2000-12-03 Stephane Carrez <Stephane.Carrez@worldnet.fr>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c
SS
1/* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/*
24
c5aa993b
JM
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
c906108c 27
c5aa993b
JM
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
c906108c 33
c5aa993b
JM
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
c906108c 36
c5aa993b
JM
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
c906108c 39
c5aa993b 40 */
c906108c
SS
41
42#include "defs.h"
43#include "symtab.h"
44#include "gdbtypes.h"
45#include "symfile.h"
46#include "objfiles.h"
47#include "elf/dwarf.h"
48#include "buildsym.h"
49#include "demangle.h"
c5aa993b 50#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
51#include "language.h"
52#include "complaints.h"
53
54#include <fcntl.h>
55#include "gdb_string.h"
56
57/* Some macros to provide DIE info for complaints. */
58
59#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62/* Complaints that can be issued during DWARF debug info reading. */
63
64struct complaint no_bfd_get_N =
65{
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67};
68
69struct complaint malformed_die =
70{
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72};
73
74struct complaint bad_die_ref =
75{
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77};
78
79struct complaint unknown_attribute_form =
80{
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82};
83
84struct complaint unknown_attribute_length =
85{
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87};
88
89struct complaint unexpected_fund_type =
90{
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92};
93
94struct complaint unknown_type_modifier =
95{
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97};
98
99struct complaint volatile_ignored =
100{
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102};
103
104struct complaint const_ignored =
105{
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107};
108
109struct complaint botched_modified_type =
110{
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112};
113
114struct complaint op_deref2 =
115{
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117};
118
119struct complaint op_deref4 =
120{
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122};
123
124struct complaint basereg_not_handled =
125{
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127};
128
129struct complaint dup_user_type_allocation =
130{
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132};
133
134struct complaint dup_user_type_definition =
135{
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137};
138
139struct complaint missing_tag =
140{
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142};
143
144struct complaint bad_array_element_type =
145{
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147};
148
149struct complaint subscript_data_items =
150{
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152};
153
154struct complaint unhandled_array_subscript_format =
155{
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157};
158
159struct complaint unknown_array_subscript_format =
160{
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162};
163
164struct complaint not_row_major =
165{
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167};
168
169struct complaint missing_at_name =
170{
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172};
173
174typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176#ifndef GCC_PRODUCER
177#define GCC_PRODUCER "GNU C "
178#endif
179
180#ifndef GPLUS_PRODUCER
181#define GPLUS_PRODUCER "GNU C++ "
182#endif
183
184#ifndef LCC_PRODUCER
185#define LCC_PRODUCER "NCR C/C++"
186#endif
187
188#ifndef CHILL_PRODUCER
189#define CHILL_PRODUCER "GNU Chill "
190#endif
191
192/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193#ifndef DWARF_REG_TO_REGNUM
194#define DWARF_REG_TO_REGNUM(num) (num)
195#endif
196
197/* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204#define GET_UNSIGNED 0 /* No sign extension required */
205#define GET_SIGNED 1 /* Sign extension required */
206
207/* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211#define SIZEOF_DIE_LENGTH 4
212#define SIZEOF_DIE_TAG 2
213#define SIZEOF_ATTRIBUTE 2
214#define SIZEOF_FORMAT_SPECIFIER 1
215#define SIZEOF_FMT_FT 2
216#define SIZEOF_LINETBL_LENGTH 4
217#define SIZEOF_LINETBL_LINENO 4
218#define SIZEOF_LINETBL_STMT 2
219#define SIZEOF_LINETBL_DELTA 4
220#define SIZEOF_LOC_ATOM_CODE 1
221
222#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224/* Macros that return the sizes of various types of data in the target
225 environment.
226
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
236
237/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244#define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246/* External variables referenced. */
247
c5aa993b
JM
248extern int info_verbose; /* From main.c; nonzero => verbose */
249extern char *warning_pre_print; /* From utils.c */
c906108c
SS
250
251/* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
c5aa993b 275
c906108c 276 */
c5aa993b 277
c906108c
SS
278typedef char BLOCK;
279
c5aa993b
JM
280struct dieinfo
281 {
282 char *die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
288 BLOCK *at_location;
289 char *at_name;
290 unsigned short at_fund_type;
291 BLOCK *at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK *at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK *at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK *at_element_list;
300 unsigned long at_stmt_list;
301 CORE_ADDR at_low_pc;
302 CORE_ADDR at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK *at_discr_value;
307 BLOCK *at_string_length;
308 char *at_comp_dir;
309 char *at_producer;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
313 char *at_prototyped;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
318
319 /* Kludge to identify register variables */
320
321 unsigned int isreg;
322
323 /* Kludge to identify optimized out variables */
324
325 unsigned int optimized_out;
326
327 /* Kludge to identify basereg references.
328 Nonzero if we have an offset relative to a basereg. */
329
330 unsigned int offreg;
331
332 /* Kludge to identify which base register is it relative to. */
333
334 unsigned int basereg;
335 };
c906108c 336
c5aa993b 337static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
338static struct dieinfo *curdie; /* For warnings and such */
339
c5aa993b
JM
340static char *dbbase; /* Base pointer to dwarf info */
341static int dbsize; /* Size of dwarf info in bytes */
342static int dbroff; /* Relative offset from start of .debug section */
343static char *lnbase; /* Base pointer to line section */
c906108c
SS
344
345/* This value is added to each symbol value. FIXME: Generalize to
346 the section_offsets structure used by dbxread (once this is done,
347 pass the appropriate section number to end_symtab). */
348static CORE_ADDR baseaddr; /* Add to each symbol value */
349
350/* The section offsets used in the current psymtab or symtab. FIXME,
351 only used to pass one value (baseaddr) at the moment. */
352static struct section_offsets *base_section_offsets;
353
354/* We put a pointer to this structure in the read_symtab_private field
355 of the psymtab. */
356
c5aa993b
JM
357struct dwfinfo
358 {
359 /* Always the absolute file offset to the start of the ".debug"
360 section for the file containing the DIE's being accessed. */
361 file_ptr dbfoff;
362 /* Relative offset from the start of the ".debug" section to the
363 first DIE to be accessed. When building the partial symbol
364 table, this value will be zero since we are accessing the
365 entire ".debug" section. When expanding a partial symbol
366 table entry, this value will be the offset to the first
367 DIE for the compilation unit containing the symbol that
368 triggers the expansion. */
369 int dbroff;
370 /* The size of the chunk of DIE's being examined, in bytes. */
371 int dblength;
372 /* The absolute file offset to the line table fragment. Ignored
373 when building partial symbol tables, but used when expanding
374 them, and contains the absolute file offset to the fragment
375 of the ".line" section containing the line numbers for the
376 current compilation unit. */
377 file_ptr lnfoff;
378 };
c906108c
SS
379
380#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
381#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
382#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
383#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
384
385/* The generic symbol table building routines have separate lists for
386 file scope symbols and all all other scopes (local scopes). So
387 we need to select the right one to pass to add_symbol_to_list().
388 We do it by keeping a pointer to the correct list in list_in_scope.
389
390 FIXME: The original dwarf code just treated the file scope as the first
391 local scope, and all other local scopes as nested local scopes, and worked
392 fine. Check to see if we really need to distinguish these in buildsym.c */
393
394struct pending **list_in_scope = &file_symbols;
395
396/* DIES which have user defined types or modified user defined types refer to
397 other DIES for the type information. Thus we need to associate the offset
398 of a DIE for a user defined type with a pointer to the type information.
399
400 Originally this was done using a simple but expensive algorithm, with an
401 array of unsorted structures, each containing an offset/type-pointer pair.
402 This array was scanned linearly each time a lookup was done. The result
403 was that gdb was spending over half it's startup time munging through this
404 array of pointers looking for a structure that had the right offset member.
405
406 The second attempt used the same array of structures, but the array was
407 sorted using qsort each time a new offset/type was recorded, and a binary
408 search was used to find the type pointer for a given DIE offset. This was
409 even slower, due to the overhead of sorting the array each time a new
410 offset/type pair was entered.
411
412 The third attempt uses a fixed size array of type pointers, indexed by a
413 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
414 we can divide any DIE offset by 4 to obtain a unique index into this fixed
415 size array. Since each element is a 4 byte pointer, it takes exactly as
416 much memory to hold this array as to hold the DWARF info for a given
417 compilation unit. But it gets freed as soon as we are done with it.
418 This has worked well in practice, as a reasonable tradeoff between memory
419 consumption and speed, without having to resort to much more complicated
420 algorithms. */
421
422static struct type **utypes; /* Pointer to array of user type pointers */
423static int numutypes; /* Max number of user type pointers */
424
425/* Maintain an array of referenced fundamental types for the current
426 compilation unit being read. For DWARF version 1, we have to construct
427 the fundamental types on the fly, since no information about the
428 fundamental types is supplied. Each such fundamental type is created by
429 calling a language dependent routine to create the type, and then a
430 pointer to that type is then placed in the array at the index specified
431 by it's FT_<TYPENAME> value. The array has a fixed size set by the
432 FT_NUM_MEMBERS compile time constant, which is the number of predefined
433 fundamental types gdb knows how to construct. */
434
c5aa993b 435static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
436
437/* Record the language for the compilation unit which is currently being
438 processed. We know it once we have seen the TAG_compile_unit DIE,
439 and we need it while processing the DIE's for that compilation unit.
440 It is eventually saved in the symtab structure, but we don't finalize
441 the symtab struct until we have processed all the DIE's for the
442 compilation unit. We also need to get and save a pointer to the
443 language struct for this language, so we can call the language
444 dependent routines for doing things such as creating fundamental
445 types. */
446
447static enum language cu_language;
448static const struct language_defn *cu_language_defn;
449
450/* Forward declarations of static functions so we don't have to worry
451 about ordering within this file. */
452
a14ed312 453static void free_utypes (PTR);
c906108c 454
a14ed312 455static int attribute_size (unsigned int);
c906108c 456
a14ed312 457static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 458
a14ed312 459static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 460
a14ed312 461static void handle_producer (char *);
c906108c
SS
462
463static void
a14ed312 464read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c
SS
465
466static void
a14ed312 467read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c
SS
468
469static void
a14ed312 470read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c 471
a14ed312 472static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c
SS
473
474static void
a14ed312 475scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
c906108c 476
a14ed312 477static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 478
a14ed312 479static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 480
a14ed312 481static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 482
a14ed312 483static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 484
a14ed312 485static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 486
a14ed312 487static void read_ofile_symtab (struct partial_symtab *);
c906108c 488
a14ed312 489static void process_dies (char *, char *, struct objfile *);
c906108c
SS
490
491static void
a14ed312 492read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c 493
a14ed312 494static struct type *decode_array_element_type (char *);
c906108c 495
a14ed312 496static struct type *decode_subscript_data_item (char *, char *);
c906108c 497
a14ed312 498static void dwarf_read_array_type (struct dieinfo *);
c906108c 499
a14ed312 500static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 501
a14ed312 502static void read_tag_string_type (struct dieinfo *dip);
c906108c 503
a14ed312 504static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c
SS
505
506static void
a14ed312 507read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
c906108c 508
a14ed312
KB
509static struct type *struct_type (struct dieinfo *, char *, char *,
510 struct objfile *);
c906108c 511
a14ed312 512static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 513
a14ed312 514static void decode_line_numbers (char *);
c906108c 515
a14ed312 516static struct type *decode_die_type (struct dieinfo *);
c906108c 517
a14ed312 518static struct type *decode_mod_fund_type (char *);
c906108c 519
a14ed312 520static struct type *decode_mod_u_d_type (char *);
c906108c 521
a14ed312 522static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 523
a14ed312 524static struct type *decode_fund_type (unsigned int);
c906108c 525
a14ed312 526static char *create_name (char *, struct obstack *);
c906108c 527
a14ed312 528static struct type *lookup_utype (DIE_REF);
c906108c 529
a14ed312 530static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 531
a14ed312 532static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c
SS
533
534static void
a14ed312 535synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
c906108c 536
a14ed312 537static int locval (struct dieinfo *);
c906108c 538
a14ed312 539static void set_cu_language (struct dieinfo *);
c906108c 540
a14ed312 541static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
542
543
544/*
545
c5aa993b 546 LOCAL FUNCTION
c906108c 547
c5aa993b 548 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 549
c5aa993b 550 SYNOPSIS
c906108c 551
c5aa993b
JM
552 struct type *
553 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 554
c5aa993b 555 DESCRIPTION
c906108c 556
c5aa993b
JM
557 DWARF version 1 doesn't supply any fundamental type information,
558 so gdb has to construct such types. It has a fixed number of
559 fundamental types that it knows how to construct, which is the
560 union of all types that it knows how to construct for all languages
561 that it knows about. These are enumerated in gdbtypes.h.
c906108c 562
c5aa993b
JM
563 As an example, assume we find a DIE that references a DWARF
564 fundamental type of FT_integer. We first look in the ftypes
565 array to see if we already have such a type, indexed by the
566 gdb internal value of FT_INTEGER. If so, we simply return a
567 pointer to that type. If not, then we ask an appropriate
568 language dependent routine to create a type FT_INTEGER, using
569 defaults reasonable for the current target machine, and install
570 that type in ftypes for future reference.
c906108c 571
c5aa993b 572 RETURNS
c906108c 573
c5aa993b 574 Pointer to a fundamental type.
c906108c 575
c5aa993b 576 */
c906108c
SS
577
578static struct type *
fba45db2 579dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
580{
581 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
582 {
583 error ("internal error - invalid fundamental type id %d", typeid);
584 }
585
586 /* Look for this particular type in the fundamental type vector. If one is
587 not found, create and install one appropriate for the current language
588 and the current target machine. */
589
590 if (ftypes[typeid] == NULL)
591 {
c5aa993b 592 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
593 }
594
595 return (ftypes[typeid]);
596}
597
598/*
599
c5aa993b 600 LOCAL FUNCTION
c906108c 601
c5aa993b 602 set_cu_language -- set local copy of language for compilation unit
c906108c 603
c5aa993b 604 SYNOPSIS
c906108c 605
c5aa993b
JM
606 void
607 set_cu_language (struct dieinfo *dip)
c906108c 608
c5aa993b 609 DESCRIPTION
c906108c 610
c5aa993b
JM
611 Decode the language attribute for a compilation unit DIE and
612 remember what the language was. We use this at various times
613 when processing DIE's for a given compilation unit.
c906108c 614
c5aa993b 615 RETURNS
c906108c 616
c5aa993b 617 No return value.
c906108c
SS
618
619 */
620
621static void
fba45db2 622set_cu_language (struct dieinfo *dip)
c906108c 623{
c5aa993b 624 switch (dip->at_language)
c906108c 625 {
c5aa993b
JM
626 case LANG_C89:
627 case LANG_C:
628 cu_language = language_c;
629 break;
630 case LANG_C_PLUS_PLUS:
631 cu_language = language_cplus;
632 break;
633 case LANG_CHILL:
634 cu_language = language_chill;
635 break;
636 case LANG_MODULA2:
637 cu_language = language_m2;
638 break;
639 case LANG_FORTRAN77:
640 case LANG_FORTRAN90:
641 cu_language = language_fortran;
642 break;
643 case LANG_ADA83:
644 case LANG_COBOL74:
645 case LANG_COBOL85:
646 case LANG_PASCAL83:
647 /* We don't know anything special about these yet. */
648 cu_language = language_unknown;
649 break;
650 default:
651 /* If no at_language, try to deduce one from the filename */
652 cu_language = deduce_language_from_filename (dip->at_name);
653 break;
c906108c
SS
654 }
655 cu_language_defn = language_def (cu_language);
656}
657
658/*
659
c5aa993b 660 GLOBAL FUNCTION
c906108c 661
c5aa993b 662 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 663
c5aa993b 664 SYNOPSIS
c906108c 665
c5aa993b 666 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
667 int mainline, file_ptr dbfoff, unsigned int dbfsize,
668 file_ptr lnoffset, unsigned int lnsize)
c906108c 669
c5aa993b 670 DESCRIPTION
c906108c 671
c5aa993b
JM
672 This function is called upon to build partial symtabs from files
673 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 674
c5aa993b
JM
675 It is passed a bfd* containing the DIES
676 and line number information, the corresponding filename for that
677 file, a base address for relocating the symbols, a flag indicating
678 whether or not this debugging information is from a "main symbol
679 table" rather than a shared library or dynamically linked file,
680 and file offset/size pairs for the DIE information and line number
681 information.
c906108c 682
c5aa993b 683 RETURNS
c906108c 684
c5aa993b 685 No return value.
c906108c
SS
686
687 */
688
689void
fba45db2
KB
690dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
691 unsigned int dbfsize, file_ptr lnoffset,
692 unsigned int lnsize)
c906108c
SS
693{
694 bfd *abfd = objfile->obfd;
695 struct cleanup *back_to;
c5aa993b 696
c906108c
SS
697 current_objfile = objfile;
698 dbsize = dbfsize;
699 dbbase = xmalloc (dbsize);
700 dbroff = 0;
701 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
702 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
703 {
704 free (dbbase);
705 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
706 }
707 back_to = make_cleanup (free, dbbase);
c5aa993b 708
c906108c
SS
709 /* If we are reinitializing, or if we have never loaded syms yet, init.
710 Since we have no idea how many DIES we are looking at, we just guess
711 some arbitrary value. */
c5aa993b
JM
712
713 if (mainline || objfile->global_psymbols.size == 0 ||
714 objfile->static_psymbols.size == 0)
c906108c
SS
715 {
716 init_psymbol_list (objfile, 1024);
717 }
c5aa993b 718
c906108c
SS
719 /* Save the relocation factor where everybody can see it. */
720
d4f3574e
SS
721 base_section_offsets = objfile->section_offsets;
722 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
723
724 /* Follow the compilation unit sibling chain, building a partial symbol
725 table entry for each one. Save enough information about each compilation
726 unit to locate the full DWARF information later. */
c5aa993b 727
c906108c 728 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 729
c906108c
SS
730 do_cleanups (back_to);
731 current_objfile = NULL;
732}
733
734/*
735
c5aa993b 736 LOCAL FUNCTION
c906108c 737
c5aa993b 738 read_lexical_block_scope -- process all dies in a lexical block
c906108c 739
c5aa993b 740 SYNOPSIS
c906108c 741
c5aa993b
JM
742 static void read_lexical_block_scope (struct dieinfo *dip,
743 char *thisdie, char *enddie)
c906108c 744
c5aa993b 745 DESCRIPTION
c906108c 746
c5aa993b
JM
747 Process all the DIES contained within a lexical block scope.
748 Start a new scope, process the dies, and then close the scope.
c906108c
SS
749
750 */
751
752static void
fba45db2
KB
753read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
754 struct objfile *objfile)
c906108c
SS
755{
756 register struct context_stack *new;
757
c5aa993b
JM
758 push_context (0, dip->at_low_pc);
759 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
760 new = pop_context ();
761 if (local_symbols != NULL)
762 {
c5aa993b
JM
763 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
764 dip->at_high_pc, objfile);
c906108c 765 }
c5aa993b 766 local_symbols = new->locals;
c906108c
SS
767}
768
769/*
770
c5aa993b 771 LOCAL FUNCTION
c906108c 772
c5aa993b 773 lookup_utype -- look up a user defined type from die reference
c906108c 774
c5aa993b 775 SYNOPSIS
c906108c 776
c5aa993b 777 static type *lookup_utype (DIE_REF die_ref)
c906108c 778
c5aa993b 779 DESCRIPTION
c906108c 780
c5aa993b
JM
781 Given a DIE reference, lookup the user defined type associated with
782 that DIE, if it has been registered already. If not registered, then
783 return NULL. Alloc_utype() can be called to register an empty
784 type for this reference, which will be filled in later when the
785 actual referenced DIE is processed.
c906108c
SS
786 */
787
788static struct type *
fba45db2 789lookup_utype (DIE_REF die_ref)
c906108c
SS
790{
791 struct type *type = NULL;
792 int utypeidx;
c5aa993b 793
c906108c
SS
794 utypeidx = (die_ref - dbroff) / 4;
795 if ((utypeidx < 0) || (utypeidx >= numutypes))
796 {
797 complain (&bad_die_ref, DIE_ID, DIE_NAME);
798 }
799 else
800 {
801 type = *(utypes + utypeidx);
802 }
803 return (type);
804}
805
806
807/*
808
c5aa993b 809 LOCAL FUNCTION
c906108c 810
c5aa993b 811 alloc_utype -- add a user defined type for die reference
c906108c 812
c5aa993b 813 SYNOPSIS
c906108c 814
c5aa993b 815 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 816
c5aa993b 817 DESCRIPTION
c906108c 818
c5aa993b
JM
819 Given a die reference DIE_REF, and a possible pointer to a user
820 defined type UTYPEP, register that this reference has a user
821 defined type and either use the specified type in UTYPEP or
822 make a new empty type that will be filled in later.
c906108c 823
c5aa993b
JM
824 We should only be called after calling lookup_utype() to verify that
825 there is not currently a type registered for DIE_REF.
c906108c
SS
826 */
827
828static struct type *
fba45db2 829alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
830{
831 struct type **typep;
832 int utypeidx;
c5aa993b 833
c906108c
SS
834 utypeidx = (die_ref - dbroff) / 4;
835 typep = utypes + utypeidx;
836 if ((utypeidx < 0) || (utypeidx >= numutypes))
837 {
838 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
839 complain (&bad_die_ref, DIE_ID, DIE_NAME);
840 }
841 else if (*typep != NULL)
842 {
843 utypep = *typep;
844 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
845 }
846 else
847 {
848 if (utypep == NULL)
849 {
850 utypep = alloc_type (current_objfile);
851 }
852 *typep = utypep;
853 }
854 return (utypep);
855}
856
857/*
858
c5aa993b 859 LOCAL FUNCTION
c906108c 860
c5aa993b 861 free_utypes -- free the utypes array and reset pointer & count
c906108c 862
c5aa993b 863 SYNOPSIS
c906108c 864
c5aa993b 865 static void free_utypes (PTR dummy)
c906108c 866
c5aa993b 867 DESCRIPTION
c906108c 868
c5aa993b
JM
869 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
870 and set numutypes back to zero. This ensures that the utypes does not get
871 referenced after being freed.
c906108c
SS
872 */
873
874static void
fba45db2 875free_utypes (PTR dummy)
c906108c
SS
876{
877 free (utypes);
878 utypes = NULL;
879 numutypes = 0;
880}
881
882
883/*
884
c5aa993b 885 LOCAL FUNCTION
c906108c 886
c5aa993b 887 decode_die_type -- return a type for a specified die
c906108c 888
c5aa993b 889 SYNOPSIS
c906108c 890
c5aa993b 891 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 892
c5aa993b 893 DESCRIPTION
c906108c 894
c5aa993b
JM
895 Given a pointer to a die information structure DIP, decode the
896 type of the die and return a pointer to the decoded type. All
897 dies without specific types default to type int.
c906108c
SS
898 */
899
900static struct type *
fba45db2 901decode_die_type (struct dieinfo *dip)
c906108c
SS
902{
903 struct type *type = NULL;
c5aa993b
JM
904
905 if (dip->at_fund_type != 0)
c906108c 906 {
c5aa993b 907 type = decode_fund_type (dip->at_fund_type);
c906108c 908 }
c5aa993b 909 else if (dip->at_mod_fund_type != NULL)
c906108c 910 {
c5aa993b 911 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 912 }
c5aa993b 913 else if (dip->at_user_def_type)
c906108c 914 {
c5aa993b 915 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
c906108c 916 {
c5aa993b 917 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
918 }
919 }
c5aa993b 920 else if (dip->at_mod_u_d_type)
c906108c 921 {
c5aa993b 922 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
923 }
924 else
925 {
926 type = dwarf_fundamental_type (current_objfile, FT_VOID);
927 }
928 return (type);
929}
930
931/*
932
c5aa993b 933 LOCAL FUNCTION
c906108c 934
c5aa993b 935 struct_type -- compute and return the type for a struct or union
c906108c 936
c5aa993b 937 SYNOPSIS
c906108c 938
c5aa993b
JM
939 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
940 char *enddie, struct objfile *objfile)
c906108c 941
c5aa993b 942 DESCRIPTION
c906108c 943
c5aa993b
JM
944 Given pointer to a die information structure for a die which
945 defines a union or structure (and MUST define one or the other),
946 and pointers to the raw die data that define the range of dies which
947 define the members, compute and return the user defined type for the
948 structure or union.
c906108c
SS
949 */
950
951static struct type *
fba45db2
KB
952struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
953 struct objfile *objfile)
c906108c
SS
954{
955 struct type *type;
c5aa993b
JM
956 struct nextfield
957 {
958 struct nextfield *next;
959 struct field field;
960 };
c906108c
SS
961 struct nextfield *list = NULL;
962 struct nextfield *new;
963 int nfields = 0;
964 int n;
965 struct dieinfo mbr;
966 char *nextdie;
967 int anonymous_size;
c5aa993b
JM
968
969 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
970 {
971 /* No forward references created an empty type, so install one now */
c5aa993b 972 type = alloc_utype (dip->die_ref, NULL);
c906108c 973 }
c5aa993b
JM
974 INIT_CPLUS_SPECIFIC (type);
975 switch (dip->die_tag)
c906108c 976 {
c5aa993b
JM
977 case TAG_class_type:
978 TYPE_CODE (type) = TYPE_CODE_CLASS;
979 break;
980 case TAG_structure_type:
981 TYPE_CODE (type) = TYPE_CODE_STRUCT;
982 break;
983 case TAG_union_type:
984 TYPE_CODE (type) = TYPE_CODE_UNION;
985 break;
986 default:
987 /* Should never happen */
988 TYPE_CODE (type) = TYPE_CODE_UNDEF;
989 complain (&missing_tag, DIE_ID, DIE_NAME);
990 break;
c906108c
SS
991 }
992 /* Some compilers try to be helpful by inventing "fake" names for
993 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
994 Thanks, but no thanks... */
c5aa993b
JM
995 if (dip->at_name != NULL
996 && *dip->at_name != '~'
997 && *dip->at_name != '.')
c906108c 998 {
c5aa993b
JM
999 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1000 "", "", dip->at_name);
c906108c
SS
1001 }
1002 /* Use whatever size is known. Zero is a valid size. We might however
1003 wish to check has_at_byte_size to make sure that some byte size was
1004 given explicitly, but DWARF doesn't specify that explicit sizes of
1005 zero have to present, so complaining about missing sizes should
1006 probably not be the default. */
c5aa993b
JM
1007 TYPE_LENGTH (type) = dip->at_byte_size;
1008 thisdie += dip->die_length;
c906108c
SS
1009 while (thisdie < enddie)
1010 {
1011 basicdieinfo (&mbr, thisdie, objfile);
1012 completedieinfo (&mbr, objfile);
1013 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1014 {
1015 break;
1016 }
1017 else if (mbr.at_sibling != 0)
1018 {
1019 nextdie = dbbase + mbr.at_sibling - dbroff;
1020 }
1021 else
1022 {
1023 nextdie = thisdie + mbr.die_length;
1024 }
1025 switch (mbr.die_tag)
1026 {
1027 case TAG_member:
1028 /* Get space to record the next field's data. */
1029 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1030 new->next = list;
c906108c
SS
1031 list = new;
1032 /* Save the data. */
c5aa993b
JM
1033 list->field.name =
1034 obsavestring (mbr.at_name, strlen (mbr.at_name),
1035 &objfile->type_obstack);
c906108c
SS
1036 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1037 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1038 /* Handle bit fields. */
1039 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1040 if (BITS_BIG_ENDIAN)
1041 {
1042 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1043 additional bit offset from the MSB of the containing
1044 anonymous object to the MSB of the field. We don't
1045 have to do anything special since we don't need to
1046 know the size of the anonymous object. */
c906108c
SS
1047 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1048 }
1049 else
1050 {
1051 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1052 at_bit_size, so that we know we are in fact dealing
1053 with a bitfield. Compute the bit offset to the MSB
1054 of the anonymous object, subtract off the number of
1055 bits from the MSB of the field to the MSB of the
1056 object, and then subtract off the number of bits of
1057 the field itself. The result is the bit offset of
1058 the LSB of the field. */
c906108c
SS
1059 if (mbr.at_bit_size > 0)
1060 {
1061 if (mbr.has_at_byte_size)
1062 {
1063 /* The size of the anonymous object containing
c5aa993b
JM
1064 the bit field is explicit, so use the
1065 indicated size (in bytes). */
c906108c
SS
1066 anonymous_size = mbr.at_byte_size;
1067 }
1068 else
1069 {
1070 /* The size of the anonymous object containing
c5aa993b
JM
1071 the bit field matches the size of an object
1072 of the bit field's type. DWARF allows
1073 at_byte_size to be left out in such cases, as
1074 a debug information size optimization. */
1075 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1076 }
1077 FIELD_BITPOS (list->field) +=
1078 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1079 }
1080 }
1081 nfields++;
1082 break;
1083 default:
1084 process_dies (thisdie, nextdie, objfile);
1085 break;
1086 }
1087 thisdie = nextdie;
1088 }
1089 /* Now create the vector of fields, and record how big it is. We may
1090 not even have any fields, if this DIE was generated due to a reference
1091 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1092 set, which clues gdb in to the fact that it needs to search elsewhere
1093 for the full structure definition. */
1094 if (nfields == 0)
1095 {
1096 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1097 }
1098 else
1099 {
1100 TYPE_NFIELDS (type) = nfields;
1101 TYPE_FIELDS (type) = (struct field *)
1102 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1103 /* Copy the saved-up fields into the field vector. */
c5aa993b 1104 for (n = nfields; list; list = list->next)
c906108c 1105 {
c5aa993b
JM
1106 TYPE_FIELD (type, --n) = list->field;
1107 }
c906108c
SS
1108 }
1109 return (type);
1110}
1111
1112/*
1113
c5aa993b 1114 LOCAL FUNCTION
c906108c 1115
c5aa993b 1116 read_structure_scope -- process all dies within struct or union
c906108c 1117
c5aa993b 1118 SYNOPSIS
c906108c 1119
c5aa993b
JM
1120 static void read_structure_scope (struct dieinfo *dip,
1121 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1122
c5aa993b 1123 DESCRIPTION
c906108c 1124
c5aa993b
JM
1125 Called when we find the DIE that starts a structure or union
1126 scope (definition) to process all dies that define the members
1127 of the structure or union. DIP is a pointer to the die info
1128 struct for the DIE that names the structure or union.
c906108c 1129
c5aa993b
JM
1130 NOTES
1131
1132 Note that we need to call struct_type regardless of whether or not
1133 the DIE has an at_name attribute, since it might be an anonymous
1134 structure or union. This gets the type entered into our set of
1135 user defined types.
1136
1137 However, if the structure is incomplete (an opaque struct/union)
1138 then suppress creating a symbol table entry for it since gdb only
1139 wants to find the one with the complete definition. Note that if
1140 it is complete, we just call new_symbol, which does it's own
1141 checking about whether the struct/union is anonymous or not (and
1142 suppresses creating a symbol table entry itself).
c906108c 1143
c906108c
SS
1144 */
1145
1146static void
fba45db2
KB
1147read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1148 struct objfile *objfile)
c906108c
SS
1149{
1150 struct type *type;
1151 struct symbol *sym;
c5aa993b 1152
c906108c
SS
1153 type = struct_type (dip, thisdie, enddie, objfile);
1154 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1155 {
1156 sym = new_symbol (dip, objfile);
1157 if (sym != NULL)
1158 {
1159 SYMBOL_TYPE (sym) = type;
1160 if (cu_language == language_cplus)
1161 {
1162 synthesize_typedef (dip, objfile, type);
1163 }
1164 }
1165 }
1166}
1167
1168/*
1169
c5aa993b 1170 LOCAL FUNCTION
c906108c 1171
c5aa993b 1172 decode_array_element_type -- decode type of the array elements
c906108c 1173
c5aa993b 1174 SYNOPSIS
c906108c 1175
c5aa993b 1176 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1177
c5aa993b 1178 DESCRIPTION
c906108c 1179
c5aa993b
JM
1180 As the last step in decoding the array subscript information for an
1181 array DIE, we need to decode the type of the array elements. We are
1182 passed a pointer to this last part of the subscript information and
1183 must return the appropriate type. If the type attribute is not
1184 recognized, just warn about the problem and return type int.
c906108c
SS
1185 */
1186
1187static struct type *
fba45db2 1188decode_array_element_type (char *scan)
c906108c
SS
1189{
1190 struct type *typep;
1191 DIE_REF die_ref;
1192 unsigned short attribute;
1193 unsigned short fundtype;
1194 int nbytes;
c5aa993b 1195
c906108c
SS
1196 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1197 current_objfile);
1198 scan += SIZEOF_ATTRIBUTE;
1199 if ((nbytes = attribute_size (attribute)) == -1)
1200 {
1201 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1202 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1203 }
1204 else
1205 {
1206 switch (attribute)
1207 {
c5aa993b
JM
1208 case AT_fund_type:
1209 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1210 current_objfile);
1211 typep = decode_fund_type (fundtype);
1212 break;
1213 case AT_mod_fund_type:
1214 typep = decode_mod_fund_type (scan);
1215 break;
1216 case AT_user_def_type:
1217 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1218 current_objfile);
1219 if ((typep = lookup_utype (die_ref)) == NULL)
1220 {
1221 typep = alloc_utype (die_ref, NULL);
1222 }
1223 break;
1224 case AT_mod_u_d_type:
1225 typep = decode_mod_u_d_type (scan);
1226 break;
1227 default:
1228 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1229 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1230 break;
1231 }
c906108c
SS
1232 }
1233 return (typep);
1234}
1235
1236/*
1237
c5aa993b 1238 LOCAL FUNCTION
c906108c 1239
c5aa993b 1240 decode_subscript_data_item -- decode array subscript item
c906108c 1241
c5aa993b 1242 SYNOPSIS
c906108c 1243
c5aa993b
JM
1244 static struct type *
1245 decode_subscript_data_item (char *scan, char *end)
c906108c 1246
c5aa993b 1247 DESCRIPTION
c906108c 1248
c5aa993b
JM
1249 The array subscripts and the data type of the elements of an
1250 array are described by a list of data items, stored as a block
1251 of contiguous bytes. There is a data item describing each array
1252 dimension, and a final data item describing the element type.
1253 The data items are ordered the same as their appearance in the
1254 source (I.E. leftmost dimension first, next to leftmost second,
1255 etc).
c906108c 1256
c5aa993b
JM
1257 The data items describing each array dimension consist of four
1258 parts: (1) a format specifier, (2) type type of the subscript
1259 index, (3) a description of the low bound of the array dimension,
1260 and (4) a description of the high bound of the array dimension.
c906108c 1261
c5aa993b
JM
1262 The last data item is the description of the type of each of
1263 the array elements.
c906108c 1264
c5aa993b
JM
1265 We are passed a pointer to the start of the block of bytes
1266 containing the remaining data items, and a pointer to the first
1267 byte past the data. This function recursively decodes the
1268 remaining data items and returns a type.
c906108c 1269
c5aa993b
JM
1270 If we somehow fail to decode some data, we complain about it
1271 and return a type "array of int".
c906108c 1272
c5aa993b
JM
1273 BUGS
1274 FIXME: This code only implements the forms currently used
1275 by the AT&T and GNU C compilers.
c906108c 1276
c5aa993b
JM
1277 The end pointer is supplied for error checking, maybe we should
1278 use it for that...
c906108c
SS
1279 */
1280
1281static struct type *
fba45db2 1282decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1283{
1284 struct type *typep = NULL; /* Array type we are building */
1285 struct type *nexttype; /* Type of each element (may be array) */
1286 struct type *indextype; /* Type of this index */
1287 struct type *rangetype;
1288 unsigned int format;
1289 unsigned short fundtype;
1290 unsigned long lowbound;
1291 unsigned long highbound;
1292 int nbytes;
c5aa993b 1293
c906108c
SS
1294 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1295 current_objfile);
1296 scan += SIZEOF_FORMAT_SPECIFIER;
1297 switch (format)
1298 {
1299 case FMT_ET:
1300 typep = decode_array_element_type (scan);
1301 break;
1302 case FMT_FT_C_C:
1303 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1304 current_objfile);
1305 indextype = decode_fund_type (fundtype);
1306 scan += SIZEOF_FMT_FT;
1307 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1308 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1309 scan += nbytes;
1310 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1311 scan += nbytes;
1312 nexttype = decode_subscript_data_item (scan, end);
1313 if (nexttype == NULL)
1314 {
1315 /* Munged subscript data or other problem, fake it. */
1316 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1317 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1318 }
1319 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1320 lowbound, highbound);
c906108c
SS
1321 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1322 break;
1323 case FMT_FT_C_X:
1324 case FMT_FT_X_C:
1325 case FMT_FT_X_X:
1326 case FMT_UT_C_C:
1327 case FMT_UT_C_X:
1328 case FMT_UT_X_C:
1329 case FMT_UT_X_X:
1330 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1331 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1332 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1333 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1334 break;
1335 default:
1336 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1337 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1338 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1339 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1340 break;
1341 }
1342 return (typep);
1343}
1344
1345/*
1346
c5aa993b 1347 LOCAL FUNCTION
c906108c 1348
c5aa993b 1349 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1350
c5aa993b 1351 SYNOPSIS
c906108c 1352
c5aa993b 1353 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1354
c5aa993b 1355 DESCRIPTION
c906108c 1356
c5aa993b
JM
1357 Extract all information from a TAG_array_type DIE and add to
1358 the user defined type vector.
c906108c
SS
1359 */
1360
1361static void
fba45db2 1362dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1363{
1364 struct type *type;
1365 struct type *utype;
1366 char *sub;
1367 char *subend;
1368 unsigned short blocksz;
1369 int nbytes;
c5aa993b
JM
1370
1371 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1372 {
1373 /* FIXME: Can gdb even handle column major arrays? */
1374 complain (&not_row_major, DIE_ID, DIE_NAME);
1375 }
c5aa993b 1376 if ((sub = dip->at_subscr_data) != NULL)
c906108c
SS
1377 {
1378 nbytes = attribute_size (AT_subscr_data);
1379 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1380 subend = sub + nbytes + blocksz;
1381 sub += nbytes;
1382 type = decode_subscript_data_item (sub, subend);
c5aa993b 1383 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1384 {
1385 /* Install user defined type that has not been referenced yet. */
c5aa993b 1386 alloc_utype (dip->die_ref, type);
c906108c
SS
1387 }
1388 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1389 {
1390 /* Ick! A forward ref has already generated a blank type in our
1391 slot, and this type probably already has things pointing to it
1392 (which is what caused it to be created in the first place).
1393 If it's just a place holder we can plop our fully defined type
1394 on top of it. We can't recover the space allocated for our
1395 new type since it might be on an obstack, but we could reuse
1396 it if we kept a list of them, but it might not be worth it
1397 (FIXME). */
1398 *utype = *type;
1399 }
1400 else
1401 {
1402 /* Double ick! Not only is a type already in our slot, but
1403 someone has decorated it. Complain and leave it alone. */
1404 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1405 }
1406 }
1407}
1408
1409/*
1410
c5aa993b 1411 LOCAL FUNCTION
c906108c 1412
c5aa993b 1413 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1414
c5aa993b 1415 SYNOPSIS
c906108c 1416
c5aa993b 1417 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1418
c5aa993b 1419 DESCRIPTION
c906108c 1420
c5aa993b
JM
1421 Extract all information from a TAG_pointer_type DIE and add to
1422 the user defined type vector.
c906108c
SS
1423 */
1424
1425static void
fba45db2 1426read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1427{
1428 struct type *type;
1429 struct type *utype;
c5aa993b 1430
c906108c 1431 type = decode_die_type (dip);
c5aa993b 1432 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1433 {
1434 utype = lookup_pointer_type (type);
c5aa993b 1435 alloc_utype (dip->die_ref, utype);
c906108c
SS
1436 }
1437 else
1438 {
1439 TYPE_TARGET_TYPE (utype) = type;
1440 TYPE_POINTER_TYPE (type) = utype;
1441
1442 /* We assume the machine has only one representation for pointers! */
1443 /* FIXME: Possably a poor assumption */
c5aa993b 1444 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1445 TYPE_CODE (utype) = TYPE_CODE_PTR;
1446 }
1447}
1448
1449/*
1450
c5aa993b 1451 LOCAL FUNCTION
c906108c 1452
c5aa993b 1453 read_tag_string_type -- read TAG_string_type DIE
c906108c 1454
c5aa993b 1455 SYNOPSIS
c906108c 1456
c5aa993b 1457 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1458
c5aa993b 1459 DESCRIPTION
c906108c 1460
c5aa993b
JM
1461 Extract all information from a TAG_string_type DIE and add to
1462 the user defined type vector. It isn't really a user defined
1463 type, but it behaves like one, with other DIE's using an
1464 AT_user_def_type attribute to reference it.
c906108c
SS
1465 */
1466
1467static void
fba45db2 1468read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1469{
1470 struct type *utype;
1471 struct type *indextype;
1472 struct type *rangetype;
1473 unsigned long lowbound = 0;
1474 unsigned long highbound;
1475
c5aa993b 1476 if (dip->has_at_byte_size)
c906108c
SS
1477 {
1478 /* A fixed bounds string */
c5aa993b 1479 highbound = dip->at_byte_size - 1;
c906108c
SS
1480 }
1481 else
1482 {
1483 /* A varying length string. Stub for now. (FIXME) */
1484 highbound = 1;
1485 }
1486 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1487 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1488 highbound);
c5aa993b
JM
1489
1490 utype = lookup_utype (dip->die_ref);
c906108c
SS
1491 if (utype == NULL)
1492 {
1493 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1494 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1495 }
1496 else
1497 {
1498 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1499 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1500 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1501 {
1502 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1503 return;
1504 }
1505 }
1506
1507 /* Create the string type using the blank type we either found or created. */
1508 utype = create_string_type (utype, rangetype);
1509}
1510
1511/*
1512
c5aa993b 1513 LOCAL FUNCTION
c906108c 1514
c5aa993b 1515 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1516
c5aa993b 1517 SYNOPSIS
c906108c 1518
c5aa993b
JM
1519 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1520 char *enddie)
c906108c 1521
c5aa993b 1522 DESCRIPTION
c906108c 1523
c5aa993b 1524 Handle DIES due to C code like:
c906108c 1525
c5aa993b
JM
1526 struct foo {
1527 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1528 int b;
1529 };
c906108c 1530
c5aa993b 1531 NOTES
c906108c 1532
c5aa993b
JM
1533 The parameter DIES are currently ignored. See if gdb has a way to
1534 include this info in it's type system, and decode them if so. Is
1535 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1536 */
1537
1538static void
fba45db2 1539read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1540{
1541 struct type *type; /* Type that this function returns */
1542 struct type *ftype; /* Function that returns above type */
c5aa993b 1543
c906108c
SS
1544 /* Decode the type that this subroutine returns */
1545
1546 type = decode_die_type (dip);
1547
1548 /* Check to see if we already have a partially constructed user
1549 defined type for this DIE, from a forward reference. */
1550
c5aa993b 1551 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1552 {
1553 /* This is the first reference to one of these types. Make
c5aa993b 1554 a new one and place it in the user defined types. */
c906108c 1555 ftype = lookup_function_type (type);
c5aa993b 1556 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1557 }
1558 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1559 {
1560 /* We have an existing partially constructed type, so bash it
c5aa993b 1561 into the correct type. */
c906108c
SS
1562 TYPE_TARGET_TYPE (ftype) = type;
1563 TYPE_LENGTH (ftype) = 1;
1564 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1565 }
1566 else
1567 {
1568 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1569 }
1570}
1571
1572/*
1573
c5aa993b 1574 LOCAL FUNCTION
c906108c 1575
c5aa993b 1576 read_enumeration -- process dies which define an enumeration
c906108c 1577
c5aa993b 1578 SYNOPSIS
c906108c 1579
c5aa993b
JM
1580 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1581 char *enddie, struct objfile *objfile)
c906108c 1582
c5aa993b 1583 DESCRIPTION
c906108c 1584
c5aa993b
JM
1585 Given a pointer to a die which begins an enumeration, process all
1586 the dies that define the members of the enumeration.
c906108c 1587
c5aa993b 1588 NOTES
c906108c 1589
c5aa993b
JM
1590 Note that we need to call enum_type regardless of whether or not we
1591 have a symbol, since we might have an enum without a tag name (thus
1592 no symbol for the tagname).
c906108c
SS
1593 */
1594
1595static void
fba45db2
KB
1596read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1597 struct objfile *objfile)
c906108c
SS
1598{
1599 struct type *type;
1600 struct symbol *sym;
c5aa993b 1601
c906108c
SS
1602 type = enum_type (dip, objfile);
1603 sym = new_symbol (dip, objfile);
1604 if (sym != NULL)
1605 {
1606 SYMBOL_TYPE (sym) = type;
1607 if (cu_language == language_cplus)
1608 {
1609 synthesize_typedef (dip, objfile, type);
1610 }
1611 }
1612}
1613
1614/*
1615
c5aa993b 1616 LOCAL FUNCTION
c906108c 1617
c5aa993b 1618 enum_type -- decode and return a type for an enumeration
c906108c 1619
c5aa993b 1620 SYNOPSIS
c906108c 1621
c5aa993b 1622 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1623
c5aa993b 1624 DESCRIPTION
c906108c 1625
c5aa993b
JM
1626 Given a pointer to a die information structure for the die which
1627 starts an enumeration, process all the dies that define the members
1628 of the enumeration and return a type pointer for the enumeration.
c906108c 1629
c5aa993b
JM
1630 At the same time, for each member of the enumeration, create a
1631 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1632 and give it the type of the enumeration itself.
c906108c 1633
c5aa993b 1634 NOTES
c906108c 1635
c5aa993b
JM
1636 Note that the DWARF specification explicitly mandates that enum
1637 constants occur in reverse order from the source program order,
1638 for "consistency" and because this ordering is easier for many
1639 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1640 Entries). Because gdb wants to see the enum members in program
1641 source order, we have to ensure that the order gets reversed while
1642 we are processing them.
c906108c
SS
1643 */
1644
1645static struct type *
fba45db2 1646enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1647{
1648 struct type *type;
c5aa993b
JM
1649 struct nextfield
1650 {
1651 struct nextfield *next;
1652 struct field field;
1653 };
c906108c
SS
1654 struct nextfield *list = NULL;
1655 struct nextfield *new;
1656 int nfields = 0;
1657 int n;
1658 char *scan;
1659 char *listend;
1660 unsigned short blocksz;
1661 struct symbol *sym;
1662 int nbytes;
1663 int unsigned_enum = 1;
c5aa993b
JM
1664
1665 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1666 {
1667 /* No forward references created an empty type, so install one now */
c5aa993b 1668 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1669 }
1670 TYPE_CODE (type) = TYPE_CODE_ENUM;
1671 /* Some compilers try to be helpful by inventing "fake" names for
1672 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1673 Thanks, but no thanks... */
c5aa993b
JM
1674 if (dip->at_name != NULL
1675 && *dip->at_name != '~'
1676 && *dip->at_name != '.')
c906108c 1677 {
c5aa993b
JM
1678 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1679 "", "", dip->at_name);
c906108c 1680 }
c5aa993b 1681 if (dip->at_byte_size != 0)
c906108c 1682 {
c5aa993b 1683 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1684 }
c5aa993b 1685 if ((scan = dip->at_element_list) != NULL)
c906108c 1686 {
c5aa993b 1687 if (dip->short_element_list)
c906108c
SS
1688 {
1689 nbytes = attribute_size (AT_short_element_list);
1690 }
1691 else
1692 {
1693 nbytes = attribute_size (AT_element_list);
1694 }
1695 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1696 listend = scan + nbytes + blocksz;
1697 scan += nbytes;
1698 while (scan < listend)
1699 {
1700 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1701 new->next = list;
c906108c
SS
1702 list = new;
1703 FIELD_TYPE (list->field) = NULL;
1704 FIELD_BITSIZE (list->field) = 0;
1705 FIELD_BITPOS (list->field) =
1706 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1707 objfile);
1708 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b
JM
1709 list->field.name = obsavestring (scan, strlen (scan),
1710 &objfile->type_obstack);
c906108c
SS
1711 scan += strlen (scan) + 1;
1712 nfields++;
1713 /* Handcraft a new symbol for this enum member. */
1714 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1715 sizeof (struct symbol));
1716 memset (sym, 0, sizeof (struct symbol));
c5aa993b 1717 SYMBOL_NAME (sym) = create_name (list->field.name,
c906108c
SS
1718 &objfile->symbol_obstack);
1719 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1720 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1721 SYMBOL_CLASS (sym) = LOC_CONST;
1722 SYMBOL_TYPE (sym) = type;
1723 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1724 if (SYMBOL_VALUE (sym) < 0)
1725 unsigned_enum = 0;
1726 add_symbol_to_list (sym, list_in_scope);
1727 }
1728 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1729 where we reverse the order, by pulling the members off the list in
1730 reverse order from how they were inserted. If we have no fields
1731 (this is apparently possible in C++) then skip building a field
1732 vector. */
c906108c
SS
1733 if (nfields > 0)
1734 {
1735 if (unsigned_enum)
1736 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1737 TYPE_NFIELDS (type) = nfields;
1738 TYPE_FIELDS (type) = (struct field *)
1739 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1740 /* Copy the saved-up fields into the field vector. */
c5aa993b 1741 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1742 {
c5aa993b
JM
1743 TYPE_FIELD (type, n++) = list->field;
1744 }
c906108c
SS
1745 }
1746 }
1747 return (type);
1748}
1749
1750/*
1751
c5aa993b 1752 LOCAL FUNCTION
c906108c 1753
c5aa993b 1754 read_func_scope -- process all dies within a function scope
c906108c 1755
c5aa993b 1756 DESCRIPTION
c906108c 1757
c5aa993b
JM
1758 Process all dies within a given function scope. We are passed
1759 a die information structure pointer DIP for the die which
1760 starts the function scope, and pointers into the raw die data
1761 that define the dies within the function scope.
1762
1763 For now, we ignore lexical block scopes within the function.
1764 The problem is that AT&T cc does not define a DWARF lexical
1765 block scope for the function itself, while gcc defines a
1766 lexical block scope for the function. We need to think about
1767 how to handle this difference, or if it is even a problem.
1768 (FIXME)
c906108c
SS
1769 */
1770
1771static void
fba45db2
KB
1772read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1773 struct objfile *objfile)
c906108c
SS
1774{
1775 register struct context_stack *new;
c5aa993b 1776
c906108c
SS
1777 /* AT_name is absent if the function is described with an
1778 AT_abstract_origin tag.
1779 Ignore the function description for now to avoid GDB core dumps.
1780 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1781 if (dip->at_name == NULL)
c906108c
SS
1782 {
1783 complain (&missing_at_name, DIE_ID);
1784 return;
1785 }
1786
c5aa993b
JM
1787 if (objfile->ei.entry_point >= dip->at_low_pc &&
1788 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1789 {
c5aa993b
JM
1790 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1791 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1792 }
c5aa993b
JM
1793 new = push_context (0, dip->at_low_pc);
1794 new->name = new_symbol (dip, objfile);
c906108c 1795 list_in_scope = &local_symbols;
c5aa993b 1796 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1797 new = pop_context ();
1798 /* Make a block for the local symbols within. */
c5aa993b
JM
1799 finish_block (new->name, &local_symbols, new->old_blocks,
1800 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1801 list_in_scope = &file_symbols;
1802}
1803
1804
1805/*
1806
c5aa993b 1807 LOCAL FUNCTION
c906108c 1808
c5aa993b 1809 handle_producer -- process the AT_producer attribute
c906108c 1810
c5aa993b 1811 DESCRIPTION
c906108c 1812
c5aa993b
JM
1813 Perform any operations that depend on finding a particular
1814 AT_producer attribute.
c906108c
SS
1815
1816 */
1817
1818static void
fba45db2 1819handle_producer (char *producer)
c906108c
SS
1820{
1821
1822 /* If this compilation unit was compiled with g++ or gcc, then set the
1823 processing_gcc_compilation flag. */
1824
1825 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1826 {
1827 char version = producer[strlen (GCC_PRODUCER)];
1828 processing_gcc_compilation = (version == '2' ? 2 : 1);
1829 }
1830 else
1831 {
1832 processing_gcc_compilation =
1833 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1834 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1835 }
1836
1837 /* Select a demangling style if we can identify the producer and if
1838 the current style is auto. We leave the current style alone if it
1839 is not auto. We also leave the demangling style alone if we find a
1840 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1841
1842 if (AUTO_DEMANGLING)
1843 {
1844 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1845 {
1846 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1847 }
1848 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1849 {
1850 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1851 }
1852 }
1853}
1854
1855
1856/*
1857
c5aa993b 1858 LOCAL FUNCTION
c906108c 1859
c5aa993b 1860 read_file_scope -- process all dies within a file scope
c906108c 1861
c5aa993b
JM
1862 DESCRIPTION
1863
1864 Process all dies within a given file scope. We are passed a
1865 pointer to the die information structure for the die which
1866 starts the file scope, and pointers into the raw die data which
1867 mark the range of dies within the file scope.
c906108c 1868
c5aa993b
JM
1869 When the partial symbol table is built, the file offset for the line
1870 number table for each compilation unit is saved in the partial symbol
1871 table entry for that compilation unit. As the symbols for each
1872 compilation unit are read, the line number table is read into memory
1873 and the variable lnbase is set to point to it. Thus all we have to
1874 do is use lnbase to access the line number table for the current
1875 compilation unit.
c906108c
SS
1876 */
1877
1878static void
fba45db2
KB
1879read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1880 struct objfile *objfile)
c906108c
SS
1881{
1882 struct cleanup *back_to;
1883 struct symtab *symtab;
c5aa993b
JM
1884
1885 if (objfile->ei.entry_point >= dip->at_low_pc &&
1886 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1887 {
c5aa993b
JM
1888 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1889 objfile->ei.entry_file_highpc = dip->at_high_pc;
c906108c
SS
1890 }
1891 set_cu_language (dip);
c5aa993b 1892 if (dip->at_producer != NULL)
c906108c 1893 {
c5aa993b 1894 handle_producer (dip->at_producer);
c906108c
SS
1895 }
1896 numutypes = (enddie - thisdie) / 4;
1897 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1898 back_to = make_cleanup (free_utypes, NULL);
1899 memset (utypes, 0, numutypes * sizeof (struct type *));
1900 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1901 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1902 record_debugformat ("DWARF 1");
1903 decode_line_numbers (lnbase);
c5aa993b 1904 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1905
c5aa993b 1906 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1907 if (symtab != NULL)
1908 {
c5aa993b
JM
1909 symtab->language = cu_language;
1910 }
c906108c
SS
1911 do_cleanups (back_to);
1912}
1913
1914/*
1915
c5aa993b 1916 LOCAL FUNCTION
c906108c 1917
c5aa993b 1918 process_dies -- process a range of DWARF Information Entries
c906108c 1919
c5aa993b 1920 SYNOPSIS
c906108c 1921
c5aa993b
JM
1922 static void process_dies (char *thisdie, char *enddie,
1923 struct objfile *objfile)
c906108c 1924
c5aa993b 1925 DESCRIPTION
c906108c 1926
c5aa993b
JM
1927 Process all DIE's in a specified range. May be (and almost
1928 certainly will be) called recursively.
c906108c
SS
1929 */
1930
1931static void
fba45db2 1932process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1933{
1934 char *nextdie;
1935 struct dieinfo di;
c5aa993b 1936
c906108c
SS
1937 while (thisdie < enddie)
1938 {
1939 basicdieinfo (&di, thisdie, objfile);
1940 if (di.die_length < SIZEOF_DIE_LENGTH)
1941 {
1942 break;
1943 }
1944 else if (di.die_tag == TAG_padding)
1945 {
1946 nextdie = thisdie + di.die_length;
1947 }
1948 else
1949 {
1950 completedieinfo (&di, objfile);
1951 if (di.at_sibling != 0)
1952 {
1953 nextdie = dbbase + di.at_sibling - dbroff;
1954 }
1955 else
1956 {
1957 nextdie = thisdie + di.die_length;
1958 }
1959#ifdef SMASH_TEXT_ADDRESS
1960 /* I think that these are always text, not data, addresses. */
1961 SMASH_TEXT_ADDRESS (di.at_low_pc);
1962 SMASH_TEXT_ADDRESS (di.at_high_pc);
1963#endif
1964 switch (di.die_tag)
1965 {
1966 case TAG_compile_unit:
1967 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1968 unit, we are unable to handle nested compilation units
1969 properly (FIXME). */
c906108c
SS
1970 if (current_subfile == NULL)
1971 read_file_scope (&di, thisdie, nextdie, objfile);
1972 else
1973 nextdie = thisdie + di.die_length;
1974 break;
1975 case TAG_global_subroutine:
1976 case TAG_subroutine:
1977 if (di.has_at_low_pc)
1978 {
1979 read_func_scope (&di, thisdie, nextdie, objfile);
1980 }
1981 break;
1982 case TAG_lexical_block:
1983 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1984 break;
1985 case TAG_class_type:
1986 case TAG_structure_type:
1987 case TAG_union_type:
1988 read_structure_scope (&di, thisdie, nextdie, objfile);
1989 break;
1990 case TAG_enumeration_type:
1991 read_enumeration (&di, thisdie, nextdie, objfile);
1992 break;
1993 case TAG_subroutine_type:
1994 read_subroutine_type (&di, thisdie, nextdie);
1995 break;
1996 case TAG_array_type:
1997 dwarf_read_array_type (&di);
1998 break;
1999 case TAG_pointer_type:
2000 read_tag_pointer_type (&di);
2001 break;
2002 case TAG_string_type:
2003 read_tag_string_type (&di);
2004 break;
2005 default:
2006 new_symbol (&di, objfile);
2007 break;
2008 }
2009 }
2010 thisdie = nextdie;
2011 }
2012}
2013
2014/*
2015
c5aa993b 2016 LOCAL FUNCTION
c906108c 2017
c5aa993b 2018 decode_line_numbers -- decode a line number table fragment
c906108c 2019
c5aa993b 2020 SYNOPSIS
c906108c 2021
c5aa993b
JM
2022 static void decode_line_numbers (char *tblscan, char *tblend,
2023 long length, long base, long line, long pc)
c906108c 2024
c5aa993b 2025 DESCRIPTION
c906108c 2026
c5aa993b 2027 Translate the DWARF line number information to gdb form.
c906108c 2028
c5aa993b
JM
2029 The ".line" section contains one or more line number tables, one for
2030 each ".line" section from the objects that were linked.
c906108c 2031
c5aa993b
JM
2032 The AT_stmt_list attribute for each TAG_source_file entry in the
2033 ".debug" section contains the offset into the ".line" section for the
2034 start of the table for that file.
c906108c 2035
c5aa993b 2036 The table itself has the following structure:
c906108c 2037
c5aa993b
JM
2038 <table length><base address><source statement entry>
2039 4 bytes 4 bytes 10 bytes
c906108c 2040
c5aa993b
JM
2041 The table length is the total size of the table, including the 4 bytes
2042 for the length information.
c906108c 2043
c5aa993b
JM
2044 The base address is the address of the first instruction generated
2045 for the source file.
c906108c 2046
c5aa993b 2047 Each source statement entry has the following structure:
c906108c 2048
c5aa993b
JM
2049 <line number><statement position><address delta>
2050 4 bytes 2 bytes 4 bytes
c906108c 2051
c5aa993b
JM
2052 The line number is relative to the start of the file, starting with
2053 line 1.
c906108c 2054
c5aa993b
JM
2055 The statement position either -1 (0xFFFF) or the number of characters
2056 from the beginning of the line to the beginning of the statement.
c906108c 2057
c5aa993b
JM
2058 The address delta is the difference between the base address and
2059 the address of the first instruction for the statement.
c906108c 2060
c5aa993b
JM
2061 Note that we must copy the bytes from the packed table to our local
2062 variables before attempting to use them, to avoid alignment problems
2063 on some machines, particularly RISC processors.
c906108c 2064
c5aa993b 2065 BUGS
c906108c 2066
c5aa993b
JM
2067 Does gdb expect the line numbers to be sorted? They are now by
2068 chance/luck, but are not required to be. (FIXME)
c906108c 2069
c5aa993b
JM
2070 The line with number 0 is unused, gdb apparently can discover the
2071 span of the last line some other way. How? (FIXME)
c906108c
SS
2072 */
2073
2074static void
fba45db2 2075decode_line_numbers (char *linetable)
c906108c
SS
2076{
2077 char *tblscan;
2078 char *tblend;
2079 unsigned long length;
2080 unsigned long base;
2081 unsigned long line;
2082 unsigned long pc;
c5aa993b 2083
c906108c
SS
2084 if (linetable != NULL)
2085 {
2086 tblscan = tblend = linetable;
2087 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2088 current_objfile);
2089 tblscan += SIZEOF_LINETBL_LENGTH;
2090 tblend += length;
2091 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2092 GET_UNSIGNED, current_objfile);
2093 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2094 base += baseaddr;
2095 while (tblscan < tblend)
2096 {
2097 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2098 current_objfile);
2099 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2100 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2101 current_objfile);
2102 tblscan += SIZEOF_LINETBL_DELTA;
2103 pc += base;
2104 if (line != 0)
2105 {
2106 record_line (current_subfile, line, pc);
2107 }
2108 }
2109 }
2110}
2111
2112/*
2113
c5aa993b 2114 LOCAL FUNCTION
c906108c 2115
c5aa993b 2116 locval -- compute the value of a location attribute
c906108c 2117
c5aa993b 2118 SYNOPSIS
c906108c 2119
c5aa993b 2120 static int locval (struct dieinfo *dip)
c906108c 2121
c5aa993b 2122 DESCRIPTION
c906108c 2123
c5aa993b
JM
2124 Given pointer to a string of bytes that define a location, compute
2125 the location and return the value.
2126 A location description containing no atoms indicates that the
2127 object is optimized out. The optimized_out flag is set for those,
2128 the return value is meaningless.
c906108c 2129
c5aa993b
JM
2130 When computing values involving the current value of the frame pointer,
2131 the value zero is used, which results in a value relative to the frame
2132 pointer, rather than the absolute value. This is what GDB wants
2133 anyway.
c906108c 2134
c5aa993b
JM
2135 When the result is a register number, the isreg flag is set, otherwise
2136 it is cleared. This is a kludge until we figure out a better
2137 way to handle the problem. Gdb's design does not mesh well with the
2138 DWARF notion of a location computing interpreter, which is a shame
2139 because the flexibility goes unused.
2140
2141 NOTES
2142
2143 Note that stack[0] is unused except as a default error return.
2144 Note that stack overflow is not yet handled.
c906108c
SS
2145 */
2146
2147static int
fba45db2 2148locval (struct dieinfo *dip)
c906108c
SS
2149{
2150 unsigned short nbytes;
2151 unsigned short locsize;
2152 auto long stack[64];
2153 int stacki;
2154 char *loc;
2155 char *end;
2156 int loc_atom_code;
2157 int loc_value_size;
c5aa993b
JM
2158
2159 loc = dip->at_location;
c906108c
SS
2160 nbytes = attribute_size (AT_location);
2161 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2162 loc += nbytes;
2163 end = loc + locsize;
2164 stacki = 0;
2165 stack[stacki] = 0;
c5aa993b
JM
2166 dip->isreg = 0;
2167 dip->offreg = 0;
2168 dip->optimized_out = 1;
c906108c
SS
2169 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2170 while (loc < end)
2171 {
c5aa993b 2172 dip->optimized_out = 0;
c906108c
SS
2173 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2174 current_objfile);
2175 loc += SIZEOF_LOC_ATOM_CODE;
2176 switch (loc_atom_code)
2177 {
c5aa993b
JM
2178 case 0:
2179 /* error */
2180 loc = end;
2181 break;
2182 case OP_REG:
2183 /* push register (number) */
2184 stack[++stacki]
2185 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2186 GET_UNSIGNED,
2187 current_objfile));
2188 loc += loc_value_size;
2189 dip->isreg = 1;
2190 break;
2191 case OP_BASEREG:
2192 /* push value of register (number) */
2193 /* Actually, we compute the value as if register has 0, so the
2194 value ends up being the offset from that register. */
2195 dip->offreg = 1;
2196 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2197 current_objfile);
2198 loc += loc_value_size;
2199 stack[++stacki] = 0;
2200 break;
2201 case OP_ADDR:
2202 /* push address (relocated address) */
2203 stack[++stacki] = target_to_host (loc, loc_value_size,
2204 GET_UNSIGNED, current_objfile);
2205 loc += loc_value_size;
2206 break;
2207 case OP_CONST:
2208 /* push constant (number) FIXME: signed or unsigned! */
2209 stack[++stacki] = target_to_host (loc, loc_value_size,
2210 GET_SIGNED, current_objfile);
2211 loc += loc_value_size;
2212 break;
2213 case OP_DEREF2:
2214 /* pop, deref and push 2 bytes (as a long) */
2215 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2216 break;
2217 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2218 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2219 break;
2220 case OP_ADD: /* pop top 2 items, add, push result */
2221 stack[stacki - 1] += stack[stacki];
2222 stacki--;
2223 break;
c906108c
SS
2224 }
2225 }
2226 return (stack[stacki]);
2227}
2228
2229/*
2230
c5aa993b 2231 LOCAL FUNCTION
c906108c 2232
c5aa993b 2233 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2234
c5aa993b 2235 SYNOPSIS
c906108c 2236
c5aa993b 2237 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2238
c5aa993b 2239 DESCRIPTION
c906108c 2240
c5aa993b
JM
2241 When expanding a partial symbol table entry to a full symbol table
2242 entry, this is the function that gets called to read in the symbols
2243 for the compilation unit. A pointer to the newly constructed symtab,
2244 which is now the new first one on the objfile's symtab list, is
2245 stashed in the partial symbol table entry.
c906108c
SS
2246 */
2247
2248static void
fba45db2 2249read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2250{
2251 struct cleanup *back_to;
2252 unsigned long lnsize;
2253 file_ptr foffset;
2254 bfd *abfd;
2255 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2256
c5aa993b
JM
2257 abfd = pst->objfile->obfd;
2258 current_objfile = pst->objfile;
c906108c
SS
2259
2260 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2261 unit, seek to the location in the file, and read in all the DIE's. */
2262
2263 diecount = 0;
2264 dbsize = DBLENGTH (pst);
2265 dbbase = xmalloc (dbsize);
c5aa993b
JM
2266 dbroff = DBROFF (pst);
2267 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2268 base_section_offsets = pst->section_offsets;
2269 baseaddr = ANOFFSET (pst->section_offsets, 0);
2270 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2271 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2272 {
2273 free (dbbase);
2274 error ("can't read DWARF data");
2275 }
2276 back_to = make_cleanup (free, dbbase);
2277
2278 /* If there is a line number table associated with this compilation unit
2279 then read the size of this fragment in bytes, from the fragment itself.
2280 Allocate a buffer for the fragment and read it in for future
2281 processing. */
2282
2283 lnbase = NULL;
2284 if (LNFOFF (pst))
2285 {
2286 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2287 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2288 sizeof (lnsizedata)))
2289 {
2290 error ("can't read DWARF line number table size");
2291 }
2292 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2293 GET_UNSIGNED, pst->objfile);
c906108c
SS
2294 lnbase = xmalloc (lnsize);
2295 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2296 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2297 {
2298 free (lnbase);
2299 error ("can't read DWARF line numbers");
2300 }
2301 make_cleanup (free, lnbase);
2302 }
2303
c5aa993b 2304 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2305 do_cleanups (back_to);
2306 current_objfile = NULL;
c5aa993b 2307 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2308}
2309
2310/*
2311
c5aa993b 2312 LOCAL FUNCTION
c906108c 2313
c5aa993b 2314 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2315
c5aa993b 2316 SYNOPSIS
c906108c 2317
c5aa993b 2318 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2319
c5aa993b 2320 DESCRIPTION
c906108c 2321
c5aa993b
JM
2322 Called once for each partial symbol table entry that needs to be
2323 expanded into a full symbol table entry.
c906108c 2324
c5aa993b 2325 */
c906108c
SS
2326
2327static void
fba45db2 2328psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2329{
2330 int i;
2331 struct cleanup *old_chain;
c5aa993b 2332
c906108c
SS
2333 if (pst != NULL)
2334 {
2335 if (pst->readin)
2336 {
2337 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2338 pst->filename);
c906108c
SS
2339 }
2340 else
2341 {
2342 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2343 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2344 {
c5aa993b 2345 if (!pst->dependencies[i]->readin)
c906108c
SS
2346 {
2347 /* Inform about additional files that need to be read in. */
2348 if (info_verbose)
2349 {
2350 fputs_filtered (" ", gdb_stdout);
2351 wrap_here ("");
2352 fputs_filtered ("and ", gdb_stdout);
2353 wrap_here ("");
2354 printf_filtered ("%s...",
c5aa993b 2355 pst->dependencies[i]->filename);
c906108c 2356 wrap_here ("");
c5aa993b 2357 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2358 }
c5aa993b 2359 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2360 }
c5aa993b
JM
2361 }
2362 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2363 {
2364 buildsym_init ();
a0b3c4fd 2365 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2366 read_ofile_symtab (pst);
2367 if (info_verbose)
2368 {
2369 printf_filtered ("%d DIE's, sorting...", diecount);
2370 wrap_here ("");
2371 gdb_flush (gdb_stdout);
2372 }
c5aa993b 2373 sort_symtab_syms (pst->symtab);
c906108c
SS
2374 do_cleanups (old_chain);
2375 }
c5aa993b 2376 pst->readin = 1;
c906108c
SS
2377 }
2378 }
2379}
2380
2381/*
2382
c5aa993b 2383 LOCAL FUNCTION
c906108c 2384
c5aa993b 2385 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2386
c5aa993b 2387 SYNOPSIS
c906108c 2388
c5aa993b 2389 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2390
c5aa993b 2391 DESCRIPTION
c906108c 2392
c5aa993b
JM
2393 This is the DWARF support entry point for building a full symbol
2394 table entry from a partial symbol table entry. We are passed a
2395 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2396
c5aa993b 2397 */
c906108c
SS
2398
2399static void
fba45db2 2400dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2401{
2402
2403 if (pst != NULL)
2404 {
c5aa993b 2405 if (pst->readin)
c906108c
SS
2406 {
2407 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2408 pst->filename);
c906108c
SS
2409 }
2410 else
2411 {
c5aa993b 2412 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2413 {
2414 /* Print the message now, before starting serious work, to avoid
c5aa993b 2415 disconcerting pauses. */
c906108c
SS
2416 if (info_verbose)
2417 {
2418 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2419 pst->filename);
c906108c
SS
2420 gdb_flush (gdb_stdout);
2421 }
c5aa993b 2422
c906108c 2423 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2424
2425#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2426 we need to do an equivalent or is this something peculiar to
2427 stabs/a.out format.
2428 Match with global symbols. This only needs to be done once,
2429 after all of the symtabs and dependencies have been read in.
2430 */
2431 scan_file_globals (pst->objfile);
c906108c 2432#endif
c5aa993b 2433
c906108c
SS
2434 /* Finish up the verbose info message. */
2435 if (info_verbose)
2436 {
2437 printf_filtered ("done.\n");
2438 gdb_flush (gdb_stdout);
2439 }
2440 }
2441 }
2442 }
2443}
2444
2445/*
2446
c5aa993b 2447 LOCAL FUNCTION
c906108c 2448
c5aa993b 2449 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2450
c5aa993b 2451 DESCRIPTION
c906108c 2452
c5aa993b
JM
2453 Given pointer to a DIE that is known to be for an enumeration,
2454 extract the symbolic names of the enumeration members and add
2455 partial symbols for them.
2456 */
c906108c
SS
2457
2458static void
fba45db2 2459add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2460{
2461 char *scan;
2462 char *listend;
2463 unsigned short blocksz;
2464 int nbytes;
c5aa993b
JM
2465
2466 if ((scan = dip->at_element_list) != NULL)
c906108c 2467 {
c5aa993b 2468 if (dip->short_element_list)
c906108c
SS
2469 {
2470 nbytes = attribute_size (AT_short_element_list);
2471 }
2472 else
2473 {
2474 nbytes = attribute_size (AT_element_list);
2475 }
2476 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2477 scan += nbytes;
2478 listend = scan + blocksz;
2479 while (scan < listend)
2480 {
2481 scan += TARGET_FT_LONG_SIZE (objfile);
2482 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
c5aa993b 2483 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2484 objfile);
2485 scan += strlen (scan) + 1;
2486 }
2487 }
2488}
2489
2490/*
2491
c5aa993b 2492 LOCAL FUNCTION
c906108c 2493
c5aa993b 2494 add_partial_symbol -- add symbol to partial symbol table
c906108c 2495
c5aa993b 2496 DESCRIPTION
c906108c 2497
c5aa993b
JM
2498 Given a DIE, if it is one of the types that we want to
2499 add to a partial symbol table, finish filling in the die info
2500 and then add a partial symbol table entry for it.
c906108c 2501
c5aa993b 2502 NOTES
c906108c 2503
c5aa993b
JM
2504 The caller must ensure that the DIE has a valid name attribute.
2505 */
c906108c
SS
2506
2507static void
fba45db2 2508add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2509{
c5aa993b 2510 switch (dip->die_tag)
c906108c
SS
2511 {
2512 case TAG_global_subroutine:
c5aa993b
JM
2513 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2514 VAR_NAMESPACE, LOC_BLOCK,
2515 &objfile->global_psymbols,
2516 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2517 break;
2518 case TAG_global_variable:
c5aa993b 2519 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2520 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2521 &objfile->global_psymbols,
c906108c
SS
2522 0, 0, cu_language, objfile);
2523 break;
2524 case TAG_subroutine:
c5aa993b
JM
2525 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2526 VAR_NAMESPACE, LOC_BLOCK,
2527 &objfile->static_psymbols,
2528 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2529 break;
2530 case TAG_local_variable:
c5aa993b 2531 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2532 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2533 &objfile->static_psymbols,
c906108c
SS
2534 0, 0, cu_language, objfile);
2535 break;
2536 case TAG_typedef:
c5aa993b 2537 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2538 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2539 &objfile->static_psymbols,
c906108c
SS
2540 0, 0, cu_language, objfile);
2541 break;
2542 case TAG_class_type:
2543 case TAG_structure_type:
2544 case TAG_union_type:
2545 case TAG_enumeration_type:
2546 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2547 if (!dip->has_at_byte_size)
c906108c 2548 break;
c5aa993b 2549 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2550 STRUCT_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2551 &objfile->static_psymbols,
c906108c
SS
2552 0, 0, cu_language, objfile);
2553 if (cu_language == language_cplus)
2554 {
2555 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2556 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2557 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2558 &objfile->static_psymbols,
c906108c
SS
2559 0, 0, cu_language, objfile);
2560 }
2561 break;
2562 }
2563}
9846de1b 2564/* *INDENT-OFF* */
c906108c
SS
2565/*
2566
2567LOCAL FUNCTION
2568
2569 scan_partial_symbols -- scan DIE's within a single compilation unit
2570
2571DESCRIPTION
2572
2573 Process the DIE's within a single compilation unit, looking for
2574 interesting DIE's that contribute to the partial symbol table entry
2575 for this compilation unit.
2576
2577NOTES
2578
2579 There are some DIE's that may appear both at file scope and within
2580 the scope of a function. We are only interested in the ones at file
2581 scope, and the only way to tell them apart is to keep track of the
2582 scope. For example, consider the test case:
2583
2584 static int i;
2585 main () { int j; }
2586
2587 for which the relevant DWARF segment has the structure:
2588
2589 0x51:
2590 0x23 global subrtn sibling 0x9b
2591 name main
2592 fund_type FT_integer
2593 low_pc 0x800004cc
2594 high_pc 0x800004d4
2595
2596 0x74:
2597 0x23 local var sibling 0x97
2598 name j
2599 fund_type FT_integer
2600 location OP_BASEREG 0xe
2601 OP_CONST 0xfffffffc
2602 OP_ADD
2603 0x97:
2604 0x4
2605
2606 0x9b:
2607 0x1d local var sibling 0xb8
2608 name i
2609 fund_type FT_integer
2610 location OP_ADDR 0x800025dc
2611
2612 0xb8:
2613 0x4
2614
2615 We want to include the symbol 'i' in the partial symbol table, but
2616 not the symbol 'j'. In essence, we want to skip all the dies within
2617 the scope of a TAG_global_subroutine DIE.
2618
2619 Don't attempt to add anonymous structures or unions since they have
2620 no name. Anonymous enumerations however are processed, because we
2621 want to extract their member names (the check for a tag name is
2622 done later).
2623
2624 Also, for variables and subroutines, check that this is the place
2625 where the actual definition occurs, rather than just a reference
2626 to an external.
2627 */
9846de1b 2628/* *INDENT-ON* */
c906108c 2629
c5aa993b
JM
2630
2631
c906108c 2632static void
fba45db2 2633scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2634{
2635 char *nextdie;
2636 char *temp;
2637 struct dieinfo di;
c5aa993b 2638
c906108c
SS
2639 while (thisdie < enddie)
2640 {
2641 basicdieinfo (&di, thisdie, objfile);
2642 if (di.die_length < SIZEOF_DIE_LENGTH)
2643 {
2644 break;
2645 }
2646 else
2647 {
2648 nextdie = thisdie + di.die_length;
2649 /* To avoid getting complete die information for every die, we
2650 only do it (below) for the cases we are interested in. */
2651 switch (di.die_tag)
2652 {
2653 case TAG_global_subroutine:
2654 case TAG_subroutine:
2655 completedieinfo (&di, objfile);
2656 if (di.at_name && (di.has_at_low_pc || di.at_location))
2657 {
2658 add_partial_symbol (&di, objfile);
2659 /* If there is a sibling attribute, adjust the nextdie
2660 pointer to skip the entire scope of the subroutine.
2661 Apply some sanity checking to make sure we don't
2662 overrun or underrun the range of remaining DIE's */
2663 if (di.at_sibling != 0)
2664 {
2665 temp = dbbase + di.at_sibling - dbroff;
2666 if ((temp < thisdie) || (temp >= enddie))
2667 {
2668 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2669 di.at_sibling);
2670 }
2671 else
2672 {
2673 nextdie = temp;
2674 }
2675 }
2676 }
2677 break;
2678 case TAG_global_variable:
2679 case TAG_local_variable:
2680 completedieinfo (&di, objfile);
2681 if (di.at_name && (di.has_at_low_pc || di.at_location))
2682 {
2683 add_partial_symbol (&di, objfile);
2684 }
2685 break;
2686 case TAG_typedef:
2687 case TAG_class_type:
2688 case TAG_structure_type:
2689 case TAG_union_type:
2690 completedieinfo (&di, objfile);
2691 if (di.at_name)
2692 {
2693 add_partial_symbol (&di, objfile);
2694 }
2695 break;
2696 case TAG_enumeration_type:
2697 completedieinfo (&di, objfile);
2698 if (di.at_name)
2699 {
2700 add_partial_symbol (&di, objfile);
2701 }
2702 add_enum_psymbol (&di, objfile);
2703 break;
2704 }
2705 }
2706 thisdie = nextdie;
2707 }
2708}
2709
2710/*
2711
c5aa993b 2712 LOCAL FUNCTION
c906108c 2713
c5aa993b 2714 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2715
c5aa993b 2716 DESCRIPTION
c906108c 2717
c5aa993b
JM
2718 This is the top level dwarf parsing routine for building partial
2719 symbol tables.
c906108c 2720
c5aa993b
JM
2721 It scans from the beginning of the DWARF table looking for the first
2722 TAG_compile_unit DIE, and then follows the sibling chain to locate
2723 each additional TAG_compile_unit DIE.
2724
2725 For each TAG_compile_unit DIE it creates a partial symtab structure,
2726 calls a subordinate routine to collect all the compilation unit's
2727 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2728 new partial symtab structure into the partial symbol table. It also
2729 records the appropriate information in the partial symbol table entry
2730 to allow the chunk of DIE's and line number table for this compilation
2731 unit to be located and re-read later, to generate a complete symbol
2732 table entry for the compilation unit.
2733
2734 Thus it effectively partitions up a chunk of DIE's for multiple
2735 compilation units into smaller DIE chunks and line number tables,
2736 and associates them with a partial symbol table entry.
2737
2738 NOTES
c906108c 2739
c5aa993b
JM
2740 If any compilation unit has no line number table associated with
2741 it for some reason (a missing at_stmt_list attribute, rather than
2742 just one with a value of zero, which is valid) then we ensure that
2743 the recorded file offset is zero so that the routine which later
2744 reads line number table fragments knows that there is no fragment
2745 to read.
c906108c 2746
c5aa993b 2747 RETURNS
c906108c 2748
c5aa993b 2749 Returns no value.
c906108c
SS
2750
2751 */
2752
2753static void
fba45db2
KB
2754scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2755 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2756{
2757 char *nextdie;
2758 struct dieinfo di;
2759 struct partial_symtab *pst;
2760 int culength;
2761 int curoff;
2762 file_ptr curlnoffset;
2763
2764 while (thisdie < enddie)
2765 {
2766 basicdieinfo (&di, thisdie, objfile);
2767 if (di.die_length < SIZEOF_DIE_LENGTH)
2768 {
2769 break;
2770 }
2771 else if (di.die_tag != TAG_compile_unit)
2772 {
2773 nextdie = thisdie + di.die_length;
2774 }
2775 else
2776 {
2777 completedieinfo (&di, objfile);
2778 set_cu_language (&di);
2779 if (di.at_sibling != 0)
2780 {
2781 nextdie = dbbase + di.at_sibling - dbroff;
2782 }
2783 else
2784 {
2785 nextdie = thisdie + di.die_length;
2786 }
2787 curoff = thisdie - dbbase;
2788 culength = nextdie - thisdie;
2789 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2790
2791 /* First allocate a new partial symbol table structure */
2792
2793 pst = start_psymtab_common (objfile, base_section_offsets,
2794 di.at_name, di.at_low_pc,
c5aa993b
JM
2795 objfile->global_psymbols.next,
2796 objfile->static_psymbols.next);
c906108c 2797
c5aa993b
JM
2798 pst->texthigh = di.at_high_pc;
2799 pst->read_symtab_private = (char *)
2800 obstack_alloc (&objfile->psymbol_obstack,
2801 sizeof (struct dwfinfo));
c906108c
SS
2802 DBFOFF (pst) = dbfoff;
2803 DBROFF (pst) = curoff;
2804 DBLENGTH (pst) = culength;
c5aa993b
JM
2805 LNFOFF (pst) = curlnoffset;
2806 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2807
2808 /* Now look for partial symbols */
2809
2810 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2811
c5aa993b
JM
2812 pst->n_global_syms = objfile->global_psymbols.next -
2813 (objfile->global_psymbols.list + pst->globals_offset);
2814 pst->n_static_syms = objfile->static_psymbols.next -
2815 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2816 sort_pst_symbols (pst);
2817 /* If there is already a psymtab or symtab for a file of this name,
2818 remove it. (If there is a symtab, more drastic things also
2819 happen.) This happens in VxWorks. */
c5aa993b 2820 free_named_symtabs (pst->filename);
c906108c 2821 }
c5aa993b 2822 thisdie = nextdie;
c906108c
SS
2823 }
2824}
2825
2826/*
2827
c5aa993b 2828 LOCAL FUNCTION
c906108c 2829
c5aa993b 2830 new_symbol -- make a symbol table entry for a new symbol
c906108c 2831
c5aa993b 2832 SYNOPSIS
c906108c 2833
c5aa993b
JM
2834 static struct symbol *new_symbol (struct dieinfo *dip,
2835 struct objfile *objfile)
c906108c 2836
c5aa993b 2837 DESCRIPTION
c906108c 2838
c5aa993b
JM
2839 Given a pointer to a DWARF information entry, figure out if we need
2840 to make a symbol table entry for it, and if so, create a new entry
2841 and return a pointer to it.
c906108c
SS
2842 */
2843
2844static struct symbol *
fba45db2 2845new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2846{
2847 struct symbol *sym = NULL;
c5aa993b
JM
2848
2849 if (dip->at_name != NULL)
c906108c 2850 {
c5aa993b 2851 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
c906108c
SS
2852 sizeof (struct symbol));
2853 OBJSTAT (objfile, n_syms++);
2854 memset (sym, 0, sizeof (struct symbol));
c5aa993b 2855 SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
2856 &objfile->symbol_obstack);
2857 /* default assumptions */
2858 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2859 SYMBOL_CLASS (sym) = LOC_STATIC;
2860 SYMBOL_TYPE (sym) = decode_die_type (dip);
2861
2862 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2863 demangled form for future reference. This is a typical time versus
2864 space tradeoff, that was decided in favor of time because it sped up
2865 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2866
2867 SYMBOL_LANGUAGE (sym) = cu_language;
c5aa993b
JM
2868 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2869 switch (dip->die_tag)
c906108c
SS
2870 {
2871 case TAG_label:
c5aa993b 2872 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2873 SYMBOL_CLASS (sym) = LOC_LABEL;
2874 break;
2875 case TAG_global_subroutine:
2876 case TAG_subroutine:
c5aa993b 2877 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2878 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2879 if (dip->at_prototyped)
c906108c
SS
2880 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2881 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2882 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2883 {
2884 add_symbol_to_list (sym, &global_symbols);
2885 }
2886 else
2887 {
2888 add_symbol_to_list (sym, list_in_scope);
2889 }
2890 break;
2891 case TAG_global_variable:
c5aa993b 2892 if (dip->at_location != NULL)
c906108c
SS
2893 {
2894 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2895 add_symbol_to_list (sym, &global_symbols);
2896 SYMBOL_CLASS (sym) = LOC_STATIC;
2897 SYMBOL_VALUE (sym) += baseaddr;
2898 }
2899 break;
2900 case TAG_local_variable:
c5aa993b 2901 if (dip->at_location != NULL)
c906108c
SS
2902 {
2903 int loc = locval (dip);
c5aa993b 2904 if (dip->optimized_out)
c906108c
SS
2905 {
2906 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2907 }
c5aa993b 2908 else if (dip->isreg)
c906108c
SS
2909 {
2910 SYMBOL_CLASS (sym) = LOC_REGISTER;
2911 }
c5aa993b 2912 else if (dip->offreg)
c906108c
SS
2913 {
2914 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2915 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2916 }
2917 else
2918 {
2919 SYMBOL_CLASS (sym) = LOC_STATIC;
2920 SYMBOL_VALUE (sym) += baseaddr;
2921 }
2922 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2923 {
2924 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2925 which may store to a bigger location than SYMBOL_VALUE. */
2926 SYMBOL_VALUE_ADDRESS (sym) = loc;
2927 }
2928 else
2929 {
2930 SYMBOL_VALUE (sym) = loc;
2931 }
2932 add_symbol_to_list (sym, list_in_scope);
2933 }
2934 break;
2935 case TAG_formal_parameter:
c5aa993b 2936 if (dip->at_location != NULL)
c906108c
SS
2937 {
2938 SYMBOL_VALUE (sym) = locval (dip);
2939 }
2940 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2941 if (dip->isreg)
c906108c
SS
2942 {
2943 SYMBOL_CLASS (sym) = LOC_REGPARM;
2944 }
c5aa993b 2945 else if (dip->offreg)
c906108c
SS
2946 {
2947 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2948 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2949 }
2950 else
2951 {
2952 SYMBOL_CLASS (sym) = LOC_ARG;
2953 }
2954 break;
2955 case TAG_unspecified_parameters:
2956 /* From varargs functions; gdb doesn't seem to have any interest in
2957 this information, so just ignore it for now. (FIXME?) */
2958 break;
2959 case TAG_class_type:
2960 case TAG_structure_type:
2961 case TAG_union_type:
2962 case TAG_enumeration_type:
2963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2964 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2965 add_symbol_to_list (sym, list_in_scope);
2966 break;
2967 case TAG_typedef:
2968 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2969 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2970 add_symbol_to_list (sym, list_in_scope);
2971 break;
2972 default:
2973 /* Not a tag we recognize. Hopefully we aren't processing trash
2974 data, but since we must specifically ignore things we don't
2975 recognize, there is nothing else we should do at this point. */
2976 break;
2977 }
2978 }
2979 return (sym);
2980}
2981
2982/*
2983
c5aa993b 2984 LOCAL FUNCTION
c906108c 2985
c5aa993b 2986 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2987
c5aa993b 2988 SYNOPSIS
c906108c 2989
c5aa993b
JM
2990 static void synthesize_typedef (struct dieinfo *dip,
2991 struct objfile *objfile,
2992 struct type *type);
c906108c 2993
c5aa993b 2994 DESCRIPTION
c906108c 2995
c5aa993b
JM
2996 Given a pointer to a DWARF information entry, synthesize a typedef
2997 for the name in the DIE, using the specified type.
c906108c 2998
c5aa993b
JM
2999 This is used for C++ class, structs, unions, and enumerations to
3000 set up the tag name as a type.
c906108c
SS
3001
3002 */
3003
3004static void
fba45db2
KB
3005synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3006 struct type *type)
c906108c
SS
3007{
3008 struct symbol *sym = NULL;
c5aa993b
JM
3009
3010 if (dip->at_name != NULL)
c906108c
SS
3011 {
3012 sym = (struct symbol *)
c5aa993b 3013 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
c906108c
SS
3014 OBJSTAT (objfile, n_syms++);
3015 memset (sym, 0, sizeof (struct symbol));
c5aa993b 3016 SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
3017 &objfile->symbol_obstack);
3018 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3019 SYMBOL_TYPE (sym) = type;
3020 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3021 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3022 add_symbol_to_list (sym, list_in_scope);
3023 }
3024}
3025
3026/*
3027
c5aa993b 3028 LOCAL FUNCTION
c906108c 3029
c5aa993b 3030 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3031
c5aa993b 3032 SYNOPSIS
c906108c 3033
c5aa993b 3034 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3035
c5aa993b 3036 DESCRIPTION
c906108c 3037
c5aa993b
JM
3038 Decode a block of data containing a modified fundamental
3039 type specification. TYPEDATA is a pointer to the block,
3040 which starts with a length containing the size of the rest
3041 of the block. At the end of the block is a fundmental type
3042 code value that gives the fundamental type. Everything
3043 in between are type modifiers.
c906108c 3044
c5aa993b
JM
3045 We simply compute the number of modifiers and call the general
3046 function decode_modified_type to do the actual work.
3047 */
c906108c
SS
3048
3049static struct type *
fba45db2 3050decode_mod_fund_type (char *typedata)
c906108c
SS
3051{
3052 struct type *typep = NULL;
3053 unsigned short modcount;
3054 int nbytes;
c5aa993b 3055
c906108c
SS
3056 /* Get the total size of the block, exclusive of the size itself */
3057
3058 nbytes = attribute_size (AT_mod_fund_type);
3059 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3060 typedata += nbytes;
3061
3062 /* Deduct the size of the fundamental type bytes at the end of the block. */
3063
3064 modcount -= attribute_size (AT_fund_type);
3065
3066 /* Now do the actual decoding */
3067
3068 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3069 return (typep);
3070}
3071
3072/*
3073
c5aa993b 3074 LOCAL FUNCTION
c906108c 3075
c5aa993b 3076 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3077
c5aa993b 3078 SYNOPSIS
c906108c 3079
c5aa993b 3080 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3081
c5aa993b 3082 DESCRIPTION
c906108c 3083
c5aa993b
JM
3084 Decode a block of data containing a modified user defined
3085 type specification. TYPEDATA is a pointer to the block,
3086 which consists of a two byte length, containing the size
3087 of the rest of the block. At the end of the block is a
3088 four byte value that gives a reference to a user defined type.
3089 Everything in between are type modifiers.
c906108c 3090
c5aa993b
JM
3091 We simply compute the number of modifiers and call the general
3092 function decode_modified_type to do the actual work.
3093 */
c906108c
SS
3094
3095static struct type *
fba45db2 3096decode_mod_u_d_type (char *typedata)
c906108c
SS
3097{
3098 struct type *typep = NULL;
3099 unsigned short modcount;
3100 int nbytes;
c5aa993b 3101
c906108c
SS
3102 /* Get the total size of the block, exclusive of the size itself */
3103
3104 nbytes = attribute_size (AT_mod_u_d_type);
3105 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3106 typedata += nbytes;
3107
3108 /* Deduct the size of the reference type bytes at the end of the block. */
3109
3110 modcount -= attribute_size (AT_user_def_type);
3111
3112 /* Now do the actual decoding */
3113
3114 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3115 return (typep);
3116}
3117
3118/*
3119
c5aa993b 3120 LOCAL FUNCTION
c906108c 3121
c5aa993b 3122 decode_modified_type -- decode modified user or fundamental type
c906108c 3123
c5aa993b 3124 SYNOPSIS
c906108c 3125
c5aa993b
JM
3126 static struct type *decode_modified_type (char *modifiers,
3127 unsigned short modcount, int mtype)
c906108c 3128
c5aa993b 3129 DESCRIPTION
c906108c 3130
c5aa993b
JM
3131 Decode a modified type, either a modified fundamental type or
3132 a modified user defined type. MODIFIERS is a pointer to the
3133 block of bytes that define MODCOUNT modifiers. Immediately
3134 following the last modifier is a short containing the fundamental
3135 type or a long containing the reference to the user defined
3136 type. Which one is determined by MTYPE, which is either
3137 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3138 type we are generating.
c906108c 3139
c5aa993b
JM
3140 We call ourself recursively to generate each modified type,`
3141 until MODCOUNT reaches zero, at which point we have consumed
3142 all the modifiers and generate either the fundamental type or
3143 user defined type. When the recursion unwinds, each modifier
3144 is applied in turn to generate the full modified type.
3145
3146 NOTES
c906108c 3147
c5aa993b
JM
3148 If we find a modifier that we don't recognize, and it is not one
3149 of those reserved for application specific use, then we issue a
3150 warning and simply ignore the modifier.
c906108c 3151
c5aa993b 3152 BUGS
c906108c 3153
c5aa993b 3154 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3155
3156 */
3157
3158static struct type *
fba45db2 3159decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3160{
3161 struct type *typep = NULL;
3162 unsigned short fundtype;
3163 DIE_REF die_ref;
3164 char modifier;
3165 int nbytes;
c5aa993b 3166
c906108c
SS
3167 if (modcount == 0)
3168 {
3169 switch (mtype)
3170 {
3171 case AT_mod_fund_type:
3172 nbytes = attribute_size (AT_fund_type);
3173 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3174 current_objfile);
3175 typep = decode_fund_type (fundtype);
3176 break;
3177 case AT_mod_u_d_type:
3178 nbytes = attribute_size (AT_user_def_type);
3179 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3180 current_objfile);
3181 if ((typep = lookup_utype (die_ref)) == NULL)
3182 {
3183 typep = alloc_utype (die_ref, NULL);
3184 }
3185 break;
3186 default:
3187 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3188 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3189 break;
3190 }
3191 }
3192 else
3193 {
3194 modifier = *modifiers++;
3195 typep = decode_modified_type (modifiers, --modcount, mtype);
3196 switch (modifier)
3197 {
c5aa993b
JM
3198 case MOD_pointer_to:
3199 typep = lookup_pointer_type (typep);
3200 break;
3201 case MOD_reference_to:
3202 typep = lookup_reference_type (typep);
3203 break;
3204 case MOD_const:
3205 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3206 break;
3207 case MOD_volatile:
3208 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3209 break;
3210 default:
3211 if (!(MOD_lo_user <= (unsigned char) modifier
3212 && (unsigned char) modifier <= MOD_hi_user))
3213 {
3214 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3215 }
3216 break;
c906108c
SS
3217 }
3218 }
3219 return (typep);
3220}
3221
3222/*
3223
c5aa993b 3224 LOCAL FUNCTION
c906108c 3225
c5aa993b 3226 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3227
c5aa993b 3228 DESCRIPTION
c906108c 3229
c5aa993b
JM
3230 Given an integer that is one of the fundamental DWARF types,
3231 translate it to one of the basic internal gdb types and return
3232 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3233
c5aa993b 3234 NOTES
c906108c 3235
c5aa993b
JM
3236 For robustness, if we are asked to translate a fundamental
3237 type that we are unprepared to deal with, we return int so
3238 callers can always depend upon a valid type being returned,
3239 and so gdb may at least do something reasonable by default.
3240 If the type is not in the range of those types defined as
3241 application specific types, we also issue a warning.
3242 */
c906108c
SS
3243
3244static struct type *
fba45db2 3245decode_fund_type (unsigned int fundtype)
c906108c
SS
3246{
3247 struct type *typep = NULL;
c5aa993b 3248
c906108c
SS
3249 switch (fundtype)
3250 {
3251
3252 case FT_void:
3253 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3254 break;
c5aa993b 3255
c906108c
SS
3256 case FT_boolean: /* Was FT_set in AT&T version */
3257 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3258 break;
3259
3260 case FT_pointer: /* (void *) */
3261 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3262 typep = lookup_pointer_type (typep);
3263 break;
c5aa993b 3264
c906108c
SS
3265 case FT_char:
3266 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3267 break;
c5aa993b 3268
c906108c
SS
3269 case FT_signed_char:
3270 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3271 break;
3272
3273 case FT_unsigned_char:
3274 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3275 break;
c5aa993b 3276
c906108c
SS
3277 case FT_short:
3278 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3279 break;
3280
3281 case FT_signed_short:
3282 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3283 break;
c5aa993b 3284
c906108c
SS
3285 case FT_unsigned_short:
3286 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3287 break;
c5aa993b 3288
c906108c
SS
3289 case FT_integer:
3290 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3291 break;
3292
3293 case FT_signed_integer:
3294 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3295 break;
c5aa993b 3296
c906108c
SS
3297 case FT_unsigned_integer:
3298 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3299 break;
c5aa993b 3300
c906108c
SS
3301 case FT_long:
3302 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3303 break;
3304
3305 case FT_signed_long:
3306 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3307 break;
c5aa993b 3308
c906108c
SS
3309 case FT_unsigned_long:
3310 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3311 break;
c5aa993b 3312
c906108c
SS
3313 case FT_long_long:
3314 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3315 break;
3316
3317 case FT_signed_long_long:
3318 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3319 break;
3320
3321 case FT_unsigned_long_long:
3322 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3323 break;
3324
3325 case FT_float:
3326 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3327 break;
c5aa993b 3328
c906108c
SS
3329 case FT_dbl_prec_float:
3330 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3331 break;
c5aa993b 3332
c906108c
SS
3333 case FT_ext_prec_float:
3334 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3335 break;
c5aa993b 3336
c906108c
SS
3337 case FT_complex:
3338 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3339 break;
c5aa993b 3340
c906108c
SS
3341 case FT_dbl_prec_complex:
3342 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3343 break;
c5aa993b 3344
c906108c
SS
3345 case FT_ext_prec_complex:
3346 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3347 break;
c5aa993b 3348
c906108c
SS
3349 }
3350
3351 if (typep == NULL)
3352 {
3353 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3354 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3355 {
3356 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3357 }
3358 }
c5aa993b 3359
c906108c
SS
3360 return (typep);
3361}
3362
3363/*
3364
c5aa993b 3365 LOCAL FUNCTION
c906108c 3366
c5aa993b 3367 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3368
c5aa993b 3369 DESCRIPTION
c906108c 3370
c5aa993b
JM
3371 Given a pointer to a string and a pointer to an obstack, allocates
3372 a fresh copy of the string on the specified obstack.
c906108c 3373
c5aa993b 3374 */
c906108c
SS
3375
3376static char *
fba45db2 3377create_name (char *name, struct obstack *obstackp)
c906108c
SS
3378{
3379 int length;
3380 char *newname;
3381
3382 length = strlen (name) + 1;
3383 newname = (char *) obstack_alloc (obstackp, length);
3384 strcpy (newname, name);
3385 return (newname);
3386}
3387
3388/*
3389
c5aa993b 3390 LOCAL FUNCTION
c906108c 3391
c5aa993b 3392 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3393
c5aa993b 3394 SYNOPSIS
c906108c 3395
c5aa993b
JM
3396 void basicdieinfo (char *diep, struct dieinfo *dip,
3397 struct objfile *objfile)
c906108c 3398
c5aa993b 3399 DESCRIPTION
c906108c 3400
c5aa993b
JM
3401 Given a pointer to raw DIE data, and a pointer to an instance of a
3402 die info structure, this function extracts the basic information
3403 from the DIE data required to continue processing this DIE, along
3404 with some bookkeeping information about the DIE.
c906108c 3405
c5aa993b
JM
3406 The information we absolutely must have includes the DIE tag,
3407 and the DIE length. If we need the sibling reference, then we
3408 will have to call completedieinfo() to process all the remaining
3409 DIE information.
c906108c 3410
c5aa993b
JM
3411 Note that since there is no guarantee that the data is properly
3412 aligned in memory for the type of access required (indirection
3413 through anything other than a char pointer), and there is no
3414 guarantee that it is in the same byte order as the gdb host,
3415 we call a function which deals with both alignment and byte
3416 swapping issues. Possibly inefficient, but quite portable.
c906108c 3417
c5aa993b
JM
3418 We also take care of some other basic things at this point, such
3419 as ensuring that the instance of the die info structure starts
3420 out completely zero'd and that curdie is initialized for use
3421 in error reporting if we have a problem with the current die.
c906108c 3422
c5aa993b
JM
3423 NOTES
3424
3425 All DIE's must have at least a valid length, thus the minimum
3426 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3427 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3428 are forced to be TAG_padding DIES.
c906108c 3429
c5aa993b
JM
3430 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3431 that if a padding DIE is used for alignment and the amount needed is
3432 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3433 enough to align to the next alignment boundry.
3434
3435 We do some basic sanity checking here, such as verifying that the
3436 length of the die would not cause it to overrun the recorded end of
3437 the buffer holding the DIE info. If we find a DIE that is either
3438 too small or too large, we force it's length to zero which should
3439 cause the caller to take appropriate action.
c906108c
SS
3440 */
3441
3442static void
fba45db2 3443basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3444{
3445 curdie = dip;
3446 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3447 dip->die = diep;
3448 dip->die_ref = dbroff + (diep - dbbase);
3449 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3450 objfile);
3451 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3452 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3453 {
c5aa993b
JM
3454 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3455 dip->die_length = 0;
c906108c 3456 }
c5aa993b 3457 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3458 {
c5aa993b 3459 dip->die_tag = TAG_padding;
c906108c
SS
3460 }
3461 else
3462 {
3463 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3464 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3465 objfile);
c906108c
SS
3466 }
3467}
3468
3469/*
3470
c5aa993b 3471 LOCAL FUNCTION
c906108c 3472
c5aa993b 3473 completedieinfo -- finish reading the information for a given DIE
c906108c 3474
c5aa993b 3475 SYNOPSIS
c906108c 3476
c5aa993b 3477 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3478
c5aa993b 3479 DESCRIPTION
c906108c 3480
c5aa993b
JM
3481 Given a pointer to an already partially initialized die info structure,
3482 scan the raw DIE data and finish filling in the die info structure
3483 from the various attributes found.
c906108c 3484
c5aa993b
JM
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
c906108c 3491
c5aa993b
JM
3492 NOTES
3493
3494 Each time we are called, we increment the diecount variable, which
3495 keeps an approximate count of the number of dies processed for
3496 each compilation unit. This information is presented to the user
3497 if the info_verbose flag is set.
c906108c
SS
3498
3499 */
3500
3501static void
fba45db2 3502completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3503{
3504 char *diep; /* Current pointer into raw DIE data */
3505 char *end; /* Terminate DIE scan here */
3506 unsigned short attr; /* Current attribute being scanned */
3507 unsigned short form; /* Form of the attribute */
3508 int nbytes; /* Size of next field to read */
c5aa993b 3509
c906108c 3510 diecount++;
c5aa993b
JM
3511 diep = dip->die;
3512 end = diep + dip->die_length;
c906108c
SS
3513 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3514 while (diep < end)
3515 {
3516 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3517 diep += SIZEOF_ATTRIBUTE;
3518 if ((nbytes = attribute_size (attr)) == -1)
3519 {
3520 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3521 diep = end;
3522 continue;
3523 }
3524 switch (attr)
3525 {
3526 case AT_fund_type:
c5aa993b
JM
3527 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3528 objfile);
c906108c
SS
3529 break;
3530 case AT_ordering:
c5aa993b
JM
3531 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3532 objfile);
c906108c
SS
3533 break;
3534 case AT_bit_offset:
c5aa993b
JM
3535 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3536 objfile);
c906108c
SS
3537 break;
3538 case AT_sibling:
c5aa993b
JM
3539 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3540 objfile);
c906108c
SS
3541 break;
3542 case AT_stmt_list:
c5aa993b
JM
3543 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3544 objfile);
3545 dip->has_at_stmt_list = 1;
c906108c
SS
3546 break;
3547 case AT_low_pc:
c5aa993b
JM
3548 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3549 objfile);
3550 dip->at_low_pc += baseaddr;
3551 dip->has_at_low_pc = 1;
c906108c
SS
3552 break;
3553 case AT_high_pc:
c5aa993b
JM
3554 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3555 objfile);
3556 dip->at_high_pc += baseaddr;
c906108c
SS
3557 break;
3558 case AT_language:
c5aa993b
JM
3559 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3560 objfile);
c906108c
SS
3561 break;
3562 case AT_user_def_type:
c5aa993b
JM
3563 dip->at_user_def_type = target_to_host (diep, nbytes,
3564 GET_UNSIGNED, objfile);
c906108c
SS
3565 break;
3566 case AT_byte_size:
c5aa993b
JM
3567 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3568 objfile);
3569 dip->has_at_byte_size = 1;
c906108c
SS
3570 break;
3571 case AT_bit_size:
c5aa993b
JM
3572 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3573 objfile);
c906108c
SS
3574 break;
3575 case AT_member:
c5aa993b
JM
3576 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3577 objfile);
c906108c
SS
3578 break;
3579 case AT_discr:
c5aa993b
JM
3580 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3581 objfile);
c906108c
SS
3582 break;
3583 case AT_location:
c5aa993b 3584 dip->at_location = diep;
c906108c
SS
3585 break;
3586 case AT_mod_fund_type:
c5aa993b 3587 dip->at_mod_fund_type = diep;
c906108c
SS
3588 break;
3589 case AT_subscr_data:
c5aa993b 3590 dip->at_subscr_data = diep;
c906108c
SS
3591 break;
3592 case AT_mod_u_d_type:
c5aa993b 3593 dip->at_mod_u_d_type = diep;
c906108c
SS
3594 break;
3595 case AT_element_list:
c5aa993b
JM
3596 dip->at_element_list = diep;
3597 dip->short_element_list = 0;
c906108c
SS
3598 break;
3599 case AT_short_element_list:
c5aa993b
JM
3600 dip->at_element_list = diep;
3601 dip->short_element_list = 1;
c906108c
SS
3602 break;
3603 case AT_discr_value:
c5aa993b 3604 dip->at_discr_value = diep;
c906108c
SS
3605 break;
3606 case AT_string_length:
c5aa993b 3607 dip->at_string_length = diep;
c906108c
SS
3608 break;
3609 case AT_name:
c5aa993b 3610 dip->at_name = diep;
c906108c
SS
3611 break;
3612 case AT_comp_dir:
3613 /* For now, ignore any "hostname:" portion, since gdb doesn't
3614 know how to deal with it. (FIXME). */
c5aa993b
JM
3615 dip->at_comp_dir = strrchr (diep, ':');
3616 if (dip->at_comp_dir != NULL)
c906108c 3617 {
c5aa993b 3618 dip->at_comp_dir++;
c906108c
SS
3619 }
3620 else
3621 {
c5aa993b 3622 dip->at_comp_dir = diep;
c906108c
SS
3623 }
3624 break;
3625 case AT_producer:
c5aa993b 3626 dip->at_producer = diep;
c906108c
SS
3627 break;
3628 case AT_start_scope:
c5aa993b
JM
3629 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
c906108c
SS
3631 break;
3632 case AT_stride_size:
c5aa993b
JM
3633 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 objfile);
c906108c
SS
3635 break;
3636 case AT_src_info:
c5aa993b
JM
3637 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3638 objfile);
c906108c
SS
3639 break;
3640 case AT_prototyped:
c5aa993b 3641 dip->at_prototyped = diep;
c906108c
SS
3642 break;
3643 default:
3644 /* Found an attribute that we are unprepared to handle. However
3645 it is specifically one of the design goals of DWARF that
3646 consumers should ignore unknown attributes. As long as the
3647 form is one that we recognize (so we know how to skip it),
3648 we can just ignore the unknown attribute. */
3649 break;
3650 }
3651 form = FORM_FROM_ATTR (attr);
3652 switch (form)
3653 {
3654 case FORM_DATA2:
3655 diep += 2;
3656 break;
3657 case FORM_DATA4:
3658 case FORM_REF:
3659 diep += 4;
3660 break;
3661 case FORM_DATA8:
3662 diep += 8;
3663 break;
3664 case FORM_ADDR:
3665 diep += TARGET_FT_POINTER_SIZE (objfile);
3666 break;
3667 case FORM_BLOCK2:
3668 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3669 break;
3670 case FORM_BLOCK4:
3671 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3672 break;
3673 case FORM_STRING:
3674 diep += strlen (diep) + 1;
3675 break;
3676 default:
3677 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3678 diep = end;
3679 break;
3680 }
3681 }
3682}
3683
3684/*
3685
c5aa993b 3686 LOCAL FUNCTION
c906108c 3687
c5aa993b 3688 target_to_host -- swap in target data to host
c906108c 3689
c5aa993b 3690 SYNOPSIS
c906108c 3691
c5aa993b
JM
3692 target_to_host (char *from, int nbytes, int signextend,
3693 struct objfile *objfile)
c906108c 3694
c5aa993b 3695 DESCRIPTION
c906108c 3696
c5aa993b
JM
3697 Given pointer to data in target format in FROM, a byte count for
3698 the size of the data in NBYTES, a flag indicating whether or not
3699 the data is signed in SIGNEXTEND, and a pointer to the current
3700 objfile in OBJFILE, convert the data to host format and return
3701 the converted value.
c906108c 3702
c5aa993b 3703 NOTES
c906108c 3704
c5aa993b
JM
3705 FIXME: If we read data that is known to be signed, and expect to
3706 use it as signed data, then we need to explicitly sign extend the
3707 result until the bfd library is able to do this for us.
c906108c 3708
c5aa993b 3709 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3710
3711 */
3712
3713static CORE_ADDR
fba45db2
KB
3714target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3715 struct objfile *objfile)
c906108c
SS
3716{
3717 CORE_ADDR rtnval;
3718
3719 switch (nbytes)
3720 {
c5aa993b
JM
3721 case 8:
3722 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3723 break;
3724 case 4:
3725 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3726 break;
3727 case 2:
3728 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3729 break;
3730 case 1:
3731 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3732 break;
3733 default:
3734 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3735 rtnval = 0;
3736 break;
c906108c
SS
3737 }
3738 return (rtnval);
3739}
3740
3741/*
3742
c5aa993b 3743 LOCAL FUNCTION
c906108c 3744
c5aa993b 3745 attribute_size -- compute size of data for a DWARF attribute
c906108c 3746
c5aa993b 3747 SYNOPSIS
c906108c 3748
c5aa993b 3749 static int attribute_size (unsigned int attr)
c906108c 3750
c5aa993b 3751 DESCRIPTION
c906108c 3752
c5aa993b
JM
3753 Given a DWARF attribute in ATTR, compute the size of the first
3754 piece of data associated with this attribute and return that
3755 size.
c906108c 3756
c5aa993b 3757 Returns -1 for unrecognized attributes.
c906108c
SS
3758
3759 */
3760
3761static int
fba45db2 3762attribute_size (unsigned int attr)
c906108c
SS
3763{
3764 int nbytes; /* Size of next data for this attribute */
3765 unsigned short form; /* Form of the attribute */
3766
3767 form = FORM_FROM_ATTR (attr);
3768 switch (form)
3769 {
c5aa993b
JM
3770 case FORM_STRING: /* A variable length field is next */
3771 nbytes = 0;
3772 break;
3773 case FORM_DATA2: /* Next 2 byte field is the data itself */
3774 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3775 nbytes = 2;
3776 break;
3777 case FORM_DATA4: /* Next 4 byte field is the data itself */
3778 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3779 case FORM_REF: /* Next 4 byte field is a DIE offset */
3780 nbytes = 4;
3781 break;
3782 case FORM_DATA8: /* Next 8 byte field is the data itself */
3783 nbytes = 8;
3784 break;
3785 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3786 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3787 break;
3788 default:
3789 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3790 nbytes = -1;
3791 break;
3792 }
c906108c
SS
3793 return (nbytes);
3794}
This page took 0.237715 seconds and 4 git commands to generate.