* corelow.c, exec.c, inftarg.c, m3-nat.c, op50-rom.c, procfs.c,
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
4386eff2 2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
1ab3bf1b 3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/*
23
9745ba07
JK
24FIXME: Do we need to generate dependencies in partial symtabs?
25(Perhaps we don't need to).
35f5886e 26
35f5886e
FF
27FIXME: Resolve minor differences between what information we put in the
28partial symbol table and what dbxread puts in. For example, we don't yet
29put enum constants there. And dbxread seems to invent a lot of typedefs
30we never see. Use the new printpsym command to see the partial symbol table
31contents.
32
35f5886e
FF
33FIXME: Figure out a better way to tell gdb about the name of the function
34contain the user's entry point (I.E. main())
35
35f5886e
FF
36FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37other things to work on, if you get bored. :-)
38
39*/
4d315a07 40
d747e0af 41#include "defs.h"
35f5886e 42#include "symtab.h"
1ab3bf1b 43#include "gdbtypes.h"
35f5886e 44#include "symfile.h"
5e2e79f8 45#include "objfiles.h"
f5f0679a 46#include "elf/dwarf.h"
4d315a07 47#include "buildsym.h"
2dbde378 48#include "demangle.h"
bf229b4e
FF
49#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50#include "language.h"
51b80b00 51#include "complaints.h"
35f5886e 52
d5931d79
JG
53#include <fcntl.h>
54#include <string.h>
51b80b00 55
d5931d79
JG
56#ifndef NO_SYS_FILE
57#include <sys/file.h>
58#endif
59
60/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
61#ifndef L_SET
62#define L_SET 0
63#endif
64
51b80b00
FF
65/* Some macros to provide DIE info for complaints. */
66
67#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
69
70/* Complaints that can be issued during DWARF debug info reading. */
71
72struct complaint no_bfd_get_N =
73{
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
75};
76
77struct complaint malformed_die =
78{
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
80};
81
82struct complaint bad_die_ref =
83{
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
85};
86
87struct complaint unknown_attribute_form =
88{
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
90};
91
92struct complaint unknown_attribute_length =
93{
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
95};
96
97struct complaint unexpected_fund_type =
98{
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
100};
101
102struct complaint unknown_type_modifier =
103{
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
105};
106
107struct complaint volatile_ignored =
108{
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
110};
111
112struct complaint const_ignored =
113{
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
115};
116
117struct complaint botched_modified_type =
118{
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
120};
121
122struct complaint op_deref2 =
123{
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
125};
126
127struct complaint op_deref4 =
128{
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
130};
131
132struct complaint basereg_not_handled =
133{
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
135};
136
137struct complaint dup_user_type_allocation =
138{
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
140};
141
142struct complaint dup_user_type_definition =
143{
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
145};
146
147struct complaint missing_tag =
148{
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
150};
151
152struct complaint bad_array_element_type =
153{
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
155};
156
157struct complaint subscript_data_items =
158{
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
160};
161
162struct complaint unhandled_array_subscript_format =
163{
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
165};
166
167struct complaint unknown_array_subscript_format =
168{
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
170};
171
172struct complaint not_row_major =
173{
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
175};
35f5886e 176
13b5a7ff 177typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 178
4d315a07
FF
179#ifndef GCC_PRODUCER
180#define GCC_PRODUCER "GNU C "
181#endif
35f5886e 182
2dbde378
FF
183#ifndef GPLUS_PRODUCER
184#define GPLUS_PRODUCER "GNU C++ "
185#endif
186
187#ifndef LCC_PRODUCER
3dc755fb 188#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
189#endif
190
93bb6e65
FF
191#ifndef CHILL_PRODUCER
192#define CHILL_PRODUCER "GNU Chill "
193#endif
93bb6e65 194
13b5a7ff
FF
195/* Flags to target_to_host() that tell whether or not the data object is
196 expected to be signed. Used, for example, when fetching a signed
197 integer in the target environment which is used as a signed integer
198 in the host environment, and the two environments have different sized
199 ints. In this case, *somebody* has to sign extend the smaller sized
200 int. */
201
202#define GET_UNSIGNED 0 /* No sign extension required */
203#define GET_SIGNED 1 /* Sign extension required */
204
205/* Defines for things which are specified in the document "DWARF Debugging
206 Information Format" published by UNIX International, Programming Languages
207 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
208
209#define SIZEOF_DIE_LENGTH 4
210#define SIZEOF_DIE_TAG 2
211#define SIZEOF_ATTRIBUTE 2
212#define SIZEOF_FORMAT_SPECIFIER 1
213#define SIZEOF_FMT_FT 2
214#define SIZEOF_LINETBL_LENGTH 4
215#define SIZEOF_LINETBL_LINENO 4
216#define SIZEOF_LINETBL_STMT 2
217#define SIZEOF_LINETBL_DELTA 4
218#define SIZEOF_LOC_ATOM_CODE 1
219
220#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
221
222/* Macros that return the sizes of various types of data in the target
223 environment.
224
2d6d969c
FF
225 FIXME: Currently these are just compile time constants (as they are in
226 other parts of gdb as well). They need to be able to get the right size
227 either from the bfd or possibly from the DWARF info. It would be nice if
228 the DWARF producer inserted DIES that describe the fundamental types in
229 the target environment into the DWARF info, similar to the way dbx stabs
230 producers produce information about their fundamental types. */
231
232#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
233#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 234
768be6e1
FF
235/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
236 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
237 However, the Issue 2 DWARF specification from AT&T defines it as
238 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
239 For backwards compatibility with the AT&T compiler produced executables
240 we define AT_short_element_list for this variant. */
241
242#define AT_short_element_list (0x00f0|FORM_BLOCK2)
243
244/* External variables referenced. */
245
35f5886e 246extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 247extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
248
249/* The DWARF debugging information consists of two major pieces,
250 one is a block of DWARF Information Entries (DIE's) and the other
251 is a line number table. The "struct dieinfo" structure contains
252 the information for a single DIE, the one currently being processed.
253
254 In order to make it easier to randomly access the attribute fields
13b5a7ff 255 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
256 each DIE is scanned and an instance of the "struct dieinfo"
257 structure is initialized.
258
259 Initialization is done in two levels. The first, done by basicdieinfo(),
260 just initializes those fields that are vital to deciding whether or not
261 to use this DIE, how to skip past it, etc. The second, done by the
262 function completedieinfo(), fills in the rest of the information.
263
264 Attributes which have block forms are not interpreted at the time
265 the DIE is scanned, instead we just save pointers to the start
266 of their value fields.
267
268 Some fields have a flag <name>_p that is set when the value of the
269 field is valid (I.E. we found a matching attribute in the DIE). Since
270 we may want to test for the presence of some attributes in the DIE,
2d6186f4 271 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
272 we need someway to note that we found such an attribute.
273
274 */
275
276typedef char BLOCK;
277
278struct dieinfo {
13b5a7ff
FF
279 char * die; /* Pointer to the raw DIE data */
280 unsigned long die_length; /* Length of the raw DIE data */
281 DIE_REF die_ref; /* Offset of this DIE */
282 unsigned short die_tag; /* Tag for this DIE */
283 unsigned long at_padding;
284 unsigned long at_sibling;
285 BLOCK * at_location;
286 char * at_name;
287 unsigned short at_fund_type;
288 BLOCK * at_mod_fund_type;
289 unsigned long at_user_def_type;
290 BLOCK * at_mod_u_d_type;
291 unsigned short at_ordering;
292 BLOCK * at_subscr_data;
293 unsigned long at_byte_size;
294 unsigned short at_bit_offset;
295 unsigned long at_bit_size;
296 BLOCK * at_element_list;
297 unsigned long at_stmt_list;
298 unsigned long at_low_pc;
299 unsigned long at_high_pc;
300 unsigned long at_language;
301 unsigned long at_member;
302 unsigned long at_discr;
303 BLOCK * at_discr_value;
13b5a7ff
FF
304 BLOCK * at_string_length;
305 char * at_comp_dir;
306 char * at_producer;
13b5a7ff
FF
307 unsigned long at_start_scope;
308 unsigned long at_stride_size;
309 unsigned long at_src_info;
310 char * at_prototyped;
311 unsigned int has_at_low_pc:1;
312 unsigned int has_at_stmt_list:1;
50055e94 313 unsigned int has_at_byte_size:1;
13b5a7ff 314 unsigned int short_element_list:1;
35f5886e
FF
315};
316
317static int diecount; /* Approximate count of dies for compilation unit */
318static struct dieinfo *curdie; /* For warnings and such */
319
320static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 321static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
322static int dbroff; /* Relative offset from start of .debug section */
323static char *lnbase; /* Base pointer to line section */
324static int isreg; /* Kludge to identify register variables */
a1c8d76e
JK
325/* Kludge to identify basereg references. Nonzero if we have an offset
326 relative to a basereg. */
327static int offreg;
328/* Which base register is it relative to? */
329static int basereg;
35f5886e 330
2670f34d 331/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
332 the section_offsets structure used by dbxread (once this is done,
333 pass the appropriate section number to end_symtab). */
35f5886e
FF
334static CORE_ADDR baseaddr; /* Add to each symbol value */
335
2670f34d
JG
336/* The section offsets used in the current psymtab or symtab. FIXME,
337 only used to pass one value (baseaddr) at the moment. */
338static struct section_offsets *base_section_offsets;
339
35f5886e
FF
340/* Each partial symbol table entry contains a pointer to private data for the
341 read_symtab() function to use when expanding a partial symbol table entry
342 to a full symbol table entry. For DWARF debugging info, this data is
343 contained in the following structure and macros are provided for easy
344 access to the members given a pointer to a partial symbol table entry.
345
346 dbfoff Always the absolute file offset to the start of the ".debug"
347 section for the file containing the DIE's being accessed.
348
349 dbroff Relative offset from the start of the ".debug" access to the
350 first DIE to be accessed. When building the partial symbol
351 table, this value will be zero since we are accessing the
352 entire ".debug" section. When expanding a partial symbol
353 table entry, this value will be the offset to the first
354 DIE for the compilation unit containing the symbol that
355 triggers the expansion.
356
357 dblength The size of the chunk of DIE's being examined, in bytes.
358
359 lnfoff The absolute file offset to the line table fragment. Ignored
360 when building partial symbol tables, but used when expanding
361 them, and contains the absolute file offset to the fragment
362 of the ".line" section containing the line numbers for the
363 current compilation unit.
364 */
365
366struct dwfinfo {
d5931d79 367 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
35f5886e
FF
368 int dbroff; /* Relative offset from start of .debug section */
369 int dblength; /* Size of the chunk of DIE's being examined */
d5931d79 370 file_ptr lnfoff; /* Absolute file offset to line table fragment */
35f5886e
FF
371};
372
373#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
374#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
375#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
376#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
377
4d315a07
FF
378/* The generic symbol table building routines have separate lists for
379 file scope symbols and all all other scopes (local scopes). So
380 we need to select the right one to pass to add_symbol_to_list().
381 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 382
4d315a07
FF
383 FIXME: The original dwarf code just treated the file scope as the first
384 local scope, and all other local scopes as nested local scopes, and worked
385 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 386
99140c31 387struct pending **list_in_scope = &file_symbols;
35f5886e
FF
388
389/* DIES which have user defined types or modified user defined types refer to
390 other DIES for the type information. Thus we need to associate the offset
391 of a DIE for a user defined type with a pointer to the type information.
392
393 Originally this was done using a simple but expensive algorithm, with an
394 array of unsorted structures, each containing an offset/type-pointer pair.
395 This array was scanned linearly each time a lookup was done. The result
396 was that gdb was spending over half it's startup time munging through this
397 array of pointers looking for a structure that had the right offset member.
398
399 The second attempt used the same array of structures, but the array was
400 sorted using qsort each time a new offset/type was recorded, and a binary
401 search was used to find the type pointer for a given DIE offset. This was
402 even slower, due to the overhead of sorting the array each time a new
403 offset/type pair was entered.
404
405 The third attempt uses a fixed size array of type pointers, indexed by a
406 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
407 we can divide any DIE offset by 4 to obtain a unique index into this fixed
408 size array. Since each element is a 4 byte pointer, it takes exactly as
409 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
410 compilation unit. But it gets freed as soon as we are done with it.
411 This has worked well in practice, as a reasonable tradeoff between memory
412 consumption and speed, without having to resort to much more complicated
413 algorithms. */
35f5886e
FF
414
415static struct type **utypes; /* Pointer to array of user type pointers */
416static int numutypes; /* Max number of user type pointers */
417
bf229b4e
FF
418/* Maintain an array of referenced fundamental types for the current
419 compilation unit being read. For DWARF version 1, we have to construct
420 the fundamental types on the fly, since no information about the
421 fundamental types is supplied. Each such fundamental type is created by
422 calling a language dependent routine to create the type, and then a
423 pointer to that type is then placed in the array at the index specified
424 by it's FT_<TYPENAME> value. The array has a fixed size set by the
425 FT_NUM_MEMBERS compile time constant, which is the number of predefined
426 fundamental types gdb knows how to construct. */
427
428static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
429
95ff889e
FF
430/* Record the language for the compilation unit which is currently being
431 processed. We know it once we have seen the TAG_compile_unit DIE,
432 and we need it while processing the DIE's for that compilation unit.
433 It is eventually saved in the symtab structure, but we don't finalize
434 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
435 compilation unit. We also need to get and save a pointer to the
436 language struct for this language, so we can call the language
437 dependent routines for doing things such as creating fundamental
438 types. */
95ff889e
FF
439
440static enum language cu_language;
bf229b4e 441static const struct language_defn *cu_language_defn;
95ff889e 442
35f5886e 443/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
444 about ordering within this file. */
445
13b5a7ff
FF
446static int
447attribute_size PARAMS ((unsigned int));
448
449static unsigned long
450target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 451
1ab3bf1b
JG
452static void
453add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
454
2dbde378
FF
455static void
456handle_producer PARAMS ((char *));
457
1ab3bf1b
JG
458static void
459read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 460
58050209 461static void
1ab3bf1b 462read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
463
464static void
1ab3bf1b
JG
465read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
466 struct objfile *));
35f5886e 467
35f5886e 468static void
1ab3bf1b 469scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 470
35f5886e 471static void
d5931d79
JG
472scan_compilation_units PARAMS ((char *, char *, file_ptr,
473 file_ptr, struct objfile *));
35f5886e
FF
474
475static void
1ab3bf1b 476add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e
FF
477
478static void
1ab3bf1b 479init_psymbol_list PARAMS ((struct objfile *, int));
35f5886e
FF
480
481static void
95967e73 482basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
483
484static void
95967e73 485completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
486
487static void
488dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
489
490static void
491psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 492
c701c14c 493static void
1ab3bf1b 494read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
495
496static void
1ab3bf1b 497process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
498
499static void
1ab3bf1b
JG
500read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
501 struct objfile *));
35f5886e
FF
502
503static struct type *
84ffdec2 504decode_array_element_type PARAMS ((char *));
35f5886e
FF
505
506static struct type *
85f0a848 507decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
508
509static void
1ab3bf1b 510dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 511
9e4c1921 512static void
1ab3bf1b 513read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 514
ec16f701
FF
515static void
516read_tag_string_type PARAMS ((struct dieinfo *dip));
517
35f5886e 518static void
1ab3bf1b 519read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
520
521static void
1ab3bf1b 522read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
523
524static struct type *
1ab3bf1b 525struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
526
527static struct type *
1ab3bf1b 528enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 529
35f5886e 530static void
1ab3bf1b 531decode_line_numbers PARAMS ((char *));
35f5886e
FF
532
533static struct type *
1ab3bf1b 534decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
535
536static struct type *
1ab3bf1b 537decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
538
539static struct type *
1ab3bf1b 540decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
541
542static struct type *
1c92ca6f 543decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
544
545static struct type *
1ab3bf1b 546decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
547
548static char *
1ab3bf1b 549create_name PARAMS ((char *, struct obstack *));
35f5886e 550
35f5886e 551static struct type *
13b5a7ff 552lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
553
554static struct type *
13b5a7ff 555alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
556
557static struct symbol *
1ab3bf1b 558new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 559
95ff889e
FF
560static void
561synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
562 struct type *));
563
35f5886e 564static int
1ab3bf1b 565locval PARAMS ((char *));
35f5886e 566
95ff889e
FF
567static void
568set_cu_language PARAMS ((struct dieinfo *));
569
bf229b4e
FF
570static struct type *
571dwarf_fundamental_type PARAMS ((struct objfile *, int));
572
573
574/*
575
576LOCAL FUNCTION
577
578 dwarf_fundamental_type -- lookup or create a fundamental type
579
580SYNOPSIS
581
582 struct type *
583 dwarf_fundamental_type (struct objfile *objfile, int typeid)
584
585DESCRIPTION
586
587 DWARF version 1 doesn't supply any fundamental type information,
588 so gdb has to construct such types. It has a fixed number of
589 fundamental types that it knows how to construct, which is the
590 union of all types that it knows how to construct for all languages
591 that it knows about. These are enumerated in gdbtypes.h.
592
593 As an example, assume we find a DIE that references a DWARF
594 fundamental type of FT_integer. We first look in the ftypes
595 array to see if we already have such a type, indexed by the
596 gdb internal value of FT_INTEGER. If so, we simply return a
597 pointer to that type. If not, then we ask an appropriate
598 language dependent routine to create a type FT_INTEGER, using
599 defaults reasonable for the current target machine, and install
600 that type in ftypes for future reference.
601
602RETURNS
603
604 Pointer to a fundamental type.
605
606*/
607
608static struct type *
609dwarf_fundamental_type (objfile, typeid)
610 struct objfile *objfile;
611 int typeid;
612{
613 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
614 {
615 error ("internal error - invalid fundamental type id %d", typeid);
616 }
617
618 /* Look for this particular type in the fundamental type vector. If one is
619 not found, create and install one appropriate for the current language
620 and the current target machine. */
621
622 if (ftypes[typeid] == NULL)
623 {
624 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
625 }
626
627 return (ftypes[typeid]);
628}
629
95ff889e
FF
630/*
631
632LOCAL FUNCTION
633
634 set_cu_language -- set local copy of language for compilation unit
635
636SYNOPSIS
637
638 void
639 set_cu_language (struct dieinfo *dip)
640
641DESCRIPTION
642
643 Decode the language attribute for a compilation unit DIE and
644 remember what the language was. We use this at various times
645 when processing DIE's for a given compilation unit.
646
647RETURNS
648
649 No return value.
650
651 */
652
653static void
654set_cu_language (dip)
655 struct dieinfo *dip;
656{
657 switch (dip -> at_language)
658 {
659 case LANG_C89:
660 case LANG_C:
661 cu_language = language_c;
662 break;
663 case LANG_C_PLUS_PLUS:
664 cu_language = language_cplus;
665 break;
e58de8a2
FF
666 case LANG_CHILL:
667 cu_language = language_chill;
668 break;
669 case LANG_MODULA2:
670 cu_language = language_m2;
671 break;
95ff889e
FF
672 case LANG_ADA83:
673 case LANG_COBOL74:
674 case LANG_COBOL85:
675 case LANG_FORTRAN77:
676 case LANG_FORTRAN90:
677 case LANG_PASCAL83:
2e4964ad 678 /* We don't know anything special about these yet. */
95ff889e
FF
679 cu_language = language_unknown;
680 break;
2e4964ad
FF
681 default:
682 /* If no at_language, try to deduce one from the filename */
683 cu_language = deduce_language_from_filename (dip -> at_name);
684 break;
95ff889e 685 }
bf229b4e 686 cu_language_defn = language_def (cu_language);
95ff889e
FF
687}
688
35f5886e
FF
689/*
690
691GLOBAL FUNCTION
692
693 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
694
695SYNOPSIS
696
d5931d79 697 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 698 struct section_offsets *section_offsets,
d5931d79
JG
699 int mainline, file_ptr dbfoff, unsigned int dbfsize,
700 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
701
702DESCRIPTION
703
704 This function is called upon to build partial symtabs from files
705 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
706
d5931d79 707 It is passed a bfd* containing the DIES
35f5886e
FF
708 and line number information, the corresponding filename for that
709 file, a base address for relocating the symbols, a flag indicating
710 whether or not this debugging information is from a "main symbol
711 table" rather than a shared library or dynamically linked file,
712 and file offset/size pairs for the DIE information and line number
713 information.
714
715RETURNS
716
717 No return value.
718
719 */
720
721void
d5931d79
JG
722dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
723 lnoffset, lnsize)
724 struct objfile *objfile;
2670f34d 725 struct section_offsets *section_offsets;
1ab3bf1b 726 int mainline;
d5931d79 727 file_ptr dbfoff;
4090fe1c 728 unsigned int dbfsize;
d5931d79 729 file_ptr lnoffset;
1ab3bf1b 730 unsigned int lnsize;
35f5886e 731{
d5931d79 732 bfd *abfd = objfile->obfd;
35f5886e
FF
733 struct cleanup *back_to;
734
95967e73 735 current_objfile = objfile;
4090fe1c 736 dbsize = dbfsize;
35f5886e
FF
737 dbbase = xmalloc (dbsize);
738 dbroff = 0;
d5931d79
JG
739 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
740 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
741 {
742 free (dbbase);
d5931d79 743 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
744 }
745 back_to = make_cleanup (free, dbbase);
746
747 /* If we are reinitializing, or if we have never loaded syms yet, init.
748 Since we have no idea how many DIES we are looking at, we just guess
749 some arbitrary value. */
750
13b5a7ff
FF
751 if (mainline || objfile -> global_psymbols.size == 0 ||
752 objfile -> static_psymbols.size == 0)
35f5886e 753 {
1ab3bf1b 754 init_psymbol_list (objfile, 1024);
35f5886e
FF
755 }
756
84ffdec2 757 /* Save the relocation factor where everybody can see it. */
f8b76e70 758
2670f34d
JG
759 base_section_offsets = section_offsets;
760 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 761
35f5886e
FF
762 /* Follow the compilation unit sibling chain, building a partial symbol
763 table entry for each one. Save enough information about each compilation
764 unit to locate the full DWARF information later. */
765
d5931d79 766 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 767
35f5886e 768 do_cleanups (back_to);
95967e73 769 current_objfile = NULL;
35f5886e
FF
770}
771
35f5886e
FF
772/*
773
35f5886e
FF
774LOCAL FUNCTION
775
776 read_lexical_block_scope -- process all dies in a lexical block
777
778SYNOPSIS
779
780 static void read_lexical_block_scope (struct dieinfo *dip,
781 char *thisdie, char *enddie)
782
783DESCRIPTION
784
785 Process all the DIES contained within a lexical block scope.
786 Start a new scope, process the dies, and then close the scope.
787
788 */
789
790static void
1ab3bf1b
JG
791read_lexical_block_scope (dip, thisdie, enddie, objfile)
792 struct dieinfo *dip;
793 char *thisdie;
794 char *enddie;
795 struct objfile *objfile;
35f5886e 796{
4d315a07
FF
797 register struct context_stack *new;
798
4ed3a9ea 799 push_context (0, dip -> at_low_pc);
13b5a7ff 800 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
801 new = pop_context ();
802 if (local_symbols != NULL)
803 {
804 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 805 dip -> at_high_pc, objfile);
4d315a07
FF
806 }
807 local_symbols = new -> locals;
35f5886e
FF
808}
809
810/*
811
812LOCAL FUNCTION
813
814 lookup_utype -- look up a user defined type from die reference
815
816SYNOPSIS
817
13b5a7ff 818 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
819
820DESCRIPTION
821
822 Given a DIE reference, lookup the user defined type associated with
823 that DIE, if it has been registered already. If not registered, then
824 return NULL. Alloc_utype() can be called to register an empty
825 type for this reference, which will be filled in later when the
826 actual referenced DIE is processed.
827 */
828
829static struct type *
13b5a7ff
FF
830lookup_utype (die_ref)
831 DIE_REF die_ref;
35f5886e
FF
832{
833 struct type *type = NULL;
834 int utypeidx;
835
13b5a7ff 836 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
837 if ((utypeidx < 0) || (utypeidx >= numutypes))
838 {
51b80b00 839 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
840 }
841 else
842 {
843 type = *(utypes + utypeidx);
844 }
845 return (type);
846}
847
848
849/*
850
851LOCAL FUNCTION
852
853 alloc_utype -- add a user defined type for die reference
854
855SYNOPSIS
856
13b5a7ff 857 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
858
859DESCRIPTION
860
13b5a7ff 861 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
862 defined type UTYPEP, register that this reference has a user
863 defined type and either use the specified type in UTYPEP or
864 make a new empty type that will be filled in later.
865
866 We should only be called after calling lookup_utype() to verify that
13b5a7ff 867 there is not currently a type registered for DIE_REF.
35f5886e
FF
868 */
869
870static struct type *
13b5a7ff
FF
871alloc_utype (die_ref, utypep)
872 DIE_REF die_ref;
1ab3bf1b 873 struct type *utypep;
35f5886e
FF
874{
875 struct type **typep;
876 int utypeidx;
877
13b5a7ff 878 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
879 typep = utypes + utypeidx;
880 if ((utypeidx < 0) || (utypeidx >= numutypes))
881 {
bf229b4e 882 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 883 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
884 }
885 else if (*typep != NULL)
886 {
887 utypep = *typep;
51b80b00 888 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
889 }
890 else
891 {
892 if (utypep == NULL)
893 {
8050a57b 894 utypep = alloc_type (current_objfile);
35f5886e
FF
895 }
896 *typep = utypep;
897 }
898 return (utypep);
899}
900
901/*
902
903LOCAL FUNCTION
904
905 decode_die_type -- return a type for a specified die
906
907SYNOPSIS
908
909 static struct type *decode_die_type (struct dieinfo *dip)
910
911DESCRIPTION
912
913 Given a pointer to a die information structure DIP, decode the
914 type of the die and return a pointer to the decoded type. All
915 dies without specific types default to type int.
916 */
917
918static struct type *
1ab3bf1b
JG
919decode_die_type (dip)
920 struct dieinfo *dip;
35f5886e
FF
921{
922 struct type *type = NULL;
923
924 if (dip -> at_fund_type != 0)
925 {
926 type = decode_fund_type (dip -> at_fund_type);
927 }
928 else if (dip -> at_mod_fund_type != NULL)
929 {
930 type = decode_mod_fund_type (dip -> at_mod_fund_type);
931 }
932 else if (dip -> at_user_def_type)
933 {
934 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
935 {
936 type = alloc_utype (dip -> at_user_def_type, NULL);
937 }
938 }
939 else if (dip -> at_mod_u_d_type)
940 {
941 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
942 }
943 else
944 {
bf229b4e 945 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
946 }
947 return (type);
948}
949
950/*
951
952LOCAL FUNCTION
953
954 struct_type -- compute and return the type for a struct or union
955
956SYNOPSIS
957
958 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 959 char *enddie, struct objfile *objfile)
35f5886e
FF
960
961DESCRIPTION
962
963 Given pointer to a die information structure for a die which
715cafcb
FF
964 defines a union or structure (and MUST define one or the other),
965 and pointers to the raw die data that define the range of dies which
966 define the members, compute and return the user defined type for the
967 structure or union.
35f5886e
FF
968 */
969
970static struct type *
1ab3bf1b
JG
971struct_type (dip, thisdie, enddie, objfile)
972 struct dieinfo *dip;
973 char *thisdie;
974 char *enddie;
975 struct objfile *objfile;
35f5886e
FF
976{
977 struct type *type;
978 struct nextfield {
979 struct nextfield *next;
980 struct field field;
981 };
982 struct nextfield *list = NULL;
983 struct nextfield *new;
984 int nfields = 0;
985 int n;
35f5886e 986 struct dieinfo mbr;
8b5b6fae 987 char *nextdie;
50055e94 988 int anonymous_size;
35f5886e 989
13b5a7ff 990 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 991 {
5edf98d7 992 /* No forward references created an empty type, so install one now */
13b5a7ff 993 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 994 }
a3723a43 995 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 996 switch (dip -> die_tag)
35f5886e 997 {
95ff889e
FF
998 case TAG_class_type:
999 TYPE_CODE (type) = TYPE_CODE_CLASS;
95ff889e 1000 break;
715cafcb 1001 case TAG_structure_type:
5edf98d7 1002 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1003 break;
1004 case TAG_union_type:
1005 TYPE_CODE (type) = TYPE_CODE_UNION;
715cafcb
FF
1006 break;
1007 default:
1008 /* Should never happen */
1009 TYPE_CODE (type) = TYPE_CODE_UNDEF;
51b80b00 1010 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1011 break;
35f5886e 1012 }
5edf98d7
FF
1013 /* Some compilers try to be helpful by inventing "fake" names for
1014 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1015 Thanks, but no thanks... */
715cafcb
FF
1016 if (dip -> at_name != NULL
1017 && *dip -> at_name != '~'
1018 && *dip -> at_name != '.')
35f5886e 1019 {
b2bebdb0
JK
1020 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1021 "", "", dip -> at_name);
35f5886e 1022 }
50055e94
FF
1023 /* Use whatever size is known. Zero is a valid size. We might however
1024 wish to check has_at_byte_size to make sure that some byte size was
1025 given explicitly, but DWARF doesn't specify that explicit sizes of
1026 zero have to present, so complaining about missing sizes should
1027 probably not be the default. */
1028 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1029 thisdie += dip -> die_length;
35f5886e
FF
1030 while (thisdie < enddie)
1031 {
95967e73
FF
1032 basicdieinfo (&mbr, thisdie, objfile);
1033 completedieinfo (&mbr, objfile);
13b5a7ff 1034 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1035 {
1036 break;
1037 }
8b5b6fae
FF
1038 else if (mbr.at_sibling != 0)
1039 {
1040 nextdie = dbbase + mbr.at_sibling - dbroff;
1041 }
1042 else
1043 {
13b5a7ff 1044 nextdie = thisdie + mbr.die_length;
8b5b6fae 1045 }
13b5a7ff 1046 switch (mbr.die_tag)
35f5886e
FF
1047 {
1048 case TAG_member:
1049 /* Get space to record the next field's data. */
1050 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1051 new -> next = list;
1052 list = new;
1053 /* Save the data. */
50e0dc41
FF
1054 list -> field.name =
1055 obsavestring (mbr.at_name, strlen (mbr.at_name),
1056 &objfile -> type_obstack);
35f5886e
FF
1057 list -> field.type = decode_die_type (&mbr);
1058 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1059 /* Handle bit fields. */
1060 list -> field.bitsize = mbr.at_bit_size;
b8176214 1061 if (BITS_BIG_ENDIAN)
4db8e515 1062 {
b8176214
ILT
1063 /* For big endian bits, the at_bit_offset gives the
1064 additional bit offset from the MSB of the containing
1065 anonymous object to the MSB of the field. We don't
1066 have to do anything special since we don't need to
1067 know the size of the anonymous object. */
1068 list -> field.bitpos += mbr.at_bit_offset;
1069 }
1070 else
1071 {
1072 /* For little endian bits, we need to have a non-zero
1073 at_bit_size, so that we know we are in fact dealing
1074 with a bitfield. Compute the bit offset to the MSB
1075 of the anonymous object, subtract off the number of
1076 bits from the MSB of the field to the MSB of the
1077 object, and then subtract off the number of bits of
1078 the field itself. The result is the bit offset of
1079 the LSB of the field. */
1080 if (mbr.at_bit_size > 0)
50055e94 1081 {
b8176214
ILT
1082 if (mbr.has_at_byte_size)
1083 {
1084 /* The size of the anonymous object containing
1085 the bit field is explicit, so use the
1086 indicated size (in bytes). */
1087 anonymous_size = mbr.at_byte_size;
1088 }
1089 else
1090 {
1091 /* The size of the anonymous object containing
1092 the bit field matches the size of an object
1093 of the bit field's type. DWARF allows
1094 at_byte_size to be left out in such cases, as
1095 a debug information size optimization. */
1096 anonymous_size = TYPE_LENGTH (list -> field.type);
1097 }
1098 list -> field.bitpos +=
1099 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
50055e94 1100 }
4db8e515 1101 }
35f5886e
FF
1102 nfields++;
1103 break;
1104 default:
8b5b6fae 1105 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1106 break;
1107 }
8b5b6fae 1108 thisdie = nextdie;
35f5886e 1109 }
5edf98d7
FF
1110 /* Now create the vector of fields, and record how big it is. We may
1111 not even have any fields, if this DIE was generated due to a reference
1112 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1113 set, which clues gdb in to the fact that it needs to search elsewhere
1114 for the full structure definition. */
1115 if (nfields == 0)
35f5886e 1116 {
5edf98d7
FF
1117 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1118 }
1119 else
1120 {
1121 TYPE_NFIELDS (type) = nfields;
1122 TYPE_FIELDS (type) = (struct field *)
dac9734e 1123 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1124 /* Copy the saved-up fields into the field vector. */
1125 for (n = nfields; list; list = list -> next)
1126 {
1127 TYPE_FIELD (type, --n) = list -> field;
1128 }
1129 }
35f5886e
FF
1130 return (type);
1131}
1132
1133/*
1134
1135LOCAL FUNCTION
1136
1137 read_structure_scope -- process all dies within struct or union
1138
1139SYNOPSIS
1140
1141 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1142 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1143
1144DESCRIPTION
1145
1146 Called when we find the DIE that starts a structure or union
1147 scope (definition) to process all dies that define the members
1148 of the structure or union. DIP is a pointer to the die info
1149 struct for the DIE that names the structure or union.
1150
1151NOTES
1152
1153 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1154 the DIE has an at_name attribute, since it might be an anonymous
1155 structure or union. This gets the type entered into our set of
1156 user defined types.
1157
1158 However, if the structure is incomplete (an opaque struct/union)
1159 then suppress creating a symbol table entry for it since gdb only
1160 wants to find the one with the complete definition. Note that if
1161 it is complete, we just call new_symbol, which does it's own
1162 checking about whether the struct/union is anonymous or not (and
1163 suppresses creating a symbol table entry itself).
1164
35f5886e
FF
1165 */
1166
1167static void
1ab3bf1b
JG
1168read_structure_scope (dip, thisdie, enddie, objfile)
1169 struct dieinfo *dip;
1170 char *thisdie;
1171 char *enddie;
1172 struct objfile *objfile;
35f5886e
FF
1173{
1174 struct type *type;
1175 struct symbol *sym;
1176
8b5b6fae 1177 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1178 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1179 {
95ff889e
FF
1180 sym = new_symbol (dip, objfile);
1181 if (sym != NULL)
84ce6717
FF
1182 {
1183 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1184 if (cu_language == language_cplus)
1185 {
1186 synthesize_typedef (dip, objfile, type);
1187 }
84ce6717 1188 }
35f5886e
FF
1189 }
1190}
1191
1192/*
1193
1194LOCAL FUNCTION
1195
1196 decode_array_element_type -- decode type of the array elements
1197
1198SYNOPSIS
1199
1200 static struct type *decode_array_element_type (char *scan, char *end)
1201
1202DESCRIPTION
1203
1204 As the last step in decoding the array subscript information for an
1205 array DIE, we need to decode the type of the array elements. We are
1206 passed a pointer to this last part of the subscript information and
1207 must return the appropriate type. If the type attribute is not
1208 recognized, just warn about the problem and return type int.
1209 */
1210
1211static struct type *
84ffdec2 1212decode_array_element_type (scan)
1ab3bf1b 1213 char *scan;
35f5886e
FF
1214{
1215 struct type *typep;
13b5a7ff
FF
1216 DIE_REF die_ref;
1217 unsigned short attribute;
35f5886e 1218 unsigned short fundtype;
13b5a7ff 1219 int nbytes;
35f5886e 1220
13b5a7ff
FF
1221 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1222 current_objfile);
1223 scan += SIZEOF_ATTRIBUTE;
1224 if ((nbytes = attribute_size (attribute)) == -1)
1225 {
51b80b00 1226 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1227 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1228 }
1229 else
1230 {
1231 switch (attribute)
1232 {
1233 case AT_fund_type:
1234 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1235 current_objfile);
1236 typep = decode_fund_type (fundtype);
1237 break;
1238 case AT_mod_fund_type:
1239 typep = decode_mod_fund_type (scan);
1240 break;
1241 case AT_user_def_type:
1242 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1243 current_objfile);
1244 if ((typep = lookup_utype (die_ref)) == NULL)
1245 {
1246 typep = alloc_utype (die_ref, NULL);
1247 }
1248 break;
1249 case AT_mod_u_d_type:
1250 typep = decode_mod_u_d_type (scan);
1251 break;
1252 default:
51b80b00 1253 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1254 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1255 break;
1256 }
35f5886e
FF
1257 }
1258 return (typep);
1259}
1260
1261/*
1262
1263LOCAL FUNCTION
1264
85f0a848 1265 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1266
1267SYNOPSIS
1268
85f0a848
FF
1269 static struct type *
1270 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1271
1272DESCRIPTION
1273
1274 The array subscripts and the data type of the elements of an
1275 array are described by a list of data items, stored as a block
1276 of contiguous bytes. There is a data item describing each array
1277 dimension, and a final data item describing the element type.
1278 The data items are ordered the same as their appearance in the
1279 source (I.E. leftmost dimension first, next to leftmost second,
1280 etc).
1281
85f0a848
FF
1282 The data items describing each array dimension consist of four
1283 parts: (1) a format specifier, (2) type type of the subscript
1284 index, (3) a description of the low bound of the array dimension,
1285 and (4) a description of the high bound of the array dimension.
1286
1287 The last data item is the description of the type of each of
1288 the array elements.
1289
35f5886e 1290 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1291 containing the remaining data items, and a pointer to the first
1292 byte past the data. This function recursively decodes the
1293 remaining data items and returns a type.
1294
1295 If we somehow fail to decode some data, we complain about it
1296 and return a type "array of int".
35f5886e
FF
1297
1298BUGS
1299 FIXME: This code only implements the forms currently used
1300 by the AT&T and GNU C compilers.
1301
1302 The end pointer is supplied for error checking, maybe we should
1303 use it for that...
1304 */
1305
1306static struct type *
85f0a848 1307decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1308 char *scan;
1309 char *end;
35f5886e 1310{
85f0a848
FF
1311 struct type *typep = NULL; /* Array type we are building */
1312 struct type *nexttype; /* Type of each element (may be array) */
1313 struct type *indextype; /* Type of this index */
a8a69e63 1314 struct type *rangetype;
13b5a7ff
FF
1315 unsigned int format;
1316 unsigned short fundtype;
1317 unsigned long lowbound;
1318 unsigned long highbound;
1319 int nbytes;
35f5886e 1320
13b5a7ff
FF
1321 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1322 current_objfile);
1323 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1324 switch (format)
1325 {
1326 case FMT_ET:
84ffdec2 1327 typep = decode_array_element_type (scan);
35f5886e
FF
1328 break;
1329 case FMT_FT_C_C:
13b5a7ff
FF
1330 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1331 current_objfile);
85f0a848 1332 indextype = decode_fund_type (fundtype);
13b5a7ff 1333 scan += SIZEOF_FMT_FT;
160be0de
FF
1334 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1335 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1336 scan += nbytes;
1337 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1338 scan += nbytes;
85f0a848
FF
1339 nexttype = decode_subscript_data_item (scan, end);
1340 if (nexttype == NULL)
35f5886e 1341 {
85f0a848 1342 /* Munged subscript data or other problem, fake it. */
51b80b00 1343 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1344 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1345 }
a8a69e63
FF
1346 rangetype = create_range_type ((struct type *) NULL, indextype,
1347 lowbound, highbound);
1348 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1349 break;
1350 case FMT_FT_C_X:
1351 case FMT_FT_X_C:
1352 case FMT_FT_X_X:
1353 case FMT_UT_C_C:
1354 case FMT_UT_C_X:
1355 case FMT_UT_X_C:
1356 case FMT_UT_X_X:
51b80b00 1357 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1358 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1359 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1360 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1361 break;
1362 default:
51b80b00 1363 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1364 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1365 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1366 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1367 break;
1368 }
1369 return (typep);
1370}
1371
1372/*
1373
1374LOCAL FUNCTION
1375
4d315a07 1376 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1377
1378SYNOPSIS
1379
4d315a07 1380 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1381
1382DESCRIPTION
1383
1384 Extract all information from a TAG_array_type DIE and add to
1385 the user defined type vector.
1386 */
1387
1388static void
1ab3bf1b
JG
1389dwarf_read_array_type (dip)
1390 struct dieinfo *dip;
35f5886e
FF
1391{
1392 struct type *type;
af213624 1393 struct type *utype;
35f5886e
FF
1394 char *sub;
1395 char *subend;
13b5a7ff
FF
1396 unsigned short blocksz;
1397 int nbytes;
35f5886e
FF
1398
1399 if (dip -> at_ordering != ORD_row_major)
1400 {
1401 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1402 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1403 }
1404 if ((sub = dip -> at_subscr_data) != NULL)
1405 {
13b5a7ff
FF
1406 nbytes = attribute_size (AT_subscr_data);
1407 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1408 subend = sub + nbytes + blocksz;
1409 sub += nbytes;
85f0a848
FF
1410 type = decode_subscript_data_item (sub, subend);
1411 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1412 {
85f0a848
FF
1413 /* Install user defined type that has not been referenced yet. */
1414 alloc_utype (dip -> die_ref, type);
1415 }
1416 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1417 {
1418 /* Ick! A forward ref has already generated a blank type in our
1419 slot, and this type probably already has things pointing to it
1420 (which is what caused it to be created in the first place).
1421 If it's just a place holder we can plop our fully defined type
1422 on top of it. We can't recover the space allocated for our
1423 new type since it might be on an obstack, but we could reuse
1424 it if we kept a list of them, but it might not be worth it
1425 (FIXME). */
1426 *utype = *type;
35f5886e
FF
1427 }
1428 else
1429 {
85f0a848
FF
1430 /* Double ick! Not only is a type already in our slot, but
1431 someone has decorated it. Complain and leave it alone. */
51b80b00 1432 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1433 }
1434 }
1435}
1436
1437/*
1438
9e4c1921
FF
1439LOCAL FUNCTION
1440
1441 read_tag_pointer_type -- read TAG_pointer_type DIE
1442
1443SYNOPSIS
1444
1445 static void read_tag_pointer_type (struct dieinfo *dip)
1446
1447DESCRIPTION
1448
1449 Extract all information from a TAG_pointer_type DIE and add to
1450 the user defined type vector.
1451 */
1452
1453static void
1ab3bf1b
JG
1454read_tag_pointer_type (dip)
1455 struct dieinfo *dip;
9e4c1921
FF
1456{
1457 struct type *type;
1458 struct type *utype;
9e4c1921
FF
1459
1460 type = decode_die_type (dip);
13b5a7ff 1461 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1462 {
1463 utype = lookup_pointer_type (type);
4ed3a9ea 1464 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1465 }
1466 else
1467 {
1468 TYPE_TARGET_TYPE (utype) = type;
1469 TYPE_POINTER_TYPE (type) = utype;
1470
1471 /* We assume the machine has only one representation for pointers! */
1472 /* FIXME: This confuses host<->target data representations, and is a
1473 poor assumption besides. */
1474
1475 TYPE_LENGTH (utype) = sizeof (char *);
1476 TYPE_CODE (utype) = TYPE_CODE_PTR;
1477 }
1478}
1479
1480/*
1481
ec16f701
FF
1482LOCAL FUNCTION
1483
1484 read_tag_string_type -- read TAG_string_type DIE
1485
1486SYNOPSIS
1487
1488 static void read_tag_string_type (struct dieinfo *dip)
1489
1490DESCRIPTION
1491
1492 Extract all information from a TAG_string_type DIE and add to
1493 the user defined type vector. It isn't really a user defined
1494 type, but it behaves like one, with other DIE's using an
1495 AT_user_def_type attribute to reference it.
1496 */
1497
1498static void
1499read_tag_string_type (dip)
1500 struct dieinfo *dip;
1501{
1502 struct type *utype;
1503 struct type *indextype;
1504 struct type *rangetype;
1505 unsigned long lowbound = 0;
1506 unsigned long highbound;
1507
b6236d6e 1508 if (dip -> has_at_byte_size)
ec16f701 1509 {
b6236d6e
FF
1510 /* A fixed bounds string */
1511 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1512 }
1513 else
1514 {
b6236d6e
FF
1515 /* A varying length string. Stub for now. (FIXME) */
1516 highbound = 1;
1517 }
1518 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1519 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1520 highbound);
1521
1522 utype = lookup_utype (dip -> die_ref);
1523 if (utype == NULL)
1524 {
1525 /* No type defined, go ahead and create a blank one to use. */
1526 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1527 }
1528 else
1529 {
1530 /* Already a type in our slot due to a forward reference. Make sure it
1531 is a blank one. If not, complain and leave it alone. */
1532 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1533 {
b6236d6e
FF
1534 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1535 return;
ec16f701 1536 }
ec16f701 1537 }
b6236d6e
FF
1538
1539 /* Create the string type using the blank type we either found or created. */
1540 utype = create_string_type (utype, rangetype);
ec16f701
FF
1541}
1542
1543/*
1544
35f5886e
FF
1545LOCAL FUNCTION
1546
1547 read_subroutine_type -- process TAG_subroutine_type dies
1548
1549SYNOPSIS
1550
1551 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1552 char *enddie)
1553
1554DESCRIPTION
1555
1556 Handle DIES due to C code like:
1557
1558 struct foo {
1559 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1560 int b;
1561 };
1562
1563NOTES
1564
1565 The parameter DIES are currently ignored. See if gdb has a way to
1566 include this info in it's type system, and decode them if so. Is
1567 this what the type structure's "arg_types" field is for? (FIXME)
1568 */
1569
1570static void
1ab3bf1b
JG
1571read_subroutine_type (dip, thisdie, enddie)
1572 struct dieinfo *dip;
1573 char *thisdie;
1574 char *enddie;
35f5886e 1575{
af213624
FF
1576 struct type *type; /* Type that this function returns */
1577 struct type *ftype; /* Function that returns above type */
35f5886e 1578
af213624
FF
1579 /* Decode the type that this subroutine returns */
1580
35f5886e 1581 type = decode_die_type (dip);
af213624
FF
1582
1583 /* Check to see if we already have a partially constructed user
1584 defined type for this DIE, from a forward reference. */
1585
13b5a7ff 1586 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1587 {
1588 /* This is the first reference to one of these types. Make
1589 a new one and place it in the user defined types. */
1590 ftype = lookup_function_type (type);
4ed3a9ea 1591 alloc_utype (dip -> die_ref, ftype);
af213624 1592 }
85f0a848 1593 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1594 {
1595 /* We have an existing partially constructed type, so bash it
1596 into the correct type. */
1597 TYPE_TARGET_TYPE (ftype) = type;
1598 TYPE_FUNCTION_TYPE (type) = ftype;
1599 TYPE_LENGTH (ftype) = 1;
1600 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1601 }
85f0a848
FF
1602 else
1603 {
51b80b00 1604 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1605 }
35f5886e
FF
1606}
1607
1608/*
1609
1610LOCAL FUNCTION
1611
1612 read_enumeration -- process dies which define an enumeration
1613
1614SYNOPSIS
1615
1616 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1617 char *enddie, struct objfile *objfile)
35f5886e
FF
1618
1619DESCRIPTION
1620
1621 Given a pointer to a die which begins an enumeration, process all
1622 the dies that define the members of the enumeration.
1623
1624NOTES
1625
1626 Note that we need to call enum_type regardless of whether or not we
1627 have a symbol, since we might have an enum without a tag name (thus
1628 no symbol for the tagname).
1629 */
1630
1631static void
1ab3bf1b
JG
1632read_enumeration (dip, thisdie, enddie, objfile)
1633 struct dieinfo *dip;
1634 char *thisdie;
1635 char *enddie;
1636 struct objfile *objfile;
35f5886e
FF
1637{
1638 struct type *type;
1639 struct symbol *sym;
1640
1ab3bf1b 1641 type = enum_type (dip, objfile);
95ff889e
FF
1642 sym = new_symbol (dip, objfile);
1643 if (sym != NULL)
35f5886e
FF
1644 {
1645 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1646 if (cu_language == language_cplus)
1647 {
1648 synthesize_typedef (dip, objfile, type);
1649 }
35f5886e
FF
1650 }
1651}
1652
1653/*
1654
1655LOCAL FUNCTION
1656
1657 enum_type -- decode and return a type for an enumeration
1658
1659SYNOPSIS
1660
1ab3bf1b 1661 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1662
1663DESCRIPTION
1664
1665 Given a pointer to a die information structure for the die which
1666 starts an enumeration, process all the dies that define the members
1667 of the enumeration and return a type pointer for the enumeration.
98618bf7 1668
715cafcb
FF
1669 At the same time, for each member of the enumeration, create a
1670 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1671 and give it the type of the enumeration itself.
1672
1673NOTES
1674
98618bf7
FF
1675 Note that the DWARF specification explicitly mandates that enum
1676 constants occur in reverse order from the source program order,
1677 for "consistency" and because this ordering is easier for many
1ab3bf1b 1678 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1679 Entries). Because gdb wants to see the enum members in program
1680 source order, we have to ensure that the order gets reversed while
98618bf7 1681 we are processing them.
35f5886e
FF
1682 */
1683
1684static struct type *
1ab3bf1b
JG
1685enum_type (dip, objfile)
1686 struct dieinfo *dip;
1687 struct objfile *objfile;
35f5886e
FF
1688{
1689 struct type *type;
1690 struct nextfield {
1691 struct nextfield *next;
1692 struct field field;
1693 };
1694 struct nextfield *list = NULL;
1695 struct nextfield *new;
1696 int nfields = 0;
1697 int n;
35f5886e
FF
1698 char *scan;
1699 char *listend;
13b5a7ff 1700 unsigned short blocksz;
715cafcb 1701 struct symbol *sym;
13b5a7ff 1702 int nbytes;
35f5886e 1703
13b5a7ff 1704 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1705 {
84ce6717 1706 /* No forward references created an empty type, so install one now */
13b5a7ff 1707 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1708 }
1709 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1710 /* Some compilers try to be helpful by inventing "fake" names for
1711 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1712 Thanks, but no thanks... */
715cafcb
FF
1713 if (dip -> at_name != NULL
1714 && *dip -> at_name != '~'
1715 && *dip -> at_name != '.')
35f5886e 1716 {
b2bebdb0
JK
1717 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1718 "", "", dip -> at_name);
35f5886e 1719 }
715cafcb 1720 if (dip -> at_byte_size != 0)
35f5886e
FF
1721 {
1722 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1723 }
35f5886e
FF
1724 if ((scan = dip -> at_element_list) != NULL)
1725 {
768be6e1
FF
1726 if (dip -> short_element_list)
1727 {
13b5a7ff 1728 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1729 }
1730 else
1731 {
13b5a7ff 1732 nbytes = attribute_size (AT_element_list);
768be6e1 1733 }
13b5a7ff
FF
1734 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1735 listend = scan + nbytes + blocksz;
1736 scan += nbytes;
35f5886e
FF
1737 while (scan < listend)
1738 {
1739 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1740 new -> next = list;
1741 list = new;
1742 list -> field.type = NULL;
1743 list -> field.bitsize = 0;
13b5a7ff
FF
1744 list -> field.bitpos =
1745 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1746 objfile);
1747 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1748 list -> field.name = obsavestring (scan, strlen (scan),
1749 &objfile -> type_obstack);
35f5886e
FF
1750 scan += strlen (scan) + 1;
1751 nfields++;
715cafcb 1752 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1753 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1754 sizeof (struct symbol));
4ed3a9ea 1755 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1756 SYMBOL_NAME (sym) = create_name (list -> field.name,
1757 &objfile->symbol_obstack);
7532cf10 1758 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1759 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1760 SYMBOL_CLASS (sym) = LOC_CONST;
1761 SYMBOL_TYPE (sym) = type;
1762 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1763 add_symbol_to_list (sym, list_in_scope);
35f5886e 1764 }
84ce6717 1765 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1766 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1767 reverse order from how they were inserted. If we have no fields
1768 (this is apparently possible in C++) then skip building a field
1769 vector. */
1770 if (nfields > 0)
1771 {
1772 TYPE_NFIELDS (type) = nfields;
1773 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1774 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1775 /* Copy the saved-up fields into the field vector. */
1776 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1777 {
1778 TYPE_FIELD (type, n++) = list -> field;
1779 }
1780 }
35f5886e 1781 }
35f5886e
FF
1782 return (type);
1783}
1784
1785/*
1786
1787LOCAL FUNCTION
1788
1789 read_func_scope -- process all dies within a function scope
1790
35f5886e
FF
1791DESCRIPTION
1792
1793 Process all dies within a given function scope. We are passed
1794 a die information structure pointer DIP for the die which
1795 starts the function scope, and pointers into the raw die data
1796 that define the dies within the function scope.
1797
1798 For now, we ignore lexical block scopes within the function.
1799 The problem is that AT&T cc does not define a DWARF lexical
1800 block scope for the function itself, while gcc defines a
1801 lexical block scope for the function. We need to think about
1802 how to handle this difference, or if it is even a problem.
1803 (FIXME)
1804 */
1805
1806static void
1ab3bf1b
JG
1807read_func_scope (dip, thisdie, enddie, objfile)
1808 struct dieinfo *dip;
1809 char *thisdie;
1810 char *enddie;
1811 struct objfile *objfile;
35f5886e 1812{
4d315a07 1813 register struct context_stack *new;
35f5886e 1814
5e2e79f8
FF
1815 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1816 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1817 {
5e2e79f8
FF
1818 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1819 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1820 }
4d315a07 1821 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1822 {
5e2e79f8
FF
1823 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1824 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1825 }
4d315a07 1826 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1827 new -> name = new_symbol (dip, objfile);
4d315a07 1828 list_in_scope = &local_symbols;
13b5a7ff 1829 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1830 new = pop_context ();
1831 /* Make a block for the local symbols within. */
1832 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1833 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1834 list_in_scope = &file_symbols;
35f5886e
FF
1835}
1836
2dbde378
FF
1837
1838/*
1839
1840LOCAL FUNCTION
1841
1842 handle_producer -- process the AT_producer attribute
1843
1844DESCRIPTION
1845
1846 Perform any operations that depend on finding a particular
1847 AT_producer attribute.
1848
1849 */
1850
1851static void
1852handle_producer (producer)
1853 char *producer;
1854{
1855
1856 /* If this compilation unit was compiled with g++ or gcc, then set the
1857 processing_gcc_compilation flag. */
1858
1859 processing_gcc_compilation =
1860 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1861 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1862 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1863
1864 /* Select a demangling style if we can identify the producer and if
1865 the current style is auto. We leave the current style alone if it
1866 is not auto. We also leave the demangling style alone if we find a
1867 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1868
3dc755fb 1869 if (AUTO_DEMANGLING)
2dbde378
FF
1870 {
1871 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1872 {
1873 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1874 }
1875 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1876 {
1877 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1878 }
2dbde378 1879 }
2dbde378
FF
1880}
1881
1882
35f5886e
FF
1883/*
1884
1885LOCAL FUNCTION
1886
1887 read_file_scope -- process all dies within a file scope
1888
35f5886e
FF
1889DESCRIPTION
1890
1891 Process all dies within a given file scope. We are passed a
1892 pointer to the die information structure for the die which
1893 starts the file scope, and pointers into the raw die data which
1894 mark the range of dies within the file scope.
1895
1896 When the partial symbol table is built, the file offset for the line
1897 number table for each compilation unit is saved in the partial symbol
1898 table entry for that compilation unit. As the symbols for each
1899 compilation unit are read, the line number table is read into memory
1900 and the variable lnbase is set to point to it. Thus all we have to
1901 do is use lnbase to access the line number table for the current
1902 compilation unit.
1903 */
1904
1905static void
1ab3bf1b
JG
1906read_file_scope (dip, thisdie, enddie, objfile)
1907 struct dieinfo *dip;
1908 char *thisdie;
1909 char *enddie;
1910 struct objfile *objfile;
35f5886e
FF
1911{
1912 struct cleanup *back_to;
4d315a07 1913 struct symtab *symtab;
35f5886e 1914
5e2e79f8
FF
1915 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1916 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1917 {
5e2e79f8
FF
1918 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1919 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1920 }
95ff889e 1921 set_cu_language (dip);
4d315a07
FF
1922 if (dip -> at_producer != NULL)
1923 {
2dbde378 1924 handle_producer (dip -> at_producer);
4d315a07 1925 }
35f5886e
FF
1926 numutypes = (enddie - thisdie) / 4;
1927 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1928 back_to = make_cleanup (free, utypes);
4ed3a9ea 1929 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1930 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1931 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1932 decode_line_numbers (lnbase);
13b5a7ff 1933 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b
JK
1934
1935 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
7b5d9650 1936 if (symtab != NULL)
4d315a07 1937 {
95ff889e 1938 symtab -> language = cu_language;
7b5d9650 1939 }
35f5886e
FF
1940 do_cleanups (back_to);
1941 utypes = NULL;
1942 numutypes = 0;
1943}
1944
1945/*
1946
35f5886e
FF
1947LOCAL FUNCTION
1948
1949 process_dies -- process a range of DWARF Information Entries
1950
1951SYNOPSIS
1952
8b5b6fae
FF
1953 static void process_dies (char *thisdie, char *enddie,
1954 struct objfile *objfile)
35f5886e
FF
1955
1956DESCRIPTION
1957
1958 Process all DIE's in a specified range. May be (and almost
1959 certainly will be) called recursively.
1960 */
1961
1962static void
1ab3bf1b
JG
1963process_dies (thisdie, enddie, objfile)
1964 char *thisdie;
1965 char *enddie;
1966 struct objfile *objfile;
35f5886e
FF
1967{
1968 char *nextdie;
1969 struct dieinfo di;
1970
1971 while (thisdie < enddie)
1972 {
95967e73 1973 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 1974 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
1975 {
1976 break;
1977 }
13b5a7ff 1978 else if (di.die_tag == TAG_padding)
35f5886e 1979 {
13b5a7ff 1980 nextdie = thisdie + di.die_length;
35f5886e
FF
1981 }
1982 else
1983 {
95967e73 1984 completedieinfo (&di, objfile);
35f5886e
FF
1985 if (di.at_sibling != 0)
1986 {
1987 nextdie = dbbase + di.at_sibling - dbroff;
1988 }
1989 else
1990 {
13b5a7ff 1991 nextdie = thisdie + di.die_length;
35f5886e 1992 }
9fdb3f7a
JK
1993#ifdef SMASH_TEXT_ADDRESS
1994 /* I think that these are always text, not data, addresses. */
1995 SMASH_TEXT_ADDRESS (di.at_low_pc);
1996 SMASH_TEXT_ADDRESS (di.at_high_pc);
1997#endif
13b5a7ff 1998 switch (di.die_tag)
35f5886e
FF
1999 {
2000 case TAG_compile_unit:
4386eff2
PS
2001 /* Skip Tag_compile_unit if we are already inside a compilation
2002 unit, we are unable to handle nested compilation units
2003 properly (FIXME). */
2004 if (current_subfile == NULL)
2005 read_file_scope (&di, thisdie, nextdie, objfile);
2006 else
2007 nextdie = thisdie + di.die_length;
35f5886e
FF
2008 break;
2009 case TAG_global_subroutine:
2010 case TAG_subroutine:
2d6186f4 2011 if (di.has_at_low_pc)
35f5886e 2012 {
a048c8f5 2013 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2014 }
2015 break;
2016 case TAG_lexical_block:
a048c8f5 2017 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2018 break;
95ff889e 2019 case TAG_class_type:
35f5886e
FF
2020 case TAG_structure_type:
2021 case TAG_union_type:
8b5b6fae 2022 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2023 break;
2024 case TAG_enumeration_type:
1ab3bf1b 2025 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2026 break;
2027 case TAG_subroutine_type:
2028 read_subroutine_type (&di, thisdie, nextdie);
2029 break;
2030 case TAG_array_type:
4d315a07 2031 dwarf_read_array_type (&di);
35f5886e 2032 break;
9e4c1921
FF
2033 case TAG_pointer_type:
2034 read_tag_pointer_type (&di);
2035 break;
ec16f701
FF
2036 case TAG_string_type:
2037 read_tag_string_type (&di);
2038 break;
35f5886e 2039 default:
4ed3a9ea 2040 new_symbol (&di, objfile);
35f5886e
FF
2041 break;
2042 }
2043 }
2044 thisdie = nextdie;
2045 }
2046}
2047
2048/*
2049
35f5886e
FF
2050LOCAL FUNCTION
2051
2052 decode_line_numbers -- decode a line number table fragment
2053
2054SYNOPSIS
2055
2056 static void decode_line_numbers (char *tblscan, char *tblend,
2057 long length, long base, long line, long pc)
2058
2059DESCRIPTION
2060
2061 Translate the DWARF line number information to gdb form.
2062
2063 The ".line" section contains one or more line number tables, one for
2064 each ".line" section from the objects that were linked.
2065
2066 The AT_stmt_list attribute for each TAG_source_file entry in the
2067 ".debug" section contains the offset into the ".line" section for the
2068 start of the table for that file.
2069
2070 The table itself has the following structure:
2071
2072 <table length><base address><source statement entry>
2073 4 bytes 4 bytes 10 bytes
2074
2075 The table length is the total size of the table, including the 4 bytes
2076 for the length information.
2077
2078 The base address is the address of the first instruction generated
2079 for the source file.
2080
2081 Each source statement entry has the following structure:
2082
2083 <line number><statement position><address delta>
2084 4 bytes 2 bytes 4 bytes
2085
2086 The line number is relative to the start of the file, starting with
2087 line 1.
2088
2089 The statement position either -1 (0xFFFF) or the number of characters
2090 from the beginning of the line to the beginning of the statement.
2091
2092 The address delta is the difference between the base address and
2093 the address of the first instruction for the statement.
2094
2095 Note that we must copy the bytes from the packed table to our local
2096 variables before attempting to use them, to avoid alignment problems
2097 on some machines, particularly RISC processors.
2098
2099BUGS
2100
2101 Does gdb expect the line numbers to be sorted? They are now by
2102 chance/luck, but are not required to be. (FIXME)
2103
2104 The line with number 0 is unused, gdb apparently can discover the
2105 span of the last line some other way. How? (FIXME)
2106 */
2107
2108static void
1ab3bf1b
JG
2109decode_line_numbers (linetable)
2110 char *linetable;
35f5886e
FF
2111{
2112 char *tblscan;
2113 char *tblend;
13b5a7ff
FF
2114 unsigned long length;
2115 unsigned long base;
2116 unsigned long line;
2117 unsigned long pc;
35f5886e
FF
2118
2119 if (linetable != NULL)
2120 {
2121 tblscan = tblend = linetable;
13b5a7ff
FF
2122 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2123 current_objfile);
2124 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2125 tblend += length;
13b5a7ff
FF
2126 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2127 GET_UNSIGNED, current_objfile);
2128 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2129 base += baseaddr;
35f5886e
FF
2130 while (tblscan < tblend)
2131 {
13b5a7ff
FF
2132 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2133 current_objfile);
2134 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2135 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2136 current_objfile);
2137 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2138 pc += base;
13b5a7ff 2139 if (line != 0)
35f5886e 2140 {
4d315a07 2141 record_line (current_subfile, line, pc);
35f5886e
FF
2142 }
2143 }
2144 }
2145}
2146
2147/*
2148
35f5886e
FF
2149LOCAL FUNCTION
2150
2151 locval -- compute the value of a location attribute
2152
2153SYNOPSIS
2154
2155 static int locval (char *loc)
2156
2157DESCRIPTION
2158
2159 Given pointer to a string of bytes that define a location, compute
2160 the location and return the value.
2161
2162 When computing values involving the current value of the frame pointer,
2163 the value zero is used, which results in a value relative to the frame
2164 pointer, rather than the absolute value. This is what GDB wants
2165 anyway.
2166
2167 When the result is a register number, the global isreg flag is set,
2168 otherwise it is cleared. This is a kludge until we figure out a better
2169 way to handle the problem. Gdb's design does not mesh well with the
2170 DWARF notion of a location computing interpreter, which is a shame
2171 because the flexibility goes unused.
2172
2173NOTES
2174
2175 Note that stack[0] is unused except as a default error return.
2176 Note that stack overflow is not yet handled.
2177 */
2178
2179static int
1ab3bf1b
JG
2180locval (loc)
2181 char *loc;
35f5886e
FF
2182{
2183 unsigned short nbytes;
13b5a7ff
FF
2184 unsigned short locsize;
2185 auto long stack[64];
35f5886e
FF
2186 int stacki;
2187 char *end;
13b5a7ff
FF
2188 int loc_atom_code;
2189 int loc_value_size;
35f5886e 2190
13b5a7ff
FF
2191 nbytes = attribute_size (AT_location);
2192 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2193 loc += nbytes;
2194 end = loc + locsize;
35f5886e
FF
2195 stacki = 0;
2196 stack[stacki] = 0;
2197 isreg = 0;
a5bd5ba6 2198 offreg = 0;
13b5a7ff
FF
2199 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2200 while (loc < end)
35f5886e 2201 {
13b5a7ff
FF
2202 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2203 current_objfile);
2204 loc += SIZEOF_LOC_ATOM_CODE;
2205 switch (loc_atom_code)
2206 {
2207 case 0:
2208 /* error */
2209 loc = end;
2210 break;
2211 case OP_REG:
2212 /* push register (number) */
2213 stack[++stacki] = target_to_host (loc, loc_value_size,
2214 GET_UNSIGNED, current_objfile);
2215 loc += loc_value_size;
2216 isreg = 1;
2217 break;
2218 case OP_BASEREG:
2219 /* push value of register (number) */
a1c8d76e
JK
2220 /* Actually, we compute the value as if register has 0, so the
2221 value ends up being the offset from that register. */
13b5a7ff 2222 offreg = 1;
a1c8d76e
JK
2223 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2224 current_objfile);
13b5a7ff 2225 loc += loc_value_size;
a1c8d76e 2226 stack[++stacki] = 0;
13b5a7ff
FF
2227 break;
2228 case OP_ADDR:
2229 /* push address (relocated address) */
2230 stack[++stacki] = target_to_host (loc, loc_value_size,
2231 GET_UNSIGNED, current_objfile);
2232 loc += loc_value_size;
2233 break;
2234 case OP_CONST:
2235 /* push constant (number) FIXME: signed or unsigned! */
2236 stack[++stacki] = target_to_host (loc, loc_value_size,
2237 GET_SIGNED, current_objfile);
2238 loc += loc_value_size;
2239 break;
2240 case OP_DEREF2:
2241 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2242 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2243 break;
2244 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2245 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2246 break;
2247 case OP_ADD: /* pop top 2 items, add, push result */
2248 stack[stacki - 1] += stack[stacki];
2249 stacki--;
2250 break;
2251 }
35f5886e
FF
2252 }
2253 return (stack[stacki]);
2254}
2255
2256/*
2257
2258LOCAL FUNCTION
2259
2260 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2261
2262SYNOPSIS
2263
c701c14c 2264 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2265
2266DESCRIPTION
2267
1ab3bf1b
JG
2268 When expanding a partial symbol table entry to a full symbol table
2269 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2270 for the compilation unit. A pointer to the newly constructed symtab,
2271 which is now the new first one on the objfile's symtab list, is
2272 stashed in the partial symbol table entry.
35f5886e
FF
2273 */
2274
c701c14c 2275static void
1ab3bf1b
JG
2276read_ofile_symtab (pst)
2277 struct partial_symtab *pst;
35f5886e
FF
2278{
2279 struct cleanup *back_to;
13b5a7ff 2280 unsigned long lnsize;
d5931d79 2281 file_ptr foffset;
1ab3bf1b 2282 bfd *abfd;
13b5a7ff 2283 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2284
2285 abfd = pst -> objfile -> obfd;
2286 current_objfile = pst -> objfile;
2287
35f5886e
FF
2288 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2289 unit, seek to the location in the file, and read in all the DIE's. */
2290
2291 diecount = 0;
4090fe1c
FF
2292 dbsize = DBLENGTH (pst);
2293 dbbase = xmalloc (dbsize);
35f5886e
FF
2294 dbroff = DBROFF(pst);
2295 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2296 base_section_offsets = pst->section_offsets;
2297 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2298 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2299 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2300 {
2301 free (dbbase);
2302 error ("can't read DWARF data");
2303 }
2304 back_to = make_cleanup (free, dbbase);
2305
2306 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2307 then read the size of this fragment in bytes, from the fragment itself.
2308 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2309 processing. */
2310
2311 lnbase = NULL;
2312 if (LNFOFF (pst))
2313 {
d5931d79 2314 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2315 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2316 sizeof (lnsizedata)))
35f5886e
FF
2317 {
2318 error ("can't read DWARF line number table size");
2319 }
13b5a7ff
FF
2320 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2321 GET_UNSIGNED, pst -> objfile);
35f5886e 2322 lnbase = xmalloc (lnsize);
d5931d79 2323 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2324 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2325 {
2326 free (lnbase);
2327 error ("can't read DWARF line numbers");
2328 }
2329 make_cleanup (free, lnbase);
2330 }
2331
4090fe1c 2332 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2333 do_cleanups (back_to);
1ab3bf1b 2334 current_objfile = NULL;
c701c14c 2335 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2336}
2337
2338/*
2339
2340LOCAL FUNCTION
2341
2342 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2343
2344SYNOPSIS
2345
a048c8f5 2346 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2347
2348DESCRIPTION
2349
2350 Called once for each partial symbol table entry that needs to be
2351 expanded into a full symbol table entry.
2352
2353*/
2354
2355static void
1ab3bf1b
JG
2356psymtab_to_symtab_1 (pst)
2357 struct partial_symtab *pst;
35f5886e
FF
2358{
2359 int i;
d07734e3 2360 struct cleanup *old_chain;
35f5886e 2361
1ab3bf1b 2362 if (pst != NULL)
35f5886e 2363 {
1ab3bf1b 2364 if (pst->readin)
35f5886e 2365 {
318bf84f 2366 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2367 pst -> filename);
2368 }
2369 else
2370 {
2371 /* Read in all partial symtabs on which this one is dependent */
2372 for (i = 0; i < pst -> number_of_dependencies; i++)
2373 {
2374 if (!pst -> dependencies[i] -> readin)
2375 {
2376 /* Inform about additional files that need to be read in. */
2377 if (info_verbose)
2378 {
199b2450 2379 fputs_filtered (" ", gdb_stdout);
1ab3bf1b 2380 wrap_here ("");
199b2450 2381 fputs_filtered ("and ", gdb_stdout);
1ab3bf1b
JG
2382 wrap_here ("");
2383 printf_filtered ("%s...",
2384 pst -> dependencies[i] -> filename);
2385 wrap_here ("");
199b2450 2386 gdb_flush (gdb_stdout); /* Flush output */
1ab3bf1b
JG
2387 }
2388 psymtab_to_symtab_1 (pst -> dependencies[i]);
2389 }
2390 }
2391 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2392 {
d07734e3
FF
2393 buildsym_init ();
2394 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2395 read_ofile_symtab (pst);
1ab3bf1b
JG
2396 if (info_verbose)
2397 {
2398 printf_filtered ("%d DIE's, sorting...", diecount);
2399 wrap_here ("");
199b2450 2400 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2401 }
2402 sort_symtab_syms (pst -> symtab);
d07734e3 2403 do_cleanups (old_chain);
1ab3bf1b
JG
2404 }
2405 pst -> readin = 1;
35f5886e 2406 }
35f5886e 2407 }
35f5886e
FF
2408}
2409
2410/*
2411
2412LOCAL FUNCTION
2413
2414 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2415
2416SYNOPSIS
2417
2418 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2419
2420DESCRIPTION
2421
2422 This is the DWARF support entry point for building a full symbol
2423 table entry from a partial symbol table entry. We are passed a
2424 pointer to the partial symbol table entry that needs to be expanded.
2425
2426*/
2427
2428static void
1ab3bf1b
JG
2429dwarf_psymtab_to_symtab (pst)
2430 struct partial_symtab *pst;
35f5886e 2431{
7d9884b9 2432
1ab3bf1b 2433 if (pst != NULL)
35f5886e 2434 {
1ab3bf1b 2435 if (pst -> readin)
35f5886e 2436 {
318bf84f 2437 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2438 pst -> filename);
35f5886e 2439 }
1ab3bf1b 2440 else
35f5886e 2441 {
1ab3bf1b
JG
2442 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2443 {
2444 /* Print the message now, before starting serious work, to avoid
2445 disconcerting pauses. */
2446 if (info_verbose)
2447 {
2448 printf_filtered ("Reading in symbols for %s...",
2449 pst -> filename);
199b2450 2450 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2451 }
2452
2453 psymtab_to_symtab_1 (pst);
2454
2455#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2456 we need to do an equivalent or is this something peculiar to
2457 stabs/a.out format.
2458 Match with global symbols. This only needs to be done once,
2459 after all of the symtabs and dependencies have been read in.
2460 */
2461 scan_file_globals (pst -> objfile);
2462#endif
2463
2464 /* Finish up the verbose info message. */
2465 if (info_verbose)
2466 {
2467 printf_filtered ("done.\n");
199b2450 2468 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2469 }
2470 }
35f5886e
FF
2471 }
2472 }
2473}
2474
2475/*
2476
2477LOCAL FUNCTION
2478
2479 init_psymbol_list -- initialize storage for partial symbols
2480
2481SYNOPSIS
2482
1ab3bf1b 2483 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
35f5886e
FF
2484
2485DESCRIPTION
2486
2487 Initializes storage for all of the partial symbols that will be
2488 created by dwarf_build_psymtabs and subsidiaries.
2489 */
2490
2491static void
1ab3bf1b
JG
2492init_psymbol_list (objfile, total_symbols)
2493 struct objfile *objfile;
2494 int total_symbols;
35f5886e
FF
2495{
2496 /* Free any previously allocated psymbol lists. */
2497
1ab3bf1b 2498 if (objfile -> global_psymbols.list)
35f5886e 2499 {
84ffdec2 2500 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
35f5886e 2501 }
1ab3bf1b 2502 if (objfile -> static_psymbols.list)
35f5886e 2503 {
84ffdec2 2504 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
35f5886e
FF
2505 }
2506
2507 /* Current best guess is that there are approximately a twentieth
2508 of the total symbols (in a debugging file) are global or static
2509 oriented symbols */
2510
1ab3bf1b
JG
2511 objfile -> global_psymbols.size = total_symbols / 10;
2512 objfile -> static_psymbols.size = total_symbols / 10;
2513 objfile -> global_psymbols.next =
2514 objfile -> global_psymbols.list = (struct partial_symbol *)
318bf84f 2515 xmmalloc (objfile -> md, objfile -> global_psymbols.size
1ab3bf1b
JG
2516 * sizeof (struct partial_symbol));
2517 objfile -> static_psymbols.next =
2518 objfile -> static_psymbols.list = (struct partial_symbol *)
318bf84f 2519 xmmalloc (objfile -> md, objfile -> static_psymbols.size
1ab3bf1b 2520 * sizeof (struct partial_symbol));
35f5886e
FF
2521}
2522
35f5886e
FF
2523/*
2524
715cafcb
FF
2525LOCAL FUNCTION
2526
2527 add_enum_psymbol -- add enumeration members to partial symbol table
2528
2529DESCRIPTION
2530
2531 Given pointer to a DIE that is known to be for an enumeration,
2532 extract the symbolic names of the enumeration members and add
2533 partial symbols for them.
2534*/
2535
2536static void
1ab3bf1b
JG
2537add_enum_psymbol (dip, objfile)
2538 struct dieinfo *dip;
2539 struct objfile *objfile;
715cafcb
FF
2540{
2541 char *scan;
2542 char *listend;
13b5a7ff
FF
2543 unsigned short blocksz;
2544 int nbytes;
715cafcb
FF
2545
2546 if ((scan = dip -> at_element_list) != NULL)
2547 {
2548 if (dip -> short_element_list)
2549 {
13b5a7ff 2550 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2551 }
2552 else
2553 {
13b5a7ff 2554 nbytes = attribute_size (AT_element_list);
715cafcb 2555 }
13b5a7ff
FF
2556 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2557 scan += nbytes;
2558 listend = scan + blocksz;
715cafcb
FF
2559 while (scan < listend)
2560 {
13b5a7ff 2561 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2562 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2563 objfile -> static_psymbols, 0, cu_language,
2564 objfile);
715cafcb
FF
2565 scan += strlen (scan) + 1;
2566 }
2567 }
2568}
2569
2570/*
2571
35f5886e
FF
2572LOCAL FUNCTION
2573
2574 add_partial_symbol -- add symbol to partial symbol table
2575
2576DESCRIPTION
2577
2578 Given a DIE, if it is one of the types that we want to
2579 add to a partial symbol table, finish filling in the die info
2580 and then add a partial symbol table entry for it.
2581
95ff889e
FF
2582NOTES
2583
2584 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2585*/
2586
2587static void
1ab3bf1b
JG
2588add_partial_symbol (dip, objfile)
2589 struct dieinfo *dip;
2590 struct objfile *objfile;
35f5886e 2591{
13b5a7ff 2592 switch (dip -> die_tag)
35f5886e
FF
2593 {
2594 case TAG_global_subroutine:
b440b1e9 2595 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2596 VAR_NAMESPACE, LOC_BLOCK,
2597 objfile -> global_psymbols,
2e4964ad 2598 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2599 break;
2600 case TAG_global_variable:
b440b1e9 2601 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2602 VAR_NAMESPACE, LOC_STATIC,
2603 objfile -> global_psymbols,
2e4964ad 2604 0, cu_language, objfile);
35f5886e
FF
2605 break;
2606 case TAG_subroutine:
b440b1e9 2607 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2608 VAR_NAMESPACE, LOC_BLOCK,
2609 objfile -> static_psymbols,
2e4964ad 2610 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2611 break;
2612 case TAG_local_variable:
b440b1e9 2613 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2614 VAR_NAMESPACE, LOC_STATIC,
2615 objfile -> static_psymbols,
2e4964ad 2616 0, cu_language, objfile);
35f5886e
FF
2617 break;
2618 case TAG_typedef:
b440b1e9 2619 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2620 VAR_NAMESPACE, LOC_TYPEDEF,
2621 objfile -> static_psymbols,
2e4964ad 2622 0, cu_language, objfile);
35f5886e 2623 break;
95ff889e 2624 case TAG_class_type:
35f5886e
FF
2625 case TAG_structure_type:
2626 case TAG_union_type:
95ff889e 2627 case TAG_enumeration_type:
4386eff2
PS
2628 /* Do not add opaque aggregate definitions to the psymtab. */
2629 if (!dip -> has_at_byte_size)
2630 break;
b440b1e9 2631 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2632 STRUCT_NAMESPACE, LOC_TYPEDEF,
2633 objfile -> static_psymbols,
2e4964ad 2634 0, cu_language, objfile);
95ff889e 2635 if (cu_language == language_cplus)
715cafcb 2636 {
95ff889e 2637 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2638 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2639 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2640 objfile -> static_psymbols,
2e4964ad 2641 0, cu_language, objfile);
715cafcb 2642 }
715cafcb 2643 break;
35f5886e
FF
2644 }
2645}
2646
2647/*
2648
2649LOCAL FUNCTION
2650
2651 scan_partial_symbols -- scan DIE's within a single compilation unit
2652
2653DESCRIPTION
2654
2655 Process the DIE's within a single compilation unit, looking for
2656 interesting DIE's that contribute to the partial symbol table entry
a679650f 2657 for this compilation unit.
35f5886e 2658
2d6186f4
FF
2659NOTES
2660
a679650f
FF
2661 There are some DIE's that may appear both at file scope and within
2662 the scope of a function. We are only interested in the ones at file
2663 scope, and the only way to tell them apart is to keep track of the
2664 scope. For example, consider the test case:
2665
2666 static int i;
2667 main () { int j; }
2668
2669 for which the relevant DWARF segment has the structure:
2670
2671 0x51:
2672 0x23 global subrtn sibling 0x9b
2673 name main
2674 fund_type FT_integer
2675 low_pc 0x800004cc
2676 high_pc 0x800004d4
2677
2678 0x74:
2679 0x23 local var sibling 0x97
2680 name j
2681 fund_type FT_integer
2682 location OP_BASEREG 0xe
2683 OP_CONST 0xfffffffc
2684 OP_ADD
2685 0x97:
2686 0x4
2687
2688 0x9b:
2689 0x1d local var sibling 0xb8
2690 name i
2691 fund_type FT_integer
2692 location OP_ADDR 0x800025dc
2693
2694 0xb8:
2695 0x4
2696
2697 We want to include the symbol 'i' in the partial symbol table, but
2698 not the symbol 'j'. In essence, we want to skip all the dies within
2699 the scope of a TAG_global_subroutine DIE.
2700
715cafcb
FF
2701 Don't attempt to add anonymous structures or unions since they have
2702 no name. Anonymous enumerations however are processed, because we
2703 want to extract their member names (the check for a tag name is
2704 done later).
2d6186f4 2705
715cafcb
FF
2706 Also, for variables and subroutines, check that this is the place
2707 where the actual definition occurs, rather than just a reference
2708 to an external.
35f5886e
FF
2709 */
2710
2711static void
1ab3bf1b
JG
2712scan_partial_symbols (thisdie, enddie, objfile)
2713 char *thisdie;
2714 char *enddie;
2715 struct objfile *objfile;
35f5886e
FF
2716{
2717 char *nextdie;
a679650f 2718 char *temp;
35f5886e
FF
2719 struct dieinfo di;
2720
2721 while (thisdie < enddie)
2722 {
95967e73 2723 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2724 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2725 {
2726 break;
2727 }
2728 else
2729 {
13b5a7ff 2730 nextdie = thisdie + di.die_length;
715cafcb
FF
2731 /* To avoid getting complete die information for every die, we
2732 only do it (below) for the cases we are interested in. */
13b5a7ff 2733 switch (di.die_tag)
35f5886e
FF
2734 {
2735 case TAG_global_subroutine:
35f5886e 2736 case TAG_subroutine:
a679650f
FF
2737 completedieinfo (&di, objfile);
2738 if (di.at_name && (di.has_at_low_pc || di.at_location))
2739 {
2740 add_partial_symbol (&di, objfile);
2741 /* If there is a sibling attribute, adjust the nextdie
2742 pointer to skip the entire scope of the subroutine.
2743 Apply some sanity checking to make sure we don't
2744 overrun or underrun the range of remaining DIE's */
2745 if (di.at_sibling != 0)
2746 {
2747 temp = dbbase + di.at_sibling - dbroff;
2748 if ((temp < thisdie) || (temp >= enddie))
2749 {
51b80b00
FF
2750 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2751 di.at_sibling);
a679650f
FF
2752 }
2753 else
2754 {
2755 nextdie = temp;
2756 }
2757 }
2758 }
2759 break;
2d6186f4 2760 case TAG_global_variable:
35f5886e 2761 case TAG_local_variable:
95967e73 2762 completedieinfo (&di, objfile);
2d6186f4
FF
2763 if (di.at_name && (di.has_at_low_pc || di.at_location))
2764 {
1ab3bf1b 2765 add_partial_symbol (&di, objfile);
2d6186f4
FF
2766 }
2767 break;
35f5886e 2768 case TAG_typedef:
95ff889e 2769 case TAG_class_type:
35f5886e
FF
2770 case TAG_structure_type:
2771 case TAG_union_type:
95967e73 2772 completedieinfo (&di, objfile);
2d6186f4 2773 if (di.at_name)
35f5886e 2774 {
1ab3bf1b 2775 add_partial_symbol (&di, objfile);
35f5886e
FF
2776 }
2777 break;
715cafcb 2778 case TAG_enumeration_type:
95967e73 2779 completedieinfo (&di, objfile);
95ff889e
FF
2780 if (di.at_name)
2781 {
2782 add_partial_symbol (&di, objfile);
2783 }
2784 add_enum_psymbol (&di, objfile);
715cafcb 2785 break;
35f5886e
FF
2786 }
2787 }
2788 thisdie = nextdie;
2789 }
2790}
2791
2792/*
2793
2794LOCAL FUNCTION
2795
2796 scan_compilation_units -- build a psymtab entry for each compilation
2797
2798DESCRIPTION
2799
2800 This is the top level dwarf parsing routine for building partial
2801 symbol tables.
2802
2803 It scans from the beginning of the DWARF table looking for the first
2804 TAG_compile_unit DIE, and then follows the sibling chain to locate
2805 each additional TAG_compile_unit DIE.
2806
2807 For each TAG_compile_unit DIE it creates a partial symtab structure,
2808 calls a subordinate routine to collect all the compilation unit's
2809 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2810 new partial symtab structure into the partial symbol table. It also
2811 records the appropriate information in the partial symbol table entry
2812 to allow the chunk of DIE's and line number table for this compilation
2813 unit to be located and re-read later, to generate a complete symbol
2814 table entry for the compilation unit.
2815
2816 Thus it effectively partitions up a chunk of DIE's for multiple
2817 compilation units into smaller DIE chunks and line number tables,
2818 and associates them with a partial symbol table entry.
2819
2820NOTES
2821
2822 If any compilation unit has no line number table associated with
2823 it for some reason (a missing at_stmt_list attribute, rather than
2824 just one with a value of zero, which is valid) then we ensure that
2825 the recorded file offset is zero so that the routine which later
2826 reads line number table fragments knows that there is no fragment
2827 to read.
2828
2829RETURNS
2830
2831 Returns no value.
2832
2833 */
2834
2835static void
d5931d79 2836scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2837 char *thisdie;
2838 char *enddie;
d5931d79
JG
2839 file_ptr dbfoff;
2840 file_ptr lnoffset;
1ab3bf1b 2841 struct objfile *objfile;
35f5886e
FF
2842{
2843 char *nextdie;
2844 struct dieinfo di;
2845 struct partial_symtab *pst;
2846 int culength;
2847 int curoff;
d5931d79 2848 file_ptr curlnoffset;
35f5886e
FF
2849
2850 while (thisdie < enddie)
2851 {
95967e73 2852 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2853 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2854 {
2855 break;
2856 }
13b5a7ff 2857 else if (di.die_tag != TAG_compile_unit)
35f5886e 2858 {
13b5a7ff 2859 nextdie = thisdie + di.die_length;
35f5886e
FF
2860 }
2861 else
2862 {
95967e73 2863 completedieinfo (&di, objfile);
95ff889e 2864 set_cu_language (&di);
35f5886e
FF
2865 if (di.at_sibling != 0)
2866 {
2867 nextdie = dbbase + di.at_sibling - dbroff;
2868 }
2869 else
2870 {
13b5a7ff 2871 nextdie = thisdie + di.die_length;
35f5886e
FF
2872 }
2873 curoff = thisdie - dbbase;
2874 culength = nextdie - thisdie;
2d6186f4 2875 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2876
2877 /* First allocate a new partial symbol table structure */
2878
95ff889e
FF
2879 pst = start_psymtab_common (objfile, base_section_offsets,
2880 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2881 objfile -> global_psymbols.next,
2882 objfile -> static_psymbols.next);
2883
2884 pst -> texthigh = di.at_high_pc;
2885 pst -> read_symtab_private = (char *)
2886 obstack_alloc (&objfile -> psymbol_obstack,
2887 sizeof (struct dwfinfo));
2888 DBFOFF (pst) = dbfoff;
2889 DBROFF (pst) = curoff;
2890 DBLENGTH (pst) = culength;
2891 LNFOFF (pst) = curlnoffset;
2892 pst -> read_symtab = dwarf_psymtab_to_symtab;
2893
2894 /* Now look for partial symbols */
2895
13b5a7ff 2896 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2897
2898 pst -> n_global_syms = objfile -> global_psymbols.next -
2899 (objfile -> global_psymbols.list + pst -> globals_offset);
2900 pst -> n_static_syms = objfile -> static_psymbols.next -
2901 (objfile -> static_psymbols.list + pst -> statics_offset);
2902 sort_pst_symbols (pst);
35f5886e
FF
2903 /* If there is already a psymtab or symtab for a file of this name,
2904 remove it. (If there is a symtab, more drastic things also
2905 happen.) This happens in VxWorks. */
2906 free_named_symtabs (pst -> filename);
35f5886e
FF
2907 }
2908 thisdie = nextdie;
2909 }
2910}
2911
2912/*
2913
2914LOCAL FUNCTION
2915
2916 new_symbol -- make a symbol table entry for a new symbol
2917
2918SYNOPSIS
2919
1ab3bf1b
JG
2920 static struct symbol *new_symbol (struct dieinfo *dip,
2921 struct objfile *objfile)
35f5886e
FF
2922
2923DESCRIPTION
2924
2925 Given a pointer to a DWARF information entry, figure out if we need
2926 to make a symbol table entry for it, and if so, create a new entry
2927 and return a pointer to it.
2928 */
2929
2930static struct symbol *
1ab3bf1b
JG
2931new_symbol (dip, objfile)
2932 struct dieinfo *dip;
2933 struct objfile *objfile;
35f5886e
FF
2934{
2935 struct symbol *sym = NULL;
2936
2937 if (dip -> at_name != NULL)
2938 {
1ab3bf1b 2939 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2940 sizeof (struct symbol));
4ed3a9ea 2941 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2942 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2943 &objfile->symbol_obstack);
35f5886e
FF
2944 /* default assumptions */
2945 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2946 SYMBOL_CLASS (sym) = LOC_STATIC;
2947 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2948
2949 /* If this symbol is from a C++ compilation, then attempt to cache the
2950 demangled form for future reference. This is a typical time versus
2951 space tradeoff, that was decided in favor of time because it sped up
2952 C++ symbol lookups by a factor of about 20. */
2953
2954 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2955 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2956 switch (dip -> die_tag)
35f5886e
FF
2957 {
2958 case TAG_label:
4d315a07 2959 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2960 SYMBOL_CLASS (sym) = LOC_LABEL;
2961 break;
2962 case TAG_global_subroutine:
2963 case TAG_subroutine:
4d315a07 2964 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2965 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2966 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2967 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2968 {
2969 add_symbol_to_list (sym, &global_symbols);
2970 }
2971 else
2972 {
4d315a07 2973 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2974 }
2975 break;
2976 case TAG_global_variable:
35f5886e
FF
2977 if (dip -> at_location != NULL)
2978 {
2979 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
2980 add_symbol_to_list (sym, &global_symbols);
2981 SYMBOL_CLASS (sym) = LOC_STATIC;
2982 SYMBOL_VALUE (sym) += baseaddr;
2983 }
a5bd5ba6
FF
2984 break;
2985 case TAG_local_variable:
2986 if (dip -> at_location != NULL)
35f5886e 2987 {
a5bd5ba6 2988 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 2989 add_symbol_to_list (sym, list_in_scope);
a5bd5ba6
FF
2990 if (isreg)
2991 {
2992 SYMBOL_CLASS (sym) = LOC_REGISTER;
2993 }
2994 else if (offreg)
35f5886e 2995 {
a1c8d76e
JK
2996 SYMBOL_CLASS (sym) = LOC_BASEREG;
2997 SYMBOL_BASEREG (sym) = basereg;
35f5886e
FF
2998 }
2999 else
3000 {
3001 SYMBOL_CLASS (sym) = LOC_STATIC;
3002 SYMBOL_VALUE (sym) += baseaddr;
3003 }
3004 }
3005 break;
3006 case TAG_formal_parameter:
3007 if (dip -> at_location != NULL)
3008 {
3009 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3010 }
4d315a07 3011 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3012 if (isreg)
3013 {
3014 SYMBOL_CLASS (sym) = LOC_REGPARM;
3015 }
a1c8d76e
JK
3016 else if (offreg)
3017 {
3018 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3019 SYMBOL_BASEREG (sym) = basereg;
3020 }
35f5886e
FF
3021 else
3022 {
3023 SYMBOL_CLASS (sym) = LOC_ARG;
3024 }
3025 break;
3026 case TAG_unspecified_parameters:
3027 /* From varargs functions; gdb doesn't seem to have any interest in
3028 this information, so just ignore it for now. (FIXME?) */
3029 break;
95ff889e 3030 case TAG_class_type:
35f5886e
FF
3031 case TAG_structure_type:
3032 case TAG_union_type:
3033 case TAG_enumeration_type:
3034 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3035 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3036 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3037 break;
3038 case TAG_typedef:
3039 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3040 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3041 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3042 break;
3043 default:
3044 /* Not a tag we recognize. Hopefully we aren't processing trash
3045 data, but since we must specifically ignore things we don't
3046 recognize, there is nothing else we should do at this point. */
3047 break;
3048 }
3049 }
3050 return (sym);
3051}
3052
3053/*
3054
95ff889e
FF
3055LOCAL FUNCTION
3056
3057 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3058
3059SYNOPSIS
3060
3061 static void synthesize_typedef (struct dieinfo *dip,
3062 struct objfile *objfile,
3063 struct type *type);
3064
3065DESCRIPTION
3066
3067 Given a pointer to a DWARF information entry, synthesize a typedef
3068 for the name in the DIE, using the specified type.
3069
3070 This is used for C++ class, structs, unions, and enumerations to
3071 set up the tag name as a type.
3072
3073 */
3074
3075static void
3076synthesize_typedef (dip, objfile, type)
3077 struct dieinfo *dip;
3078 struct objfile *objfile;
3079 struct type *type;
3080{
3081 struct symbol *sym = NULL;
3082
3083 if (dip -> at_name != NULL)
3084 {
3085 sym = (struct symbol *)
3086 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3087 memset (sym, 0, sizeof (struct symbol));
3088 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3089 &objfile->symbol_obstack);
7532cf10 3090 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3091 SYMBOL_TYPE (sym) = type;
3092 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3093 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3094 add_symbol_to_list (sym, list_in_scope);
3095 }
3096}
3097
3098/*
3099
35f5886e
FF
3100LOCAL FUNCTION
3101
3102 decode_mod_fund_type -- decode a modified fundamental type
3103
3104SYNOPSIS
3105
3106 static struct type *decode_mod_fund_type (char *typedata)
3107
3108DESCRIPTION
3109
3110 Decode a block of data containing a modified fundamental
3111 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3112 which starts with a length containing the size of the rest
3113 of the block. At the end of the block is a fundmental type
3114 code value that gives the fundamental type. Everything
35f5886e
FF
3115 in between are type modifiers.
3116
3117 We simply compute the number of modifiers and call the general
3118 function decode_modified_type to do the actual work.
3119*/
3120
3121static struct type *
1ab3bf1b
JG
3122decode_mod_fund_type (typedata)
3123 char *typedata;
35f5886e
FF
3124{
3125 struct type *typep = NULL;
3126 unsigned short modcount;
13b5a7ff 3127 int nbytes;
35f5886e
FF
3128
3129 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3130
3131 nbytes = attribute_size (AT_mod_fund_type);
3132 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3133 typedata += nbytes;
3134
35f5886e 3135 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3136
3137 modcount -= attribute_size (AT_fund_type);
3138
35f5886e 3139 /* Now do the actual decoding */
13b5a7ff
FF
3140
3141 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3142 return (typep);
3143}
3144
3145/*
3146
3147LOCAL FUNCTION
3148
3149 decode_mod_u_d_type -- decode a modified user defined type
3150
3151SYNOPSIS
3152
3153 static struct type *decode_mod_u_d_type (char *typedata)
3154
3155DESCRIPTION
3156
3157 Decode a block of data containing a modified user defined
3158 type specification. TYPEDATA is a pointer to the block,
3159 which consists of a two byte length, containing the size
3160 of the rest of the block. At the end of the block is a
3161 four byte value that gives a reference to a user defined type.
3162 Everything in between are type modifiers.
3163
3164 We simply compute the number of modifiers and call the general
3165 function decode_modified_type to do the actual work.
3166*/
3167
3168static struct type *
1ab3bf1b
JG
3169decode_mod_u_d_type (typedata)
3170 char *typedata;
35f5886e
FF
3171{
3172 struct type *typep = NULL;
3173 unsigned short modcount;
13b5a7ff 3174 int nbytes;
35f5886e
FF
3175
3176 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3177
3178 nbytes = attribute_size (AT_mod_u_d_type);
3179 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3180 typedata += nbytes;
3181
35f5886e 3182 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3183
3184 modcount -= attribute_size (AT_user_def_type);
3185
35f5886e 3186 /* Now do the actual decoding */
13b5a7ff
FF
3187
3188 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3189 return (typep);
3190}
3191
3192/*
3193
3194LOCAL FUNCTION
3195
3196 decode_modified_type -- decode modified user or fundamental type
3197
3198SYNOPSIS
3199
1c92ca6f 3200 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3201 unsigned short modcount, int mtype)
3202
3203DESCRIPTION
3204
3205 Decode a modified type, either a modified fundamental type or
3206 a modified user defined type. MODIFIERS is a pointer to the
3207 block of bytes that define MODCOUNT modifiers. Immediately
3208 following the last modifier is a short containing the fundamental
3209 type or a long containing the reference to the user defined
3210 type. Which one is determined by MTYPE, which is either
3211 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3212 type we are generating.
3213
3214 We call ourself recursively to generate each modified type,`
3215 until MODCOUNT reaches zero, at which point we have consumed
3216 all the modifiers and generate either the fundamental type or
3217 user defined type. When the recursion unwinds, each modifier
3218 is applied in turn to generate the full modified type.
3219
3220NOTES
3221
3222 If we find a modifier that we don't recognize, and it is not one
3223 of those reserved for application specific use, then we issue a
3224 warning and simply ignore the modifier.
3225
3226BUGS
3227
3228 We currently ignore MOD_const and MOD_volatile. (FIXME)
3229
3230 */
3231
3232static struct type *
1ab3bf1b 3233decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3234 char *modifiers;
1ab3bf1b
JG
3235 unsigned int modcount;
3236 int mtype;
35f5886e
FF
3237{
3238 struct type *typep = NULL;
3239 unsigned short fundtype;
13b5a7ff 3240 DIE_REF die_ref;
1c92ca6f 3241 char modifier;
13b5a7ff 3242 int nbytes;
35f5886e
FF
3243
3244 if (modcount == 0)
3245 {
3246 switch (mtype)
3247 {
3248 case AT_mod_fund_type:
13b5a7ff
FF
3249 nbytes = attribute_size (AT_fund_type);
3250 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3251 current_objfile);
35f5886e
FF
3252 typep = decode_fund_type (fundtype);
3253 break;
3254 case AT_mod_u_d_type:
13b5a7ff
FF
3255 nbytes = attribute_size (AT_user_def_type);
3256 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3257 current_objfile);
3258 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3259 {
13b5a7ff 3260 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3261 }
3262 break;
3263 default:
51b80b00 3264 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3265 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3266 break;
3267 }
3268 }
3269 else
3270 {
3271 modifier = *modifiers++;
3272 typep = decode_modified_type (modifiers, --modcount, mtype);
3273 switch (modifier)
3274 {
13b5a7ff
FF
3275 case MOD_pointer_to:
3276 typep = lookup_pointer_type (typep);
3277 break;
3278 case MOD_reference_to:
3279 typep = lookup_reference_type (typep);
3280 break;
3281 case MOD_const:
51b80b00 3282 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3283 break;
3284 case MOD_volatile:
51b80b00 3285 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3286 break;
3287 default:
1c92ca6f
FF
3288 if (!(MOD_lo_user <= (unsigned char) modifier
3289 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3290 {
51b80b00 3291 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3292 }
3293 break;
35f5886e
FF
3294 }
3295 }
3296 return (typep);
3297}
3298
3299/*
3300
3301LOCAL FUNCTION
3302
3303 decode_fund_type -- translate basic DWARF type to gdb base type
3304
3305DESCRIPTION
3306
3307 Given an integer that is one of the fundamental DWARF types,
3308 translate it to one of the basic internal gdb types and return
3309 a pointer to the appropriate gdb type (a "struct type *").
3310
3311NOTES
3312
85f0a848
FF
3313 For robustness, if we are asked to translate a fundamental
3314 type that we are unprepared to deal with, we return int so
3315 callers can always depend upon a valid type being returned,
3316 and so gdb may at least do something reasonable by default.
3317 If the type is not in the range of those types defined as
3318 application specific types, we also issue a warning.
35f5886e
FF
3319*/
3320
3321static struct type *
1ab3bf1b
JG
3322decode_fund_type (fundtype)
3323 unsigned int fundtype;
35f5886e
FF
3324{
3325 struct type *typep = NULL;
3326
3327 switch (fundtype)
3328 {
3329
3330 case FT_void:
bf229b4e 3331 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3332 break;
3333
1ab3bf1b 3334 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3335 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3336 break;
3337
35f5886e 3338 case FT_pointer: /* (void *) */
bf229b4e 3339 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3340 typep = lookup_pointer_type (typep);
35f5886e
FF
3341 break;
3342
3343 case FT_char:
bf229b4e 3344 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3345 break;
3346
35f5886e 3347 case FT_signed_char:
bf229b4e 3348 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3349 break;
3350
3351 case FT_unsigned_char:
bf229b4e 3352 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3353 break;
3354
3355 case FT_short:
bf229b4e 3356 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3357 break;
3358
35f5886e 3359 case FT_signed_short:
bf229b4e 3360 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3361 break;
3362
3363 case FT_unsigned_short:
bf229b4e 3364 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3365 break;
3366
3367 case FT_integer:
bf229b4e 3368 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3369 break;
3370
35f5886e 3371 case FT_signed_integer:
bf229b4e 3372 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3373 break;
3374
3375 case FT_unsigned_integer:
bf229b4e 3376 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3377 break;
3378
3379 case FT_long:
bf229b4e 3380 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3381 break;
3382
35f5886e 3383 case FT_signed_long:
bf229b4e 3384 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3385 break;
3386
1ab3bf1b 3387 case FT_unsigned_long:
bf229b4e 3388 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3389 break;
3390
1ab3bf1b 3391 case FT_long_long:
bf229b4e 3392 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3393 break;
1ab3bf1b
JG
3394
3395 case FT_signed_long_long:
bf229b4e 3396 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3397 break;
1ab3bf1b
JG
3398
3399 case FT_unsigned_long_long:
bf229b4e 3400 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3401 break;
1ab3bf1b
JG
3402
3403 case FT_float:
bf229b4e 3404 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3405 break;
3406
1ab3bf1b 3407 case FT_dbl_prec_float:
bf229b4e 3408 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3409 break;
3410
3411 case FT_ext_prec_float:
bf229b4e 3412 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3413 break;
3414
3415 case FT_complex:
bf229b4e 3416 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3417 break;
3418
3419 case FT_dbl_prec_complex:
bf229b4e 3420 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3421 break;
3422
1ab3bf1b 3423 case FT_ext_prec_complex:
bf229b4e 3424 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3425 break;
1ab3bf1b 3426
35f5886e
FF
3427 }
3428
85f0a848 3429 if (typep == NULL)
35f5886e 3430 {
85f0a848
FF
3431 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3432 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3433 {
51b80b00 3434 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3435 }
35f5886e
FF
3436 }
3437
3438 return (typep);
3439}
3440
3441/*
3442
3443LOCAL FUNCTION
3444
3445 create_name -- allocate a fresh copy of a string on an obstack
3446
3447DESCRIPTION
3448
3449 Given a pointer to a string and a pointer to an obstack, allocates
3450 a fresh copy of the string on the specified obstack.
3451
3452*/
3453
3454static char *
1ab3bf1b
JG
3455create_name (name, obstackp)
3456 char *name;
3457 struct obstack *obstackp;
35f5886e
FF
3458{
3459 int length;
3460 char *newname;
3461
3462 length = strlen (name) + 1;
3463 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3464 strcpy (newname, name);
35f5886e
FF
3465 return (newname);
3466}
3467
3468/*
3469
3470LOCAL FUNCTION
3471
3472 basicdieinfo -- extract the minimal die info from raw die data
3473
3474SYNOPSIS
3475
95967e73
FF
3476 void basicdieinfo (char *diep, struct dieinfo *dip,
3477 struct objfile *objfile)
35f5886e
FF
3478
3479DESCRIPTION
3480
3481 Given a pointer to raw DIE data, and a pointer to an instance of a
3482 die info structure, this function extracts the basic information
3483 from the DIE data required to continue processing this DIE, along
3484 with some bookkeeping information about the DIE.
3485
3486 The information we absolutely must have includes the DIE tag,
3487 and the DIE length. If we need the sibling reference, then we
3488 will have to call completedieinfo() to process all the remaining
3489 DIE information.
3490
3491 Note that since there is no guarantee that the data is properly
3492 aligned in memory for the type of access required (indirection
95967e73
FF
3493 through anything other than a char pointer), and there is no
3494 guarantee that it is in the same byte order as the gdb host,
3495 we call a function which deals with both alignment and byte
3496 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3497
3498 We also take care of some other basic things at this point, such
3499 as ensuring that the instance of the die info structure starts
3500 out completely zero'd and that curdie is initialized for use
3501 in error reporting if we have a problem with the current die.
3502
3503NOTES
3504
3505 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3506 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3507 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3508 are forced to be TAG_padding DIES.
3509
13b5a7ff
FF
3510 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3511 that if a padding DIE is used for alignment and the amount needed is
3512 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3513 enough to align to the next alignment boundry.
4090fe1c
FF
3514
3515 We do some basic sanity checking here, such as verifying that the
3516 length of the die would not cause it to overrun the recorded end of
3517 the buffer holding the DIE info. If we find a DIE that is either
3518 too small or too large, we force it's length to zero which should
3519 cause the caller to take appropriate action.
35f5886e
FF
3520 */
3521
3522static void
95967e73 3523basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3524 struct dieinfo *dip;
3525 char *diep;
95967e73 3526 struct objfile *objfile;
35f5886e
FF
3527{
3528 curdie = dip;
4ed3a9ea 3529 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3530 dip -> die = diep;
13b5a7ff
FF
3531 dip -> die_ref = dbroff + (diep - dbbase);
3532 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3533 objfile);
4090fe1c
FF
3534 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3535 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3536 {
51b80b00 3537 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3538 dip -> die_length = 0;
35f5886e 3539 }
13b5a7ff 3540 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3541 {
13b5a7ff 3542 dip -> die_tag = TAG_padding;
35f5886e
FF
3543 }
3544 else
3545 {
13b5a7ff
FF
3546 diep += SIZEOF_DIE_LENGTH;
3547 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3548 objfile);
35f5886e
FF
3549 }
3550}
3551
3552/*
3553
3554LOCAL FUNCTION
3555
3556 completedieinfo -- finish reading the information for a given DIE
3557
3558SYNOPSIS
3559
95967e73 3560 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3561
3562DESCRIPTION
3563
3564 Given a pointer to an already partially initialized die info structure,
3565 scan the raw DIE data and finish filling in the die info structure
3566 from the various attributes found.
3567
3568 Note that since there is no guarantee that the data is properly
3569 aligned in memory for the type of access required (indirection
95967e73
FF
3570 through anything other than a char pointer), and there is no
3571 guarantee that it is in the same byte order as the gdb host,
3572 we call a function which deals with both alignment and byte
3573 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3574
3575NOTES
3576
3577 Each time we are called, we increment the diecount variable, which
3578 keeps an approximate count of the number of dies processed for
3579 each compilation unit. This information is presented to the user
3580 if the info_verbose flag is set.
3581
3582 */
3583
3584static void
95967e73 3585completedieinfo (dip, objfile)
1ab3bf1b 3586 struct dieinfo *dip;
95967e73 3587 struct objfile *objfile;
35f5886e
FF
3588{
3589 char *diep; /* Current pointer into raw DIE data */
3590 char *end; /* Terminate DIE scan here */
3591 unsigned short attr; /* Current attribute being scanned */
3592 unsigned short form; /* Form of the attribute */
13b5a7ff 3593 int nbytes; /* Size of next field to read */
35f5886e
FF
3594
3595 diecount++;
3596 diep = dip -> die;
13b5a7ff
FF
3597 end = diep + dip -> die_length;
3598 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3599 while (diep < end)
3600 {
13b5a7ff
FF
3601 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3602 diep += SIZEOF_ATTRIBUTE;
3603 if ((nbytes = attribute_size (attr)) == -1)
3604 {
51b80b00 3605 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3606 diep = end;
3607 continue;
3608 }
35f5886e
FF
3609 switch (attr)
3610 {
3611 case AT_fund_type:
13b5a7ff
FF
3612 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 objfile);
35f5886e
FF
3614 break;
3615 case AT_ordering:
13b5a7ff
FF
3616 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3617 objfile);
35f5886e
FF
3618 break;
3619 case AT_bit_offset:
13b5a7ff
FF
3620 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3621 objfile);
35f5886e 3622 break;
35f5886e 3623 case AT_sibling:
13b5a7ff
FF
3624 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3625 objfile);
35f5886e
FF
3626 break;
3627 case AT_stmt_list:
13b5a7ff
FF
3628 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3629 objfile);
2d6186f4 3630 dip -> has_at_stmt_list = 1;
35f5886e
FF
3631 break;
3632 case AT_low_pc:
13b5a7ff
FF
3633 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 objfile);
4d315a07 3635 dip -> at_low_pc += baseaddr;
2d6186f4 3636 dip -> has_at_low_pc = 1;
35f5886e
FF
3637 break;
3638 case AT_high_pc:
13b5a7ff
FF
3639 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3640 objfile);
4d315a07 3641 dip -> at_high_pc += baseaddr;
35f5886e
FF
3642 break;
3643 case AT_language:
13b5a7ff
FF
3644 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3645 objfile);
35f5886e
FF
3646 break;
3647 case AT_user_def_type:
13b5a7ff
FF
3648 dip -> at_user_def_type = target_to_host (diep, nbytes,
3649 GET_UNSIGNED, objfile);
35f5886e
FF
3650 break;
3651 case AT_byte_size:
13b5a7ff
FF
3652 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3653 objfile);
50055e94 3654 dip -> has_at_byte_size = 1;
35f5886e
FF
3655 break;
3656 case AT_bit_size:
13b5a7ff
FF
3657 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3658 objfile);
35f5886e
FF
3659 break;
3660 case AT_member:
13b5a7ff
FF
3661 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3662 objfile);
35f5886e
FF
3663 break;
3664 case AT_discr:
13b5a7ff
FF
3665 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3666 objfile);
35f5886e 3667 break;
35f5886e
FF
3668 case AT_location:
3669 dip -> at_location = diep;
3670 break;
3671 case AT_mod_fund_type:
3672 dip -> at_mod_fund_type = diep;
3673 break;
3674 case AT_subscr_data:
3675 dip -> at_subscr_data = diep;
3676 break;
3677 case AT_mod_u_d_type:
3678 dip -> at_mod_u_d_type = diep;
3679 break;
35f5886e
FF
3680 case AT_element_list:
3681 dip -> at_element_list = diep;
768be6e1
FF
3682 dip -> short_element_list = 0;
3683 break;
3684 case AT_short_element_list:
3685 dip -> at_element_list = diep;
3686 dip -> short_element_list = 1;
35f5886e
FF
3687 break;
3688 case AT_discr_value:
3689 dip -> at_discr_value = diep;
3690 break;
3691 case AT_string_length:
3692 dip -> at_string_length = diep;
3693 break;
3694 case AT_name:
3695 dip -> at_name = diep;
3696 break;
3697 case AT_comp_dir:
d4902ab0
FF
3698 /* For now, ignore any "hostname:" portion, since gdb doesn't
3699 know how to deal with it. (FIXME). */
3700 dip -> at_comp_dir = strrchr (diep, ':');
3701 if (dip -> at_comp_dir != NULL)
3702 {
3703 dip -> at_comp_dir++;
3704 }
3705 else
3706 {
3707 dip -> at_comp_dir = diep;
3708 }
35f5886e
FF
3709 break;
3710 case AT_producer:
3711 dip -> at_producer = diep;
3712 break;
35f5886e 3713 case AT_start_scope:
13b5a7ff
FF
3714 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3715 objfile);
35f5886e
FF
3716 break;
3717 case AT_stride_size:
13b5a7ff
FF
3718 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3719 objfile);
35f5886e
FF
3720 break;
3721 case AT_src_info:
13b5a7ff
FF
3722 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3723 objfile);
35f5886e
FF
3724 break;
3725 case AT_prototyped:
13b5a7ff 3726 dip -> at_prototyped = diep;
35f5886e 3727 break;
35f5886e
FF
3728 default:
3729 /* Found an attribute that we are unprepared to handle. However
3730 it is specifically one of the design goals of DWARF that
3731 consumers should ignore unknown attributes. As long as the
3732 form is one that we recognize (so we know how to skip it),
3733 we can just ignore the unknown attribute. */
3734 break;
3735 }
13b5a7ff 3736 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3737 switch (form)
3738 {
3739 case FORM_DATA2:
13b5a7ff 3740 diep += 2;
35f5886e
FF
3741 break;
3742 case FORM_DATA4:
13b5a7ff
FF
3743 case FORM_REF:
3744 diep += 4;
35f5886e
FF
3745 break;
3746 case FORM_DATA8:
13b5a7ff 3747 diep += 8;
35f5886e
FF
3748 break;
3749 case FORM_ADDR:
13b5a7ff 3750 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3751 break;
3752 case FORM_BLOCK2:
13b5a7ff 3753 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3754 break;
3755 case FORM_BLOCK4:
13b5a7ff 3756 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3757 break;
3758 case FORM_STRING:
3759 diep += strlen (diep) + 1;
3760 break;
3761 default:
51b80b00 3762 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3763 diep = end;
3764 break;
3765 }
3766 }
3767}
95967e73 3768
13b5a7ff 3769/*
95967e73 3770
13b5a7ff
FF
3771LOCAL FUNCTION
3772
3773 target_to_host -- swap in target data to host
3774
3775SYNOPSIS
3776
3777 target_to_host (char *from, int nbytes, int signextend,
3778 struct objfile *objfile)
3779
3780DESCRIPTION
3781
3782 Given pointer to data in target format in FROM, a byte count for
3783 the size of the data in NBYTES, a flag indicating whether or not
3784 the data is signed in SIGNEXTEND, and a pointer to the current
3785 objfile in OBJFILE, convert the data to host format and return
3786 the converted value.
3787
3788NOTES
3789
3790 FIXME: If we read data that is known to be signed, and expect to
3791 use it as signed data, then we need to explicitly sign extend the
3792 result until the bfd library is able to do this for us.
3793
3794 */
3795
3796static unsigned long
3797target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3798 char *from;
3799 int nbytes;
13b5a7ff 3800 int signextend; /* FIXME: Unused */
95967e73
FF
3801 struct objfile *objfile;
3802{
13b5a7ff 3803 unsigned long rtnval;
95967e73
FF
3804
3805 switch (nbytes)
3806 {
95967e73 3807 case 8:
13b5a7ff 3808 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3809 break;
95967e73 3810 case 4:
13b5a7ff 3811 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3812 break;
3813 case 2:
13b5a7ff 3814 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3815 break;
3816 case 1:
13b5a7ff 3817 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3818 break;
3819 default:
51b80b00 3820 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3821 rtnval = 0;
95967e73
FF
3822 break;
3823 }
13b5a7ff 3824 return (rtnval);
95967e73
FF
3825}
3826
13b5a7ff
FF
3827/*
3828
3829LOCAL FUNCTION
3830
3831 attribute_size -- compute size of data for a DWARF attribute
3832
3833SYNOPSIS
3834
3835 static int attribute_size (unsigned int attr)
3836
3837DESCRIPTION
3838
3839 Given a DWARF attribute in ATTR, compute the size of the first
3840 piece of data associated with this attribute and return that
3841 size.
3842
3843 Returns -1 for unrecognized attributes.
3844
3845 */
3846
3847static int
3848attribute_size (attr)
3849 unsigned int attr;
3850{
3851 int nbytes; /* Size of next data for this attribute */
3852 unsigned short form; /* Form of the attribute */
3853
3854 form = FORM_FROM_ATTR (attr);
3855 switch (form)
3856 {
3857 case FORM_STRING: /* A variable length field is next */
3858 nbytes = 0;
3859 break;
3860 case FORM_DATA2: /* Next 2 byte field is the data itself */
3861 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3862 nbytes = 2;
3863 break;
3864 case FORM_DATA4: /* Next 4 byte field is the data itself */
3865 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3866 case FORM_REF: /* Next 4 byte field is a DIE offset */
3867 nbytes = 4;
3868 break;
3869 case FORM_DATA8: /* Next 8 byte field is the data itself */
3870 nbytes = 8;
3871 break;
3872 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3873 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3874 break;
3875 default:
51b80b00 3876 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3877 nbytes = -1;
3878 break;
3879 }
3880 return (nbytes);
3881}
This page took 0.363679 seconds and 4 git commands to generate.