Add test of SH DSP instructions
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
b6ba6518
KB
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001
c906108c
SS
4 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
6 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c
SS
23
24/*
25
c5aa993b
JM
26 FIXME: Do we need to generate dependencies in partial symtabs?
27 (Perhaps we don't need to).
c906108c 28
c5aa993b
JM
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
33 contents.
c906108c 34
c5aa993b
JM
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
c906108c 37
c5aa993b
JM
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
c906108c 40
c5aa993b 41 */
c906108c
SS
42
43#include "defs.h"
44#include "symtab.h"
45#include "gdbtypes.h"
46#include "symfile.h"
47#include "objfiles.h"
48#include "elf/dwarf.h"
49#include "buildsym.h"
50#include "demangle.h"
c5aa993b 51#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
52#include "language.h"
53#include "complaints.h"
54
55#include <fcntl.h>
56#include "gdb_string.h"
57
58/* Some macros to provide DIE info for complaints. */
59
60#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
61#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
62
63/* Complaints that can be issued during DWARF debug info reading. */
64
65struct complaint no_bfd_get_N =
66{
67 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
68};
69
70struct complaint malformed_die =
71{
72 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
73};
74
75struct complaint bad_die_ref =
76{
77 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
78};
79
80struct complaint unknown_attribute_form =
81{
82 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
83};
84
85struct complaint unknown_attribute_length =
86{
87 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
88};
89
90struct complaint unexpected_fund_type =
91{
92 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
93};
94
95struct complaint unknown_type_modifier =
96{
97 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
98};
99
100struct complaint volatile_ignored =
101{
102 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
103};
104
105struct complaint const_ignored =
106{
107 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
108};
109
110struct complaint botched_modified_type =
111{
112 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
113};
114
115struct complaint op_deref2 =
116{
117 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
118};
119
120struct complaint op_deref4 =
121{
122 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
123};
124
125struct complaint basereg_not_handled =
126{
127 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
128};
129
130struct complaint dup_user_type_allocation =
131{
132 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
133};
134
135struct complaint dup_user_type_definition =
136{
137 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
138};
139
140struct complaint missing_tag =
141{
142 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
143};
144
145struct complaint bad_array_element_type =
146{
147 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
148};
149
150struct complaint subscript_data_items =
151{
152 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
153};
154
155struct complaint unhandled_array_subscript_format =
156{
157 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
158};
159
160struct complaint unknown_array_subscript_format =
161{
162 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
163};
164
165struct complaint not_row_major =
166{
167 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
168};
169
170struct complaint missing_at_name =
171{
172 "DIE @ 0x%x, AT_name tag missing", 0, 0
173};
174
175typedef unsigned int DIE_REF; /* Reference to a DIE */
176
177#ifndef GCC_PRODUCER
178#define GCC_PRODUCER "GNU C "
179#endif
180
181#ifndef GPLUS_PRODUCER
182#define GPLUS_PRODUCER "GNU C++ "
183#endif
184
185#ifndef LCC_PRODUCER
186#define LCC_PRODUCER "NCR C/C++"
187#endif
188
189#ifndef CHILL_PRODUCER
190#define CHILL_PRODUCER "GNU Chill "
191#endif
192
c906108c
SS
193/* Flags to target_to_host() that tell whether or not the data object is
194 expected to be signed. Used, for example, when fetching a signed
195 integer in the target environment which is used as a signed integer
196 in the host environment, and the two environments have different sized
197 ints. In this case, *somebody* has to sign extend the smaller sized
198 int. */
199
200#define GET_UNSIGNED 0 /* No sign extension required */
201#define GET_SIGNED 1 /* Sign extension required */
202
203/* Defines for things which are specified in the document "DWARF Debugging
204 Information Format" published by UNIX International, Programming Languages
205 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
206
207#define SIZEOF_DIE_LENGTH 4
208#define SIZEOF_DIE_TAG 2
209#define SIZEOF_ATTRIBUTE 2
210#define SIZEOF_FORMAT_SPECIFIER 1
211#define SIZEOF_FMT_FT 2
212#define SIZEOF_LINETBL_LENGTH 4
213#define SIZEOF_LINETBL_LINENO 4
214#define SIZEOF_LINETBL_STMT 2
215#define SIZEOF_LINETBL_DELTA 4
216#define SIZEOF_LOC_ATOM_CODE 1
217
218#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
219
220/* Macros that return the sizes of various types of data in the target
221 environment.
222
223 FIXME: Currently these are just compile time constants (as they are in
224 other parts of gdb as well). They need to be able to get the right size
225 either from the bfd or possibly from the DWARF info. It would be nice if
226 the DWARF producer inserted DIES that describe the fundamental types in
227 the target environment into the DWARF info, similar to the way dbx stabs
228 producers produce information about their fundamental types. */
229
230#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
231#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
232
233/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
234 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
235 However, the Issue 2 DWARF specification from AT&T defines it as
236 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
237 For backwards compatibility with the AT&T compiler produced executables
238 we define AT_short_element_list for this variant. */
239
240#define AT_short_element_list (0x00f0|FORM_BLOCK2)
241
242/* External variables referenced. */
243
c5aa993b
JM
244extern int info_verbose; /* From main.c; nonzero => verbose */
245extern char *warning_pre_print; /* From utils.c */
c906108c
SS
246
247/* The DWARF debugging information consists of two major pieces,
248 one is a block of DWARF Information Entries (DIE's) and the other
249 is a line number table. The "struct dieinfo" structure contains
250 the information for a single DIE, the one currently being processed.
251
252 In order to make it easier to randomly access the attribute fields
253 of the current DIE, which are specifically unordered within the DIE,
254 each DIE is scanned and an instance of the "struct dieinfo"
255 structure is initialized.
256
257 Initialization is done in two levels. The first, done by basicdieinfo(),
258 just initializes those fields that are vital to deciding whether or not
259 to use this DIE, how to skip past it, etc. The second, done by the
260 function completedieinfo(), fills in the rest of the information.
261
262 Attributes which have block forms are not interpreted at the time
263 the DIE is scanned, instead we just save pointers to the start
264 of their value fields.
265
266 Some fields have a flag <name>_p that is set when the value of the
267 field is valid (I.E. we found a matching attribute in the DIE). Since
268 we may want to test for the presence of some attributes in the DIE,
269 such as AT_low_pc, without restricting the values of the field,
270 we need someway to note that we found such an attribute.
c5aa993b 271
c906108c 272 */
c5aa993b 273
c906108c
SS
274typedef char BLOCK;
275
c5aa993b
JM
276struct dieinfo
277 {
278 char *die; /* Pointer to the raw DIE data */
279 unsigned long die_length; /* Length of the raw DIE data */
280 DIE_REF die_ref; /* Offset of this DIE */
281 unsigned short die_tag; /* Tag for this DIE */
282 unsigned long at_padding;
283 unsigned long at_sibling;
284 BLOCK *at_location;
285 char *at_name;
286 unsigned short at_fund_type;
287 BLOCK *at_mod_fund_type;
288 unsigned long at_user_def_type;
289 BLOCK *at_mod_u_d_type;
290 unsigned short at_ordering;
291 BLOCK *at_subscr_data;
292 unsigned long at_byte_size;
293 unsigned short at_bit_offset;
294 unsigned long at_bit_size;
295 BLOCK *at_element_list;
296 unsigned long at_stmt_list;
297 CORE_ADDR at_low_pc;
298 CORE_ADDR at_high_pc;
299 unsigned long at_language;
300 unsigned long at_member;
301 unsigned long at_discr;
302 BLOCK *at_discr_value;
303 BLOCK *at_string_length;
304 char *at_comp_dir;
305 char *at_producer;
306 unsigned long at_start_scope;
307 unsigned long at_stride_size;
308 unsigned long at_src_info;
309 char *at_prototyped;
310 unsigned int has_at_low_pc:1;
311 unsigned int has_at_stmt_list:1;
312 unsigned int has_at_byte_size:1;
313 unsigned int short_element_list:1;
314
315 /* Kludge to identify register variables */
316
317 unsigned int isreg;
318
319 /* Kludge to identify optimized out variables */
320
321 unsigned int optimized_out;
322
323 /* Kludge to identify basereg references.
324 Nonzero if we have an offset relative to a basereg. */
325
326 unsigned int offreg;
327
328 /* Kludge to identify which base register is it relative to. */
329
330 unsigned int basereg;
331 };
c906108c 332
c5aa993b 333static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
334static struct dieinfo *curdie; /* For warnings and such */
335
c5aa993b
JM
336static char *dbbase; /* Base pointer to dwarf info */
337static int dbsize; /* Size of dwarf info in bytes */
338static int dbroff; /* Relative offset from start of .debug section */
339static char *lnbase; /* Base pointer to line section */
c906108c
SS
340
341/* This value is added to each symbol value. FIXME: Generalize to
342 the section_offsets structure used by dbxread (once this is done,
343 pass the appropriate section number to end_symtab). */
344static CORE_ADDR baseaddr; /* Add to each symbol value */
345
346/* The section offsets used in the current psymtab or symtab. FIXME,
347 only used to pass one value (baseaddr) at the moment. */
348static struct section_offsets *base_section_offsets;
349
350/* We put a pointer to this structure in the read_symtab_private field
351 of the psymtab. */
352
c5aa993b
JM
353struct dwfinfo
354 {
355 /* Always the absolute file offset to the start of the ".debug"
356 section for the file containing the DIE's being accessed. */
357 file_ptr dbfoff;
358 /* Relative offset from the start of the ".debug" section to the
359 first DIE to be accessed. When building the partial symbol
360 table, this value will be zero since we are accessing the
361 entire ".debug" section. When expanding a partial symbol
362 table entry, this value will be the offset to the first
363 DIE for the compilation unit containing the symbol that
364 triggers the expansion. */
365 int dbroff;
366 /* The size of the chunk of DIE's being examined, in bytes. */
367 int dblength;
368 /* The absolute file offset to the line table fragment. Ignored
369 when building partial symbol tables, but used when expanding
370 them, and contains the absolute file offset to the fragment
371 of the ".line" section containing the line numbers for the
372 current compilation unit. */
373 file_ptr lnfoff;
374 };
c906108c
SS
375
376#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
377#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
378#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
379#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
380
381/* The generic symbol table building routines have separate lists for
382 file scope symbols and all all other scopes (local scopes). So
383 we need to select the right one to pass to add_symbol_to_list().
384 We do it by keeping a pointer to the correct list in list_in_scope.
385
386 FIXME: The original dwarf code just treated the file scope as the first
387 local scope, and all other local scopes as nested local scopes, and worked
388 fine. Check to see if we really need to distinguish these in buildsym.c */
389
390struct pending **list_in_scope = &file_symbols;
391
392/* DIES which have user defined types or modified user defined types refer to
393 other DIES for the type information. Thus we need to associate the offset
394 of a DIE for a user defined type with a pointer to the type information.
395
396 Originally this was done using a simple but expensive algorithm, with an
397 array of unsorted structures, each containing an offset/type-pointer pair.
398 This array was scanned linearly each time a lookup was done. The result
399 was that gdb was spending over half it's startup time munging through this
400 array of pointers looking for a structure that had the right offset member.
401
402 The second attempt used the same array of structures, but the array was
403 sorted using qsort each time a new offset/type was recorded, and a binary
404 search was used to find the type pointer for a given DIE offset. This was
405 even slower, due to the overhead of sorting the array each time a new
406 offset/type pair was entered.
407
408 The third attempt uses a fixed size array of type pointers, indexed by a
409 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
410 we can divide any DIE offset by 4 to obtain a unique index into this fixed
411 size array. Since each element is a 4 byte pointer, it takes exactly as
412 much memory to hold this array as to hold the DWARF info for a given
413 compilation unit. But it gets freed as soon as we are done with it.
414 This has worked well in practice, as a reasonable tradeoff between memory
415 consumption and speed, without having to resort to much more complicated
416 algorithms. */
417
418static struct type **utypes; /* Pointer to array of user type pointers */
419static int numutypes; /* Max number of user type pointers */
420
421/* Maintain an array of referenced fundamental types for the current
422 compilation unit being read. For DWARF version 1, we have to construct
423 the fundamental types on the fly, since no information about the
424 fundamental types is supplied. Each such fundamental type is created by
425 calling a language dependent routine to create the type, and then a
426 pointer to that type is then placed in the array at the index specified
427 by it's FT_<TYPENAME> value. The array has a fixed size set by the
428 FT_NUM_MEMBERS compile time constant, which is the number of predefined
429 fundamental types gdb knows how to construct. */
430
c5aa993b 431static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
432
433/* Record the language for the compilation unit which is currently being
434 processed. We know it once we have seen the TAG_compile_unit DIE,
435 and we need it while processing the DIE's for that compilation unit.
436 It is eventually saved in the symtab structure, but we don't finalize
437 the symtab struct until we have processed all the DIE's for the
438 compilation unit. We also need to get and save a pointer to the
439 language struct for this language, so we can call the language
440 dependent routines for doing things such as creating fundamental
441 types. */
442
443static enum language cu_language;
444static const struct language_defn *cu_language_defn;
445
446/* Forward declarations of static functions so we don't have to worry
447 about ordering within this file. */
448
a14ed312 449static void free_utypes (PTR);
c906108c 450
a14ed312 451static int attribute_size (unsigned int);
c906108c 452
a14ed312 453static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 454
a14ed312 455static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 456
a14ed312 457static void handle_producer (char *);
c906108c
SS
458
459static void
a14ed312 460read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c
SS
461
462static void
a14ed312 463read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c
SS
464
465static void
a14ed312 466read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c 467
a14ed312 468static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c
SS
469
470static void
a14ed312 471scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
c906108c 472
a14ed312 473static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 474
a14ed312 475static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 476
a14ed312 477static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 478
a14ed312 479static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 480
a14ed312 481static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 482
a14ed312 483static void read_ofile_symtab (struct partial_symtab *);
c906108c 484
a14ed312 485static void process_dies (char *, char *, struct objfile *);
c906108c
SS
486
487static void
a14ed312 488read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
c906108c 489
a14ed312 490static struct type *decode_array_element_type (char *);
c906108c 491
a14ed312 492static struct type *decode_subscript_data_item (char *, char *);
c906108c 493
a14ed312 494static void dwarf_read_array_type (struct dieinfo *);
c906108c 495
a14ed312 496static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 497
a14ed312 498static void read_tag_string_type (struct dieinfo *dip);
c906108c 499
a14ed312 500static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c
SS
501
502static void
a14ed312 503read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
c906108c 504
a14ed312
KB
505static struct type *struct_type (struct dieinfo *, char *, char *,
506 struct objfile *);
c906108c 507
a14ed312 508static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 509
a14ed312 510static void decode_line_numbers (char *);
c906108c 511
a14ed312 512static struct type *decode_die_type (struct dieinfo *);
c906108c 513
a14ed312 514static struct type *decode_mod_fund_type (char *);
c906108c 515
a14ed312 516static struct type *decode_mod_u_d_type (char *);
c906108c 517
a14ed312 518static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 519
a14ed312 520static struct type *decode_fund_type (unsigned int);
c906108c 521
a14ed312 522static char *create_name (char *, struct obstack *);
c906108c 523
a14ed312 524static struct type *lookup_utype (DIE_REF);
c906108c 525
a14ed312 526static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 527
a14ed312 528static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c
SS
529
530static void
a14ed312 531synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
c906108c 532
a14ed312 533static int locval (struct dieinfo *);
c906108c 534
a14ed312 535static void set_cu_language (struct dieinfo *);
c906108c 536
a14ed312 537static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
538
539
540/*
541
c5aa993b 542 LOCAL FUNCTION
c906108c 543
c5aa993b 544 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 545
c5aa993b 546 SYNOPSIS
c906108c 547
c5aa993b
JM
548 struct type *
549 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 550
c5aa993b 551 DESCRIPTION
c906108c 552
c5aa993b
JM
553 DWARF version 1 doesn't supply any fundamental type information,
554 so gdb has to construct such types. It has a fixed number of
555 fundamental types that it knows how to construct, which is the
556 union of all types that it knows how to construct for all languages
557 that it knows about. These are enumerated in gdbtypes.h.
c906108c 558
c5aa993b
JM
559 As an example, assume we find a DIE that references a DWARF
560 fundamental type of FT_integer. We first look in the ftypes
561 array to see if we already have such a type, indexed by the
562 gdb internal value of FT_INTEGER. If so, we simply return a
563 pointer to that type. If not, then we ask an appropriate
564 language dependent routine to create a type FT_INTEGER, using
565 defaults reasonable for the current target machine, and install
566 that type in ftypes for future reference.
c906108c 567
c5aa993b 568 RETURNS
c906108c 569
c5aa993b 570 Pointer to a fundamental type.
c906108c 571
c5aa993b 572 */
c906108c
SS
573
574static struct type *
fba45db2 575dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
576{
577 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
578 {
579 error ("internal error - invalid fundamental type id %d", typeid);
580 }
581
582 /* Look for this particular type in the fundamental type vector. If one is
583 not found, create and install one appropriate for the current language
584 and the current target machine. */
585
586 if (ftypes[typeid] == NULL)
587 {
c5aa993b 588 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
589 }
590
591 return (ftypes[typeid]);
592}
593
594/*
595
c5aa993b 596 LOCAL FUNCTION
c906108c 597
c5aa993b 598 set_cu_language -- set local copy of language for compilation unit
c906108c 599
c5aa993b 600 SYNOPSIS
c906108c 601
c5aa993b
JM
602 void
603 set_cu_language (struct dieinfo *dip)
c906108c 604
c5aa993b 605 DESCRIPTION
c906108c 606
c5aa993b
JM
607 Decode the language attribute for a compilation unit DIE and
608 remember what the language was. We use this at various times
609 when processing DIE's for a given compilation unit.
c906108c 610
c5aa993b 611 RETURNS
c906108c 612
c5aa993b 613 No return value.
c906108c
SS
614
615 */
616
617static void
fba45db2 618set_cu_language (struct dieinfo *dip)
c906108c 619{
c5aa993b 620 switch (dip->at_language)
c906108c 621 {
c5aa993b
JM
622 case LANG_C89:
623 case LANG_C:
624 cu_language = language_c;
625 break;
626 case LANG_C_PLUS_PLUS:
627 cu_language = language_cplus;
628 break;
629 case LANG_CHILL:
630 cu_language = language_chill;
631 break;
632 case LANG_MODULA2:
633 cu_language = language_m2;
634 break;
635 case LANG_FORTRAN77:
636 case LANG_FORTRAN90:
637 cu_language = language_fortran;
638 break;
639 case LANG_ADA83:
640 case LANG_COBOL74:
641 case LANG_COBOL85:
642 case LANG_PASCAL83:
643 /* We don't know anything special about these yet. */
644 cu_language = language_unknown;
645 break;
646 default:
647 /* If no at_language, try to deduce one from the filename */
648 cu_language = deduce_language_from_filename (dip->at_name);
649 break;
c906108c
SS
650 }
651 cu_language_defn = language_def (cu_language);
652}
653
654/*
655
c5aa993b 656 GLOBAL FUNCTION
c906108c 657
c5aa993b 658 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 659
c5aa993b 660 SYNOPSIS
c906108c 661
c5aa993b 662 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
663 int mainline, file_ptr dbfoff, unsigned int dbfsize,
664 file_ptr lnoffset, unsigned int lnsize)
c906108c 665
c5aa993b 666 DESCRIPTION
c906108c 667
c5aa993b
JM
668 This function is called upon to build partial symtabs from files
669 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 670
c5aa993b
JM
671 It is passed a bfd* containing the DIES
672 and line number information, the corresponding filename for that
673 file, a base address for relocating the symbols, a flag indicating
674 whether or not this debugging information is from a "main symbol
675 table" rather than a shared library or dynamically linked file,
676 and file offset/size pairs for the DIE information and line number
677 information.
c906108c 678
c5aa993b 679 RETURNS
c906108c 680
c5aa993b 681 No return value.
c906108c
SS
682
683 */
684
685void
fba45db2
KB
686dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
687 unsigned int dbfsize, file_ptr lnoffset,
688 unsigned int lnsize)
c906108c
SS
689{
690 bfd *abfd = objfile->obfd;
691 struct cleanup *back_to;
c5aa993b 692
c906108c
SS
693 current_objfile = objfile;
694 dbsize = dbfsize;
695 dbbase = xmalloc (dbsize);
696 dbroff = 0;
697 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 698 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 699 {
b8c9b27d 700 xfree (dbbase);
c906108c
SS
701 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
702 }
b8c9b27d 703 back_to = make_cleanup (xfree, dbbase);
c5aa993b 704
c906108c
SS
705 /* If we are reinitializing, or if we have never loaded syms yet, init.
706 Since we have no idea how many DIES we are looking at, we just guess
707 some arbitrary value. */
c5aa993b 708
ef96bde8
EZ
709 if (mainline
710 || (objfile->global_psymbols.size == 0
711 && objfile->static_psymbols.size == 0))
c906108c
SS
712 {
713 init_psymbol_list (objfile, 1024);
714 }
c5aa993b 715
c906108c
SS
716 /* Save the relocation factor where everybody can see it. */
717
d4f3574e
SS
718 base_section_offsets = objfile->section_offsets;
719 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
720
721 /* Follow the compilation unit sibling chain, building a partial symbol
722 table entry for each one. Save enough information about each compilation
723 unit to locate the full DWARF information later. */
c5aa993b 724
c906108c 725 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 726
c906108c
SS
727 do_cleanups (back_to);
728 current_objfile = NULL;
729}
730
731/*
732
c5aa993b 733 LOCAL FUNCTION
c906108c 734
c5aa993b 735 read_lexical_block_scope -- process all dies in a lexical block
c906108c 736
c5aa993b 737 SYNOPSIS
c906108c 738
c5aa993b
JM
739 static void read_lexical_block_scope (struct dieinfo *dip,
740 char *thisdie, char *enddie)
c906108c 741
c5aa993b 742 DESCRIPTION
c906108c 743
c5aa993b
JM
744 Process all the DIES contained within a lexical block scope.
745 Start a new scope, process the dies, and then close the scope.
c906108c
SS
746
747 */
748
749static void
fba45db2
KB
750read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
751 struct objfile *objfile)
c906108c
SS
752{
753 register struct context_stack *new;
754
c5aa993b
JM
755 push_context (0, dip->at_low_pc);
756 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
757 new = pop_context ();
758 if (local_symbols != NULL)
759 {
c5aa993b
JM
760 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
761 dip->at_high_pc, objfile);
c906108c 762 }
c5aa993b 763 local_symbols = new->locals;
c906108c
SS
764}
765
766/*
767
c5aa993b 768 LOCAL FUNCTION
c906108c 769
c5aa993b 770 lookup_utype -- look up a user defined type from die reference
c906108c 771
c5aa993b 772 SYNOPSIS
c906108c 773
c5aa993b 774 static type *lookup_utype (DIE_REF die_ref)
c906108c 775
c5aa993b 776 DESCRIPTION
c906108c 777
c5aa993b
JM
778 Given a DIE reference, lookup the user defined type associated with
779 that DIE, if it has been registered already. If not registered, then
780 return NULL. Alloc_utype() can be called to register an empty
781 type for this reference, which will be filled in later when the
782 actual referenced DIE is processed.
c906108c
SS
783 */
784
785static struct type *
fba45db2 786lookup_utype (DIE_REF die_ref)
c906108c
SS
787{
788 struct type *type = NULL;
789 int utypeidx;
c5aa993b 790
c906108c
SS
791 utypeidx = (die_ref - dbroff) / 4;
792 if ((utypeidx < 0) || (utypeidx >= numutypes))
793 {
794 complain (&bad_die_ref, DIE_ID, DIE_NAME);
795 }
796 else
797 {
798 type = *(utypes + utypeidx);
799 }
800 return (type);
801}
802
803
804/*
805
c5aa993b 806 LOCAL FUNCTION
c906108c 807
c5aa993b 808 alloc_utype -- add a user defined type for die reference
c906108c 809
c5aa993b 810 SYNOPSIS
c906108c 811
c5aa993b 812 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 813
c5aa993b 814 DESCRIPTION
c906108c 815
c5aa993b
JM
816 Given a die reference DIE_REF, and a possible pointer to a user
817 defined type UTYPEP, register that this reference has a user
818 defined type and either use the specified type in UTYPEP or
819 make a new empty type that will be filled in later.
c906108c 820
c5aa993b
JM
821 We should only be called after calling lookup_utype() to verify that
822 there is not currently a type registered for DIE_REF.
c906108c
SS
823 */
824
825static struct type *
fba45db2 826alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
827{
828 struct type **typep;
829 int utypeidx;
c5aa993b 830
c906108c
SS
831 utypeidx = (die_ref - dbroff) / 4;
832 typep = utypes + utypeidx;
833 if ((utypeidx < 0) || (utypeidx >= numutypes))
834 {
835 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
836 complain (&bad_die_ref, DIE_ID, DIE_NAME);
837 }
838 else if (*typep != NULL)
839 {
840 utypep = *typep;
841 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
842 }
843 else
844 {
845 if (utypep == NULL)
846 {
847 utypep = alloc_type (current_objfile);
848 }
849 *typep = utypep;
850 }
851 return (utypep);
852}
853
854/*
855
c5aa993b 856 LOCAL FUNCTION
c906108c 857
c5aa993b 858 free_utypes -- free the utypes array and reset pointer & count
c906108c 859
c5aa993b 860 SYNOPSIS
c906108c 861
c5aa993b 862 static void free_utypes (PTR dummy)
c906108c 863
c5aa993b 864 DESCRIPTION
c906108c 865
c5aa993b
JM
866 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
867 and set numutypes back to zero. This ensures that the utypes does not get
868 referenced after being freed.
c906108c
SS
869 */
870
871static void
fba45db2 872free_utypes (PTR dummy)
c906108c 873{
b8c9b27d 874 xfree (utypes);
c906108c
SS
875 utypes = NULL;
876 numutypes = 0;
877}
878
879
880/*
881
c5aa993b 882 LOCAL FUNCTION
c906108c 883
c5aa993b 884 decode_die_type -- return a type for a specified die
c906108c 885
c5aa993b 886 SYNOPSIS
c906108c 887
c5aa993b 888 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 889
c5aa993b 890 DESCRIPTION
c906108c 891
c5aa993b
JM
892 Given a pointer to a die information structure DIP, decode the
893 type of the die and return a pointer to the decoded type. All
894 dies without specific types default to type int.
c906108c
SS
895 */
896
897static struct type *
fba45db2 898decode_die_type (struct dieinfo *dip)
c906108c
SS
899{
900 struct type *type = NULL;
c5aa993b
JM
901
902 if (dip->at_fund_type != 0)
c906108c 903 {
c5aa993b 904 type = decode_fund_type (dip->at_fund_type);
c906108c 905 }
c5aa993b 906 else if (dip->at_mod_fund_type != NULL)
c906108c 907 {
c5aa993b 908 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 909 }
c5aa993b 910 else if (dip->at_user_def_type)
c906108c 911 {
c5aa993b 912 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
c906108c 913 {
c5aa993b 914 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
915 }
916 }
c5aa993b 917 else if (dip->at_mod_u_d_type)
c906108c 918 {
c5aa993b 919 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
920 }
921 else
922 {
923 type = dwarf_fundamental_type (current_objfile, FT_VOID);
924 }
925 return (type);
926}
927
928/*
929
c5aa993b 930 LOCAL FUNCTION
c906108c 931
c5aa993b 932 struct_type -- compute and return the type for a struct or union
c906108c 933
c5aa993b 934 SYNOPSIS
c906108c 935
c5aa993b
JM
936 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
937 char *enddie, struct objfile *objfile)
c906108c 938
c5aa993b 939 DESCRIPTION
c906108c 940
c5aa993b
JM
941 Given pointer to a die information structure for a die which
942 defines a union or structure (and MUST define one or the other),
943 and pointers to the raw die data that define the range of dies which
944 define the members, compute and return the user defined type for the
945 structure or union.
c906108c
SS
946 */
947
948static struct type *
fba45db2
KB
949struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
950 struct objfile *objfile)
c906108c
SS
951{
952 struct type *type;
c5aa993b
JM
953 struct nextfield
954 {
955 struct nextfield *next;
956 struct field field;
957 };
c906108c
SS
958 struct nextfield *list = NULL;
959 struct nextfield *new;
960 int nfields = 0;
961 int n;
962 struct dieinfo mbr;
963 char *nextdie;
964 int anonymous_size;
c5aa993b
JM
965
966 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
967 {
968 /* No forward references created an empty type, so install one now */
c5aa993b 969 type = alloc_utype (dip->die_ref, NULL);
c906108c 970 }
c5aa993b
JM
971 INIT_CPLUS_SPECIFIC (type);
972 switch (dip->die_tag)
c906108c 973 {
c5aa993b
JM
974 case TAG_class_type:
975 TYPE_CODE (type) = TYPE_CODE_CLASS;
976 break;
977 case TAG_structure_type:
978 TYPE_CODE (type) = TYPE_CODE_STRUCT;
979 break;
980 case TAG_union_type:
981 TYPE_CODE (type) = TYPE_CODE_UNION;
982 break;
983 default:
984 /* Should never happen */
985 TYPE_CODE (type) = TYPE_CODE_UNDEF;
986 complain (&missing_tag, DIE_ID, DIE_NAME);
987 break;
c906108c
SS
988 }
989 /* Some compilers try to be helpful by inventing "fake" names for
990 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
991 Thanks, but no thanks... */
c5aa993b
JM
992 if (dip->at_name != NULL
993 && *dip->at_name != '~'
994 && *dip->at_name != '.')
c906108c 995 {
c5aa993b
JM
996 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
997 "", "", dip->at_name);
c906108c
SS
998 }
999 /* Use whatever size is known. Zero is a valid size. We might however
1000 wish to check has_at_byte_size to make sure that some byte size was
1001 given explicitly, but DWARF doesn't specify that explicit sizes of
1002 zero have to present, so complaining about missing sizes should
1003 probably not be the default. */
c5aa993b
JM
1004 TYPE_LENGTH (type) = dip->at_byte_size;
1005 thisdie += dip->die_length;
c906108c
SS
1006 while (thisdie < enddie)
1007 {
1008 basicdieinfo (&mbr, thisdie, objfile);
1009 completedieinfo (&mbr, objfile);
1010 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1011 {
1012 break;
1013 }
1014 else if (mbr.at_sibling != 0)
1015 {
1016 nextdie = dbbase + mbr.at_sibling - dbroff;
1017 }
1018 else
1019 {
1020 nextdie = thisdie + mbr.die_length;
1021 }
1022 switch (mbr.die_tag)
1023 {
1024 case TAG_member:
1025 /* Get space to record the next field's data. */
1026 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1027 new->next = list;
c906108c
SS
1028 list = new;
1029 /* Save the data. */
c5aa993b
JM
1030 list->field.name =
1031 obsavestring (mbr.at_name, strlen (mbr.at_name),
1032 &objfile->type_obstack);
c906108c
SS
1033 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1034 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1035 /* Handle bit fields. */
1036 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1037 if (BITS_BIG_ENDIAN)
1038 {
1039 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1040 additional bit offset from the MSB of the containing
1041 anonymous object to the MSB of the field. We don't
1042 have to do anything special since we don't need to
1043 know the size of the anonymous object. */
c906108c
SS
1044 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1045 }
1046 else
1047 {
1048 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1049 at_bit_size, so that we know we are in fact dealing
1050 with a bitfield. Compute the bit offset to the MSB
1051 of the anonymous object, subtract off the number of
1052 bits from the MSB of the field to the MSB of the
1053 object, and then subtract off the number of bits of
1054 the field itself. The result is the bit offset of
1055 the LSB of the field. */
c906108c
SS
1056 if (mbr.at_bit_size > 0)
1057 {
1058 if (mbr.has_at_byte_size)
1059 {
1060 /* The size of the anonymous object containing
c5aa993b
JM
1061 the bit field is explicit, so use the
1062 indicated size (in bytes). */
c906108c
SS
1063 anonymous_size = mbr.at_byte_size;
1064 }
1065 else
1066 {
1067 /* The size of the anonymous object containing
c5aa993b
JM
1068 the bit field matches the size of an object
1069 of the bit field's type. DWARF allows
1070 at_byte_size to be left out in such cases, as
1071 a debug information size optimization. */
1072 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1073 }
1074 FIELD_BITPOS (list->field) +=
1075 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1076 }
1077 }
1078 nfields++;
1079 break;
1080 default:
1081 process_dies (thisdie, nextdie, objfile);
1082 break;
1083 }
1084 thisdie = nextdie;
1085 }
1086 /* Now create the vector of fields, and record how big it is. We may
1087 not even have any fields, if this DIE was generated due to a reference
1088 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1089 set, which clues gdb in to the fact that it needs to search elsewhere
1090 for the full structure definition. */
1091 if (nfields == 0)
1092 {
1093 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1094 }
1095 else
1096 {
1097 TYPE_NFIELDS (type) = nfields;
1098 TYPE_FIELDS (type) = (struct field *)
1099 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1100 /* Copy the saved-up fields into the field vector. */
c5aa993b 1101 for (n = nfields; list; list = list->next)
c906108c 1102 {
c5aa993b
JM
1103 TYPE_FIELD (type, --n) = list->field;
1104 }
c906108c
SS
1105 }
1106 return (type);
1107}
1108
1109/*
1110
c5aa993b 1111 LOCAL FUNCTION
c906108c 1112
c5aa993b 1113 read_structure_scope -- process all dies within struct or union
c906108c 1114
c5aa993b 1115 SYNOPSIS
c906108c 1116
c5aa993b
JM
1117 static void read_structure_scope (struct dieinfo *dip,
1118 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1119
c5aa993b 1120 DESCRIPTION
c906108c 1121
c5aa993b
JM
1122 Called when we find the DIE that starts a structure or union
1123 scope (definition) to process all dies that define the members
1124 of the structure or union. DIP is a pointer to the die info
1125 struct for the DIE that names the structure or union.
c906108c 1126
c5aa993b
JM
1127 NOTES
1128
1129 Note that we need to call struct_type regardless of whether or not
1130 the DIE has an at_name attribute, since it might be an anonymous
1131 structure or union. This gets the type entered into our set of
1132 user defined types.
1133
1134 However, if the structure is incomplete (an opaque struct/union)
1135 then suppress creating a symbol table entry for it since gdb only
1136 wants to find the one with the complete definition. Note that if
1137 it is complete, we just call new_symbol, which does it's own
1138 checking about whether the struct/union is anonymous or not (and
1139 suppresses creating a symbol table entry itself).
c906108c 1140
c906108c
SS
1141 */
1142
1143static void
fba45db2
KB
1144read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1145 struct objfile *objfile)
c906108c
SS
1146{
1147 struct type *type;
1148 struct symbol *sym;
c5aa993b 1149
c906108c
SS
1150 type = struct_type (dip, thisdie, enddie, objfile);
1151 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1152 {
1153 sym = new_symbol (dip, objfile);
1154 if (sym != NULL)
1155 {
1156 SYMBOL_TYPE (sym) = type;
1157 if (cu_language == language_cplus)
1158 {
1159 synthesize_typedef (dip, objfile, type);
1160 }
1161 }
1162 }
1163}
1164
1165/*
1166
c5aa993b 1167 LOCAL FUNCTION
c906108c 1168
c5aa993b 1169 decode_array_element_type -- decode type of the array elements
c906108c 1170
c5aa993b 1171 SYNOPSIS
c906108c 1172
c5aa993b 1173 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1174
c5aa993b 1175 DESCRIPTION
c906108c 1176
c5aa993b
JM
1177 As the last step in decoding the array subscript information for an
1178 array DIE, we need to decode the type of the array elements. We are
1179 passed a pointer to this last part of the subscript information and
1180 must return the appropriate type. If the type attribute is not
1181 recognized, just warn about the problem and return type int.
c906108c
SS
1182 */
1183
1184static struct type *
fba45db2 1185decode_array_element_type (char *scan)
c906108c
SS
1186{
1187 struct type *typep;
1188 DIE_REF die_ref;
1189 unsigned short attribute;
1190 unsigned short fundtype;
1191 int nbytes;
c5aa993b 1192
c906108c
SS
1193 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1194 current_objfile);
1195 scan += SIZEOF_ATTRIBUTE;
1196 if ((nbytes = attribute_size (attribute)) == -1)
1197 {
1198 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1199 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1200 }
1201 else
1202 {
1203 switch (attribute)
1204 {
c5aa993b
JM
1205 case AT_fund_type:
1206 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1207 current_objfile);
1208 typep = decode_fund_type (fundtype);
1209 break;
1210 case AT_mod_fund_type:
1211 typep = decode_mod_fund_type (scan);
1212 break;
1213 case AT_user_def_type:
1214 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1215 current_objfile);
1216 if ((typep = lookup_utype (die_ref)) == NULL)
1217 {
1218 typep = alloc_utype (die_ref, NULL);
1219 }
1220 break;
1221 case AT_mod_u_d_type:
1222 typep = decode_mod_u_d_type (scan);
1223 break;
1224 default:
1225 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1226 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1227 break;
1228 }
c906108c
SS
1229 }
1230 return (typep);
1231}
1232
1233/*
1234
c5aa993b 1235 LOCAL FUNCTION
c906108c 1236
c5aa993b 1237 decode_subscript_data_item -- decode array subscript item
c906108c 1238
c5aa993b 1239 SYNOPSIS
c906108c 1240
c5aa993b
JM
1241 static struct type *
1242 decode_subscript_data_item (char *scan, char *end)
c906108c 1243
c5aa993b 1244 DESCRIPTION
c906108c 1245
c5aa993b
JM
1246 The array subscripts and the data type of the elements of an
1247 array are described by a list of data items, stored as a block
1248 of contiguous bytes. There is a data item describing each array
1249 dimension, and a final data item describing the element type.
1250 The data items are ordered the same as their appearance in the
1251 source (I.E. leftmost dimension first, next to leftmost second,
1252 etc).
c906108c 1253
c5aa993b
JM
1254 The data items describing each array dimension consist of four
1255 parts: (1) a format specifier, (2) type type of the subscript
1256 index, (3) a description of the low bound of the array dimension,
1257 and (4) a description of the high bound of the array dimension.
c906108c 1258
c5aa993b
JM
1259 The last data item is the description of the type of each of
1260 the array elements.
c906108c 1261
c5aa993b
JM
1262 We are passed a pointer to the start of the block of bytes
1263 containing the remaining data items, and a pointer to the first
1264 byte past the data. This function recursively decodes the
1265 remaining data items and returns a type.
c906108c 1266
c5aa993b
JM
1267 If we somehow fail to decode some data, we complain about it
1268 and return a type "array of int".
c906108c 1269
c5aa993b
JM
1270 BUGS
1271 FIXME: This code only implements the forms currently used
1272 by the AT&T and GNU C compilers.
c906108c 1273
c5aa993b
JM
1274 The end pointer is supplied for error checking, maybe we should
1275 use it for that...
c906108c
SS
1276 */
1277
1278static struct type *
fba45db2 1279decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1280{
1281 struct type *typep = NULL; /* Array type we are building */
1282 struct type *nexttype; /* Type of each element (may be array) */
1283 struct type *indextype; /* Type of this index */
1284 struct type *rangetype;
1285 unsigned int format;
1286 unsigned short fundtype;
1287 unsigned long lowbound;
1288 unsigned long highbound;
1289 int nbytes;
c5aa993b 1290
c906108c
SS
1291 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1292 current_objfile);
1293 scan += SIZEOF_FORMAT_SPECIFIER;
1294 switch (format)
1295 {
1296 case FMT_ET:
1297 typep = decode_array_element_type (scan);
1298 break;
1299 case FMT_FT_C_C:
1300 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1301 current_objfile);
1302 indextype = decode_fund_type (fundtype);
1303 scan += SIZEOF_FMT_FT;
1304 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1305 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1306 scan += nbytes;
1307 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1308 scan += nbytes;
1309 nexttype = decode_subscript_data_item (scan, end);
1310 if (nexttype == NULL)
1311 {
1312 /* Munged subscript data or other problem, fake it. */
1313 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1314 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1315 }
1316 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1317 lowbound, highbound);
c906108c
SS
1318 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1319 break;
1320 case FMT_FT_C_X:
1321 case FMT_FT_X_C:
1322 case FMT_FT_X_X:
1323 case FMT_UT_C_C:
1324 case FMT_UT_C_X:
1325 case FMT_UT_X_C:
1326 case FMT_UT_X_X:
1327 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1328 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1329 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1330 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1331 break;
1332 default:
1333 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1334 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1335 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1336 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1337 break;
1338 }
1339 return (typep);
1340}
1341
1342/*
1343
c5aa993b 1344 LOCAL FUNCTION
c906108c 1345
c5aa993b 1346 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1347
c5aa993b 1348 SYNOPSIS
c906108c 1349
c5aa993b 1350 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1351
c5aa993b 1352 DESCRIPTION
c906108c 1353
c5aa993b
JM
1354 Extract all information from a TAG_array_type DIE and add to
1355 the user defined type vector.
c906108c
SS
1356 */
1357
1358static void
fba45db2 1359dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1360{
1361 struct type *type;
1362 struct type *utype;
1363 char *sub;
1364 char *subend;
1365 unsigned short blocksz;
1366 int nbytes;
c5aa993b
JM
1367
1368 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1369 {
1370 /* FIXME: Can gdb even handle column major arrays? */
1371 complain (&not_row_major, DIE_ID, DIE_NAME);
1372 }
c5aa993b 1373 if ((sub = dip->at_subscr_data) != NULL)
c906108c
SS
1374 {
1375 nbytes = attribute_size (AT_subscr_data);
1376 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1377 subend = sub + nbytes + blocksz;
1378 sub += nbytes;
1379 type = decode_subscript_data_item (sub, subend);
c5aa993b 1380 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1381 {
1382 /* Install user defined type that has not been referenced yet. */
c5aa993b 1383 alloc_utype (dip->die_ref, type);
c906108c
SS
1384 }
1385 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1386 {
1387 /* Ick! A forward ref has already generated a blank type in our
1388 slot, and this type probably already has things pointing to it
1389 (which is what caused it to be created in the first place).
1390 If it's just a place holder we can plop our fully defined type
1391 on top of it. We can't recover the space allocated for our
1392 new type since it might be on an obstack, but we could reuse
1393 it if we kept a list of them, but it might not be worth it
1394 (FIXME). */
1395 *utype = *type;
1396 }
1397 else
1398 {
1399 /* Double ick! Not only is a type already in our slot, but
1400 someone has decorated it. Complain and leave it alone. */
1401 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1402 }
1403 }
1404}
1405
1406/*
1407
c5aa993b 1408 LOCAL FUNCTION
c906108c 1409
c5aa993b 1410 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1411
c5aa993b 1412 SYNOPSIS
c906108c 1413
c5aa993b 1414 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1415
c5aa993b 1416 DESCRIPTION
c906108c 1417
c5aa993b
JM
1418 Extract all information from a TAG_pointer_type DIE and add to
1419 the user defined type vector.
c906108c
SS
1420 */
1421
1422static void
fba45db2 1423read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1424{
1425 struct type *type;
1426 struct type *utype;
c5aa993b 1427
c906108c 1428 type = decode_die_type (dip);
c5aa993b 1429 if ((utype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1430 {
1431 utype = lookup_pointer_type (type);
c5aa993b 1432 alloc_utype (dip->die_ref, utype);
c906108c
SS
1433 }
1434 else
1435 {
1436 TYPE_TARGET_TYPE (utype) = type;
1437 TYPE_POINTER_TYPE (type) = utype;
1438
1439 /* We assume the machine has only one representation for pointers! */
1440 /* FIXME: Possably a poor assumption */
c5aa993b 1441 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1442 TYPE_CODE (utype) = TYPE_CODE_PTR;
1443 }
1444}
1445
1446/*
1447
c5aa993b 1448 LOCAL FUNCTION
c906108c 1449
c5aa993b 1450 read_tag_string_type -- read TAG_string_type DIE
c906108c 1451
c5aa993b 1452 SYNOPSIS
c906108c 1453
c5aa993b 1454 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1455
c5aa993b 1456 DESCRIPTION
c906108c 1457
c5aa993b
JM
1458 Extract all information from a TAG_string_type DIE and add to
1459 the user defined type vector. It isn't really a user defined
1460 type, but it behaves like one, with other DIE's using an
1461 AT_user_def_type attribute to reference it.
c906108c
SS
1462 */
1463
1464static void
fba45db2 1465read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1466{
1467 struct type *utype;
1468 struct type *indextype;
1469 struct type *rangetype;
1470 unsigned long lowbound = 0;
1471 unsigned long highbound;
1472
c5aa993b 1473 if (dip->has_at_byte_size)
c906108c
SS
1474 {
1475 /* A fixed bounds string */
c5aa993b 1476 highbound = dip->at_byte_size - 1;
c906108c
SS
1477 }
1478 else
1479 {
1480 /* A varying length string. Stub for now. (FIXME) */
1481 highbound = 1;
1482 }
1483 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1484 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1485 highbound);
c5aa993b
JM
1486
1487 utype = lookup_utype (dip->die_ref);
c906108c
SS
1488 if (utype == NULL)
1489 {
1490 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1491 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1492 }
1493 else
1494 {
1495 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1496 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1497 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1498 {
1499 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1500 return;
1501 }
1502 }
1503
1504 /* Create the string type using the blank type we either found or created. */
1505 utype = create_string_type (utype, rangetype);
1506}
1507
1508/*
1509
c5aa993b 1510 LOCAL FUNCTION
c906108c 1511
c5aa993b 1512 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1513
c5aa993b 1514 SYNOPSIS
c906108c 1515
c5aa993b
JM
1516 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1517 char *enddie)
c906108c 1518
c5aa993b 1519 DESCRIPTION
c906108c 1520
c5aa993b 1521 Handle DIES due to C code like:
c906108c 1522
c5aa993b
JM
1523 struct foo {
1524 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1525 int b;
1526 };
c906108c 1527
c5aa993b 1528 NOTES
c906108c 1529
c5aa993b
JM
1530 The parameter DIES are currently ignored. See if gdb has a way to
1531 include this info in it's type system, and decode them if so. Is
1532 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1533 */
1534
1535static void
fba45db2 1536read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1537{
1538 struct type *type; /* Type that this function returns */
1539 struct type *ftype; /* Function that returns above type */
c5aa993b 1540
c906108c
SS
1541 /* Decode the type that this subroutine returns */
1542
1543 type = decode_die_type (dip);
1544
1545 /* Check to see if we already have a partially constructed user
1546 defined type for this DIE, from a forward reference. */
1547
c5aa993b 1548 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1549 {
1550 /* This is the first reference to one of these types. Make
c5aa993b 1551 a new one and place it in the user defined types. */
c906108c 1552 ftype = lookup_function_type (type);
c5aa993b 1553 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1554 }
1555 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1556 {
1557 /* We have an existing partially constructed type, so bash it
c5aa993b 1558 into the correct type. */
c906108c
SS
1559 TYPE_TARGET_TYPE (ftype) = type;
1560 TYPE_LENGTH (ftype) = 1;
1561 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1562 }
1563 else
1564 {
1565 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1566 }
1567}
1568
1569/*
1570
c5aa993b 1571 LOCAL FUNCTION
c906108c 1572
c5aa993b 1573 read_enumeration -- process dies which define an enumeration
c906108c 1574
c5aa993b 1575 SYNOPSIS
c906108c 1576
c5aa993b
JM
1577 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1578 char *enddie, struct objfile *objfile)
c906108c 1579
c5aa993b 1580 DESCRIPTION
c906108c 1581
c5aa993b
JM
1582 Given a pointer to a die which begins an enumeration, process all
1583 the dies that define the members of the enumeration.
c906108c 1584
c5aa993b 1585 NOTES
c906108c 1586
c5aa993b
JM
1587 Note that we need to call enum_type regardless of whether or not we
1588 have a symbol, since we might have an enum without a tag name (thus
1589 no symbol for the tagname).
c906108c
SS
1590 */
1591
1592static void
fba45db2
KB
1593read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1594 struct objfile *objfile)
c906108c
SS
1595{
1596 struct type *type;
1597 struct symbol *sym;
c5aa993b 1598
c906108c
SS
1599 type = enum_type (dip, objfile);
1600 sym = new_symbol (dip, objfile);
1601 if (sym != NULL)
1602 {
1603 SYMBOL_TYPE (sym) = type;
1604 if (cu_language == language_cplus)
1605 {
1606 synthesize_typedef (dip, objfile, type);
1607 }
1608 }
1609}
1610
1611/*
1612
c5aa993b 1613 LOCAL FUNCTION
c906108c 1614
c5aa993b 1615 enum_type -- decode and return a type for an enumeration
c906108c 1616
c5aa993b 1617 SYNOPSIS
c906108c 1618
c5aa993b 1619 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1620
c5aa993b 1621 DESCRIPTION
c906108c 1622
c5aa993b
JM
1623 Given a pointer to a die information structure for the die which
1624 starts an enumeration, process all the dies that define the members
1625 of the enumeration and return a type pointer for the enumeration.
c906108c 1626
c5aa993b
JM
1627 At the same time, for each member of the enumeration, create a
1628 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1629 and give it the type of the enumeration itself.
c906108c 1630
c5aa993b 1631 NOTES
c906108c 1632
c5aa993b
JM
1633 Note that the DWARF specification explicitly mandates that enum
1634 constants occur in reverse order from the source program order,
1635 for "consistency" and because this ordering is easier for many
1636 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1637 Entries). Because gdb wants to see the enum members in program
1638 source order, we have to ensure that the order gets reversed while
1639 we are processing them.
c906108c
SS
1640 */
1641
1642static struct type *
fba45db2 1643enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1644{
1645 struct type *type;
c5aa993b
JM
1646 struct nextfield
1647 {
1648 struct nextfield *next;
1649 struct field field;
1650 };
c906108c
SS
1651 struct nextfield *list = NULL;
1652 struct nextfield *new;
1653 int nfields = 0;
1654 int n;
1655 char *scan;
1656 char *listend;
1657 unsigned short blocksz;
1658 struct symbol *sym;
1659 int nbytes;
1660 int unsigned_enum = 1;
c5aa993b
JM
1661
1662 if ((type = lookup_utype (dip->die_ref)) == NULL)
c906108c
SS
1663 {
1664 /* No forward references created an empty type, so install one now */
c5aa993b 1665 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1666 }
1667 TYPE_CODE (type) = TYPE_CODE_ENUM;
1668 /* Some compilers try to be helpful by inventing "fake" names for
1669 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1670 Thanks, but no thanks... */
c5aa993b
JM
1671 if (dip->at_name != NULL
1672 && *dip->at_name != '~'
1673 && *dip->at_name != '.')
c906108c 1674 {
c5aa993b
JM
1675 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1676 "", "", dip->at_name);
c906108c 1677 }
c5aa993b 1678 if (dip->at_byte_size != 0)
c906108c 1679 {
c5aa993b 1680 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1681 }
c5aa993b 1682 if ((scan = dip->at_element_list) != NULL)
c906108c 1683 {
c5aa993b 1684 if (dip->short_element_list)
c906108c
SS
1685 {
1686 nbytes = attribute_size (AT_short_element_list);
1687 }
1688 else
1689 {
1690 nbytes = attribute_size (AT_element_list);
1691 }
1692 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1693 listend = scan + nbytes + blocksz;
1694 scan += nbytes;
1695 while (scan < listend)
1696 {
1697 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1698 new->next = list;
c906108c
SS
1699 list = new;
1700 FIELD_TYPE (list->field) = NULL;
1701 FIELD_BITSIZE (list->field) = 0;
1702 FIELD_BITPOS (list->field) =
1703 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1704 objfile);
1705 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b
JM
1706 list->field.name = obsavestring (scan, strlen (scan),
1707 &objfile->type_obstack);
c906108c
SS
1708 scan += strlen (scan) + 1;
1709 nfields++;
1710 /* Handcraft a new symbol for this enum member. */
1711 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1712 sizeof (struct symbol));
1713 memset (sym, 0, sizeof (struct symbol));
c5aa993b 1714 SYMBOL_NAME (sym) = create_name (list->field.name,
c906108c
SS
1715 &objfile->symbol_obstack);
1716 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1717 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1718 SYMBOL_CLASS (sym) = LOC_CONST;
1719 SYMBOL_TYPE (sym) = type;
1720 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1721 if (SYMBOL_VALUE (sym) < 0)
1722 unsigned_enum = 0;
1723 add_symbol_to_list (sym, list_in_scope);
1724 }
1725 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1726 where we reverse the order, by pulling the members off the list in
1727 reverse order from how they were inserted. If we have no fields
1728 (this is apparently possible in C++) then skip building a field
1729 vector. */
c906108c
SS
1730 if (nfields > 0)
1731 {
1732 if (unsigned_enum)
1733 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1734 TYPE_NFIELDS (type) = nfields;
1735 TYPE_FIELDS (type) = (struct field *)
1736 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1737 /* Copy the saved-up fields into the field vector. */
c5aa993b 1738 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1739 {
c5aa993b
JM
1740 TYPE_FIELD (type, n++) = list->field;
1741 }
c906108c
SS
1742 }
1743 }
1744 return (type);
1745}
1746
1747/*
1748
c5aa993b 1749 LOCAL FUNCTION
c906108c 1750
c5aa993b 1751 read_func_scope -- process all dies within a function scope
c906108c 1752
c5aa993b 1753 DESCRIPTION
c906108c 1754
c5aa993b
JM
1755 Process all dies within a given function scope. We are passed
1756 a die information structure pointer DIP for the die which
1757 starts the function scope, and pointers into the raw die data
1758 that define the dies within the function scope.
1759
1760 For now, we ignore lexical block scopes within the function.
1761 The problem is that AT&T cc does not define a DWARF lexical
1762 block scope for the function itself, while gcc defines a
1763 lexical block scope for the function. We need to think about
1764 how to handle this difference, or if it is even a problem.
1765 (FIXME)
c906108c
SS
1766 */
1767
1768static void
fba45db2
KB
1769read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1770 struct objfile *objfile)
c906108c
SS
1771{
1772 register struct context_stack *new;
c5aa993b 1773
c906108c
SS
1774 /* AT_name is absent if the function is described with an
1775 AT_abstract_origin tag.
1776 Ignore the function description for now to avoid GDB core dumps.
1777 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1778 if (dip->at_name == NULL)
c906108c
SS
1779 {
1780 complain (&missing_at_name, DIE_ID);
1781 return;
1782 }
1783
c5aa993b
JM
1784 if (objfile->ei.entry_point >= dip->at_low_pc &&
1785 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1786 {
c5aa993b
JM
1787 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1788 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1789 }
c5aa993b
JM
1790 new = push_context (0, dip->at_low_pc);
1791 new->name = new_symbol (dip, objfile);
c906108c 1792 list_in_scope = &local_symbols;
c5aa993b 1793 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1794 new = pop_context ();
1795 /* Make a block for the local symbols within. */
c5aa993b
JM
1796 finish_block (new->name, &local_symbols, new->old_blocks,
1797 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1798 list_in_scope = &file_symbols;
1799}
1800
1801
1802/*
1803
c5aa993b 1804 LOCAL FUNCTION
c906108c 1805
c5aa993b 1806 handle_producer -- process the AT_producer attribute
c906108c 1807
c5aa993b 1808 DESCRIPTION
c906108c 1809
c5aa993b
JM
1810 Perform any operations that depend on finding a particular
1811 AT_producer attribute.
c906108c
SS
1812
1813 */
1814
1815static void
fba45db2 1816handle_producer (char *producer)
c906108c
SS
1817{
1818
1819 /* If this compilation unit was compiled with g++ or gcc, then set the
1820 processing_gcc_compilation flag. */
1821
1822 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1823 {
1824 char version = producer[strlen (GCC_PRODUCER)];
1825 processing_gcc_compilation = (version == '2' ? 2 : 1);
1826 }
1827 else
1828 {
1829 processing_gcc_compilation =
1830 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1831 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1832 }
1833
1834 /* Select a demangling style if we can identify the producer and if
1835 the current style is auto. We leave the current style alone if it
1836 is not auto. We also leave the demangling style alone if we find a
1837 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1838
1839 if (AUTO_DEMANGLING)
1840 {
1841 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1842 {
8052a17a
JM
1843#if 0
1844 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1845 know whether it will use the old style or v3 mangling. */
c906108c 1846 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1847#endif
c906108c
SS
1848 }
1849 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1850 {
1851 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1852 }
1853 }
1854}
1855
1856
1857/*
1858
c5aa993b 1859 LOCAL FUNCTION
c906108c 1860
c5aa993b 1861 read_file_scope -- process all dies within a file scope
c906108c 1862
c5aa993b
JM
1863 DESCRIPTION
1864
1865 Process all dies within a given file scope. We are passed a
1866 pointer to the die information structure for the die which
1867 starts the file scope, and pointers into the raw die data which
1868 mark the range of dies within the file scope.
c906108c 1869
c5aa993b
JM
1870 When the partial symbol table is built, the file offset for the line
1871 number table for each compilation unit is saved in the partial symbol
1872 table entry for that compilation unit. As the symbols for each
1873 compilation unit are read, the line number table is read into memory
1874 and the variable lnbase is set to point to it. Thus all we have to
1875 do is use lnbase to access the line number table for the current
1876 compilation unit.
c906108c
SS
1877 */
1878
1879static void
fba45db2
KB
1880read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1881 struct objfile *objfile)
c906108c
SS
1882{
1883 struct cleanup *back_to;
1884 struct symtab *symtab;
c5aa993b
JM
1885
1886 if (objfile->ei.entry_point >= dip->at_low_pc &&
1887 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1888 {
c5aa993b
JM
1889 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1890 objfile->ei.entry_file_highpc = dip->at_high_pc;
c906108c
SS
1891 }
1892 set_cu_language (dip);
c5aa993b 1893 if (dip->at_producer != NULL)
c906108c 1894 {
c5aa993b 1895 handle_producer (dip->at_producer);
c906108c
SS
1896 }
1897 numutypes = (enddie - thisdie) / 4;
1898 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1899 back_to = make_cleanup (free_utypes, NULL);
1900 memset (utypes, 0, numutypes * sizeof (struct type *));
1901 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1902 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1903 record_debugformat ("DWARF 1");
1904 decode_line_numbers (lnbase);
c5aa993b 1905 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1906
c5aa993b 1907 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1908 if (symtab != NULL)
1909 {
c5aa993b
JM
1910 symtab->language = cu_language;
1911 }
c906108c
SS
1912 do_cleanups (back_to);
1913}
1914
1915/*
1916
c5aa993b 1917 LOCAL FUNCTION
c906108c 1918
c5aa993b 1919 process_dies -- process a range of DWARF Information Entries
c906108c 1920
c5aa993b 1921 SYNOPSIS
c906108c 1922
c5aa993b
JM
1923 static void process_dies (char *thisdie, char *enddie,
1924 struct objfile *objfile)
c906108c 1925
c5aa993b 1926 DESCRIPTION
c906108c 1927
c5aa993b
JM
1928 Process all DIE's in a specified range. May be (and almost
1929 certainly will be) called recursively.
c906108c
SS
1930 */
1931
1932static void
fba45db2 1933process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1934{
1935 char *nextdie;
1936 struct dieinfo di;
c5aa993b 1937
c906108c
SS
1938 while (thisdie < enddie)
1939 {
1940 basicdieinfo (&di, thisdie, objfile);
1941 if (di.die_length < SIZEOF_DIE_LENGTH)
1942 {
1943 break;
1944 }
1945 else if (di.die_tag == TAG_padding)
1946 {
1947 nextdie = thisdie + di.die_length;
1948 }
1949 else
1950 {
1951 completedieinfo (&di, objfile);
1952 if (di.at_sibling != 0)
1953 {
1954 nextdie = dbbase + di.at_sibling - dbroff;
1955 }
1956 else
1957 {
1958 nextdie = thisdie + di.die_length;
1959 }
1960#ifdef SMASH_TEXT_ADDRESS
1961 /* I think that these are always text, not data, addresses. */
1962 SMASH_TEXT_ADDRESS (di.at_low_pc);
1963 SMASH_TEXT_ADDRESS (di.at_high_pc);
1964#endif
1965 switch (di.die_tag)
1966 {
1967 case TAG_compile_unit:
1968 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1969 unit, we are unable to handle nested compilation units
1970 properly (FIXME). */
c906108c
SS
1971 if (current_subfile == NULL)
1972 read_file_scope (&di, thisdie, nextdie, objfile);
1973 else
1974 nextdie = thisdie + di.die_length;
1975 break;
1976 case TAG_global_subroutine:
1977 case TAG_subroutine:
1978 if (di.has_at_low_pc)
1979 {
1980 read_func_scope (&di, thisdie, nextdie, objfile);
1981 }
1982 break;
1983 case TAG_lexical_block:
1984 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1985 break;
1986 case TAG_class_type:
1987 case TAG_structure_type:
1988 case TAG_union_type:
1989 read_structure_scope (&di, thisdie, nextdie, objfile);
1990 break;
1991 case TAG_enumeration_type:
1992 read_enumeration (&di, thisdie, nextdie, objfile);
1993 break;
1994 case TAG_subroutine_type:
1995 read_subroutine_type (&di, thisdie, nextdie);
1996 break;
1997 case TAG_array_type:
1998 dwarf_read_array_type (&di);
1999 break;
2000 case TAG_pointer_type:
2001 read_tag_pointer_type (&di);
2002 break;
2003 case TAG_string_type:
2004 read_tag_string_type (&di);
2005 break;
2006 default:
2007 new_symbol (&di, objfile);
2008 break;
2009 }
2010 }
2011 thisdie = nextdie;
2012 }
2013}
2014
2015/*
2016
c5aa993b 2017 LOCAL FUNCTION
c906108c 2018
c5aa993b 2019 decode_line_numbers -- decode a line number table fragment
c906108c 2020
c5aa993b 2021 SYNOPSIS
c906108c 2022
c5aa993b
JM
2023 static void decode_line_numbers (char *tblscan, char *tblend,
2024 long length, long base, long line, long pc)
c906108c 2025
c5aa993b 2026 DESCRIPTION
c906108c 2027
c5aa993b 2028 Translate the DWARF line number information to gdb form.
c906108c 2029
c5aa993b
JM
2030 The ".line" section contains one or more line number tables, one for
2031 each ".line" section from the objects that were linked.
c906108c 2032
c5aa993b
JM
2033 The AT_stmt_list attribute for each TAG_source_file entry in the
2034 ".debug" section contains the offset into the ".line" section for the
2035 start of the table for that file.
c906108c 2036
c5aa993b 2037 The table itself has the following structure:
c906108c 2038
c5aa993b
JM
2039 <table length><base address><source statement entry>
2040 4 bytes 4 bytes 10 bytes
c906108c 2041
c5aa993b
JM
2042 The table length is the total size of the table, including the 4 bytes
2043 for the length information.
c906108c 2044
c5aa993b
JM
2045 The base address is the address of the first instruction generated
2046 for the source file.
c906108c 2047
c5aa993b 2048 Each source statement entry has the following structure:
c906108c 2049
c5aa993b
JM
2050 <line number><statement position><address delta>
2051 4 bytes 2 bytes 4 bytes
c906108c 2052
c5aa993b
JM
2053 The line number is relative to the start of the file, starting with
2054 line 1.
c906108c 2055
c5aa993b
JM
2056 The statement position either -1 (0xFFFF) or the number of characters
2057 from the beginning of the line to the beginning of the statement.
c906108c 2058
c5aa993b
JM
2059 The address delta is the difference between the base address and
2060 the address of the first instruction for the statement.
c906108c 2061
c5aa993b
JM
2062 Note that we must copy the bytes from the packed table to our local
2063 variables before attempting to use them, to avoid alignment problems
2064 on some machines, particularly RISC processors.
c906108c 2065
c5aa993b 2066 BUGS
c906108c 2067
c5aa993b
JM
2068 Does gdb expect the line numbers to be sorted? They are now by
2069 chance/luck, but are not required to be. (FIXME)
c906108c 2070
c5aa993b
JM
2071 The line with number 0 is unused, gdb apparently can discover the
2072 span of the last line some other way. How? (FIXME)
c906108c
SS
2073 */
2074
2075static void
fba45db2 2076decode_line_numbers (char *linetable)
c906108c
SS
2077{
2078 char *tblscan;
2079 char *tblend;
2080 unsigned long length;
2081 unsigned long base;
2082 unsigned long line;
2083 unsigned long pc;
c5aa993b 2084
c906108c
SS
2085 if (linetable != NULL)
2086 {
2087 tblscan = tblend = linetable;
2088 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2089 current_objfile);
2090 tblscan += SIZEOF_LINETBL_LENGTH;
2091 tblend += length;
2092 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2093 GET_UNSIGNED, current_objfile);
2094 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2095 base += baseaddr;
2096 while (tblscan < tblend)
2097 {
2098 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2099 current_objfile);
2100 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2101 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2102 current_objfile);
2103 tblscan += SIZEOF_LINETBL_DELTA;
2104 pc += base;
2105 if (line != 0)
2106 {
2107 record_line (current_subfile, line, pc);
2108 }
2109 }
2110 }
2111}
2112
2113/*
2114
c5aa993b 2115 LOCAL FUNCTION
c906108c 2116
c5aa993b 2117 locval -- compute the value of a location attribute
c906108c 2118
c5aa993b 2119 SYNOPSIS
c906108c 2120
c5aa993b 2121 static int locval (struct dieinfo *dip)
c906108c 2122
c5aa993b 2123 DESCRIPTION
c906108c 2124
c5aa993b
JM
2125 Given pointer to a string of bytes that define a location, compute
2126 the location and return the value.
2127 A location description containing no atoms indicates that the
2128 object is optimized out. The optimized_out flag is set for those,
2129 the return value is meaningless.
c906108c 2130
c5aa993b
JM
2131 When computing values involving the current value of the frame pointer,
2132 the value zero is used, which results in a value relative to the frame
2133 pointer, rather than the absolute value. This is what GDB wants
2134 anyway.
c906108c 2135
c5aa993b
JM
2136 When the result is a register number, the isreg flag is set, otherwise
2137 it is cleared. This is a kludge until we figure out a better
2138 way to handle the problem. Gdb's design does not mesh well with the
2139 DWARF notion of a location computing interpreter, which is a shame
2140 because the flexibility goes unused.
2141
2142 NOTES
2143
2144 Note that stack[0] is unused except as a default error return.
2145 Note that stack overflow is not yet handled.
c906108c
SS
2146 */
2147
2148static int
fba45db2 2149locval (struct dieinfo *dip)
c906108c
SS
2150{
2151 unsigned short nbytes;
2152 unsigned short locsize;
2153 auto long stack[64];
2154 int stacki;
2155 char *loc;
2156 char *end;
2157 int loc_atom_code;
2158 int loc_value_size;
c5aa993b
JM
2159
2160 loc = dip->at_location;
c906108c
SS
2161 nbytes = attribute_size (AT_location);
2162 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2163 loc += nbytes;
2164 end = loc + locsize;
2165 stacki = 0;
2166 stack[stacki] = 0;
c5aa993b
JM
2167 dip->isreg = 0;
2168 dip->offreg = 0;
2169 dip->optimized_out = 1;
c906108c
SS
2170 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2171 while (loc < end)
2172 {
c5aa993b 2173 dip->optimized_out = 0;
c906108c
SS
2174 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2175 current_objfile);
2176 loc += SIZEOF_LOC_ATOM_CODE;
2177 switch (loc_atom_code)
2178 {
c5aa993b
JM
2179 case 0:
2180 /* error */
2181 loc = end;
2182 break;
2183 case OP_REG:
2184 /* push register (number) */
2185 stack[++stacki]
2186 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2187 GET_UNSIGNED,
2188 current_objfile));
2189 loc += loc_value_size;
2190 dip->isreg = 1;
2191 break;
2192 case OP_BASEREG:
2193 /* push value of register (number) */
2194 /* Actually, we compute the value as if register has 0, so the
2195 value ends up being the offset from that register. */
2196 dip->offreg = 1;
2197 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2198 current_objfile);
2199 loc += loc_value_size;
2200 stack[++stacki] = 0;
2201 break;
2202 case OP_ADDR:
2203 /* push address (relocated address) */
2204 stack[++stacki] = target_to_host (loc, loc_value_size,
2205 GET_UNSIGNED, current_objfile);
2206 loc += loc_value_size;
2207 break;
2208 case OP_CONST:
2209 /* push constant (number) FIXME: signed or unsigned! */
2210 stack[++stacki] = target_to_host (loc, loc_value_size,
2211 GET_SIGNED, current_objfile);
2212 loc += loc_value_size;
2213 break;
2214 case OP_DEREF2:
2215 /* pop, deref and push 2 bytes (as a long) */
2216 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2217 break;
2218 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2219 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2220 break;
2221 case OP_ADD: /* pop top 2 items, add, push result */
2222 stack[stacki - 1] += stack[stacki];
2223 stacki--;
2224 break;
c906108c
SS
2225 }
2226 }
2227 return (stack[stacki]);
2228}
2229
2230/*
2231
c5aa993b 2232 LOCAL FUNCTION
c906108c 2233
c5aa993b 2234 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2235
c5aa993b 2236 SYNOPSIS
c906108c 2237
c5aa993b 2238 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2239
c5aa993b 2240 DESCRIPTION
c906108c 2241
c5aa993b
JM
2242 When expanding a partial symbol table entry to a full symbol table
2243 entry, this is the function that gets called to read in the symbols
2244 for the compilation unit. A pointer to the newly constructed symtab,
2245 which is now the new first one on the objfile's symtab list, is
2246 stashed in the partial symbol table entry.
c906108c
SS
2247 */
2248
2249static void
fba45db2 2250read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2251{
2252 struct cleanup *back_to;
2253 unsigned long lnsize;
2254 file_ptr foffset;
2255 bfd *abfd;
2256 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2257
c5aa993b
JM
2258 abfd = pst->objfile->obfd;
2259 current_objfile = pst->objfile;
c906108c
SS
2260
2261 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2262 unit, seek to the location in the file, and read in all the DIE's. */
2263
2264 diecount = 0;
2265 dbsize = DBLENGTH (pst);
2266 dbbase = xmalloc (dbsize);
c5aa993b
JM
2267 dbroff = DBROFF (pst);
2268 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2269 base_section_offsets = pst->section_offsets;
2270 baseaddr = ANOFFSET (pst->section_offsets, 0);
2271 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2272 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2273 {
b8c9b27d 2274 xfree (dbbase);
c906108c
SS
2275 error ("can't read DWARF data");
2276 }
b8c9b27d 2277 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2278
2279 /* If there is a line number table associated with this compilation unit
2280 then read the size of this fragment in bytes, from the fragment itself.
2281 Allocate a buffer for the fragment and read it in for future
2282 processing. */
2283
2284 lnbase = NULL;
2285 if (LNFOFF (pst))
2286 {
2287 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0
AM
2288 (bfd_bread ((PTR) lnsizedata, sizeof (lnsizedata), abfd)
2289 != sizeof (lnsizedata)))
c906108c
SS
2290 {
2291 error ("can't read DWARF line number table size");
2292 }
2293 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2294 GET_UNSIGNED, pst->objfile);
c906108c
SS
2295 lnbase = xmalloc (lnsize);
2296 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2297 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2298 {
b8c9b27d 2299 xfree (lnbase);
c906108c
SS
2300 error ("can't read DWARF line numbers");
2301 }
b8c9b27d 2302 make_cleanup (xfree, lnbase);
c906108c
SS
2303 }
2304
c5aa993b 2305 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2306 do_cleanups (back_to);
2307 current_objfile = NULL;
c5aa993b 2308 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2309}
2310
2311/*
2312
c5aa993b 2313 LOCAL FUNCTION
c906108c 2314
c5aa993b 2315 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2316
c5aa993b 2317 SYNOPSIS
c906108c 2318
c5aa993b 2319 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2320
c5aa993b 2321 DESCRIPTION
c906108c 2322
c5aa993b
JM
2323 Called once for each partial symbol table entry that needs to be
2324 expanded into a full symbol table entry.
c906108c 2325
c5aa993b 2326 */
c906108c
SS
2327
2328static void
fba45db2 2329psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2330{
2331 int i;
2332 struct cleanup *old_chain;
c5aa993b 2333
c906108c
SS
2334 if (pst != NULL)
2335 {
2336 if (pst->readin)
2337 {
2338 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2339 pst->filename);
c906108c
SS
2340 }
2341 else
2342 {
2343 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2344 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2345 {
c5aa993b 2346 if (!pst->dependencies[i]->readin)
c906108c
SS
2347 {
2348 /* Inform about additional files that need to be read in. */
2349 if (info_verbose)
2350 {
2351 fputs_filtered (" ", gdb_stdout);
2352 wrap_here ("");
2353 fputs_filtered ("and ", gdb_stdout);
2354 wrap_here ("");
2355 printf_filtered ("%s...",
c5aa993b 2356 pst->dependencies[i]->filename);
c906108c 2357 wrap_here ("");
c5aa993b 2358 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2359 }
c5aa993b 2360 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2361 }
c5aa993b
JM
2362 }
2363 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2364 {
2365 buildsym_init ();
a0b3c4fd 2366 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2367 read_ofile_symtab (pst);
2368 if (info_verbose)
2369 {
2370 printf_filtered ("%d DIE's, sorting...", diecount);
2371 wrap_here ("");
2372 gdb_flush (gdb_stdout);
2373 }
c5aa993b 2374 sort_symtab_syms (pst->symtab);
c906108c
SS
2375 do_cleanups (old_chain);
2376 }
c5aa993b 2377 pst->readin = 1;
c906108c
SS
2378 }
2379 }
2380}
2381
2382/*
2383
c5aa993b 2384 LOCAL FUNCTION
c906108c 2385
c5aa993b 2386 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2387
c5aa993b 2388 SYNOPSIS
c906108c 2389
c5aa993b 2390 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2391
c5aa993b 2392 DESCRIPTION
c906108c 2393
c5aa993b
JM
2394 This is the DWARF support entry point for building a full symbol
2395 table entry from a partial symbol table entry. We are passed a
2396 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2397
c5aa993b 2398 */
c906108c
SS
2399
2400static void
fba45db2 2401dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2402{
2403
2404 if (pst != NULL)
2405 {
c5aa993b 2406 if (pst->readin)
c906108c
SS
2407 {
2408 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2409 pst->filename);
c906108c
SS
2410 }
2411 else
2412 {
c5aa993b 2413 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2414 {
2415 /* Print the message now, before starting serious work, to avoid
c5aa993b 2416 disconcerting pauses. */
c906108c
SS
2417 if (info_verbose)
2418 {
2419 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2420 pst->filename);
c906108c
SS
2421 gdb_flush (gdb_stdout);
2422 }
c5aa993b 2423
c906108c 2424 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2425
2426#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2427 we need to do an equivalent or is this something peculiar to
2428 stabs/a.out format.
2429 Match with global symbols. This only needs to be done once,
2430 after all of the symtabs and dependencies have been read in.
2431 */
2432 scan_file_globals (pst->objfile);
c906108c 2433#endif
c5aa993b 2434
c906108c
SS
2435 /* Finish up the verbose info message. */
2436 if (info_verbose)
2437 {
2438 printf_filtered ("done.\n");
2439 gdb_flush (gdb_stdout);
2440 }
2441 }
2442 }
2443 }
2444}
2445
2446/*
2447
c5aa993b 2448 LOCAL FUNCTION
c906108c 2449
c5aa993b 2450 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2451
c5aa993b 2452 DESCRIPTION
c906108c 2453
c5aa993b
JM
2454 Given pointer to a DIE that is known to be for an enumeration,
2455 extract the symbolic names of the enumeration members and add
2456 partial symbols for them.
2457 */
c906108c
SS
2458
2459static void
fba45db2 2460add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2461{
2462 char *scan;
2463 char *listend;
2464 unsigned short blocksz;
2465 int nbytes;
c5aa993b
JM
2466
2467 if ((scan = dip->at_element_list) != NULL)
c906108c 2468 {
c5aa993b 2469 if (dip->short_element_list)
c906108c
SS
2470 {
2471 nbytes = attribute_size (AT_short_element_list);
2472 }
2473 else
2474 {
2475 nbytes = attribute_size (AT_element_list);
2476 }
2477 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2478 scan += nbytes;
2479 listend = scan + blocksz;
2480 while (scan < listend)
2481 {
2482 scan += TARGET_FT_LONG_SIZE (objfile);
2483 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
c5aa993b 2484 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2485 objfile);
2486 scan += strlen (scan) + 1;
2487 }
2488 }
2489}
2490
2491/*
2492
c5aa993b 2493 LOCAL FUNCTION
c906108c 2494
c5aa993b 2495 add_partial_symbol -- add symbol to partial symbol table
c906108c 2496
c5aa993b 2497 DESCRIPTION
c906108c 2498
c5aa993b
JM
2499 Given a DIE, if it is one of the types that we want to
2500 add to a partial symbol table, finish filling in the die info
2501 and then add a partial symbol table entry for it.
c906108c 2502
c5aa993b 2503 NOTES
c906108c 2504
c5aa993b
JM
2505 The caller must ensure that the DIE has a valid name attribute.
2506 */
c906108c
SS
2507
2508static void
fba45db2 2509add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2510{
c5aa993b 2511 switch (dip->die_tag)
c906108c
SS
2512 {
2513 case TAG_global_subroutine:
c5aa993b
JM
2514 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2515 VAR_NAMESPACE, LOC_BLOCK,
2516 &objfile->global_psymbols,
2517 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2518 break;
2519 case TAG_global_variable:
c5aa993b 2520 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2521 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2522 &objfile->global_psymbols,
c906108c
SS
2523 0, 0, cu_language, objfile);
2524 break;
2525 case TAG_subroutine:
c5aa993b
JM
2526 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2527 VAR_NAMESPACE, LOC_BLOCK,
2528 &objfile->static_psymbols,
2529 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2530 break;
2531 case TAG_local_variable:
c5aa993b 2532 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2533 VAR_NAMESPACE, LOC_STATIC,
c5aa993b 2534 &objfile->static_psymbols,
c906108c
SS
2535 0, 0, cu_language, objfile);
2536 break;
2537 case TAG_typedef:
c5aa993b 2538 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2539 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2540 &objfile->static_psymbols,
c906108c
SS
2541 0, 0, cu_language, objfile);
2542 break;
2543 case TAG_class_type:
2544 case TAG_structure_type:
2545 case TAG_union_type:
2546 case TAG_enumeration_type:
2547 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2548 if (!dip->has_at_byte_size)
c906108c 2549 break;
c5aa993b 2550 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2551 STRUCT_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2552 &objfile->static_psymbols,
c906108c
SS
2553 0, 0, cu_language, objfile);
2554 if (cu_language == language_cplus)
2555 {
2556 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2557 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
c906108c 2558 VAR_NAMESPACE, LOC_TYPEDEF,
c5aa993b 2559 &objfile->static_psymbols,
c906108c
SS
2560 0, 0, cu_language, objfile);
2561 }
2562 break;
2563 }
2564}
9846de1b 2565/* *INDENT-OFF* */
c906108c
SS
2566/*
2567
2568LOCAL FUNCTION
2569
2570 scan_partial_symbols -- scan DIE's within a single compilation unit
2571
2572DESCRIPTION
2573
2574 Process the DIE's within a single compilation unit, looking for
2575 interesting DIE's that contribute to the partial symbol table entry
2576 for this compilation unit.
2577
2578NOTES
2579
2580 There are some DIE's that may appear both at file scope and within
2581 the scope of a function. We are only interested in the ones at file
2582 scope, and the only way to tell them apart is to keep track of the
2583 scope. For example, consider the test case:
2584
2585 static int i;
2586 main () { int j; }
2587
2588 for which the relevant DWARF segment has the structure:
2589
2590 0x51:
2591 0x23 global subrtn sibling 0x9b
2592 name main
2593 fund_type FT_integer
2594 low_pc 0x800004cc
2595 high_pc 0x800004d4
2596
2597 0x74:
2598 0x23 local var sibling 0x97
2599 name j
2600 fund_type FT_integer
2601 location OP_BASEREG 0xe
2602 OP_CONST 0xfffffffc
2603 OP_ADD
2604 0x97:
2605 0x4
2606
2607 0x9b:
2608 0x1d local var sibling 0xb8
2609 name i
2610 fund_type FT_integer
2611 location OP_ADDR 0x800025dc
2612
2613 0xb8:
2614 0x4
2615
2616 We want to include the symbol 'i' in the partial symbol table, but
2617 not the symbol 'j'. In essence, we want to skip all the dies within
2618 the scope of a TAG_global_subroutine DIE.
2619
2620 Don't attempt to add anonymous structures or unions since they have
2621 no name. Anonymous enumerations however are processed, because we
2622 want to extract their member names (the check for a tag name is
2623 done later).
2624
2625 Also, for variables and subroutines, check that this is the place
2626 where the actual definition occurs, rather than just a reference
2627 to an external.
2628 */
9846de1b 2629/* *INDENT-ON* */
c906108c 2630
c5aa993b
JM
2631
2632
c906108c 2633static void
fba45db2 2634scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2635{
2636 char *nextdie;
2637 char *temp;
2638 struct dieinfo di;
c5aa993b 2639
c906108c
SS
2640 while (thisdie < enddie)
2641 {
2642 basicdieinfo (&di, thisdie, objfile);
2643 if (di.die_length < SIZEOF_DIE_LENGTH)
2644 {
2645 break;
2646 }
2647 else
2648 {
2649 nextdie = thisdie + di.die_length;
2650 /* To avoid getting complete die information for every die, we
2651 only do it (below) for the cases we are interested in. */
2652 switch (di.die_tag)
2653 {
2654 case TAG_global_subroutine:
2655 case TAG_subroutine:
2656 completedieinfo (&di, objfile);
2657 if (di.at_name && (di.has_at_low_pc || di.at_location))
2658 {
2659 add_partial_symbol (&di, objfile);
2660 /* If there is a sibling attribute, adjust the nextdie
2661 pointer to skip the entire scope of the subroutine.
2662 Apply some sanity checking to make sure we don't
2663 overrun or underrun the range of remaining DIE's */
2664 if (di.at_sibling != 0)
2665 {
2666 temp = dbbase + di.at_sibling - dbroff;
2667 if ((temp < thisdie) || (temp >= enddie))
2668 {
2669 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2670 di.at_sibling);
2671 }
2672 else
2673 {
2674 nextdie = temp;
2675 }
2676 }
2677 }
2678 break;
2679 case TAG_global_variable:
2680 case TAG_local_variable:
2681 completedieinfo (&di, objfile);
2682 if (di.at_name && (di.has_at_low_pc || di.at_location))
2683 {
2684 add_partial_symbol (&di, objfile);
2685 }
2686 break;
2687 case TAG_typedef:
2688 case TAG_class_type:
2689 case TAG_structure_type:
2690 case TAG_union_type:
2691 completedieinfo (&di, objfile);
2692 if (di.at_name)
2693 {
2694 add_partial_symbol (&di, objfile);
2695 }
2696 break;
2697 case TAG_enumeration_type:
2698 completedieinfo (&di, objfile);
2699 if (di.at_name)
2700 {
2701 add_partial_symbol (&di, objfile);
2702 }
2703 add_enum_psymbol (&di, objfile);
2704 break;
2705 }
2706 }
2707 thisdie = nextdie;
2708 }
2709}
2710
2711/*
2712
c5aa993b 2713 LOCAL FUNCTION
c906108c 2714
c5aa993b 2715 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2716
c5aa993b 2717 DESCRIPTION
c906108c 2718
c5aa993b
JM
2719 This is the top level dwarf parsing routine for building partial
2720 symbol tables.
c906108c 2721
c5aa993b
JM
2722 It scans from the beginning of the DWARF table looking for the first
2723 TAG_compile_unit DIE, and then follows the sibling chain to locate
2724 each additional TAG_compile_unit DIE.
2725
2726 For each TAG_compile_unit DIE it creates a partial symtab structure,
2727 calls a subordinate routine to collect all the compilation unit's
2728 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2729 new partial symtab structure into the partial symbol table. It also
2730 records the appropriate information in the partial symbol table entry
2731 to allow the chunk of DIE's and line number table for this compilation
2732 unit to be located and re-read later, to generate a complete symbol
2733 table entry for the compilation unit.
2734
2735 Thus it effectively partitions up a chunk of DIE's for multiple
2736 compilation units into smaller DIE chunks and line number tables,
2737 and associates them with a partial symbol table entry.
2738
2739 NOTES
c906108c 2740
c5aa993b
JM
2741 If any compilation unit has no line number table associated with
2742 it for some reason (a missing at_stmt_list attribute, rather than
2743 just one with a value of zero, which is valid) then we ensure that
2744 the recorded file offset is zero so that the routine which later
2745 reads line number table fragments knows that there is no fragment
2746 to read.
c906108c 2747
c5aa993b 2748 RETURNS
c906108c 2749
c5aa993b 2750 Returns no value.
c906108c
SS
2751
2752 */
2753
2754static void
fba45db2
KB
2755scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2756 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2757{
2758 char *nextdie;
2759 struct dieinfo di;
2760 struct partial_symtab *pst;
2761 int culength;
2762 int curoff;
2763 file_ptr curlnoffset;
2764
2765 while (thisdie < enddie)
2766 {
2767 basicdieinfo (&di, thisdie, objfile);
2768 if (di.die_length < SIZEOF_DIE_LENGTH)
2769 {
2770 break;
2771 }
2772 else if (di.die_tag != TAG_compile_unit)
2773 {
2774 nextdie = thisdie + di.die_length;
2775 }
2776 else
2777 {
2778 completedieinfo (&di, objfile);
2779 set_cu_language (&di);
2780 if (di.at_sibling != 0)
2781 {
2782 nextdie = dbbase + di.at_sibling - dbroff;
2783 }
2784 else
2785 {
2786 nextdie = thisdie + di.die_length;
2787 }
2788 curoff = thisdie - dbbase;
2789 culength = nextdie - thisdie;
2790 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2791
2792 /* First allocate a new partial symbol table structure */
2793
2794 pst = start_psymtab_common (objfile, base_section_offsets,
2795 di.at_name, di.at_low_pc,
c5aa993b
JM
2796 objfile->global_psymbols.next,
2797 objfile->static_psymbols.next);
c906108c 2798
c5aa993b
JM
2799 pst->texthigh = di.at_high_pc;
2800 pst->read_symtab_private = (char *)
2801 obstack_alloc (&objfile->psymbol_obstack,
2802 sizeof (struct dwfinfo));
c906108c
SS
2803 DBFOFF (pst) = dbfoff;
2804 DBROFF (pst) = curoff;
2805 DBLENGTH (pst) = culength;
c5aa993b
JM
2806 LNFOFF (pst) = curlnoffset;
2807 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2808
2809 /* Now look for partial symbols */
2810
2811 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2812
c5aa993b
JM
2813 pst->n_global_syms = objfile->global_psymbols.next -
2814 (objfile->global_psymbols.list + pst->globals_offset);
2815 pst->n_static_syms = objfile->static_psymbols.next -
2816 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2817 sort_pst_symbols (pst);
2818 /* If there is already a psymtab or symtab for a file of this name,
2819 remove it. (If there is a symtab, more drastic things also
2820 happen.) This happens in VxWorks. */
c5aa993b 2821 free_named_symtabs (pst->filename);
c906108c 2822 }
c5aa993b 2823 thisdie = nextdie;
c906108c
SS
2824 }
2825}
2826
2827/*
2828
c5aa993b 2829 LOCAL FUNCTION
c906108c 2830
c5aa993b 2831 new_symbol -- make a symbol table entry for a new symbol
c906108c 2832
c5aa993b 2833 SYNOPSIS
c906108c 2834
c5aa993b
JM
2835 static struct symbol *new_symbol (struct dieinfo *dip,
2836 struct objfile *objfile)
c906108c 2837
c5aa993b 2838 DESCRIPTION
c906108c 2839
c5aa993b
JM
2840 Given a pointer to a DWARF information entry, figure out if we need
2841 to make a symbol table entry for it, and if so, create a new entry
2842 and return a pointer to it.
c906108c
SS
2843 */
2844
2845static struct symbol *
fba45db2 2846new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2847{
2848 struct symbol *sym = NULL;
c5aa993b
JM
2849
2850 if (dip->at_name != NULL)
c906108c 2851 {
c5aa993b 2852 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
c906108c
SS
2853 sizeof (struct symbol));
2854 OBJSTAT (objfile, n_syms++);
2855 memset (sym, 0, sizeof (struct symbol));
c5aa993b 2856 SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
2857 &objfile->symbol_obstack);
2858 /* default assumptions */
2859 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2860 SYMBOL_CLASS (sym) = LOC_STATIC;
2861 SYMBOL_TYPE (sym) = decode_die_type (dip);
2862
2863 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2864 demangled form for future reference. This is a typical time versus
2865 space tradeoff, that was decided in favor of time because it sped up
2866 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2867
2868 SYMBOL_LANGUAGE (sym) = cu_language;
c5aa993b
JM
2869 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2870 switch (dip->die_tag)
c906108c
SS
2871 {
2872 case TAG_label:
c5aa993b 2873 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2874 SYMBOL_CLASS (sym) = LOC_LABEL;
2875 break;
2876 case TAG_global_subroutine:
2877 case TAG_subroutine:
c5aa993b 2878 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2879 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2880 if (dip->at_prototyped)
c906108c
SS
2881 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2882 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2883 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2884 {
2885 add_symbol_to_list (sym, &global_symbols);
2886 }
2887 else
2888 {
2889 add_symbol_to_list (sym, list_in_scope);
2890 }
2891 break;
2892 case TAG_global_variable:
c5aa993b 2893 if (dip->at_location != NULL)
c906108c
SS
2894 {
2895 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2896 add_symbol_to_list (sym, &global_symbols);
2897 SYMBOL_CLASS (sym) = LOC_STATIC;
2898 SYMBOL_VALUE (sym) += baseaddr;
2899 }
2900 break;
2901 case TAG_local_variable:
c5aa993b 2902 if (dip->at_location != NULL)
c906108c
SS
2903 {
2904 int loc = locval (dip);
c5aa993b 2905 if (dip->optimized_out)
c906108c
SS
2906 {
2907 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2908 }
c5aa993b 2909 else if (dip->isreg)
c906108c
SS
2910 {
2911 SYMBOL_CLASS (sym) = LOC_REGISTER;
2912 }
c5aa993b 2913 else if (dip->offreg)
c906108c
SS
2914 {
2915 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2916 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2917 }
2918 else
2919 {
2920 SYMBOL_CLASS (sym) = LOC_STATIC;
2921 SYMBOL_VALUE (sym) += baseaddr;
2922 }
2923 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2924 {
2925 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2926 which may store to a bigger location than SYMBOL_VALUE. */
2927 SYMBOL_VALUE_ADDRESS (sym) = loc;
2928 }
2929 else
2930 {
2931 SYMBOL_VALUE (sym) = loc;
2932 }
2933 add_symbol_to_list (sym, list_in_scope);
2934 }
2935 break;
2936 case TAG_formal_parameter:
c5aa993b 2937 if (dip->at_location != NULL)
c906108c
SS
2938 {
2939 SYMBOL_VALUE (sym) = locval (dip);
2940 }
2941 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2942 if (dip->isreg)
c906108c
SS
2943 {
2944 SYMBOL_CLASS (sym) = LOC_REGPARM;
2945 }
c5aa993b 2946 else if (dip->offreg)
c906108c
SS
2947 {
2948 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2949 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2950 }
2951 else
2952 {
2953 SYMBOL_CLASS (sym) = LOC_ARG;
2954 }
2955 break;
2956 case TAG_unspecified_parameters:
2957 /* From varargs functions; gdb doesn't seem to have any interest in
2958 this information, so just ignore it for now. (FIXME?) */
2959 break;
2960 case TAG_class_type:
2961 case TAG_structure_type:
2962 case TAG_union_type:
2963 case TAG_enumeration_type:
2964 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2965 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2966 add_symbol_to_list (sym, list_in_scope);
2967 break;
2968 case TAG_typedef:
2969 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2970 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2971 add_symbol_to_list (sym, list_in_scope);
2972 break;
2973 default:
2974 /* Not a tag we recognize. Hopefully we aren't processing trash
2975 data, but since we must specifically ignore things we don't
2976 recognize, there is nothing else we should do at this point. */
2977 break;
2978 }
2979 }
2980 return (sym);
2981}
2982
2983/*
2984
c5aa993b 2985 LOCAL FUNCTION
c906108c 2986
c5aa993b 2987 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2988
c5aa993b 2989 SYNOPSIS
c906108c 2990
c5aa993b
JM
2991 static void synthesize_typedef (struct dieinfo *dip,
2992 struct objfile *objfile,
2993 struct type *type);
c906108c 2994
c5aa993b 2995 DESCRIPTION
c906108c 2996
c5aa993b
JM
2997 Given a pointer to a DWARF information entry, synthesize a typedef
2998 for the name in the DIE, using the specified type.
c906108c 2999
c5aa993b
JM
3000 This is used for C++ class, structs, unions, and enumerations to
3001 set up the tag name as a type.
c906108c
SS
3002
3003 */
3004
3005static void
fba45db2
KB
3006synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3007 struct type *type)
c906108c
SS
3008{
3009 struct symbol *sym = NULL;
c5aa993b
JM
3010
3011 if (dip->at_name != NULL)
c906108c
SS
3012 {
3013 sym = (struct symbol *)
c5aa993b 3014 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
c906108c
SS
3015 OBJSTAT (objfile, n_syms++);
3016 memset (sym, 0, sizeof (struct symbol));
c5aa993b 3017 SYMBOL_NAME (sym) = create_name (dip->at_name,
c906108c
SS
3018 &objfile->symbol_obstack);
3019 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3020 SYMBOL_TYPE (sym) = type;
3021 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3022 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3023 add_symbol_to_list (sym, list_in_scope);
3024 }
3025}
3026
3027/*
3028
c5aa993b 3029 LOCAL FUNCTION
c906108c 3030
c5aa993b 3031 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3032
c5aa993b 3033 SYNOPSIS
c906108c 3034
c5aa993b 3035 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3036
c5aa993b 3037 DESCRIPTION
c906108c 3038
c5aa993b
JM
3039 Decode a block of data containing a modified fundamental
3040 type specification. TYPEDATA is a pointer to the block,
3041 which starts with a length containing the size of the rest
3042 of the block. At the end of the block is a fundmental type
3043 code value that gives the fundamental type. Everything
3044 in between are type modifiers.
c906108c 3045
c5aa993b
JM
3046 We simply compute the number of modifiers and call the general
3047 function decode_modified_type to do the actual work.
3048 */
c906108c
SS
3049
3050static struct type *
fba45db2 3051decode_mod_fund_type (char *typedata)
c906108c
SS
3052{
3053 struct type *typep = NULL;
3054 unsigned short modcount;
3055 int nbytes;
c5aa993b 3056
c906108c
SS
3057 /* Get the total size of the block, exclusive of the size itself */
3058
3059 nbytes = attribute_size (AT_mod_fund_type);
3060 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3061 typedata += nbytes;
3062
3063 /* Deduct the size of the fundamental type bytes at the end of the block. */
3064
3065 modcount -= attribute_size (AT_fund_type);
3066
3067 /* Now do the actual decoding */
3068
3069 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3070 return (typep);
3071}
3072
3073/*
3074
c5aa993b 3075 LOCAL FUNCTION
c906108c 3076
c5aa993b 3077 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3078
c5aa993b 3079 SYNOPSIS
c906108c 3080
c5aa993b 3081 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3082
c5aa993b 3083 DESCRIPTION
c906108c 3084
c5aa993b
JM
3085 Decode a block of data containing a modified user defined
3086 type specification. TYPEDATA is a pointer to the block,
3087 which consists of a two byte length, containing the size
3088 of the rest of the block. At the end of the block is a
3089 four byte value that gives a reference to a user defined type.
3090 Everything in between are type modifiers.
c906108c 3091
c5aa993b
JM
3092 We simply compute the number of modifiers and call the general
3093 function decode_modified_type to do the actual work.
3094 */
c906108c
SS
3095
3096static struct type *
fba45db2 3097decode_mod_u_d_type (char *typedata)
c906108c
SS
3098{
3099 struct type *typep = NULL;
3100 unsigned short modcount;
3101 int nbytes;
c5aa993b 3102
c906108c
SS
3103 /* Get the total size of the block, exclusive of the size itself */
3104
3105 nbytes = attribute_size (AT_mod_u_d_type);
3106 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3107 typedata += nbytes;
3108
3109 /* Deduct the size of the reference type bytes at the end of the block. */
3110
3111 modcount -= attribute_size (AT_user_def_type);
3112
3113 /* Now do the actual decoding */
3114
3115 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3116 return (typep);
3117}
3118
3119/*
3120
c5aa993b 3121 LOCAL FUNCTION
c906108c 3122
c5aa993b 3123 decode_modified_type -- decode modified user or fundamental type
c906108c 3124
c5aa993b 3125 SYNOPSIS
c906108c 3126
c5aa993b
JM
3127 static struct type *decode_modified_type (char *modifiers,
3128 unsigned short modcount, int mtype)
c906108c 3129
c5aa993b 3130 DESCRIPTION
c906108c 3131
c5aa993b
JM
3132 Decode a modified type, either a modified fundamental type or
3133 a modified user defined type. MODIFIERS is a pointer to the
3134 block of bytes that define MODCOUNT modifiers. Immediately
3135 following the last modifier is a short containing the fundamental
3136 type or a long containing the reference to the user defined
3137 type. Which one is determined by MTYPE, which is either
3138 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3139 type we are generating.
c906108c 3140
c5aa993b
JM
3141 We call ourself recursively to generate each modified type,`
3142 until MODCOUNT reaches zero, at which point we have consumed
3143 all the modifiers and generate either the fundamental type or
3144 user defined type. When the recursion unwinds, each modifier
3145 is applied in turn to generate the full modified type.
3146
3147 NOTES
c906108c 3148
c5aa993b
JM
3149 If we find a modifier that we don't recognize, and it is not one
3150 of those reserved for application specific use, then we issue a
3151 warning and simply ignore the modifier.
c906108c 3152
c5aa993b 3153 BUGS
c906108c 3154
c5aa993b 3155 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3156
3157 */
3158
3159static struct type *
fba45db2 3160decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3161{
3162 struct type *typep = NULL;
3163 unsigned short fundtype;
3164 DIE_REF die_ref;
3165 char modifier;
3166 int nbytes;
c5aa993b 3167
c906108c
SS
3168 if (modcount == 0)
3169 {
3170 switch (mtype)
3171 {
3172 case AT_mod_fund_type:
3173 nbytes = attribute_size (AT_fund_type);
3174 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3175 current_objfile);
3176 typep = decode_fund_type (fundtype);
3177 break;
3178 case AT_mod_u_d_type:
3179 nbytes = attribute_size (AT_user_def_type);
3180 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3181 current_objfile);
3182 if ((typep = lookup_utype (die_ref)) == NULL)
3183 {
3184 typep = alloc_utype (die_ref, NULL);
3185 }
3186 break;
3187 default:
3188 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3189 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3190 break;
3191 }
3192 }
3193 else
3194 {
3195 modifier = *modifiers++;
3196 typep = decode_modified_type (modifiers, --modcount, mtype);
3197 switch (modifier)
3198 {
c5aa993b
JM
3199 case MOD_pointer_to:
3200 typep = lookup_pointer_type (typep);
3201 break;
3202 case MOD_reference_to:
3203 typep = lookup_reference_type (typep);
3204 break;
3205 case MOD_const:
3206 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3207 break;
3208 case MOD_volatile:
3209 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3210 break;
3211 default:
3212 if (!(MOD_lo_user <= (unsigned char) modifier
3213 && (unsigned char) modifier <= MOD_hi_user))
3214 {
3215 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3216 }
3217 break;
c906108c
SS
3218 }
3219 }
3220 return (typep);
3221}
3222
3223/*
3224
c5aa993b 3225 LOCAL FUNCTION
c906108c 3226
c5aa993b 3227 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3228
c5aa993b 3229 DESCRIPTION
c906108c 3230
c5aa993b
JM
3231 Given an integer that is one of the fundamental DWARF types,
3232 translate it to one of the basic internal gdb types and return
3233 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3234
c5aa993b 3235 NOTES
c906108c 3236
c5aa993b
JM
3237 For robustness, if we are asked to translate a fundamental
3238 type that we are unprepared to deal with, we return int so
3239 callers can always depend upon a valid type being returned,
3240 and so gdb may at least do something reasonable by default.
3241 If the type is not in the range of those types defined as
3242 application specific types, we also issue a warning.
3243 */
c906108c
SS
3244
3245static struct type *
fba45db2 3246decode_fund_type (unsigned int fundtype)
c906108c
SS
3247{
3248 struct type *typep = NULL;
c5aa993b 3249
c906108c
SS
3250 switch (fundtype)
3251 {
3252
3253 case FT_void:
3254 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3255 break;
c5aa993b 3256
c906108c
SS
3257 case FT_boolean: /* Was FT_set in AT&T version */
3258 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3259 break;
3260
3261 case FT_pointer: /* (void *) */
3262 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3263 typep = lookup_pointer_type (typep);
3264 break;
c5aa993b 3265
c906108c
SS
3266 case FT_char:
3267 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3268 break;
c5aa993b 3269
c906108c
SS
3270 case FT_signed_char:
3271 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3272 break;
3273
3274 case FT_unsigned_char:
3275 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3276 break;
c5aa993b 3277
c906108c
SS
3278 case FT_short:
3279 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3280 break;
3281
3282 case FT_signed_short:
3283 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3284 break;
c5aa993b 3285
c906108c
SS
3286 case FT_unsigned_short:
3287 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3288 break;
c5aa993b 3289
c906108c
SS
3290 case FT_integer:
3291 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3292 break;
3293
3294 case FT_signed_integer:
3295 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3296 break;
c5aa993b 3297
c906108c
SS
3298 case FT_unsigned_integer:
3299 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3300 break;
c5aa993b 3301
c906108c
SS
3302 case FT_long:
3303 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3304 break;
3305
3306 case FT_signed_long:
3307 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3308 break;
c5aa993b 3309
c906108c
SS
3310 case FT_unsigned_long:
3311 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3312 break;
c5aa993b 3313
c906108c
SS
3314 case FT_long_long:
3315 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3316 break;
3317
3318 case FT_signed_long_long:
3319 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3320 break;
3321
3322 case FT_unsigned_long_long:
3323 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3324 break;
3325
3326 case FT_float:
3327 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3328 break;
c5aa993b 3329
c906108c
SS
3330 case FT_dbl_prec_float:
3331 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3332 break;
c5aa993b 3333
c906108c
SS
3334 case FT_ext_prec_float:
3335 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3336 break;
c5aa993b 3337
c906108c
SS
3338 case FT_complex:
3339 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3340 break;
c5aa993b 3341
c906108c
SS
3342 case FT_dbl_prec_complex:
3343 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3344 break;
c5aa993b 3345
c906108c
SS
3346 case FT_ext_prec_complex:
3347 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3348 break;
c5aa993b 3349
c906108c
SS
3350 }
3351
3352 if (typep == NULL)
3353 {
3354 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3355 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3356 {
3357 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3358 }
3359 }
c5aa993b 3360
c906108c
SS
3361 return (typep);
3362}
3363
3364/*
3365
c5aa993b 3366 LOCAL FUNCTION
c906108c 3367
c5aa993b 3368 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3369
c5aa993b 3370 DESCRIPTION
c906108c 3371
c5aa993b
JM
3372 Given a pointer to a string and a pointer to an obstack, allocates
3373 a fresh copy of the string on the specified obstack.
c906108c 3374
c5aa993b 3375 */
c906108c
SS
3376
3377static char *
fba45db2 3378create_name (char *name, struct obstack *obstackp)
c906108c
SS
3379{
3380 int length;
3381 char *newname;
3382
3383 length = strlen (name) + 1;
3384 newname = (char *) obstack_alloc (obstackp, length);
3385 strcpy (newname, name);
3386 return (newname);
3387}
3388
3389/*
3390
c5aa993b 3391 LOCAL FUNCTION
c906108c 3392
c5aa993b 3393 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3394
c5aa993b 3395 SYNOPSIS
c906108c 3396
c5aa993b
JM
3397 void basicdieinfo (char *diep, struct dieinfo *dip,
3398 struct objfile *objfile)
c906108c 3399
c5aa993b 3400 DESCRIPTION
c906108c 3401
c5aa993b
JM
3402 Given a pointer to raw DIE data, and a pointer to an instance of a
3403 die info structure, this function extracts the basic information
3404 from the DIE data required to continue processing this DIE, along
3405 with some bookkeeping information about the DIE.
c906108c 3406
c5aa993b
JM
3407 The information we absolutely must have includes the DIE tag,
3408 and the DIE length. If we need the sibling reference, then we
3409 will have to call completedieinfo() to process all the remaining
3410 DIE information.
c906108c 3411
c5aa993b
JM
3412 Note that since there is no guarantee that the data is properly
3413 aligned in memory for the type of access required (indirection
3414 through anything other than a char pointer), and there is no
3415 guarantee that it is in the same byte order as the gdb host,
3416 we call a function which deals with both alignment and byte
3417 swapping issues. Possibly inefficient, but quite portable.
c906108c 3418
c5aa993b
JM
3419 We also take care of some other basic things at this point, such
3420 as ensuring that the instance of the die info structure starts
3421 out completely zero'd and that curdie is initialized for use
3422 in error reporting if we have a problem with the current die.
c906108c 3423
c5aa993b
JM
3424 NOTES
3425
3426 All DIE's must have at least a valid length, thus the minimum
3427 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3428 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3429 are forced to be TAG_padding DIES.
c906108c 3430
c5aa993b
JM
3431 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3432 that if a padding DIE is used for alignment and the amount needed is
3433 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3434 enough to align to the next alignment boundry.
3435
3436 We do some basic sanity checking here, such as verifying that the
3437 length of the die would not cause it to overrun the recorded end of
3438 the buffer holding the DIE info. If we find a DIE that is either
3439 too small or too large, we force it's length to zero which should
3440 cause the caller to take appropriate action.
c906108c
SS
3441 */
3442
3443static void
fba45db2 3444basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3445{
3446 curdie = dip;
3447 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3448 dip->die = diep;
3449 dip->die_ref = dbroff + (diep - dbbase);
3450 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3451 objfile);
3452 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3453 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3454 {
c5aa993b
JM
3455 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3456 dip->die_length = 0;
c906108c 3457 }
c5aa993b 3458 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3459 {
c5aa993b 3460 dip->die_tag = TAG_padding;
c906108c
SS
3461 }
3462 else
3463 {
3464 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3465 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3466 objfile);
c906108c
SS
3467 }
3468}
3469
3470/*
3471
c5aa993b 3472 LOCAL FUNCTION
c906108c 3473
c5aa993b 3474 completedieinfo -- finish reading the information for a given DIE
c906108c 3475
c5aa993b 3476 SYNOPSIS
c906108c 3477
c5aa993b 3478 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3479
c5aa993b 3480 DESCRIPTION
c906108c 3481
c5aa993b
JM
3482 Given a pointer to an already partially initialized die info structure,
3483 scan the raw DIE data and finish filling in the die info structure
3484 from the various attributes found.
c906108c 3485
c5aa993b
JM
3486 Note that since there is no guarantee that the data is properly
3487 aligned in memory for the type of access required (indirection
3488 through anything other than a char pointer), and there is no
3489 guarantee that it is in the same byte order as the gdb host,
3490 we call a function which deals with both alignment and byte
3491 swapping issues. Possibly inefficient, but quite portable.
c906108c 3492
c5aa993b
JM
3493 NOTES
3494
3495 Each time we are called, we increment the diecount variable, which
3496 keeps an approximate count of the number of dies processed for
3497 each compilation unit. This information is presented to the user
3498 if the info_verbose flag is set.
c906108c
SS
3499
3500 */
3501
3502static void
fba45db2 3503completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3504{
3505 char *diep; /* Current pointer into raw DIE data */
3506 char *end; /* Terminate DIE scan here */
3507 unsigned short attr; /* Current attribute being scanned */
3508 unsigned short form; /* Form of the attribute */
3509 int nbytes; /* Size of next field to read */
c5aa993b 3510
c906108c 3511 diecount++;
c5aa993b
JM
3512 diep = dip->die;
3513 end = diep + dip->die_length;
c906108c
SS
3514 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3515 while (diep < end)
3516 {
3517 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3518 diep += SIZEOF_ATTRIBUTE;
3519 if ((nbytes = attribute_size (attr)) == -1)
3520 {
3521 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3522 diep = end;
3523 continue;
3524 }
3525 switch (attr)
3526 {
3527 case AT_fund_type:
c5aa993b
JM
3528 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3529 objfile);
c906108c
SS
3530 break;
3531 case AT_ordering:
c5aa993b
JM
3532 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3533 objfile);
c906108c
SS
3534 break;
3535 case AT_bit_offset:
c5aa993b
JM
3536 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3537 objfile);
c906108c
SS
3538 break;
3539 case AT_sibling:
c5aa993b
JM
3540 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3541 objfile);
c906108c
SS
3542 break;
3543 case AT_stmt_list:
c5aa993b
JM
3544 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3545 objfile);
3546 dip->has_at_stmt_list = 1;
c906108c
SS
3547 break;
3548 case AT_low_pc:
c5aa993b
JM
3549 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3550 objfile);
3551 dip->at_low_pc += baseaddr;
3552 dip->has_at_low_pc = 1;
c906108c
SS
3553 break;
3554 case AT_high_pc:
c5aa993b
JM
3555 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3556 objfile);
3557 dip->at_high_pc += baseaddr;
c906108c
SS
3558 break;
3559 case AT_language:
c5aa993b
JM
3560 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3561 objfile);
c906108c
SS
3562 break;
3563 case AT_user_def_type:
c5aa993b
JM
3564 dip->at_user_def_type = target_to_host (diep, nbytes,
3565 GET_UNSIGNED, objfile);
c906108c
SS
3566 break;
3567 case AT_byte_size:
c5aa993b
JM
3568 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3569 objfile);
3570 dip->has_at_byte_size = 1;
c906108c
SS
3571 break;
3572 case AT_bit_size:
c5aa993b
JM
3573 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3574 objfile);
c906108c
SS
3575 break;
3576 case AT_member:
c5aa993b
JM
3577 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3578 objfile);
c906108c
SS
3579 break;
3580 case AT_discr:
c5aa993b
JM
3581 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3582 objfile);
c906108c
SS
3583 break;
3584 case AT_location:
c5aa993b 3585 dip->at_location = diep;
c906108c
SS
3586 break;
3587 case AT_mod_fund_type:
c5aa993b 3588 dip->at_mod_fund_type = diep;
c906108c
SS
3589 break;
3590 case AT_subscr_data:
c5aa993b 3591 dip->at_subscr_data = diep;
c906108c
SS
3592 break;
3593 case AT_mod_u_d_type:
c5aa993b 3594 dip->at_mod_u_d_type = diep;
c906108c
SS
3595 break;
3596 case AT_element_list:
c5aa993b
JM
3597 dip->at_element_list = diep;
3598 dip->short_element_list = 0;
c906108c
SS
3599 break;
3600 case AT_short_element_list:
c5aa993b
JM
3601 dip->at_element_list = diep;
3602 dip->short_element_list = 1;
c906108c
SS
3603 break;
3604 case AT_discr_value:
c5aa993b 3605 dip->at_discr_value = diep;
c906108c
SS
3606 break;
3607 case AT_string_length:
c5aa993b 3608 dip->at_string_length = diep;
c906108c
SS
3609 break;
3610 case AT_name:
c5aa993b 3611 dip->at_name = diep;
c906108c
SS
3612 break;
3613 case AT_comp_dir:
3614 /* For now, ignore any "hostname:" portion, since gdb doesn't
3615 know how to deal with it. (FIXME). */
c5aa993b
JM
3616 dip->at_comp_dir = strrchr (diep, ':');
3617 if (dip->at_comp_dir != NULL)
c906108c 3618 {
c5aa993b 3619 dip->at_comp_dir++;
c906108c
SS
3620 }
3621 else
3622 {
c5aa993b 3623 dip->at_comp_dir = diep;
c906108c
SS
3624 }
3625 break;
3626 case AT_producer:
c5aa993b 3627 dip->at_producer = diep;
c906108c
SS
3628 break;
3629 case AT_start_scope:
c5aa993b
JM
3630 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3631 objfile);
c906108c
SS
3632 break;
3633 case AT_stride_size:
c5aa993b
JM
3634 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3635 objfile);
c906108c
SS
3636 break;
3637 case AT_src_info:
c5aa993b
JM
3638 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3639 objfile);
c906108c
SS
3640 break;
3641 case AT_prototyped:
c5aa993b 3642 dip->at_prototyped = diep;
c906108c
SS
3643 break;
3644 default:
3645 /* Found an attribute that we are unprepared to handle. However
3646 it is specifically one of the design goals of DWARF that
3647 consumers should ignore unknown attributes. As long as the
3648 form is one that we recognize (so we know how to skip it),
3649 we can just ignore the unknown attribute. */
3650 break;
3651 }
3652 form = FORM_FROM_ATTR (attr);
3653 switch (form)
3654 {
3655 case FORM_DATA2:
3656 diep += 2;
3657 break;
3658 case FORM_DATA4:
3659 case FORM_REF:
3660 diep += 4;
3661 break;
3662 case FORM_DATA8:
3663 diep += 8;
3664 break;
3665 case FORM_ADDR:
3666 diep += TARGET_FT_POINTER_SIZE (objfile);
3667 break;
3668 case FORM_BLOCK2:
3669 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3670 break;
3671 case FORM_BLOCK4:
3672 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3673 break;
3674 case FORM_STRING:
3675 diep += strlen (diep) + 1;
3676 break;
3677 default:
3678 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3679 diep = end;
3680 break;
3681 }
3682 }
3683}
3684
3685/*
3686
c5aa993b 3687 LOCAL FUNCTION
c906108c 3688
c5aa993b 3689 target_to_host -- swap in target data to host
c906108c 3690
c5aa993b 3691 SYNOPSIS
c906108c 3692
c5aa993b
JM
3693 target_to_host (char *from, int nbytes, int signextend,
3694 struct objfile *objfile)
c906108c 3695
c5aa993b 3696 DESCRIPTION
c906108c 3697
c5aa993b
JM
3698 Given pointer to data in target format in FROM, a byte count for
3699 the size of the data in NBYTES, a flag indicating whether or not
3700 the data is signed in SIGNEXTEND, and a pointer to the current
3701 objfile in OBJFILE, convert the data to host format and return
3702 the converted value.
c906108c 3703
c5aa993b 3704 NOTES
c906108c 3705
c5aa993b
JM
3706 FIXME: If we read data that is known to be signed, and expect to
3707 use it as signed data, then we need to explicitly sign extend the
3708 result until the bfd library is able to do this for us.
c906108c 3709
c5aa993b 3710 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3711
3712 */
3713
3714static CORE_ADDR
fba45db2
KB
3715target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3716 struct objfile *objfile)
c906108c
SS
3717{
3718 CORE_ADDR rtnval;
3719
3720 switch (nbytes)
3721 {
c5aa993b
JM
3722 case 8:
3723 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3724 break;
3725 case 4:
3726 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3727 break;
3728 case 2:
3729 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3730 break;
3731 case 1:
3732 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3733 break;
3734 default:
3735 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3736 rtnval = 0;
3737 break;
c906108c
SS
3738 }
3739 return (rtnval);
3740}
3741
3742/*
3743
c5aa993b 3744 LOCAL FUNCTION
c906108c 3745
c5aa993b 3746 attribute_size -- compute size of data for a DWARF attribute
c906108c 3747
c5aa993b 3748 SYNOPSIS
c906108c 3749
c5aa993b 3750 static int attribute_size (unsigned int attr)
c906108c 3751
c5aa993b 3752 DESCRIPTION
c906108c 3753
c5aa993b
JM
3754 Given a DWARF attribute in ATTR, compute the size of the first
3755 piece of data associated with this attribute and return that
3756 size.
c906108c 3757
c5aa993b 3758 Returns -1 for unrecognized attributes.
c906108c
SS
3759
3760 */
3761
3762static int
fba45db2 3763attribute_size (unsigned int attr)
c906108c
SS
3764{
3765 int nbytes; /* Size of next data for this attribute */
3766 unsigned short form; /* Form of the attribute */
3767
3768 form = FORM_FROM_ATTR (attr);
3769 switch (form)
3770 {
c5aa993b
JM
3771 case FORM_STRING: /* A variable length field is next */
3772 nbytes = 0;
3773 break;
3774 case FORM_DATA2: /* Next 2 byte field is the data itself */
3775 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3776 nbytes = 2;
3777 break;
3778 case FORM_DATA4: /* Next 4 byte field is the data itself */
3779 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3780 case FORM_REF: /* Next 4 byte field is a DIE offset */
3781 nbytes = 4;
3782 break;
3783 case FORM_DATA8: /* Next 8 byte field is the data itself */
3784 nbytes = 8;
3785 break;
3786 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3787 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3788 break;
3789 default:
3790 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3791 nbytes = -1;
3792 break;
3793 }
c906108c
SS
3794 return (nbytes);
3795}
This page took 0.277129 seconds and 4 git commands to generate.