table fragment
2100
2101SYNOPSIS
2102
2103 static void decode_line_numbers (char *tblscan, char *tblend,
2104 long length, long base, long line, long pc)
2105
2106DESCRIPTION
2107
2108 Translate the DWARF line number information to gdb form.
2109
2110 The ".line" section contains one or more line number tables, one for
2111 each ".line" section from the objects that were linked.
2112
2113 The AT_stmt_list attribute for each TAG_source_file entry in the
2114 ".debug" section contains the offset into the ".line" section for the
2115 start of the table for that file.
2116
2117 The table itself has the following structure:
2118
2119 <table length><base address><source statement entry>
2120 4 bytes 4 bytes 10 bytes
2121
2122 The table length is the total size of the table, including the 4 bytes
2123 for the length information.
2124
2125 The base address is the address of the first instruction generated
2126 for the source file.
2127
2128 Each source statement entry has the following structure:
2129
2130 <line number><statement position><address delta>
2131 4 bytes 2 bytes 4 bytes
2132
2133 The line number is relative to the start of the file, starting with
2134 line 1.
2135
2136 The statement position either -1 (0xFFFF) or the number of characters
2137 from the beginning of the line to the beginning of the statement.
2138
2139 The address delta is the difference between the base address and
2140 the address of the first instruction for the statement.
2141
2142 Note that we must copy the bytes from the packed table to our local
2143 variables before attempting to use them, to avoid alignment problems
2144 on some machines, particularly RISC processors.
2145
2146BUGS
2147
2148 Does gdb expect the line numbers to be sorted? They are now by
2149 chance/luck, but are not required to be. (FIXME)
2150
2151 The line with number 0 is unused, gdb apparently can discover the
2152 span of the last line some other way. How? (FIXME)
2153 */
2154
2155static void
1ab3bf1b
JG
2156decode_line_numbers (linetable)
2157 char *linetable;
35f5886e
FF
2158{
2159 char *tblscan;
2160 char *tblend;
13b5a7ff
FF
2161 unsigned long length;
2162 unsigned long base;
2163 unsigned long line;
2164 unsigned long pc;
35f5886e
FF
2165
2166 if (linetable != NULL)
2167 {
2168 tblscan = tblend = linetable;
13b5a7ff
FF
2169 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2170 current_objfile);
2171 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2172 tblend += length;
13b5a7ff
FF
2173 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2174 GET_UNSIGNED, current_objfile);
2175 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2176 base += baseaddr;
35f5886e
FF
2177 while (tblscan < tblend)
2178 {
13b5a7ff
FF
2179 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2180 current_objfile);
2181 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2182 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2183 current_objfile);
2184 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2185 pc += base;
13b5a7ff 2186 if (line != 0)
35f5886e 2187 {
4d315a07 2188 record_line (current_subfile, line, pc);
35f5886e
FF
2189 }
2190 }
2191 }
2192}
2193
2194/*
2195
35f5886e
FF
2196LOCAL FUNCTION
2197
2198 locval -- compute the value of a location attribute
2199
2200SYNOPSIS
2201
705ebd92 2202 static int locval (struct dieinfo *dip)
35f5886e
FF
2203
2204DESCRIPTION
2205
2206 Given pointer to a string of bytes that define a location, compute
2207 the location and return the value.
bbcc95bd 2208 A location description containing no atoms indicates that the
705ebd92
FF
2209 object is optimized out. The optimized_out flag is set for those,
2210 the return value is meaningless.
35f5886e
FF
2211
2212 When computing values involving the current value of the frame pointer,
2213 the value zero is used, which results in a value relative to the frame
2214 pointer, rather than the absolute value. This is what GDB wants
2215 anyway.
2216
705ebd92
FF
2217 When the result is a register number, the isreg flag is set, otherwise
2218 it is cleared. This is a kludge until we figure out a better
35f5886e
FF
2219 way to handle the problem. Gdb's design does not mesh well with the
2220 DWARF notion of a location computing interpreter, which is a shame
2221 because the flexibility goes unused.
2222
2223NOTES
2224
2225 Note that stack[0] is unused except as a default error return.
2226 Note that stack overflow is not yet handled.
2227 */
2228
2229static int
705ebd92
FF
2230locval (dip)
2231 struct dieinfo *dip;
35f5886e
FF
2232{
2233 unsigned short nbytes;
13b5a7ff
FF
2234 unsigned short locsize;
2235 auto long stack[64];
35f5886e 2236 int stacki;
705ebd92 2237 char *loc;
35f5886e 2238 char *end;
13b5a7ff
FF
2239 int loc_atom_code;
2240 int loc_value_size;
35f5886e 2241
705ebd92 2242 loc = dip -> at_location;
13b5a7ff
FF
2243 nbytes = attribute_size (AT_location);
2244 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2245 loc += nbytes;
2246 end = loc + locsize;
35f5886e
FF
2247 stacki = 0;
2248 stack[stacki] = 0;
705ebd92
FF
2249 dip -> isreg = 0;
2250 dip -> offreg = 0;
2251 dip -> optimized_out = 1;
13b5a7ff
FF
2252 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2253 while (loc < end)
35f5886e 2254 {
705ebd92 2255 dip -> optimized_out = 0;
13b5a7ff
FF
2256 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2257 current_objfile);
2258 loc += SIZEOF_LOC_ATOM_CODE;
2259 switch (loc_atom_code)
2260 {
2261 case 0:
2262 /* error */
2263 loc = end;
2264 break;
2265 case OP_REG:
2266 /* push register (number) */
84bdfea6
PS
2267 stack[++stacki]
2268 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2269 GET_UNSIGNED,
2270 current_objfile));
13b5a7ff 2271 loc += loc_value_size;
705ebd92 2272 dip -> isreg = 1;
13b5a7ff
FF
2273 break;
2274 case OP_BASEREG:
2275 /* push value of register (number) */
a1c8d76e
JK
2276 /* Actually, we compute the value as if register has 0, so the
2277 value ends up being the offset from that register. */
705ebd92
FF
2278 dip -> offreg = 1;
2279 dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2280 current_objfile);
13b5a7ff 2281 loc += loc_value_size;
a1c8d76e 2282 stack[++stacki] = 0;
13b5a7ff
FF
2283 break;
2284 case OP_ADDR:
2285 /* push address (relocated address) */
2286 stack[++stacki] = target_to_host (loc, loc_value_size,
2287 GET_UNSIGNED, current_objfile);
2288 loc += loc_value_size;
2289 break;
2290 case OP_CONST:
2291 /* push constant (number) FIXME: signed or unsigned! */
2292 stack[++stacki] = target_to_host (loc, loc_value_size,
2293 GET_SIGNED, current_objfile);
2294 loc += loc_value_size;
2295 break;
2296 case OP_DEREF2:
2297 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2298 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2299 break;
2300 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2301 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2302 break;
2303 case OP_ADD: /* pop top 2 items, add, push result */
2304 stack[stacki - 1] += stack[stacki];
2305 stacki--;
2306 break;
2307 }
35f5886e
FF
2308 }
2309 return (stack[stacki]);
2310}
2311
2312/*
2313
2314LOCAL FUNCTION
2315
2316 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2317
2318SYNOPSIS
2319
c701c14c 2320 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2321
2322DESCRIPTION
2323
1ab3bf1b
JG
2324 When expanding a partial symbol table entry to a full symbol table
2325 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2326 for the compilation unit. A pointer to the newly constructed symtab,
2327 which is now the new first one on the objfile's symtab list, is
2328 stashed in the partial symbol table entry.
35f5886e
FF
2329 */
2330
c701c14c 2331static void
1ab3bf1b
JG
2332read_ofile_symtab (pst)
2333 struct partial_symtab *pst;
35f5886e
FF
2334{
2335 struct cleanup *back_to;
13b5a7ff 2336 unsigned long lnsize;
d5931d79 2337 file_ptr foffset;
1ab3bf1b 2338 bfd *abfd;
13b5a7ff 2339 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2340
2341 abfd = pst -> objfile -> obfd;
2342 current_objfile = pst -> objfile;
2343
35f5886e
FF
2344 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2345 unit, seek to the location in the file, and read in all the DIE's. */
2346
2347 diecount = 0;
4090fe1c
FF
2348 dbsize = DBLENGTH (pst);
2349 dbbase = xmalloc (dbsize);
35f5886e
FF
2350 dbroff = DBROFF(pst);
2351 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2352 base_section_offsets = pst->section_offsets;
2353 baseaddr = ANOFFSET (pst->section_offsets, 0);
987622b5 2354 if (bfd_seek (abfd, foffset, SEEK_SET) ||
4090fe1c 2355 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2356 {
2357 free (dbbase);
2358 error ("can't read DWARF data");
2359 }
2360 back_to = make_cleanup (free, dbbase);
2361
2362 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2363 then read the size of this fragment in bytes, from the fragment itself.
2364 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2365 processing. */
2366
2367 lnbase = NULL;
2368 if (LNFOFF (pst))
2369 {
987622b5 2370 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
13b5a7ff
FF
2371 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2372 sizeof (lnsizedata)))
35f5886e
FF
2373 {
2374 error ("can't read DWARF line number table size");
2375 }
13b5a7ff
FF
2376 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2377 GET_UNSIGNED, pst -> objfile);
35f5886e 2378 lnbase = xmalloc (lnsize);
987622b5 2379 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
a048c8f5 2380 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2381 {
2382 free (lnbase);
2383 error ("can't read DWARF line numbers");
2384 }
2385 make_cleanup (free, lnbase);
2386 }
2387
4090fe1c 2388 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2389 do_cleanups (back_to);
1ab3bf1b 2390 current_objfile = NULL;
c701c14c 2391 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2392}
2393
2394/*
2395
2396LOCAL FUNCTION
2397
2398 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2399
2400SYNOPSIS
2401
a048c8f5 2402 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2403
2404DESCRIPTION
2405
2406 Called once for each partial symbol table entry that needs to be
2407 expanded into a full symbol table entry.
2408
2409*/
2410
2411static void
1ab3bf1b
JG
2412psymtab_to_symtab_1 (pst)
2413 struct partial_symtab *pst;
35f5886e
FF
2414{
2415 int i;
d07734e3 2416 struct cleanup *old_chain;
35f5886e 2417
1ab3bf1b 2418 if (pst != NULL)
35f5886e 2419 {
1ab3bf1b 2420 if (pst->readin)
35f5886e 2421 {
318bf84f 2422 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2423 pst -> filename);
2424 }
2425 else
2426 {
2427 /* Read in all partial symtabs on which this one is dependent */
2428 for (i = 0; i < pst -> number_of_dependencies; i++)
2429 {
2430 if (!pst -> dependencies[i] -> readin)
2431 {
2432 /* Inform about additional files that need to be read in. */
2433 if (info_verbose)
2434 {
199b2450 2435 fputs_filtered (" ", gdb_stdout);
1ab3bf1b 2436 wrap_here ("");
199b2450 2437 fputs_filtered ("and ", gdb_stdout);
1ab3bf1b
JG
2438 wrap_here ("");
2439 printf_filtered ("%s...",
2440 pst -> dependencies[i] -> filename);
2441 wrap_here ("");
199b2450 2442 gdb_flush (gdb_stdout); /* Flush output */
1ab3bf1b
JG
2443 }
2444 psymtab_to_symtab_1 (pst -> dependencies[i]);
2445 }
2446 }
2447 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2448 {
d07734e3
FF
2449 buildsym_init ();
2450 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2451 read_ofile_symtab (pst);
1ab3bf1b
JG
2452 if (info_verbose)
2453 {
2454 printf_filtered ("%d DIE's, sorting...", diecount);
2455 wrap_here ("");
199b2450 2456 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2457 }
2458 sort_symtab_syms (pst -> symtab);
d07734e3 2459 do_cleanups (old_chain);
1ab3bf1b
JG
2460 }
2461 pst -> readin = 1;
35f5886e 2462 }
35f5886e 2463 }
35f5886e
FF
2464}
2465
2466/*
2467
2468LOCAL FUNCTION
2469
2470 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2471
2472SYNOPSIS
2473
2474 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2475
2476DESCRIPTION
2477
2478 This is the DWARF support entry point for building a full symbol
2479 table entry from a partial symbol table entry. We are passed a
2480 pointer to the partial symbol table entry that needs to be expanded.
2481
2482*/
2483
2484static void
1ab3bf1b
JG
2485dwarf_psymtab_to_symtab (pst)
2486 struct partial_symtab *pst;
35f5886e 2487{
7d9884b9 2488
1ab3bf1b 2489 if (pst != NULL)
35f5886e 2490 {
1ab3bf1b 2491 if (pst -> readin)
35f5886e 2492 {
318bf84f 2493 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2494 pst -> filename);
35f5886e 2495 }
1ab3bf1b 2496 else
35f5886e 2497 {
1ab3bf1b
JG
2498 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2499 {
2500 /* Print the message now, before starting serious work, to avoid
2501 disconcerting pauses. */
2502 if (info_verbose)
2503 {
2504 printf_filtered ("Reading in symbols for %s...",
2505 pst -> filename);
199b2450 2506 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2507 }
2508
2509 psymtab_to_symtab_1 (pst);
2510
2511#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2512 we need to do an equivalent or is this something peculiar to
2513 stabs/a.out format.
2514 Match with global symbols. This only needs to be done once,
2515 after all of the symtabs and dependencies have been read in.
2516 */
2517 scan_file_globals (pst -> objfile);
2518#endif
2519
2520 /* Finish up the verbose info message. */
2521 if (info_verbose)
2522 {
2523 printf_filtered ("done.\n");
199b2450 2524 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2525 }
2526 }
35f5886e
FF
2527 }
2528 }
2529}
2530
2531/*
2532
715cafcb
FF
2533LOCAL FUNCTION
2534
2535 add_enum_psymbol -- add enumeration members to partial symbol table
2536
2537DESCRIPTION
2538
2539 Given pointer to a DIE that is known to be for an enumeration,
2540 extract the symbolic names of the enumeration members and add
2541 partial symbols for them.
2542*/
2543
2544static void
1ab3bf1b
JG
2545add_enum_psymbol (dip, objfile)
2546 struct dieinfo *dip;
2547 struct objfile *objfile;
715cafcb
FF
2548{
2549 char *scan;
2550 char *listend;
13b5a7ff
FF
2551 unsigned short blocksz;
2552 int nbytes;
715cafcb
FF
2553
2554 if ((scan = dip -> at_element_list) != NULL)
2555 {
2556 if (dip -> short_element_list)
2557 {
13b5a7ff 2558 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2559 }
2560 else
2561 {
13b5a7ff 2562 nbytes = attribute_size (AT_element_list);
715cafcb 2563 }
13b5a7ff
FF
2564 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2565 scan += nbytes;
2566 listend = scan + blocksz;
715cafcb
FF
2567 while (scan < listend)
2568 {
13b5a7ff 2569 scan += TARGET_FT_LONG_SIZE (objfile);
eae8aa30
FF
2570 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2571 &objfile -> static_psymbols, 0, 0, cu_language,
2e4964ad 2572 objfile);
715cafcb
FF
2573 scan += strlen (scan) + 1;
2574 }
2575 }
2576}
2577
2578/*
2579
35f5886e
FF
2580LOCAL FUNCTION
2581
2582 add_partial_symbol -- add symbol to partial symbol table
2583
2584DESCRIPTION
2585
2586 Given a DIE, if it is one of the types that we want to
2587 add to a partial symbol table, finish filling in the die info
2588 and then add a partial symbol table entry for it.
2589
95ff889e
FF
2590NOTES
2591
2592 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2593*/
2594
2595static void
1ab3bf1b
JG
2596add_partial_symbol (dip, objfile)
2597 struct dieinfo *dip;
2598 struct objfile *objfile;
35f5886e 2599{
13b5a7ff 2600 switch (dip -> die_tag)
35f5886e
FF
2601 {
2602 case TAG_global_subroutine:
eae8aa30 2603 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
0708e99f 2604 VAR_NAMESPACE, LOC_BLOCK,
eae8aa30
FF
2605 &objfile -> global_psymbols,
2606 0, dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2607 break;
2608 case TAG_global_variable:
eae8aa30 2609 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2610 VAR_NAMESPACE, LOC_STATIC,
eae8aa30
FF
2611 &objfile -> global_psymbols,
2612 0, 0, cu_language, objfile);
35f5886e
FF
2613 break;
2614 case TAG_subroutine:
eae8aa30 2615 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
0708e99f 2616 VAR_NAMESPACE, LOC_BLOCK,
eae8aa30
FF
2617 &objfile -> static_psymbols,
2618 0, dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2619 break;
2620 case TAG_local_variable:
eae8aa30 2621 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2622 VAR_NAMESPACE, LOC_STATIC,
eae8aa30
FF
2623 &objfile -> static_psymbols,
2624 0, 0, cu_language, objfile);
35f5886e
FF
2625 break;
2626 case TAG_typedef:
eae8aa30 2627 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2628 VAR_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2629 &objfile -> static_psymbols,
2630 0, 0, cu_language, objfile);
35f5886e 2631 break;
95ff889e 2632 case TAG_class_type:
35f5886e
FF
2633 case TAG_structure_type:
2634 case TAG_union_type:
95ff889e 2635 case TAG_enumeration_type:
4386eff2
PS
2636 /* Do not add opaque aggregate definitions to the psymtab. */
2637 if (!dip -> has_at_byte_size)
2638 break;
eae8aa30 2639 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2640 STRUCT_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2641 &objfile -> static_psymbols,
2642 0, 0, cu_language, objfile);
95ff889e 2643 if (cu_language == language_cplus)
715cafcb 2644 {
95ff889e 2645 /* For C++, these implicitly act as typedefs as well. */
eae8aa30 2646 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
95ff889e 2647 VAR_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2648 &objfile -> static_psymbols,
2649 0, 0, cu_language, objfile);
715cafcb 2650 }
715cafcb 2651 break;
35f5886e
FF
2652 }
2653}
2654
2655/*
2656
2657LOCAL FUNCTION
2658
2659 scan_partial_symbols -- scan DIE's within a single compilation unit
2660
2661DESCRIPTION
2662
2663 Process the DIE's within a single compilation unit, looking for
2664 interesting DIE's that contribute to the partial symbol table entry
a679650f 2665 for this compilation unit.
35f5886e 2666
2d6186f4
FF
2667NOTES
2668
a679650f
FF
2669 There are some DIE's that may appear both at file scope and within
2670 the scope of a function. We are only interested in the ones at file
2671 scope, and the only way to tell them apart is to keep track of the
2672 scope. For example, consider the test case:
2673
2674 static int i;
2675 main () { int j; }
2676
2677 for which the relevant DWARF segment has the structure:
2678
2679 0x51:
2680 0x23 global subrtn sibling 0x9b
2681 name main
2682 fund_type FT_integer
2683 low_pc 0x800004cc
2684 high_pc 0x800004d4
2685
2686 0x74:
2687 0x23 local var sibling 0x97
2688 name j
2689 fund_type FT_integer
2690 location OP_BASEREG 0xe
2691 OP_CONST 0xfffffffc
2692 OP_ADD
2693 0x97:
2694 0x4
2695
2696 0x9b:
2697 0x1d local var sibling 0xb8
2698 name i
2699 fund_type FT_integer
2700 location OP_ADDR 0x800025dc
2701
2702 0xb8:
2703 0x4
2704
2705 We want to include the symbol 'i' in the partial symbol table, but
2706 not the symbol 'j'. In essence, we want to skip all the dies within
2707 the scope of a TAG_global_subroutine DIE.
2708
715cafcb
FF
2709 Don't attempt to add anonymous structures or unions since they have
2710 no name. Anonymous enumerations however are processed, because we
2711 want to extract their member names (the check for a tag name is
2712 done later).
2d6186f4 2713
715cafcb
FF
2714 Also, for variables and subroutines, check that this is the place
2715 where the actual definition occurs, rather than just a reference
2716 to an external.
35f5886e
FF
2717 */
2718
2719static void
1ab3bf1b
JG
2720scan_partial_symbols (thisdie, enddie, objfile)
2721 char *thisdie;
2722 char *enddie;
2723 struct objfile *objfile;
35f5886e
FF
2724{
2725 char *nextdie;
a679650f 2726 char *temp;
35f5886e
FF
2727 struct dieinfo di;
2728
2729 while (thisdie < enddie)
2730 {
95967e73 2731 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2732 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2733 {
2734 break;
2735 }
2736 else
2737 {
13b5a7ff 2738 nextdie = thisdie + di.die_length;
715cafcb
FF
2739 /* To avoid getting complete die information for every die, we
2740 only do it (below) for the cases we are interested in. */
13b5a7ff 2741 switch (di.die_tag)
35f5886e
FF
2742 {
2743 case TAG_global_subroutine:
35f5886e 2744 case TAG_subroutine:
a679650f
FF
2745 completedieinfo (&di, objfile);
2746 if (di.at_name && (di.has_at_low_pc || di.at_location))
2747 {
2748 add_partial_symbol (&di, objfile);
2749 /* If there is a sibling attribute, adjust the nextdie
2750 pointer to skip the entire scope of the subroutine.
2751 Apply some sanity checking to make sure we don't
2752 overrun or underrun the range of remaining DIE's */
2753 if (di.at_sibling != 0)
2754 {
2755 temp = dbbase + di.at_sibling - dbroff;
2756 if ((temp < thisdie) || (temp >= enddie))
2757 {
51b80b00
FF
2758 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2759 di.at_sibling);
a679650f
FF
2760 }
2761 else
2762 {
2763 nextdie = temp;
2764 }
2765 }
2766 }
2767 break;
2d6186f4 2768 case TAG_global_variable:
35f5886e 2769 case TAG_local_variable:
95967e73 2770 completedieinfo (&di, objfile);
2d6186f4
FF
2771 if (di.at_name && (di.has_at_low_pc || di.at_location))
2772 {
1ab3bf1b 2773 add_partial_symbol (&di, objfile);
2d6186f4
FF
2774 }
2775 break;
35f5886e 2776 case TAG_typedef:
95ff889e 2777 case TAG_class_type:
35f5886e
FF
2778 case TAG_structure_type:
2779 case TAG_union_type:
95967e73 2780 completedieinfo (&di, objfile);
2d6186f4 2781 if (di.at_name)
35f5886e 2782 {
1ab3bf1b 2783 add_partial_symbol (&di, objfile);
35f5886e
FF
2784 }
2785 break;
715cafcb 2786 case TAG_enumeration_type:
95967e73 2787 completedieinfo (&di, objfile);
95ff889e
FF
2788 if (di.at_name)
2789 {
2790 add_partial_symbol (&di, objfile);
2791 }
2792 add_enum_psymbol (&di, objfile);
715cafcb 2793 break;
35f5886e
FF
2794 }
2795 }
2796 thisdie = nextdie;
2797 }
2798}
2799
2800/*
2801
2802LOCAL FUNCTION
2803
2804 scan_compilation_units -- build a psymtab entry for each compilation
2805
2806DESCRIPTION
2807
2808 This is the top level dwarf parsing routine for building partial
2809 symbol tables.
2810
2811 It scans from the beginning of the DWARF table looking for the first
2812 TAG_compile_unit DIE, and then follows the sibling chain to locate
2813 each additional TAG_compile_unit DIE.
2814
2815 For each TAG_compile_unit DIE it creates a partial symtab structure,
2816 calls a subordinate routine to collect all the compilation unit's
2817 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2818 new partial symtab structure into the partial symbol table. It also
2819 records the appropriate information in the partial symbol table entry
2820 to allow the chunk of DIE's and line number table for this compilation
2821 unit to be located and re-read later, to generate a complete symbol
2822 table entry for the compilation unit.
2823
2824 Thus it effectively partitions up a chunk of DIE's for multiple
2825 compilation units into smaller DIE chunks and line number tables,
2826 and associates them with a partial symbol table entry.
2827
2828NOTES
2829
2830 If any compilation unit has no line number table associated with
2831 it for some reason (a missing at_stmt_list attribute, rather than
2832 just one with a value of zero, which is valid) then we ensure that
2833 the recorded file offset is zero so that the routine which later
2834 reads line number table fragments knows that there is no fragment
2835 to read.
2836
2837RETURNS
2838
2839 Returns no value.
2840
2841 */
2842
2843static void
d5931d79 2844scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2845 char *thisdie;
2846 char *enddie;
d5931d79
JG
2847 file_ptr dbfoff;
2848 file_ptr lnoffset;
1ab3bf1b 2849 struct objfile *objfile;
35f5886e
FF
2850{
2851 char *nextdie;
2852 struct dieinfo di;
2853 struct partial_symtab *pst;
2854 int culength;
2855 int curoff;
d5931d79 2856 file_ptr curlnoffset;
35f5886e
FF
2857
2858 while (thisdie < enddie)
2859 {
95967e73 2860 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2861 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2862 {
2863 break;
2864 }
13b5a7ff 2865 else if (di.die_tag != TAG_compile_unit)
35f5886e 2866 {
13b5a7ff 2867 nextdie = thisdie + di.die_length;
35f5886e
FF
2868 }
2869 else
2870 {
95967e73 2871 completedieinfo (&di, objfile);
95ff889e 2872 set_cu_language (&di);
35f5886e
FF
2873 if (di.at_sibling != 0)
2874 {
2875 nextdie = dbbase + di.at_sibling - dbroff;
2876 }
2877 else
2878 {
13b5a7ff 2879 nextdie = thisdie + di.die_length;
35f5886e
FF
2880 }
2881 curoff = thisdie - dbbase;
2882 culength = nextdie - thisdie;
2d6186f4 2883 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2884
2885 /* First allocate a new partial symbol table structure */
2886
95ff889e
FF
2887 pst = start_psymtab_common (objfile, base_section_offsets,
2888 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2889 objfile -> global_psymbols.next,
2890 objfile -> static_psymbols.next);
2891
2892 pst -> texthigh = di.at_high_pc;
2893 pst -> read_symtab_private = (char *)
2894 obstack_alloc (&objfile -> psymbol_obstack,
2895 sizeof (struct dwfinfo));
2896 DBFOFF (pst) = dbfoff;
2897 DBROFF (pst) = curoff;
2898 DBLENGTH (pst) = culength;
2899 LNFOFF (pst) = curlnoffset;
2900 pst -> read_symtab = dwarf_psymtab_to_symtab;
2901
2902 /* Now look for partial symbols */
2903
13b5a7ff 2904 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2905
2906 pst -> n_global_syms = objfile -> global_psymbols.next -
2907 (objfile -> global_psymbols.list + pst -> globals_offset);
2908 pst -> n_static_syms = objfile -> static_psymbols.next -
2909 (objfile -> static_psymbols.list + pst -> statics_offset);
2910 sort_pst_symbols (pst);
35f5886e
FF
2911 /* If there is already a psymtab or symtab for a file of this name,
2912 remove it. (If there is a symtab, more drastic things also
2913 happen.) This happens in VxWorks. */
2914 free_named_symtabs (pst -> filename);
35f5886e
FF
2915 }
2916 thisdie = nextdie;
2917 }
2918}
2919
2920/*
2921
2922LOCAL FUNCTION
2923
2924 new_symbol -- make a symbol table entry for a new symbol
2925
2926SYNOPSIS
2927
1ab3bf1b
JG
2928 static struct symbol *new_symbol (struct dieinfo *dip,
2929 struct objfile *objfile)
35f5886e
FF
2930
2931DESCRIPTION
2932
2933 Given a pointer to a DWARF information entry, figure out if we need
2934 to make a symbol table entry for it, and if so, create a new entry
2935 and return a pointer to it.
2936 */
2937
2938static struct symbol *
1ab3bf1b
JG
2939new_symbol (dip, objfile)
2940 struct dieinfo *dip;
2941 struct objfile *objfile;
35f5886e
FF
2942{
2943 struct symbol *sym = NULL;
2944
2945 if (dip -> at_name != NULL)
2946 {
1ab3bf1b 2947 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2948 sizeof (struct symbol));
2dd30c72 2949 OBJSTAT (objfile, n_syms++);
4ed3a9ea 2950 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2951 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2952 &objfile->symbol_obstack);
35f5886e
FF
2953 /* default assumptions */
2954 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2955 SYMBOL_CLASS (sym) = LOC_STATIC;
2956 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2957
2958 /* If this symbol is from a C++ compilation, then attempt to cache the
2959 demangled form for future reference. This is a typical time versus
2960 space tradeoff, that was decided in favor of time because it sped up
2961 C++ symbol lookups by a factor of about 20. */
2962
2963 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2964 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2965 switch (dip -> die_tag)
35f5886e
FF
2966 {
2967 case TAG_label:
0708e99f 2968 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
35f5886e
FF
2969 SYMBOL_CLASS (sym) = LOC_LABEL;
2970 break;
2971 case TAG_global_subroutine:
2972 case TAG_subroutine:
0708e99f 2973 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
35f5886e 2974 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
ac954805
SG
2975 if (dip -> at_prototyped)
2976 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
35f5886e 2977 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2978 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2979 {
2980 add_symbol_to_list (sym, &global_symbols);
2981 }
2982 else
2983 {
4d315a07 2984 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2985 }
2986 break;
2987 case TAG_global_variable:
35f5886e
FF
2988 if (dip -> at_location != NULL)
2989 {
705ebd92 2990 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
35f5886e
FF
2991 add_symbol_to_list (sym, &global_symbols);
2992 SYMBOL_CLASS (sym) = LOC_STATIC;
2993 SYMBOL_VALUE (sym) += baseaddr;
2994 }
a5bd5ba6
FF
2995 break;
2996 case TAG_local_variable:
2997 if (dip -> at_location != NULL)
35f5886e 2998 {
705ebd92
FF
2999 int loc = locval (dip);
3000 if (dip -> optimized_out)
bbcc95bd
PS
3001 {
3002 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3003 }
705ebd92 3004 else if (dip -> isreg)
a5bd5ba6
FF
3005 {
3006 SYMBOL_CLASS (sym) = LOC_REGISTER;
3007 }
705ebd92 3008 else if (dip -> offreg)
35f5886e 3009 {
a1c8d76e 3010 SYMBOL_CLASS (sym) = LOC_BASEREG;
705ebd92 3011 SYMBOL_BASEREG (sym) = dip -> basereg;
35f5886e
FF
3012 }
3013 else
3014 {
3015 SYMBOL_CLASS (sym) = LOC_STATIC;
3016 SYMBOL_VALUE (sym) += baseaddr;
3017 }
015e113c
FF
3018 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3019 {
3020 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3021 which may store to a bigger location than SYMBOL_VALUE. */
705ebd92 3022 SYMBOL_VALUE_ADDRESS (sym) = loc;
015e113c
FF
3023 }
3024 else
3025 {
705ebd92 3026 SYMBOL_VALUE (sym) = loc;
015e113c
FF
3027 }
3028 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3029 }
3030 break;
3031 case TAG_formal_parameter:
3032 if (dip -> at_location != NULL)
3033 {
705ebd92 3034 SYMBOL_VALUE (sym) = locval (dip);
35f5886e 3035 }
4d315a07 3036 add_symbol_to_list (sym, list_in_scope);
705ebd92 3037 if (dip -> isreg)
35f5886e
FF
3038 {
3039 SYMBOL_CLASS (sym) = LOC_REGPARM;
3040 }
705ebd92 3041 else if (dip -> offreg)
a1c8d76e
JK
3042 {
3043 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
705ebd92 3044 SYMBOL_BASEREG (sym) = dip -> basereg;
a1c8d76e 3045 }
35f5886e
FF
3046 else
3047 {
3048 SYMBOL_CLASS (sym) = LOC_ARG;
3049 }
3050 break;
3051 case TAG_unspecified_parameters:
3052 /* From varargs functions; gdb doesn't seem to have any interest in
3053 this information, so just ignore it for now. (FIXME?) */
3054 break;
95ff889e 3055 case TAG_class_type:
35f5886e
FF
3056 case TAG_structure_type:
3057 case TAG_union_type:
3058 case TAG_enumeration_type:
3059 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3060 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3061 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3062 break;
3063 case TAG_typedef:
3064 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3065 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3066 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3067 break;
3068 default:
3069 /* Not a tag we recognize. Hopefully we aren't processing trash
3070 data, but since we must specifically ignore things we don't
3071 recognize, there is nothing else we should do at this point. */
3072 break;
3073 }
3074 }
3075 return (sym);
3076}
3077
3078/*
3079
95ff889e
FF
3080LOCAL FUNCTION
3081
3082 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3083
3084SYNOPSIS
3085
3086 static void synthesize_typedef (struct dieinfo *dip,
3087 struct objfile *objfile,
3088 struct type *type);
3089
3090DESCRIPTION
3091
3092 Given a pointer to a DWARF information entry, synthesize a typedef
3093 for the name in the DIE, using the specified type.
3094
3095 This is used for C++ class, structs, unions, and enumerations to
3096 set up the tag name as a type.
3097
3098 */
3099
3100static void
3101synthesize_typedef (dip, objfile, type)
3102 struct dieinfo *dip;
3103 struct objfile *objfile;
3104 struct type *type;
3105{
3106 struct symbol *sym = NULL;
3107
3108 if (dip -> at_name != NULL)
3109 {
3110 sym = (struct symbol *)
3111 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2dd30c72 3112 OBJSTAT (objfile, n_syms++);
95ff889e
FF
3113 memset (sym, 0, sizeof (struct symbol));
3114 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3115 &objfile->symbol_obstack);
7532cf10 3116 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3117 SYMBOL_TYPE (sym) = type;
3118 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3119 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3120 add_symbol_to_list (sym, list_in_scope);
3121 }
3122}
3123
3124/*
3125
35f5886e
FF
3126LOCAL FUNCTION
3127
3128 decode_mod_fund_type -- decode a modified fundamental type
3129
3130SYNOPSIS
3131
3132 static struct type *decode_mod_fund_type (char *typedata)
3133
3134DESCRIPTION
3135
3136 Decode a block of data containing a modified fundamental
3137 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3138 which starts with a length containing the size of the rest
3139 of the block. At the end of the block is a fundmental type
3140 code value that gives the fundamental type. Everything
35f5886e
FF
3141 in between are type modifiers.
3142
3143 We simply compute the number of modifiers and call the general
3144 function decode_modified_type to do the actual work.
3145*/
3146
3147static struct type *
1ab3bf1b
JG
3148decode_mod_fund_type (typedata)
3149 char *typedata;
35f5886e
FF
3150{
3151 struct type *typep = NULL;
3152 unsigned short modcount;
13b5a7ff 3153 int nbytes;
35f5886e
FF
3154
3155 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3156
3157 nbytes = attribute_size (AT_mod_fund_type);
3158 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3159 typedata += nbytes;
3160
35f5886e 3161 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3162
3163 modcount -= attribute_size (AT_fund_type);
3164
35f5886e 3165 /* Now do the actual decoding */
13b5a7ff
FF
3166
3167 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3168 return (typep);
3169}
3170
3171/*
3172
3173LOCAL FUNCTION
3174
3175 decode_mod_u_d_type -- decode a modified user defined type
3176
3177SYNOPSIS
3178
3179 static struct type *decode_mod_u_d_type (char *typedata)
3180
3181DESCRIPTION
3182
3183 Decode a block of data containing a modified user defined
3184 type specification. TYPEDATA is a pointer to the block,
3185 which consists of a two byte length, containing the size
3186 of the rest of the block. At the end of the block is a
3187 four byte value that gives a reference to a user defined type.
3188 Everything in between are type modifiers.
3189
3190 We simply compute the number of modifiers and call the general
3191 function decode_modified_type to do the actual work.
3192*/
3193
3194static struct type *
1ab3bf1b
JG
3195decode_mod_u_d_type (typedata)
3196 char *typedata;
35f5886e
FF
3197{
3198 struct type *typep = NULL;
3199 unsigned short modcount;
13b5a7ff 3200 int nbytes;
35f5886e
FF
3201
3202 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3203
3204 nbytes = attribute_size (AT_mod_u_d_type);
3205 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3206 typedata += nbytes;
3207
35f5886e 3208 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3209
3210 modcount -= attribute_size (AT_user_def_type);
3211
35f5886e 3212 /* Now do the actual decoding */
13b5a7ff
FF
3213
3214 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3215 return (typep);
3216}
3217
3218/*
3219
3220LOCAL FUNCTION
3221
3222 decode_modified_type -- decode modified user or fundamental type
3223
3224SYNOPSIS
3225
1c92ca6f 3226 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3227 unsigned short modcount, int mtype)
3228
3229DESCRIPTION
3230
3231 Decode a modified type, either a modified fundamental type or
3232 a modified user defined type. MODIFIERS is a pointer to the
3233 block of bytes that define MODCOUNT modifiers. Immediately
3234 following the last modifier is a short containing the fundamental
3235 type or a long containing the reference to the user defined
3236 type. Which one is determined by MTYPE, which is either
3237 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3238 type we are generating.
3239
3240 We call ourself recursively to generate each modified type,`
3241 until MODCOUNT reaches zero, at which point we have consumed
3242 all the modifiers and generate either the fundamental type or
3243 user defined type. When the recursion unwinds, each modifier
3244 is applied in turn to generate the full modified type.
3245
3246NOTES
3247
3248 If we find a modifier that we don't recognize, and it is not one
3249 of those reserved for application specific use, then we issue a
3250 warning and simply ignore the modifier.
3251
3252BUGS
3253
3254 We currently ignore MOD_const and MOD_volatile. (FIXME)
3255
3256 */
3257
3258static struct type *
1ab3bf1b 3259decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3260 char *modifiers;
1ab3bf1b
JG
3261 unsigned int modcount;
3262 int mtype;
35f5886e
FF
3263{
3264 struct type *typep = NULL;
3265 unsigned short fundtype;
13b5a7ff 3266 DIE_REF die_ref;
1c92ca6f 3267 char modifier;
13b5a7ff 3268 int nbytes;
35f5886e
FF
3269
3270 if (modcount == 0)
3271 {
3272 switch (mtype)
3273 {
3274 case AT_mod_fund_type:
13b5a7ff
FF
3275 nbytes = attribute_size (AT_fund_type);
3276 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3277 current_objfile);
35f5886e
FF
3278 typep = decode_fund_type (fundtype);
3279 break;
3280 case AT_mod_u_d_type:
13b5a7ff
FF
3281 nbytes = attribute_size (AT_user_def_type);
3282 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3283 current_objfile);
3284 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3285 {
13b5a7ff 3286 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3287 }
3288 break;
3289 default:
51b80b00 3290 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3291 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3292 break;
3293 }
3294 }
3295 else
3296 {
3297 modifier = *modifiers++;
3298 typep = decode_modified_type (modifiers, --modcount, mtype);
3299 switch (modifier)
3300 {
13b5a7ff
FF
3301 case MOD_pointer_to:
3302 typep = lookup_pointer_type (typep);
3303 break;
3304 case MOD_reference_to:
3305 typep = lookup_reference_type (typep);
3306 break;
3307 case MOD_const:
51b80b00 3308 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3309 break;
3310 case MOD_volatile:
51b80b00 3311 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3312 break;
3313 default:
1c92ca6f
FF
3314 if (!(MOD_lo_user <= (unsigned char) modifier
3315 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3316 {
51b80b00 3317 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3318 }
3319 break;
35f5886e
FF
3320 }
3321 }
3322 return (typep);
3323}
3324
3325/*
3326
3327LOCAL FUNCTION
3328
3329 decode_fund_type -- translate basic DWARF type to gdb base type
3330
3331DESCRIPTION
3332
3333 Given an integer that is one of the fundamental DWARF types,
3334 translate it to one of the basic internal gdb types and return
3335 a pointer to the appropriate gdb type (a "struct type *").
3336
3337NOTES
3338
85f0a848
FF
3339 For robustness, if we are asked to translate a fundamental
3340 type that we are unprepared to deal with, we return int so
3341 callers can always depend upon a valid type being returned,
3342 and so gdb may at least do something reasonable by default.
3343 If the type is not in the range of those types defined as
3344 application specific types, we also issue a warning.
35f5886e
FF
3345*/
3346
3347static struct type *
1ab3bf1b
JG
3348decode_fund_type (fundtype)
3349 unsigned int fundtype;
35f5886e
FF
3350{
3351 struct type *typep = NULL;
3352
3353 switch (fundtype)
3354 {
3355
3356 case FT_void:
bf229b4e 3357 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3358 break;
3359
1ab3bf1b 3360 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3361 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3362 break;
3363
35f5886e 3364 case FT_pointer: /* (void *) */
bf229b4e 3365 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3366 typep = lookup_pointer_type (typep);
35f5886e
FF
3367 break;
3368
3369 case FT_char:
bf229b4e 3370 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3371 break;
3372
35f5886e 3373 case FT_signed_char:
bf229b4e 3374 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3375 break;
3376
3377 case FT_unsigned_char:
bf229b4e 3378 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3379 break;
3380
3381 case FT_short:
bf229b4e 3382 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3383 break;
3384
35f5886e 3385 case FT_signed_short:
bf229b4e 3386 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3387 break;
3388
3389 case FT_unsigned_short:
bf229b4e 3390 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3391 break;
3392
3393 case FT_integer:
bf229b4e 3394 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3395 break;
3396
35f5886e 3397 case FT_signed_integer:
bf229b4e 3398 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3399 break;
3400
3401 case FT_unsigned_integer:
bf229b4e 3402 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3403 break;
3404
3405 case FT_long:
bf229b4e 3406 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3407 break;
3408
35f5886e 3409 case FT_signed_long:
bf229b4e 3410 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3411 break;
3412
1ab3bf1b 3413 case FT_unsigned_long:
bf229b4e 3414 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3415 break;
3416
1ab3bf1b 3417 case FT_long_long:
bf229b4e 3418 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3419 break;
1ab3bf1b
JG
3420
3421 case FT_signed_long_long:
bf229b4e 3422 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3423 break;
1ab3bf1b
JG
3424
3425 case FT_unsigned_long_long:
bf229b4e 3426 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3427 break;
1ab3bf1b
JG
3428
3429 case FT_float:
bf229b4e 3430 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3431 break;
3432
1ab3bf1b 3433 case FT_dbl_prec_float:
bf229b4e 3434 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3435 break;
3436
3437 case FT_ext_prec_float:
bf229b4e 3438 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3439 break;
3440
3441 case FT_complex:
bf229b4e 3442 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3443 break;
3444
3445 case FT_dbl_prec_complex:
bf229b4e 3446 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3447 break;
3448
1ab3bf1b 3449 case FT_ext_prec_complex:
bf229b4e 3450 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3451 break;
1ab3bf1b 3452
35f5886e
FF
3453 }
3454
85f0a848 3455 if (typep == NULL)
35f5886e 3456 {
85f0a848
FF
3457 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3458 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3459 {
51b80b00 3460 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3461 }
35f5886e
FF
3462 }
3463
3464 return (typep);
3465}
3466
3467/*
3468
3469LOCAL FUNCTION
3470
3471 create_name -- allocate a fresh copy of a string on an obstack
3472
3473DESCRIPTION
3474
3475 Given a pointer to a string and a pointer to an obstack, allocates
3476 a fresh copy of the string on the specified obstack.
3477
3478*/
3479
3480static char *
1ab3bf1b
JG
3481create_name (name, obstackp)
3482 char *name;
3483 struct obstack *obstackp;
35f5886e
FF
3484{
3485 int length;
3486 char *newname;
3487
3488 length = strlen (name) + 1;
3489 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3490 strcpy (newname, name);
35f5886e
FF
3491 return (newname);
3492}
3493
3494/*
3495
3496LOCAL FUNCTION
3497
3498 basicdieinfo -- extract the minimal die info from raw die data
3499
3500SYNOPSIS
3501
95967e73
FF
3502 void basicdieinfo (char *diep, struct dieinfo *dip,
3503 struct objfile *objfile)
35f5886e
FF
3504
3505DESCRIPTION
3506
3507 Given a pointer to raw DIE data, and a pointer to an instance of a
3508 die info structure, this function extracts the basic information
3509 from the DIE data required to continue processing this DIE, along
3510 with some bookkeeping information about the DIE.
3511
3512 The information we absolutely must have includes the DIE tag,
3513 and the DIE length. If we need the sibling reference, then we
3514 will have to call completedieinfo() to process all the remaining
3515 DIE information.
3516
3517 Note that since there is no guarantee that the data is properly
3518 aligned in memory for the type of access required (indirection
95967e73
FF
3519 through anything other than a char pointer), and there is no
3520 guarantee that it is in the same byte order as the gdb host,
3521 we call a function which deals with both alignment and byte
3522 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3523
3524 We also take care of some other basic things at this point, such
3525 as ensuring that the instance of the die info structure starts
3526 out completely zero'd and that curdie is initialized for use
3527 in error reporting if we have a problem with the current die.
3528
3529NOTES
3530
3531 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3532 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3533 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3534 are forced to be TAG_padding DIES.
3535
13b5a7ff
FF
3536 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3537 that if a padding DIE is used for alignment and the amount needed is
3538 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3539 enough to align to the next alignment boundry.
4090fe1c
FF
3540
3541 We do some basic sanity checking here, such as verifying that the
3542 length of the die would not cause it to overrun the recorded end of
3543 the buffer holding the DIE info. If we find a DIE that is either
3544 too small or too large, we force it's length to zero which should
3545 cause the caller to take appropriate action.
35f5886e
FF
3546 */
3547
3548static void
95967e73 3549basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3550 struct dieinfo *dip;
3551 char *diep;
95967e73 3552 struct objfile *objfile;
35f5886e
FF
3553{
3554 curdie = dip;
4ed3a9ea 3555 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3556 dip -> die = diep;
13b5a7ff
FF
3557 dip -> die_ref = dbroff + (diep - dbbase);
3558 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3559 objfile);
4090fe1c
FF
3560 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3561 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3562 {
51b80b00 3563 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3564 dip -> die_length = 0;
35f5886e 3565 }
13b5a7ff 3566 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3567 {
13b5a7ff 3568 dip -> die_tag = TAG_padding;
35f5886e
FF
3569 }
3570 else
3571 {
13b5a7ff
FF
3572 diep += SIZEOF_DIE_LENGTH;
3573 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3574 objfile);
35f5886e
FF
3575 }
3576}
3577
3578/*
3579
3580LOCAL FUNCTION
3581
3582 completedieinfo -- finish reading the information for a given DIE
3583
3584SYNOPSIS
3585
95967e73 3586 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3587
3588DESCRIPTION
3589
3590 Given a pointer to an already partially initialized die info structure,
3591 scan the raw DIE data and finish filling in the die info structure
3592 from the various attributes found.
3593
3594 Note that since there is no guarantee that the data is properly
3595 aligned in memory for the type of access required (indirection
95967e73
FF
3596 through anything other than a char pointer), and there is no
3597 guarantee that it is in the same byte order as the gdb host,
3598 we call a function which deals with both alignment and byte
3599 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3600
3601NOTES
3602
3603 Each time we are called, we increment the diecount variable, which
3604 keeps an approximate count of the number of dies processed for
3605 each compilation unit. This information is presented to the user
3606 if the info_verbose flag is set.
3607
3608 */
3609
3610static void
95967e73 3611completedieinfo (dip, objfile)
1ab3bf1b 3612 struct dieinfo *dip;
95967e73 3613 struct objfile *objfile;
35f5886e
FF
3614{
3615 char *diep; /* Current pointer into raw DIE data */
3616 char *end; /* Terminate DIE scan here */
3617 unsigned short attr; /* Current attribute being scanned */
3618 unsigned short form; /* Form of the attribute */
13b5a7ff 3619 int nbytes; /* Size of next field to read */
35f5886e
FF
3620
3621 diecount++;
3622 diep = dip -> die;
13b5a7ff
FF
3623 end = diep + dip -> die_length;
3624 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3625 while (diep < end)
3626 {
13b5a7ff
FF
3627 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3628 diep += SIZEOF_ATTRIBUTE;
3629 if ((nbytes = attribute_size (attr)) == -1)
3630 {
51b80b00 3631 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3632 diep = end;
3633 continue;
3634 }
35f5886e
FF
3635 switch (attr)
3636 {
3637 case AT_fund_type:
13b5a7ff
FF
3638 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3639 objfile);
35f5886e
FF
3640 break;
3641 case AT_ordering:
13b5a7ff
FF
3642 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3643 objfile);
35f5886e
FF
3644 break;
3645 case AT_bit_offset:
13b5a7ff
FF
3646 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
35f5886e 3648 break;
35f5886e 3649 case AT_sibling:
13b5a7ff
FF
3650 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
35f5886e
FF
3652 break;
3653 case AT_stmt_list:
13b5a7ff
FF
3654 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 objfile);
2d6186f4 3656 dip -> has_at_stmt_list = 1;
35f5886e
FF
3657 break;
3658 case AT_low_pc:
13b5a7ff
FF
3659 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
4d315a07 3661 dip -> at_low_pc += baseaddr;
2d6186f4 3662 dip -> has_at_low_pc = 1;
35f5886e
FF
3663 break;
3664 case AT_high_pc:
13b5a7ff
FF
3665 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3666 objfile);
4d315a07 3667 dip -> at_high_pc += baseaddr;
35f5886e
FF
3668 break;
3669 case AT_language:
13b5a7ff
FF
3670 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3671 objfile);
35f5886e
FF
3672 break;
3673 case AT_user_def_type:
13b5a7ff
FF
3674 dip -> at_user_def_type = target_to_host (diep, nbytes,
3675 GET_UNSIGNED, objfile);
35f5886e
FF
3676 break;
3677 case AT_byte_size:
13b5a7ff
FF
3678 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3679 objfile);
50055e94 3680 dip -> has_at_byte_size = 1;
35f5886e
FF
3681 break;
3682 case AT_bit_size:
13b5a7ff
FF
3683 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3684 objfile);
35f5886e
FF
3685 break;
3686 case AT_member:
13b5a7ff
FF
3687 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3688 objfile);
35f5886e
FF
3689 break;
3690 case AT_discr:
13b5a7ff
FF
3691 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3692 objfile);
35f5886e 3693 break;
35f5886e
FF
3694 case AT_location:
3695 dip -> at_location = diep;
3696 break;
3697 case AT_mod_fund_type:
3698 dip -> at_mod_fund_type = diep;
3699 break;
3700 case AT_subscr_data:
3701 dip -> at_subscr_data = diep;
3702 break;
3703 case AT_mod_u_d_type:
3704 dip -> at_mod_u_d_type = diep;
3705 break;
35f5886e
FF
3706 case AT_element_list:
3707 dip -> at_element_list = diep;
768be6e1
FF
3708 dip -> short_element_list = 0;
3709 break;
3710 case AT_short_element_list:
3711 dip -> at_element_list = diep;
3712 dip -> short_element_list = 1;
35f5886e
FF
3713 break;
3714 case AT_discr_value:
3715 dip -> at_discr_value = diep;
3716 break;
3717 case AT_string_length:
3718 dip -> at_string_length = diep;
3719 break;
3720 case AT_name:
3721 dip -> at_name = diep;
3722 break;
3723 case AT_comp_dir:
d4902ab0
FF
3724 /* For now, ignore any "hostname:" portion, since gdb doesn't
3725 know how to deal with it. (FIXME). */
3726 dip -> at_comp_dir = strrchr (diep, ':');
3727 if (dip -> at_comp_dir != NULL)
3728 {
3729 dip -> at_comp_dir++;
3730 }
3731 else
3732 {
3733 dip -> at_comp_dir = diep;
3734 }
35f5886e
FF
3735 break;
3736 case AT_producer:
3737 dip -> at_producer = diep;
3738 break;
35f5886e 3739 case AT_start_scope:
13b5a7ff
FF
3740 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3741 objfile);
35f5886e
FF
3742 break;
3743 case AT_stride_size:
13b5a7ff
FF
3744 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3745 objfile);
35f5886e
FF
3746 break;
3747 case AT_src_info:
13b5a7ff
FF
3748 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3749 objfile);
35f5886e
FF
3750 break;
3751 case AT_prototyped:
13b5a7ff 3752 dip -> at_prototyped = diep;
35f5886e 3753 break;
35f5886e
FF
3754 default:
3755 /* Found an attribute that we are unprepared to handle. However
3756 it is specifically one of the design goals of DWARF that
3757 consumers should ignore unknown attributes. As long as the
3758 form is one that we recognize (so we know how to skip it),
3759 we can just ignore the unknown attribute. */
3760 break;
3761 }
13b5a7ff 3762 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3763 switch (form)
3764 {
3765 case FORM_DATA2:
13b5a7ff 3766 diep += 2;
35f5886e
FF
3767 break;
3768 case FORM_DATA4:
13b5a7ff
FF
3769 case FORM_REF:
3770 diep += 4;
35f5886e
FF
3771 break;
3772 case FORM_DATA8:
13b5a7ff 3773 diep += 8;
35f5886e
FF
3774 break;
3775 case FORM_ADDR:
13b5a7ff 3776 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3777 break;
3778 case FORM_BLOCK2:
13b5a7ff 3779 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3780 break;
3781 case FORM_BLOCK4:
13b5a7ff 3782 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3783 break;
3784 case FORM_STRING:
3785 diep += strlen (diep) + 1;
3786 break;
3787 default:
51b80b00 3788 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3789 diep = end;
3790 break;
3791 }
3792 }
3793}
95967e73 3794
13b5a7ff 3795/*
95967e73 3796
13b5a7ff
FF
3797LOCAL FUNCTION
3798
3799 target_to_host -- swap in target data to host
3800
3801SYNOPSIS
3802
3803 target_to_host (char *from, int nbytes, int signextend,
3804 struct objfile *objfile)
3805
3806DESCRIPTION
3807
3808 Given pointer to data in target format in FROM, a byte count for
3809 the size of the data in NBYTES, a flag indicating whether or not
3810 the data is signed in SIGNEXTEND, and a pointer to the current
3811 objfile in OBJFILE, convert the data to host format and return
3812 the converted value.
3813
3814NOTES
3815
3816 FIXME: If we read data that is known to be signed, and expect to
3817 use it as signed data, then we need to explicitly sign extend the
3818 result until the bfd library is able to do this for us.
3819
306d27ca
DE
3820 FIXME: Would a 32 bit target ever need an 8 byte result?
3821
13b5a7ff
FF
3822 */
3823
306d27ca 3824static CORE_ADDR
13b5a7ff 3825target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3826 char *from;
3827 int nbytes;
13b5a7ff 3828 int signextend; /* FIXME: Unused */
95967e73
FF
3829 struct objfile *objfile;
3830{
306d27ca 3831 CORE_ADDR rtnval;
95967e73
FF
3832
3833 switch (nbytes)
3834 {
95967e73 3835 case 8:
13b5a7ff 3836 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3837 break;
95967e73 3838 case 4:
13b5a7ff 3839 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3840 break;
3841 case 2:
13b5a7ff 3842 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3843 break;
3844 case 1:
13b5a7ff 3845 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3846 break;
3847 default:
51b80b00 3848 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3849 rtnval = 0;
95967e73
FF
3850 break;
3851 }
13b5a7ff 3852 return (rtnval);
95967e73
FF
3853}
3854
13b5a7ff
FF
3855/*
3856
3857LOCAL FUNCTION
3858
3859 attribute_size -- compute size of data for a DWARF attribute
3860
3861SYNOPSIS
3862
3863 static int attribute_size (unsigned int attr)
3864
3865DESCRIPTION
3866
3867 Given a DWARF attribute in ATTR, compute the size of the first
3868 piece of data associated with this attribute and return that
3869 size.
3870
3871 Returns -1 for unrecognized attributes.
3872
3873 */
3874
3875static int
3876attribute_size (attr)
3877 unsigned int attr;
3878{
3879 int nbytes; /* Size of next data for this attribute */
3880 unsigned short form; /* Form of the attribute */
3881
3882 form = FORM_FROM_ATTR (attr);
3883 switch (form)
3884 {
3885 case FORM_STRING: /* A variable length field is next */
3886 nbytes = 0;
3887 break;
3888 case FORM_DATA2: /* Next 2 byte field is the data itself */
3889 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3890 nbytes = 2;
3891 break;
3892 case FORM_DATA4: /* Next 4 byte field is the data itself */
3893 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3894 case FORM_REF: /* Next 4 byte field is a DIE offset */
3895 nbytes = 4;
3896 break;
3897 case FORM_DATA8: /* Next 8 byte field is the data itself */
3898 nbytes = 8;
3899 break;
3900 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3901 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3902 break;
3903 default:
51b80b00 3904 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3905 nbytes = -1;
3906 break;
3907 }
3908 return (nbytes);
3909}
This page took 0.535234 seconds and 4 git commands to generate.