* lib/gdb.exp(gdb_init): Pass our arguments to default_gdb_init
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
436d4143
JL
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
1ab3bf1b 4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7This file is part of GDB.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
6c9638b4 21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
35f5886e
FF
22
23/*
24
9745ba07
JK
25FIXME: Do we need to generate dependencies in partial symtabs?
26(Perhaps we don't need to).
35f5886e 27
35f5886e
FF
28FIXME: Resolve minor differences between what information we put in the
29partial symbol table and what dbxread puts in. For example, we don't yet
30put enum constants there. And dbxread seems to invent a lot of typedefs
31we never see. Use the new printpsym command to see the partial symbol table
32contents.
33
35f5886e
FF
34FIXME: Figure out a better way to tell gdb about the name of the function
35contain the user's entry point (I.E. main())
36
35f5886e
FF
37FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38other things to work on, if you get bored. :-)
39
40*/
4d315a07 41
d747e0af 42#include "defs.h"
35f5886e 43#include "symtab.h"
1ab3bf1b 44#include "gdbtypes.h"
35f5886e 45#include "symfile.h"
5e2e79f8 46#include "objfiles.h"
f5f0679a 47#include "elf/dwarf.h"
4d315a07 48#include "buildsym.h"
2dbde378 49#include "demangle.h"
bf229b4e
FF
50#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51#include "language.h"
51b80b00 52#include "complaints.h"
35f5886e 53
d5931d79 54#include <fcntl.h>
2b576293 55#include "gdb_string.h"
51b80b00 56
51b80b00
FF
57/* Some macros to provide DIE info for complaints. */
58
59#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62/* Complaints that can be issued during DWARF debug info reading. */
63
64struct complaint no_bfd_get_N =
65{
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67};
68
69struct complaint malformed_die =
70{
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72};
73
74struct complaint bad_die_ref =
75{
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77};
78
79struct complaint unknown_attribute_form =
80{
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82};
83
84struct complaint unknown_attribute_length =
85{
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87};
88
89struct complaint unexpected_fund_type =
90{
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92};
93
94struct complaint unknown_type_modifier =
95{
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97};
98
99struct complaint volatile_ignored =
100{
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102};
103
104struct complaint const_ignored =
105{
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107};
108
109struct complaint botched_modified_type =
110{
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112};
113
114struct complaint op_deref2 =
115{
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117};
118
119struct complaint op_deref4 =
120{
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122};
123
124struct complaint basereg_not_handled =
125{
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127};
128
129struct complaint dup_user_type_allocation =
130{
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132};
133
134struct complaint dup_user_type_definition =
135{
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137};
138
139struct complaint missing_tag =
140{
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142};
143
144struct complaint bad_array_element_type =
145{
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147};
148
149struct complaint subscript_data_items =
150{
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152};
153
154struct complaint unhandled_array_subscript_format =
155{
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157};
158
159struct complaint unknown_array_subscript_format =
160{
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162};
163
164struct complaint not_row_major =
165{
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167};
35f5886e 168
255181a9
PS
169struct complaint missing_at_name =
170{
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172};
173
13b5a7ff 174typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 175
4d315a07
FF
176#ifndef GCC_PRODUCER
177#define GCC_PRODUCER "GNU C "
178#endif
35f5886e 179
2dbde378
FF
180#ifndef GPLUS_PRODUCER
181#define GPLUS_PRODUCER "GNU C++ "
182#endif
183
184#ifndef LCC_PRODUCER
3dc755fb 185#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
186#endif
187
93bb6e65
FF
188#ifndef CHILL_PRODUCER
189#define CHILL_PRODUCER "GNU Chill "
190#endif
93bb6e65 191
84bdfea6
PS
192/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193#ifndef DWARF_REG_TO_REGNUM
194#define DWARF_REG_TO_REGNUM(num) (num)
195#endif
196
13b5a7ff
FF
197/* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204#define GET_UNSIGNED 0 /* No sign extension required */
205#define GET_SIGNED 1 /* Sign extension required */
206
207/* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211#define SIZEOF_DIE_LENGTH 4
212#define SIZEOF_DIE_TAG 2
213#define SIZEOF_ATTRIBUTE 2
214#define SIZEOF_FORMAT_SPECIFIER 1
215#define SIZEOF_FMT_FT 2
216#define SIZEOF_LINETBL_LENGTH 4
217#define SIZEOF_LINETBL_LINENO 4
218#define SIZEOF_LINETBL_STMT 2
219#define SIZEOF_LINETBL_DELTA 4
220#define SIZEOF_LOC_ATOM_CODE 1
221
222#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224/* Macros that return the sizes of various types of data in the target
225 environment.
226
2d6d969c
FF
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 236
768be6e1
FF
237/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244#define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246/* External variables referenced. */
247
35f5886e 248extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 249extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
250
251/* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
13b5a7ff 257 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
2d6186f4 273 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
274 we need someway to note that we found such an attribute.
275
276 */
277
278typedef char BLOCK;
279
280struct dieinfo {
13b5a7ff
FF
281 char * die; /* Pointer to the raw DIE data */
282 unsigned long die_length; /* Length of the raw DIE data */
283 DIE_REF die_ref; /* Offset of this DIE */
284 unsigned short die_tag; /* Tag for this DIE */
285 unsigned long at_padding;
286 unsigned long at_sibling;
287 BLOCK * at_location;
288 char * at_name;
289 unsigned short at_fund_type;
290 BLOCK * at_mod_fund_type;
291 unsigned long at_user_def_type;
292 BLOCK * at_mod_u_d_type;
293 unsigned short at_ordering;
294 BLOCK * at_subscr_data;
295 unsigned long at_byte_size;
296 unsigned short at_bit_offset;
297 unsigned long at_bit_size;
298 BLOCK * at_element_list;
299 unsigned long at_stmt_list;
306d27ca
DE
300 CORE_ADDR at_low_pc;
301 CORE_ADDR at_high_pc;
13b5a7ff
FF
302 unsigned long at_language;
303 unsigned long at_member;
304 unsigned long at_discr;
305 BLOCK * at_discr_value;
13b5a7ff
FF
306 BLOCK * at_string_length;
307 char * at_comp_dir;
308 char * at_producer;
13b5a7ff
FF
309 unsigned long at_start_scope;
310 unsigned long at_stride_size;
311 unsigned long at_src_info;
312 char * at_prototyped;
313 unsigned int has_at_low_pc:1;
314 unsigned int has_at_stmt_list:1;
50055e94 315 unsigned int has_at_byte_size:1;
13b5a7ff 316 unsigned int short_element_list:1;
35f5886e
FF
317};
318
319static int diecount; /* Approximate count of dies for compilation unit */
320static struct dieinfo *curdie; /* For warnings and such */
321
322static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 323static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
324static int dbroff; /* Relative offset from start of .debug section */
325static char *lnbase; /* Base pointer to line section */
326static int isreg; /* Kludge to identify register variables */
bbcc95bd 327static int optimized_out; /* Kludge to identify optimized out variables */
a1c8d76e
JK
328/* Kludge to identify basereg references. Nonzero if we have an offset
329 relative to a basereg. */
330static int offreg;
331/* Which base register is it relative to? */
332static int basereg;
35f5886e 333
2670f34d 334/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
335 the section_offsets structure used by dbxread (once this is done,
336 pass the appropriate section number to end_symtab). */
35f5886e
FF
337static CORE_ADDR baseaddr; /* Add to each symbol value */
338
2670f34d
JG
339/* The section offsets used in the current psymtab or symtab. FIXME,
340 only used to pass one value (baseaddr) at the moment. */
341static struct section_offsets *base_section_offsets;
342
f133a597
JK
343/* We put a pointer to this structure in the read_symtab_private field
344 of the psymtab. */
35f5886e
FF
345
346struct dwfinfo {
989d9cba
JK
347 /* Always the absolute file offset to the start of the ".debug"
348 section for the file containing the DIE's being accessed. */
349 file_ptr dbfoff;
350 /* Relative offset from the start of the ".debug" section to the
351 first DIE to be accessed. When building the partial symbol
352 table, this value will be zero since we are accessing the
353 entire ".debug" section. When expanding a partial symbol
354 table entry, this value will be the offset to the first
355 DIE for the compilation unit containing the symbol that
356 triggers the expansion. */
357 int dbroff;
358 /* The size of the chunk of DIE's being examined, in bytes. */
359 int dblength;
360 /* The absolute file offset to the line table fragment. Ignored
361 when building partial symbol tables, but used when expanding
362 them, and contains the absolute file offset to the fragment
363 of the ".line" section containing the line numbers for the
364 current compilation unit. */
365 file_ptr lnfoff;
35f5886e
FF
366};
367
368#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
369#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
370#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
371#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
372
4d315a07
FF
373/* The generic symbol table building routines have separate lists for
374 file scope symbols and all all other scopes (local scopes). So
375 we need to select the right one to pass to add_symbol_to_list().
376 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 377
4d315a07
FF
378 FIXME: The original dwarf code just treated the file scope as the first
379 local scope, and all other local scopes as nested local scopes, and worked
380 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 381
99140c31 382struct pending **list_in_scope = &file_symbols;
35f5886e
FF
383
384/* DIES which have user defined types or modified user defined types refer to
385 other DIES for the type information. Thus we need to associate the offset
386 of a DIE for a user defined type with a pointer to the type information.
387
388 Originally this was done using a simple but expensive algorithm, with an
389 array of unsorted structures, each containing an offset/type-pointer pair.
390 This array was scanned linearly each time a lookup was done. The result
391 was that gdb was spending over half it's startup time munging through this
392 array of pointers looking for a structure that had the right offset member.
393
394 The second attempt used the same array of structures, but the array was
395 sorted using qsort each time a new offset/type was recorded, and a binary
396 search was used to find the type pointer for a given DIE offset. This was
397 even slower, due to the overhead of sorting the array each time a new
398 offset/type pair was entered.
399
400 The third attempt uses a fixed size array of type pointers, indexed by a
401 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
402 we can divide any DIE offset by 4 to obtain a unique index into this fixed
403 size array. Since each element is a 4 byte pointer, it takes exactly as
404 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
405 compilation unit. But it gets freed as soon as we are done with it.
406 This has worked well in practice, as a reasonable tradeoff between memory
407 consumption and speed, without having to resort to much more complicated
408 algorithms. */
35f5886e
FF
409
410static struct type **utypes; /* Pointer to array of user type pointers */
411static int numutypes; /* Max number of user type pointers */
412
bf229b4e
FF
413/* Maintain an array of referenced fundamental types for the current
414 compilation unit being read. For DWARF version 1, we have to construct
415 the fundamental types on the fly, since no information about the
416 fundamental types is supplied. Each such fundamental type is created by
417 calling a language dependent routine to create the type, and then a
418 pointer to that type is then placed in the array at the index specified
419 by it's FT_<TYPENAME> value. The array has a fixed size set by the
420 FT_NUM_MEMBERS compile time constant, which is the number of predefined
421 fundamental types gdb knows how to construct. */
422
423static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
424
95ff889e
FF
425/* Record the language for the compilation unit which is currently being
426 processed. We know it once we have seen the TAG_compile_unit DIE,
427 and we need it while processing the DIE's for that compilation unit.
428 It is eventually saved in the symtab structure, but we don't finalize
429 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
430 compilation unit. We also need to get and save a pointer to the
431 language struct for this language, so we can call the language
432 dependent routines for doing things such as creating fundamental
433 types. */
95ff889e
FF
434
435static enum language cu_language;
bf229b4e 436static const struct language_defn *cu_language_defn;
95ff889e 437
35f5886e 438/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
439 about ordering within this file. */
440
b607efe7
FF
441static void
442free_utypes PARAMS ((PTR));
443
13b5a7ff
FF
444static int
445attribute_size PARAMS ((unsigned int));
446
306d27ca 447static CORE_ADDR
13b5a7ff 448target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 449
1ab3bf1b
JG
450static void
451add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
452
2dbde378
FF
453static void
454handle_producer PARAMS ((char *));
455
1ab3bf1b
JG
456static void
457read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 458
58050209 459static void
1ab3bf1b 460read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
461
462static void
1ab3bf1b
JG
463read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
464 struct objfile *));
35f5886e 465
35f5886e 466static void
1ab3bf1b 467scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 468
35f5886e 469static void
d5931d79
JG
470scan_compilation_units PARAMS ((char *, char *, file_ptr,
471 file_ptr, struct objfile *));
35f5886e
FF
472
473static void
1ab3bf1b 474add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 475
35f5886e 476static void
95967e73 477basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
478
479static void
95967e73 480completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
481
482static void
483dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
484
485static void
486psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 487
c701c14c 488static void
1ab3bf1b 489read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
490
491static void
1ab3bf1b 492process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
493
494static void
1ab3bf1b
JG
495read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
496 struct objfile *));
35f5886e
FF
497
498static struct type *
84ffdec2 499decode_array_element_type PARAMS ((char *));
35f5886e
FF
500
501static struct type *
85f0a848 502decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
503
504static void
1ab3bf1b 505dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 506
9e4c1921 507static void
1ab3bf1b 508read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 509
ec16f701
FF
510static void
511read_tag_string_type PARAMS ((struct dieinfo *dip));
512
35f5886e 513static void
1ab3bf1b 514read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
515
516static void
1ab3bf1b 517read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
518
519static struct type *
1ab3bf1b 520struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
521
522static struct type *
1ab3bf1b 523enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 524
35f5886e 525static void
1ab3bf1b 526decode_line_numbers PARAMS ((char *));
35f5886e
FF
527
528static struct type *
1ab3bf1b 529decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
530
531static struct type *
1ab3bf1b 532decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
533
534static struct type *
1ab3bf1b 535decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
536
537static struct type *
1c92ca6f 538decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
539
540static struct type *
1ab3bf1b 541decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
542
543static char *
1ab3bf1b 544create_name PARAMS ((char *, struct obstack *));
35f5886e 545
35f5886e 546static struct type *
13b5a7ff 547lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
548
549static struct type *
13b5a7ff 550alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
551
552static struct symbol *
1ab3bf1b 553new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 554
95ff889e
FF
555static void
556synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
557 struct type *));
558
35f5886e 559static int
1ab3bf1b 560locval PARAMS ((char *));
35f5886e 561
95ff889e
FF
562static void
563set_cu_language PARAMS ((struct dieinfo *));
564
bf229b4e
FF
565static struct type *
566dwarf_fundamental_type PARAMS ((struct objfile *, int));
567
568
569/*
570
571LOCAL FUNCTION
572
573 dwarf_fundamental_type -- lookup or create a fundamental type
574
575SYNOPSIS
576
577 struct type *
578 dwarf_fundamental_type (struct objfile *objfile, int typeid)
579
580DESCRIPTION
581
582 DWARF version 1 doesn't supply any fundamental type information,
583 so gdb has to construct such types. It has a fixed number of
584 fundamental types that it knows how to construct, which is the
585 union of all types that it knows how to construct for all languages
586 that it knows about. These are enumerated in gdbtypes.h.
587
588 As an example, assume we find a DIE that references a DWARF
589 fundamental type of FT_integer. We first look in the ftypes
590 array to see if we already have such a type, indexed by the
591 gdb internal value of FT_INTEGER. If so, we simply return a
592 pointer to that type. If not, then we ask an appropriate
593 language dependent routine to create a type FT_INTEGER, using
594 defaults reasonable for the current target machine, and install
595 that type in ftypes for future reference.
596
597RETURNS
598
599 Pointer to a fundamental type.
600
601*/
602
603static struct type *
604dwarf_fundamental_type (objfile, typeid)
605 struct objfile *objfile;
606 int typeid;
607{
608 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
609 {
610 error ("internal error - invalid fundamental type id %d", typeid);
611 }
612
613 /* Look for this particular type in the fundamental type vector. If one is
614 not found, create and install one appropriate for the current language
615 and the current target machine. */
616
617 if (ftypes[typeid] == NULL)
618 {
619 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
620 }
621
622 return (ftypes[typeid]);
623}
624
95ff889e
FF
625/*
626
627LOCAL FUNCTION
628
629 set_cu_language -- set local copy of language for compilation unit
630
631SYNOPSIS
632
633 void
634 set_cu_language (struct dieinfo *dip)
635
636DESCRIPTION
637
638 Decode the language attribute for a compilation unit DIE and
639 remember what the language was. We use this at various times
640 when processing DIE's for a given compilation unit.
641
642RETURNS
643
644 No return value.
645
646 */
647
648static void
649set_cu_language (dip)
650 struct dieinfo *dip;
651{
652 switch (dip -> at_language)
653 {
654 case LANG_C89:
655 case LANG_C:
656 cu_language = language_c;
657 break;
658 case LANG_C_PLUS_PLUS:
659 cu_language = language_cplus;
660 break;
e58de8a2
FF
661 case LANG_CHILL:
662 cu_language = language_chill;
663 break;
664 case LANG_MODULA2:
665 cu_language = language_m2;
666 break;
95ff889e
FF
667 case LANG_ADA83:
668 case LANG_COBOL74:
669 case LANG_COBOL85:
670 case LANG_FORTRAN77:
671 case LANG_FORTRAN90:
672 case LANG_PASCAL83:
2e4964ad 673 /* We don't know anything special about these yet. */
95ff889e
FF
674 cu_language = language_unknown;
675 break;
2e4964ad
FF
676 default:
677 /* If no at_language, try to deduce one from the filename */
678 cu_language = deduce_language_from_filename (dip -> at_name);
679 break;
95ff889e 680 }
bf229b4e 681 cu_language_defn = language_def (cu_language);
95ff889e
FF
682}
683
35f5886e
FF
684/*
685
686GLOBAL FUNCTION
687
688 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
689
690SYNOPSIS
691
d5931d79 692 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 693 struct section_offsets *section_offsets,
d5931d79
JG
694 int mainline, file_ptr dbfoff, unsigned int dbfsize,
695 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
696
697DESCRIPTION
698
699 This function is called upon to build partial symtabs from files
700 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
701
d5931d79 702 It is passed a bfd* containing the DIES
35f5886e
FF
703 and line number information, the corresponding filename for that
704 file, a base address for relocating the symbols, a flag indicating
705 whether or not this debugging information is from a "main symbol
706 table" rather than a shared library or dynamically linked file,
707 and file offset/size pairs for the DIE information and line number
708 information.
709
710RETURNS
711
712 No return value.
713
714 */
715
716void
d5931d79
JG
717dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
718 lnoffset, lnsize)
719 struct objfile *objfile;
2670f34d 720 struct section_offsets *section_offsets;
1ab3bf1b 721 int mainline;
d5931d79 722 file_ptr dbfoff;
4090fe1c 723 unsigned int dbfsize;
d5931d79 724 file_ptr lnoffset;
1ab3bf1b 725 unsigned int lnsize;
35f5886e 726{
d5931d79 727 bfd *abfd = objfile->obfd;
35f5886e
FF
728 struct cleanup *back_to;
729
95967e73 730 current_objfile = objfile;
4090fe1c 731 dbsize = dbfsize;
35f5886e
FF
732 dbbase = xmalloc (dbsize);
733 dbroff = 0;
987622b5 734 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
d5931d79 735 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
736 {
737 free (dbbase);
d5931d79 738 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
739 }
740 back_to = make_cleanup (free, dbbase);
741
742 /* If we are reinitializing, or if we have never loaded syms yet, init.
743 Since we have no idea how many DIES we are looking at, we just guess
744 some arbitrary value. */
745
13b5a7ff
FF
746 if (mainline || objfile -> global_psymbols.size == 0 ||
747 objfile -> static_psymbols.size == 0)
35f5886e 748 {
1ab3bf1b 749 init_psymbol_list (objfile, 1024);
35f5886e
FF
750 }
751
84ffdec2 752 /* Save the relocation factor where everybody can see it. */
f8b76e70 753
2670f34d
JG
754 base_section_offsets = section_offsets;
755 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 756
35f5886e
FF
757 /* Follow the compilation unit sibling chain, building a partial symbol
758 table entry for each one. Save enough information about each compilation
759 unit to locate the full DWARF information later. */
760
d5931d79 761 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 762
35f5886e 763 do_cleanups (back_to);
95967e73 764 current_objfile = NULL;
35f5886e
FF
765}
766
35f5886e
FF
767/*
768
35f5886e
FF
769LOCAL FUNCTION
770
771 read_lexical_block_scope -- process all dies in a lexical block
772
773SYNOPSIS
774
775 static void read_lexical_block_scope (struct dieinfo *dip,
776 char *thisdie, char *enddie)
777
778DESCRIPTION
779
780 Process all the DIES contained within a lexical block scope.
781 Start a new scope, process the dies, and then close the scope.
782
783 */
784
785static void
1ab3bf1b
JG
786read_lexical_block_scope (dip, thisdie, enddie, objfile)
787 struct dieinfo *dip;
788 char *thisdie;
789 char *enddie;
790 struct objfile *objfile;
35f5886e 791{
4d315a07
FF
792 register struct context_stack *new;
793
4ed3a9ea 794 push_context (0, dip -> at_low_pc);
13b5a7ff 795 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
796 new = pop_context ();
797 if (local_symbols != NULL)
798 {
799 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 800 dip -> at_high_pc, objfile);
4d315a07
FF
801 }
802 local_symbols = new -> locals;
35f5886e
FF
803}
804
805/*
806
807LOCAL FUNCTION
808
809 lookup_utype -- look up a user defined type from die reference
810
811SYNOPSIS
812
13b5a7ff 813 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
814
815DESCRIPTION
816
817 Given a DIE reference, lookup the user defined type associated with
818 that DIE, if it has been registered already. If not registered, then
819 return NULL. Alloc_utype() can be called to register an empty
820 type for this reference, which will be filled in later when the
821 actual referenced DIE is processed.
822 */
823
824static struct type *
13b5a7ff
FF
825lookup_utype (die_ref)
826 DIE_REF die_ref;
35f5886e
FF
827{
828 struct type *type = NULL;
829 int utypeidx;
830
13b5a7ff 831 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
832 if ((utypeidx < 0) || (utypeidx >= numutypes))
833 {
51b80b00 834 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
835 }
836 else
837 {
838 type = *(utypes + utypeidx);
839 }
840 return (type);
841}
842
843
844/*
845
846LOCAL FUNCTION
847
848 alloc_utype -- add a user defined type for die reference
849
850SYNOPSIS
851
13b5a7ff 852 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
853
854DESCRIPTION
855
13b5a7ff 856 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
857 defined type UTYPEP, register that this reference has a user
858 defined type and either use the specified type in UTYPEP or
859 make a new empty type that will be filled in later.
860
861 We should only be called after calling lookup_utype() to verify that
13b5a7ff 862 there is not currently a type registered for DIE_REF.
35f5886e
FF
863 */
864
865static struct type *
13b5a7ff
FF
866alloc_utype (die_ref, utypep)
867 DIE_REF die_ref;
1ab3bf1b 868 struct type *utypep;
35f5886e
FF
869{
870 struct type **typep;
871 int utypeidx;
872
13b5a7ff 873 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
874 typep = utypes + utypeidx;
875 if ((utypeidx < 0) || (utypeidx >= numutypes))
876 {
bf229b4e 877 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 878 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
879 }
880 else if (*typep != NULL)
881 {
882 utypep = *typep;
51b80b00 883 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
884 }
885 else
886 {
887 if (utypep == NULL)
888 {
8050a57b 889 utypep = alloc_type (current_objfile);
35f5886e
FF
890 }
891 *typep = utypep;
892 }
893 return (utypep);
894}
895
4a1d2ce2
FF
896/*
897
898LOCAL FUNCTION
899
900 free_utypes -- free the utypes array and reset pointer & count
901
902SYNOPSIS
903
904 static void free_utypes (PTR dummy)
905
906DESCRIPTION
907
908 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
909 and set numutypes back to zero. This ensures that the utypes does not get
910 referenced after being freed.
911 */
912
913static void
914free_utypes (dummy)
915 PTR dummy;
916{
917 free (utypes);
918 utypes = NULL;
919 numutypes = 0;
920}
921
922
35f5886e
FF
923/*
924
925LOCAL FUNCTION
926
927 decode_die_type -- return a type for a specified die
928
929SYNOPSIS
930
931 static struct type *decode_die_type (struct dieinfo *dip)
932
933DESCRIPTION
934
935 Given a pointer to a die information structure DIP, decode the
936 type of the die and return a pointer to the decoded type. All
937 dies without specific types default to type int.
938 */
939
940static struct type *
1ab3bf1b
JG
941decode_die_type (dip)
942 struct dieinfo *dip;
35f5886e
FF
943{
944 struct type *type = NULL;
945
946 if (dip -> at_fund_type != 0)
947 {
948 type = decode_fund_type (dip -> at_fund_type);
949 }
950 else if (dip -> at_mod_fund_type != NULL)
951 {
952 type = decode_mod_fund_type (dip -> at_mod_fund_type);
953 }
954 else if (dip -> at_user_def_type)
955 {
956 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
957 {
958 type = alloc_utype (dip -> at_user_def_type, NULL);
959 }
960 }
961 else if (dip -> at_mod_u_d_type)
962 {
963 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
964 }
965 else
966 {
ac954805 967 type = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
968 }
969 return (type);
970}
971
972/*
973
974LOCAL FUNCTION
975
976 struct_type -- compute and return the type for a struct or union
977
978SYNOPSIS
979
980 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 981 char *enddie, struct objfile *objfile)
35f5886e
FF
982
983DESCRIPTION
984
985 Given pointer to a die information structure for a die which
715cafcb
FF
986 defines a union or structure (and MUST define one or the other),
987 and pointers to the raw die data that define the range of dies which
988 define the members, compute and return the user defined type for the
989 structure or union.
35f5886e
FF
990 */
991
992static struct type *
1ab3bf1b
JG
993struct_type (dip, thisdie, enddie, objfile)
994 struct dieinfo *dip;
995 char *thisdie;
996 char *enddie;
997 struct objfile *objfile;
35f5886e
FF
998{
999 struct type *type;
1000 struct nextfield {
1001 struct nextfield *next;
1002 struct field field;
1003 };
1004 struct nextfield *list = NULL;
1005 struct nextfield *new;
1006 int nfields = 0;
1007 int n;
35f5886e 1008 struct dieinfo mbr;
8b5b6fae 1009 char *nextdie;
50055e94 1010 int anonymous_size;
35f5886e 1011
13b5a7ff 1012 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1013 {
5edf98d7 1014 /* No forward references created an empty type, so install one now */
13b5a7ff 1015 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1016 }
a3723a43 1017 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1018 switch (dip -> die_tag)
35f5886e 1019 {
95ff889e
FF
1020 case TAG_class_type:
1021 TYPE_CODE (type) = TYPE_CODE_CLASS;
95ff889e 1022 break;
715cafcb 1023 case TAG_structure_type:
5edf98d7 1024 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1025 break;
1026 case TAG_union_type:
1027 TYPE_CODE (type) = TYPE_CODE_UNION;
715cafcb
FF
1028 break;
1029 default:
1030 /* Should never happen */
1031 TYPE_CODE (type) = TYPE_CODE_UNDEF;
51b80b00 1032 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1033 break;
35f5886e 1034 }
5edf98d7
FF
1035 /* Some compilers try to be helpful by inventing "fake" names for
1036 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1037 Thanks, but no thanks... */
715cafcb
FF
1038 if (dip -> at_name != NULL
1039 && *dip -> at_name != '~'
1040 && *dip -> at_name != '.')
35f5886e 1041 {
b2bebdb0
JK
1042 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1043 "", "", dip -> at_name);
35f5886e 1044 }
50055e94
FF
1045 /* Use whatever size is known. Zero is a valid size. We might however
1046 wish to check has_at_byte_size to make sure that some byte size was
1047 given explicitly, but DWARF doesn't specify that explicit sizes of
1048 zero have to present, so complaining about missing sizes should
1049 probably not be the default. */
1050 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1051 thisdie += dip -> die_length;
35f5886e
FF
1052 while (thisdie < enddie)
1053 {
95967e73
FF
1054 basicdieinfo (&mbr, thisdie, objfile);
1055 completedieinfo (&mbr, objfile);
13b5a7ff 1056 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1057 {
1058 break;
1059 }
8b5b6fae
FF
1060 else if (mbr.at_sibling != 0)
1061 {
1062 nextdie = dbbase + mbr.at_sibling - dbroff;
1063 }
1064 else
1065 {
13b5a7ff 1066 nextdie = thisdie + mbr.die_length;
8b5b6fae 1067 }
13b5a7ff 1068 switch (mbr.die_tag)
35f5886e
FF
1069 {
1070 case TAG_member:
1071 /* Get space to record the next field's data. */
1072 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1073 new -> next = list;
1074 list = new;
1075 /* Save the data. */
50e0dc41
FF
1076 list -> field.name =
1077 obsavestring (mbr.at_name, strlen (mbr.at_name),
1078 &objfile -> type_obstack);
35f5886e
FF
1079 list -> field.type = decode_die_type (&mbr);
1080 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1081 /* Handle bit fields. */
1082 list -> field.bitsize = mbr.at_bit_size;
b8176214 1083 if (BITS_BIG_ENDIAN)
4db8e515 1084 {
b8176214
ILT
1085 /* For big endian bits, the at_bit_offset gives the
1086 additional bit offset from the MSB of the containing
1087 anonymous object to the MSB of the field. We don't
1088 have to do anything special since we don't need to
1089 know the size of the anonymous object. */
1090 list -> field.bitpos += mbr.at_bit_offset;
1091 }
1092 else
1093 {
1094 /* For little endian bits, we need to have a non-zero
1095 at_bit_size, so that we know we are in fact dealing
1096 with a bitfield. Compute the bit offset to the MSB
1097 of the anonymous object, subtract off the number of
1098 bits from the MSB of the field to the MSB of the
1099 object, and then subtract off the number of bits of
1100 the field itself. The result is the bit offset of
1101 the LSB of the field. */
1102 if (mbr.at_bit_size > 0)
50055e94 1103 {
b8176214
ILT
1104 if (mbr.has_at_byte_size)
1105 {
1106 /* The size of the anonymous object containing
1107 the bit field is explicit, so use the
1108 indicated size (in bytes). */
1109 anonymous_size = mbr.at_byte_size;
1110 }
1111 else
1112 {
1113 /* The size of the anonymous object containing
1114 the bit field matches the size of an object
1115 of the bit field's type. DWARF allows
1116 at_byte_size to be left out in such cases, as
1117 a debug information size optimization. */
1118 anonymous_size = TYPE_LENGTH (list -> field.type);
1119 }
1120 list -> field.bitpos +=
1121 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
50055e94 1122 }
4db8e515 1123 }
35f5886e
FF
1124 nfields++;
1125 break;
1126 default:
8b5b6fae 1127 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1128 break;
1129 }
8b5b6fae 1130 thisdie = nextdie;
35f5886e 1131 }
5edf98d7
FF
1132 /* Now create the vector of fields, and record how big it is. We may
1133 not even have any fields, if this DIE was generated due to a reference
1134 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1135 set, which clues gdb in to the fact that it needs to search elsewhere
1136 for the full structure definition. */
1137 if (nfields == 0)
35f5886e 1138 {
5edf98d7
FF
1139 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1140 }
1141 else
1142 {
1143 TYPE_NFIELDS (type) = nfields;
1144 TYPE_FIELDS (type) = (struct field *)
dac9734e 1145 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1146 /* Copy the saved-up fields into the field vector. */
1147 for (n = nfields; list; list = list -> next)
1148 {
1149 TYPE_FIELD (type, --n) = list -> field;
1150 }
1151 }
35f5886e
FF
1152 return (type);
1153}
1154
1155/*
1156
1157LOCAL FUNCTION
1158
1159 read_structure_scope -- process all dies within struct or union
1160
1161SYNOPSIS
1162
1163 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1164 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1165
1166DESCRIPTION
1167
1168 Called when we find the DIE that starts a structure or union
1169 scope (definition) to process all dies that define the members
1170 of the structure or union. DIP is a pointer to the die info
1171 struct for the DIE that names the structure or union.
1172
1173NOTES
1174
1175 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1176 the DIE has an at_name attribute, since it might be an anonymous
1177 structure or union. This gets the type entered into our set of
1178 user defined types.
1179
1180 However, if the structure is incomplete (an opaque struct/union)
1181 then suppress creating a symbol table entry for it since gdb only
1182 wants to find the one with the complete definition. Note that if
1183 it is complete, we just call new_symbol, which does it's own
1184 checking about whether the struct/union is anonymous or not (and
1185 suppresses creating a symbol table entry itself).
1186
35f5886e
FF
1187 */
1188
1189static void
1ab3bf1b
JG
1190read_structure_scope (dip, thisdie, enddie, objfile)
1191 struct dieinfo *dip;
1192 char *thisdie;
1193 char *enddie;
1194 struct objfile *objfile;
35f5886e
FF
1195{
1196 struct type *type;
1197 struct symbol *sym;
1198
8b5b6fae 1199 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1200 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1201 {
95ff889e
FF
1202 sym = new_symbol (dip, objfile);
1203 if (sym != NULL)
84ce6717
FF
1204 {
1205 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1206 if (cu_language == language_cplus)
1207 {
1208 synthesize_typedef (dip, objfile, type);
1209 }
84ce6717 1210 }
35f5886e
FF
1211 }
1212}
1213
1214/*
1215
1216LOCAL FUNCTION
1217
1218 decode_array_element_type -- decode type of the array elements
1219
1220SYNOPSIS
1221
1222 static struct type *decode_array_element_type (char *scan, char *end)
1223
1224DESCRIPTION
1225
1226 As the last step in decoding the array subscript information for an
1227 array DIE, we need to decode the type of the array elements. We are
1228 passed a pointer to this last part of the subscript information and
1229 must return the appropriate type. If the type attribute is not
1230 recognized, just warn about the problem and return type int.
1231 */
1232
1233static struct type *
84ffdec2 1234decode_array_element_type (scan)
1ab3bf1b 1235 char *scan;
35f5886e
FF
1236{
1237 struct type *typep;
13b5a7ff
FF
1238 DIE_REF die_ref;
1239 unsigned short attribute;
35f5886e 1240 unsigned short fundtype;
13b5a7ff 1241 int nbytes;
35f5886e 1242
13b5a7ff
FF
1243 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1244 current_objfile);
1245 scan += SIZEOF_ATTRIBUTE;
1246 if ((nbytes = attribute_size (attribute)) == -1)
1247 {
51b80b00 1248 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1249 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1250 }
1251 else
1252 {
1253 switch (attribute)
1254 {
1255 case AT_fund_type:
1256 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1257 current_objfile);
1258 typep = decode_fund_type (fundtype);
1259 break;
1260 case AT_mod_fund_type:
1261 typep = decode_mod_fund_type (scan);
1262 break;
1263 case AT_user_def_type:
1264 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1265 current_objfile);
1266 if ((typep = lookup_utype (die_ref)) == NULL)
1267 {
1268 typep = alloc_utype (die_ref, NULL);
1269 }
1270 break;
1271 case AT_mod_u_d_type:
1272 typep = decode_mod_u_d_type (scan);
1273 break;
1274 default:
51b80b00 1275 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1276 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1277 break;
1278 }
35f5886e
FF
1279 }
1280 return (typep);
1281}
1282
1283/*
1284
1285LOCAL FUNCTION
1286
85f0a848 1287 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1288
1289SYNOPSIS
1290
85f0a848
FF
1291 static struct type *
1292 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1293
1294DESCRIPTION
1295
1296 The array subscripts and the data type of the elements of an
1297 array are described by a list of data items, stored as a block
1298 of contiguous bytes. There is a data item describing each array
1299 dimension, and a final data item describing the element type.
1300 The data items are ordered the same as their appearance in the
1301 source (I.E. leftmost dimension first, next to leftmost second,
1302 etc).
1303
85f0a848
FF
1304 The data items describing each array dimension consist of four
1305 parts: (1) a format specifier, (2) type type of the subscript
1306 index, (3) a description of the low bound of the array dimension,
1307 and (4) a description of the high bound of the array dimension.
1308
1309 The last data item is the description of the type of each of
1310 the array elements.
1311
35f5886e 1312 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1313 containing the remaining data items, and a pointer to the first
1314 byte past the data. This function recursively decodes the
1315 remaining data items and returns a type.
1316
1317 If we somehow fail to decode some data, we complain about it
1318 and return a type "array of int".
35f5886e
FF
1319
1320BUGS
1321 FIXME: This code only implements the forms currently used
1322 by the AT&T and GNU C compilers.
1323
1324 The end pointer is supplied for error checking, maybe we should
1325 use it for that...
1326 */
1327
1328static struct type *
85f0a848 1329decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1330 char *scan;
1331 char *end;
35f5886e 1332{
85f0a848
FF
1333 struct type *typep = NULL; /* Array type we are building */
1334 struct type *nexttype; /* Type of each element (may be array) */
1335 struct type *indextype; /* Type of this index */
a8a69e63 1336 struct type *rangetype;
13b5a7ff
FF
1337 unsigned int format;
1338 unsigned short fundtype;
1339 unsigned long lowbound;
1340 unsigned long highbound;
1341 int nbytes;
35f5886e 1342
13b5a7ff
FF
1343 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1344 current_objfile);
1345 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1346 switch (format)
1347 {
1348 case FMT_ET:
84ffdec2 1349 typep = decode_array_element_type (scan);
35f5886e
FF
1350 break;
1351 case FMT_FT_C_C:
13b5a7ff
FF
1352 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1353 current_objfile);
85f0a848 1354 indextype = decode_fund_type (fundtype);
13b5a7ff 1355 scan += SIZEOF_FMT_FT;
160be0de
FF
1356 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1357 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1358 scan += nbytes;
1359 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1360 scan += nbytes;
85f0a848
FF
1361 nexttype = decode_subscript_data_item (scan, end);
1362 if (nexttype == NULL)
35f5886e 1363 {
85f0a848 1364 /* Munged subscript data or other problem, fake it. */
51b80b00 1365 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1366 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1367 }
a8a69e63
FF
1368 rangetype = create_range_type ((struct type *) NULL, indextype,
1369 lowbound, highbound);
1370 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1371 break;
1372 case FMT_FT_C_X:
1373 case FMT_FT_X_C:
1374 case FMT_FT_X_X:
1375 case FMT_UT_C_C:
1376 case FMT_UT_C_X:
1377 case FMT_UT_X_C:
1378 case FMT_UT_X_X:
51b80b00 1379 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1380 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1381 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1382 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1383 break;
1384 default:
51b80b00 1385 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1386 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1387 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1388 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1389 break;
1390 }
1391 return (typep);
1392}
1393
1394/*
1395
1396LOCAL FUNCTION
1397
4d315a07 1398 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1399
1400SYNOPSIS
1401
4d315a07 1402 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1403
1404DESCRIPTION
1405
1406 Extract all information from a TAG_array_type DIE and add to
1407 the user defined type vector.
1408 */
1409
1410static void
1ab3bf1b
JG
1411dwarf_read_array_type (dip)
1412 struct dieinfo *dip;
35f5886e
FF
1413{
1414 struct type *type;
af213624 1415 struct type *utype;
35f5886e
FF
1416 char *sub;
1417 char *subend;
13b5a7ff
FF
1418 unsigned short blocksz;
1419 int nbytes;
35f5886e
FF
1420
1421 if (dip -> at_ordering != ORD_row_major)
1422 {
1423 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1424 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1425 }
1426 if ((sub = dip -> at_subscr_data) != NULL)
1427 {
13b5a7ff
FF
1428 nbytes = attribute_size (AT_subscr_data);
1429 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1430 subend = sub + nbytes + blocksz;
1431 sub += nbytes;
85f0a848
FF
1432 type = decode_subscript_data_item (sub, subend);
1433 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1434 {
85f0a848
FF
1435 /* Install user defined type that has not been referenced yet. */
1436 alloc_utype (dip -> die_ref, type);
1437 }
1438 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1439 {
1440 /* Ick! A forward ref has already generated a blank type in our
1441 slot, and this type probably already has things pointing to it
1442 (which is what caused it to be created in the first place).
1443 If it's just a place holder we can plop our fully defined type
1444 on top of it. We can't recover the space allocated for our
1445 new type since it might be on an obstack, but we could reuse
1446 it if we kept a list of them, but it might not be worth it
1447 (FIXME). */
1448 *utype = *type;
35f5886e
FF
1449 }
1450 else
1451 {
85f0a848
FF
1452 /* Double ick! Not only is a type already in our slot, but
1453 someone has decorated it. Complain and leave it alone. */
51b80b00 1454 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1455 }
1456 }
1457}
1458
1459/*
1460
9e4c1921
FF
1461LOCAL FUNCTION
1462
1463 read_tag_pointer_type -- read TAG_pointer_type DIE
1464
1465SYNOPSIS
1466
1467 static void read_tag_pointer_type (struct dieinfo *dip)
1468
1469DESCRIPTION
1470
1471 Extract all information from a TAG_pointer_type DIE and add to
1472 the user defined type vector.
1473 */
1474
1475static void
1ab3bf1b
JG
1476read_tag_pointer_type (dip)
1477 struct dieinfo *dip;
9e4c1921
FF
1478{
1479 struct type *type;
1480 struct type *utype;
9e4c1921
FF
1481
1482 type = decode_die_type (dip);
13b5a7ff 1483 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1484 {
1485 utype = lookup_pointer_type (type);
4ed3a9ea 1486 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1487 }
1488 else
1489 {
1490 TYPE_TARGET_TYPE (utype) = type;
1491 TYPE_POINTER_TYPE (type) = utype;
1492
1493 /* We assume the machine has only one representation for pointers! */
1494 /* FIXME: This confuses host<->target data representations, and is a
1495 poor assumption besides. */
1496
1497 TYPE_LENGTH (utype) = sizeof (char *);
1498 TYPE_CODE (utype) = TYPE_CODE_PTR;
1499 }
1500}
1501
1502/*
1503
ec16f701
FF
1504LOCAL FUNCTION
1505
1506 read_tag_string_type -- read TAG_string_type DIE
1507
1508SYNOPSIS
1509
1510 static void read_tag_string_type (struct dieinfo *dip)
1511
1512DESCRIPTION
1513
1514 Extract all information from a TAG_string_type DIE and add to
1515 the user defined type vector. It isn't really a user defined
1516 type, but it behaves like one, with other DIE's using an
1517 AT_user_def_type attribute to reference it.
1518 */
1519
1520static void
1521read_tag_string_type (dip)
1522 struct dieinfo *dip;
1523{
1524 struct type *utype;
1525 struct type *indextype;
1526 struct type *rangetype;
1527 unsigned long lowbound = 0;
1528 unsigned long highbound;
1529
b6236d6e 1530 if (dip -> has_at_byte_size)
ec16f701 1531 {
b6236d6e
FF
1532 /* A fixed bounds string */
1533 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1534 }
1535 else
1536 {
b6236d6e
FF
1537 /* A varying length string. Stub for now. (FIXME) */
1538 highbound = 1;
1539 }
1540 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1541 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1542 highbound);
1543
1544 utype = lookup_utype (dip -> die_ref);
1545 if (utype == NULL)
1546 {
1547 /* No type defined, go ahead and create a blank one to use. */
1548 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1549 }
1550 else
1551 {
1552 /* Already a type in our slot due to a forward reference. Make sure it
1553 is a blank one. If not, complain and leave it alone. */
1554 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1555 {
b6236d6e
FF
1556 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1557 return;
ec16f701 1558 }
ec16f701 1559 }
b6236d6e
FF
1560
1561 /* Create the string type using the blank type we either found or created. */
1562 utype = create_string_type (utype, rangetype);
ec16f701
FF
1563}
1564
1565/*
1566
35f5886e
FF
1567LOCAL FUNCTION
1568
1569 read_subroutine_type -- process TAG_subroutine_type dies
1570
1571SYNOPSIS
1572
1573 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1574 char *enddie)
1575
1576DESCRIPTION
1577
1578 Handle DIES due to C code like:
1579
1580 struct foo {
1581 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1582 int b;
1583 };
1584
1585NOTES
1586
1587 The parameter DIES are currently ignored. See if gdb has a way to
1588 include this info in it's type system, and decode them if so. Is
1589 this what the type structure's "arg_types" field is for? (FIXME)
1590 */
1591
1592static void
1ab3bf1b
JG
1593read_subroutine_type (dip, thisdie, enddie)
1594 struct dieinfo *dip;
1595 char *thisdie;
1596 char *enddie;
35f5886e 1597{
af213624
FF
1598 struct type *type; /* Type that this function returns */
1599 struct type *ftype; /* Function that returns above type */
35f5886e 1600
af213624
FF
1601 /* Decode the type that this subroutine returns */
1602
35f5886e 1603 type = decode_die_type (dip);
af213624
FF
1604
1605 /* Check to see if we already have a partially constructed user
1606 defined type for this DIE, from a forward reference. */
1607
13b5a7ff 1608 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1609 {
1610 /* This is the first reference to one of these types. Make
1611 a new one and place it in the user defined types. */
1612 ftype = lookup_function_type (type);
4ed3a9ea 1613 alloc_utype (dip -> die_ref, ftype);
af213624 1614 }
85f0a848 1615 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1616 {
1617 /* We have an existing partially constructed type, so bash it
1618 into the correct type. */
1619 TYPE_TARGET_TYPE (ftype) = type;
af213624
FF
1620 TYPE_LENGTH (ftype) = 1;
1621 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1622 }
85f0a848
FF
1623 else
1624 {
51b80b00 1625 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1626 }
35f5886e
FF
1627}
1628
1629/*
1630
1631LOCAL FUNCTION
1632
1633 read_enumeration -- process dies which define an enumeration
1634
1635SYNOPSIS
1636
1637 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1638 char *enddie, struct objfile *objfile)
35f5886e
FF
1639
1640DESCRIPTION
1641
1642 Given a pointer to a die which begins an enumeration, process all
1643 the dies that define the members of the enumeration.
1644
1645NOTES
1646
1647 Note that we need to call enum_type regardless of whether or not we
1648 have a symbol, since we might have an enum without a tag name (thus
1649 no symbol for the tagname).
1650 */
1651
1652static void
1ab3bf1b
JG
1653read_enumeration (dip, thisdie, enddie, objfile)
1654 struct dieinfo *dip;
1655 char *thisdie;
1656 char *enddie;
1657 struct objfile *objfile;
35f5886e
FF
1658{
1659 struct type *type;
1660 struct symbol *sym;
1661
1ab3bf1b 1662 type = enum_type (dip, objfile);
95ff889e
FF
1663 sym = new_symbol (dip, objfile);
1664 if (sym != NULL)
35f5886e
FF
1665 {
1666 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1667 if (cu_language == language_cplus)
1668 {
1669 synthesize_typedef (dip, objfile, type);
1670 }
35f5886e
FF
1671 }
1672}
1673
1674/*
1675
1676LOCAL FUNCTION
1677
1678 enum_type -- decode and return a type for an enumeration
1679
1680SYNOPSIS
1681
1ab3bf1b 1682 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1683
1684DESCRIPTION
1685
1686 Given a pointer to a die information structure for the die which
1687 starts an enumeration, process all the dies that define the members
1688 of the enumeration and return a type pointer for the enumeration.
98618bf7 1689
715cafcb
FF
1690 At the same time, for each member of the enumeration, create a
1691 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1692 and give it the type of the enumeration itself.
1693
1694NOTES
1695
98618bf7
FF
1696 Note that the DWARF specification explicitly mandates that enum
1697 constants occur in reverse order from the source program order,
1698 for "consistency" and because this ordering is easier for many
1ab3bf1b 1699 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1700 Entries). Because gdb wants to see the enum members in program
1701 source order, we have to ensure that the order gets reversed while
98618bf7 1702 we are processing them.
35f5886e
FF
1703 */
1704
1705static struct type *
1ab3bf1b
JG
1706enum_type (dip, objfile)
1707 struct dieinfo *dip;
1708 struct objfile *objfile;
35f5886e
FF
1709{
1710 struct type *type;
1711 struct nextfield {
1712 struct nextfield *next;
1713 struct field field;
1714 };
1715 struct nextfield *list = NULL;
1716 struct nextfield *new;
1717 int nfields = 0;
1718 int n;
35f5886e
FF
1719 char *scan;
1720 char *listend;
13b5a7ff 1721 unsigned short blocksz;
715cafcb 1722 struct symbol *sym;
13b5a7ff 1723 int nbytes;
09af5868 1724 int unsigned_enum = 1;
35f5886e 1725
13b5a7ff 1726 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1727 {
84ce6717 1728 /* No forward references created an empty type, so install one now */
13b5a7ff 1729 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1730 }
1731 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1732 /* Some compilers try to be helpful by inventing "fake" names for
1733 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1734 Thanks, but no thanks... */
715cafcb
FF
1735 if (dip -> at_name != NULL
1736 && *dip -> at_name != '~'
1737 && *dip -> at_name != '.')
35f5886e 1738 {
b2bebdb0
JK
1739 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1740 "", "", dip -> at_name);
35f5886e 1741 }
715cafcb 1742 if (dip -> at_byte_size != 0)
35f5886e
FF
1743 {
1744 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1745 }
35f5886e
FF
1746 if ((scan = dip -> at_element_list) != NULL)
1747 {
768be6e1
FF
1748 if (dip -> short_element_list)
1749 {
13b5a7ff 1750 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1751 }
1752 else
1753 {
13b5a7ff 1754 nbytes = attribute_size (AT_element_list);
768be6e1 1755 }
13b5a7ff
FF
1756 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1757 listend = scan + nbytes + blocksz;
1758 scan += nbytes;
35f5886e
FF
1759 while (scan < listend)
1760 {
1761 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1762 new -> next = list;
1763 list = new;
1764 list -> field.type = NULL;
1765 list -> field.bitsize = 0;
13b5a7ff
FF
1766 list -> field.bitpos =
1767 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1768 objfile);
1769 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1770 list -> field.name = obsavestring (scan, strlen (scan),
1771 &objfile -> type_obstack);
35f5886e
FF
1772 scan += strlen (scan) + 1;
1773 nfields++;
715cafcb 1774 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1775 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1776 sizeof (struct symbol));
4ed3a9ea 1777 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1778 SYMBOL_NAME (sym) = create_name (list -> field.name,
1779 &objfile->symbol_obstack);
7532cf10 1780 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1781 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1782 SYMBOL_CLASS (sym) = LOC_CONST;
1783 SYMBOL_TYPE (sym) = type;
1784 SYMBOL_VALUE (sym) = list -> field.bitpos;
09af5868
PS
1785 if (SYMBOL_VALUE (sym) < 0)
1786 unsigned_enum = 0;
4d315a07 1787 add_symbol_to_list (sym, list_in_scope);
35f5886e 1788 }
84ce6717 1789 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1790 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1791 reverse order from how they were inserted. If we have no fields
1792 (this is apparently possible in C++) then skip building a field
1793 vector. */
1794 if (nfields > 0)
1795 {
09af5868
PS
1796 if (unsigned_enum)
1797 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
84ce6717
FF
1798 TYPE_NFIELDS (type) = nfields;
1799 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1800 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1801 /* Copy the saved-up fields into the field vector. */
1802 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1803 {
1804 TYPE_FIELD (type, n++) = list -> field;
1805 }
1806 }
35f5886e 1807 }
35f5886e
FF
1808 return (type);
1809}
1810
1811/*
1812
1813LOCAL FUNCTION
1814
1815 read_func_scope -- process all dies within a function scope
1816
35f5886e
FF
1817DESCRIPTION
1818
1819 Process all dies within a given function scope. We are passed
1820 a die information structure pointer DIP for the die which
1821 starts the function scope, and pointers into the raw die data
1822 that define the dies within the function scope.
1823
1824 For now, we ignore lexical block scopes within the function.
1825 The problem is that AT&T cc does not define a DWARF lexical
1826 block scope for the function itself, while gcc defines a
1827 lexical block scope for the function. We need to think about
1828 how to handle this difference, or if it is even a problem.
1829 (FIXME)
1830 */
1831
1832static void
1ab3bf1b
JG
1833read_func_scope (dip, thisdie, enddie, objfile)
1834 struct dieinfo *dip;
1835 char *thisdie;
1836 char *enddie;
1837 struct objfile *objfile;
35f5886e 1838{
4d315a07 1839 register struct context_stack *new;
35f5886e 1840
255181a9
PS
1841 /* AT_name is absent if the function is described with an
1842 AT_abstract_origin tag.
1843 Ignore the function description for now to avoid GDB core dumps.
1844 FIXME: Add code to handle AT_abstract_origin tags properly. */
1845 if (dip -> at_name == NULL)
1846 {
1847 complain (&missing_at_name, DIE_ID);
1848 return;
1849 }
1850
5e2e79f8
FF
1851 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1852 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1853 {
5e2e79f8
FF
1854 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1855 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1856 }
4d315a07 1857 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1858 {
5e2e79f8
FF
1859 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1860 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1861 }
4d315a07 1862 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1863 new -> name = new_symbol (dip, objfile);
4d315a07 1864 list_in_scope = &local_symbols;
13b5a7ff 1865 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1866 new = pop_context ();
1867 /* Make a block for the local symbols within. */
1868 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1869 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1870 list_in_scope = &file_symbols;
35f5886e
FF
1871}
1872
2dbde378
FF
1873
1874/*
1875
1876LOCAL FUNCTION
1877
1878 handle_producer -- process the AT_producer attribute
1879
1880DESCRIPTION
1881
1882 Perform any operations that depend on finding a particular
1883 AT_producer attribute.
1884
1885 */
1886
1887static void
1888handle_producer (producer)
1889 char *producer;
1890{
1891
1892 /* If this compilation unit was compiled with g++ or gcc, then set the
1893 processing_gcc_compilation flag. */
1894
1895 processing_gcc_compilation =
1896 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1897 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1898 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1899
1900 /* Select a demangling style if we can identify the producer and if
1901 the current style is auto. We leave the current style alone if it
1902 is not auto. We also leave the demangling style alone if we find a
1903 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1904
3dc755fb 1905 if (AUTO_DEMANGLING)
2dbde378
FF
1906 {
1907 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1908 {
1909 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1910 }
1911 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1912 {
1913 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1914 }
2dbde378 1915 }
2dbde378
FF
1916}
1917
1918
35f5886e
FF
1919/*
1920
1921LOCAL FUNCTION
1922
1923 read_file_scope -- process all dies within a file scope
1924
35f5886e
FF
1925DESCRIPTION
1926
1927 Process all dies within a given file scope. We are passed a
1928 pointer to the die information structure for the die which
1929 starts the file scope, and pointers into the raw die data which
1930 mark the range of dies within the file scope.
1931
1932 When the partial symbol table is built, the file offset for the line
1933 number table for each compilation unit is saved in the partial symbol
1934 table entry for that compilation unit. As the symbols for each
1935 compilation unit are read, the line number table is read into memory
1936 and the variable lnbase is set to point to it. Thus all we have to
1937 do is use lnbase to access the line number table for the current
1938 compilation unit.
1939 */
1940
1941static void
1ab3bf1b
JG
1942read_file_scope (dip, thisdie, enddie, objfile)
1943 struct dieinfo *dip;
1944 char *thisdie;
1945 char *enddie;
1946 struct objfile *objfile;
35f5886e
FF
1947{
1948 struct cleanup *back_to;
4d315a07 1949 struct symtab *symtab;
35f5886e 1950
5e2e79f8
FF
1951 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1952 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1953 {
5e2e79f8
FF
1954 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1955 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1956 }
95ff889e 1957 set_cu_language (dip);
4d315a07
FF
1958 if (dip -> at_producer != NULL)
1959 {
2dbde378 1960 handle_producer (dip -> at_producer);
4d315a07 1961 }
35f5886e
FF
1962 numutypes = (enddie - thisdie) / 4;
1963 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
4a1d2ce2 1964 back_to = make_cleanup (free_utypes, NULL);
4ed3a9ea 1965 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1966 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1967 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1968 decode_line_numbers (lnbase);
13b5a7ff 1969 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b 1970
436d4143 1971 symtab = end_symtab (dip -> at_high_pc, objfile, 0);
7b5d9650 1972 if (symtab != NULL)
4d315a07 1973 {
95ff889e 1974 symtab -> language = cu_language;
7b5d9650 1975 }
35f5886e 1976 do_cleanups (back_to);
35f5886e
FF
1977}
1978
1979/*
1980
35f5886e
FF
1981LOCAL FUNCTION
1982
1983 process_dies -- process a range of DWARF Information Entries
1984
1985SYNOPSIS
1986
8b5b6fae
FF
1987 static void process_dies (char *thisdie, char *enddie,
1988 struct objfile *objfile)
35f5886e
FF
1989
1990DESCRIPTION
1991
1992 Process all DIE's in a specified range. May be (and almost
1993 certainly will be) called recursively.
1994 */
1995
1996static void
1ab3bf1b
JG
1997process_dies (thisdie, enddie, objfile)
1998 char *thisdie;
1999 char *enddie;
2000 struct objfile *objfile;
35f5886e
FF
2001{
2002 char *nextdie;
2003 struct dieinfo di;
2004
2005 while (thisdie < enddie)
2006 {
95967e73 2007 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2008 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2009 {
2010 break;
2011 }
13b5a7ff 2012 else if (di.die_tag == TAG_padding)
35f5886e 2013 {
13b5a7ff 2014 nextdie = thisdie + di.die_length;
35f5886e
FF
2015 }
2016 else
2017 {
95967e73 2018 completedieinfo (&di, objfile);
35f5886e
FF
2019 if (di.at_sibling != 0)
2020 {
2021 nextdie = dbbase + di.at_sibling - dbroff;
2022 }
2023 else
2024 {
13b5a7ff 2025 nextdie = thisdie + di.die_length;
35f5886e 2026 }
9fdb3f7a
JK
2027#ifdef SMASH_TEXT_ADDRESS
2028 /* I think that these are always text, not data, addresses. */
2029 SMASH_TEXT_ADDRESS (di.at_low_pc);
2030 SMASH_TEXT_ADDRESS (di.at_high_pc);
2031#endif
13b5a7ff 2032 switch (di.die_tag)
35f5886e
FF
2033 {
2034 case TAG_compile_unit:
4386eff2
PS
2035 /* Skip Tag_compile_unit if we are already inside a compilation
2036 unit, we are unable to handle nested compilation units
2037 properly (FIXME). */
2038 if (current_subfile == NULL)
2039 read_file_scope (&di, thisdie, nextdie, objfile);
2040 else
2041 nextdie = thisdie + di.die_length;
35f5886e
FF
2042 break;
2043 case TAG_global_subroutine:
2044 case TAG_subroutine:
2d6186f4 2045 if (di.has_at_low_pc)
35f5886e 2046 {
a048c8f5 2047 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2048 }
2049 break;
2050 case TAG_lexical_block:
a048c8f5 2051 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2052 break;
95ff889e 2053 case TAG_class_type:
35f5886e
FF
2054 case TAG_structure_type:
2055 case TAG_union_type:
8b5b6fae 2056 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2057 break;
2058 case TAG_enumeration_type:
1ab3bf1b 2059 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2060 break;
2061 case TAG_subroutine_type:
2062 read_subroutine_type (&di, thisdie, nextdie);
2063 break;
2064 case TAG_array_type:
4d315a07 2065 dwarf_read_array_type (&di);
35f5886e 2066 break;
9e4c1921
FF
2067 case TAG_pointer_type:
2068 read_tag_pointer_type (&di);
2069 break;
ec16f701
FF
2070 case TAG_string_type:
2071 read_tag_string_type (&di);
2072 break;
35f5886e 2073 default:
4ed3a9ea 2074 new_symbol (&di, objfile);
35f5886e
FF
2075 break;
2076 }
2077 }
2078 thisdie = nextdie;
2079 }
2080}
2081
2082/*
2083
35f5886e
FF
2084LOCAL FUNCTION
2085
2086 decode_line_numbers -- decode a line number table fragment
2087
2088SYNOPSIS
2089
2090 static void decode_line_numbers (char *tblscan, char *tblend,
2091 long length, long base, long line, long pc)
2092
2093DESCRIPTION
2094
2095 Translate the DWARF line number information to gdb form.
2096
2097 The ".line" section contains one or more line number tables, one for
2098 each ".line" section from the objects that were linked.
2099
2100 The AT_stmt_list attribute for each TAG_source_file entry in the
2101 ".debug" section contains the offset into the ".line" section for the
2102 start of the table for that file.
2103
2104 The table itself has the following structure:
2105
2106 <table length><base address><source statement entry>
2107 4 bytes 4 bytes 10 bytes
2108
2109 The table length is the total size of the table, including the 4 bytes
2110 for the length information.
2111
2112 The base address is the address of the first instruction generated
2113 for the source file.
2114
2115 Each source statement entry has the following structure:
2116
2117 <line number><statement position><address delta>
2118 4 bytes 2 bytes 4 bytes
2119
2120 The line number is relative to the start of the file, starting with
2121 line 1.
2122
2123 The statement position either -1 (0xFFFF) or the number of characters
2124 from the beginning of the line to the beginning of the statement.
2125
2126 The address delta is the difference between the base address and
2127 the address of the first instruction for the statement.
2128
2129 Note that we must copy the bytes from the packed table to our local
2130 variables before attempting to use them, to avoid alignment problems
2131 on some machines, particularly RISC processors.
2132
2133BUGS
2134
2135 Does gdb expect the line numbers to be sorted? They are now by
2136 chance/luck, but are not required to be. (FIXME)
2137
2138 The line with number 0 is unused, gdb apparently can discover the
2139 span of the last line some other way. How? (FIXME)
2140 */
2141
2142static void
1ab3bf1b
JG
2143decode_line_numbers (linetable)
2144 char *linetable;
35f5886e
FF
2145{
2146 char *tblscan;
2147 char *tblend;
13b5a7ff
FF
2148 unsigned long length;
2149 unsigned long base;
2150 unsigned long line;
2151 unsigned long pc;
35f5886e
FF
2152
2153 if (linetable != NULL)
2154 {
2155 tblscan = tblend = linetable;
13b5a7ff
FF
2156 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2157 current_objfile);
2158 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2159 tblend += length;
13b5a7ff
FF
2160 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2161 GET_UNSIGNED, current_objfile);
2162 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2163 base += baseaddr;
35f5886e
FF
2164 while (tblscan < tblend)
2165 {
13b5a7ff
FF
2166 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2167 current_objfile);
2168 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2169 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2170 current_objfile);
2171 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2172 pc += base;
13b5a7ff 2173 if (line != 0)
35f5886e 2174 {
4d315a07 2175 record_line (current_subfile, line, pc);
35f5886e
FF
2176 }
2177 }
2178 }
2179}
2180
2181/*
2182
35f5886e
FF
2183LOCAL FUNCTION
2184
2185 locval -- compute the value of a location attribute
2186
2187SYNOPSIS
2188
2189 static int locval (char *loc)
2190
2191DESCRIPTION
2192
2193 Given pointer to a string of bytes that define a location, compute
2194 the location and return the value.
bbcc95bd
PS
2195 A location description containing no atoms indicates that the
2196 object is optimized out. The global optimized_out flag is set for
2197 those, the return value is meaningless.
35f5886e
FF
2198
2199 When computing values involving the current value of the frame pointer,
2200 the value zero is used, which results in a value relative to the frame
2201 pointer, rather than the absolute value. This is what GDB wants
2202 anyway.
2203
2204 When the result is a register number, the global isreg flag is set,
2205 otherwise it is cleared. This is a kludge until we figure out a better
2206 way to handle the problem. Gdb's design does not mesh well with the
2207 DWARF notion of a location computing interpreter, which is a shame
2208 because the flexibility goes unused.
2209
2210NOTES
2211
2212 Note that stack[0] is unused except as a default error return.
2213 Note that stack overflow is not yet handled.
2214 */
2215
2216static int
1ab3bf1b
JG
2217locval (loc)
2218 char *loc;
35f5886e
FF
2219{
2220 unsigned short nbytes;
13b5a7ff
FF
2221 unsigned short locsize;
2222 auto long stack[64];
35f5886e
FF
2223 int stacki;
2224 char *end;
13b5a7ff
FF
2225 int loc_atom_code;
2226 int loc_value_size;
35f5886e 2227
13b5a7ff
FF
2228 nbytes = attribute_size (AT_location);
2229 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2230 loc += nbytes;
2231 end = loc + locsize;
35f5886e
FF
2232 stacki = 0;
2233 stack[stacki] = 0;
2234 isreg = 0;
a5bd5ba6 2235 offreg = 0;
bbcc95bd 2236 optimized_out = 1;
13b5a7ff
FF
2237 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2238 while (loc < end)
35f5886e 2239 {
bbcc95bd 2240 optimized_out = 0;
13b5a7ff
FF
2241 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2242 current_objfile);
2243 loc += SIZEOF_LOC_ATOM_CODE;
2244 switch (loc_atom_code)
2245 {
2246 case 0:
2247 /* error */
2248 loc = end;
2249 break;
2250 case OP_REG:
2251 /* push register (number) */
84bdfea6
PS
2252 stack[++stacki]
2253 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2254 GET_UNSIGNED,
2255 current_objfile));
13b5a7ff
FF
2256 loc += loc_value_size;
2257 isreg = 1;
2258 break;
2259 case OP_BASEREG:
2260 /* push value of register (number) */
a1c8d76e
JK
2261 /* Actually, we compute the value as if register has 0, so the
2262 value ends up being the offset from that register. */
13b5a7ff 2263 offreg = 1;
a1c8d76e
JK
2264 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2265 current_objfile);
13b5a7ff 2266 loc += loc_value_size;
a1c8d76e 2267 stack[++stacki] = 0;
13b5a7ff
FF
2268 break;
2269 case OP_ADDR:
2270 /* push address (relocated address) */
2271 stack[++stacki] = target_to_host (loc, loc_value_size,
2272 GET_UNSIGNED, current_objfile);
2273 loc += loc_value_size;
2274 break;
2275 case OP_CONST:
2276 /* push constant (number) FIXME: signed or unsigned! */
2277 stack[++stacki] = target_to_host (loc, loc_value_size,
2278 GET_SIGNED, current_objfile);
2279 loc += loc_value_size;
2280 break;
2281 case OP_DEREF2:
2282 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2283 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2284 break;
2285 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2286 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2287 break;
2288 case OP_ADD: /* pop top 2 items, add, push result */
2289 stack[stacki - 1] += stack[stacki];
2290 stacki--;
2291 break;
2292 }
35f5886e
FF
2293 }
2294 return (stack[stacki]);
2295}
2296
2297/*
2298
2299LOCAL FUNCTION
2300
2301 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2302
2303SYNOPSIS
2304
c701c14c 2305 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2306
2307DESCRIPTION
2308
1ab3bf1b
JG
2309 When expanding a partial symbol table entry to a full symbol table
2310 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2311 for the compilation unit. A pointer to the newly constructed symtab,
2312 which is now the new first one on the objfile's symtab list, is
2313 stashed in the partial symbol table entry.
35f5886e
FF
2314 */
2315
c701c14c 2316static void
1ab3bf1b
JG
2317read_ofile_symtab (pst)
2318 struct partial_symtab *pst;
35f5886e
FF
2319{
2320 struct cleanup *back_to;
13b5a7ff 2321 unsigned long lnsize;
d5931d79 2322 file_ptr foffset;
1ab3bf1b 2323 bfd *abfd;
13b5a7ff 2324 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2325
2326 abfd = pst -> objfile -> obfd;
2327 current_objfile = pst -> objfile;
2328
35f5886e
FF
2329 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2330 unit, seek to the location in the file, and read in all the DIE's. */
2331
2332 diecount = 0;
4090fe1c
FF
2333 dbsize = DBLENGTH (pst);
2334 dbbase = xmalloc (dbsize);
35f5886e
FF
2335 dbroff = DBROFF(pst);
2336 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2337 base_section_offsets = pst->section_offsets;
2338 baseaddr = ANOFFSET (pst->section_offsets, 0);
987622b5 2339 if (bfd_seek (abfd, foffset, SEEK_SET) ||
4090fe1c 2340 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2341 {
2342 free (dbbase);
2343 error ("can't read DWARF data");
2344 }
2345 back_to = make_cleanup (free, dbbase);
2346
2347 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2348 then read the size of this fragment in bytes, from the fragment itself.
2349 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2350 processing. */
2351
2352 lnbase = NULL;
2353 if (LNFOFF (pst))
2354 {
987622b5 2355 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
13b5a7ff
FF
2356 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2357 sizeof (lnsizedata)))
35f5886e
FF
2358 {
2359 error ("can't read DWARF line number table size");
2360 }
13b5a7ff
FF
2361 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2362 GET_UNSIGNED, pst -> objfile);
35f5886e 2363 lnbase = xmalloc (lnsize);
987622b5 2364 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
a048c8f5 2365 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2366 {
2367 free (lnbase);
2368 error ("can't read DWARF line numbers");
2369 }
2370 make_cleanup (free, lnbase);
2371 }
2372
4090fe1c 2373 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2374 do_cleanups (back_to);
1ab3bf1b 2375 current_objfile = NULL;
c701c14c 2376 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2377}
2378
2379/*
2380
2381LOCAL FUNCTION
2382
2383 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2384
2385SYNOPSIS
2386
a048c8f5 2387 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2388
2389DESCRIPTION
2390
2391 Called once for each partial symbol table entry that needs to be
2392 expanded into a full symbol table entry.
2393
2394*/
2395
2396static void
1ab3bf1b
JG
2397psymtab_to_symtab_1 (pst)
2398 struct partial_symtab *pst;
35f5886e
FF
2399{
2400 int i;
d07734e3 2401 struct cleanup *old_chain;
35f5886e 2402
1ab3bf1b 2403 if (pst != NULL)
35f5886e 2404 {
1ab3bf1b 2405 if (pst->readin)
35f5886e 2406 {
318bf84f 2407 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2408 pst -> filename);
2409 }
2410 else
2411 {
2412 /* Read in all partial symtabs on which this one is dependent */
2413 for (i = 0; i < pst -> number_of_dependencies; i++)
2414 {
2415 if (!pst -> dependencies[i] -> readin)
2416 {
2417 /* Inform about additional files that need to be read in. */
2418 if (info_verbose)
2419 {
199b2450 2420 fputs_filtered (" ", gdb_stdout);
1ab3bf1b 2421 wrap_here ("");
199b2450 2422 fputs_filtered ("and ", gdb_stdout);
1ab3bf1b
JG
2423 wrap_here ("");
2424 printf_filtered ("%s...",
2425 pst -> dependencies[i] -> filename);
2426 wrap_here ("");
199b2450 2427 gdb_flush (gdb_stdout); /* Flush output */
1ab3bf1b
JG
2428 }
2429 psymtab_to_symtab_1 (pst -> dependencies[i]);
2430 }
2431 }
2432 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2433 {
d07734e3
FF
2434 buildsym_init ();
2435 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2436 read_ofile_symtab (pst);
1ab3bf1b
JG
2437 if (info_verbose)
2438 {
2439 printf_filtered ("%d DIE's, sorting...", diecount);
2440 wrap_here ("");
199b2450 2441 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2442 }
2443 sort_symtab_syms (pst -> symtab);
d07734e3 2444 do_cleanups (old_chain);
1ab3bf1b
JG
2445 }
2446 pst -> readin = 1;
35f5886e 2447 }
35f5886e 2448 }
35f5886e
FF
2449}
2450
2451/*
2452
2453LOCAL FUNCTION
2454
2455 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2456
2457SYNOPSIS
2458
2459 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2460
2461DESCRIPTION
2462
2463 This is the DWARF support entry point for building a full symbol
2464 table entry from a partial symbol table entry. We are passed a
2465 pointer to the partial symbol table entry that needs to be expanded.
2466
2467*/
2468
2469static void
1ab3bf1b
JG
2470dwarf_psymtab_to_symtab (pst)
2471 struct partial_symtab *pst;
35f5886e 2472{
7d9884b9 2473
1ab3bf1b 2474 if (pst != NULL)
35f5886e 2475 {
1ab3bf1b 2476 if (pst -> readin)
35f5886e 2477 {
318bf84f 2478 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2479 pst -> filename);
35f5886e 2480 }
1ab3bf1b 2481 else
35f5886e 2482 {
1ab3bf1b
JG
2483 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2484 {
2485 /* Print the message now, before starting serious work, to avoid
2486 disconcerting pauses. */
2487 if (info_verbose)
2488 {
2489 printf_filtered ("Reading in symbols for %s...",
2490 pst -> filename);
199b2450 2491 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2492 }
2493
2494 psymtab_to_symtab_1 (pst);
2495
2496#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2497 we need to do an equivalent or is this something peculiar to
2498 stabs/a.out format.
2499 Match with global symbols. This only needs to be done once,
2500 after all of the symtabs and dependencies have been read in.
2501 */
2502 scan_file_globals (pst -> objfile);
2503#endif
2504
2505 /* Finish up the verbose info message. */
2506 if (info_verbose)
2507 {
2508 printf_filtered ("done.\n");
199b2450 2509 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2510 }
2511 }
35f5886e
FF
2512 }
2513 }
2514}
2515
2516/*
2517
715cafcb
FF
2518LOCAL FUNCTION
2519
2520 add_enum_psymbol -- add enumeration members to partial symbol table
2521
2522DESCRIPTION
2523
2524 Given pointer to a DIE that is known to be for an enumeration,
2525 extract the symbolic names of the enumeration members and add
2526 partial symbols for them.
2527*/
2528
2529static void
1ab3bf1b
JG
2530add_enum_psymbol (dip, objfile)
2531 struct dieinfo *dip;
2532 struct objfile *objfile;
715cafcb
FF
2533{
2534 char *scan;
2535 char *listend;
13b5a7ff
FF
2536 unsigned short blocksz;
2537 int nbytes;
715cafcb
FF
2538
2539 if ((scan = dip -> at_element_list) != NULL)
2540 {
2541 if (dip -> short_element_list)
2542 {
13b5a7ff 2543 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2544 }
2545 else
2546 {
13b5a7ff 2547 nbytes = attribute_size (AT_element_list);
715cafcb 2548 }
13b5a7ff
FF
2549 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2550 scan += nbytes;
2551 listend = scan + blocksz;
715cafcb
FF
2552 while (scan < listend)
2553 {
13b5a7ff 2554 scan += TARGET_FT_LONG_SIZE (objfile);
eae8aa30
FF
2555 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2556 &objfile -> static_psymbols, 0, 0, cu_language,
2e4964ad 2557 objfile);
715cafcb
FF
2558 scan += strlen (scan) + 1;
2559 }
2560 }
2561}
2562
2563/*
2564
35f5886e
FF
2565LOCAL FUNCTION
2566
2567 add_partial_symbol -- add symbol to partial symbol table
2568
2569DESCRIPTION
2570
2571 Given a DIE, if it is one of the types that we want to
2572 add to a partial symbol table, finish filling in the die info
2573 and then add a partial symbol table entry for it.
2574
95ff889e
FF
2575NOTES
2576
2577 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2578*/
2579
2580static void
1ab3bf1b
JG
2581add_partial_symbol (dip, objfile)
2582 struct dieinfo *dip;
2583 struct objfile *objfile;
35f5886e 2584{
13b5a7ff 2585 switch (dip -> die_tag)
35f5886e
FF
2586 {
2587 case TAG_global_subroutine:
eae8aa30 2588 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
0708e99f 2589 VAR_NAMESPACE, LOC_BLOCK,
eae8aa30
FF
2590 &objfile -> global_psymbols,
2591 0, dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2592 break;
2593 case TAG_global_variable:
eae8aa30 2594 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2595 VAR_NAMESPACE, LOC_STATIC,
eae8aa30
FF
2596 &objfile -> global_psymbols,
2597 0, 0, cu_language, objfile);
35f5886e
FF
2598 break;
2599 case TAG_subroutine:
eae8aa30 2600 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
0708e99f 2601 VAR_NAMESPACE, LOC_BLOCK,
eae8aa30
FF
2602 &objfile -> static_psymbols,
2603 0, dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2604 break;
2605 case TAG_local_variable:
eae8aa30 2606 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2607 VAR_NAMESPACE, LOC_STATIC,
eae8aa30
FF
2608 &objfile -> static_psymbols,
2609 0, 0, cu_language, objfile);
35f5886e
FF
2610 break;
2611 case TAG_typedef:
eae8aa30 2612 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2613 VAR_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2614 &objfile -> static_psymbols,
2615 0, 0, cu_language, objfile);
35f5886e 2616 break;
95ff889e 2617 case TAG_class_type:
35f5886e
FF
2618 case TAG_structure_type:
2619 case TAG_union_type:
95ff889e 2620 case TAG_enumeration_type:
4386eff2
PS
2621 /* Do not add opaque aggregate definitions to the psymtab. */
2622 if (!dip -> has_at_byte_size)
2623 break;
eae8aa30 2624 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b 2625 STRUCT_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2626 &objfile -> static_psymbols,
2627 0, 0, cu_language, objfile);
95ff889e 2628 if (cu_language == language_cplus)
715cafcb 2629 {
95ff889e 2630 /* For C++, these implicitly act as typedefs as well. */
eae8aa30 2631 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
95ff889e 2632 VAR_NAMESPACE, LOC_TYPEDEF,
eae8aa30
FF
2633 &objfile -> static_psymbols,
2634 0, 0, cu_language, objfile);
715cafcb 2635 }
715cafcb 2636 break;
35f5886e
FF
2637 }
2638}
2639
2640/*
2641
2642LOCAL FUNCTION
2643
2644 scan_partial_symbols -- scan DIE's within a single compilation unit
2645
2646DESCRIPTION
2647
2648 Process the DIE's within a single compilation unit, looking for
2649 interesting DIE's that contribute to the partial symbol table entry
a679650f 2650 for this compilation unit.
35f5886e 2651
2d6186f4
FF
2652NOTES
2653
a679650f
FF
2654 There are some DIE's that may appear both at file scope and within
2655 the scope of a function. We are only interested in the ones at file
2656 scope, and the only way to tell them apart is to keep track of the
2657 scope. For example, consider the test case:
2658
2659 static int i;
2660 main () { int j; }
2661
2662 for which the relevant DWARF segment has the structure:
2663
2664 0x51:
2665 0x23 global subrtn sibling 0x9b
2666 name main
2667 fund_type FT_integer
2668 low_pc 0x800004cc
2669 high_pc 0x800004d4
2670
2671 0x74:
2672 0x23 local var sibling 0x97
2673 name j
2674 fund_type FT_integer
2675 location OP_BASEREG 0xe
2676 OP_CONST 0xfffffffc
2677 OP_ADD
2678 0x97:
2679 0x4
2680
2681 0x9b:
2682 0x1d local var sibling 0xb8
2683 name i
2684 fund_type FT_integer
2685 location OP_ADDR 0x800025dc
2686
2687 0xb8:
2688 0x4
2689
2690 We want to include the symbol 'i' in the partial symbol table, but
2691 not the symbol 'j'. In essence, we want to skip all the dies within
2692 the scope of a TAG_global_subroutine DIE.
2693
715cafcb
FF
2694 Don't attempt to add anonymous structures or unions since they have
2695 no name. Anonymous enumerations however are processed, because we
2696 want to extract their member names (the check for a tag name is
2697 done later).
2d6186f4 2698
715cafcb
FF
2699 Also, for variables and subroutines, check that this is the place
2700 where the actual definition occurs, rather than just a reference
2701 to an external.
35f5886e
FF
2702 */
2703
2704static void
1ab3bf1b
JG
2705scan_partial_symbols (thisdie, enddie, objfile)
2706 char *thisdie;
2707 char *enddie;
2708 struct objfile *objfile;
35f5886e
FF
2709{
2710 char *nextdie;
a679650f 2711 char *temp;
35f5886e
FF
2712 struct dieinfo di;
2713
2714 while (thisdie < enddie)
2715 {
95967e73 2716 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2717 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2718 {
2719 break;
2720 }
2721 else
2722 {
13b5a7ff 2723 nextdie = thisdie + di.die_length;
715cafcb
FF
2724 /* To avoid getting complete die information for every die, we
2725 only do it (below) for the cases we are interested in. */
13b5a7ff 2726 switch (di.die_tag)
35f5886e
FF
2727 {
2728 case TAG_global_subroutine:
35f5886e 2729 case TAG_subroutine:
a679650f
FF
2730 completedieinfo (&di, objfile);
2731 if (di.at_name && (di.has_at_low_pc || di.at_location))
2732 {
2733 add_partial_symbol (&di, objfile);
2734 /* If there is a sibling attribute, adjust the nextdie
2735 pointer to skip the entire scope of the subroutine.
2736 Apply some sanity checking to make sure we don't
2737 overrun or underrun the range of remaining DIE's */
2738 if (di.at_sibling != 0)
2739 {
2740 temp = dbbase + di.at_sibling - dbroff;
2741 if ((temp < thisdie) || (temp >= enddie))
2742 {
51b80b00
FF
2743 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2744 di.at_sibling);
a679650f
FF
2745 }
2746 else
2747 {
2748 nextdie = temp;
2749 }
2750 }
2751 }
2752 break;
2d6186f4 2753 case TAG_global_variable:
35f5886e 2754 case TAG_local_variable:
95967e73 2755 completedieinfo (&di, objfile);
2d6186f4
FF
2756 if (di.at_name && (di.has_at_low_pc || di.at_location))
2757 {
1ab3bf1b 2758 add_partial_symbol (&di, objfile);
2d6186f4
FF
2759 }
2760 break;
35f5886e 2761 case TAG_typedef:
95ff889e 2762 case TAG_class_type:
35f5886e
FF
2763 case TAG_structure_type:
2764 case TAG_union_type:
95967e73 2765 completedieinfo (&di, objfile);
2d6186f4 2766 if (di.at_name)
35f5886e 2767 {
1ab3bf1b 2768 add_partial_symbol (&di, objfile);
35f5886e
FF
2769 }
2770 break;
715cafcb 2771 case TAG_enumeration_type:
95967e73 2772 completedieinfo (&di, objfile);
95ff889e
FF
2773 if (di.at_name)
2774 {
2775 add_partial_symbol (&di, objfile);
2776 }
2777 add_enum_psymbol (&di, objfile);
715cafcb 2778 break;
35f5886e
FF
2779 }
2780 }
2781 thisdie = nextdie;
2782 }
2783}
2784
2785/*
2786
2787LOCAL FUNCTION
2788
2789 scan_compilation_units -- build a psymtab entry for each compilation
2790
2791DESCRIPTION
2792
2793 This is the top level dwarf parsing routine for building partial
2794 symbol tables.
2795
2796 It scans from the beginning of the DWARF table looking for the first
2797 TAG_compile_unit DIE, and then follows the sibling chain to locate
2798 each additional TAG_compile_unit DIE.
2799
2800 For each TAG_compile_unit DIE it creates a partial symtab structure,
2801 calls a subordinate routine to collect all the compilation unit's
2802 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2803 new partial symtab structure into the partial symbol table. It also
2804 records the appropriate information in the partial symbol table entry
2805 to allow the chunk of DIE's and line number table for this compilation
2806 unit to be located and re-read later, to generate a complete symbol
2807 table entry for the compilation unit.
2808
2809 Thus it effectively partitions up a chunk of DIE's for multiple
2810 compilation units into smaller DIE chunks and line number tables,
2811 and associates them with a partial symbol table entry.
2812
2813NOTES
2814
2815 If any compilation unit has no line number table associated with
2816 it for some reason (a missing at_stmt_list attribute, rather than
2817 just one with a value of zero, which is valid) then we ensure that
2818 the recorded file offset is zero so that the routine which later
2819 reads line number table fragments knows that there is no fragment
2820 to read.
2821
2822RETURNS
2823
2824 Returns no value.
2825
2826 */
2827
2828static void
d5931d79 2829scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2830 char *thisdie;
2831 char *enddie;
d5931d79
JG
2832 file_ptr dbfoff;
2833 file_ptr lnoffset;
1ab3bf1b 2834 struct objfile *objfile;
35f5886e
FF
2835{
2836 char *nextdie;
2837 struct dieinfo di;
2838 struct partial_symtab *pst;
2839 int culength;
2840 int curoff;
d5931d79 2841 file_ptr curlnoffset;
35f5886e
FF
2842
2843 while (thisdie < enddie)
2844 {
95967e73 2845 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2846 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2847 {
2848 break;
2849 }
13b5a7ff 2850 else if (di.die_tag != TAG_compile_unit)
35f5886e 2851 {
13b5a7ff 2852 nextdie = thisdie + di.die_length;
35f5886e
FF
2853 }
2854 else
2855 {
95967e73 2856 completedieinfo (&di, objfile);
95ff889e 2857 set_cu_language (&di);
35f5886e
FF
2858 if (di.at_sibling != 0)
2859 {
2860 nextdie = dbbase + di.at_sibling - dbroff;
2861 }
2862 else
2863 {
13b5a7ff 2864 nextdie = thisdie + di.die_length;
35f5886e
FF
2865 }
2866 curoff = thisdie - dbbase;
2867 culength = nextdie - thisdie;
2d6186f4 2868 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2869
2870 /* First allocate a new partial symbol table structure */
2871
95ff889e
FF
2872 pst = start_psymtab_common (objfile, base_section_offsets,
2873 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2874 objfile -> global_psymbols.next,
2875 objfile -> static_psymbols.next);
2876
2877 pst -> texthigh = di.at_high_pc;
2878 pst -> read_symtab_private = (char *)
2879 obstack_alloc (&objfile -> psymbol_obstack,
2880 sizeof (struct dwfinfo));
2881 DBFOFF (pst) = dbfoff;
2882 DBROFF (pst) = curoff;
2883 DBLENGTH (pst) = culength;
2884 LNFOFF (pst) = curlnoffset;
2885 pst -> read_symtab = dwarf_psymtab_to_symtab;
2886
2887 /* Now look for partial symbols */
2888
13b5a7ff 2889 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2890
2891 pst -> n_global_syms = objfile -> global_psymbols.next -
2892 (objfile -> global_psymbols.list + pst -> globals_offset);
2893 pst -> n_static_syms = objfile -> static_psymbols.next -
2894 (objfile -> static_psymbols.list + pst -> statics_offset);
2895 sort_pst_symbols (pst);
35f5886e
FF
2896 /* If there is already a psymtab or symtab for a file of this name,
2897 remove it. (If there is a symtab, more drastic things also
2898 happen.) This happens in VxWorks. */
2899 free_named_symtabs (pst -> filename);
35f5886e
FF
2900 }
2901 thisdie = nextdie;
2902 }
2903}
2904
2905/*
2906
2907LOCAL FUNCTION
2908
2909 new_symbol -- make a symbol table entry for a new symbol
2910
2911SYNOPSIS
2912
1ab3bf1b
JG
2913 static struct symbol *new_symbol (struct dieinfo *dip,
2914 struct objfile *objfile)
35f5886e
FF
2915
2916DESCRIPTION
2917
2918 Given a pointer to a DWARF information entry, figure out if we need
2919 to make a symbol table entry for it, and if so, create a new entry
2920 and return a pointer to it.
2921 */
2922
2923static struct symbol *
1ab3bf1b
JG
2924new_symbol (dip, objfile)
2925 struct dieinfo *dip;
2926 struct objfile *objfile;
35f5886e
FF
2927{
2928 struct symbol *sym = NULL;
2929
2930 if (dip -> at_name != NULL)
2931 {
1ab3bf1b 2932 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2933 sizeof (struct symbol));
2dd30c72 2934 OBJSTAT (objfile, n_syms++);
4ed3a9ea 2935 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2936 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2937 &objfile->symbol_obstack);
35f5886e
FF
2938 /* default assumptions */
2939 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2940 SYMBOL_CLASS (sym) = LOC_STATIC;
2941 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2942
2943 /* If this symbol is from a C++ compilation, then attempt to cache the
2944 demangled form for future reference. This is a typical time versus
2945 space tradeoff, that was decided in favor of time because it sped up
2946 C++ symbol lookups by a factor of about 20. */
2947
2948 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2949 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2950 switch (dip -> die_tag)
35f5886e
FF
2951 {
2952 case TAG_label:
0708e99f 2953 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
35f5886e
FF
2954 SYMBOL_CLASS (sym) = LOC_LABEL;
2955 break;
2956 case TAG_global_subroutine:
2957 case TAG_subroutine:
0708e99f 2958 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
35f5886e 2959 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
ac954805
SG
2960 if (dip -> at_prototyped)
2961 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
35f5886e 2962 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2963 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2964 {
2965 add_symbol_to_list (sym, &global_symbols);
2966 }
2967 else
2968 {
4d315a07 2969 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2970 }
2971 break;
2972 case TAG_global_variable:
35f5886e
FF
2973 if (dip -> at_location != NULL)
2974 {
015e113c 2975 SYMBOL_VALUE_ADDRESS (sym) = locval (dip -> at_location);
35f5886e
FF
2976 add_symbol_to_list (sym, &global_symbols);
2977 SYMBOL_CLASS (sym) = LOC_STATIC;
2978 SYMBOL_VALUE (sym) += baseaddr;
2979 }
a5bd5ba6
FF
2980 break;
2981 case TAG_local_variable:
2982 if (dip -> at_location != NULL)
35f5886e 2983 {
bbcc95bd
PS
2984 if (optimized_out)
2985 {
2986 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2987 }
2988 else if (isreg)
a5bd5ba6
FF
2989 {
2990 SYMBOL_CLASS (sym) = LOC_REGISTER;
2991 }
2992 else if (offreg)
35f5886e 2993 {
a1c8d76e
JK
2994 SYMBOL_CLASS (sym) = LOC_BASEREG;
2995 SYMBOL_BASEREG (sym) = basereg;
35f5886e
FF
2996 }
2997 else
2998 {
2999 SYMBOL_CLASS (sym) = LOC_STATIC;
3000 SYMBOL_VALUE (sym) += baseaddr;
3001 }
015e113c
FF
3002 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3003 {
3004 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3005 which may store to a bigger location than SYMBOL_VALUE. */
3006 SYMBOL_VALUE_ADDRESS (sym) = locval (dip -> at_location);
3007 }
3008 else
3009 {
3010 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3011 }
3012 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3013 }
3014 break;
3015 case TAG_formal_parameter:
3016 if (dip -> at_location != NULL)
3017 {
3018 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3019 }
4d315a07 3020 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3021 if (isreg)
3022 {
3023 SYMBOL_CLASS (sym) = LOC_REGPARM;
3024 }
a1c8d76e
JK
3025 else if (offreg)
3026 {
3027 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3028 SYMBOL_BASEREG (sym) = basereg;
3029 }
35f5886e
FF
3030 else
3031 {
3032 SYMBOL_CLASS (sym) = LOC_ARG;
3033 }
3034 break;
3035 case TAG_unspecified_parameters:
3036 /* From varargs functions; gdb doesn't seem to have any interest in
3037 this information, so just ignore it for now. (FIXME?) */
3038 break;
95ff889e 3039 case TAG_class_type:
35f5886e
FF
3040 case TAG_structure_type:
3041 case TAG_union_type:
3042 case TAG_enumeration_type:
3043 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3044 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3045 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3046 break;
3047 case TAG_typedef:
3048 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3049 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3050 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3051 break;
3052 default:
3053 /* Not a tag we recognize. Hopefully we aren't processing trash
3054 data, but since we must specifically ignore things we don't
3055 recognize, there is nothing else we should do at this point. */
3056 break;
3057 }
3058 }
3059 return (sym);
3060}
3061
3062/*
3063
95ff889e
FF
3064LOCAL FUNCTION
3065
3066 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3067
3068SYNOPSIS
3069
3070 static void synthesize_typedef (struct dieinfo *dip,
3071 struct objfile *objfile,
3072 struct type *type);
3073
3074DESCRIPTION
3075
3076 Given a pointer to a DWARF information entry, synthesize a typedef
3077 for the name in the DIE, using the specified type.
3078
3079 This is used for C++ class, structs, unions, and enumerations to
3080 set up the tag name as a type.
3081
3082 */
3083
3084static void
3085synthesize_typedef (dip, objfile, type)
3086 struct dieinfo *dip;
3087 struct objfile *objfile;
3088 struct type *type;
3089{
3090 struct symbol *sym = NULL;
3091
3092 if (dip -> at_name != NULL)
3093 {
3094 sym = (struct symbol *)
3095 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2dd30c72 3096 OBJSTAT (objfile, n_syms++);
95ff889e
FF
3097 memset (sym, 0, sizeof (struct symbol));
3098 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3099 &objfile->symbol_obstack);
7532cf10 3100 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3101 SYMBOL_TYPE (sym) = type;
3102 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3103 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3104 add_symbol_to_list (sym, list_in_scope);
3105 }
3106}
3107
3108/*
3109
35f5886e
FF
3110LOCAL FUNCTION
3111
3112 decode_mod_fund_type -- decode a modified fundamental type
3113
3114SYNOPSIS
3115
3116 static struct type *decode_mod_fund_type (char *typedata)
3117
3118DESCRIPTION
3119
3120 Decode a block of data containing a modified fundamental
3121 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3122 which starts with a length containing the size of the rest
3123 of the block. At the end of the block is a fundmental type
3124 code value that gives the fundamental type. Everything
35f5886e
FF
3125 in between are type modifiers.
3126
3127 We simply compute the number of modifiers and call the general
3128 function decode_modified_type to do the actual work.
3129*/
3130
3131static struct type *
1ab3bf1b
JG
3132decode_mod_fund_type (typedata)
3133 char *typedata;
35f5886e
FF
3134{
3135 struct type *typep = NULL;
3136 unsigned short modcount;
13b5a7ff 3137 int nbytes;
35f5886e
FF
3138
3139 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3140
3141 nbytes = attribute_size (AT_mod_fund_type);
3142 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3143 typedata += nbytes;
3144
35f5886e 3145 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3146
3147 modcount -= attribute_size (AT_fund_type);
3148
35f5886e 3149 /* Now do the actual decoding */
13b5a7ff
FF
3150
3151 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3152 return (typep);
3153}
3154
3155/*
3156
3157LOCAL FUNCTION
3158
3159 decode_mod_u_d_type -- decode a modified user defined type
3160
3161SYNOPSIS
3162
3163 static struct type *decode_mod_u_d_type (char *typedata)
3164
3165DESCRIPTION
3166
3167 Decode a block of data containing a modified user defined
3168 type specification. TYPEDATA is a pointer to the block,
3169 which consists of a two byte length, containing the size
3170 of the rest of the block. At the end of the block is a
3171 four byte value that gives a reference to a user defined type.
3172 Everything in between are type modifiers.
3173
3174 We simply compute the number of modifiers and call the general
3175 function decode_modified_type to do the actual work.
3176*/
3177
3178static struct type *
1ab3bf1b
JG
3179decode_mod_u_d_type (typedata)
3180 char *typedata;
35f5886e
FF
3181{
3182 struct type *typep = NULL;
3183 unsigned short modcount;
13b5a7ff 3184 int nbytes;
35f5886e
FF
3185
3186 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3187
3188 nbytes = attribute_size (AT_mod_u_d_type);
3189 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3190 typedata += nbytes;
3191
35f5886e 3192 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3193
3194 modcount -= attribute_size (AT_user_def_type);
3195
35f5886e 3196 /* Now do the actual decoding */
13b5a7ff
FF
3197
3198 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3199 return (typep);
3200}
3201
3202/*
3203
3204LOCAL FUNCTION
3205
3206 decode_modified_type -- decode modified user or fundamental type
3207
3208SYNOPSIS
3209
1c92ca6f 3210 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3211 unsigned short modcount, int mtype)
3212
3213DESCRIPTION
3214
3215 Decode a modified type, either a modified fundamental type or
3216 a modified user defined type. MODIFIERS is a pointer to the
3217 block of bytes that define MODCOUNT modifiers. Immediately
3218 following the last modifier is a short containing the fundamental
3219 type or a long containing the reference to the user defined
3220 type. Which one is determined by MTYPE, which is either
3221 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3222 type we are generating.
3223
3224 We call ourself recursively to generate each modified type,`
3225 until MODCOUNT reaches zero, at which point we have consumed
3226 all the modifiers and generate either the fundamental type or
3227 user defined type. When the recursion unwinds, each modifier
3228 is applied in turn to generate the full modified type.
3229
3230NOTES
3231
3232 If we find a modifier that we don't recognize, and it is not one
3233 of those reserved for application specific use, then we issue a
3234 warning and simply ignore the modifier.
3235
3236BUGS
3237
3238 We currently ignore MOD_const and MOD_volatile. (FIXME)
3239
3240 */
3241
3242static struct type *
1ab3bf1b 3243decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3244 char *modifiers;
1ab3bf1b
JG
3245 unsigned int modcount;
3246 int mtype;
35f5886e
FF
3247{
3248 struct type *typep = NULL;
3249 unsigned short fundtype;
13b5a7ff 3250 DIE_REF die_ref;
1c92ca6f 3251 char modifier;
13b5a7ff 3252 int nbytes;
35f5886e
FF
3253
3254 if (modcount == 0)
3255 {
3256 switch (mtype)
3257 {
3258 case AT_mod_fund_type:
13b5a7ff
FF
3259 nbytes = attribute_size (AT_fund_type);
3260 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3261 current_objfile);
35f5886e
FF
3262 typep = decode_fund_type (fundtype);
3263 break;
3264 case AT_mod_u_d_type:
13b5a7ff
FF
3265 nbytes = attribute_size (AT_user_def_type);
3266 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3267 current_objfile);
3268 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3269 {
13b5a7ff 3270 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3271 }
3272 break;
3273 default:
51b80b00 3274 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3275 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3276 break;
3277 }
3278 }
3279 else
3280 {
3281 modifier = *modifiers++;
3282 typep = decode_modified_type (modifiers, --modcount, mtype);
3283 switch (modifier)
3284 {
13b5a7ff
FF
3285 case MOD_pointer_to:
3286 typep = lookup_pointer_type (typep);
3287 break;
3288 case MOD_reference_to:
3289 typep = lookup_reference_type (typep);
3290 break;
3291 case MOD_const:
51b80b00 3292 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3293 break;
3294 case MOD_volatile:
51b80b00 3295 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3296 break;
3297 default:
1c92ca6f
FF
3298 if (!(MOD_lo_user <= (unsigned char) modifier
3299 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3300 {
51b80b00 3301 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3302 }
3303 break;
35f5886e
FF
3304 }
3305 }
3306 return (typep);
3307}
3308
3309/*
3310
3311LOCAL FUNCTION
3312
3313 decode_fund_type -- translate basic DWARF type to gdb base type
3314
3315DESCRIPTION
3316
3317 Given an integer that is one of the fundamental DWARF types,
3318 translate it to one of the basic internal gdb types and return
3319 a pointer to the appropriate gdb type (a "struct type *").
3320
3321NOTES
3322
85f0a848
FF
3323 For robustness, if we are asked to translate a fundamental
3324 type that we are unprepared to deal with, we return int so
3325 callers can always depend upon a valid type being returned,
3326 and so gdb may at least do something reasonable by default.
3327 If the type is not in the range of those types defined as
3328 application specific types, we also issue a warning.
35f5886e
FF
3329*/
3330
3331static struct type *
1ab3bf1b
JG
3332decode_fund_type (fundtype)
3333 unsigned int fundtype;
35f5886e
FF
3334{
3335 struct type *typep = NULL;
3336
3337 switch (fundtype)
3338 {
3339
3340 case FT_void:
bf229b4e 3341 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3342 break;
3343
1ab3bf1b 3344 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3345 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3346 break;
3347
35f5886e 3348 case FT_pointer: /* (void *) */
bf229b4e 3349 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3350 typep = lookup_pointer_type (typep);
35f5886e
FF
3351 break;
3352
3353 case FT_char:
bf229b4e 3354 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3355 break;
3356
35f5886e 3357 case FT_signed_char:
bf229b4e 3358 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3359 break;
3360
3361 case FT_unsigned_char:
bf229b4e 3362 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3363 break;
3364
3365 case FT_short:
bf229b4e 3366 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3367 break;
3368
35f5886e 3369 case FT_signed_short:
bf229b4e 3370 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3371 break;
3372
3373 case FT_unsigned_short:
bf229b4e 3374 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3375 break;
3376
3377 case FT_integer:
bf229b4e 3378 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3379 break;
3380
35f5886e 3381 case FT_signed_integer:
bf229b4e 3382 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3383 break;
3384
3385 case FT_unsigned_integer:
bf229b4e 3386 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3387 break;
3388
3389 case FT_long:
bf229b4e 3390 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3391 break;
3392
35f5886e 3393 case FT_signed_long:
bf229b4e 3394 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3395 break;
3396
1ab3bf1b 3397 case FT_unsigned_long:
bf229b4e 3398 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3399 break;
3400
1ab3bf1b 3401 case FT_long_long:
bf229b4e 3402 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3403 break;
1ab3bf1b
JG
3404
3405 case FT_signed_long_long:
bf229b4e 3406 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3407 break;
1ab3bf1b
JG
3408
3409 case FT_unsigned_long_long:
bf229b4e 3410 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3411 break;
1ab3bf1b
JG
3412
3413 case FT_float:
bf229b4e 3414 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3415 break;
3416
1ab3bf1b 3417 case FT_dbl_prec_float:
bf229b4e 3418 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3419 break;
3420
3421 case FT_ext_prec_float:
bf229b4e 3422 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3423 break;
3424
3425 case FT_complex:
bf229b4e 3426 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3427 break;
3428
3429 case FT_dbl_prec_complex:
bf229b4e 3430 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3431 break;
3432
1ab3bf1b 3433 case FT_ext_prec_complex:
bf229b4e 3434 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3435 break;
1ab3bf1b 3436
35f5886e
FF
3437 }
3438
85f0a848 3439 if (typep == NULL)
35f5886e 3440 {
85f0a848
FF
3441 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3442 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3443 {
51b80b00 3444 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3445 }
35f5886e
FF
3446 }
3447
3448 return (typep);
3449}
3450
3451/*
3452
3453LOCAL FUNCTION
3454
3455 create_name -- allocate a fresh copy of a string on an obstack
3456
3457DESCRIPTION
3458
3459 Given a pointer to a string and a pointer to an obstack, allocates
3460 a fresh copy of the string on the specified obstack.
3461
3462*/
3463
3464static char *
1ab3bf1b
JG
3465create_name (name, obstackp)
3466 char *name;
3467 struct obstack *obstackp;
35f5886e
FF
3468{
3469 int length;
3470 char *newname;
3471
3472 length = strlen (name) + 1;
3473 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3474 strcpy (newname, name);
35f5886e
FF
3475 return (newname);
3476}
3477
3478/*
3479
3480LOCAL FUNCTION
3481
3482 basicdieinfo -- extract the minimal die info from raw die data
3483
3484SYNOPSIS
3485
95967e73
FF
3486 void basicdieinfo (char *diep, struct dieinfo *dip,
3487 struct objfile *objfile)
35f5886e
FF
3488
3489DESCRIPTION
3490
3491 Given a pointer to raw DIE data, and a pointer to an instance of a
3492 die info structure, this function extracts the basic information
3493 from the DIE data required to continue processing this DIE, along
3494 with some bookkeeping information about the DIE.
3495
3496 The information we absolutely must have includes the DIE tag,
3497 and the DIE length. If we need the sibling reference, then we
3498 will have to call completedieinfo() to process all the remaining
3499 DIE information.
3500
3501 Note that since there is no guarantee that the data is properly
3502 aligned in memory for the type of access required (indirection
95967e73
FF
3503 through anything other than a char pointer), and there is no
3504 guarantee that it is in the same byte order as the gdb host,
3505 we call a function which deals with both alignment and byte
3506 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3507
3508 We also take care of some other basic things at this point, such
3509 as ensuring that the instance of the die info structure starts
3510 out completely zero'd and that curdie is initialized for use
3511 in error reporting if we have a problem with the current die.
3512
3513NOTES
3514
3515 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3516 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3517 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3518 are forced to be TAG_padding DIES.
3519
13b5a7ff
FF
3520 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3521 that if a padding DIE is used for alignment and the amount needed is
3522 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3523 enough to align to the next alignment boundry.
4090fe1c
FF
3524
3525 We do some basic sanity checking here, such as verifying that the
3526 length of the die would not cause it to overrun the recorded end of
3527 the buffer holding the DIE info. If we find a DIE that is either
3528 too small or too large, we force it's length to zero which should
3529 cause the caller to take appropriate action.
35f5886e
FF
3530 */
3531
3532static void
95967e73 3533basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3534 struct dieinfo *dip;
3535 char *diep;
95967e73 3536 struct objfile *objfile;
35f5886e
FF
3537{
3538 curdie = dip;
4ed3a9ea 3539 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3540 dip -> die = diep;
13b5a7ff
FF
3541 dip -> die_ref = dbroff + (diep - dbbase);
3542 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3543 objfile);
4090fe1c
FF
3544 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3545 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3546 {
51b80b00 3547 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3548 dip -> die_length = 0;
35f5886e 3549 }
13b5a7ff 3550 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3551 {
13b5a7ff 3552 dip -> die_tag = TAG_padding;
35f5886e
FF
3553 }
3554 else
3555 {
13b5a7ff
FF
3556 diep += SIZEOF_DIE_LENGTH;
3557 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3558 objfile);
35f5886e
FF
3559 }
3560}
3561
3562/*
3563
3564LOCAL FUNCTION
3565
3566 completedieinfo -- finish reading the information for a given DIE
3567
3568SYNOPSIS
3569
95967e73 3570 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3571
3572DESCRIPTION
3573
3574 Given a pointer to an already partially initialized die info structure,
3575 scan the raw DIE data and finish filling in the die info structure
3576 from the various attributes found.
3577
3578 Note that since there is no guarantee that the data is properly
3579 aligned in memory for the type of access required (indirection
95967e73
FF
3580 through anything other than a char pointer), and there is no
3581 guarantee that it is in the same byte order as the gdb host,
3582 we call a function which deals with both alignment and byte
3583 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3584
3585NOTES
3586
3587 Each time we are called, we increment the diecount variable, which
3588 keeps an approximate count of the number of dies processed for
3589 each compilation unit. This information is presented to the user
3590 if the info_verbose flag is set.
3591
3592 */
3593
3594static void
95967e73 3595completedieinfo (dip, objfile)
1ab3bf1b 3596 struct dieinfo *dip;
95967e73 3597 struct objfile *objfile;
35f5886e
FF
3598{
3599 char *diep; /* Current pointer into raw DIE data */
3600 char *end; /* Terminate DIE scan here */
3601 unsigned short attr; /* Current attribute being scanned */
3602 unsigned short form; /* Form of the attribute */
13b5a7ff 3603 int nbytes; /* Size of next field to read */
35f5886e
FF
3604
3605 diecount++;
3606 diep = dip -> die;
13b5a7ff
FF
3607 end = diep + dip -> die_length;
3608 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3609 while (diep < end)
3610 {
13b5a7ff
FF
3611 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3612 diep += SIZEOF_ATTRIBUTE;
3613 if ((nbytes = attribute_size (attr)) == -1)
3614 {
51b80b00 3615 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3616 diep = end;
3617 continue;
3618 }
35f5886e
FF
3619 switch (attr)
3620 {
3621 case AT_fund_type:
13b5a7ff
FF
3622 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
35f5886e
FF
3624 break;
3625 case AT_ordering:
13b5a7ff
FF
3626 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3627 objfile);
35f5886e
FF
3628 break;
3629 case AT_bit_offset:
13b5a7ff
FF
3630 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3631 objfile);
35f5886e 3632 break;
35f5886e 3633 case AT_sibling:
13b5a7ff
FF
3634 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3635 objfile);
35f5886e
FF
3636 break;
3637 case AT_stmt_list:
13b5a7ff
FF
3638 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3639 objfile);
2d6186f4 3640 dip -> has_at_stmt_list = 1;
35f5886e
FF
3641 break;
3642 case AT_low_pc:
13b5a7ff
FF
3643 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3644 objfile);
4d315a07 3645 dip -> at_low_pc += baseaddr;
2d6186f4 3646 dip -> has_at_low_pc = 1;
35f5886e
FF
3647 break;
3648 case AT_high_pc:
13b5a7ff
FF
3649 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3650 objfile);
4d315a07 3651 dip -> at_high_pc += baseaddr;
35f5886e
FF
3652 break;
3653 case AT_language:
13b5a7ff
FF
3654 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 objfile);
35f5886e
FF
3656 break;
3657 case AT_user_def_type:
13b5a7ff
FF
3658 dip -> at_user_def_type = target_to_host (diep, nbytes,
3659 GET_UNSIGNED, objfile);
35f5886e
FF
3660 break;
3661 case AT_byte_size:
13b5a7ff
FF
3662 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3663 objfile);
50055e94 3664 dip -> has_at_byte_size = 1;
35f5886e
FF
3665 break;
3666 case AT_bit_size:
13b5a7ff
FF
3667 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3668 objfile);
35f5886e
FF
3669 break;
3670 case AT_member:
13b5a7ff
FF
3671 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3672 objfile);
35f5886e
FF
3673 break;
3674 case AT_discr:
13b5a7ff
FF
3675 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3676 objfile);
35f5886e 3677 break;
35f5886e
FF
3678 case AT_location:
3679 dip -> at_location = diep;
3680 break;
3681 case AT_mod_fund_type:
3682 dip -> at_mod_fund_type = diep;
3683 break;
3684 case AT_subscr_data:
3685 dip -> at_subscr_data = diep;
3686 break;
3687 case AT_mod_u_d_type:
3688 dip -> at_mod_u_d_type = diep;
3689 break;
35f5886e
FF
3690 case AT_element_list:
3691 dip -> at_element_list = diep;
768be6e1
FF
3692 dip -> short_element_list = 0;
3693 break;
3694 case AT_short_element_list:
3695 dip -> at_element_list = diep;
3696 dip -> short_element_list = 1;
35f5886e
FF
3697 break;
3698 case AT_discr_value:
3699 dip -> at_discr_value = diep;
3700 break;
3701 case AT_string_length:
3702 dip -> at_string_length = diep;
3703 break;
3704 case AT_name:
3705 dip -> at_name = diep;
3706 break;
3707 case AT_comp_dir:
d4902ab0
FF
3708 /* For now, ignore any "hostname:" portion, since gdb doesn't
3709 know how to deal with it. (FIXME). */
3710 dip -> at_comp_dir = strrchr (diep, ':');
3711 if (dip -> at_comp_dir != NULL)
3712 {
3713 dip -> at_comp_dir++;
3714 }
3715 else
3716 {
3717 dip -> at_comp_dir = diep;
3718 }
35f5886e
FF
3719 break;
3720 case AT_producer:
3721 dip -> at_producer = diep;
3722 break;
35f5886e 3723 case AT_start_scope:
13b5a7ff
FF
3724 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3725 objfile);
35f5886e
FF
3726 break;
3727 case AT_stride_size:
13b5a7ff
FF
3728 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3729 objfile);
35f5886e
FF
3730 break;
3731 case AT_src_info:
13b5a7ff
FF
3732 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3733 objfile);
35f5886e
FF
3734 break;
3735 case AT_prototyped:
13b5a7ff 3736 dip -> at_prototyped = diep;
35f5886e 3737 break;
35f5886e
FF
3738 default:
3739 /* Found an attribute that we are unprepared to handle. However
3740 it is specifically one of the design goals of DWARF that
3741 consumers should ignore unknown attributes. As long as the
3742 form is one that we recognize (so we know how to skip it),
3743 we can just ignore the unknown attribute. */
3744 break;
3745 }
13b5a7ff 3746 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3747 switch (form)
3748 {
3749 case FORM_DATA2:
13b5a7ff 3750 diep += 2;
35f5886e
FF
3751 break;
3752 case FORM_DATA4:
13b5a7ff
FF
3753 case FORM_REF:
3754 diep += 4;
35f5886e
FF
3755 break;
3756 case FORM_DATA8:
13b5a7ff 3757 diep += 8;
35f5886e
FF
3758 break;
3759 case FORM_ADDR:
13b5a7ff 3760 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3761 break;
3762 case FORM_BLOCK2:
13b5a7ff 3763 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3764 break;
3765 case FORM_BLOCK4:
13b5a7ff 3766 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3767 break;
3768 case FORM_STRING:
3769 diep += strlen (diep) + 1;
3770 break;
3771 default:
51b80b00 3772 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3773 diep = end;
3774 break;
3775 }
3776 }
3777}
95967e73 3778
13b5a7ff 3779/*
95967e73 3780
13b5a7ff
FF
3781LOCAL FUNCTION
3782
3783 target_to_host -- swap in target data to host
3784
3785SYNOPSIS
3786
3787 target_to_host (char *from, int nbytes, int signextend,
3788 struct objfile *objfile)
3789
3790DESCRIPTION
3791
3792 Given pointer to data in target format in FROM, a byte count for
3793 the size of the data in NBYTES, a flag indicating whether or not
3794 the data is signed in SIGNEXTEND, and a pointer to the current
3795 objfile in OBJFILE, convert the data to host format and return
3796 the converted value.
3797
3798NOTES
3799
3800 FIXME: If we read data that is known to be signed, and expect to
3801 use it as signed data, then we need to explicitly sign extend the
3802 result until the bfd library is able to do this for us.
3803
306d27ca
DE
3804 FIXME: Would a 32 bit target ever need an 8 byte result?
3805
13b5a7ff
FF
3806 */
3807
306d27ca 3808static CORE_ADDR
13b5a7ff 3809target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3810 char *from;
3811 int nbytes;
13b5a7ff 3812 int signextend; /* FIXME: Unused */
95967e73
FF
3813 struct objfile *objfile;
3814{
306d27ca 3815 CORE_ADDR rtnval;
95967e73
FF
3816
3817 switch (nbytes)
3818 {
95967e73 3819 case 8:
13b5a7ff 3820 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3821 break;
95967e73 3822 case 4:
13b5a7ff 3823 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3824 break;
3825 case 2:
13b5a7ff 3826 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3827 break;
3828 case 1:
13b5a7ff 3829 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3830 break;
3831 default:
51b80b00 3832 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3833 rtnval = 0;
95967e73
FF
3834 break;
3835 }
13b5a7ff 3836 return (rtnval);
95967e73
FF
3837}
3838
13b5a7ff
FF
3839/*
3840
3841LOCAL FUNCTION
3842
3843 attribute_size -- compute size of data for a DWARF attribute
3844
3845SYNOPSIS
3846
3847 static int attribute_size (unsigned int attr)
3848
3849DESCRIPTION
3850
3851 Given a DWARF attribute in ATTR, compute the size of the first
3852 piece of data associated with this attribute and return that
3853 size.
3854
3855 Returns -1 for unrecognized attributes.
3856
3857 */
3858
3859static int
3860attribute_size (attr)
3861 unsigned int attr;
3862{
3863 int nbytes; /* Size of next data for this attribute */
3864 unsigned short form; /* Form of the attribute */
3865
3866 form = FORM_FROM_ATTR (attr);
3867 switch (form)
3868 {
3869 case FORM_STRING: /* A variable length field is next */
3870 nbytes = 0;
3871 break;
3872 case FORM_DATA2: /* Next 2 byte field is the data itself */
3873 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3874 nbytes = 2;
3875 break;
3876 case FORM_DATA4: /* Next 4 byte field is the data itself */
3877 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3878 case FORM_REF: /* Next 4 byte field is a DIE offset */
3879 nbytes = 4;
3880 break;
3881 case FORM_DATA8: /* Next 8 byte field is the data itself */
3882 nbytes = 8;
3883 break;
3884 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3885 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3886 break;
3887 default:
51b80b00 3888 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3889 nbytes = -1;
3890 break;
3891 }
3892 return (nbytes);
3893}
This page took 0.472104 seconds and 4 git commands to generate.