* serial.h (SERIAL_SET_TTY_STATE): Comment return value.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
1ab3bf1b
JG
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/*
23
9745ba07
JK
24FIXME: Do we need to generate dependencies in partial symtabs?
25(Perhaps we don't need to).
35f5886e 26
35f5886e
FF
27FIXME: Resolve minor differences between what information we put in the
28partial symbol table and what dbxread puts in. For example, we don't yet
29put enum constants there. And dbxread seems to invent a lot of typedefs
30we never see. Use the new printpsym command to see the partial symbol table
31contents.
32
35f5886e
FF
33FIXME: Figure out a better way to tell gdb about the name of the function
34contain the user's entry point (I.E. main())
35
35f5886e
FF
36FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37other things to work on, if you get bored. :-)
38
39*/
4d315a07 40
d747e0af 41#include "defs.h"
35f5886e
FF
42#include "bfd.h"
43#include "symtab.h"
1ab3bf1b 44#include "gdbtypes.h"
35f5886e 45#include "symfile.h"
5e2e79f8 46#include "objfiles.h"
791e4513 47#include <time.h> /* For time_t in libbfd.h. */
ddf5d7e8 48#include <sys/types.h> /* For time_t, if not in time.h. */
13b5a7ff 49#include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
f5f0679a 50#include "elf/dwarf.h"
4d315a07 51#include "buildsym.h"
2dbde378 52#include "demangle.h"
bf229b4e
FF
53#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54#include "language.h"
51b80b00 55#include "complaints.h"
35f5886e 56
d5931d79
JG
57#include <fcntl.h>
58#include <string.h>
603900c7 59#include <sys/types.h>
51b80b00 60
d5931d79
JG
61#ifndef NO_SYS_FILE
62#include <sys/file.h>
63#endif
64
65/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66#ifndef L_SET
67#define L_SET 0
68#endif
69
51b80b00
FF
70/* Some macros to provide DIE info for complaints. */
71
72#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75/* Complaints that can be issued during DWARF debug info reading. */
76
77struct complaint no_bfd_get_N =
78{
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80};
81
82struct complaint malformed_die =
83{
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85};
86
87struct complaint bad_die_ref =
88{
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90};
91
92struct complaint unknown_attribute_form =
93{
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95};
96
97struct complaint unknown_attribute_length =
98{
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100};
101
102struct complaint unexpected_fund_type =
103{
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105};
106
107struct complaint unknown_type_modifier =
108{
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110};
111
112struct complaint volatile_ignored =
113{
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115};
116
117struct complaint const_ignored =
118{
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120};
121
122struct complaint botched_modified_type =
123{
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125};
126
127struct complaint op_deref2 =
128{
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130};
131
132struct complaint op_deref4 =
133{
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135};
136
137struct complaint basereg_not_handled =
138{
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140};
141
142struct complaint dup_user_type_allocation =
143{
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145};
146
147struct complaint dup_user_type_definition =
148{
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150};
151
152struct complaint missing_tag =
153{
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155};
156
157struct complaint bad_array_element_type =
158{
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160};
161
162struct complaint subscript_data_items =
163{
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165};
166
167struct complaint unhandled_array_subscript_format =
168{
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170};
171
172struct complaint unknown_array_subscript_format =
173{
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175};
176
177struct complaint not_row_major =
178{
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180};
35f5886e 181
13b5a7ff 182typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 183
4d315a07
FF
184#ifndef GCC_PRODUCER
185#define GCC_PRODUCER "GNU C "
186#endif
35f5886e 187
2dbde378
FF
188#ifndef GPLUS_PRODUCER
189#define GPLUS_PRODUCER "GNU C++ "
190#endif
191
192#ifndef LCC_PRODUCER
3dc755fb 193#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
194#endif
195
93bb6e65
FF
196#ifndef CHILL_PRODUCER
197#define CHILL_PRODUCER "GNU Chill "
198#endif
93bb6e65 199
13b5a7ff
FF
200/* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207#define GET_UNSIGNED 0 /* No sign extension required */
208#define GET_SIGNED 1 /* Sign extension required */
209
210/* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214#define SIZEOF_DIE_LENGTH 4
215#define SIZEOF_DIE_TAG 2
216#define SIZEOF_ATTRIBUTE 2
217#define SIZEOF_FORMAT_SPECIFIER 1
218#define SIZEOF_FMT_FT 2
219#define SIZEOF_LINETBL_LENGTH 4
220#define SIZEOF_LINETBL_LINENO 4
221#define SIZEOF_LINETBL_STMT 2
222#define SIZEOF_LINETBL_DELTA 4
223#define SIZEOF_LOC_ATOM_CODE 1
224
225#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227/* Macros that return the sizes of various types of data in the target
228 environment.
229
2d6d969c
FF
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 239
768be6e1
FF
240/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247#define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249/* External variables referenced. */
250
35f5886e 251extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 252extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
253
254/* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
13b5a7ff 260 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
2d6186f4 276 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
277 we need someway to note that we found such an attribute.
278
279 */
280
281typedef char BLOCK;
282
283struct dieinfo {
13b5a7ff
FF
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
303 unsigned long at_low_pc;
304 unsigned long at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
13b5a7ff
FF
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
13b5a7ff
FF
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
50055e94 318 unsigned int has_at_byte_size:1;
13b5a7ff 319 unsigned int short_element_list:1;
35f5886e
FF
320};
321
322static int diecount; /* Approximate count of dies for compilation unit */
323static struct dieinfo *curdie; /* For warnings and such */
324
325static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 326static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
327static int dbroff; /* Relative offset from start of .debug section */
328static char *lnbase; /* Base pointer to line section */
329static int isreg; /* Kludge to identify register variables */
a1c8d76e
JK
330/* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
332static int offreg;
333/* Which base register is it relative to? */
334static int basereg;
35f5886e 335
2670f34d 336/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
35f5886e
FF
339static CORE_ADDR baseaddr; /* Add to each symbol value */
340
2670f34d
JG
341/* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343static struct section_offsets *base_section_offsets;
344
35f5886e
FF
345/* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371struct dwfinfo {
d5931d79 372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
35f5886e
FF
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
d5931d79 375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
35f5886e
FF
376};
377
378#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
4d315a07
FF
383/* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 387
4d315a07
FF
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 391
99140c31 392struct pending **list_in_scope = &file_symbols;
35f5886e
FF
393
394/* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
35f5886e
FF
419
420static struct type **utypes; /* Pointer to array of user type pointers */
421static int numutypes; /* Max number of user type pointers */
422
bf229b4e
FF
423/* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
95ff889e
FF
435/* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
95ff889e
FF
444
445static enum language cu_language;
bf229b4e 446static const struct language_defn *cu_language_defn;
95ff889e 447
35f5886e 448/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
449 about ordering within this file. */
450
13b5a7ff
FF
451static int
452attribute_size PARAMS ((unsigned int));
453
454static unsigned long
455target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 456
1ab3bf1b
JG
457static void
458add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
2dbde378
FF
460static void
461handle_producer PARAMS ((char *));
462
1ab3bf1b
JG
463static void
464read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 465
58050209 466static void
1ab3bf1b 467read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
468
469static void
1ab3bf1b
JG
470read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
35f5886e 472
35f5886e 473static void
1ab3bf1b 474scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 475
35f5886e 476static void
d5931d79
JG
477scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
35f5886e
FF
479
480static void
1ab3bf1b 481add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e
FF
482
483static void
1ab3bf1b 484init_psymbol_list PARAMS ((struct objfile *, int));
35f5886e
FF
485
486static void
95967e73 487basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
488
489static void
95967e73 490completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
491
492static void
493dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495static void
496psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 497
c701c14c 498static void
1ab3bf1b 499read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
500
501static void
1ab3bf1b 502process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
503
504static void
1ab3bf1b
JG
505read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
35f5886e
FF
507
508static struct type *
84ffdec2 509decode_array_element_type PARAMS ((char *));
35f5886e
FF
510
511static struct type *
85f0a848 512decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
513
514static void
1ab3bf1b 515dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 516
9e4c1921 517static void
1ab3bf1b 518read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 519
ec16f701
FF
520static void
521read_tag_string_type PARAMS ((struct dieinfo *dip));
522
35f5886e 523static void
1ab3bf1b 524read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
525
526static void
1ab3bf1b 527read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
528
529static struct type *
1ab3bf1b 530struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
531
532static struct type *
1ab3bf1b 533enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 534
35f5886e 535static void
1ab3bf1b 536decode_line_numbers PARAMS ((char *));
35f5886e
FF
537
538static struct type *
1ab3bf1b 539decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
540
541static struct type *
1ab3bf1b 542decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
543
544static struct type *
1ab3bf1b 545decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
546
547static struct type *
1c92ca6f 548decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
549
550static struct type *
1ab3bf1b 551decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
552
553static char *
1ab3bf1b 554create_name PARAMS ((char *, struct obstack *));
35f5886e 555
35f5886e 556static struct type *
13b5a7ff 557lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
558
559static struct type *
13b5a7ff 560alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
561
562static struct symbol *
1ab3bf1b 563new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 564
95ff889e
FF
565static void
566synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
35f5886e 569static int
1ab3bf1b 570locval PARAMS ((char *));
35f5886e 571
95ff889e
FF
572static void
573set_cu_language PARAMS ((struct dieinfo *));
574
bf229b4e
FF
575static struct type *
576dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579/*
580
581LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607RETURNS
608
609 Pointer to a fundamental type.
610
611*/
612
613static struct type *
614dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617{
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633}
634
95ff889e
FF
635/*
636
637LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652RETURNS
653
654 No return value.
655
656 */
657
658static void
659set_cu_language (dip)
660 struct dieinfo *dip;
661{
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
e58de8a2
FF
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
95ff889e
FF
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
2e4964ad 683 /* We don't know anything special about these yet. */
95ff889e
FF
684 cu_language = language_unknown;
685 break;
2e4964ad
FF
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
95ff889e 690 }
bf229b4e 691 cu_language_defn = language_def (cu_language);
95ff889e
FF
692}
693
35f5886e
FF
694/*
695
696GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700SYNOPSIS
701
d5931d79 702 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 703 struct section_offsets *section_offsets,
d5931d79
JG
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
706
707DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
d5931d79 712 It is passed a bfd* containing the DIES
35f5886e
FF
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720RETURNS
721
722 No return value.
723
724 */
725
726void
d5931d79
JG
727dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
2670f34d 730 struct section_offsets *section_offsets;
1ab3bf1b 731 int mainline;
d5931d79 732 file_ptr dbfoff;
4090fe1c 733 unsigned int dbfsize;
d5931d79 734 file_ptr lnoffset;
1ab3bf1b 735 unsigned int lnsize;
35f5886e 736{
d5931d79 737 bfd *abfd = objfile->obfd;
35f5886e
FF
738 struct cleanup *back_to;
739
95967e73 740 current_objfile = objfile;
4090fe1c 741 dbsize = dbfsize;
35f5886e
FF
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
d5931d79
JG
744 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
746 {
747 free (dbbase);
d5931d79 748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
13b5a7ff
FF
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
35f5886e 758 {
1ab3bf1b 759 init_psymbol_list (objfile, 1024);
35f5886e
FF
760 }
761
84ffdec2 762 /* Save the relocation factor where everybody can see it. */
f8b76e70 763
2670f34d
JG
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 766
35f5886e
FF
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
d5931d79 771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 772
35f5886e 773 do_cleanups (back_to);
95967e73 774 current_objfile = NULL;
35f5886e
FF
775}
776
35f5886e
FF
777/*
778
35f5886e
FF
779LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795static void
1ab3bf1b
JG
796read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
35f5886e 801{
4d315a07
FF
802 register struct context_stack *new;
803
4ed3a9ea 804 push_context (0, dip -> at_low_pc);
13b5a7ff 805 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 810 dip -> at_high_pc, objfile);
4d315a07
FF
811 }
812 local_symbols = new -> locals;
35f5886e
FF
813}
814
815/*
816
817LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821SYNOPSIS
822
13b5a7ff 823 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
824
825DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834static struct type *
13b5a7ff
FF
835lookup_utype (die_ref)
836 DIE_REF die_ref;
35f5886e
FF
837{
838 struct type *type = NULL;
839 int utypeidx;
840
13b5a7ff 841 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
51b80b00 844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851}
852
853
854/*
855
856LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860SYNOPSIS
861
13b5a7ff 862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
863
864DESCRIPTION
865
13b5a7ff 866 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
13b5a7ff 872 there is not currently a type registered for DIE_REF.
35f5886e
FF
873 */
874
875static struct type *
13b5a7ff
FF
876alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
1ab3bf1b 878 struct type *utypep;
35f5886e
FF
879{
880 struct type **typep;
881 int utypeidx;
882
13b5a7ff 883 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
bf229b4e 887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
51b80b00 893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
8050a57b 899 utypep = alloc_type (current_objfile);
35f5886e
FF
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904}
905
906/*
907
908LOCAL FUNCTION
909
910 decode_die_type -- return a type for a specified die
911
912SYNOPSIS
913
914 static struct type *decode_die_type (struct dieinfo *dip)
915
916DESCRIPTION
917
918 Given a pointer to a die information structure DIP, decode the
919 type of the die and return a pointer to the decoded type. All
920 dies without specific types default to type int.
921 */
922
923static struct type *
1ab3bf1b
JG
924decode_die_type (dip)
925 struct dieinfo *dip;
35f5886e
FF
926{
927 struct type *type = NULL;
928
929 if (dip -> at_fund_type != 0)
930 {
931 type = decode_fund_type (dip -> at_fund_type);
932 }
933 else if (dip -> at_mod_fund_type != NULL)
934 {
935 type = decode_mod_fund_type (dip -> at_mod_fund_type);
936 }
937 else if (dip -> at_user_def_type)
938 {
939 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
940 {
941 type = alloc_utype (dip -> at_user_def_type, NULL);
942 }
943 }
944 else if (dip -> at_mod_u_d_type)
945 {
946 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
947 }
948 else
949 {
bf229b4e 950 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
951 }
952 return (type);
953}
954
955/*
956
957LOCAL FUNCTION
958
959 struct_type -- compute and return the type for a struct or union
960
961SYNOPSIS
962
963 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 964 char *enddie, struct objfile *objfile)
35f5886e
FF
965
966DESCRIPTION
967
968 Given pointer to a die information structure for a die which
715cafcb
FF
969 defines a union or structure (and MUST define one or the other),
970 and pointers to the raw die data that define the range of dies which
971 define the members, compute and return the user defined type for the
972 structure or union.
35f5886e
FF
973 */
974
975static struct type *
1ab3bf1b
JG
976struct_type (dip, thisdie, enddie, objfile)
977 struct dieinfo *dip;
978 char *thisdie;
979 char *enddie;
980 struct objfile *objfile;
35f5886e
FF
981{
982 struct type *type;
983 struct nextfield {
984 struct nextfield *next;
985 struct field field;
986 };
987 struct nextfield *list = NULL;
988 struct nextfield *new;
989 int nfields = 0;
990 int n;
35f5886e 991 struct dieinfo mbr;
8b5b6fae 992 char *nextdie;
a8a69e63 993#if !BITS_BIG_ENDIAN
50055e94 994 int anonymous_size;
a8a69e63 995#endif
35f5886e 996
13b5a7ff 997 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 998 {
5edf98d7 999 /* No forward references created an empty type, so install one now */
13b5a7ff 1000 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1001 }
a3723a43 1002 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1003 switch (dip -> die_tag)
35f5886e 1004 {
95ff889e
FF
1005 case TAG_class_type:
1006 TYPE_CODE (type) = TYPE_CODE_CLASS;
95ff889e 1007 break;
715cafcb 1008 case TAG_structure_type:
5edf98d7 1009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1010 break;
1011 case TAG_union_type:
1012 TYPE_CODE (type) = TYPE_CODE_UNION;
715cafcb
FF
1013 break;
1014 default:
1015 /* Should never happen */
1016 TYPE_CODE (type) = TYPE_CODE_UNDEF;
51b80b00 1017 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1018 break;
35f5886e 1019 }
5edf98d7
FF
1020 /* Some compilers try to be helpful by inventing "fake" names for
1021 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1022 Thanks, but no thanks... */
715cafcb
FF
1023 if (dip -> at_name != NULL
1024 && *dip -> at_name != '~'
1025 && *dip -> at_name != '.')
35f5886e 1026 {
b2bebdb0
JK
1027 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1028 "", "", dip -> at_name);
35f5886e 1029 }
50055e94
FF
1030 /* Use whatever size is known. Zero is a valid size. We might however
1031 wish to check has_at_byte_size to make sure that some byte size was
1032 given explicitly, but DWARF doesn't specify that explicit sizes of
1033 zero have to present, so complaining about missing sizes should
1034 probably not be the default. */
1035 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1036 thisdie += dip -> die_length;
35f5886e
FF
1037 while (thisdie < enddie)
1038 {
95967e73
FF
1039 basicdieinfo (&mbr, thisdie, objfile);
1040 completedieinfo (&mbr, objfile);
13b5a7ff 1041 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1042 {
1043 break;
1044 }
8b5b6fae
FF
1045 else if (mbr.at_sibling != 0)
1046 {
1047 nextdie = dbbase + mbr.at_sibling - dbroff;
1048 }
1049 else
1050 {
13b5a7ff 1051 nextdie = thisdie + mbr.die_length;
8b5b6fae 1052 }
13b5a7ff 1053 switch (mbr.die_tag)
35f5886e
FF
1054 {
1055 case TAG_member:
1056 /* Get space to record the next field's data. */
1057 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1058 new -> next = list;
1059 list = new;
1060 /* Save the data. */
50e0dc41
FF
1061 list -> field.name =
1062 obsavestring (mbr.at_name, strlen (mbr.at_name),
1063 &objfile -> type_obstack);
35f5886e
FF
1064 list -> field.type = decode_die_type (&mbr);
1065 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1066 /* Handle bit fields. */
1067 list -> field.bitsize = mbr.at_bit_size;
1068#if BITS_BIG_ENDIAN
1069 /* For big endian bits, the at_bit_offset gives the additional
1070 bit offset from the MSB of the containing anonymous object to
1071 the MSB of the field. We don't have to do anything special
1072 since we don't need to know the size of the anonymous object. */
1073 list -> field.bitpos += mbr.at_bit_offset;
1074#else
1075 /* For little endian bits, we need to have a non-zero at_bit_size,
1076 so that we know we are in fact dealing with a bitfield. Compute
1077 the bit offset to the MSB of the anonymous object, subtract off
1078 the number of bits from the MSB of the field to the MSB of the
1079 object, and then subtract off the number of bits of the field
1080 itself. The result is the bit offset of the LSB of the field. */
1081 if (mbr.at_bit_size > 0)
1082 {
50055e94
FF
1083 if (mbr.has_at_byte_size)
1084 {
1085 /* The size of the anonymous object containing the bit field
1086 is explicit, so use the indicated size (in bytes). */
1087 anonymous_size = mbr.at_byte_size;
1088 }
1089 else
1090 {
1091 /* The size of the anonymous object containing the bit field
1092 matches the size of an object of the bit field's type.
1093 DWARF allows at_byte_size to be left out in such cases,
1094 as a debug information size optimization. */
1095 anonymous_size = TYPE_LENGTH (list -> field.type);
1096 }
4db8e515 1097 list -> field.bitpos +=
50055e94 1098 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
4db8e515
FF
1099 }
1100#endif
35f5886e
FF
1101 nfields++;
1102 break;
1103 default:
8b5b6fae 1104 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1105 break;
1106 }
8b5b6fae 1107 thisdie = nextdie;
35f5886e 1108 }
5edf98d7
FF
1109 /* Now create the vector of fields, and record how big it is. We may
1110 not even have any fields, if this DIE was generated due to a reference
1111 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1112 set, which clues gdb in to the fact that it needs to search elsewhere
1113 for the full structure definition. */
1114 if (nfields == 0)
35f5886e 1115 {
5edf98d7
FF
1116 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1117 }
1118 else
1119 {
1120 TYPE_NFIELDS (type) = nfields;
1121 TYPE_FIELDS (type) = (struct field *)
dac9734e 1122 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1123 /* Copy the saved-up fields into the field vector. */
1124 for (n = nfields; list; list = list -> next)
1125 {
1126 TYPE_FIELD (type, --n) = list -> field;
1127 }
1128 }
35f5886e
FF
1129 return (type);
1130}
1131
1132/*
1133
1134LOCAL FUNCTION
1135
1136 read_structure_scope -- process all dies within struct or union
1137
1138SYNOPSIS
1139
1140 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1141 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1142
1143DESCRIPTION
1144
1145 Called when we find the DIE that starts a structure or union
1146 scope (definition) to process all dies that define the members
1147 of the structure or union. DIP is a pointer to the die info
1148 struct for the DIE that names the structure or union.
1149
1150NOTES
1151
1152 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1153 the DIE has an at_name attribute, since it might be an anonymous
1154 structure or union. This gets the type entered into our set of
1155 user defined types.
1156
1157 However, if the structure is incomplete (an opaque struct/union)
1158 then suppress creating a symbol table entry for it since gdb only
1159 wants to find the one with the complete definition. Note that if
1160 it is complete, we just call new_symbol, which does it's own
1161 checking about whether the struct/union is anonymous or not (and
1162 suppresses creating a symbol table entry itself).
1163
35f5886e
FF
1164 */
1165
1166static void
1ab3bf1b
JG
1167read_structure_scope (dip, thisdie, enddie, objfile)
1168 struct dieinfo *dip;
1169 char *thisdie;
1170 char *enddie;
1171 struct objfile *objfile;
35f5886e
FF
1172{
1173 struct type *type;
1174 struct symbol *sym;
1175
8b5b6fae 1176 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1177 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1178 {
95ff889e
FF
1179 sym = new_symbol (dip, objfile);
1180 if (sym != NULL)
84ce6717
FF
1181 {
1182 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1183 if (cu_language == language_cplus)
1184 {
1185 synthesize_typedef (dip, objfile, type);
1186 }
84ce6717 1187 }
35f5886e
FF
1188 }
1189}
1190
1191/*
1192
1193LOCAL FUNCTION
1194
1195 decode_array_element_type -- decode type of the array elements
1196
1197SYNOPSIS
1198
1199 static struct type *decode_array_element_type (char *scan, char *end)
1200
1201DESCRIPTION
1202
1203 As the last step in decoding the array subscript information for an
1204 array DIE, we need to decode the type of the array elements. We are
1205 passed a pointer to this last part of the subscript information and
1206 must return the appropriate type. If the type attribute is not
1207 recognized, just warn about the problem and return type int.
1208 */
1209
1210static struct type *
84ffdec2 1211decode_array_element_type (scan)
1ab3bf1b 1212 char *scan;
35f5886e
FF
1213{
1214 struct type *typep;
13b5a7ff
FF
1215 DIE_REF die_ref;
1216 unsigned short attribute;
35f5886e 1217 unsigned short fundtype;
13b5a7ff 1218 int nbytes;
35f5886e 1219
13b5a7ff
FF
1220 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1221 current_objfile);
1222 scan += SIZEOF_ATTRIBUTE;
1223 if ((nbytes = attribute_size (attribute)) == -1)
1224 {
51b80b00 1225 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1226 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1227 }
1228 else
1229 {
1230 switch (attribute)
1231 {
1232 case AT_fund_type:
1233 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1234 current_objfile);
1235 typep = decode_fund_type (fundtype);
1236 break;
1237 case AT_mod_fund_type:
1238 typep = decode_mod_fund_type (scan);
1239 break;
1240 case AT_user_def_type:
1241 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1242 current_objfile);
1243 if ((typep = lookup_utype (die_ref)) == NULL)
1244 {
1245 typep = alloc_utype (die_ref, NULL);
1246 }
1247 break;
1248 case AT_mod_u_d_type:
1249 typep = decode_mod_u_d_type (scan);
1250 break;
1251 default:
51b80b00 1252 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1253 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1254 break;
1255 }
35f5886e
FF
1256 }
1257 return (typep);
1258}
1259
1260/*
1261
1262LOCAL FUNCTION
1263
85f0a848 1264 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1265
1266SYNOPSIS
1267
85f0a848
FF
1268 static struct type *
1269 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1270
1271DESCRIPTION
1272
1273 The array subscripts and the data type of the elements of an
1274 array are described by a list of data items, stored as a block
1275 of contiguous bytes. There is a data item describing each array
1276 dimension, and a final data item describing the element type.
1277 The data items are ordered the same as their appearance in the
1278 source (I.E. leftmost dimension first, next to leftmost second,
1279 etc).
1280
85f0a848
FF
1281 The data items describing each array dimension consist of four
1282 parts: (1) a format specifier, (2) type type of the subscript
1283 index, (3) a description of the low bound of the array dimension,
1284 and (4) a description of the high bound of the array dimension.
1285
1286 The last data item is the description of the type of each of
1287 the array elements.
1288
35f5886e 1289 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1290 containing the remaining data items, and a pointer to the first
1291 byte past the data. This function recursively decodes the
1292 remaining data items and returns a type.
1293
1294 If we somehow fail to decode some data, we complain about it
1295 and return a type "array of int".
35f5886e
FF
1296
1297BUGS
1298 FIXME: This code only implements the forms currently used
1299 by the AT&T and GNU C compilers.
1300
1301 The end pointer is supplied for error checking, maybe we should
1302 use it for that...
1303 */
1304
1305static struct type *
85f0a848 1306decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1307 char *scan;
1308 char *end;
35f5886e 1309{
85f0a848
FF
1310 struct type *typep = NULL; /* Array type we are building */
1311 struct type *nexttype; /* Type of each element (may be array) */
1312 struct type *indextype; /* Type of this index */
a8a69e63 1313 struct type *rangetype;
13b5a7ff
FF
1314 unsigned int format;
1315 unsigned short fundtype;
1316 unsigned long lowbound;
1317 unsigned long highbound;
1318 int nbytes;
35f5886e 1319
13b5a7ff
FF
1320 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1321 current_objfile);
1322 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1323 switch (format)
1324 {
1325 case FMT_ET:
84ffdec2 1326 typep = decode_array_element_type (scan);
35f5886e
FF
1327 break;
1328 case FMT_FT_C_C:
13b5a7ff
FF
1329 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1330 current_objfile);
85f0a848 1331 indextype = decode_fund_type (fundtype);
13b5a7ff 1332 scan += SIZEOF_FMT_FT;
160be0de
FF
1333 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1334 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1335 scan += nbytes;
1336 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1337 scan += nbytes;
85f0a848
FF
1338 nexttype = decode_subscript_data_item (scan, end);
1339 if (nexttype == NULL)
35f5886e 1340 {
85f0a848 1341 /* Munged subscript data or other problem, fake it. */
51b80b00 1342 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1343 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1344 }
a8a69e63
FF
1345 rangetype = create_range_type ((struct type *) NULL, indextype,
1346 lowbound, highbound);
1347 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1348 break;
1349 case FMT_FT_C_X:
1350 case FMT_FT_X_C:
1351 case FMT_FT_X_X:
1352 case FMT_UT_C_C:
1353 case FMT_UT_C_X:
1354 case FMT_UT_X_C:
1355 case FMT_UT_X_X:
51b80b00 1356 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1357 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1358 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1359 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1360 break;
1361 default:
51b80b00 1362 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1363 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1364 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1365 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1366 break;
1367 }
1368 return (typep);
1369}
1370
1371/*
1372
1373LOCAL FUNCTION
1374
4d315a07 1375 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1376
1377SYNOPSIS
1378
4d315a07 1379 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1380
1381DESCRIPTION
1382
1383 Extract all information from a TAG_array_type DIE and add to
1384 the user defined type vector.
1385 */
1386
1387static void
1ab3bf1b
JG
1388dwarf_read_array_type (dip)
1389 struct dieinfo *dip;
35f5886e
FF
1390{
1391 struct type *type;
af213624 1392 struct type *utype;
35f5886e
FF
1393 char *sub;
1394 char *subend;
13b5a7ff
FF
1395 unsigned short blocksz;
1396 int nbytes;
35f5886e
FF
1397
1398 if (dip -> at_ordering != ORD_row_major)
1399 {
1400 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1401 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1402 }
1403 if ((sub = dip -> at_subscr_data) != NULL)
1404 {
13b5a7ff
FF
1405 nbytes = attribute_size (AT_subscr_data);
1406 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1407 subend = sub + nbytes + blocksz;
1408 sub += nbytes;
85f0a848
FF
1409 type = decode_subscript_data_item (sub, subend);
1410 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1411 {
85f0a848
FF
1412 /* Install user defined type that has not been referenced yet. */
1413 alloc_utype (dip -> die_ref, type);
1414 }
1415 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1416 {
1417 /* Ick! A forward ref has already generated a blank type in our
1418 slot, and this type probably already has things pointing to it
1419 (which is what caused it to be created in the first place).
1420 If it's just a place holder we can plop our fully defined type
1421 on top of it. We can't recover the space allocated for our
1422 new type since it might be on an obstack, but we could reuse
1423 it if we kept a list of them, but it might not be worth it
1424 (FIXME). */
1425 *utype = *type;
35f5886e
FF
1426 }
1427 else
1428 {
85f0a848
FF
1429 /* Double ick! Not only is a type already in our slot, but
1430 someone has decorated it. Complain and leave it alone. */
51b80b00 1431 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1432 }
1433 }
1434}
1435
1436/*
1437
9e4c1921
FF
1438LOCAL FUNCTION
1439
1440 read_tag_pointer_type -- read TAG_pointer_type DIE
1441
1442SYNOPSIS
1443
1444 static void read_tag_pointer_type (struct dieinfo *dip)
1445
1446DESCRIPTION
1447
1448 Extract all information from a TAG_pointer_type DIE and add to
1449 the user defined type vector.
1450 */
1451
1452static void
1ab3bf1b
JG
1453read_tag_pointer_type (dip)
1454 struct dieinfo *dip;
9e4c1921
FF
1455{
1456 struct type *type;
1457 struct type *utype;
9e4c1921
FF
1458
1459 type = decode_die_type (dip);
13b5a7ff 1460 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1461 {
1462 utype = lookup_pointer_type (type);
4ed3a9ea 1463 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1464 }
1465 else
1466 {
1467 TYPE_TARGET_TYPE (utype) = type;
1468 TYPE_POINTER_TYPE (type) = utype;
1469
1470 /* We assume the machine has only one representation for pointers! */
1471 /* FIXME: This confuses host<->target data representations, and is a
1472 poor assumption besides. */
1473
1474 TYPE_LENGTH (utype) = sizeof (char *);
1475 TYPE_CODE (utype) = TYPE_CODE_PTR;
1476 }
1477}
1478
1479/*
1480
ec16f701
FF
1481LOCAL FUNCTION
1482
1483 read_tag_string_type -- read TAG_string_type DIE
1484
1485SYNOPSIS
1486
1487 static void read_tag_string_type (struct dieinfo *dip)
1488
1489DESCRIPTION
1490
1491 Extract all information from a TAG_string_type DIE and add to
1492 the user defined type vector. It isn't really a user defined
1493 type, but it behaves like one, with other DIE's using an
1494 AT_user_def_type attribute to reference it.
1495 */
1496
1497static void
1498read_tag_string_type (dip)
1499 struct dieinfo *dip;
1500{
1501 struct type *utype;
1502 struct type *indextype;
1503 struct type *rangetype;
1504 unsigned long lowbound = 0;
1505 unsigned long highbound;
1506
b6236d6e 1507 if (dip -> has_at_byte_size)
ec16f701 1508 {
b6236d6e
FF
1509 /* A fixed bounds string */
1510 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1511 }
1512 else
1513 {
b6236d6e
FF
1514 /* A varying length string. Stub for now. (FIXME) */
1515 highbound = 1;
1516 }
1517 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1518 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1519 highbound);
1520
1521 utype = lookup_utype (dip -> die_ref);
1522 if (utype == NULL)
1523 {
1524 /* No type defined, go ahead and create a blank one to use. */
1525 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1526 }
1527 else
1528 {
1529 /* Already a type in our slot due to a forward reference. Make sure it
1530 is a blank one. If not, complain and leave it alone. */
1531 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1532 {
b6236d6e
FF
1533 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1534 return;
ec16f701 1535 }
ec16f701 1536 }
b6236d6e
FF
1537
1538 /* Create the string type using the blank type we either found or created. */
1539 utype = create_string_type (utype, rangetype);
ec16f701
FF
1540}
1541
1542/*
1543
35f5886e
FF
1544LOCAL FUNCTION
1545
1546 read_subroutine_type -- process TAG_subroutine_type dies
1547
1548SYNOPSIS
1549
1550 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1551 char *enddie)
1552
1553DESCRIPTION
1554
1555 Handle DIES due to C code like:
1556
1557 struct foo {
1558 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1559 int b;
1560 };
1561
1562NOTES
1563
1564 The parameter DIES are currently ignored. See if gdb has a way to
1565 include this info in it's type system, and decode them if so. Is
1566 this what the type structure's "arg_types" field is for? (FIXME)
1567 */
1568
1569static void
1ab3bf1b
JG
1570read_subroutine_type (dip, thisdie, enddie)
1571 struct dieinfo *dip;
1572 char *thisdie;
1573 char *enddie;
35f5886e 1574{
af213624
FF
1575 struct type *type; /* Type that this function returns */
1576 struct type *ftype; /* Function that returns above type */
35f5886e 1577
af213624
FF
1578 /* Decode the type that this subroutine returns */
1579
35f5886e 1580 type = decode_die_type (dip);
af213624
FF
1581
1582 /* Check to see if we already have a partially constructed user
1583 defined type for this DIE, from a forward reference. */
1584
13b5a7ff 1585 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1586 {
1587 /* This is the first reference to one of these types. Make
1588 a new one and place it in the user defined types. */
1589 ftype = lookup_function_type (type);
4ed3a9ea 1590 alloc_utype (dip -> die_ref, ftype);
af213624 1591 }
85f0a848 1592 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1593 {
1594 /* We have an existing partially constructed type, so bash it
1595 into the correct type. */
1596 TYPE_TARGET_TYPE (ftype) = type;
1597 TYPE_FUNCTION_TYPE (type) = ftype;
1598 TYPE_LENGTH (ftype) = 1;
1599 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1600 }
85f0a848
FF
1601 else
1602 {
51b80b00 1603 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1604 }
35f5886e
FF
1605}
1606
1607/*
1608
1609LOCAL FUNCTION
1610
1611 read_enumeration -- process dies which define an enumeration
1612
1613SYNOPSIS
1614
1615 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1616 char *enddie, struct objfile *objfile)
35f5886e
FF
1617
1618DESCRIPTION
1619
1620 Given a pointer to a die which begins an enumeration, process all
1621 the dies that define the members of the enumeration.
1622
1623NOTES
1624
1625 Note that we need to call enum_type regardless of whether or not we
1626 have a symbol, since we might have an enum without a tag name (thus
1627 no symbol for the tagname).
1628 */
1629
1630static void
1ab3bf1b
JG
1631read_enumeration (dip, thisdie, enddie, objfile)
1632 struct dieinfo *dip;
1633 char *thisdie;
1634 char *enddie;
1635 struct objfile *objfile;
35f5886e
FF
1636{
1637 struct type *type;
1638 struct symbol *sym;
1639
1ab3bf1b 1640 type = enum_type (dip, objfile);
95ff889e
FF
1641 sym = new_symbol (dip, objfile);
1642 if (sym != NULL)
35f5886e
FF
1643 {
1644 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1645 if (cu_language == language_cplus)
1646 {
1647 synthesize_typedef (dip, objfile, type);
1648 }
35f5886e
FF
1649 }
1650}
1651
1652/*
1653
1654LOCAL FUNCTION
1655
1656 enum_type -- decode and return a type for an enumeration
1657
1658SYNOPSIS
1659
1ab3bf1b 1660 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1661
1662DESCRIPTION
1663
1664 Given a pointer to a die information structure for the die which
1665 starts an enumeration, process all the dies that define the members
1666 of the enumeration and return a type pointer for the enumeration.
98618bf7 1667
715cafcb
FF
1668 At the same time, for each member of the enumeration, create a
1669 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1670 and give it the type of the enumeration itself.
1671
1672NOTES
1673
98618bf7
FF
1674 Note that the DWARF specification explicitly mandates that enum
1675 constants occur in reverse order from the source program order,
1676 for "consistency" and because this ordering is easier for many
1ab3bf1b 1677 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1678 Entries). Because gdb wants to see the enum members in program
1679 source order, we have to ensure that the order gets reversed while
98618bf7 1680 we are processing them.
35f5886e
FF
1681 */
1682
1683static struct type *
1ab3bf1b
JG
1684enum_type (dip, objfile)
1685 struct dieinfo *dip;
1686 struct objfile *objfile;
35f5886e
FF
1687{
1688 struct type *type;
1689 struct nextfield {
1690 struct nextfield *next;
1691 struct field field;
1692 };
1693 struct nextfield *list = NULL;
1694 struct nextfield *new;
1695 int nfields = 0;
1696 int n;
35f5886e
FF
1697 char *scan;
1698 char *listend;
13b5a7ff 1699 unsigned short blocksz;
715cafcb 1700 struct symbol *sym;
13b5a7ff 1701 int nbytes;
35f5886e 1702
13b5a7ff 1703 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1704 {
84ce6717 1705 /* No forward references created an empty type, so install one now */
13b5a7ff 1706 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1707 }
1708 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1709 /* Some compilers try to be helpful by inventing "fake" names for
1710 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1711 Thanks, but no thanks... */
715cafcb
FF
1712 if (dip -> at_name != NULL
1713 && *dip -> at_name != '~'
1714 && *dip -> at_name != '.')
35f5886e 1715 {
b2bebdb0
JK
1716 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1717 "", "", dip -> at_name);
35f5886e 1718 }
715cafcb 1719 if (dip -> at_byte_size != 0)
35f5886e
FF
1720 {
1721 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1722 }
35f5886e
FF
1723 if ((scan = dip -> at_element_list) != NULL)
1724 {
768be6e1
FF
1725 if (dip -> short_element_list)
1726 {
13b5a7ff 1727 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1728 }
1729 else
1730 {
13b5a7ff 1731 nbytes = attribute_size (AT_element_list);
768be6e1 1732 }
13b5a7ff
FF
1733 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1734 listend = scan + nbytes + blocksz;
1735 scan += nbytes;
35f5886e
FF
1736 while (scan < listend)
1737 {
1738 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1739 new -> next = list;
1740 list = new;
1741 list -> field.type = NULL;
1742 list -> field.bitsize = 0;
13b5a7ff
FF
1743 list -> field.bitpos =
1744 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1745 objfile);
1746 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1747 list -> field.name = obsavestring (scan, strlen (scan),
1748 &objfile -> type_obstack);
35f5886e
FF
1749 scan += strlen (scan) + 1;
1750 nfields++;
715cafcb 1751 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1752 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1753 sizeof (struct symbol));
4ed3a9ea 1754 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1755 SYMBOL_NAME (sym) = create_name (list -> field.name,
1756 &objfile->symbol_obstack);
7532cf10 1757 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1758 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1759 SYMBOL_CLASS (sym) = LOC_CONST;
1760 SYMBOL_TYPE (sym) = type;
1761 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1762 add_symbol_to_list (sym, list_in_scope);
35f5886e 1763 }
84ce6717 1764 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1765 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1766 reverse order from how they were inserted. If we have no fields
1767 (this is apparently possible in C++) then skip building a field
1768 vector. */
1769 if (nfields > 0)
1770 {
1771 TYPE_NFIELDS (type) = nfields;
1772 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1773 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1774 /* Copy the saved-up fields into the field vector. */
1775 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1776 {
1777 TYPE_FIELD (type, n++) = list -> field;
1778 }
1779 }
35f5886e 1780 }
35f5886e
FF
1781 return (type);
1782}
1783
1784/*
1785
1786LOCAL FUNCTION
1787
1788 read_func_scope -- process all dies within a function scope
1789
35f5886e
FF
1790DESCRIPTION
1791
1792 Process all dies within a given function scope. We are passed
1793 a die information structure pointer DIP for the die which
1794 starts the function scope, and pointers into the raw die data
1795 that define the dies within the function scope.
1796
1797 For now, we ignore lexical block scopes within the function.
1798 The problem is that AT&T cc does not define a DWARF lexical
1799 block scope for the function itself, while gcc defines a
1800 lexical block scope for the function. We need to think about
1801 how to handle this difference, or if it is even a problem.
1802 (FIXME)
1803 */
1804
1805static void
1ab3bf1b
JG
1806read_func_scope (dip, thisdie, enddie, objfile)
1807 struct dieinfo *dip;
1808 char *thisdie;
1809 char *enddie;
1810 struct objfile *objfile;
35f5886e 1811{
4d315a07 1812 register struct context_stack *new;
35f5886e 1813
5e2e79f8
FF
1814 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1815 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1816 {
5e2e79f8
FF
1817 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1819 }
4d315a07 1820 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1821 {
5e2e79f8
FF
1822 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1823 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1824 }
4d315a07 1825 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1826 new -> name = new_symbol (dip, objfile);
4d315a07 1827 list_in_scope = &local_symbols;
13b5a7ff 1828 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1829 new = pop_context ();
1830 /* Make a block for the local symbols within. */
1831 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1832 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1833 list_in_scope = &file_symbols;
35f5886e
FF
1834}
1835
2dbde378
FF
1836
1837/*
1838
1839LOCAL FUNCTION
1840
1841 handle_producer -- process the AT_producer attribute
1842
1843DESCRIPTION
1844
1845 Perform any operations that depend on finding a particular
1846 AT_producer attribute.
1847
1848 */
1849
1850static void
1851handle_producer (producer)
1852 char *producer;
1853{
1854
1855 /* If this compilation unit was compiled with g++ or gcc, then set the
1856 processing_gcc_compilation flag. */
1857
1858 processing_gcc_compilation =
1859 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1860 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1861 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1862
1863 /* Select a demangling style if we can identify the producer and if
1864 the current style is auto. We leave the current style alone if it
1865 is not auto. We also leave the demangling style alone if we find a
1866 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1867
3dc755fb 1868 if (AUTO_DEMANGLING)
2dbde378
FF
1869 {
1870 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1871 {
1872 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1873 }
1874 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1875 {
1876 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1877 }
2dbde378 1878 }
2dbde378
FF
1879}
1880
1881
35f5886e
FF
1882/*
1883
1884LOCAL FUNCTION
1885
1886 read_file_scope -- process all dies within a file scope
1887
35f5886e
FF
1888DESCRIPTION
1889
1890 Process all dies within a given file scope. We are passed a
1891 pointer to the die information structure for the die which
1892 starts the file scope, and pointers into the raw die data which
1893 mark the range of dies within the file scope.
1894
1895 When the partial symbol table is built, the file offset for the line
1896 number table for each compilation unit is saved in the partial symbol
1897 table entry for that compilation unit. As the symbols for each
1898 compilation unit are read, the line number table is read into memory
1899 and the variable lnbase is set to point to it. Thus all we have to
1900 do is use lnbase to access the line number table for the current
1901 compilation unit.
1902 */
1903
1904static void
1ab3bf1b
JG
1905read_file_scope (dip, thisdie, enddie, objfile)
1906 struct dieinfo *dip;
1907 char *thisdie;
1908 char *enddie;
1909 struct objfile *objfile;
35f5886e
FF
1910{
1911 struct cleanup *back_to;
4d315a07 1912 struct symtab *symtab;
35f5886e 1913
5e2e79f8
FF
1914 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1915 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1916 {
5e2e79f8
FF
1917 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1918 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1919 }
95ff889e 1920 set_cu_language (dip);
4d315a07
FF
1921 if (dip -> at_producer != NULL)
1922 {
2dbde378 1923 handle_producer (dip -> at_producer);
4d315a07 1924 }
35f5886e
FF
1925 numutypes = (enddie - thisdie) / 4;
1926 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1927 back_to = make_cleanup (free, utypes);
4ed3a9ea 1928 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1929 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1930 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1931 decode_line_numbers (lnbase);
13b5a7ff 1932 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b
JK
1933
1934 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
7b5d9650 1935 if (symtab != NULL)
4d315a07 1936 {
95ff889e 1937 symtab -> language = cu_language;
7b5d9650 1938 }
35f5886e
FF
1939 do_cleanups (back_to);
1940 utypes = NULL;
1941 numutypes = 0;
1942}
1943
1944/*
1945
35f5886e
FF
1946LOCAL FUNCTION
1947
1948 process_dies -- process a range of DWARF Information Entries
1949
1950SYNOPSIS
1951
8b5b6fae
FF
1952 static void process_dies (char *thisdie, char *enddie,
1953 struct objfile *objfile)
35f5886e
FF
1954
1955DESCRIPTION
1956
1957 Process all DIE's in a specified range. May be (and almost
1958 certainly will be) called recursively.
1959 */
1960
1961static void
1ab3bf1b
JG
1962process_dies (thisdie, enddie, objfile)
1963 char *thisdie;
1964 char *enddie;
1965 struct objfile *objfile;
35f5886e
FF
1966{
1967 char *nextdie;
1968 struct dieinfo di;
1969
1970 while (thisdie < enddie)
1971 {
95967e73 1972 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 1973 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
1974 {
1975 break;
1976 }
13b5a7ff 1977 else if (di.die_tag == TAG_padding)
35f5886e 1978 {
13b5a7ff 1979 nextdie = thisdie + di.die_length;
35f5886e
FF
1980 }
1981 else
1982 {
95967e73 1983 completedieinfo (&di, objfile);
35f5886e
FF
1984 if (di.at_sibling != 0)
1985 {
1986 nextdie = dbbase + di.at_sibling - dbroff;
1987 }
1988 else
1989 {
13b5a7ff 1990 nextdie = thisdie + di.die_length;
35f5886e 1991 }
9fdb3f7a
JK
1992#ifdef SMASH_TEXT_ADDRESS
1993 /* I think that these are always text, not data, addresses. */
1994 SMASH_TEXT_ADDRESS (di.at_low_pc);
1995 SMASH_TEXT_ADDRESS (di.at_high_pc);
1996#endif
13b5a7ff 1997 switch (di.die_tag)
35f5886e
FF
1998 {
1999 case TAG_compile_unit:
a048c8f5 2000 read_file_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2001 break;
2002 case TAG_global_subroutine:
2003 case TAG_subroutine:
2d6186f4 2004 if (di.has_at_low_pc)
35f5886e 2005 {
a048c8f5 2006 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2007 }
2008 break;
2009 case TAG_lexical_block:
a048c8f5 2010 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2011 break;
95ff889e 2012 case TAG_class_type:
35f5886e
FF
2013 case TAG_structure_type:
2014 case TAG_union_type:
8b5b6fae 2015 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2016 break;
2017 case TAG_enumeration_type:
1ab3bf1b 2018 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2019 break;
2020 case TAG_subroutine_type:
2021 read_subroutine_type (&di, thisdie, nextdie);
2022 break;
2023 case TAG_array_type:
4d315a07 2024 dwarf_read_array_type (&di);
35f5886e 2025 break;
9e4c1921
FF
2026 case TAG_pointer_type:
2027 read_tag_pointer_type (&di);
2028 break;
ec16f701
FF
2029 case TAG_string_type:
2030 read_tag_string_type (&di);
2031 break;
35f5886e 2032 default:
4ed3a9ea 2033 new_symbol (&di, objfile);
35f5886e
FF
2034 break;
2035 }
2036 }
2037 thisdie = nextdie;
2038 }
2039}
2040
2041/*
2042
35f5886e
FF
2043LOCAL FUNCTION
2044
2045 decode_line_numbers -- decode a line number table fragment
2046
2047SYNOPSIS
2048
2049 static void decode_line_numbers (char *tblscan, char *tblend,
2050 long length, long base, long line, long pc)
2051
2052DESCRIPTION
2053
2054 Translate the DWARF line number information to gdb form.
2055
2056 The ".line" section contains one or more line number tables, one for
2057 each ".line" section from the objects that were linked.
2058
2059 The AT_stmt_list attribute for each TAG_source_file entry in the
2060 ".debug" section contains the offset into the ".line" section for the
2061 start of the table for that file.
2062
2063 The table itself has the following structure:
2064
2065 <table length><base address><source statement entry>
2066 4 bytes 4 bytes 10 bytes
2067
2068 The table length is the total size of the table, including the 4 bytes
2069 for the length information.
2070
2071 The base address is the address of the first instruction generated
2072 for the source file.
2073
2074 Each source statement entry has the following structure:
2075
2076 <line number><statement position><address delta>
2077 4 bytes 2 bytes 4 bytes
2078
2079 The line number is relative to the start of the file, starting with
2080 line 1.
2081
2082 The statement position either -1 (0xFFFF) or the number of characters
2083 from the beginning of the line to the beginning of the statement.
2084
2085 The address delta is the difference between the base address and
2086 the address of the first instruction for the statement.
2087
2088 Note that we must copy the bytes from the packed table to our local
2089 variables before attempting to use them, to avoid alignment problems
2090 on some machines, particularly RISC processors.
2091
2092BUGS
2093
2094 Does gdb expect the line numbers to be sorted? They are now by
2095 chance/luck, but are not required to be. (FIXME)
2096
2097 The line with number 0 is unused, gdb apparently can discover the
2098 span of the last line some other way. How? (FIXME)
2099 */
2100
2101static void
1ab3bf1b
JG
2102decode_line_numbers (linetable)
2103 char *linetable;
35f5886e
FF
2104{
2105 char *tblscan;
2106 char *tblend;
13b5a7ff
FF
2107 unsigned long length;
2108 unsigned long base;
2109 unsigned long line;
2110 unsigned long pc;
35f5886e
FF
2111
2112 if (linetable != NULL)
2113 {
2114 tblscan = tblend = linetable;
13b5a7ff
FF
2115 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2116 current_objfile);
2117 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2118 tblend += length;
13b5a7ff
FF
2119 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2120 GET_UNSIGNED, current_objfile);
2121 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2122 base += baseaddr;
35f5886e
FF
2123 while (tblscan < tblend)
2124 {
13b5a7ff
FF
2125 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2126 current_objfile);
2127 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2128 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2129 current_objfile);
2130 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2131 pc += base;
13b5a7ff 2132 if (line != 0)
35f5886e 2133 {
4d315a07 2134 record_line (current_subfile, line, pc);
35f5886e
FF
2135 }
2136 }
2137 }
2138}
2139
2140/*
2141
35f5886e
FF
2142LOCAL FUNCTION
2143
2144 locval -- compute the value of a location attribute
2145
2146SYNOPSIS
2147
2148 static int locval (char *loc)
2149
2150DESCRIPTION
2151
2152 Given pointer to a string of bytes that define a location, compute
2153 the location and return the value.
2154
2155 When computing values involving the current value of the frame pointer,
2156 the value zero is used, which results in a value relative to the frame
2157 pointer, rather than the absolute value. This is what GDB wants
2158 anyway.
2159
2160 When the result is a register number, the global isreg flag is set,
2161 otherwise it is cleared. This is a kludge until we figure out a better
2162 way to handle the problem. Gdb's design does not mesh well with the
2163 DWARF notion of a location computing interpreter, which is a shame
2164 because the flexibility goes unused.
2165
2166NOTES
2167
2168 Note that stack[0] is unused except as a default error return.
2169 Note that stack overflow is not yet handled.
2170 */
2171
2172static int
1ab3bf1b
JG
2173locval (loc)
2174 char *loc;
35f5886e
FF
2175{
2176 unsigned short nbytes;
13b5a7ff
FF
2177 unsigned short locsize;
2178 auto long stack[64];
35f5886e
FF
2179 int stacki;
2180 char *end;
13b5a7ff
FF
2181 int loc_atom_code;
2182 int loc_value_size;
35f5886e 2183
13b5a7ff
FF
2184 nbytes = attribute_size (AT_location);
2185 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2186 loc += nbytes;
2187 end = loc + locsize;
35f5886e
FF
2188 stacki = 0;
2189 stack[stacki] = 0;
2190 isreg = 0;
a5bd5ba6 2191 offreg = 0;
13b5a7ff
FF
2192 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2193 while (loc < end)
35f5886e 2194 {
13b5a7ff
FF
2195 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2196 current_objfile);
2197 loc += SIZEOF_LOC_ATOM_CODE;
2198 switch (loc_atom_code)
2199 {
2200 case 0:
2201 /* error */
2202 loc = end;
2203 break;
2204 case OP_REG:
2205 /* push register (number) */
2206 stack[++stacki] = target_to_host (loc, loc_value_size,
2207 GET_UNSIGNED, current_objfile);
2208 loc += loc_value_size;
2209 isreg = 1;
2210 break;
2211 case OP_BASEREG:
2212 /* push value of register (number) */
a1c8d76e
JK
2213 /* Actually, we compute the value as if register has 0, so the
2214 value ends up being the offset from that register. */
13b5a7ff 2215 offreg = 1;
a1c8d76e
JK
2216 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2217 current_objfile);
13b5a7ff 2218 loc += loc_value_size;
a1c8d76e 2219 stack[++stacki] = 0;
13b5a7ff
FF
2220 break;
2221 case OP_ADDR:
2222 /* push address (relocated address) */
2223 stack[++stacki] = target_to_host (loc, loc_value_size,
2224 GET_UNSIGNED, current_objfile);
2225 loc += loc_value_size;
2226 break;
2227 case OP_CONST:
2228 /* push constant (number) FIXME: signed or unsigned! */
2229 stack[++stacki] = target_to_host (loc, loc_value_size,
2230 GET_SIGNED, current_objfile);
2231 loc += loc_value_size;
2232 break;
2233 case OP_DEREF2:
2234 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2235 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2236 break;
2237 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2238 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2239 break;
2240 case OP_ADD: /* pop top 2 items, add, push result */
2241 stack[stacki - 1] += stack[stacki];
2242 stacki--;
2243 break;
2244 }
35f5886e
FF
2245 }
2246 return (stack[stacki]);
2247}
2248
2249/*
2250
2251LOCAL FUNCTION
2252
2253 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2254
2255SYNOPSIS
2256
c701c14c 2257 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2258
2259DESCRIPTION
2260
1ab3bf1b
JG
2261 When expanding a partial symbol table entry to a full symbol table
2262 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2263 for the compilation unit. A pointer to the newly constructed symtab,
2264 which is now the new first one on the objfile's symtab list, is
2265 stashed in the partial symbol table entry.
35f5886e
FF
2266 */
2267
c701c14c 2268static void
1ab3bf1b
JG
2269read_ofile_symtab (pst)
2270 struct partial_symtab *pst;
35f5886e
FF
2271{
2272 struct cleanup *back_to;
13b5a7ff 2273 unsigned long lnsize;
d5931d79 2274 file_ptr foffset;
1ab3bf1b 2275 bfd *abfd;
13b5a7ff 2276 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2277
2278 abfd = pst -> objfile -> obfd;
2279 current_objfile = pst -> objfile;
2280
35f5886e
FF
2281 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2282 unit, seek to the location in the file, and read in all the DIE's. */
2283
2284 diecount = 0;
4090fe1c
FF
2285 dbsize = DBLENGTH (pst);
2286 dbbase = xmalloc (dbsize);
35f5886e
FF
2287 dbroff = DBROFF(pst);
2288 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2289 base_section_offsets = pst->section_offsets;
2290 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2291 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2292 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2293 {
2294 free (dbbase);
2295 error ("can't read DWARF data");
2296 }
2297 back_to = make_cleanup (free, dbbase);
2298
2299 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2300 then read the size of this fragment in bytes, from the fragment itself.
2301 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2302 processing. */
2303
2304 lnbase = NULL;
2305 if (LNFOFF (pst))
2306 {
d5931d79 2307 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2308 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2309 sizeof (lnsizedata)))
35f5886e
FF
2310 {
2311 error ("can't read DWARF line number table size");
2312 }
13b5a7ff
FF
2313 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2314 GET_UNSIGNED, pst -> objfile);
35f5886e 2315 lnbase = xmalloc (lnsize);
d5931d79 2316 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2317 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2318 {
2319 free (lnbase);
2320 error ("can't read DWARF line numbers");
2321 }
2322 make_cleanup (free, lnbase);
2323 }
2324
4090fe1c 2325 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2326 do_cleanups (back_to);
1ab3bf1b 2327 current_objfile = NULL;
c701c14c 2328 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2329}
2330
2331/*
2332
2333LOCAL FUNCTION
2334
2335 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2336
2337SYNOPSIS
2338
a048c8f5 2339 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2340
2341DESCRIPTION
2342
2343 Called once for each partial symbol table entry that needs to be
2344 expanded into a full symbol table entry.
2345
2346*/
2347
2348static void
1ab3bf1b
JG
2349psymtab_to_symtab_1 (pst)
2350 struct partial_symtab *pst;
35f5886e
FF
2351{
2352 int i;
d07734e3 2353 struct cleanup *old_chain;
35f5886e 2354
1ab3bf1b 2355 if (pst != NULL)
35f5886e 2356 {
1ab3bf1b 2357 if (pst->readin)
35f5886e 2358 {
318bf84f 2359 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2360 pst -> filename);
2361 }
2362 else
2363 {
2364 /* Read in all partial symtabs on which this one is dependent */
2365 for (i = 0; i < pst -> number_of_dependencies; i++)
2366 {
2367 if (!pst -> dependencies[i] -> readin)
2368 {
2369 /* Inform about additional files that need to be read in. */
2370 if (info_verbose)
2371 {
199b2450 2372 fputs_filtered (" ", gdb_stdout);
1ab3bf1b 2373 wrap_here ("");
199b2450 2374 fputs_filtered ("and ", gdb_stdout);
1ab3bf1b
JG
2375 wrap_here ("");
2376 printf_filtered ("%s...",
2377 pst -> dependencies[i] -> filename);
2378 wrap_here ("");
199b2450 2379 gdb_flush (gdb_stdout); /* Flush output */
1ab3bf1b
JG
2380 }
2381 psymtab_to_symtab_1 (pst -> dependencies[i]);
2382 }
2383 }
2384 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2385 {
d07734e3
FF
2386 buildsym_init ();
2387 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2388 read_ofile_symtab (pst);
1ab3bf1b
JG
2389 if (info_verbose)
2390 {
2391 printf_filtered ("%d DIE's, sorting...", diecount);
2392 wrap_here ("");
199b2450 2393 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2394 }
2395 sort_symtab_syms (pst -> symtab);
d07734e3 2396 do_cleanups (old_chain);
1ab3bf1b
JG
2397 }
2398 pst -> readin = 1;
35f5886e 2399 }
35f5886e 2400 }
35f5886e
FF
2401}
2402
2403/*
2404
2405LOCAL FUNCTION
2406
2407 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2408
2409SYNOPSIS
2410
2411 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2412
2413DESCRIPTION
2414
2415 This is the DWARF support entry point for building a full symbol
2416 table entry from a partial symbol table entry. We are passed a
2417 pointer to the partial symbol table entry that needs to be expanded.
2418
2419*/
2420
2421static void
1ab3bf1b
JG
2422dwarf_psymtab_to_symtab (pst)
2423 struct partial_symtab *pst;
35f5886e 2424{
7d9884b9 2425
1ab3bf1b 2426 if (pst != NULL)
35f5886e 2427 {
1ab3bf1b 2428 if (pst -> readin)
35f5886e 2429 {
318bf84f 2430 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2431 pst -> filename);
35f5886e 2432 }
1ab3bf1b 2433 else
35f5886e 2434 {
1ab3bf1b
JG
2435 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2436 {
2437 /* Print the message now, before starting serious work, to avoid
2438 disconcerting pauses. */
2439 if (info_verbose)
2440 {
2441 printf_filtered ("Reading in symbols for %s...",
2442 pst -> filename);
199b2450 2443 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2444 }
2445
2446 psymtab_to_symtab_1 (pst);
2447
2448#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2449 we need to do an equivalent or is this something peculiar to
2450 stabs/a.out format.
2451 Match with global symbols. This only needs to be done once,
2452 after all of the symtabs and dependencies have been read in.
2453 */
2454 scan_file_globals (pst -> objfile);
2455#endif
2456
2457 /* Finish up the verbose info message. */
2458 if (info_verbose)
2459 {
2460 printf_filtered ("done.\n");
199b2450 2461 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2462 }
2463 }
35f5886e
FF
2464 }
2465 }
2466}
2467
2468/*
2469
2470LOCAL FUNCTION
2471
2472 init_psymbol_list -- initialize storage for partial symbols
2473
2474SYNOPSIS
2475
1ab3bf1b 2476 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
35f5886e
FF
2477
2478DESCRIPTION
2479
2480 Initializes storage for all of the partial symbols that will be
2481 created by dwarf_build_psymtabs and subsidiaries.
2482 */
2483
2484static void
1ab3bf1b
JG
2485init_psymbol_list (objfile, total_symbols)
2486 struct objfile *objfile;
2487 int total_symbols;
35f5886e
FF
2488{
2489 /* Free any previously allocated psymbol lists. */
2490
1ab3bf1b 2491 if (objfile -> global_psymbols.list)
35f5886e 2492 {
84ffdec2 2493 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
35f5886e 2494 }
1ab3bf1b 2495 if (objfile -> static_psymbols.list)
35f5886e 2496 {
84ffdec2 2497 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
35f5886e
FF
2498 }
2499
2500 /* Current best guess is that there are approximately a twentieth
2501 of the total symbols (in a debugging file) are global or static
2502 oriented symbols */
2503
1ab3bf1b
JG
2504 objfile -> global_psymbols.size = total_symbols / 10;
2505 objfile -> static_psymbols.size = total_symbols / 10;
2506 objfile -> global_psymbols.next =
2507 objfile -> global_psymbols.list = (struct partial_symbol *)
318bf84f 2508 xmmalloc (objfile -> md, objfile -> global_psymbols.size
1ab3bf1b
JG
2509 * sizeof (struct partial_symbol));
2510 objfile -> static_psymbols.next =
2511 objfile -> static_psymbols.list = (struct partial_symbol *)
318bf84f 2512 xmmalloc (objfile -> md, objfile -> static_psymbols.size
1ab3bf1b 2513 * sizeof (struct partial_symbol));
35f5886e
FF
2514}
2515
35f5886e
FF
2516/*
2517
715cafcb
FF
2518LOCAL FUNCTION
2519
2520 add_enum_psymbol -- add enumeration members to partial symbol table
2521
2522DESCRIPTION
2523
2524 Given pointer to a DIE that is known to be for an enumeration,
2525 extract the symbolic names of the enumeration members and add
2526 partial symbols for them.
2527*/
2528
2529static void
1ab3bf1b
JG
2530add_enum_psymbol (dip, objfile)
2531 struct dieinfo *dip;
2532 struct objfile *objfile;
715cafcb
FF
2533{
2534 char *scan;
2535 char *listend;
13b5a7ff
FF
2536 unsigned short blocksz;
2537 int nbytes;
715cafcb
FF
2538
2539 if ((scan = dip -> at_element_list) != NULL)
2540 {
2541 if (dip -> short_element_list)
2542 {
13b5a7ff 2543 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2544 }
2545 else
2546 {
13b5a7ff 2547 nbytes = attribute_size (AT_element_list);
715cafcb 2548 }
13b5a7ff
FF
2549 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2550 scan += nbytes;
2551 listend = scan + blocksz;
715cafcb
FF
2552 while (scan < listend)
2553 {
13b5a7ff 2554 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2555 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2556 objfile -> static_psymbols, 0, cu_language,
2557 objfile);
715cafcb
FF
2558 scan += strlen (scan) + 1;
2559 }
2560 }
2561}
2562
2563/*
2564
35f5886e
FF
2565LOCAL FUNCTION
2566
2567 add_partial_symbol -- add symbol to partial symbol table
2568
2569DESCRIPTION
2570
2571 Given a DIE, if it is one of the types that we want to
2572 add to a partial symbol table, finish filling in the die info
2573 and then add a partial symbol table entry for it.
2574
95ff889e
FF
2575NOTES
2576
2577 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2578*/
2579
2580static void
1ab3bf1b
JG
2581add_partial_symbol (dip, objfile)
2582 struct dieinfo *dip;
2583 struct objfile *objfile;
35f5886e 2584{
13b5a7ff 2585 switch (dip -> die_tag)
35f5886e
FF
2586 {
2587 case TAG_global_subroutine:
b440b1e9 2588 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2589 VAR_NAMESPACE, LOC_BLOCK,
2590 objfile -> global_psymbols,
2e4964ad 2591 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2592 break;
2593 case TAG_global_variable:
b440b1e9 2594 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2595 VAR_NAMESPACE, LOC_STATIC,
2596 objfile -> global_psymbols,
2e4964ad 2597 0, cu_language, objfile);
35f5886e
FF
2598 break;
2599 case TAG_subroutine:
b440b1e9 2600 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2601 VAR_NAMESPACE, LOC_BLOCK,
2602 objfile -> static_psymbols,
2e4964ad 2603 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2604 break;
2605 case TAG_local_variable:
b440b1e9 2606 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2607 VAR_NAMESPACE, LOC_STATIC,
2608 objfile -> static_psymbols,
2e4964ad 2609 0, cu_language, objfile);
35f5886e
FF
2610 break;
2611 case TAG_typedef:
b440b1e9 2612 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2613 VAR_NAMESPACE, LOC_TYPEDEF,
2614 objfile -> static_psymbols,
2e4964ad 2615 0, cu_language, objfile);
35f5886e 2616 break;
95ff889e 2617 case TAG_class_type:
35f5886e
FF
2618 case TAG_structure_type:
2619 case TAG_union_type:
95ff889e 2620 case TAG_enumeration_type:
b440b1e9 2621 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2622 STRUCT_NAMESPACE, LOC_TYPEDEF,
2623 objfile -> static_psymbols,
2e4964ad 2624 0, cu_language, objfile);
95ff889e 2625 if (cu_language == language_cplus)
715cafcb 2626 {
95ff889e 2627 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2628 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2629 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2630 objfile -> static_psymbols,
2e4964ad 2631 0, cu_language, objfile);
715cafcb 2632 }
715cafcb 2633 break;
35f5886e
FF
2634 }
2635}
2636
2637/*
2638
2639LOCAL FUNCTION
2640
2641 scan_partial_symbols -- scan DIE's within a single compilation unit
2642
2643DESCRIPTION
2644
2645 Process the DIE's within a single compilation unit, looking for
2646 interesting DIE's that contribute to the partial symbol table entry
a679650f 2647 for this compilation unit.
35f5886e 2648
2d6186f4
FF
2649NOTES
2650
a679650f
FF
2651 There are some DIE's that may appear both at file scope and within
2652 the scope of a function. We are only interested in the ones at file
2653 scope, and the only way to tell them apart is to keep track of the
2654 scope. For example, consider the test case:
2655
2656 static int i;
2657 main () { int j; }
2658
2659 for which the relevant DWARF segment has the structure:
2660
2661 0x51:
2662 0x23 global subrtn sibling 0x9b
2663 name main
2664 fund_type FT_integer
2665 low_pc 0x800004cc
2666 high_pc 0x800004d4
2667
2668 0x74:
2669 0x23 local var sibling 0x97
2670 name j
2671 fund_type FT_integer
2672 location OP_BASEREG 0xe
2673 OP_CONST 0xfffffffc
2674 OP_ADD
2675 0x97:
2676 0x4
2677
2678 0x9b:
2679 0x1d local var sibling 0xb8
2680 name i
2681 fund_type FT_integer
2682 location OP_ADDR 0x800025dc
2683
2684 0xb8:
2685 0x4
2686
2687 We want to include the symbol 'i' in the partial symbol table, but
2688 not the symbol 'j'. In essence, we want to skip all the dies within
2689 the scope of a TAG_global_subroutine DIE.
2690
715cafcb
FF
2691 Don't attempt to add anonymous structures or unions since they have
2692 no name. Anonymous enumerations however are processed, because we
2693 want to extract their member names (the check for a tag name is
2694 done later).
2d6186f4 2695
715cafcb
FF
2696 Also, for variables and subroutines, check that this is the place
2697 where the actual definition occurs, rather than just a reference
2698 to an external.
35f5886e
FF
2699 */
2700
2701static void
1ab3bf1b
JG
2702scan_partial_symbols (thisdie, enddie, objfile)
2703 char *thisdie;
2704 char *enddie;
2705 struct objfile *objfile;
35f5886e
FF
2706{
2707 char *nextdie;
a679650f 2708 char *temp;
35f5886e
FF
2709 struct dieinfo di;
2710
2711 while (thisdie < enddie)
2712 {
95967e73 2713 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2714 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2715 {
2716 break;
2717 }
2718 else
2719 {
13b5a7ff 2720 nextdie = thisdie + di.die_length;
715cafcb
FF
2721 /* To avoid getting complete die information for every die, we
2722 only do it (below) for the cases we are interested in. */
13b5a7ff 2723 switch (di.die_tag)
35f5886e
FF
2724 {
2725 case TAG_global_subroutine:
35f5886e 2726 case TAG_subroutine:
a679650f
FF
2727 completedieinfo (&di, objfile);
2728 if (di.at_name && (di.has_at_low_pc || di.at_location))
2729 {
2730 add_partial_symbol (&di, objfile);
2731 /* If there is a sibling attribute, adjust the nextdie
2732 pointer to skip the entire scope of the subroutine.
2733 Apply some sanity checking to make sure we don't
2734 overrun or underrun the range of remaining DIE's */
2735 if (di.at_sibling != 0)
2736 {
2737 temp = dbbase + di.at_sibling - dbroff;
2738 if ((temp < thisdie) || (temp >= enddie))
2739 {
51b80b00
FF
2740 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2741 di.at_sibling);
a679650f
FF
2742 }
2743 else
2744 {
2745 nextdie = temp;
2746 }
2747 }
2748 }
2749 break;
2d6186f4 2750 case TAG_global_variable:
35f5886e 2751 case TAG_local_variable:
95967e73 2752 completedieinfo (&di, objfile);
2d6186f4
FF
2753 if (di.at_name && (di.has_at_low_pc || di.at_location))
2754 {
1ab3bf1b 2755 add_partial_symbol (&di, objfile);
2d6186f4
FF
2756 }
2757 break;
35f5886e 2758 case TAG_typedef:
95ff889e 2759 case TAG_class_type:
35f5886e
FF
2760 case TAG_structure_type:
2761 case TAG_union_type:
95967e73 2762 completedieinfo (&di, objfile);
2d6186f4 2763 if (di.at_name)
35f5886e 2764 {
1ab3bf1b 2765 add_partial_symbol (&di, objfile);
35f5886e
FF
2766 }
2767 break;
715cafcb 2768 case TAG_enumeration_type:
95967e73 2769 completedieinfo (&di, objfile);
95ff889e
FF
2770 if (di.at_name)
2771 {
2772 add_partial_symbol (&di, objfile);
2773 }
2774 add_enum_psymbol (&di, objfile);
715cafcb 2775 break;
35f5886e
FF
2776 }
2777 }
2778 thisdie = nextdie;
2779 }
2780}
2781
2782/*
2783
2784LOCAL FUNCTION
2785
2786 scan_compilation_units -- build a psymtab entry for each compilation
2787
2788DESCRIPTION
2789
2790 This is the top level dwarf parsing routine for building partial
2791 symbol tables.
2792
2793 It scans from the beginning of the DWARF table looking for the first
2794 TAG_compile_unit DIE, and then follows the sibling chain to locate
2795 each additional TAG_compile_unit DIE.
2796
2797 For each TAG_compile_unit DIE it creates a partial symtab structure,
2798 calls a subordinate routine to collect all the compilation unit's
2799 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2800 new partial symtab structure into the partial symbol table. It also
2801 records the appropriate information in the partial symbol table entry
2802 to allow the chunk of DIE's and line number table for this compilation
2803 unit to be located and re-read later, to generate a complete symbol
2804 table entry for the compilation unit.
2805
2806 Thus it effectively partitions up a chunk of DIE's for multiple
2807 compilation units into smaller DIE chunks and line number tables,
2808 and associates them with a partial symbol table entry.
2809
2810NOTES
2811
2812 If any compilation unit has no line number table associated with
2813 it for some reason (a missing at_stmt_list attribute, rather than
2814 just one with a value of zero, which is valid) then we ensure that
2815 the recorded file offset is zero so that the routine which later
2816 reads line number table fragments knows that there is no fragment
2817 to read.
2818
2819RETURNS
2820
2821 Returns no value.
2822
2823 */
2824
2825static void
d5931d79 2826scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2827 char *thisdie;
2828 char *enddie;
d5931d79
JG
2829 file_ptr dbfoff;
2830 file_ptr lnoffset;
1ab3bf1b 2831 struct objfile *objfile;
35f5886e
FF
2832{
2833 char *nextdie;
2834 struct dieinfo di;
2835 struct partial_symtab *pst;
2836 int culength;
2837 int curoff;
d5931d79 2838 file_ptr curlnoffset;
35f5886e
FF
2839
2840 while (thisdie < enddie)
2841 {
95967e73 2842 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2843 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2844 {
2845 break;
2846 }
13b5a7ff 2847 else if (di.die_tag != TAG_compile_unit)
35f5886e 2848 {
13b5a7ff 2849 nextdie = thisdie + di.die_length;
35f5886e
FF
2850 }
2851 else
2852 {
95967e73 2853 completedieinfo (&di, objfile);
95ff889e 2854 set_cu_language (&di);
35f5886e
FF
2855 if (di.at_sibling != 0)
2856 {
2857 nextdie = dbbase + di.at_sibling - dbroff;
2858 }
2859 else
2860 {
13b5a7ff 2861 nextdie = thisdie + di.die_length;
35f5886e
FF
2862 }
2863 curoff = thisdie - dbbase;
2864 culength = nextdie - thisdie;
2d6186f4 2865 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2866
2867 /* First allocate a new partial symbol table structure */
2868
95ff889e
FF
2869 pst = start_psymtab_common (objfile, base_section_offsets,
2870 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2871 objfile -> global_psymbols.next,
2872 objfile -> static_psymbols.next);
2873
2874 pst -> texthigh = di.at_high_pc;
2875 pst -> read_symtab_private = (char *)
2876 obstack_alloc (&objfile -> psymbol_obstack,
2877 sizeof (struct dwfinfo));
2878 DBFOFF (pst) = dbfoff;
2879 DBROFF (pst) = curoff;
2880 DBLENGTH (pst) = culength;
2881 LNFOFF (pst) = curlnoffset;
2882 pst -> read_symtab = dwarf_psymtab_to_symtab;
2883
2884 /* Now look for partial symbols */
2885
13b5a7ff 2886 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2887
2888 pst -> n_global_syms = objfile -> global_psymbols.next -
2889 (objfile -> global_psymbols.list + pst -> globals_offset);
2890 pst -> n_static_syms = objfile -> static_psymbols.next -
2891 (objfile -> static_psymbols.list + pst -> statics_offset);
2892 sort_pst_symbols (pst);
35f5886e
FF
2893 /* If there is already a psymtab or symtab for a file of this name,
2894 remove it. (If there is a symtab, more drastic things also
2895 happen.) This happens in VxWorks. */
2896 free_named_symtabs (pst -> filename);
35f5886e
FF
2897 }
2898 thisdie = nextdie;
2899 }
2900}
2901
2902/*
2903
2904LOCAL FUNCTION
2905
2906 new_symbol -- make a symbol table entry for a new symbol
2907
2908SYNOPSIS
2909
1ab3bf1b
JG
2910 static struct symbol *new_symbol (struct dieinfo *dip,
2911 struct objfile *objfile)
35f5886e
FF
2912
2913DESCRIPTION
2914
2915 Given a pointer to a DWARF information entry, figure out if we need
2916 to make a symbol table entry for it, and if so, create a new entry
2917 and return a pointer to it.
2918 */
2919
2920static struct symbol *
1ab3bf1b
JG
2921new_symbol (dip, objfile)
2922 struct dieinfo *dip;
2923 struct objfile *objfile;
35f5886e
FF
2924{
2925 struct symbol *sym = NULL;
2926
2927 if (dip -> at_name != NULL)
2928 {
1ab3bf1b 2929 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2930 sizeof (struct symbol));
4ed3a9ea 2931 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2932 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2933 &objfile->symbol_obstack);
35f5886e
FF
2934 /* default assumptions */
2935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2936 SYMBOL_CLASS (sym) = LOC_STATIC;
2937 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2938
2939 /* If this symbol is from a C++ compilation, then attempt to cache the
2940 demangled form for future reference. This is a typical time versus
2941 space tradeoff, that was decided in favor of time because it sped up
2942 C++ symbol lookups by a factor of about 20. */
2943
2944 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2945 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2946 switch (dip -> die_tag)
35f5886e
FF
2947 {
2948 case TAG_label:
4d315a07 2949 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2950 SYMBOL_CLASS (sym) = LOC_LABEL;
2951 break;
2952 case TAG_global_subroutine:
2953 case TAG_subroutine:
4d315a07 2954 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2955 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2956 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2957 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2958 {
2959 add_symbol_to_list (sym, &global_symbols);
2960 }
2961 else
2962 {
4d315a07 2963 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2964 }
2965 break;
2966 case TAG_global_variable:
35f5886e
FF
2967 if (dip -> at_location != NULL)
2968 {
2969 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
2970 add_symbol_to_list (sym, &global_symbols);
2971 SYMBOL_CLASS (sym) = LOC_STATIC;
2972 SYMBOL_VALUE (sym) += baseaddr;
2973 }
a5bd5ba6
FF
2974 break;
2975 case TAG_local_variable:
2976 if (dip -> at_location != NULL)
35f5886e 2977 {
a5bd5ba6 2978 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 2979 add_symbol_to_list (sym, list_in_scope);
a5bd5ba6
FF
2980 if (isreg)
2981 {
2982 SYMBOL_CLASS (sym) = LOC_REGISTER;
2983 }
2984 else if (offreg)
35f5886e 2985 {
a1c8d76e
JK
2986 SYMBOL_CLASS (sym) = LOC_BASEREG;
2987 SYMBOL_BASEREG (sym) = basereg;
35f5886e
FF
2988 }
2989 else
2990 {
2991 SYMBOL_CLASS (sym) = LOC_STATIC;
2992 SYMBOL_VALUE (sym) += baseaddr;
2993 }
2994 }
2995 break;
2996 case TAG_formal_parameter:
2997 if (dip -> at_location != NULL)
2998 {
2999 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3000 }
4d315a07 3001 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3002 if (isreg)
3003 {
3004 SYMBOL_CLASS (sym) = LOC_REGPARM;
3005 }
a1c8d76e
JK
3006 else if (offreg)
3007 {
3008 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3009 SYMBOL_BASEREG (sym) = basereg;
3010 }
35f5886e
FF
3011 else
3012 {
3013 SYMBOL_CLASS (sym) = LOC_ARG;
3014 }
3015 break;
3016 case TAG_unspecified_parameters:
3017 /* From varargs functions; gdb doesn't seem to have any interest in
3018 this information, so just ignore it for now. (FIXME?) */
3019 break;
95ff889e 3020 case TAG_class_type:
35f5886e
FF
3021 case TAG_structure_type:
3022 case TAG_union_type:
3023 case TAG_enumeration_type:
3024 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3025 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3026 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3027 break;
3028 case TAG_typedef:
3029 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3030 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3031 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3032 break;
3033 default:
3034 /* Not a tag we recognize. Hopefully we aren't processing trash
3035 data, but since we must specifically ignore things we don't
3036 recognize, there is nothing else we should do at this point. */
3037 break;
3038 }
3039 }
3040 return (sym);
3041}
3042
3043/*
3044
95ff889e
FF
3045LOCAL FUNCTION
3046
3047 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3048
3049SYNOPSIS
3050
3051 static void synthesize_typedef (struct dieinfo *dip,
3052 struct objfile *objfile,
3053 struct type *type);
3054
3055DESCRIPTION
3056
3057 Given a pointer to a DWARF information entry, synthesize a typedef
3058 for the name in the DIE, using the specified type.
3059
3060 This is used for C++ class, structs, unions, and enumerations to
3061 set up the tag name as a type.
3062
3063 */
3064
3065static void
3066synthesize_typedef (dip, objfile, type)
3067 struct dieinfo *dip;
3068 struct objfile *objfile;
3069 struct type *type;
3070{
3071 struct symbol *sym = NULL;
3072
3073 if (dip -> at_name != NULL)
3074 {
3075 sym = (struct symbol *)
3076 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3077 memset (sym, 0, sizeof (struct symbol));
3078 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3079 &objfile->symbol_obstack);
7532cf10 3080 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3081 SYMBOL_TYPE (sym) = type;
3082 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3083 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3084 add_symbol_to_list (sym, list_in_scope);
3085 }
3086}
3087
3088/*
3089
35f5886e
FF
3090LOCAL FUNCTION
3091
3092 decode_mod_fund_type -- decode a modified fundamental type
3093
3094SYNOPSIS
3095
3096 static struct type *decode_mod_fund_type (char *typedata)
3097
3098DESCRIPTION
3099
3100 Decode a block of data containing a modified fundamental
3101 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3102 which starts with a length containing the size of the rest
3103 of the block. At the end of the block is a fundmental type
3104 code value that gives the fundamental type. Everything
35f5886e
FF
3105 in between are type modifiers.
3106
3107 We simply compute the number of modifiers and call the general
3108 function decode_modified_type to do the actual work.
3109*/
3110
3111static struct type *
1ab3bf1b
JG
3112decode_mod_fund_type (typedata)
3113 char *typedata;
35f5886e
FF
3114{
3115 struct type *typep = NULL;
3116 unsigned short modcount;
13b5a7ff 3117 int nbytes;
35f5886e
FF
3118
3119 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3120
3121 nbytes = attribute_size (AT_mod_fund_type);
3122 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3123 typedata += nbytes;
3124
35f5886e 3125 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3126
3127 modcount -= attribute_size (AT_fund_type);
3128
35f5886e 3129 /* Now do the actual decoding */
13b5a7ff
FF
3130
3131 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3132 return (typep);
3133}
3134
3135/*
3136
3137LOCAL FUNCTION
3138
3139 decode_mod_u_d_type -- decode a modified user defined type
3140
3141SYNOPSIS
3142
3143 static struct type *decode_mod_u_d_type (char *typedata)
3144
3145DESCRIPTION
3146
3147 Decode a block of data containing a modified user defined
3148 type specification. TYPEDATA is a pointer to the block,
3149 which consists of a two byte length, containing the size
3150 of the rest of the block. At the end of the block is a
3151 four byte value that gives a reference to a user defined type.
3152 Everything in between are type modifiers.
3153
3154 We simply compute the number of modifiers and call the general
3155 function decode_modified_type to do the actual work.
3156*/
3157
3158static struct type *
1ab3bf1b
JG
3159decode_mod_u_d_type (typedata)
3160 char *typedata;
35f5886e
FF
3161{
3162 struct type *typep = NULL;
3163 unsigned short modcount;
13b5a7ff 3164 int nbytes;
35f5886e
FF
3165
3166 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3167
3168 nbytes = attribute_size (AT_mod_u_d_type);
3169 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3170 typedata += nbytes;
3171
35f5886e 3172 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3173
3174 modcount -= attribute_size (AT_user_def_type);
3175
35f5886e 3176 /* Now do the actual decoding */
13b5a7ff
FF
3177
3178 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3179 return (typep);
3180}
3181
3182/*
3183
3184LOCAL FUNCTION
3185
3186 decode_modified_type -- decode modified user or fundamental type
3187
3188SYNOPSIS
3189
1c92ca6f 3190 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3191 unsigned short modcount, int mtype)
3192
3193DESCRIPTION
3194
3195 Decode a modified type, either a modified fundamental type or
3196 a modified user defined type. MODIFIERS is a pointer to the
3197 block of bytes that define MODCOUNT modifiers. Immediately
3198 following the last modifier is a short containing the fundamental
3199 type or a long containing the reference to the user defined
3200 type. Which one is determined by MTYPE, which is either
3201 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3202 type we are generating.
3203
3204 We call ourself recursively to generate each modified type,`
3205 until MODCOUNT reaches zero, at which point we have consumed
3206 all the modifiers and generate either the fundamental type or
3207 user defined type. When the recursion unwinds, each modifier
3208 is applied in turn to generate the full modified type.
3209
3210NOTES
3211
3212 If we find a modifier that we don't recognize, and it is not one
3213 of those reserved for application specific use, then we issue a
3214 warning and simply ignore the modifier.
3215
3216BUGS
3217
3218 We currently ignore MOD_const and MOD_volatile. (FIXME)
3219
3220 */
3221
3222static struct type *
1ab3bf1b 3223decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3224 char *modifiers;
1ab3bf1b
JG
3225 unsigned int modcount;
3226 int mtype;
35f5886e
FF
3227{
3228 struct type *typep = NULL;
3229 unsigned short fundtype;
13b5a7ff 3230 DIE_REF die_ref;
1c92ca6f 3231 char modifier;
13b5a7ff 3232 int nbytes;
35f5886e
FF
3233
3234 if (modcount == 0)
3235 {
3236 switch (mtype)
3237 {
3238 case AT_mod_fund_type:
13b5a7ff
FF
3239 nbytes = attribute_size (AT_fund_type);
3240 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3241 current_objfile);
35f5886e
FF
3242 typep = decode_fund_type (fundtype);
3243 break;
3244 case AT_mod_u_d_type:
13b5a7ff
FF
3245 nbytes = attribute_size (AT_user_def_type);
3246 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3247 current_objfile);
3248 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3249 {
13b5a7ff 3250 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3251 }
3252 break;
3253 default:
51b80b00 3254 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3255 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3256 break;
3257 }
3258 }
3259 else
3260 {
3261 modifier = *modifiers++;
3262 typep = decode_modified_type (modifiers, --modcount, mtype);
3263 switch (modifier)
3264 {
13b5a7ff
FF
3265 case MOD_pointer_to:
3266 typep = lookup_pointer_type (typep);
3267 break;
3268 case MOD_reference_to:
3269 typep = lookup_reference_type (typep);
3270 break;
3271 case MOD_const:
51b80b00 3272 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3273 break;
3274 case MOD_volatile:
51b80b00 3275 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3276 break;
3277 default:
1c92ca6f
FF
3278 if (!(MOD_lo_user <= (unsigned char) modifier
3279 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3280 {
51b80b00 3281 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3282 }
3283 break;
35f5886e
FF
3284 }
3285 }
3286 return (typep);
3287}
3288
3289/*
3290
3291LOCAL FUNCTION
3292
3293 decode_fund_type -- translate basic DWARF type to gdb base type
3294
3295DESCRIPTION
3296
3297 Given an integer that is one of the fundamental DWARF types,
3298 translate it to one of the basic internal gdb types and return
3299 a pointer to the appropriate gdb type (a "struct type *").
3300
3301NOTES
3302
85f0a848
FF
3303 For robustness, if we are asked to translate a fundamental
3304 type that we are unprepared to deal with, we return int so
3305 callers can always depend upon a valid type being returned,
3306 and so gdb may at least do something reasonable by default.
3307 If the type is not in the range of those types defined as
3308 application specific types, we also issue a warning.
35f5886e
FF
3309*/
3310
3311static struct type *
1ab3bf1b
JG
3312decode_fund_type (fundtype)
3313 unsigned int fundtype;
35f5886e
FF
3314{
3315 struct type *typep = NULL;
3316
3317 switch (fundtype)
3318 {
3319
3320 case FT_void:
bf229b4e 3321 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3322 break;
3323
1ab3bf1b 3324 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3325 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3326 break;
3327
35f5886e 3328 case FT_pointer: /* (void *) */
bf229b4e 3329 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3330 typep = lookup_pointer_type (typep);
35f5886e
FF
3331 break;
3332
3333 case FT_char:
bf229b4e 3334 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3335 break;
3336
35f5886e 3337 case FT_signed_char:
bf229b4e 3338 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3339 break;
3340
3341 case FT_unsigned_char:
bf229b4e 3342 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3343 break;
3344
3345 case FT_short:
bf229b4e 3346 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3347 break;
3348
35f5886e 3349 case FT_signed_short:
bf229b4e 3350 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3351 break;
3352
3353 case FT_unsigned_short:
bf229b4e 3354 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3355 break;
3356
3357 case FT_integer:
bf229b4e 3358 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3359 break;
3360
35f5886e 3361 case FT_signed_integer:
bf229b4e 3362 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3363 break;
3364
3365 case FT_unsigned_integer:
bf229b4e 3366 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3367 break;
3368
3369 case FT_long:
bf229b4e 3370 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3371 break;
3372
35f5886e 3373 case FT_signed_long:
bf229b4e 3374 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3375 break;
3376
1ab3bf1b 3377 case FT_unsigned_long:
bf229b4e 3378 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3379 break;
3380
1ab3bf1b 3381 case FT_long_long:
bf229b4e 3382 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3383 break;
1ab3bf1b
JG
3384
3385 case FT_signed_long_long:
bf229b4e 3386 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3387 break;
1ab3bf1b
JG
3388
3389 case FT_unsigned_long_long:
bf229b4e 3390 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3391 break;
1ab3bf1b
JG
3392
3393 case FT_float:
bf229b4e 3394 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3395 break;
3396
1ab3bf1b 3397 case FT_dbl_prec_float:
bf229b4e 3398 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3399 break;
3400
3401 case FT_ext_prec_float:
bf229b4e 3402 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3403 break;
3404
3405 case FT_complex:
bf229b4e 3406 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3407 break;
3408
3409 case FT_dbl_prec_complex:
bf229b4e 3410 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3411 break;
3412
1ab3bf1b 3413 case FT_ext_prec_complex:
bf229b4e 3414 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3415 break;
1ab3bf1b 3416
35f5886e
FF
3417 }
3418
85f0a848 3419 if (typep == NULL)
35f5886e 3420 {
85f0a848
FF
3421 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3422 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3423 {
51b80b00 3424 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3425 }
35f5886e
FF
3426 }
3427
3428 return (typep);
3429}
3430
3431/*
3432
3433LOCAL FUNCTION
3434
3435 create_name -- allocate a fresh copy of a string on an obstack
3436
3437DESCRIPTION
3438
3439 Given a pointer to a string and a pointer to an obstack, allocates
3440 a fresh copy of the string on the specified obstack.
3441
3442*/
3443
3444static char *
1ab3bf1b
JG
3445create_name (name, obstackp)
3446 char *name;
3447 struct obstack *obstackp;
35f5886e
FF
3448{
3449 int length;
3450 char *newname;
3451
3452 length = strlen (name) + 1;
3453 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3454 strcpy (newname, name);
35f5886e
FF
3455 return (newname);
3456}
3457
3458/*
3459
3460LOCAL FUNCTION
3461
3462 basicdieinfo -- extract the minimal die info from raw die data
3463
3464SYNOPSIS
3465
95967e73
FF
3466 void basicdieinfo (char *diep, struct dieinfo *dip,
3467 struct objfile *objfile)
35f5886e
FF
3468
3469DESCRIPTION
3470
3471 Given a pointer to raw DIE data, and a pointer to an instance of a
3472 die info structure, this function extracts the basic information
3473 from the DIE data required to continue processing this DIE, along
3474 with some bookkeeping information about the DIE.
3475
3476 The information we absolutely must have includes the DIE tag,
3477 and the DIE length. If we need the sibling reference, then we
3478 will have to call completedieinfo() to process all the remaining
3479 DIE information.
3480
3481 Note that since there is no guarantee that the data is properly
3482 aligned in memory for the type of access required (indirection
95967e73
FF
3483 through anything other than a char pointer), and there is no
3484 guarantee that it is in the same byte order as the gdb host,
3485 we call a function which deals with both alignment and byte
3486 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3487
3488 We also take care of some other basic things at this point, such
3489 as ensuring that the instance of the die info structure starts
3490 out completely zero'd and that curdie is initialized for use
3491 in error reporting if we have a problem with the current die.
3492
3493NOTES
3494
3495 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3496 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3497 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3498 are forced to be TAG_padding DIES.
3499
13b5a7ff
FF
3500 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3501 that if a padding DIE is used for alignment and the amount needed is
3502 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3503 enough to align to the next alignment boundry.
4090fe1c
FF
3504
3505 We do some basic sanity checking here, such as verifying that the
3506 length of the die would not cause it to overrun the recorded end of
3507 the buffer holding the DIE info. If we find a DIE that is either
3508 too small or too large, we force it's length to zero which should
3509 cause the caller to take appropriate action.
35f5886e
FF
3510 */
3511
3512static void
95967e73 3513basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3514 struct dieinfo *dip;
3515 char *diep;
95967e73 3516 struct objfile *objfile;
35f5886e
FF
3517{
3518 curdie = dip;
4ed3a9ea 3519 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3520 dip -> die = diep;
13b5a7ff
FF
3521 dip -> die_ref = dbroff + (diep - dbbase);
3522 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3523 objfile);
4090fe1c
FF
3524 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3525 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3526 {
51b80b00 3527 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3528 dip -> die_length = 0;
35f5886e 3529 }
13b5a7ff 3530 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3531 {
13b5a7ff 3532 dip -> die_tag = TAG_padding;
35f5886e
FF
3533 }
3534 else
3535 {
13b5a7ff
FF
3536 diep += SIZEOF_DIE_LENGTH;
3537 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3538 objfile);
35f5886e
FF
3539 }
3540}
3541
3542/*
3543
3544LOCAL FUNCTION
3545
3546 completedieinfo -- finish reading the information for a given DIE
3547
3548SYNOPSIS
3549
95967e73 3550 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3551
3552DESCRIPTION
3553
3554 Given a pointer to an already partially initialized die info structure,
3555 scan the raw DIE data and finish filling in the die info structure
3556 from the various attributes found.
3557
3558 Note that since there is no guarantee that the data is properly
3559 aligned in memory for the type of access required (indirection
95967e73
FF
3560 through anything other than a char pointer), and there is no
3561 guarantee that it is in the same byte order as the gdb host,
3562 we call a function which deals with both alignment and byte
3563 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3564
3565NOTES
3566
3567 Each time we are called, we increment the diecount variable, which
3568 keeps an approximate count of the number of dies processed for
3569 each compilation unit. This information is presented to the user
3570 if the info_verbose flag is set.
3571
3572 */
3573
3574static void
95967e73 3575completedieinfo (dip, objfile)
1ab3bf1b 3576 struct dieinfo *dip;
95967e73 3577 struct objfile *objfile;
35f5886e
FF
3578{
3579 char *diep; /* Current pointer into raw DIE data */
3580 char *end; /* Terminate DIE scan here */
3581 unsigned short attr; /* Current attribute being scanned */
3582 unsigned short form; /* Form of the attribute */
13b5a7ff 3583 int nbytes; /* Size of next field to read */
35f5886e
FF
3584
3585 diecount++;
3586 diep = dip -> die;
13b5a7ff
FF
3587 end = diep + dip -> die_length;
3588 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3589 while (diep < end)
3590 {
13b5a7ff
FF
3591 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3592 diep += SIZEOF_ATTRIBUTE;
3593 if ((nbytes = attribute_size (attr)) == -1)
3594 {
51b80b00 3595 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3596 diep = end;
3597 continue;
3598 }
35f5886e
FF
3599 switch (attr)
3600 {
3601 case AT_fund_type:
13b5a7ff
FF
3602 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3603 objfile);
35f5886e
FF
3604 break;
3605 case AT_ordering:
13b5a7ff
FF
3606 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3607 objfile);
35f5886e
FF
3608 break;
3609 case AT_bit_offset:
13b5a7ff
FF
3610 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3611 objfile);
35f5886e 3612 break;
35f5886e 3613 case AT_sibling:
13b5a7ff
FF
3614 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3615 objfile);
35f5886e
FF
3616 break;
3617 case AT_stmt_list:
13b5a7ff
FF
3618 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
2d6186f4 3620 dip -> has_at_stmt_list = 1;
35f5886e
FF
3621 break;
3622 case AT_low_pc:
13b5a7ff
FF
3623 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 objfile);
4d315a07 3625 dip -> at_low_pc += baseaddr;
2d6186f4 3626 dip -> has_at_low_pc = 1;
35f5886e
FF
3627 break;
3628 case AT_high_pc:
13b5a7ff
FF
3629 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3630 objfile);
4d315a07 3631 dip -> at_high_pc += baseaddr;
35f5886e
FF
3632 break;
3633 case AT_language:
13b5a7ff
FF
3634 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3635 objfile);
35f5886e
FF
3636 break;
3637 case AT_user_def_type:
13b5a7ff
FF
3638 dip -> at_user_def_type = target_to_host (diep, nbytes,
3639 GET_UNSIGNED, objfile);
35f5886e
FF
3640 break;
3641 case AT_byte_size:
13b5a7ff
FF
3642 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3643 objfile);
50055e94 3644 dip -> has_at_byte_size = 1;
35f5886e
FF
3645 break;
3646 case AT_bit_size:
13b5a7ff
FF
3647 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 objfile);
35f5886e
FF
3649 break;
3650 case AT_member:
13b5a7ff
FF
3651 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
35f5886e
FF
3653 break;
3654 case AT_discr:
13b5a7ff
FF
3655 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
35f5886e 3657 break;
35f5886e
FF
3658 case AT_location:
3659 dip -> at_location = diep;
3660 break;
3661 case AT_mod_fund_type:
3662 dip -> at_mod_fund_type = diep;
3663 break;
3664 case AT_subscr_data:
3665 dip -> at_subscr_data = diep;
3666 break;
3667 case AT_mod_u_d_type:
3668 dip -> at_mod_u_d_type = diep;
3669 break;
35f5886e
FF
3670 case AT_element_list:
3671 dip -> at_element_list = diep;
768be6e1
FF
3672 dip -> short_element_list = 0;
3673 break;
3674 case AT_short_element_list:
3675 dip -> at_element_list = diep;
3676 dip -> short_element_list = 1;
35f5886e
FF
3677 break;
3678 case AT_discr_value:
3679 dip -> at_discr_value = diep;
3680 break;
3681 case AT_string_length:
3682 dip -> at_string_length = diep;
3683 break;
3684 case AT_name:
3685 dip -> at_name = diep;
3686 break;
3687 case AT_comp_dir:
d4902ab0
FF
3688 /* For now, ignore any "hostname:" portion, since gdb doesn't
3689 know how to deal with it. (FIXME). */
3690 dip -> at_comp_dir = strrchr (diep, ':');
3691 if (dip -> at_comp_dir != NULL)
3692 {
3693 dip -> at_comp_dir++;
3694 }
3695 else
3696 {
3697 dip -> at_comp_dir = diep;
3698 }
35f5886e
FF
3699 break;
3700 case AT_producer:
3701 dip -> at_producer = diep;
3702 break;
35f5886e 3703 case AT_start_scope:
13b5a7ff
FF
3704 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3705 objfile);
35f5886e
FF
3706 break;
3707 case AT_stride_size:
13b5a7ff
FF
3708 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3709 objfile);
35f5886e
FF
3710 break;
3711 case AT_src_info:
13b5a7ff
FF
3712 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3713 objfile);
35f5886e
FF
3714 break;
3715 case AT_prototyped:
13b5a7ff 3716 dip -> at_prototyped = diep;
35f5886e 3717 break;
35f5886e
FF
3718 default:
3719 /* Found an attribute that we are unprepared to handle. However
3720 it is specifically one of the design goals of DWARF that
3721 consumers should ignore unknown attributes. As long as the
3722 form is one that we recognize (so we know how to skip it),
3723 we can just ignore the unknown attribute. */
3724 break;
3725 }
13b5a7ff 3726 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3727 switch (form)
3728 {
3729 case FORM_DATA2:
13b5a7ff 3730 diep += 2;
35f5886e
FF
3731 break;
3732 case FORM_DATA4:
13b5a7ff
FF
3733 case FORM_REF:
3734 diep += 4;
35f5886e
FF
3735 break;
3736 case FORM_DATA8:
13b5a7ff 3737 diep += 8;
35f5886e
FF
3738 break;
3739 case FORM_ADDR:
13b5a7ff 3740 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3741 break;
3742 case FORM_BLOCK2:
13b5a7ff 3743 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3744 break;
3745 case FORM_BLOCK4:
13b5a7ff 3746 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3747 break;
3748 case FORM_STRING:
3749 diep += strlen (diep) + 1;
3750 break;
3751 default:
51b80b00 3752 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3753 diep = end;
3754 break;
3755 }
3756 }
3757}
95967e73 3758
13b5a7ff 3759/*
95967e73 3760
13b5a7ff
FF
3761LOCAL FUNCTION
3762
3763 target_to_host -- swap in target data to host
3764
3765SYNOPSIS
3766
3767 target_to_host (char *from, int nbytes, int signextend,
3768 struct objfile *objfile)
3769
3770DESCRIPTION
3771
3772 Given pointer to data in target format in FROM, a byte count for
3773 the size of the data in NBYTES, a flag indicating whether or not
3774 the data is signed in SIGNEXTEND, and a pointer to the current
3775 objfile in OBJFILE, convert the data to host format and return
3776 the converted value.
3777
3778NOTES
3779
3780 FIXME: If we read data that is known to be signed, and expect to
3781 use it as signed data, then we need to explicitly sign extend the
3782 result until the bfd library is able to do this for us.
3783
3784 */
3785
3786static unsigned long
3787target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3788 char *from;
3789 int nbytes;
13b5a7ff 3790 int signextend; /* FIXME: Unused */
95967e73
FF
3791 struct objfile *objfile;
3792{
13b5a7ff 3793 unsigned long rtnval;
95967e73
FF
3794
3795 switch (nbytes)
3796 {
95967e73 3797 case 8:
13b5a7ff 3798 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3799 break;
95967e73 3800 case 4:
13b5a7ff 3801 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3802 break;
3803 case 2:
13b5a7ff 3804 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3805 break;
3806 case 1:
13b5a7ff 3807 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3808 break;
3809 default:
51b80b00 3810 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3811 rtnval = 0;
95967e73
FF
3812 break;
3813 }
13b5a7ff 3814 return (rtnval);
95967e73
FF
3815}
3816
13b5a7ff
FF
3817/*
3818
3819LOCAL FUNCTION
3820
3821 attribute_size -- compute size of data for a DWARF attribute
3822
3823SYNOPSIS
3824
3825 static int attribute_size (unsigned int attr)
3826
3827DESCRIPTION
3828
3829 Given a DWARF attribute in ATTR, compute the size of the first
3830 piece of data associated with this attribute and return that
3831 size.
3832
3833 Returns -1 for unrecognized attributes.
3834
3835 */
3836
3837static int
3838attribute_size (attr)
3839 unsigned int attr;
3840{
3841 int nbytes; /* Size of next data for this attribute */
3842 unsigned short form; /* Form of the attribute */
3843
3844 form = FORM_FROM_ATTR (attr);
3845 switch (form)
3846 {
3847 case FORM_STRING: /* A variable length field is next */
3848 nbytes = 0;
3849 break;
3850 case FORM_DATA2: /* Next 2 byte field is the data itself */
3851 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3852 nbytes = 2;
3853 break;
3854 case FORM_DATA4: /* Next 4 byte field is the data itself */
3855 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3856 case FORM_REF: /* Next 4 byte field is a DIE offset */
3857 nbytes = 4;
3858 break;
3859 case FORM_DATA8: /* Next 8 byte field is the data itself */
3860 nbytes = 8;
3861 break;
3862 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3863 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3864 break;
3865 default:
51b80b00 3866 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3867 nbytes = -1;
3868 break;
3869 }
3870 return (nbytes);
3871}
This page took 0.311788 seconds and 4 git commands to generate.