* rs6000-tdep.c (single_step): Misc cleanups (CORE_ADDR not int,
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
1ab3bf1b
JG
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/*
23
24FIXME: Figure out how to get the frame pointer register number in the
25execution environment of the target. Remove R_FP kludge
26
27FIXME: Add generation of dependencies list to partial symtab code.
28
35f5886e
FF
29FIXME: Resolve minor differences between what information we put in the
30partial symbol table and what dbxread puts in. For example, we don't yet
31put enum constants there. And dbxread seems to invent a lot of typedefs
32we never see. Use the new printpsym command to see the partial symbol table
33contents.
34
35f5886e
FF
35FIXME: Figure out a better way to tell gdb about the name of the function
36contain the user's entry point (I.E. main())
37
35f5886e
FF
38FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39other things to work on, if you get bored. :-)
40
41*/
4d315a07 42
d747e0af 43#include "defs.h"
35f5886e
FF
44#include "bfd.h"
45#include "symtab.h"
1ab3bf1b 46#include "gdbtypes.h"
35f5886e 47#include "symfile.h"
5e2e79f8 48#include "objfiles.h"
13b5a7ff 49#include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
f5f0679a 50#include "elf/dwarf.h"
4d315a07 51#include "buildsym.h"
2dbde378 52#include "demangle.h"
bf229b4e
FF
53#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54#include "language.h"
51b80b00 55#include "complaints.h"
35f5886e 56
d5931d79
JG
57#include <fcntl.h>
58#include <string.h>
603900c7 59#include <sys/types.h>
51b80b00 60
d5931d79
JG
61#ifndef NO_SYS_FILE
62#include <sys/file.h>
63#endif
64
65/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66#ifndef L_SET
67#define L_SET 0
68#endif
69
51b80b00
FF
70/* Some macros to provide DIE info for complaints. */
71
72#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75/* Complaints that can be issued during DWARF debug info reading. */
76
77struct complaint no_bfd_get_N =
78{
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80};
81
82struct complaint malformed_die =
83{
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85};
86
87struct complaint bad_die_ref =
88{
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90};
91
92struct complaint unknown_attribute_form =
93{
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95};
96
97struct complaint unknown_attribute_length =
98{
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100};
101
102struct complaint unexpected_fund_type =
103{
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105};
106
107struct complaint unknown_type_modifier =
108{
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110};
111
112struct complaint volatile_ignored =
113{
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115};
116
117struct complaint const_ignored =
118{
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120};
121
122struct complaint botched_modified_type =
123{
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125};
126
127struct complaint op_deref2 =
128{
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130};
131
132struct complaint op_deref4 =
133{
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135};
136
137struct complaint basereg_not_handled =
138{
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140};
141
142struct complaint dup_user_type_allocation =
143{
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145};
146
147struct complaint dup_user_type_definition =
148{
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150};
151
152struct complaint missing_tag =
153{
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155};
156
157struct complaint bad_array_element_type =
158{
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160};
161
162struct complaint subscript_data_items =
163{
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165};
166
167struct complaint unhandled_array_subscript_format =
168{
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170};
171
172struct complaint unknown_array_subscript_format =
173{
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175};
176
177struct complaint not_row_major =
178{
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180};
35f5886e
FF
181
182#ifndef R_FP /* FIXME */
183#define R_FP 14 /* Kludge to get frame pointer register number */
184#endif
185
13b5a7ff 186typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 187
4d315a07
FF
188#ifndef GCC_PRODUCER
189#define GCC_PRODUCER "GNU C "
190#endif
35f5886e 191
2dbde378
FF
192#ifndef GPLUS_PRODUCER
193#define GPLUS_PRODUCER "GNU C++ "
194#endif
195
196#ifndef LCC_PRODUCER
3dc755fb 197#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
198#endif
199
93bb6e65
FF
200/* start-sanitize-chill */
201#ifndef CHILL_PRODUCER
202#define CHILL_PRODUCER "GNU Chill "
203#endif
204/* end-sanitize-chill */
205
13b5a7ff
FF
206/* Flags to target_to_host() that tell whether or not the data object is
207 expected to be signed. Used, for example, when fetching a signed
208 integer in the target environment which is used as a signed integer
209 in the host environment, and the two environments have different sized
210 ints. In this case, *somebody* has to sign extend the smaller sized
211 int. */
212
213#define GET_UNSIGNED 0 /* No sign extension required */
214#define GET_SIGNED 1 /* Sign extension required */
215
216/* Defines for things which are specified in the document "DWARF Debugging
217 Information Format" published by UNIX International, Programming Languages
218 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
219
220#define SIZEOF_DIE_LENGTH 4
221#define SIZEOF_DIE_TAG 2
222#define SIZEOF_ATTRIBUTE 2
223#define SIZEOF_FORMAT_SPECIFIER 1
224#define SIZEOF_FMT_FT 2
225#define SIZEOF_LINETBL_LENGTH 4
226#define SIZEOF_LINETBL_LINENO 4
227#define SIZEOF_LINETBL_STMT 2
228#define SIZEOF_LINETBL_DELTA 4
229#define SIZEOF_LOC_ATOM_CODE 1
230
231#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
232
233/* Macros that return the sizes of various types of data in the target
234 environment.
235
2d6d969c
FF
236 FIXME: Currently these are just compile time constants (as they are in
237 other parts of gdb as well). They need to be able to get the right size
238 either from the bfd or possibly from the DWARF info. It would be nice if
239 the DWARF producer inserted DIES that describe the fundamental types in
240 the target environment into the DWARF info, similar to the way dbx stabs
241 producers produce information about their fundamental types. */
242
243#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
244#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 245
768be6e1
FF
246/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
247 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
248 However, the Issue 2 DWARF specification from AT&T defines it as
249 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
250 For backwards compatibility with the AT&T compiler produced executables
251 we define AT_short_element_list for this variant. */
252
253#define AT_short_element_list (0x00f0|FORM_BLOCK2)
254
255/* External variables referenced. */
256
35f5886e 257extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 258extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
259
260/* The DWARF debugging information consists of two major pieces,
261 one is a block of DWARF Information Entries (DIE's) and the other
262 is a line number table. The "struct dieinfo" structure contains
263 the information for a single DIE, the one currently being processed.
264
265 In order to make it easier to randomly access the attribute fields
13b5a7ff 266 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
267 each DIE is scanned and an instance of the "struct dieinfo"
268 structure is initialized.
269
270 Initialization is done in two levels. The first, done by basicdieinfo(),
271 just initializes those fields that are vital to deciding whether or not
272 to use this DIE, how to skip past it, etc. The second, done by the
273 function completedieinfo(), fills in the rest of the information.
274
275 Attributes which have block forms are not interpreted at the time
276 the DIE is scanned, instead we just save pointers to the start
277 of their value fields.
278
279 Some fields have a flag <name>_p that is set when the value of the
280 field is valid (I.E. we found a matching attribute in the DIE). Since
281 we may want to test for the presence of some attributes in the DIE,
2d6186f4 282 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
283 we need someway to note that we found such an attribute.
284
285 */
286
287typedef char BLOCK;
288
289struct dieinfo {
13b5a7ff
FF
290 char * die; /* Pointer to the raw DIE data */
291 unsigned long die_length; /* Length of the raw DIE data */
292 DIE_REF die_ref; /* Offset of this DIE */
293 unsigned short die_tag; /* Tag for this DIE */
294 unsigned long at_padding;
295 unsigned long at_sibling;
296 BLOCK * at_location;
297 char * at_name;
298 unsigned short at_fund_type;
299 BLOCK * at_mod_fund_type;
300 unsigned long at_user_def_type;
301 BLOCK * at_mod_u_d_type;
302 unsigned short at_ordering;
303 BLOCK * at_subscr_data;
304 unsigned long at_byte_size;
305 unsigned short at_bit_offset;
306 unsigned long at_bit_size;
307 BLOCK * at_element_list;
308 unsigned long at_stmt_list;
309 unsigned long at_low_pc;
310 unsigned long at_high_pc;
311 unsigned long at_language;
312 unsigned long at_member;
313 unsigned long at_discr;
314 BLOCK * at_discr_value;
13b5a7ff
FF
315 BLOCK * at_string_length;
316 char * at_comp_dir;
317 char * at_producer;
13b5a7ff
FF
318 unsigned long at_start_scope;
319 unsigned long at_stride_size;
320 unsigned long at_src_info;
321 char * at_prototyped;
322 unsigned int has_at_low_pc:1;
323 unsigned int has_at_stmt_list:1;
50055e94 324 unsigned int has_at_byte_size:1;
13b5a7ff 325 unsigned int short_element_list:1;
35f5886e
FF
326};
327
328static int diecount; /* Approximate count of dies for compilation unit */
329static struct dieinfo *curdie; /* For warnings and such */
330
331static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 332static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
333static int dbroff; /* Relative offset from start of .debug section */
334static char *lnbase; /* Base pointer to line section */
335static int isreg; /* Kludge to identify register variables */
a5bd5ba6 336static int offreg; /* Kludge to identify basereg references */
35f5886e 337
2670f34d 338/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
339 the section_offsets structure used by dbxread (once this is done,
340 pass the appropriate section number to end_symtab). */
35f5886e
FF
341static CORE_ADDR baseaddr; /* Add to each symbol value */
342
2670f34d
JG
343/* The section offsets used in the current psymtab or symtab. FIXME,
344 only used to pass one value (baseaddr) at the moment. */
345static struct section_offsets *base_section_offsets;
346
35f5886e
FF
347/* Each partial symbol table entry contains a pointer to private data for the
348 read_symtab() function to use when expanding a partial symbol table entry
349 to a full symbol table entry. For DWARF debugging info, this data is
350 contained in the following structure and macros are provided for easy
351 access to the members given a pointer to a partial symbol table entry.
352
353 dbfoff Always the absolute file offset to the start of the ".debug"
354 section for the file containing the DIE's being accessed.
355
356 dbroff Relative offset from the start of the ".debug" access to the
357 first DIE to be accessed. When building the partial symbol
358 table, this value will be zero since we are accessing the
359 entire ".debug" section. When expanding a partial symbol
360 table entry, this value will be the offset to the first
361 DIE for the compilation unit containing the symbol that
362 triggers the expansion.
363
364 dblength The size of the chunk of DIE's being examined, in bytes.
365
366 lnfoff The absolute file offset to the line table fragment. Ignored
367 when building partial symbol tables, but used when expanding
368 them, and contains the absolute file offset to the fragment
369 of the ".line" section containing the line numbers for the
370 current compilation unit.
371 */
372
373struct dwfinfo {
d5931d79 374 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
35f5886e
FF
375 int dbroff; /* Relative offset from start of .debug section */
376 int dblength; /* Size of the chunk of DIE's being examined */
d5931d79 377 file_ptr lnfoff; /* Absolute file offset to line table fragment */
35f5886e
FF
378};
379
380#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
381#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
382#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
383#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
384
4d315a07
FF
385/* The generic symbol table building routines have separate lists for
386 file scope symbols and all all other scopes (local scopes). So
387 we need to select the right one to pass to add_symbol_to_list().
388 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 389
4d315a07
FF
390 FIXME: The original dwarf code just treated the file scope as the first
391 local scope, and all other local scopes as nested local scopes, and worked
392 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 393
99140c31 394struct pending **list_in_scope = &file_symbols;
35f5886e
FF
395
396/* DIES which have user defined types or modified user defined types refer to
397 other DIES for the type information. Thus we need to associate the offset
398 of a DIE for a user defined type with a pointer to the type information.
399
400 Originally this was done using a simple but expensive algorithm, with an
401 array of unsorted structures, each containing an offset/type-pointer pair.
402 This array was scanned linearly each time a lookup was done. The result
403 was that gdb was spending over half it's startup time munging through this
404 array of pointers looking for a structure that had the right offset member.
405
406 The second attempt used the same array of structures, but the array was
407 sorted using qsort each time a new offset/type was recorded, and a binary
408 search was used to find the type pointer for a given DIE offset. This was
409 even slower, due to the overhead of sorting the array each time a new
410 offset/type pair was entered.
411
412 The third attempt uses a fixed size array of type pointers, indexed by a
413 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
414 we can divide any DIE offset by 4 to obtain a unique index into this fixed
415 size array. Since each element is a 4 byte pointer, it takes exactly as
416 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
417 compilation unit. But it gets freed as soon as we are done with it.
418 This has worked well in practice, as a reasonable tradeoff between memory
419 consumption and speed, without having to resort to much more complicated
420 algorithms. */
35f5886e
FF
421
422static struct type **utypes; /* Pointer to array of user type pointers */
423static int numutypes; /* Max number of user type pointers */
424
bf229b4e
FF
425/* Maintain an array of referenced fundamental types for the current
426 compilation unit being read. For DWARF version 1, we have to construct
427 the fundamental types on the fly, since no information about the
428 fundamental types is supplied. Each such fundamental type is created by
429 calling a language dependent routine to create the type, and then a
430 pointer to that type is then placed in the array at the index specified
431 by it's FT_<TYPENAME> value. The array has a fixed size set by the
432 FT_NUM_MEMBERS compile time constant, which is the number of predefined
433 fundamental types gdb knows how to construct. */
434
435static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
436
95ff889e
FF
437/* Record the language for the compilation unit which is currently being
438 processed. We know it once we have seen the TAG_compile_unit DIE,
439 and we need it while processing the DIE's for that compilation unit.
440 It is eventually saved in the symtab structure, but we don't finalize
441 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
442 compilation unit. We also need to get and save a pointer to the
443 language struct for this language, so we can call the language
444 dependent routines for doing things such as creating fundamental
445 types. */
95ff889e
FF
446
447static enum language cu_language;
bf229b4e 448static const struct language_defn *cu_language_defn;
95ff889e 449
35f5886e 450/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
451 about ordering within this file. */
452
13b5a7ff
FF
453static int
454attribute_size PARAMS ((unsigned int));
455
456static unsigned long
457target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 458
1ab3bf1b
JG
459static void
460add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
461
2dbde378
FF
462static void
463handle_producer PARAMS ((char *));
464
1ab3bf1b
JG
465static void
466read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 467
58050209 468static void
1ab3bf1b 469read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
470
471static void
1ab3bf1b
JG
472read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
473 struct objfile *));
35f5886e 474
35f5886e 475static void
1ab3bf1b 476scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 477
35f5886e 478static void
d5931d79
JG
479scan_compilation_units PARAMS ((char *, char *, file_ptr,
480 file_ptr, struct objfile *));
35f5886e
FF
481
482static void
1ab3bf1b 483add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e
FF
484
485static void
1ab3bf1b 486init_psymbol_list PARAMS ((struct objfile *, int));
35f5886e
FF
487
488static void
95967e73 489basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
490
491static void
95967e73 492completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
493
494static void
495dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
496
497static void
498psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e
FF
499
500static struct symtab *
1ab3bf1b 501read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
502
503static void
1ab3bf1b 504process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
505
506static void
1ab3bf1b
JG
507read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
508 struct objfile *));
35f5886e
FF
509
510static struct type *
84ffdec2 511decode_array_element_type PARAMS ((char *));
35f5886e
FF
512
513static struct type *
85f0a848 514decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
515
516static void
1ab3bf1b 517dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 518
9e4c1921 519static void
1ab3bf1b 520read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 521
ec16f701
FF
522static void
523read_tag_string_type PARAMS ((struct dieinfo *dip));
524
35f5886e 525static void
1ab3bf1b 526read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
527
528static void
1ab3bf1b 529read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
530
531static struct type *
1ab3bf1b 532struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
533
534static struct type *
1ab3bf1b 535enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 536
35f5886e 537static void
1ab3bf1b 538decode_line_numbers PARAMS ((char *));
35f5886e
FF
539
540static struct type *
1ab3bf1b 541decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
542
543static struct type *
1ab3bf1b 544decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
545
546static struct type *
1ab3bf1b 547decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
548
549static struct type *
1c92ca6f 550decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
551
552static struct type *
1ab3bf1b 553decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
554
555static char *
1ab3bf1b 556create_name PARAMS ((char *, struct obstack *));
35f5886e 557
35f5886e 558static struct type *
13b5a7ff 559lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
560
561static struct type *
13b5a7ff 562alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
563
564static struct symbol *
1ab3bf1b 565new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 566
95ff889e
FF
567static void
568synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
569 struct type *));
570
35f5886e 571static int
1ab3bf1b 572locval PARAMS ((char *));
35f5886e
FF
573
574static void
1ab3bf1b
JG
575record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
576 struct objfile *));
35f5886e 577
95ff889e
FF
578static void
579set_cu_language PARAMS ((struct dieinfo *));
580
bf229b4e
FF
581static struct type *
582dwarf_fundamental_type PARAMS ((struct objfile *, int));
583
584
585/*
586
587LOCAL FUNCTION
588
589 dwarf_fundamental_type -- lookup or create a fundamental type
590
591SYNOPSIS
592
593 struct type *
594 dwarf_fundamental_type (struct objfile *objfile, int typeid)
595
596DESCRIPTION
597
598 DWARF version 1 doesn't supply any fundamental type information,
599 so gdb has to construct such types. It has a fixed number of
600 fundamental types that it knows how to construct, which is the
601 union of all types that it knows how to construct for all languages
602 that it knows about. These are enumerated in gdbtypes.h.
603
604 As an example, assume we find a DIE that references a DWARF
605 fundamental type of FT_integer. We first look in the ftypes
606 array to see if we already have such a type, indexed by the
607 gdb internal value of FT_INTEGER. If so, we simply return a
608 pointer to that type. If not, then we ask an appropriate
609 language dependent routine to create a type FT_INTEGER, using
610 defaults reasonable for the current target machine, and install
611 that type in ftypes for future reference.
612
613RETURNS
614
615 Pointer to a fundamental type.
616
617*/
618
619static struct type *
620dwarf_fundamental_type (objfile, typeid)
621 struct objfile *objfile;
622 int typeid;
623{
624 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
625 {
626 error ("internal error - invalid fundamental type id %d", typeid);
627 }
628
629 /* Look for this particular type in the fundamental type vector. If one is
630 not found, create and install one appropriate for the current language
631 and the current target machine. */
632
633 if (ftypes[typeid] == NULL)
634 {
635 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
636 }
637
638 return (ftypes[typeid]);
639}
640
95ff889e
FF
641/*
642
643LOCAL FUNCTION
644
645 set_cu_language -- set local copy of language for compilation unit
646
647SYNOPSIS
648
649 void
650 set_cu_language (struct dieinfo *dip)
651
652DESCRIPTION
653
654 Decode the language attribute for a compilation unit DIE and
655 remember what the language was. We use this at various times
656 when processing DIE's for a given compilation unit.
657
658RETURNS
659
660 No return value.
661
662 */
663
664static void
665set_cu_language (dip)
666 struct dieinfo *dip;
667{
668 switch (dip -> at_language)
669 {
670 case LANG_C89:
671 case LANG_C:
672 cu_language = language_c;
673 break;
674 case LANG_C_PLUS_PLUS:
675 cu_language = language_cplus;
676 break;
19cfe25d 677 /* start-sanitize-chill */
e58de8a2
FF
678 case LANG_CHILL:
679 cu_language = language_chill;
680 break;
19cfe25d 681 /* end-sanitize-chill */
e58de8a2
FF
682 case LANG_MODULA2:
683 cu_language = language_m2;
684 break;
95ff889e
FF
685 case LANG_ADA83:
686 case LANG_COBOL74:
687 case LANG_COBOL85:
688 case LANG_FORTRAN77:
689 case LANG_FORTRAN90:
690 case LANG_PASCAL83:
2e4964ad 691 /* We don't know anything special about these yet. */
95ff889e
FF
692 cu_language = language_unknown;
693 break;
2e4964ad
FF
694 default:
695 /* If no at_language, try to deduce one from the filename */
696 cu_language = deduce_language_from_filename (dip -> at_name);
697 break;
95ff889e 698 }
bf229b4e 699 cu_language_defn = language_def (cu_language);
95ff889e
FF
700}
701
35f5886e
FF
702/*
703
704GLOBAL FUNCTION
705
706 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
707
708SYNOPSIS
709
d5931d79 710 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 711 struct section_offsets *section_offsets,
d5931d79
JG
712 int mainline, file_ptr dbfoff, unsigned int dbfsize,
713 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
714
715DESCRIPTION
716
717 This function is called upon to build partial symtabs from files
718 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
719
d5931d79 720 It is passed a bfd* containing the DIES
35f5886e
FF
721 and line number information, the corresponding filename for that
722 file, a base address for relocating the symbols, a flag indicating
723 whether or not this debugging information is from a "main symbol
724 table" rather than a shared library or dynamically linked file,
725 and file offset/size pairs for the DIE information and line number
726 information.
727
728RETURNS
729
730 No return value.
731
732 */
733
734void
d5931d79
JG
735dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
736 lnoffset, lnsize)
737 struct objfile *objfile;
2670f34d 738 struct section_offsets *section_offsets;
1ab3bf1b 739 int mainline;
d5931d79 740 file_ptr dbfoff;
4090fe1c 741 unsigned int dbfsize;
d5931d79 742 file_ptr lnoffset;
1ab3bf1b 743 unsigned int lnsize;
35f5886e 744{
d5931d79 745 bfd *abfd = objfile->obfd;
35f5886e
FF
746 struct cleanup *back_to;
747
95967e73 748 current_objfile = objfile;
4090fe1c 749 dbsize = dbfsize;
35f5886e
FF
750 dbbase = xmalloc (dbsize);
751 dbroff = 0;
d5931d79
JG
752 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
753 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
754 {
755 free (dbbase);
d5931d79 756 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
757 }
758 back_to = make_cleanup (free, dbbase);
759
760 /* If we are reinitializing, or if we have never loaded syms yet, init.
761 Since we have no idea how many DIES we are looking at, we just guess
762 some arbitrary value. */
763
13b5a7ff
FF
764 if (mainline || objfile -> global_psymbols.size == 0 ||
765 objfile -> static_psymbols.size == 0)
35f5886e 766 {
1ab3bf1b 767 init_psymbol_list (objfile, 1024);
35f5886e
FF
768 }
769
84ffdec2 770 /* Save the relocation factor where everybody can see it. */
f8b76e70 771
2670f34d
JG
772 base_section_offsets = section_offsets;
773 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 774
35f5886e
FF
775 /* Follow the compilation unit sibling chain, building a partial symbol
776 table entry for each one. Save enough information about each compilation
777 unit to locate the full DWARF information later. */
778
d5931d79 779 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 780
35f5886e 781 do_cleanups (back_to);
95967e73 782 current_objfile = NULL;
35f5886e
FF
783}
784
785
786/*
787
788LOCAL FUNCTION
789
1ab3bf1b 790 record_minimal_symbol -- add entry to gdb's minimal symbol table
35f5886e
FF
791
792SYNOPSIS
793
1ab3bf1b
JG
794 static void record_minimal_symbol (char *name, CORE_ADDR address,
795 enum minimal_symbol_type ms_type,
796 struct objfile *objfile)
35f5886e
FF
797
798DESCRIPTION
799
800 Given a pointer to the name of a symbol that should be added to the
1ab3bf1b 801 minimal symbol table, and the address associated with that
35f5886e 802 symbol, records this information for later use in building the
1ab3bf1b 803 minimal symbol table.
35f5886e 804
35f5886e
FF
805 */
806
807static void
1ab3bf1b
JG
808record_minimal_symbol (name, address, ms_type, objfile)
809 char *name;
810 CORE_ADDR address;
811 enum minimal_symbol_type ms_type;
812 struct objfile *objfile;
35f5886e 813{
1ab3bf1b
JG
814 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
815 prim_record_minimal_symbol (name, address, ms_type);
35f5886e
FF
816}
817
818/*
819
35f5886e
FF
820LOCAL FUNCTION
821
822 read_lexical_block_scope -- process all dies in a lexical block
823
824SYNOPSIS
825
826 static void read_lexical_block_scope (struct dieinfo *dip,
827 char *thisdie, char *enddie)
828
829DESCRIPTION
830
831 Process all the DIES contained within a lexical block scope.
832 Start a new scope, process the dies, and then close the scope.
833
834 */
835
836static void
1ab3bf1b
JG
837read_lexical_block_scope (dip, thisdie, enddie, objfile)
838 struct dieinfo *dip;
839 char *thisdie;
840 char *enddie;
841 struct objfile *objfile;
35f5886e 842{
4d315a07
FF
843 register struct context_stack *new;
844
4ed3a9ea 845 push_context (0, dip -> at_low_pc);
13b5a7ff 846 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
847 new = pop_context ();
848 if (local_symbols != NULL)
849 {
850 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 851 dip -> at_high_pc, objfile);
4d315a07
FF
852 }
853 local_symbols = new -> locals;
35f5886e
FF
854}
855
856/*
857
858LOCAL FUNCTION
859
860 lookup_utype -- look up a user defined type from die reference
861
862SYNOPSIS
863
13b5a7ff 864 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
865
866DESCRIPTION
867
868 Given a DIE reference, lookup the user defined type associated with
869 that DIE, if it has been registered already. If not registered, then
870 return NULL. Alloc_utype() can be called to register an empty
871 type for this reference, which will be filled in later when the
872 actual referenced DIE is processed.
873 */
874
875static struct type *
13b5a7ff
FF
876lookup_utype (die_ref)
877 DIE_REF die_ref;
35f5886e
FF
878{
879 struct type *type = NULL;
880 int utypeidx;
881
13b5a7ff 882 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
883 if ((utypeidx < 0) || (utypeidx >= numutypes))
884 {
51b80b00 885 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
886 }
887 else
888 {
889 type = *(utypes + utypeidx);
890 }
891 return (type);
892}
893
894
895/*
896
897LOCAL FUNCTION
898
899 alloc_utype -- add a user defined type for die reference
900
901SYNOPSIS
902
13b5a7ff 903 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
904
905DESCRIPTION
906
13b5a7ff 907 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
908 defined type UTYPEP, register that this reference has a user
909 defined type and either use the specified type in UTYPEP or
910 make a new empty type that will be filled in later.
911
912 We should only be called after calling lookup_utype() to verify that
13b5a7ff 913 there is not currently a type registered for DIE_REF.
35f5886e
FF
914 */
915
916static struct type *
13b5a7ff
FF
917alloc_utype (die_ref, utypep)
918 DIE_REF die_ref;
1ab3bf1b 919 struct type *utypep;
35f5886e
FF
920{
921 struct type **typep;
922 int utypeidx;
923
13b5a7ff 924 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
925 typep = utypes + utypeidx;
926 if ((utypeidx < 0) || (utypeidx >= numutypes))
927 {
bf229b4e 928 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 929 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
930 }
931 else if (*typep != NULL)
932 {
933 utypep = *typep;
51b80b00 934 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
935 }
936 else
937 {
938 if (utypep == NULL)
939 {
8050a57b 940 utypep = alloc_type (current_objfile);
35f5886e
FF
941 }
942 *typep = utypep;
943 }
944 return (utypep);
945}
946
947/*
948
949LOCAL FUNCTION
950
951 decode_die_type -- return a type for a specified die
952
953SYNOPSIS
954
955 static struct type *decode_die_type (struct dieinfo *dip)
956
957DESCRIPTION
958
959 Given a pointer to a die information structure DIP, decode the
960 type of the die and return a pointer to the decoded type. All
961 dies without specific types default to type int.
962 */
963
964static struct type *
1ab3bf1b
JG
965decode_die_type (dip)
966 struct dieinfo *dip;
35f5886e
FF
967{
968 struct type *type = NULL;
969
970 if (dip -> at_fund_type != 0)
971 {
972 type = decode_fund_type (dip -> at_fund_type);
973 }
974 else if (dip -> at_mod_fund_type != NULL)
975 {
976 type = decode_mod_fund_type (dip -> at_mod_fund_type);
977 }
978 else if (dip -> at_user_def_type)
979 {
980 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
981 {
982 type = alloc_utype (dip -> at_user_def_type, NULL);
983 }
984 }
985 else if (dip -> at_mod_u_d_type)
986 {
987 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
988 }
989 else
990 {
bf229b4e 991 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
992 }
993 return (type);
994}
995
996/*
997
998LOCAL FUNCTION
999
1000 struct_type -- compute and return the type for a struct or union
1001
1002SYNOPSIS
1003
1004 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 1005 char *enddie, struct objfile *objfile)
35f5886e
FF
1006
1007DESCRIPTION
1008
1009 Given pointer to a die information structure for a die which
715cafcb
FF
1010 defines a union or structure (and MUST define one or the other),
1011 and pointers to the raw die data that define the range of dies which
1012 define the members, compute and return the user defined type for the
1013 structure or union.
35f5886e
FF
1014 */
1015
1016static struct type *
1ab3bf1b
JG
1017struct_type (dip, thisdie, enddie, objfile)
1018 struct dieinfo *dip;
1019 char *thisdie;
1020 char *enddie;
1021 struct objfile *objfile;
35f5886e
FF
1022{
1023 struct type *type;
1024 struct nextfield {
1025 struct nextfield *next;
1026 struct field field;
1027 };
1028 struct nextfield *list = NULL;
1029 struct nextfield *new;
1030 int nfields = 0;
1031 int n;
1032 char *tpart1;
35f5886e 1033 struct dieinfo mbr;
8b5b6fae 1034 char *nextdie;
a8a69e63 1035#if !BITS_BIG_ENDIAN
50055e94 1036 int anonymous_size;
a8a69e63 1037#endif
35f5886e 1038
13b5a7ff 1039 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1040 {
5edf98d7 1041 /* No forward references created an empty type, so install one now */
13b5a7ff 1042 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1043 }
a3723a43 1044 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1045 switch (dip -> die_tag)
35f5886e 1046 {
95ff889e
FF
1047 case TAG_class_type:
1048 TYPE_CODE (type) = TYPE_CODE_CLASS;
1049 tpart1 = "class";
1050 break;
715cafcb 1051 case TAG_structure_type:
5edf98d7 1052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1053 tpart1 = "struct";
1054 break;
1055 case TAG_union_type:
1056 TYPE_CODE (type) = TYPE_CODE_UNION;
1057 tpart1 = "union";
1058 break;
1059 default:
1060 /* Should never happen */
1061 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1062 tpart1 = "???";
51b80b00 1063 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1064 break;
35f5886e 1065 }
5edf98d7
FF
1066 /* Some compilers try to be helpful by inventing "fake" names for
1067 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1068 Thanks, but no thanks... */
715cafcb
FF
1069 if (dip -> at_name != NULL
1070 && *dip -> at_name != '~'
1071 && *dip -> at_name != '.')
35f5886e 1072 {
95967e73 1073 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1ab3bf1b 1074 tpart1, " ", dip -> at_name);
35f5886e 1075 }
50055e94
FF
1076 /* Use whatever size is known. Zero is a valid size. We might however
1077 wish to check has_at_byte_size to make sure that some byte size was
1078 given explicitly, but DWARF doesn't specify that explicit sizes of
1079 zero have to present, so complaining about missing sizes should
1080 probably not be the default. */
1081 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1082 thisdie += dip -> die_length;
35f5886e
FF
1083 while (thisdie < enddie)
1084 {
95967e73
FF
1085 basicdieinfo (&mbr, thisdie, objfile);
1086 completedieinfo (&mbr, objfile);
13b5a7ff 1087 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1088 {
1089 break;
1090 }
8b5b6fae
FF
1091 else if (mbr.at_sibling != 0)
1092 {
1093 nextdie = dbbase + mbr.at_sibling - dbroff;
1094 }
1095 else
1096 {
13b5a7ff 1097 nextdie = thisdie + mbr.die_length;
8b5b6fae 1098 }
13b5a7ff 1099 switch (mbr.die_tag)
35f5886e
FF
1100 {
1101 case TAG_member:
1102 /* Get space to record the next field's data. */
1103 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1104 new -> next = list;
1105 list = new;
1106 /* Save the data. */
50e0dc41
FF
1107 list -> field.name =
1108 obsavestring (mbr.at_name, strlen (mbr.at_name),
1109 &objfile -> type_obstack);
35f5886e
FF
1110 list -> field.type = decode_die_type (&mbr);
1111 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1112 /* Handle bit fields. */
1113 list -> field.bitsize = mbr.at_bit_size;
1114#if BITS_BIG_ENDIAN
1115 /* For big endian bits, the at_bit_offset gives the additional
1116 bit offset from the MSB of the containing anonymous object to
1117 the MSB of the field. We don't have to do anything special
1118 since we don't need to know the size of the anonymous object. */
1119 list -> field.bitpos += mbr.at_bit_offset;
1120#else
1121 /* For little endian bits, we need to have a non-zero at_bit_size,
1122 so that we know we are in fact dealing with a bitfield. Compute
1123 the bit offset to the MSB of the anonymous object, subtract off
1124 the number of bits from the MSB of the field to the MSB of the
1125 object, and then subtract off the number of bits of the field
1126 itself. The result is the bit offset of the LSB of the field. */
1127 if (mbr.at_bit_size > 0)
1128 {
50055e94
FF
1129 if (mbr.has_at_byte_size)
1130 {
1131 /* The size of the anonymous object containing the bit field
1132 is explicit, so use the indicated size (in bytes). */
1133 anonymous_size = mbr.at_byte_size;
1134 }
1135 else
1136 {
1137 /* The size of the anonymous object containing the bit field
1138 matches the size of an object of the bit field's type.
1139 DWARF allows at_byte_size to be left out in such cases,
1140 as a debug information size optimization. */
1141 anonymous_size = TYPE_LENGTH (list -> field.type);
1142 }
4db8e515 1143 list -> field.bitpos +=
50055e94 1144 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
4db8e515
FF
1145 }
1146#endif
35f5886e
FF
1147 nfields++;
1148 break;
1149 default:
8b5b6fae 1150 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1151 break;
1152 }
8b5b6fae 1153 thisdie = nextdie;
35f5886e 1154 }
5edf98d7
FF
1155 /* Now create the vector of fields, and record how big it is. We may
1156 not even have any fields, if this DIE was generated due to a reference
1157 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1158 set, which clues gdb in to the fact that it needs to search elsewhere
1159 for the full structure definition. */
1160 if (nfields == 0)
35f5886e 1161 {
5edf98d7
FF
1162 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1163 }
1164 else
1165 {
1166 TYPE_NFIELDS (type) = nfields;
1167 TYPE_FIELDS (type) = (struct field *)
dac9734e 1168 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1169 /* Copy the saved-up fields into the field vector. */
1170 for (n = nfields; list; list = list -> next)
1171 {
1172 TYPE_FIELD (type, --n) = list -> field;
1173 }
1174 }
35f5886e
FF
1175 return (type);
1176}
1177
1178/*
1179
1180LOCAL FUNCTION
1181
1182 read_structure_scope -- process all dies within struct or union
1183
1184SYNOPSIS
1185
1186 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1187 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1188
1189DESCRIPTION
1190
1191 Called when we find the DIE that starts a structure or union
1192 scope (definition) to process all dies that define the members
1193 of the structure or union. DIP is a pointer to the die info
1194 struct for the DIE that names the structure or union.
1195
1196NOTES
1197
1198 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1199 the DIE has an at_name attribute, since it might be an anonymous
1200 structure or union. This gets the type entered into our set of
1201 user defined types.
1202
1203 However, if the structure is incomplete (an opaque struct/union)
1204 then suppress creating a symbol table entry for it since gdb only
1205 wants to find the one with the complete definition. Note that if
1206 it is complete, we just call new_symbol, which does it's own
1207 checking about whether the struct/union is anonymous or not (and
1208 suppresses creating a symbol table entry itself).
1209
35f5886e
FF
1210 */
1211
1212static void
1ab3bf1b
JG
1213read_structure_scope (dip, thisdie, enddie, objfile)
1214 struct dieinfo *dip;
1215 char *thisdie;
1216 char *enddie;
1217 struct objfile *objfile;
35f5886e
FF
1218{
1219 struct type *type;
1220 struct symbol *sym;
1221
8b5b6fae 1222 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1223 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1224 {
95ff889e
FF
1225 sym = new_symbol (dip, objfile);
1226 if (sym != NULL)
84ce6717
FF
1227 {
1228 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1229 if (cu_language == language_cplus)
1230 {
1231 synthesize_typedef (dip, objfile, type);
1232 }
84ce6717 1233 }
35f5886e
FF
1234 }
1235}
1236
1237/*
1238
1239LOCAL FUNCTION
1240
1241 decode_array_element_type -- decode type of the array elements
1242
1243SYNOPSIS
1244
1245 static struct type *decode_array_element_type (char *scan, char *end)
1246
1247DESCRIPTION
1248
1249 As the last step in decoding the array subscript information for an
1250 array DIE, we need to decode the type of the array elements. We are
1251 passed a pointer to this last part of the subscript information and
1252 must return the appropriate type. If the type attribute is not
1253 recognized, just warn about the problem and return type int.
1254 */
1255
1256static struct type *
84ffdec2 1257decode_array_element_type (scan)
1ab3bf1b 1258 char *scan;
35f5886e
FF
1259{
1260 struct type *typep;
13b5a7ff
FF
1261 DIE_REF die_ref;
1262 unsigned short attribute;
35f5886e 1263 unsigned short fundtype;
13b5a7ff 1264 int nbytes;
35f5886e 1265
13b5a7ff
FF
1266 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1267 current_objfile);
1268 scan += SIZEOF_ATTRIBUTE;
1269 if ((nbytes = attribute_size (attribute)) == -1)
1270 {
51b80b00 1271 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1272 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1273 }
1274 else
1275 {
1276 switch (attribute)
1277 {
1278 case AT_fund_type:
1279 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1280 current_objfile);
1281 typep = decode_fund_type (fundtype);
1282 break;
1283 case AT_mod_fund_type:
1284 typep = decode_mod_fund_type (scan);
1285 break;
1286 case AT_user_def_type:
1287 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1288 current_objfile);
1289 if ((typep = lookup_utype (die_ref)) == NULL)
1290 {
1291 typep = alloc_utype (die_ref, NULL);
1292 }
1293 break;
1294 case AT_mod_u_d_type:
1295 typep = decode_mod_u_d_type (scan);
1296 break;
1297 default:
51b80b00 1298 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1299 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1300 break;
1301 }
35f5886e
FF
1302 }
1303 return (typep);
1304}
1305
1306/*
1307
1308LOCAL FUNCTION
1309
85f0a848 1310 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1311
1312SYNOPSIS
1313
85f0a848
FF
1314 static struct type *
1315 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1316
1317DESCRIPTION
1318
1319 The array subscripts and the data type of the elements of an
1320 array are described by a list of data items, stored as a block
1321 of contiguous bytes. There is a data item describing each array
1322 dimension, and a final data item describing the element type.
1323 The data items are ordered the same as their appearance in the
1324 source (I.E. leftmost dimension first, next to leftmost second,
1325 etc).
1326
85f0a848
FF
1327 The data items describing each array dimension consist of four
1328 parts: (1) a format specifier, (2) type type of the subscript
1329 index, (3) a description of the low bound of the array dimension,
1330 and (4) a description of the high bound of the array dimension.
1331
1332 The last data item is the description of the type of each of
1333 the array elements.
1334
35f5886e 1335 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1336 containing the remaining data items, and a pointer to the first
1337 byte past the data. This function recursively decodes the
1338 remaining data items and returns a type.
1339
1340 If we somehow fail to decode some data, we complain about it
1341 and return a type "array of int".
35f5886e
FF
1342
1343BUGS
1344 FIXME: This code only implements the forms currently used
1345 by the AT&T and GNU C compilers.
1346
1347 The end pointer is supplied for error checking, maybe we should
1348 use it for that...
1349 */
1350
1351static struct type *
85f0a848 1352decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1353 char *scan;
1354 char *end;
35f5886e 1355{
85f0a848
FF
1356 struct type *typep = NULL; /* Array type we are building */
1357 struct type *nexttype; /* Type of each element (may be array) */
1358 struct type *indextype; /* Type of this index */
a8a69e63 1359 struct type *rangetype;
13b5a7ff
FF
1360 unsigned int format;
1361 unsigned short fundtype;
1362 unsigned long lowbound;
1363 unsigned long highbound;
1364 int nbytes;
35f5886e 1365
13b5a7ff
FF
1366 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1367 current_objfile);
1368 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1369 switch (format)
1370 {
1371 case FMT_ET:
84ffdec2 1372 typep = decode_array_element_type (scan);
35f5886e
FF
1373 break;
1374 case FMT_FT_C_C:
13b5a7ff
FF
1375 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1376 current_objfile);
85f0a848 1377 indextype = decode_fund_type (fundtype);
13b5a7ff 1378 scan += SIZEOF_FMT_FT;
160be0de
FF
1379 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1380 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1381 scan += nbytes;
1382 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1383 scan += nbytes;
85f0a848
FF
1384 nexttype = decode_subscript_data_item (scan, end);
1385 if (nexttype == NULL)
35f5886e 1386 {
85f0a848 1387 /* Munged subscript data or other problem, fake it. */
51b80b00 1388 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1389 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1390 }
a8a69e63
FF
1391 rangetype = create_range_type ((struct type *) NULL, indextype,
1392 lowbound, highbound);
1393 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1394 break;
1395 case FMT_FT_C_X:
1396 case FMT_FT_X_C:
1397 case FMT_FT_X_X:
1398 case FMT_UT_C_C:
1399 case FMT_UT_C_X:
1400 case FMT_UT_X_C:
1401 case FMT_UT_X_X:
51b80b00 1402 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1403 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1404 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1405 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1406 break;
1407 default:
51b80b00 1408 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1409 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1410 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1411 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1412 break;
1413 }
1414 return (typep);
1415}
1416
1417/*
1418
1419LOCAL FUNCTION
1420
4d315a07 1421 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1422
1423SYNOPSIS
1424
4d315a07 1425 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1426
1427DESCRIPTION
1428
1429 Extract all information from a TAG_array_type DIE and add to
1430 the user defined type vector.
1431 */
1432
1433static void
1ab3bf1b
JG
1434dwarf_read_array_type (dip)
1435 struct dieinfo *dip;
35f5886e
FF
1436{
1437 struct type *type;
af213624 1438 struct type *utype;
35f5886e
FF
1439 char *sub;
1440 char *subend;
13b5a7ff
FF
1441 unsigned short blocksz;
1442 int nbytes;
35f5886e
FF
1443
1444 if (dip -> at_ordering != ORD_row_major)
1445 {
1446 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1447 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1448 }
1449 if ((sub = dip -> at_subscr_data) != NULL)
1450 {
13b5a7ff
FF
1451 nbytes = attribute_size (AT_subscr_data);
1452 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1453 subend = sub + nbytes + blocksz;
1454 sub += nbytes;
85f0a848
FF
1455 type = decode_subscript_data_item (sub, subend);
1456 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1457 {
85f0a848
FF
1458 /* Install user defined type that has not been referenced yet. */
1459 alloc_utype (dip -> die_ref, type);
1460 }
1461 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1462 {
1463 /* Ick! A forward ref has already generated a blank type in our
1464 slot, and this type probably already has things pointing to it
1465 (which is what caused it to be created in the first place).
1466 If it's just a place holder we can plop our fully defined type
1467 on top of it. We can't recover the space allocated for our
1468 new type since it might be on an obstack, but we could reuse
1469 it if we kept a list of them, but it might not be worth it
1470 (FIXME). */
1471 *utype = *type;
35f5886e
FF
1472 }
1473 else
1474 {
85f0a848
FF
1475 /* Double ick! Not only is a type already in our slot, but
1476 someone has decorated it. Complain and leave it alone. */
51b80b00 1477 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1478 }
1479 }
1480}
1481
1482/*
1483
9e4c1921
FF
1484LOCAL FUNCTION
1485
1486 read_tag_pointer_type -- read TAG_pointer_type DIE
1487
1488SYNOPSIS
1489
1490 static void read_tag_pointer_type (struct dieinfo *dip)
1491
1492DESCRIPTION
1493
1494 Extract all information from a TAG_pointer_type DIE and add to
1495 the user defined type vector.
1496 */
1497
1498static void
1ab3bf1b
JG
1499read_tag_pointer_type (dip)
1500 struct dieinfo *dip;
9e4c1921
FF
1501{
1502 struct type *type;
1503 struct type *utype;
9e4c1921
FF
1504
1505 type = decode_die_type (dip);
13b5a7ff 1506 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1507 {
1508 utype = lookup_pointer_type (type);
4ed3a9ea 1509 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1510 }
1511 else
1512 {
1513 TYPE_TARGET_TYPE (utype) = type;
1514 TYPE_POINTER_TYPE (type) = utype;
1515
1516 /* We assume the machine has only one representation for pointers! */
1517 /* FIXME: This confuses host<->target data representations, and is a
1518 poor assumption besides. */
1519
1520 TYPE_LENGTH (utype) = sizeof (char *);
1521 TYPE_CODE (utype) = TYPE_CODE_PTR;
1522 }
1523}
1524
1525/*
1526
ec16f701
FF
1527LOCAL FUNCTION
1528
1529 read_tag_string_type -- read TAG_string_type DIE
1530
1531SYNOPSIS
1532
1533 static void read_tag_string_type (struct dieinfo *dip)
1534
1535DESCRIPTION
1536
1537 Extract all information from a TAG_string_type DIE and add to
1538 the user defined type vector. It isn't really a user defined
1539 type, but it behaves like one, with other DIE's using an
1540 AT_user_def_type attribute to reference it.
1541 */
1542
1543static void
1544read_tag_string_type (dip)
1545 struct dieinfo *dip;
1546{
1547 struct type *utype;
1548 struct type *indextype;
1549 struct type *rangetype;
1550 unsigned long lowbound = 0;
1551 unsigned long highbound;
1552
b6236d6e 1553 if (dip -> has_at_byte_size)
ec16f701 1554 {
b6236d6e
FF
1555 /* A fixed bounds string */
1556 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1557 }
1558 else
1559 {
b6236d6e
FF
1560 /* A varying length string. Stub for now. (FIXME) */
1561 highbound = 1;
1562 }
1563 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1564 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1565 highbound);
1566
1567 utype = lookup_utype (dip -> die_ref);
1568 if (utype == NULL)
1569 {
1570 /* No type defined, go ahead and create a blank one to use. */
1571 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1572 }
1573 else
1574 {
1575 /* Already a type in our slot due to a forward reference. Make sure it
1576 is a blank one. If not, complain and leave it alone. */
1577 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1578 {
b6236d6e
FF
1579 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1580 return;
ec16f701 1581 }
ec16f701 1582 }
b6236d6e
FF
1583
1584 /* Create the string type using the blank type we either found or created. */
1585 utype = create_string_type (utype, rangetype);
ec16f701
FF
1586}
1587
1588/*
1589
35f5886e
FF
1590LOCAL FUNCTION
1591
1592 read_subroutine_type -- process TAG_subroutine_type dies
1593
1594SYNOPSIS
1595
1596 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1597 char *enddie)
1598
1599DESCRIPTION
1600
1601 Handle DIES due to C code like:
1602
1603 struct foo {
1604 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1605 int b;
1606 };
1607
1608NOTES
1609
1610 The parameter DIES are currently ignored. See if gdb has a way to
1611 include this info in it's type system, and decode them if so. Is
1612 this what the type structure's "arg_types" field is for? (FIXME)
1613 */
1614
1615static void
1ab3bf1b
JG
1616read_subroutine_type (dip, thisdie, enddie)
1617 struct dieinfo *dip;
1618 char *thisdie;
1619 char *enddie;
35f5886e 1620{
af213624
FF
1621 struct type *type; /* Type that this function returns */
1622 struct type *ftype; /* Function that returns above type */
35f5886e 1623
af213624
FF
1624 /* Decode the type that this subroutine returns */
1625
35f5886e 1626 type = decode_die_type (dip);
af213624
FF
1627
1628 /* Check to see if we already have a partially constructed user
1629 defined type for this DIE, from a forward reference. */
1630
13b5a7ff 1631 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1632 {
1633 /* This is the first reference to one of these types. Make
1634 a new one and place it in the user defined types. */
1635 ftype = lookup_function_type (type);
4ed3a9ea 1636 alloc_utype (dip -> die_ref, ftype);
af213624 1637 }
85f0a848 1638 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1639 {
1640 /* We have an existing partially constructed type, so bash it
1641 into the correct type. */
1642 TYPE_TARGET_TYPE (ftype) = type;
1643 TYPE_FUNCTION_TYPE (type) = ftype;
1644 TYPE_LENGTH (ftype) = 1;
1645 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1646 }
85f0a848
FF
1647 else
1648 {
51b80b00 1649 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1650 }
35f5886e
FF
1651}
1652
1653/*
1654
1655LOCAL FUNCTION
1656
1657 read_enumeration -- process dies which define an enumeration
1658
1659SYNOPSIS
1660
1661 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1662 char *enddie, struct objfile *objfile)
35f5886e
FF
1663
1664DESCRIPTION
1665
1666 Given a pointer to a die which begins an enumeration, process all
1667 the dies that define the members of the enumeration.
1668
1669NOTES
1670
1671 Note that we need to call enum_type regardless of whether or not we
1672 have a symbol, since we might have an enum without a tag name (thus
1673 no symbol for the tagname).
1674 */
1675
1676static void
1ab3bf1b
JG
1677read_enumeration (dip, thisdie, enddie, objfile)
1678 struct dieinfo *dip;
1679 char *thisdie;
1680 char *enddie;
1681 struct objfile *objfile;
35f5886e
FF
1682{
1683 struct type *type;
1684 struct symbol *sym;
1685
1ab3bf1b 1686 type = enum_type (dip, objfile);
95ff889e
FF
1687 sym = new_symbol (dip, objfile);
1688 if (sym != NULL)
35f5886e
FF
1689 {
1690 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1691 if (cu_language == language_cplus)
1692 {
1693 synthesize_typedef (dip, objfile, type);
1694 }
35f5886e
FF
1695 }
1696}
1697
1698/*
1699
1700LOCAL FUNCTION
1701
1702 enum_type -- decode and return a type for an enumeration
1703
1704SYNOPSIS
1705
1ab3bf1b 1706 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1707
1708DESCRIPTION
1709
1710 Given a pointer to a die information structure for the die which
1711 starts an enumeration, process all the dies that define the members
1712 of the enumeration and return a type pointer for the enumeration.
98618bf7 1713
715cafcb
FF
1714 At the same time, for each member of the enumeration, create a
1715 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1716 and give it the type of the enumeration itself.
1717
1718NOTES
1719
98618bf7
FF
1720 Note that the DWARF specification explicitly mandates that enum
1721 constants occur in reverse order from the source program order,
1722 for "consistency" and because this ordering is easier for many
1ab3bf1b 1723 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1724 Entries). Because gdb wants to see the enum members in program
1725 source order, we have to ensure that the order gets reversed while
98618bf7 1726 we are processing them.
35f5886e
FF
1727 */
1728
1729static struct type *
1ab3bf1b
JG
1730enum_type (dip, objfile)
1731 struct dieinfo *dip;
1732 struct objfile *objfile;
35f5886e
FF
1733{
1734 struct type *type;
1735 struct nextfield {
1736 struct nextfield *next;
1737 struct field field;
1738 };
1739 struct nextfield *list = NULL;
1740 struct nextfield *new;
1741 int nfields = 0;
1742 int n;
35f5886e
FF
1743 char *scan;
1744 char *listend;
13b5a7ff 1745 unsigned short blocksz;
715cafcb 1746 struct symbol *sym;
13b5a7ff 1747 int nbytes;
35f5886e 1748
13b5a7ff 1749 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1750 {
84ce6717 1751 /* No forward references created an empty type, so install one now */
13b5a7ff 1752 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1753 }
1754 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1755 /* Some compilers try to be helpful by inventing "fake" names for
1756 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1757 Thanks, but no thanks... */
715cafcb
FF
1758 if (dip -> at_name != NULL
1759 && *dip -> at_name != '~'
1760 && *dip -> at_name != '.')
35f5886e 1761 {
95967e73 1762 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1ab3bf1b 1763 " ", dip -> at_name);
35f5886e 1764 }
715cafcb 1765 if (dip -> at_byte_size != 0)
35f5886e
FF
1766 {
1767 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1768 }
35f5886e
FF
1769 if ((scan = dip -> at_element_list) != NULL)
1770 {
768be6e1
FF
1771 if (dip -> short_element_list)
1772 {
13b5a7ff 1773 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1774 }
1775 else
1776 {
13b5a7ff 1777 nbytes = attribute_size (AT_element_list);
768be6e1 1778 }
13b5a7ff
FF
1779 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1780 listend = scan + nbytes + blocksz;
1781 scan += nbytes;
35f5886e
FF
1782 while (scan < listend)
1783 {
1784 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1785 new -> next = list;
1786 list = new;
1787 list -> field.type = NULL;
1788 list -> field.bitsize = 0;
13b5a7ff
FF
1789 list -> field.bitpos =
1790 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1791 objfile);
1792 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1793 list -> field.name = obsavestring (scan, strlen (scan),
1794 &objfile -> type_obstack);
35f5886e
FF
1795 scan += strlen (scan) + 1;
1796 nfields++;
715cafcb 1797 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1798 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1799 sizeof (struct symbol));
4ed3a9ea 1800 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1801 SYMBOL_NAME (sym) = create_name (list -> field.name,
1802 &objfile->symbol_obstack);
7532cf10 1803 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1804 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1805 SYMBOL_CLASS (sym) = LOC_CONST;
1806 SYMBOL_TYPE (sym) = type;
1807 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1808 add_symbol_to_list (sym, list_in_scope);
35f5886e 1809 }
84ce6717 1810 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1811 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1812 reverse order from how they were inserted. If we have no fields
1813 (this is apparently possible in C++) then skip building a field
1814 vector. */
1815 if (nfields > 0)
1816 {
1817 TYPE_NFIELDS (type) = nfields;
1818 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1819 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1820 /* Copy the saved-up fields into the field vector. */
1821 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1822 {
1823 TYPE_FIELD (type, n++) = list -> field;
1824 }
1825 }
35f5886e 1826 }
35f5886e
FF
1827 return (type);
1828}
1829
1830/*
1831
1832LOCAL FUNCTION
1833
1834 read_func_scope -- process all dies within a function scope
1835
35f5886e
FF
1836DESCRIPTION
1837
1838 Process all dies within a given function scope. We are passed
1839 a die information structure pointer DIP for the die which
1840 starts the function scope, and pointers into the raw die data
1841 that define the dies within the function scope.
1842
1843 For now, we ignore lexical block scopes within the function.
1844 The problem is that AT&T cc does not define a DWARF lexical
1845 block scope for the function itself, while gcc defines a
1846 lexical block scope for the function. We need to think about
1847 how to handle this difference, or if it is even a problem.
1848 (FIXME)
1849 */
1850
1851static void
1ab3bf1b
JG
1852read_func_scope (dip, thisdie, enddie, objfile)
1853 struct dieinfo *dip;
1854 char *thisdie;
1855 char *enddie;
1856 struct objfile *objfile;
35f5886e 1857{
4d315a07 1858 register struct context_stack *new;
35f5886e 1859
5e2e79f8
FF
1860 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1861 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1862 {
5e2e79f8
FF
1863 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1864 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1865 }
4d315a07 1866 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1867 {
5e2e79f8
FF
1868 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1869 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1870 }
4d315a07 1871 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1872 new -> name = new_symbol (dip, objfile);
4d315a07 1873 list_in_scope = &local_symbols;
13b5a7ff 1874 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1875 new = pop_context ();
1876 /* Make a block for the local symbols within. */
1877 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1878 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1879 list_in_scope = &file_symbols;
35f5886e
FF
1880}
1881
2dbde378
FF
1882
1883/*
1884
1885LOCAL FUNCTION
1886
1887 handle_producer -- process the AT_producer attribute
1888
1889DESCRIPTION
1890
1891 Perform any operations that depend on finding a particular
1892 AT_producer attribute.
1893
1894 */
1895
1896static void
1897handle_producer (producer)
1898 char *producer;
1899{
1900
1901 /* If this compilation unit was compiled with g++ or gcc, then set the
1902 processing_gcc_compilation flag. */
1903
1904 processing_gcc_compilation =
1905 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65
FF
1906 /* start-sanitize-chill */
1907 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1908 /* end-sanitize-chill */
2dbde378
FF
1909 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1910
1911 /* Select a demangling style if we can identify the producer and if
1912 the current style is auto. We leave the current style alone if it
1913 is not auto. We also leave the demangling style alone if we find a
1914 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1915
3dc755fb 1916 if (AUTO_DEMANGLING)
2dbde378
FF
1917 {
1918 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1919 {
1920 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1921 }
1922 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1923 {
1924 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1925 }
2dbde378 1926 }
2dbde378
FF
1927}
1928
1929
35f5886e
FF
1930/*
1931
1932LOCAL FUNCTION
1933
1934 read_file_scope -- process all dies within a file scope
1935
35f5886e
FF
1936DESCRIPTION
1937
1938 Process all dies within a given file scope. We are passed a
1939 pointer to the die information structure for the die which
1940 starts the file scope, and pointers into the raw die data which
1941 mark the range of dies within the file scope.
1942
1943 When the partial symbol table is built, the file offset for the line
1944 number table for each compilation unit is saved in the partial symbol
1945 table entry for that compilation unit. As the symbols for each
1946 compilation unit are read, the line number table is read into memory
1947 and the variable lnbase is set to point to it. Thus all we have to
1948 do is use lnbase to access the line number table for the current
1949 compilation unit.
1950 */
1951
1952static void
1ab3bf1b
JG
1953read_file_scope (dip, thisdie, enddie, objfile)
1954 struct dieinfo *dip;
1955 char *thisdie;
1956 char *enddie;
1957 struct objfile *objfile;
35f5886e
FF
1958{
1959 struct cleanup *back_to;
4d315a07 1960 struct symtab *symtab;
35f5886e 1961
5e2e79f8
FF
1962 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1963 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1964 {
5e2e79f8
FF
1965 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1966 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1967 }
95ff889e 1968 set_cu_language (dip);
4d315a07
FF
1969 if (dip -> at_producer != NULL)
1970 {
2dbde378 1971 handle_producer (dip -> at_producer);
4d315a07 1972 }
35f5886e
FF
1973 numutypes = (enddie - thisdie) / 4;
1974 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1975 back_to = make_cleanup (free, utypes);
4ed3a9ea 1976 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1977 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1978 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1979 decode_line_numbers (lnbase);
13b5a7ff 1980 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b
JK
1981
1982 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
7b5d9650 1983 if (symtab != NULL)
4d315a07 1984 {
95ff889e 1985 symtab -> language = cu_language;
7b5d9650 1986 }
35f5886e
FF
1987 do_cleanups (back_to);
1988 utypes = NULL;
1989 numutypes = 0;
1990}
1991
1992/*
1993
35f5886e
FF
1994LOCAL FUNCTION
1995
1996 process_dies -- process a range of DWARF Information Entries
1997
1998SYNOPSIS
1999
8b5b6fae
FF
2000 static void process_dies (char *thisdie, char *enddie,
2001 struct objfile *objfile)
35f5886e
FF
2002
2003DESCRIPTION
2004
2005 Process all DIE's in a specified range. May be (and almost
2006 certainly will be) called recursively.
2007 */
2008
2009static void
1ab3bf1b
JG
2010process_dies (thisdie, enddie, objfile)
2011 char *thisdie;
2012 char *enddie;
2013 struct objfile *objfile;
35f5886e
FF
2014{
2015 char *nextdie;
2016 struct dieinfo di;
2017
2018 while (thisdie < enddie)
2019 {
95967e73 2020 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2021 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2022 {
2023 break;
2024 }
13b5a7ff 2025 else if (di.die_tag == TAG_padding)
35f5886e 2026 {
13b5a7ff 2027 nextdie = thisdie + di.die_length;
35f5886e
FF
2028 }
2029 else
2030 {
95967e73 2031 completedieinfo (&di, objfile);
35f5886e
FF
2032 if (di.at_sibling != 0)
2033 {
2034 nextdie = dbbase + di.at_sibling - dbroff;
2035 }
2036 else
2037 {
13b5a7ff 2038 nextdie = thisdie + di.die_length;
35f5886e 2039 }
13b5a7ff 2040 switch (di.die_tag)
35f5886e
FF
2041 {
2042 case TAG_compile_unit:
a048c8f5 2043 read_file_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2044 break;
2045 case TAG_global_subroutine:
2046 case TAG_subroutine:
2d6186f4 2047 if (di.has_at_low_pc)
35f5886e 2048 {
a048c8f5 2049 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2050 }
2051 break;
2052 case TAG_lexical_block:
a048c8f5 2053 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2054 break;
95ff889e 2055 case TAG_class_type:
35f5886e
FF
2056 case TAG_structure_type:
2057 case TAG_union_type:
8b5b6fae 2058 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2059 break;
2060 case TAG_enumeration_type:
1ab3bf1b 2061 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2062 break;
2063 case TAG_subroutine_type:
2064 read_subroutine_type (&di, thisdie, nextdie);
2065 break;
2066 case TAG_array_type:
4d315a07 2067 dwarf_read_array_type (&di);
35f5886e 2068 break;
9e4c1921
FF
2069 case TAG_pointer_type:
2070 read_tag_pointer_type (&di);
2071 break;
ec16f701
FF
2072 case TAG_string_type:
2073 read_tag_string_type (&di);
2074 break;
35f5886e 2075 default:
4ed3a9ea 2076 new_symbol (&di, objfile);
35f5886e
FF
2077 break;
2078 }
2079 }
2080 thisdie = nextdie;
2081 }
2082}
2083
2084/*
2085
35f5886e
FF
2086LOCAL FUNCTION
2087
2088 decode_line_numbers -- decode a line number table fragment
2089
2090SYNOPSIS
2091
2092 static void decode_line_numbers (char *tblscan, char *tblend,
2093 long length, long base, long line, long pc)
2094
2095DESCRIPTION
2096
2097 Translate the DWARF line number information to gdb form.
2098
2099 The ".line" section contains one or more line number tables, one for
2100 each ".line" section from the objects that were linked.
2101
2102 The AT_stmt_list attribute for each TAG_source_file entry in the
2103 ".debug" section contains the offset into the ".line" section for the
2104 start of the table for that file.
2105
2106 The table itself has the following structure:
2107
2108 <table length><base address><source statement entry>
2109 4 bytes 4 bytes 10 bytes
2110
2111 The table length is the total size of the table, including the 4 bytes
2112 for the length information.
2113
2114 The base address is the address of the first instruction generated
2115 for the source file.
2116
2117 Each source statement entry has the following structure:
2118
2119 <line number><statement position><address delta>
2120 4 bytes 2 bytes 4 bytes
2121
2122 The line number is relative to the start of the file, starting with
2123 line 1.
2124
2125 The statement position either -1 (0xFFFF) or the number of characters
2126 from the beginning of the line to the beginning of the statement.
2127
2128 The address delta is the difference between the base address and
2129 the address of the first instruction for the statement.
2130
2131 Note that we must copy the bytes from the packed table to our local
2132 variables before attempting to use them, to avoid alignment problems
2133 on some machines, particularly RISC processors.
2134
2135BUGS
2136
2137 Does gdb expect the line numbers to be sorted? They are now by
2138 chance/luck, but are not required to be. (FIXME)
2139
2140 The line with number 0 is unused, gdb apparently can discover the
2141 span of the last line some other way. How? (FIXME)
2142 */
2143
2144static void
1ab3bf1b
JG
2145decode_line_numbers (linetable)
2146 char *linetable;
35f5886e
FF
2147{
2148 char *tblscan;
2149 char *tblend;
13b5a7ff
FF
2150 unsigned long length;
2151 unsigned long base;
2152 unsigned long line;
2153 unsigned long pc;
35f5886e
FF
2154
2155 if (linetable != NULL)
2156 {
2157 tblscan = tblend = linetable;
13b5a7ff
FF
2158 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2159 current_objfile);
2160 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2161 tblend += length;
13b5a7ff
FF
2162 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2163 GET_UNSIGNED, current_objfile);
2164 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2165 base += baseaddr;
35f5886e
FF
2166 while (tblscan < tblend)
2167 {
13b5a7ff
FF
2168 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2169 current_objfile);
2170 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2171 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2172 current_objfile);
2173 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2174 pc += base;
13b5a7ff 2175 if (line != 0)
35f5886e 2176 {
4d315a07 2177 record_line (current_subfile, line, pc);
35f5886e
FF
2178 }
2179 }
2180 }
2181}
2182
2183/*
2184
35f5886e
FF
2185LOCAL FUNCTION
2186
2187 locval -- compute the value of a location attribute
2188
2189SYNOPSIS
2190
2191 static int locval (char *loc)
2192
2193DESCRIPTION
2194
2195 Given pointer to a string of bytes that define a location, compute
2196 the location and return the value.
2197
2198 When computing values involving the current value of the frame pointer,
2199 the value zero is used, which results in a value relative to the frame
2200 pointer, rather than the absolute value. This is what GDB wants
2201 anyway.
2202
2203 When the result is a register number, the global isreg flag is set,
2204 otherwise it is cleared. This is a kludge until we figure out a better
2205 way to handle the problem. Gdb's design does not mesh well with the
2206 DWARF notion of a location computing interpreter, which is a shame
2207 because the flexibility goes unused.
2208
2209NOTES
2210
2211 Note that stack[0] is unused except as a default error return.
2212 Note that stack overflow is not yet handled.
2213 */
2214
2215static int
1ab3bf1b
JG
2216locval (loc)
2217 char *loc;
35f5886e
FF
2218{
2219 unsigned short nbytes;
13b5a7ff
FF
2220 unsigned short locsize;
2221 auto long stack[64];
35f5886e
FF
2222 int stacki;
2223 char *end;
2224 long regno;
13b5a7ff
FF
2225 int loc_atom_code;
2226 int loc_value_size;
35f5886e 2227
13b5a7ff
FF
2228 nbytes = attribute_size (AT_location);
2229 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2230 loc += nbytes;
2231 end = loc + locsize;
35f5886e
FF
2232 stacki = 0;
2233 stack[stacki] = 0;
2234 isreg = 0;
a5bd5ba6 2235 offreg = 0;
13b5a7ff
FF
2236 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2237 while (loc < end)
35f5886e 2238 {
13b5a7ff
FF
2239 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2240 current_objfile);
2241 loc += SIZEOF_LOC_ATOM_CODE;
2242 switch (loc_atom_code)
2243 {
2244 case 0:
2245 /* error */
2246 loc = end;
2247 break;
2248 case OP_REG:
2249 /* push register (number) */
2250 stack[++stacki] = target_to_host (loc, loc_value_size,
2251 GET_UNSIGNED, current_objfile);
2252 loc += loc_value_size;
2253 isreg = 1;
2254 break;
2255 case OP_BASEREG:
2256 /* push value of register (number) */
2257 /* Actually, we compute the value as if register has 0 */
2258 offreg = 1;
2259 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2260 current_objfile);
2261 loc += loc_value_size;
2262 if (regno == R_FP)
2263 {
2264 stack[++stacki] = 0;
2265 }
2266 else
2267 {
2268 stack[++stacki] = 0;
51b80b00
FF
2269
2270 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
13b5a7ff
FF
2271 }
2272 break;
2273 case OP_ADDR:
2274 /* push address (relocated address) */
2275 stack[++stacki] = target_to_host (loc, loc_value_size,
2276 GET_UNSIGNED, current_objfile);
2277 loc += loc_value_size;
2278 break;
2279 case OP_CONST:
2280 /* push constant (number) FIXME: signed or unsigned! */
2281 stack[++stacki] = target_to_host (loc, loc_value_size,
2282 GET_SIGNED, current_objfile);
2283 loc += loc_value_size;
2284 break;
2285 case OP_DEREF2:
2286 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2287 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2288 break;
2289 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2290 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2291 break;
2292 case OP_ADD: /* pop top 2 items, add, push result */
2293 stack[stacki - 1] += stack[stacki];
2294 stacki--;
2295 break;
2296 }
35f5886e
FF
2297 }
2298 return (stack[stacki]);
2299}
2300
2301/*
2302
2303LOCAL FUNCTION
2304
2305 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2306
2307SYNOPSIS
2308
a048c8f5 2309 static struct symtab *read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2310
2311DESCRIPTION
2312
1ab3bf1b
JG
2313 When expanding a partial symbol table entry to a full symbol table
2314 entry, this is the function that gets called to read in the symbols
2315 for the compilation unit.
2316
2317 Returns a pointer to the newly constructed symtab (which is now
2318 the new first one on the objfile's symtab list).
35f5886e
FF
2319 */
2320
2321static struct symtab *
1ab3bf1b
JG
2322read_ofile_symtab (pst)
2323 struct partial_symtab *pst;
35f5886e
FF
2324{
2325 struct cleanup *back_to;
13b5a7ff 2326 unsigned long lnsize;
d5931d79 2327 file_ptr foffset;
1ab3bf1b 2328 bfd *abfd;
13b5a7ff 2329 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2330
2331 abfd = pst -> objfile -> obfd;
2332 current_objfile = pst -> objfile;
2333
35f5886e
FF
2334 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2335 unit, seek to the location in the file, and read in all the DIE's. */
2336
2337 diecount = 0;
4090fe1c
FF
2338 dbsize = DBLENGTH (pst);
2339 dbbase = xmalloc (dbsize);
35f5886e
FF
2340 dbroff = DBROFF(pst);
2341 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2342 base_section_offsets = pst->section_offsets;
2343 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2344 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2345 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2346 {
2347 free (dbbase);
2348 error ("can't read DWARF data");
2349 }
2350 back_to = make_cleanup (free, dbbase);
2351
2352 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2353 then read the size of this fragment in bytes, from the fragment itself.
2354 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2355 processing. */
2356
2357 lnbase = NULL;
2358 if (LNFOFF (pst))
2359 {
d5931d79 2360 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2361 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2362 sizeof (lnsizedata)))
35f5886e
FF
2363 {
2364 error ("can't read DWARF line number table size");
2365 }
13b5a7ff
FF
2366 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2367 GET_UNSIGNED, pst -> objfile);
35f5886e 2368 lnbase = xmalloc (lnsize);
d5931d79 2369 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2370 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2371 {
2372 free (lnbase);
2373 error ("can't read DWARF line numbers");
2374 }
2375 make_cleanup (free, lnbase);
2376 }
2377
4090fe1c 2378 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2379 do_cleanups (back_to);
1ab3bf1b
JG
2380 current_objfile = NULL;
2381 return (pst -> objfile -> symtabs);
35f5886e
FF
2382}
2383
2384/*
2385
2386LOCAL FUNCTION
2387
2388 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2389
2390SYNOPSIS
2391
a048c8f5 2392 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2393
2394DESCRIPTION
2395
2396 Called once for each partial symbol table entry that needs to be
2397 expanded into a full symbol table entry.
2398
2399*/
2400
2401static void
1ab3bf1b
JG
2402psymtab_to_symtab_1 (pst)
2403 struct partial_symtab *pst;
35f5886e
FF
2404{
2405 int i;
d07734e3 2406 struct cleanup *old_chain;
35f5886e 2407
1ab3bf1b 2408 if (pst != NULL)
35f5886e 2409 {
1ab3bf1b 2410 if (pst->readin)
35f5886e 2411 {
318bf84f 2412 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2413 pst -> filename);
2414 }
2415 else
2416 {
2417 /* Read in all partial symtabs on which this one is dependent */
2418 for (i = 0; i < pst -> number_of_dependencies; i++)
2419 {
2420 if (!pst -> dependencies[i] -> readin)
2421 {
2422 /* Inform about additional files that need to be read in. */
2423 if (info_verbose)
2424 {
2425 fputs_filtered (" ", stdout);
2426 wrap_here ("");
2427 fputs_filtered ("and ", stdout);
2428 wrap_here ("");
2429 printf_filtered ("%s...",
2430 pst -> dependencies[i] -> filename);
2431 wrap_here ("");
2432 fflush (stdout); /* Flush output */
2433 }
2434 psymtab_to_symtab_1 (pst -> dependencies[i]);
2435 }
2436 }
2437 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2438 {
d07734e3
FF
2439 buildsym_init ();
2440 old_chain = make_cleanup (really_free_pendings, 0);
1ab3bf1b
JG
2441 pst -> symtab = read_ofile_symtab (pst);
2442 if (info_verbose)
2443 {
2444 printf_filtered ("%d DIE's, sorting...", diecount);
2445 wrap_here ("");
2446 fflush (stdout);
2447 }
2448 sort_symtab_syms (pst -> symtab);
d07734e3 2449 do_cleanups (old_chain);
1ab3bf1b
JG
2450 }
2451 pst -> readin = 1;
35f5886e 2452 }
35f5886e 2453 }
35f5886e
FF
2454}
2455
2456/*
2457
2458LOCAL FUNCTION
2459
2460 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2461
2462SYNOPSIS
2463
2464 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2465
2466DESCRIPTION
2467
2468 This is the DWARF support entry point for building a full symbol
2469 table entry from a partial symbol table entry. We are passed a
2470 pointer to the partial symbol table entry that needs to be expanded.
2471
2472*/
2473
2474static void
1ab3bf1b
JG
2475dwarf_psymtab_to_symtab (pst)
2476 struct partial_symtab *pst;
35f5886e 2477{
7d9884b9 2478
1ab3bf1b 2479 if (pst != NULL)
35f5886e 2480 {
1ab3bf1b 2481 if (pst -> readin)
35f5886e 2482 {
318bf84f 2483 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2484 pst -> filename);
35f5886e 2485 }
1ab3bf1b 2486 else
35f5886e 2487 {
1ab3bf1b
JG
2488 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2489 {
2490 /* Print the message now, before starting serious work, to avoid
2491 disconcerting pauses. */
2492 if (info_verbose)
2493 {
2494 printf_filtered ("Reading in symbols for %s...",
2495 pst -> filename);
2496 fflush (stdout);
2497 }
2498
2499 psymtab_to_symtab_1 (pst);
2500
2501#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2502 we need to do an equivalent or is this something peculiar to
2503 stabs/a.out format.
2504 Match with global symbols. This only needs to be done once,
2505 after all of the symtabs and dependencies have been read in.
2506 */
2507 scan_file_globals (pst -> objfile);
2508#endif
2509
2510 /* Finish up the verbose info message. */
2511 if (info_verbose)
2512 {
2513 printf_filtered ("done.\n");
2514 fflush (stdout);
2515 }
2516 }
35f5886e
FF
2517 }
2518 }
2519}
2520
2521/*
2522
2523LOCAL FUNCTION
2524
2525 init_psymbol_list -- initialize storage for partial symbols
2526
2527SYNOPSIS
2528
1ab3bf1b 2529 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
35f5886e
FF
2530
2531DESCRIPTION
2532
2533 Initializes storage for all of the partial symbols that will be
2534 created by dwarf_build_psymtabs and subsidiaries.
2535 */
2536
2537static void
1ab3bf1b
JG
2538init_psymbol_list (objfile, total_symbols)
2539 struct objfile *objfile;
2540 int total_symbols;
35f5886e
FF
2541{
2542 /* Free any previously allocated psymbol lists. */
2543
1ab3bf1b 2544 if (objfile -> global_psymbols.list)
35f5886e 2545 {
84ffdec2 2546 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
35f5886e 2547 }
1ab3bf1b 2548 if (objfile -> static_psymbols.list)
35f5886e 2549 {
84ffdec2 2550 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
35f5886e
FF
2551 }
2552
2553 /* Current best guess is that there are approximately a twentieth
2554 of the total symbols (in a debugging file) are global or static
2555 oriented symbols */
2556
1ab3bf1b
JG
2557 objfile -> global_psymbols.size = total_symbols / 10;
2558 objfile -> static_psymbols.size = total_symbols / 10;
2559 objfile -> global_psymbols.next =
2560 objfile -> global_psymbols.list = (struct partial_symbol *)
318bf84f 2561 xmmalloc (objfile -> md, objfile -> global_psymbols.size
1ab3bf1b
JG
2562 * sizeof (struct partial_symbol));
2563 objfile -> static_psymbols.next =
2564 objfile -> static_psymbols.list = (struct partial_symbol *)
318bf84f 2565 xmmalloc (objfile -> md, objfile -> static_psymbols.size
1ab3bf1b 2566 * sizeof (struct partial_symbol));
35f5886e
FF
2567}
2568
35f5886e
FF
2569/*
2570
715cafcb
FF
2571LOCAL FUNCTION
2572
2573 add_enum_psymbol -- add enumeration members to partial symbol table
2574
2575DESCRIPTION
2576
2577 Given pointer to a DIE that is known to be for an enumeration,
2578 extract the symbolic names of the enumeration members and add
2579 partial symbols for them.
2580*/
2581
2582static void
1ab3bf1b
JG
2583add_enum_psymbol (dip, objfile)
2584 struct dieinfo *dip;
2585 struct objfile *objfile;
715cafcb
FF
2586{
2587 char *scan;
2588 char *listend;
13b5a7ff
FF
2589 unsigned short blocksz;
2590 int nbytes;
715cafcb
FF
2591
2592 if ((scan = dip -> at_element_list) != NULL)
2593 {
2594 if (dip -> short_element_list)
2595 {
13b5a7ff 2596 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2597 }
2598 else
2599 {
13b5a7ff 2600 nbytes = attribute_size (AT_element_list);
715cafcb 2601 }
13b5a7ff
FF
2602 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2603 scan += nbytes;
2604 listend = scan + blocksz;
715cafcb
FF
2605 while (scan < listend)
2606 {
13b5a7ff 2607 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2608 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2609 objfile -> static_psymbols, 0, cu_language,
2610 objfile);
715cafcb
FF
2611 scan += strlen (scan) + 1;
2612 }
2613 }
2614}
2615
2616/*
2617
35f5886e
FF
2618LOCAL FUNCTION
2619
2620 add_partial_symbol -- add symbol to partial symbol table
2621
2622DESCRIPTION
2623
2624 Given a DIE, if it is one of the types that we want to
2625 add to a partial symbol table, finish filling in the die info
2626 and then add a partial symbol table entry for it.
2627
95ff889e
FF
2628NOTES
2629
2630 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2631*/
2632
2633static void
1ab3bf1b
JG
2634add_partial_symbol (dip, objfile)
2635 struct dieinfo *dip;
2636 struct objfile *objfile;
35f5886e 2637{
13b5a7ff 2638 switch (dip -> die_tag)
35f5886e
FF
2639 {
2640 case TAG_global_subroutine:
1ab3bf1b
JG
2641 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2642 objfile);
b440b1e9 2643 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2644 VAR_NAMESPACE, LOC_BLOCK,
2645 objfile -> global_psymbols,
2e4964ad 2646 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2647 break;
2648 case TAG_global_variable:
1ab3bf1b
JG
2649 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2650 mst_data, objfile);
b440b1e9 2651 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2652 VAR_NAMESPACE, LOC_STATIC,
2653 objfile -> global_psymbols,
2e4964ad 2654 0, cu_language, objfile);
35f5886e
FF
2655 break;
2656 case TAG_subroutine:
b440b1e9 2657 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2658 VAR_NAMESPACE, LOC_BLOCK,
2659 objfile -> static_psymbols,
2e4964ad 2660 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2661 break;
2662 case TAG_local_variable:
b440b1e9 2663 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2664 VAR_NAMESPACE, LOC_STATIC,
2665 objfile -> static_psymbols,
2e4964ad 2666 0, cu_language, objfile);
35f5886e
FF
2667 break;
2668 case TAG_typedef:
b440b1e9 2669 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2670 VAR_NAMESPACE, LOC_TYPEDEF,
2671 objfile -> static_psymbols,
2e4964ad 2672 0, cu_language, objfile);
35f5886e 2673 break;
95ff889e 2674 case TAG_class_type:
35f5886e
FF
2675 case TAG_structure_type:
2676 case TAG_union_type:
95ff889e 2677 case TAG_enumeration_type:
b440b1e9 2678 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2679 STRUCT_NAMESPACE, LOC_TYPEDEF,
2680 objfile -> static_psymbols,
2e4964ad 2681 0, cu_language, objfile);
95ff889e 2682 if (cu_language == language_cplus)
715cafcb 2683 {
95ff889e 2684 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2685 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2686 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2687 objfile -> static_psymbols,
2e4964ad 2688 0, cu_language, objfile);
715cafcb 2689 }
715cafcb 2690 break;
35f5886e
FF
2691 }
2692}
2693
2694/*
2695
2696LOCAL FUNCTION
2697
2698 scan_partial_symbols -- scan DIE's within a single compilation unit
2699
2700DESCRIPTION
2701
2702 Process the DIE's within a single compilation unit, looking for
2703 interesting DIE's that contribute to the partial symbol table entry
a679650f 2704 for this compilation unit.
35f5886e 2705
2d6186f4
FF
2706NOTES
2707
a679650f
FF
2708 There are some DIE's that may appear both at file scope and within
2709 the scope of a function. We are only interested in the ones at file
2710 scope, and the only way to tell them apart is to keep track of the
2711 scope. For example, consider the test case:
2712
2713 static int i;
2714 main () { int j; }
2715
2716 for which the relevant DWARF segment has the structure:
2717
2718 0x51:
2719 0x23 global subrtn sibling 0x9b
2720 name main
2721 fund_type FT_integer
2722 low_pc 0x800004cc
2723 high_pc 0x800004d4
2724
2725 0x74:
2726 0x23 local var sibling 0x97
2727 name j
2728 fund_type FT_integer
2729 location OP_BASEREG 0xe
2730 OP_CONST 0xfffffffc
2731 OP_ADD
2732 0x97:
2733 0x4
2734
2735 0x9b:
2736 0x1d local var sibling 0xb8
2737 name i
2738 fund_type FT_integer
2739 location OP_ADDR 0x800025dc
2740
2741 0xb8:
2742 0x4
2743
2744 We want to include the symbol 'i' in the partial symbol table, but
2745 not the symbol 'j'. In essence, we want to skip all the dies within
2746 the scope of a TAG_global_subroutine DIE.
2747
715cafcb
FF
2748 Don't attempt to add anonymous structures or unions since they have
2749 no name. Anonymous enumerations however are processed, because we
2750 want to extract their member names (the check for a tag name is
2751 done later).
2d6186f4 2752
715cafcb
FF
2753 Also, for variables and subroutines, check that this is the place
2754 where the actual definition occurs, rather than just a reference
2755 to an external.
35f5886e
FF
2756 */
2757
2758static void
1ab3bf1b
JG
2759scan_partial_symbols (thisdie, enddie, objfile)
2760 char *thisdie;
2761 char *enddie;
2762 struct objfile *objfile;
35f5886e
FF
2763{
2764 char *nextdie;
a679650f 2765 char *temp;
35f5886e
FF
2766 struct dieinfo di;
2767
2768 while (thisdie < enddie)
2769 {
95967e73 2770 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2771 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2772 {
2773 break;
2774 }
2775 else
2776 {
13b5a7ff 2777 nextdie = thisdie + di.die_length;
715cafcb
FF
2778 /* To avoid getting complete die information for every die, we
2779 only do it (below) for the cases we are interested in. */
13b5a7ff 2780 switch (di.die_tag)
35f5886e
FF
2781 {
2782 case TAG_global_subroutine:
35f5886e 2783 case TAG_subroutine:
a679650f
FF
2784 completedieinfo (&di, objfile);
2785 if (di.at_name && (di.has_at_low_pc || di.at_location))
2786 {
2787 add_partial_symbol (&di, objfile);
2788 /* If there is a sibling attribute, adjust the nextdie
2789 pointer to skip the entire scope of the subroutine.
2790 Apply some sanity checking to make sure we don't
2791 overrun or underrun the range of remaining DIE's */
2792 if (di.at_sibling != 0)
2793 {
2794 temp = dbbase + di.at_sibling - dbroff;
2795 if ((temp < thisdie) || (temp >= enddie))
2796 {
51b80b00
FF
2797 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2798 di.at_sibling);
a679650f
FF
2799 }
2800 else
2801 {
2802 nextdie = temp;
2803 }
2804 }
2805 }
2806 break;
2d6186f4 2807 case TAG_global_variable:
35f5886e 2808 case TAG_local_variable:
95967e73 2809 completedieinfo (&di, objfile);
2d6186f4
FF
2810 if (di.at_name && (di.has_at_low_pc || di.at_location))
2811 {
1ab3bf1b 2812 add_partial_symbol (&di, objfile);
2d6186f4
FF
2813 }
2814 break;
35f5886e 2815 case TAG_typedef:
95ff889e 2816 case TAG_class_type:
35f5886e
FF
2817 case TAG_structure_type:
2818 case TAG_union_type:
95967e73 2819 completedieinfo (&di, objfile);
2d6186f4 2820 if (di.at_name)
35f5886e 2821 {
1ab3bf1b 2822 add_partial_symbol (&di, objfile);
35f5886e
FF
2823 }
2824 break;
715cafcb 2825 case TAG_enumeration_type:
95967e73 2826 completedieinfo (&di, objfile);
95ff889e
FF
2827 if (di.at_name)
2828 {
2829 add_partial_symbol (&di, objfile);
2830 }
2831 add_enum_psymbol (&di, objfile);
715cafcb 2832 break;
35f5886e
FF
2833 }
2834 }
2835 thisdie = nextdie;
2836 }
2837}
2838
2839/*
2840
2841LOCAL FUNCTION
2842
2843 scan_compilation_units -- build a psymtab entry for each compilation
2844
2845DESCRIPTION
2846
2847 This is the top level dwarf parsing routine for building partial
2848 symbol tables.
2849
2850 It scans from the beginning of the DWARF table looking for the first
2851 TAG_compile_unit DIE, and then follows the sibling chain to locate
2852 each additional TAG_compile_unit DIE.
2853
2854 For each TAG_compile_unit DIE it creates a partial symtab structure,
2855 calls a subordinate routine to collect all the compilation unit's
2856 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2857 new partial symtab structure into the partial symbol table. It also
2858 records the appropriate information in the partial symbol table entry
2859 to allow the chunk of DIE's and line number table for this compilation
2860 unit to be located and re-read later, to generate a complete symbol
2861 table entry for the compilation unit.
2862
2863 Thus it effectively partitions up a chunk of DIE's for multiple
2864 compilation units into smaller DIE chunks and line number tables,
2865 and associates them with a partial symbol table entry.
2866
2867NOTES
2868
2869 If any compilation unit has no line number table associated with
2870 it for some reason (a missing at_stmt_list attribute, rather than
2871 just one with a value of zero, which is valid) then we ensure that
2872 the recorded file offset is zero so that the routine which later
2873 reads line number table fragments knows that there is no fragment
2874 to read.
2875
2876RETURNS
2877
2878 Returns no value.
2879
2880 */
2881
2882static void
d5931d79 2883scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2884 char *thisdie;
2885 char *enddie;
d5931d79
JG
2886 file_ptr dbfoff;
2887 file_ptr lnoffset;
1ab3bf1b 2888 struct objfile *objfile;
35f5886e
FF
2889{
2890 char *nextdie;
2891 struct dieinfo di;
2892 struct partial_symtab *pst;
2893 int culength;
2894 int curoff;
d5931d79 2895 file_ptr curlnoffset;
35f5886e
FF
2896
2897 while (thisdie < enddie)
2898 {
95967e73 2899 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2900 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2901 {
2902 break;
2903 }
13b5a7ff 2904 else if (di.die_tag != TAG_compile_unit)
35f5886e 2905 {
13b5a7ff 2906 nextdie = thisdie + di.die_length;
35f5886e
FF
2907 }
2908 else
2909 {
95967e73 2910 completedieinfo (&di, objfile);
95ff889e 2911 set_cu_language (&di);
35f5886e
FF
2912 if (di.at_sibling != 0)
2913 {
2914 nextdie = dbbase + di.at_sibling - dbroff;
2915 }
2916 else
2917 {
13b5a7ff 2918 nextdie = thisdie + di.die_length;
35f5886e
FF
2919 }
2920 curoff = thisdie - dbbase;
2921 culength = nextdie - thisdie;
2d6186f4 2922 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2923
2924 /* First allocate a new partial symbol table structure */
2925
95ff889e
FF
2926 pst = start_psymtab_common (objfile, base_section_offsets,
2927 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2928 objfile -> global_psymbols.next,
2929 objfile -> static_psymbols.next);
2930
2931 pst -> texthigh = di.at_high_pc;
2932 pst -> read_symtab_private = (char *)
2933 obstack_alloc (&objfile -> psymbol_obstack,
2934 sizeof (struct dwfinfo));
2935 DBFOFF (pst) = dbfoff;
2936 DBROFF (pst) = curoff;
2937 DBLENGTH (pst) = culength;
2938 LNFOFF (pst) = curlnoffset;
2939 pst -> read_symtab = dwarf_psymtab_to_symtab;
2940
2941 /* Now look for partial symbols */
2942
13b5a7ff 2943 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2944
2945 pst -> n_global_syms = objfile -> global_psymbols.next -
2946 (objfile -> global_psymbols.list + pst -> globals_offset);
2947 pst -> n_static_syms = objfile -> static_psymbols.next -
2948 (objfile -> static_psymbols.list + pst -> statics_offset);
2949 sort_pst_symbols (pst);
35f5886e
FF
2950 /* If there is already a psymtab or symtab for a file of this name,
2951 remove it. (If there is a symtab, more drastic things also
2952 happen.) This happens in VxWorks. */
2953 free_named_symtabs (pst -> filename);
35f5886e
FF
2954 }
2955 thisdie = nextdie;
2956 }
2957}
2958
2959/*
2960
2961LOCAL FUNCTION
2962
2963 new_symbol -- make a symbol table entry for a new symbol
2964
2965SYNOPSIS
2966
1ab3bf1b
JG
2967 static struct symbol *new_symbol (struct dieinfo *dip,
2968 struct objfile *objfile)
35f5886e
FF
2969
2970DESCRIPTION
2971
2972 Given a pointer to a DWARF information entry, figure out if we need
2973 to make a symbol table entry for it, and if so, create a new entry
2974 and return a pointer to it.
2975 */
2976
2977static struct symbol *
1ab3bf1b
JG
2978new_symbol (dip, objfile)
2979 struct dieinfo *dip;
2980 struct objfile *objfile;
35f5886e
FF
2981{
2982 struct symbol *sym = NULL;
2983
2984 if (dip -> at_name != NULL)
2985 {
1ab3bf1b 2986 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2987 sizeof (struct symbol));
4ed3a9ea 2988 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2989 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2990 &objfile->symbol_obstack);
35f5886e
FF
2991 /* default assumptions */
2992 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2993 SYMBOL_CLASS (sym) = LOC_STATIC;
2994 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2995
2996 /* If this symbol is from a C++ compilation, then attempt to cache the
2997 demangled form for future reference. This is a typical time versus
2998 space tradeoff, that was decided in favor of time because it sped up
2999 C++ symbol lookups by a factor of about 20. */
3000
3001 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 3002 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 3003 switch (dip -> die_tag)
35f5886e
FF
3004 {
3005 case TAG_label:
4d315a07 3006 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
3007 SYMBOL_CLASS (sym) = LOC_LABEL;
3008 break;
3009 case TAG_global_subroutine:
3010 case TAG_subroutine:
4d315a07 3011 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
3012 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
3013 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 3014 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
3015 {
3016 add_symbol_to_list (sym, &global_symbols);
3017 }
3018 else
3019 {
4d315a07 3020 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3021 }
3022 break;
3023 case TAG_global_variable:
35f5886e
FF
3024 if (dip -> at_location != NULL)
3025 {
3026 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
3027 add_symbol_to_list (sym, &global_symbols);
3028 SYMBOL_CLASS (sym) = LOC_STATIC;
3029 SYMBOL_VALUE (sym) += baseaddr;
3030 }
a5bd5ba6
FF
3031 break;
3032 case TAG_local_variable:
3033 if (dip -> at_location != NULL)
35f5886e 3034 {
a5bd5ba6 3035 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 3036 add_symbol_to_list (sym, list_in_scope);
a5bd5ba6
FF
3037 if (isreg)
3038 {
3039 SYMBOL_CLASS (sym) = LOC_REGISTER;
3040 }
3041 else if (offreg)
35f5886e 3042 {
a5bd5ba6 3043 SYMBOL_CLASS (sym) = LOC_LOCAL;
35f5886e
FF
3044 }
3045 else
3046 {
3047 SYMBOL_CLASS (sym) = LOC_STATIC;
3048 SYMBOL_VALUE (sym) += baseaddr;
3049 }
3050 }
3051 break;
3052 case TAG_formal_parameter:
3053 if (dip -> at_location != NULL)
3054 {
3055 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3056 }
4d315a07 3057 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3058 if (isreg)
3059 {
3060 SYMBOL_CLASS (sym) = LOC_REGPARM;
3061 }
3062 else
3063 {
3064 SYMBOL_CLASS (sym) = LOC_ARG;
3065 }
3066 break;
3067 case TAG_unspecified_parameters:
3068 /* From varargs functions; gdb doesn't seem to have any interest in
3069 this information, so just ignore it for now. (FIXME?) */
3070 break;
95ff889e 3071 case TAG_class_type:
35f5886e
FF
3072 case TAG_structure_type:
3073 case TAG_union_type:
3074 case TAG_enumeration_type:
3075 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3076 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3077 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3078 break;
3079 case TAG_typedef:
3080 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3081 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3082 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3083 break;
3084 default:
3085 /* Not a tag we recognize. Hopefully we aren't processing trash
3086 data, but since we must specifically ignore things we don't
3087 recognize, there is nothing else we should do at this point. */
3088 break;
3089 }
3090 }
3091 return (sym);
3092}
3093
3094/*
3095
95ff889e
FF
3096LOCAL FUNCTION
3097
3098 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3099
3100SYNOPSIS
3101
3102 static void synthesize_typedef (struct dieinfo *dip,
3103 struct objfile *objfile,
3104 struct type *type);
3105
3106DESCRIPTION
3107
3108 Given a pointer to a DWARF information entry, synthesize a typedef
3109 for the name in the DIE, using the specified type.
3110
3111 This is used for C++ class, structs, unions, and enumerations to
3112 set up the tag name as a type.
3113
3114 */
3115
3116static void
3117synthesize_typedef (dip, objfile, type)
3118 struct dieinfo *dip;
3119 struct objfile *objfile;
3120 struct type *type;
3121{
3122 struct symbol *sym = NULL;
3123
3124 if (dip -> at_name != NULL)
3125 {
3126 sym = (struct symbol *)
3127 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3128 memset (sym, 0, sizeof (struct symbol));
3129 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3130 &objfile->symbol_obstack);
7532cf10 3131 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3132 SYMBOL_TYPE (sym) = type;
3133 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3134 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3135 add_symbol_to_list (sym, list_in_scope);
3136 }
3137}
3138
3139/*
3140
35f5886e
FF
3141LOCAL FUNCTION
3142
3143 decode_mod_fund_type -- decode a modified fundamental type
3144
3145SYNOPSIS
3146
3147 static struct type *decode_mod_fund_type (char *typedata)
3148
3149DESCRIPTION
3150
3151 Decode a block of data containing a modified fundamental
3152 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3153 which starts with a length containing the size of the rest
3154 of the block. At the end of the block is a fundmental type
3155 code value that gives the fundamental type. Everything
35f5886e
FF
3156 in between are type modifiers.
3157
3158 We simply compute the number of modifiers and call the general
3159 function decode_modified_type to do the actual work.
3160*/
3161
3162static struct type *
1ab3bf1b
JG
3163decode_mod_fund_type (typedata)
3164 char *typedata;
35f5886e
FF
3165{
3166 struct type *typep = NULL;
3167 unsigned short modcount;
13b5a7ff 3168 int nbytes;
35f5886e
FF
3169
3170 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3171
3172 nbytes = attribute_size (AT_mod_fund_type);
3173 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3174 typedata += nbytes;
3175
35f5886e 3176 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3177
3178 modcount -= attribute_size (AT_fund_type);
3179
35f5886e 3180 /* Now do the actual decoding */
13b5a7ff
FF
3181
3182 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3183 return (typep);
3184}
3185
3186/*
3187
3188LOCAL FUNCTION
3189
3190 decode_mod_u_d_type -- decode a modified user defined type
3191
3192SYNOPSIS
3193
3194 static struct type *decode_mod_u_d_type (char *typedata)
3195
3196DESCRIPTION
3197
3198 Decode a block of data containing a modified user defined
3199 type specification. TYPEDATA is a pointer to the block,
3200 which consists of a two byte length, containing the size
3201 of the rest of the block. At the end of the block is a
3202 four byte value that gives a reference to a user defined type.
3203 Everything in between are type modifiers.
3204
3205 We simply compute the number of modifiers and call the general
3206 function decode_modified_type to do the actual work.
3207*/
3208
3209static struct type *
1ab3bf1b
JG
3210decode_mod_u_d_type (typedata)
3211 char *typedata;
35f5886e
FF
3212{
3213 struct type *typep = NULL;
3214 unsigned short modcount;
13b5a7ff 3215 int nbytes;
35f5886e
FF
3216
3217 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3218
3219 nbytes = attribute_size (AT_mod_u_d_type);
3220 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3221 typedata += nbytes;
3222
35f5886e 3223 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3224
3225 modcount -= attribute_size (AT_user_def_type);
3226
35f5886e 3227 /* Now do the actual decoding */
13b5a7ff
FF
3228
3229 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3230 return (typep);
3231}
3232
3233/*
3234
3235LOCAL FUNCTION
3236
3237 decode_modified_type -- decode modified user or fundamental type
3238
3239SYNOPSIS
3240
1c92ca6f 3241 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3242 unsigned short modcount, int mtype)
3243
3244DESCRIPTION
3245
3246 Decode a modified type, either a modified fundamental type or
3247 a modified user defined type. MODIFIERS is a pointer to the
3248 block of bytes that define MODCOUNT modifiers. Immediately
3249 following the last modifier is a short containing the fundamental
3250 type or a long containing the reference to the user defined
3251 type. Which one is determined by MTYPE, which is either
3252 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3253 type we are generating.
3254
3255 We call ourself recursively to generate each modified type,`
3256 until MODCOUNT reaches zero, at which point we have consumed
3257 all the modifiers and generate either the fundamental type or
3258 user defined type. When the recursion unwinds, each modifier
3259 is applied in turn to generate the full modified type.
3260
3261NOTES
3262
3263 If we find a modifier that we don't recognize, and it is not one
3264 of those reserved for application specific use, then we issue a
3265 warning and simply ignore the modifier.
3266
3267BUGS
3268
3269 We currently ignore MOD_const and MOD_volatile. (FIXME)
3270
3271 */
3272
3273static struct type *
1ab3bf1b 3274decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3275 char *modifiers;
1ab3bf1b
JG
3276 unsigned int modcount;
3277 int mtype;
35f5886e
FF
3278{
3279 struct type *typep = NULL;
3280 unsigned short fundtype;
13b5a7ff 3281 DIE_REF die_ref;
1c92ca6f 3282 char modifier;
13b5a7ff 3283 int nbytes;
35f5886e
FF
3284
3285 if (modcount == 0)
3286 {
3287 switch (mtype)
3288 {
3289 case AT_mod_fund_type:
13b5a7ff
FF
3290 nbytes = attribute_size (AT_fund_type);
3291 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3292 current_objfile);
35f5886e
FF
3293 typep = decode_fund_type (fundtype);
3294 break;
3295 case AT_mod_u_d_type:
13b5a7ff
FF
3296 nbytes = attribute_size (AT_user_def_type);
3297 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3298 current_objfile);
3299 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3300 {
13b5a7ff 3301 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3302 }
3303 break;
3304 default:
51b80b00 3305 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3306 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3307 break;
3308 }
3309 }
3310 else
3311 {
3312 modifier = *modifiers++;
3313 typep = decode_modified_type (modifiers, --modcount, mtype);
3314 switch (modifier)
3315 {
13b5a7ff
FF
3316 case MOD_pointer_to:
3317 typep = lookup_pointer_type (typep);
3318 break;
3319 case MOD_reference_to:
3320 typep = lookup_reference_type (typep);
3321 break;
3322 case MOD_const:
51b80b00 3323 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3324 break;
3325 case MOD_volatile:
51b80b00 3326 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3327 break;
3328 default:
1c92ca6f
FF
3329 if (!(MOD_lo_user <= (unsigned char) modifier
3330 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3331 {
51b80b00 3332 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3333 }
3334 break;
35f5886e
FF
3335 }
3336 }
3337 return (typep);
3338}
3339
3340/*
3341
3342LOCAL FUNCTION
3343
3344 decode_fund_type -- translate basic DWARF type to gdb base type
3345
3346DESCRIPTION
3347
3348 Given an integer that is one of the fundamental DWARF types,
3349 translate it to one of the basic internal gdb types and return
3350 a pointer to the appropriate gdb type (a "struct type *").
3351
3352NOTES
3353
85f0a848
FF
3354 For robustness, if we are asked to translate a fundamental
3355 type that we are unprepared to deal with, we return int so
3356 callers can always depend upon a valid type being returned,
3357 and so gdb may at least do something reasonable by default.
3358 If the type is not in the range of those types defined as
3359 application specific types, we also issue a warning.
35f5886e
FF
3360*/
3361
3362static struct type *
1ab3bf1b
JG
3363decode_fund_type (fundtype)
3364 unsigned int fundtype;
35f5886e
FF
3365{
3366 struct type *typep = NULL;
3367
3368 switch (fundtype)
3369 {
3370
3371 case FT_void:
bf229b4e 3372 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3373 break;
3374
1ab3bf1b 3375 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3376 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3377 break;
3378
35f5886e 3379 case FT_pointer: /* (void *) */
bf229b4e 3380 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3381 typep = lookup_pointer_type (typep);
35f5886e
FF
3382 break;
3383
3384 case FT_char:
bf229b4e 3385 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3386 break;
3387
35f5886e 3388 case FT_signed_char:
bf229b4e 3389 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3390 break;
3391
3392 case FT_unsigned_char:
bf229b4e 3393 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3394 break;
3395
3396 case FT_short:
bf229b4e 3397 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3398 break;
3399
35f5886e 3400 case FT_signed_short:
bf229b4e 3401 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3402 break;
3403
3404 case FT_unsigned_short:
bf229b4e 3405 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3406 break;
3407
3408 case FT_integer:
bf229b4e 3409 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3410 break;
3411
35f5886e 3412 case FT_signed_integer:
bf229b4e 3413 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3414 break;
3415
3416 case FT_unsigned_integer:
bf229b4e 3417 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3418 break;
3419
3420 case FT_long:
bf229b4e 3421 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3422 break;
3423
35f5886e 3424 case FT_signed_long:
bf229b4e 3425 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3426 break;
3427
1ab3bf1b 3428 case FT_unsigned_long:
bf229b4e 3429 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3430 break;
3431
1ab3bf1b 3432 case FT_long_long:
bf229b4e 3433 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3434 break;
1ab3bf1b
JG
3435
3436 case FT_signed_long_long:
bf229b4e 3437 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3438 break;
1ab3bf1b
JG
3439
3440 case FT_unsigned_long_long:
bf229b4e 3441 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3442 break;
1ab3bf1b
JG
3443
3444 case FT_float:
bf229b4e 3445 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3446 break;
3447
1ab3bf1b 3448 case FT_dbl_prec_float:
bf229b4e 3449 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3450 break;
3451
3452 case FT_ext_prec_float:
bf229b4e 3453 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3454 break;
3455
3456 case FT_complex:
bf229b4e 3457 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3458 break;
3459
3460 case FT_dbl_prec_complex:
bf229b4e 3461 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3462 break;
3463
1ab3bf1b 3464 case FT_ext_prec_complex:
bf229b4e 3465 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3466 break;
1ab3bf1b 3467
35f5886e
FF
3468 }
3469
85f0a848 3470 if (typep == NULL)
35f5886e 3471 {
85f0a848
FF
3472 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3473 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3474 {
51b80b00 3475 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3476 }
35f5886e
FF
3477 }
3478
3479 return (typep);
3480}
3481
3482/*
3483
3484LOCAL FUNCTION
3485
3486 create_name -- allocate a fresh copy of a string on an obstack
3487
3488DESCRIPTION
3489
3490 Given a pointer to a string and a pointer to an obstack, allocates
3491 a fresh copy of the string on the specified obstack.
3492
3493*/
3494
3495static char *
1ab3bf1b
JG
3496create_name (name, obstackp)
3497 char *name;
3498 struct obstack *obstackp;
35f5886e
FF
3499{
3500 int length;
3501 char *newname;
3502
3503 length = strlen (name) + 1;
3504 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3505 strcpy (newname, name);
35f5886e
FF
3506 return (newname);
3507}
3508
3509/*
3510
3511LOCAL FUNCTION
3512
3513 basicdieinfo -- extract the minimal die info from raw die data
3514
3515SYNOPSIS
3516
95967e73
FF
3517 void basicdieinfo (char *diep, struct dieinfo *dip,
3518 struct objfile *objfile)
35f5886e
FF
3519
3520DESCRIPTION
3521
3522 Given a pointer to raw DIE data, and a pointer to an instance of a
3523 die info structure, this function extracts the basic information
3524 from the DIE data required to continue processing this DIE, along
3525 with some bookkeeping information about the DIE.
3526
3527 The information we absolutely must have includes the DIE tag,
3528 and the DIE length. If we need the sibling reference, then we
3529 will have to call completedieinfo() to process all the remaining
3530 DIE information.
3531
3532 Note that since there is no guarantee that the data is properly
3533 aligned in memory for the type of access required (indirection
95967e73
FF
3534 through anything other than a char pointer), and there is no
3535 guarantee that it is in the same byte order as the gdb host,
3536 we call a function which deals with both alignment and byte
3537 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3538
3539 We also take care of some other basic things at this point, such
3540 as ensuring that the instance of the die info structure starts
3541 out completely zero'd and that curdie is initialized for use
3542 in error reporting if we have a problem with the current die.
3543
3544NOTES
3545
3546 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3547 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3548 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3549 are forced to be TAG_padding DIES.
3550
13b5a7ff
FF
3551 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3552 that if a padding DIE is used for alignment and the amount needed is
3553 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3554 enough to align to the next alignment boundry.
4090fe1c
FF
3555
3556 We do some basic sanity checking here, such as verifying that the
3557 length of the die would not cause it to overrun the recorded end of
3558 the buffer holding the DIE info. If we find a DIE that is either
3559 too small or too large, we force it's length to zero which should
3560 cause the caller to take appropriate action.
35f5886e
FF
3561 */
3562
3563static void
95967e73 3564basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3565 struct dieinfo *dip;
3566 char *diep;
95967e73 3567 struct objfile *objfile;
35f5886e
FF
3568{
3569 curdie = dip;
4ed3a9ea 3570 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3571 dip -> die = diep;
13b5a7ff
FF
3572 dip -> die_ref = dbroff + (diep - dbbase);
3573 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3574 objfile);
4090fe1c
FF
3575 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3576 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3577 {
51b80b00 3578 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3579 dip -> die_length = 0;
35f5886e 3580 }
13b5a7ff 3581 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3582 {
13b5a7ff 3583 dip -> die_tag = TAG_padding;
35f5886e
FF
3584 }
3585 else
3586 {
13b5a7ff
FF
3587 diep += SIZEOF_DIE_LENGTH;
3588 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3589 objfile);
35f5886e
FF
3590 }
3591}
3592
3593/*
3594
3595LOCAL FUNCTION
3596
3597 completedieinfo -- finish reading the information for a given DIE
3598
3599SYNOPSIS
3600
95967e73 3601 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3602
3603DESCRIPTION
3604
3605 Given a pointer to an already partially initialized die info structure,
3606 scan the raw DIE data and finish filling in the die info structure
3607 from the various attributes found.
3608
3609 Note that since there is no guarantee that the data is properly
3610 aligned in memory for the type of access required (indirection
95967e73
FF
3611 through anything other than a char pointer), and there is no
3612 guarantee that it is in the same byte order as the gdb host,
3613 we call a function which deals with both alignment and byte
3614 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3615
3616NOTES
3617
3618 Each time we are called, we increment the diecount variable, which
3619 keeps an approximate count of the number of dies processed for
3620 each compilation unit. This information is presented to the user
3621 if the info_verbose flag is set.
3622
3623 */
3624
3625static void
95967e73 3626completedieinfo (dip, objfile)
1ab3bf1b 3627 struct dieinfo *dip;
95967e73 3628 struct objfile *objfile;
35f5886e
FF
3629{
3630 char *diep; /* Current pointer into raw DIE data */
3631 char *end; /* Terminate DIE scan here */
3632 unsigned short attr; /* Current attribute being scanned */
3633 unsigned short form; /* Form of the attribute */
13b5a7ff 3634 int nbytes; /* Size of next field to read */
35f5886e
FF
3635
3636 diecount++;
3637 diep = dip -> die;
13b5a7ff
FF
3638 end = diep + dip -> die_length;
3639 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3640 while (diep < end)
3641 {
13b5a7ff
FF
3642 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3643 diep += SIZEOF_ATTRIBUTE;
3644 if ((nbytes = attribute_size (attr)) == -1)
3645 {
51b80b00 3646 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3647 diep = end;
3648 continue;
3649 }
35f5886e
FF
3650 switch (attr)
3651 {
3652 case AT_fund_type:
13b5a7ff
FF
3653 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3654 objfile);
35f5886e
FF
3655 break;
3656 case AT_ordering:
13b5a7ff
FF
3657 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3658 objfile);
35f5886e
FF
3659 break;
3660 case AT_bit_offset:
13b5a7ff
FF
3661 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3662 objfile);
35f5886e 3663 break;
35f5886e 3664 case AT_sibling:
13b5a7ff
FF
3665 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3666 objfile);
35f5886e
FF
3667 break;
3668 case AT_stmt_list:
13b5a7ff
FF
3669 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3670 objfile);
2d6186f4 3671 dip -> has_at_stmt_list = 1;
35f5886e
FF
3672 break;
3673 case AT_low_pc:
13b5a7ff
FF
3674 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3675 objfile);
4d315a07 3676 dip -> at_low_pc += baseaddr;
2d6186f4 3677 dip -> has_at_low_pc = 1;
35f5886e
FF
3678 break;
3679 case AT_high_pc:
13b5a7ff
FF
3680 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3681 objfile);
4d315a07 3682 dip -> at_high_pc += baseaddr;
35f5886e
FF
3683 break;
3684 case AT_language:
13b5a7ff
FF
3685 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3686 objfile);
35f5886e
FF
3687 break;
3688 case AT_user_def_type:
13b5a7ff
FF
3689 dip -> at_user_def_type = target_to_host (diep, nbytes,
3690 GET_UNSIGNED, objfile);
35f5886e
FF
3691 break;
3692 case AT_byte_size:
13b5a7ff
FF
3693 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3694 objfile);
50055e94 3695 dip -> has_at_byte_size = 1;
35f5886e
FF
3696 break;
3697 case AT_bit_size:
13b5a7ff
FF
3698 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3699 objfile);
35f5886e
FF
3700 break;
3701 case AT_member:
13b5a7ff
FF
3702 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3703 objfile);
35f5886e
FF
3704 break;
3705 case AT_discr:
13b5a7ff
FF
3706 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3707 objfile);
35f5886e 3708 break;
35f5886e
FF
3709 case AT_location:
3710 dip -> at_location = diep;
3711 break;
3712 case AT_mod_fund_type:
3713 dip -> at_mod_fund_type = diep;
3714 break;
3715 case AT_subscr_data:
3716 dip -> at_subscr_data = diep;
3717 break;
3718 case AT_mod_u_d_type:
3719 dip -> at_mod_u_d_type = diep;
3720 break;
35f5886e
FF
3721 case AT_element_list:
3722 dip -> at_element_list = diep;
768be6e1
FF
3723 dip -> short_element_list = 0;
3724 break;
3725 case AT_short_element_list:
3726 dip -> at_element_list = diep;
3727 dip -> short_element_list = 1;
35f5886e
FF
3728 break;
3729 case AT_discr_value:
3730 dip -> at_discr_value = diep;
3731 break;
3732 case AT_string_length:
3733 dip -> at_string_length = diep;
3734 break;
3735 case AT_name:
3736 dip -> at_name = diep;
3737 break;
3738 case AT_comp_dir:
d4902ab0
FF
3739 /* For now, ignore any "hostname:" portion, since gdb doesn't
3740 know how to deal with it. (FIXME). */
3741 dip -> at_comp_dir = strrchr (diep, ':');
3742 if (dip -> at_comp_dir != NULL)
3743 {
3744 dip -> at_comp_dir++;
3745 }
3746 else
3747 {
3748 dip -> at_comp_dir = diep;
3749 }
35f5886e
FF
3750 break;
3751 case AT_producer:
3752 dip -> at_producer = diep;
3753 break;
35f5886e 3754 case AT_start_scope:
13b5a7ff
FF
3755 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3756 objfile);
35f5886e
FF
3757 break;
3758 case AT_stride_size:
13b5a7ff
FF
3759 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3760 objfile);
35f5886e
FF
3761 break;
3762 case AT_src_info:
13b5a7ff
FF
3763 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3764 objfile);
35f5886e
FF
3765 break;
3766 case AT_prototyped:
13b5a7ff 3767 dip -> at_prototyped = diep;
35f5886e 3768 break;
35f5886e
FF
3769 default:
3770 /* Found an attribute that we are unprepared to handle. However
3771 it is specifically one of the design goals of DWARF that
3772 consumers should ignore unknown attributes. As long as the
3773 form is one that we recognize (so we know how to skip it),
3774 we can just ignore the unknown attribute. */
3775 break;
3776 }
13b5a7ff 3777 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3778 switch (form)
3779 {
3780 case FORM_DATA2:
13b5a7ff 3781 diep += 2;
35f5886e
FF
3782 break;
3783 case FORM_DATA4:
13b5a7ff
FF
3784 case FORM_REF:
3785 diep += 4;
35f5886e
FF
3786 break;
3787 case FORM_DATA8:
13b5a7ff 3788 diep += 8;
35f5886e
FF
3789 break;
3790 case FORM_ADDR:
13b5a7ff 3791 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3792 break;
3793 case FORM_BLOCK2:
13b5a7ff 3794 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3795 break;
3796 case FORM_BLOCK4:
13b5a7ff 3797 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3798 break;
3799 case FORM_STRING:
3800 diep += strlen (diep) + 1;
3801 break;
3802 default:
51b80b00 3803 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3804 diep = end;
3805 break;
3806 }
3807 }
3808}
95967e73 3809
13b5a7ff 3810/*
95967e73 3811
13b5a7ff
FF
3812LOCAL FUNCTION
3813
3814 target_to_host -- swap in target data to host
3815
3816SYNOPSIS
3817
3818 target_to_host (char *from, int nbytes, int signextend,
3819 struct objfile *objfile)
3820
3821DESCRIPTION
3822
3823 Given pointer to data in target format in FROM, a byte count for
3824 the size of the data in NBYTES, a flag indicating whether or not
3825 the data is signed in SIGNEXTEND, and a pointer to the current
3826 objfile in OBJFILE, convert the data to host format and return
3827 the converted value.
3828
3829NOTES
3830
3831 FIXME: If we read data that is known to be signed, and expect to
3832 use it as signed data, then we need to explicitly sign extend the
3833 result until the bfd library is able to do this for us.
3834
3835 */
3836
3837static unsigned long
3838target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3839 char *from;
3840 int nbytes;
13b5a7ff 3841 int signextend; /* FIXME: Unused */
95967e73
FF
3842 struct objfile *objfile;
3843{
13b5a7ff 3844 unsigned long rtnval;
95967e73
FF
3845
3846 switch (nbytes)
3847 {
95967e73 3848 case 8:
13b5a7ff 3849 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3850 break;
95967e73 3851 case 4:
13b5a7ff 3852 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3853 break;
3854 case 2:
13b5a7ff 3855 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3856 break;
3857 case 1:
13b5a7ff 3858 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3859 break;
3860 default:
51b80b00 3861 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3862 rtnval = 0;
95967e73
FF
3863 break;
3864 }
13b5a7ff 3865 return (rtnval);
95967e73
FF
3866}
3867
13b5a7ff
FF
3868/*
3869
3870LOCAL FUNCTION
3871
3872 attribute_size -- compute size of data for a DWARF attribute
3873
3874SYNOPSIS
3875
3876 static int attribute_size (unsigned int attr)
3877
3878DESCRIPTION
3879
3880 Given a DWARF attribute in ATTR, compute the size of the first
3881 piece of data associated with this attribute and return that
3882 size.
3883
3884 Returns -1 for unrecognized attributes.
3885
3886 */
3887
3888static int
3889attribute_size (attr)
3890 unsigned int attr;
3891{
3892 int nbytes; /* Size of next data for this attribute */
3893 unsigned short form; /* Form of the attribute */
3894
3895 form = FORM_FROM_ATTR (attr);
3896 switch (form)
3897 {
3898 case FORM_STRING: /* A variable length field is next */
3899 nbytes = 0;
3900 break;
3901 case FORM_DATA2: /* Next 2 byte field is the data itself */
3902 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3903 nbytes = 2;
3904 break;
3905 case FORM_DATA4: /* Next 4 byte field is the data itself */
3906 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3907 case FORM_REF: /* Next 4 byte field is a DIE offset */
3908 nbytes = 4;
3909 break;
3910 case FORM_DATA8: /* Next 8 byte field is the data itself */
3911 nbytes = 8;
3912 break;
3913 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3914 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3915 break;
3916 default:
51b80b00 3917 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3918 nbytes = -1;
3919 break;
3920 }
3921 return (nbytes);
3922}
This page took 0.259679 seconds and 4 git commands to generate.