* serial.c (serial_close): If scb is NULL, don't try to close
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
1ab3bf1b
JG
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/*
23
24FIXME: Figure out how to get the frame pointer register number in the
25execution environment of the target. Remove R_FP kludge
26
27FIXME: Add generation of dependencies list to partial symtab code.
28
35f5886e
FF
29FIXME: Resolve minor differences between what information we put in the
30partial symbol table and what dbxread puts in. For example, we don't yet
31put enum constants there. And dbxread seems to invent a lot of typedefs
32we never see. Use the new printpsym command to see the partial symbol table
33contents.
34
35f5886e
FF
35FIXME: Figure out a better way to tell gdb about the name of the function
36contain the user's entry point (I.E. main())
37
35f5886e
FF
38FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39other things to work on, if you get bored. :-)
40
41*/
4d315a07 42
d747e0af 43#include "defs.h"
35f5886e
FF
44#include "bfd.h"
45#include "symtab.h"
1ab3bf1b 46#include "gdbtypes.h"
35f5886e 47#include "symfile.h"
5e2e79f8 48#include "objfiles.h"
13b5a7ff 49#include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
f5f0679a 50#include "elf/dwarf.h"
4d315a07 51#include "buildsym.h"
2dbde378 52#include "demangle.h"
bf229b4e
FF
53#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54#include "language.h"
51b80b00 55#include "complaints.h"
35f5886e 56
d5931d79
JG
57#include <fcntl.h>
58#include <string.h>
603900c7 59#include <sys/types.h>
51b80b00 60
d5931d79
JG
61#ifndef NO_SYS_FILE
62#include <sys/file.h>
63#endif
64
65/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66#ifndef L_SET
67#define L_SET 0
68#endif
69
51b80b00
FF
70/* Some macros to provide DIE info for complaints. */
71
72#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75/* Complaints that can be issued during DWARF debug info reading. */
76
77struct complaint no_bfd_get_N =
78{
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80};
81
82struct complaint malformed_die =
83{
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85};
86
87struct complaint bad_die_ref =
88{
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90};
91
92struct complaint unknown_attribute_form =
93{
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95};
96
97struct complaint unknown_attribute_length =
98{
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100};
101
102struct complaint unexpected_fund_type =
103{
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105};
106
107struct complaint unknown_type_modifier =
108{
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110};
111
112struct complaint volatile_ignored =
113{
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115};
116
117struct complaint const_ignored =
118{
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120};
121
122struct complaint botched_modified_type =
123{
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125};
126
127struct complaint op_deref2 =
128{
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130};
131
132struct complaint op_deref4 =
133{
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135};
136
137struct complaint basereg_not_handled =
138{
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140};
141
142struct complaint dup_user_type_allocation =
143{
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145};
146
147struct complaint dup_user_type_definition =
148{
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150};
151
152struct complaint missing_tag =
153{
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155};
156
157struct complaint bad_array_element_type =
158{
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160};
161
162struct complaint subscript_data_items =
163{
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165};
166
167struct complaint unhandled_array_subscript_format =
168{
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170};
171
172struct complaint unknown_array_subscript_format =
173{
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175};
176
177struct complaint not_row_major =
178{
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180};
35f5886e
FF
181
182#ifndef R_FP /* FIXME */
183#define R_FP 14 /* Kludge to get frame pointer register number */
184#endif
185
13b5a7ff 186typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 187
4d315a07
FF
188#ifndef GCC_PRODUCER
189#define GCC_PRODUCER "GNU C "
190#endif
35f5886e 191
2dbde378
FF
192#ifndef GPLUS_PRODUCER
193#define GPLUS_PRODUCER "GNU C++ "
194#endif
195
196#ifndef LCC_PRODUCER
3dc755fb 197#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
198#endif
199
93bb6e65
FF
200#ifndef CHILL_PRODUCER
201#define CHILL_PRODUCER "GNU Chill "
202#endif
93bb6e65 203
13b5a7ff
FF
204/* Flags to target_to_host() that tell whether or not the data object is
205 expected to be signed. Used, for example, when fetching a signed
206 integer in the target environment which is used as a signed integer
207 in the host environment, and the two environments have different sized
208 ints. In this case, *somebody* has to sign extend the smaller sized
209 int. */
210
211#define GET_UNSIGNED 0 /* No sign extension required */
212#define GET_SIGNED 1 /* Sign extension required */
213
214/* Defines for things which are specified in the document "DWARF Debugging
215 Information Format" published by UNIX International, Programming Languages
216 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
217
218#define SIZEOF_DIE_LENGTH 4
219#define SIZEOF_DIE_TAG 2
220#define SIZEOF_ATTRIBUTE 2
221#define SIZEOF_FORMAT_SPECIFIER 1
222#define SIZEOF_FMT_FT 2
223#define SIZEOF_LINETBL_LENGTH 4
224#define SIZEOF_LINETBL_LINENO 4
225#define SIZEOF_LINETBL_STMT 2
226#define SIZEOF_LINETBL_DELTA 4
227#define SIZEOF_LOC_ATOM_CODE 1
228
229#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
230
231/* Macros that return the sizes of various types of data in the target
232 environment.
233
2d6d969c
FF
234 FIXME: Currently these are just compile time constants (as they are in
235 other parts of gdb as well). They need to be able to get the right size
236 either from the bfd or possibly from the DWARF info. It would be nice if
237 the DWARF producer inserted DIES that describe the fundamental types in
238 the target environment into the DWARF info, similar to the way dbx stabs
239 producers produce information about their fundamental types. */
240
241#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
242#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 243
768be6e1
FF
244/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
245 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
246 However, the Issue 2 DWARF specification from AT&T defines it as
247 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
248 For backwards compatibility with the AT&T compiler produced executables
249 we define AT_short_element_list for this variant. */
250
251#define AT_short_element_list (0x00f0|FORM_BLOCK2)
252
253/* External variables referenced. */
254
35f5886e 255extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 256extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
257
258/* The DWARF debugging information consists of two major pieces,
259 one is a block of DWARF Information Entries (DIE's) and the other
260 is a line number table. The "struct dieinfo" structure contains
261 the information for a single DIE, the one currently being processed.
262
263 In order to make it easier to randomly access the attribute fields
13b5a7ff 264 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
265 each DIE is scanned and an instance of the "struct dieinfo"
266 structure is initialized.
267
268 Initialization is done in two levels. The first, done by basicdieinfo(),
269 just initializes those fields that are vital to deciding whether or not
270 to use this DIE, how to skip past it, etc. The second, done by the
271 function completedieinfo(), fills in the rest of the information.
272
273 Attributes which have block forms are not interpreted at the time
274 the DIE is scanned, instead we just save pointers to the start
275 of their value fields.
276
277 Some fields have a flag <name>_p that is set when the value of the
278 field is valid (I.E. we found a matching attribute in the DIE). Since
279 we may want to test for the presence of some attributes in the DIE,
2d6186f4 280 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
281 we need someway to note that we found such an attribute.
282
283 */
284
285typedef char BLOCK;
286
287struct dieinfo {
13b5a7ff
FF
288 char * die; /* Pointer to the raw DIE data */
289 unsigned long die_length; /* Length of the raw DIE data */
290 DIE_REF die_ref; /* Offset of this DIE */
291 unsigned short die_tag; /* Tag for this DIE */
292 unsigned long at_padding;
293 unsigned long at_sibling;
294 BLOCK * at_location;
295 char * at_name;
296 unsigned short at_fund_type;
297 BLOCK * at_mod_fund_type;
298 unsigned long at_user_def_type;
299 BLOCK * at_mod_u_d_type;
300 unsigned short at_ordering;
301 BLOCK * at_subscr_data;
302 unsigned long at_byte_size;
303 unsigned short at_bit_offset;
304 unsigned long at_bit_size;
305 BLOCK * at_element_list;
306 unsigned long at_stmt_list;
307 unsigned long at_low_pc;
308 unsigned long at_high_pc;
309 unsigned long at_language;
310 unsigned long at_member;
311 unsigned long at_discr;
312 BLOCK * at_discr_value;
13b5a7ff
FF
313 BLOCK * at_string_length;
314 char * at_comp_dir;
315 char * at_producer;
13b5a7ff
FF
316 unsigned long at_start_scope;
317 unsigned long at_stride_size;
318 unsigned long at_src_info;
319 char * at_prototyped;
320 unsigned int has_at_low_pc:1;
321 unsigned int has_at_stmt_list:1;
50055e94 322 unsigned int has_at_byte_size:1;
13b5a7ff 323 unsigned int short_element_list:1;
35f5886e
FF
324};
325
326static int diecount; /* Approximate count of dies for compilation unit */
327static struct dieinfo *curdie; /* For warnings and such */
328
329static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 330static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
331static int dbroff; /* Relative offset from start of .debug section */
332static char *lnbase; /* Base pointer to line section */
333static int isreg; /* Kludge to identify register variables */
a5bd5ba6 334static int offreg; /* Kludge to identify basereg references */
35f5886e 335
2670f34d 336/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
35f5886e
FF
339static CORE_ADDR baseaddr; /* Add to each symbol value */
340
2670f34d
JG
341/* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343static struct section_offsets *base_section_offsets;
344
35f5886e
FF
345/* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371struct dwfinfo {
d5931d79 372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
35f5886e
FF
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
d5931d79 375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
35f5886e
FF
376};
377
378#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
4d315a07
FF
383/* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 387
4d315a07
FF
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 391
99140c31 392struct pending **list_in_scope = &file_symbols;
35f5886e
FF
393
394/* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
35f5886e
FF
419
420static struct type **utypes; /* Pointer to array of user type pointers */
421static int numutypes; /* Max number of user type pointers */
422
bf229b4e
FF
423/* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
95ff889e
FF
435/* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
95ff889e
FF
444
445static enum language cu_language;
bf229b4e 446static const struct language_defn *cu_language_defn;
95ff889e 447
35f5886e 448/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
449 about ordering within this file. */
450
13b5a7ff
FF
451static int
452attribute_size PARAMS ((unsigned int));
453
454static unsigned long
455target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 456
1ab3bf1b
JG
457static void
458add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
2dbde378
FF
460static void
461handle_producer PARAMS ((char *));
462
1ab3bf1b
JG
463static void
464read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 465
58050209 466static void
1ab3bf1b 467read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
468
469static void
1ab3bf1b
JG
470read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
35f5886e 472
35f5886e 473static void
1ab3bf1b 474scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 475
35f5886e 476static void
d5931d79
JG
477scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
35f5886e
FF
479
480static void
1ab3bf1b 481add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e
FF
482
483static void
1ab3bf1b 484init_psymbol_list PARAMS ((struct objfile *, int));
35f5886e
FF
485
486static void
95967e73 487basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
488
489static void
95967e73 490completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
491
492static void
493dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495static void
496psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 497
c701c14c 498static void
1ab3bf1b 499read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
500
501static void
1ab3bf1b 502process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
503
504static void
1ab3bf1b
JG
505read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
35f5886e
FF
507
508static struct type *
84ffdec2 509decode_array_element_type PARAMS ((char *));
35f5886e
FF
510
511static struct type *
85f0a848 512decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
513
514static void
1ab3bf1b 515dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 516
9e4c1921 517static void
1ab3bf1b 518read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 519
ec16f701
FF
520static void
521read_tag_string_type PARAMS ((struct dieinfo *dip));
522
35f5886e 523static void
1ab3bf1b 524read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
525
526static void
1ab3bf1b 527read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
528
529static struct type *
1ab3bf1b 530struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
531
532static struct type *
1ab3bf1b 533enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 534
35f5886e 535static void
1ab3bf1b 536decode_line_numbers PARAMS ((char *));
35f5886e
FF
537
538static struct type *
1ab3bf1b 539decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
540
541static struct type *
1ab3bf1b 542decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
543
544static struct type *
1ab3bf1b 545decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
546
547static struct type *
1c92ca6f 548decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
549
550static struct type *
1ab3bf1b 551decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
552
553static char *
1ab3bf1b 554create_name PARAMS ((char *, struct obstack *));
35f5886e 555
35f5886e 556static struct type *
13b5a7ff 557lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
558
559static struct type *
13b5a7ff 560alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
561
562static struct symbol *
1ab3bf1b 563new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 564
95ff889e
FF
565static void
566synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
35f5886e 569static int
1ab3bf1b 570locval PARAMS ((char *));
35f5886e
FF
571
572static void
1ab3bf1b
JG
573record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
574 struct objfile *));
35f5886e 575
95ff889e
FF
576static void
577set_cu_language PARAMS ((struct dieinfo *));
578
bf229b4e
FF
579static struct type *
580dwarf_fundamental_type PARAMS ((struct objfile *, int));
581
582
583/*
584
585LOCAL FUNCTION
586
587 dwarf_fundamental_type -- lookup or create a fundamental type
588
589SYNOPSIS
590
591 struct type *
592 dwarf_fundamental_type (struct objfile *objfile, int typeid)
593
594DESCRIPTION
595
596 DWARF version 1 doesn't supply any fundamental type information,
597 so gdb has to construct such types. It has a fixed number of
598 fundamental types that it knows how to construct, which is the
599 union of all types that it knows how to construct for all languages
600 that it knows about. These are enumerated in gdbtypes.h.
601
602 As an example, assume we find a DIE that references a DWARF
603 fundamental type of FT_integer. We first look in the ftypes
604 array to see if we already have such a type, indexed by the
605 gdb internal value of FT_INTEGER. If so, we simply return a
606 pointer to that type. If not, then we ask an appropriate
607 language dependent routine to create a type FT_INTEGER, using
608 defaults reasonable for the current target machine, and install
609 that type in ftypes for future reference.
610
611RETURNS
612
613 Pointer to a fundamental type.
614
615*/
616
617static struct type *
618dwarf_fundamental_type (objfile, typeid)
619 struct objfile *objfile;
620 int typeid;
621{
622 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
623 {
624 error ("internal error - invalid fundamental type id %d", typeid);
625 }
626
627 /* Look for this particular type in the fundamental type vector. If one is
628 not found, create and install one appropriate for the current language
629 and the current target machine. */
630
631 if (ftypes[typeid] == NULL)
632 {
633 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
634 }
635
636 return (ftypes[typeid]);
637}
638
95ff889e
FF
639/*
640
641LOCAL FUNCTION
642
643 set_cu_language -- set local copy of language for compilation unit
644
645SYNOPSIS
646
647 void
648 set_cu_language (struct dieinfo *dip)
649
650DESCRIPTION
651
652 Decode the language attribute for a compilation unit DIE and
653 remember what the language was. We use this at various times
654 when processing DIE's for a given compilation unit.
655
656RETURNS
657
658 No return value.
659
660 */
661
662static void
663set_cu_language (dip)
664 struct dieinfo *dip;
665{
666 switch (dip -> at_language)
667 {
668 case LANG_C89:
669 case LANG_C:
670 cu_language = language_c;
671 break;
672 case LANG_C_PLUS_PLUS:
673 cu_language = language_cplus;
674 break;
e58de8a2
FF
675 case LANG_CHILL:
676 cu_language = language_chill;
677 break;
678 case LANG_MODULA2:
679 cu_language = language_m2;
680 break;
95ff889e
FF
681 case LANG_ADA83:
682 case LANG_COBOL74:
683 case LANG_COBOL85:
684 case LANG_FORTRAN77:
685 case LANG_FORTRAN90:
686 case LANG_PASCAL83:
2e4964ad 687 /* We don't know anything special about these yet. */
95ff889e
FF
688 cu_language = language_unknown;
689 break;
2e4964ad
FF
690 default:
691 /* If no at_language, try to deduce one from the filename */
692 cu_language = deduce_language_from_filename (dip -> at_name);
693 break;
95ff889e 694 }
bf229b4e 695 cu_language_defn = language_def (cu_language);
95ff889e
FF
696}
697
35f5886e
FF
698/*
699
700GLOBAL FUNCTION
701
702 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
703
704SYNOPSIS
705
d5931d79 706 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 707 struct section_offsets *section_offsets,
d5931d79
JG
708 int mainline, file_ptr dbfoff, unsigned int dbfsize,
709 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
710
711DESCRIPTION
712
713 This function is called upon to build partial symtabs from files
714 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
715
d5931d79 716 It is passed a bfd* containing the DIES
35f5886e
FF
717 and line number information, the corresponding filename for that
718 file, a base address for relocating the symbols, a flag indicating
719 whether or not this debugging information is from a "main symbol
720 table" rather than a shared library or dynamically linked file,
721 and file offset/size pairs for the DIE information and line number
722 information.
723
724RETURNS
725
726 No return value.
727
728 */
729
730void
d5931d79
JG
731dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
732 lnoffset, lnsize)
733 struct objfile *objfile;
2670f34d 734 struct section_offsets *section_offsets;
1ab3bf1b 735 int mainline;
d5931d79 736 file_ptr dbfoff;
4090fe1c 737 unsigned int dbfsize;
d5931d79 738 file_ptr lnoffset;
1ab3bf1b 739 unsigned int lnsize;
35f5886e 740{
d5931d79 741 bfd *abfd = objfile->obfd;
35f5886e
FF
742 struct cleanup *back_to;
743
95967e73 744 current_objfile = objfile;
4090fe1c 745 dbsize = dbfsize;
35f5886e
FF
746 dbbase = xmalloc (dbsize);
747 dbroff = 0;
d5931d79
JG
748 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
749 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
750 {
751 free (dbbase);
d5931d79 752 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
753 }
754 back_to = make_cleanup (free, dbbase);
755
756 /* If we are reinitializing, or if we have never loaded syms yet, init.
757 Since we have no idea how many DIES we are looking at, we just guess
758 some arbitrary value. */
759
13b5a7ff
FF
760 if (mainline || objfile -> global_psymbols.size == 0 ||
761 objfile -> static_psymbols.size == 0)
35f5886e 762 {
1ab3bf1b 763 init_psymbol_list (objfile, 1024);
35f5886e
FF
764 }
765
84ffdec2 766 /* Save the relocation factor where everybody can see it. */
f8b76e70 767
2670f34d
JG
768 base_section_offsets = section_offsets;
769 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 770
35f5886e
FF
771 /* Follow the compilation unit sibling chain, building a partial symbol
772 table entry for each one. Save enough information about each compilation
773 unit to locate the full DWARF information later. */
774
d5931d79 775 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 776
35f5886e 777 do_cleanups (back_to);
95967e73 778 current_objfile = NULL;
35f5886e
FF
779}
780
781
782/*
783
784LOCAL FUNCTION
785
1ab3bf1b 786 record_minimal_symbol -- add entry to gdb's minimal symbol table
35f5886e
FF
787
788SYNOPSIS
789
1ab3bf1b
JG
790 static void record_minimal_symbol (char *name, CORE_ADDR address,
791 enum minimal_symbol_type ms_type,
792 struct objfile *objfile)
35f5886e
FF
793
794DESCRIPTION
795
796 Given a pointer to the name of a symbol that should be added to the
1ab3bf1b 797 minimal symbol table, and the address associated with that
35f5886e 798 symbol, records this information for later use in building the
1ab3bf1b 799 minimal symbol table.
35f5886e 800
35f5886e
FF
801 */
802
803static void
1ab3bf1b
JG
804record_minimal_symbol (name, address, ms_type, objfile)
805 char *name;
806 CORE_ADDR address;
807 enum minimal_symbol_type ms_type;
808 struct objfile *objfile;
35f5886e 809{
1ab3bf1b
JG
810 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
811 prim_record_minimal_symbol (name, address, ms_type);
35f5886e
FF
812}
813
814/*
815
35f5886e
FF
816LOCAL FUNCTION
817
818 read_lexical_block_scope -- process all dies in a lexical block
819
820SYNOPSIS
821
822 static void read_lexical_block_scope (struct dieinfo *dip,
823 char *thisdie, char *enddie)
824
825DESCRIPTION
826
827 Process all the DIES contained within a lexical block scope.
828 Start a new scope, process the dies, and then close the scope.
829
830 */
831
832static void
1ab3bf1b
JG
833read_lexical_block_scope (dip, thisdie, enddie, objfile)
834 struct dieinfo *dip;
835 char *thisdie;
836 char *enddie;
837 struct objfile *objfile;
35f5886e 838{
4d315a07
FF
839 register struct context_stack *new;
840
4ed3a9ea 841 push_context (0, dip -> at_low_pc);
13b5a7ff 842 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
843 new = pop_context ();
844 if (local_symbols != NULL)
845 {
846 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 847 dip -> at_high_pc, objfile);
4d315a07
FF
848 }
849 local_symbols = new -> locals;
35f5886e
FF
850}
851
852/*
853
854LOCAL FUNCTION
855
856 lookup_utype -- look up a user defined type from die reference
857
858SYNOPSIS
859
13b5a7ff 860 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
861
862DESCRIPTION
863
864 Given a DIE reference, lookup the user defined type associated with
865 that DIE, if it has been registered already. If not registered, then
866 return NULL. Alloc_utype() can be called to register an empty
867 type for this reference, which will be filled in later when the
868 actual referenced DIE is processed.
869 */
870
871static struct type *
13b5a7ff
FF
872lookup_utype (die_ref)
873 DIE_REF die_ref;
35f5886e
FF
874{
875 struct type *type = NULL;
876 int utypeidx;
877
13b5a7ff 878 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
879 if ((utypeidx < 0) || (utypeidx >= numutypes))
880 {
51b80b00 881 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
882 }
883 else
884 {
885 type = *(utypes + utypeidx);
886 }
887 return (type);
888}
889
890
891/*
892
893LOCAL FUNCTION
894
895 alloc_utype -- add a user defined type for die reference
896
897SYNOPSIS
898
13b5a7ff 899 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
900
901DESCRIPTION
902
13b5a7ff 903 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
904 defined type UTYPEP, register that this reference has a user
905 defined type and either use the specified type in UTYPEP or
906 make a new empty type that will be filled in later.
907
908 We should only be called after calling lookup_utype() to verify that
13b5a7ff 909 there is not currently a type registered for DIE_REF.
35f5886e
FF
910 */
911
912static struct type *
13b5a7ff
FF
913alloc_utype (die_ref, utypep)
914 DIE_REF die_ref;
1ab3bf1b 915 struct type *utypep;
35f5886e
FF
916{
917 struct type **typep;
918 int utypeidx;
919
13b5a7ff 920 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
921 typep = utypes + utypeidx;
922 if ((utypeidx < 0) || (utypeidx >= numutypes))
923 {
bf229b4e 924 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 925 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
926 }
927 else if (*typep != NULL)
928 {
929 utypep = *typep;
51b80b00 930 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
931 }
932 else
933 {
934 if (utypep == NULL)
935 {
8050a57b 936 utypep = alloc_type (current_objfile);
35f5886e
FF
937 }
938 *typep = utypep;
939 }
940 return (utypep);
941}
942
943/*
944
945LOCAL FUNCTION
946
947 decode_die_type -- return a type for a specified die
948
949SYNOPSIS
950
951 static struct type *decode_die_type (struct dieinfo *dip)
952
953DESCRIPTION
954
955 Given a pointer to a die information structure DIP, decode the
956 type of the die and return a pointer to the decoded type. All
957 dies without specific types default to type int.
958 */
959
960static struct type *
1ab3bf1b
JG
961decode_die_type (dip)
962 struct dieinfo *dip;
35f5886e
FF
963{
964 struct type *type = NULL;
965
966 if (dip -> at_fund_type != 0)
967 {
968 type = decode_fund_type (dip -> at_fund_type);
969 }
970 else if (dip -> at_mod_fund_type != NULL)
971 {
972 type = decode_mod_fund_type (dip -> at_mod_fund_type);
973 }
974 else if (dip -> at_user_def_type)
975 {
976 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
977 {
978 type = alloc_utype (dip -> at_user_def_type, NULL);
979 }
980 }
981 else if (dip -> at_mod_u_d_type)
982 {
983 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
984 }
985 else
986 {
bf229b4e 987 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
988 }
989 return (type);
990}
991
992/*
993
994LOCAL FUNCTION
995
996 struct_type -- compute and return the type for a struct or union
997
998SYNOPSIS
999
1000 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 1001 char *enddie, struct objfile *objfile)
35f5886e
FF
1002
1003DESCRIPTION
1004
1005 Given pointer to a die information structure for a die which
715cafcb
FF
1006 defines a union or structure (and MUST define one or the other),
1007 and pointers to the raw die data that define the range of dies which
1008 define the members, compute and return the user defined type for the
1009 structure or union.
35f5886e
FF
1010 */
1011
1012static struct type *
1ab3bf1b
JG
1013struct_type (dip, thisdie, enddie, objfile)
1014 struct dieinfo *dip;
1015 char *thisdie;
1016 char *enddie;
1017 struct objfile *objfile;
35f5886e
FF
1018{
1019 struct type *type;
1020 struct nextfield {
1021 struct nextfield *next;
1022 struct field field;
1023 };
1024 struct nextfield *list = NULL;
1025 struct nextfield *new;
1026 int nfields = 0;
1027 int n;
1028 char *tpart1;
35f5886e 1029 struct dieinfo mbr;
8b5b6fae 1030 char *nextdie;
a8a69e63 1031#if !BITS_BIG_ENDIAN
50055e94 1032 int anonymous_size;
a8a69e63 1033#endif
35f5886e 1034
13b5a7ff 1035 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1036 {
5edf98d7 1037 /* No forward references created an empty type, so install one now */
13b5a7ff 1038 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1039 }
a3723a43 1040 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1041 switch (dip -> die_tag)
35f5886e 1042 {
95ff889e
FF
1043 case TAG_class_type:
1044 TYPE_CODE (type) = TYPE_CODE_CLASS;
1045 tpart1 = "class";
1046 break;
715cafcb 1047 case TAG_structure_type:
5edf98d7 1048 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1049 tpart1 = "struct";
1050 break;
1051 case TAG_union_type:
1052 TYPE_CODE (type) = TYPE_CODE_UNION;
1053 tpart1 = "union";
1054 break;
1055 default:
1056 /* Should never happen */
1057 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1058 tpart1 = "???";
51b80b00 1059 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1060 break;
35f5886e 1061 }
5edf98d7
FF
1062 /* Some compilers try to be helpful by inventing "fake" names for
1063 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1064 Thanks, but no thanks... */
715cafcb
FF
1065 if (dip -> at_name != NULL
1066 && *dip -> at_name != '~'
1067 && *dip -> at_name != '.')
35f5886e 1068 {
95967e73 1069 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1ab3bf1b 1070 tpart1, " ", dip -> at_name);
35f5886e 1071 }
50055e94
FF
1072 /* Use whatever size is known. Zero is a valid size. We might however
1073 wish to check has_at_byte_size to make sure that some byte size was
1074 given explicitly, but DWARF doesn't specify that explicit sizes of
1075 zero have to present, so complaining about missing sizes should
1076 probably not be the default. */
1077 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1078 thisdie += dip -> die_length;
35f5886e
FF
1079 while (thisdie < enddie)
1080 {
95967e73
FF
1081 basicdieinfo (&mbr, thisdie, objfile);
1082 completedieinfo (&mbr, objfile);
13b5a7ff 1083 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1084 {
1085 break;
1086 }
8b5b6fae
FF
1087 else if (mbr.at_sibling != 0)
1088 {
1089 nextdie = dbbase + mbr.at_sibling - dbroff;
1090 }
1091 else
1092 {
13b5a7ff 1093 nextdie = thisdie + mbr.die_length;
8b5b6fae 1094 }
13b5a7ff 1095 switch (mbr.die_tag)
35f5886e
FF
1096 {
1097 case TAG_member:
1098 /* Get space to record the next field's data. */
1099 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1100 new -> next = list;
1101 list = new;
1102 /* Save the data. */
50e0dc41
FF
1103 list -> field.name =
1104 obsavestring (mbr.at_name, strlen (mbr.at_name),
1105 &objfile -> type_obstack);
35f5886e
FF
1106 list -> field.type = decode_die_type (&mbr);
1107 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1108 /* Handle bit fields. */
1109 list -> field.bitsize = mbr.at_bit_size;
1110#if BITS_BIG_ENDIAN
1111 /* For big endian bits, the at_bit_offset gives the additional
1112 bit offset from the MSB of the containing anonymous object to
1113 the MSB of the field. We don't have to do anything special
1114 since we don't need to know the size of the anonymous object. */
1115 list -> field.bitpos += mbr.at_bit_offset;
1116#else
1117 /* For little endian bits, we need to have a non-zero at_bit_size,
1118 so that we know we are in fact dealing with a bitfield. Compute
1119 the bit offset to the MSB of the anonymous object, subtract off
1120 the number of bits from the MSB of the field to the MSB of the
1121 object, and then subtract off the number of bits of the field
1122 itself. The result is the bit offset of the LSB of the field. */
1123 if (mbr.at_bit_size > 0)
1124 {
50055e94
FF
1125 if (mbr.has_at_byte_size)
1126 {
1127 /* The size of the anonymous object containing the bit field
1128 is explicit, so use the indicated size (in bytes). */
1129 anonymous_size = mbr.at_byte_size;
1130 }
1131 else
1132 {
1133 /* The size of the anonymous object containing the bit field
1134 matches the size of an object of the bit field's type.
1135 DWARF allows at_byte_size to be left out in such cases,
1136 as a debug information size optimization. */
1137 anonymous_size = TYPE_LENGTH (list -> field.type);
1138 }
4db8e515 1139 list -> field.bitpos +=
50055e94 1140 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
4db8e515
FF
1141 }
1142#endif
35f5886e
FF
1143 nfields++;
1144 break;
1145 default:
8b5b6fae 1146 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1147 break;
1148 }
8b5b6fae 1149 thisdie = nextdie;
35f5886e 1150 }
5edf98d7
FF
1151 /* Now create the vector of fields, and record how big it is. We may
1152 not even have any fields, if this DIE was generated due to a reference
1153 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1154 set, which clues gdb in to the fact that it needs to search elsewhere
1155 for the full structure definition. */
1156 if (nfields == 0)
35f5886e 1157 {
5edf98d7
FF
1158 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1159 }
1160 else
1161 {
1162 TYPE_NFIELDS (type) = nfields;
1163 TYPE_FIELDS (type) = (struct field *)
dac9734e 1164 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1165 /* Copy the saved-up fields into the field vector. */
1166 for (n = nfields; list; list = list -> next)
1167 {
1168 TYPE_FIELD (type, --n) = list -> field;
1169 }
1170 }
35f5886e
FF
1171 return (type);
1172}
1173
1174/*
1175
1176LOCAL FUNCTION
1177
1178 read_structure_scope -- process all dies within struct or union
1179
1180SYNOPSIS
1181
1182 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1183 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1184
1185DESCRIPTION
1186
1187 Called when we find the DIE that starts a structure or union
1188 scope (definition) to process all dies that define the members
1189 of the structure or union. DIP is a pointer to the die info
1190 struct for the DIE that names the structure or union.
1191
1192NOTES
1193
1194 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1195 the DIE has an at_name attribute, since it might be an anonymous
1196 structure or union. This gets the type entered into our set of
1197 user defined types.
1198
1199 However, if the structure is incomplete (an opaque struct/union)
1200 then suppress creating a symbol table entry for it since gdb only
1201 wants to find the one with the complete definition. Note that if
1202 it is complete, we just call new_symbol, which does it's own
1203 checking about whether the struct/union is anonymous or not (and
1204 suppresses creating a symbol table entry itself).
1205
35f5886e
FF
1206 */
1207
1208static void
1ab3bf1b
JG
1209read_structure_scope (dip, thisdie, enddie, objfile)
1210 struct dieinfo *dip;
1211 char *thisdie;
1212 char *enddie;
1213 struct objfile *objfile;
35f5886e
FF
1214{
1215 struct type *type;
1216 struct symbol *sym;
1217
8b5b6fae 1218 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1219 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1220 {
95ff889e
FF
1221 sym = new_symbol (dip, objfile);
1222 if (sym != NULL)
84ce6717
FF
1223 {
1224 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1225 if (cu_language == language_cplus)
1226 {
1227 synthesize_typedef (dip, objfile, type);
1228 }
84ce6717 1229 }
35f5886e
FF
1230 }
1231}
1232
1233/*
1234
1235LOCAL FUNCTION
1236
1237 decode_array_element_type -- decode type of the array elements
1238
1239SYNOPSIS
1240
1241 static struct type *decode_array_element_type (char *scan, char *end)
1242
1243DESCRIPTION
1244
1245 As the last step in decoding the array subscript information for an
1246 array DIE, we need to decode the type of the array elements. We are
1247 passed a pointer to this last part of the subscript information and
1248 must return the appropriate type. If the type attribute is not
1249 recognized, just warn about the problem and return type int.
1250 */
1251
1252static struct type *
84ffdec2 1253decode_array_element_type (scan)
1ab3bf1b 1254 char *scan;
35f5886e
FF
1255{
1256 struct type *typep;
13b5a7ff
FF
1257 DIE_REF die_ref;
1258 unsigned short attribute;
35f5886e 1259 unsigned short fundtype;
13b5a7ff 1260 int nbytes;
35f5886e 1261
13b5a7ff
FF
1262 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1263 current_objfile);
1264 scan += SIZEOF_ATTRIBUTE;
1265 if ((nbytes = attribute_size (attribute)) == -1)
1266 {
51b80b00 1267 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1268 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1269 }
1270 else
1271 {
1272 switch (attribute)
1273 {
1274 case AT_fund_type:
1275 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1276 current_objfile);
1277 typep = decode_fund_type (fundtype);
1278 break;
1279 case AT_mod_fund_type:
1280 typep = decode_mod_fund_type (scan);
1281 break;
1282 case AT_user_def_type:
1283 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1284 current_objfile);
1285 if ((typep = lookup_utype (die_ref)) == NULL)
1286 {
1287 typep = alloc_utype (die_ref, NULL);
1288 }
1289 break;
1290 case AT_mod_u_d_type:
1291 typep = decode_mod_u_d_type (scan);
1292 break;
1293 default:
51b80b00 1294 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1295 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1296 break;
1297 }
35f5886e
FF
1298 }
1299 return (typep);
1300}
1301
1302/*
1303
1304LOCAL FUNCTION
1305
85f0a848 1306 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1307
1308SYNOPSIS
1309
85f0a848
FF
1310 static struct type *
1311 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1312
1313DESCRIPTION
1314
1315 The array subscripts and the data type of the elements of an
1316 array are described by a list of data items, stored as a block
1317 of contiguous bytes. There is a data item describing each array
1318 dimension, and a final data item describing the element type.
1319 The data items are ordered the same as their appearance in the
1320 source (I.E. leftmost dimension first, next to leftmost second,
1321 etc).
1322
85f0a848
FF
1323 The data items describing each array dimension consist of four
1324 parts: (1) a format specifier, (2) type type of the subscript
1325 index, (3) a description of the low bound of the array dimension,
1326 and (4) a description of the high bound of the array dimension.
1327
1328 The last data item is the description of the type of each of
1329 the array elements.
1330
35f5886e 1331 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1332 containing the remaining data items, and a pointer to the first
1333 byte past the data. This function recursively decodes the
1334 remaining data items and returns a type.
1335
1336 If we somehow fail to decode some data, we complain about it
1337 and return a type "array of int".
35f5886e
FF
1338
1339BUGS
1340 FIXME: This code only implements the forms currently used
1341 by the AT&T and GNU C compilers.
1342
1343 The end pointer is supplied for error checking, maybe we should
1344 use it for that...
1345 */
1346
1347static struct type *
85f0a848 1348decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1349 char *scan;
1350 char *end;
35f5886e 1351{
85f0a848
FF
1352 struct type *typep = NULL; /* Array type we are building */
1353 struct type *nexttype; /* Type of each element (may be array) */
1354 struct type *indextype; /* Type of this index */
a8a69e63 1355 struct type *rangetype;
13b5a7ff
FF
1356 unsigned int format;
1357 unsigned short fundtype;
1358 unsigned long lowbound;
1359 unsigned long highbound;
1360 int nbytes;
35f5886e 1361
13b5a7ff
FF
1362 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1363 current_objfile);
1364 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1365 switch (format)
1366 {
1367 case FMT_ET:
84ffdec2 1368 typep = decode_array_element_type (scan);
35f5886e
FF
1369 break;
1370 case FMT_FT_C_C:
13b5a7ff
FF
1371 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1372 current_objfile);
85f0a848 1373 indextype = decode_fund_type (fundtype);
13b5a7ff 1374 scan += SIZEOF_FMT_FT;
160be0de
FF
1375 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1376 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1377 scan += nbytes;
1378 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1379 scan += nbytes;
85f0a848
FF
1380 nexttype = decode_subscript_data_item (scan, end);
1381 if (nexttype == NULL)
35f5886e 1382 {
85f0a848 1383 /* Munged subscript data or other problem, fake it. */
51b80b00 1384 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1385 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1386 }
a8a69e63
FF
1387 rangetype = create_range_type ((struct type *) NULL, indextype,
1388 lowbound, highbound);
1389 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1390 break;
1391 case FMT_FT_C_X:
1392 case FMT_FT_X_C:
1393 case FMT_FT_X_X:
1394 case FMT_UT_C_C:
1395 case FMT_UT_C_X:
1396 case FMT_UT_X_C:
1397 case FMT_UT_X_X:
51b80b00 1398 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1399 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1400 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1401 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1402 break;
1403 default:
51b80b00 1404 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1405 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1406 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1407 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1408 break;
1409 }
1410 return (typep);
1411}
1412
1413/*
1414
1415LOCAL FUNCTION
1416
4d315a07 1417 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1418
1419SYNOPSIS
1420
4d315a07 1421 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1422
1423DESCRIPTION
1424
1425 Extract all information from a TAG_array_type DIE and add to
1426 the user defined type vector.
1427 */
1428
1429static void
1ab3bf1b
JG
1430dwarf_read_array_type (dip)
1431 struct dieinfo *dip;
35f5886e
FF
1432{
1433 struct type *type;
af213624 1434 struct type *utype;
35f5886e
FF
1435 char *sub;
1436 char *subend;
13b5a7ff
FF
1437 unsigned short blocksz;
1438 int nbytes;
35f5886e
FF
1439
1440 if (dip -> at_ordering != ORD_row_major)
1441 {
1442 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1443 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1444 }
1445 if ((sub = dip -> at_subscr_data) != NULL)
1446 {
13b5a7ff
FF
1447 nbytes = attribute_size (AT_subscr_data);
1448 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1449 subend = sub + nbytes + blocksz;
1450 sub += nbytes;
85f0a848
FF
1451 type = decode_subscript_data_item (sub, subend);
1452 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1453 {
85f0a848
FF
1454 /* Install user defined type that has not been referenced yet. */
1455 alloc_utype (dip -> die_ref, type);
1456 }
1457 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1458 {
1459 /* Ick! A forward ref has already generated a blank type in our
1460 slot, and this type probably already has things pointing to it
1461 (which is what caused it to be created in the first place).
1462 If it's just a place holder we can plop our fully defined type
1463 on top of it. We can't recover the space allocated for our
1464 new type since it might be on an obstack, but we could reuse
1465 it if we kept a list of them, but it might not be worth it
1466 (FIXME). */
1467 *utype = *type;
35f5886e
FF
1468 }
1469 else
1470 {
85f0a848
FF
1471 /* Double ick! Not only is a type already in our slot, but
1472 someone has decorated it. Complain and leave it alone. */
51b80b00 1473 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1474 }
1475 }
1476}
1477
1478/*
1479
9e4c1921
FF
1480LOCAL FUNCTION
1481
1482 read_tag_pointer_type -- read TAG_pointer_type DIE
1483
1484SYNOPSIS
1485
1486 static void read_tag_pointer_type (struct dieinfo *dip)
1487
1488DESCRIPTION
1489
1490 Extract all information from a TAG_pointer_type DIE and add to
1491 the user defined type vector.
1492 */
1493
1494static void
1ab3bf1b
JG
1495read_tag_pointer_type (dip)
1496 struct dieinfo *dip;
9e4c1921
FF
1497{
1498 struct type *type;
1499 struct type *utype;
9e4c1921
FF
1500
1501 type = decode_die_type (dip);
13b5a7ff 1502 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1503 {
1504 utype = lookup_pointer_type (type);
4ed3a9ea 1505 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1506 }
1507 else
1508 {
1509 TYPE_TARGET_TYPE (utype) = type;
1510 TYPE_POINTER_TYPE (type) = utype;
1511
1512 /* We assume the machine has only one representation for pointers! */
1513 /* FIXME: This confuses host<->target data representations, and is a
1514 poor assumption besides. */
1515
1516 TYPE_LENGTH (utype) = sizeof (char *);
1517 TYPE_CODE (utype) = TYPE_CODE_PTR;
1518 }
1519}
1520
1521/*
1522
ec16f701
FF
1523LOCAL FUNCTION
1524
1525 read_tag_string_type -- read TAG_string_type DIE
1526
1527SYNOPSIS
1528
1529 static void read_tag_string_type (struct dieinfo *dip)
1530
1531DESCRIPTION
1532
1533 Extract all information from a TAG_string_type DIE and add to
1534 the user defined type vector. It isn't really a user defined
1535 type, but it behaves like one, with other DIE's using an
1536 AT_user_def_type attribute to reference it.
1537 */
1538
1539static void
1540read_tag_string_type (dip)
1541 struct dieinfo *dip;
1542{
1543 struct type *utype;
1544 struct type *indextype;
1545 struct type *rangetype;
1546 unsigned long lowbound = 0;
1547 unsigned long highbound;
1548
b6236d6e 1549 if (dip -> has_at_byte_size)
ec16f701 1550 {
b6236d6e
FF
1551 /* A fixed bounds string */
1552 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1553 }
1554 else
1555 {
b6236d6e
FF
1556 /* A varying length string. Stub for now. (FIXME) */
1557 highbound = 1;
1558 }
1559 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1560 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1561 highbound);
1562
1563 utype = lookup_utype (dip -> die_ref);
1564 if (utype == NULL)
1565 {
1566 /* No type defined, go ahead and create a blank one to use. */
1567 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1568 }
1569 else
1570 {
1571 /* Already a type in our slot due to a forward reference. Make sure it
1572 is a blank one. If not, complain and leave it alone. */
1573 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1574 {
b6236d6e
FF
1575 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1576 return;
ec16f701 1577 }
ec16f701 1578 }
b6236d6e
FF
1579
1580 /* Create the string type using the blank type we either found or created. */
1581 utype = create_string_type (utype, rangetype);
ec16f701
FF
1582}
1583
1584/*
1585
35f5886e
FF
1586LOCAL FUNCTION
1587
1588 read_subroutine_type -- process TAG_subroutine_type dies
1589
1590SYNOPSIS
1591
1592 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1593 char *enddie)
1594
1595DESCRIPTION
1596
1597 Handle DIES due to C code like:
1598
1599 struct foo {
1600 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1601 int b;
1602 };
1603
1604NOTES
1605
1606 The parameter DIES are currently ignored. See if gdb has a way to
1607 include this info in it's type system, and decode them if so. Is
1608 this what the type structure's "arg_types" field is for? (FIXME)
1609 */
1610
1611static void
1ab3bf1b
JG
1612read_subroutine_type (dip, thisdie, enddie)
1613 struct dieinfo *dip;
1614 char *thisdie;
1615 char *enddie;
35f5886e 1616{
af213624
FF
1617 struct type *type; /* Type that this function returns */
1618 struct type *ftype; /* Function that returns above type */
35f5886e 1619
af213624
FF
1620 /* Decode the type that this subroutine returns */
1621
35f5886e 1622 type = decode_die_type (dip);
af213624
FF
1623
1624 /* Check to see if we already have a partially constructed user
1625 defined type for this DIE, from a forward reference. */
1626
13b5a7ff 1627 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1628 {
1629 /* This is the first reference to one of these types. Make
1630 a new one and place it in the user defined types. */
1631 ftype = lookup_function_type (type);
4ed3a9ea 1632 alloc_utype (dip -> die_ref, ftype);
af213624 1633 }
85f0a848 1634 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1635 {
1636 /* We have an existing partially constructed type, so bash it
1637 into the correct type. */
1638 TYPE_TARGET_TYPE (ftype) = type;
1639 TYPE_FUNCTION_TYPE (type) = ftype;
1640 TYPE_LENGTH (ftype) = 1;
1641 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1642 }
85f0a848
FF
1643 else
1644 {
51b80b00 1645 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1646 }
35f5886e
FF
1647}
1648
1649/*
1650
1651LOCAL FUNCTION
1652
1653 read_enumeration -- process dies which define an enumeration
1654
1655SYNOPSIS
1656
1657 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1658 char *enddie, struct objfile *objfile)
35f5886e
FF
1659
1660DESCRIPTION
1661
1662 Given a pointer to a die which begins an enumeration, process all
1663 the dies that define the members of the enumeration.
1664
1665NOTES
1666
1667 Note that we need to call enum_type regardless of whether or not we
1668 have a symbol, since we might have an enum without a tag name (thus
1669 no symbol for the tagname).
1670 */
1671
1672static void
1ab3bf1b
JG
1673read_enumeration (dip, thisdie, enddie, objfile)
1674 struct dieinfo *dip;
1675 char *thisdie;
1676 char *enddie;
1677 struct objfile *objfile;
35f5886e
FF
1678{
1679 struct type *type;
1680 struct symbol *sym;
1681
1ab3bf1b 1682 type = enum_type (dip, objfile);
95ff889e
FF
1683 sym = new_symbol (dip, objfile);
1684 if (sym != NULL)
35f5886e
FF
1685 {
1686 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1687 if (cu_language == language_cplus)
1688 {
1689 synthesize_typedef (dip, objfile, type);
1690 }
35f5886e
FF
1691 }
1692}
1693
1694/*
1695
1696LOCAL FUNCTION
1697
1698 enum_type -- decode and return a type for an enumeration
1699
1700SYNOPSIS
1701
1ab3bf1b 1702 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1703
1704DESCRIPTION
1705
1706 Given a pointer to a die information structure for the die which
1707 starts an enumeration, process all the dies that define the members
1708 of the enumeration and return a type pointer for the enumeration.
98618bf7 1709
715cafcb
FF
1710 At the same time, for each member of the enumeration, create a
1711 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1712 and give it the type of the enumeration itself.
1713
1714NOTES
1715
98618bf7
FF
1716 Note that the DWARF specification explicitly mandates that enum
1717 constants occur in reverse order from the source program order,
1718 for "consistency" and because this ordering is easier for many
1ab3bf1b 1719 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1720 Entries). Because gdb wants to see the enum members in program
1721 source order, we have to ensure that the order gets reversed while
98618bf7 1722 we are processing them.
35f5886e
FF
1723 */
1724
1725static struct type *
1ab3bf1b
JG
1726enum_type (dip, objfile)
1727 struct dieinfo *dip;
1728 struct objfile *objfile;
35f5886e
FF
1729{
1730 struct type *type;
1731 struct nextfield {
1732 struct nextfield *next;
1733 struct field field;
1734 };
1735 struct nextfield *list = NULL;
1736 struct nextfield *new;
1737 int nfields = 0;
1738 int n;
35f5886e
FF
1739 char *scan;
1740 char *listend;
13b5a7ff 1741 unsigned short blocksz;
715cafcb 1742 struct symbol *sym;
13b5a7ff 1743 int nbytes;
35f5886e 1744
13b5a7ff 1745 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1746 {
84ce6717 1747 /* No forward references created an empty type, so install one now */
13b5a7ff 1748 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1749 }
1750 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1751 /* Some compilers try to be helpful by inventing "fake" names for
1752 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1753 Thanks, but no thanks... */
715cafcb
FF
1754 if (dip -> at_name != NULL
1755 && *dip -> at_name != '~'
1756 && *dip -> at_name != '.')
35f5886e 1757 {
95967e73 1758 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1ab3bf1b 1759 " ", dip -> at_name);
35f5886e 1760 }
715cafcb 1761 if (dip -> at_byte_size != 0)
35f5886e
FF
1762 {
1763 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1764 }
35f5886e
FF
1765 if ((scan = dip -> at_element_list) != NULL)
1766 {
768be6e1
FF
1767 if (dip -> short_element_list)
1768 {
13b5a7ff 1769 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1770 }
1771 else
1772 {
13b5a7ff 1773 nbytes = attribute_size (AT_element_list);
768be6e1 1774 }
13b5a7ff
FF
1775 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1776 listend = scan + nbytes + blocksz;
1777 scan += nbytes;
35f5886e
FF
1778 while (scan < listend)
1779 {
1780 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1781 new -> next = list;
1782 list = new;
1783 list -> field.type = NULL;
1784 list -> field.bitsize = 0;
13b5a7ff
FF
1785 list -> field.bitpos =
1786 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1787 objfile);
1788 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1789 list -> field.name = obsavestring (scan, strlen (scan),
1790 &objfile -> type_obstack);
35f5886e
FF
1791 scan += strlen (scan) + 1;
1792 nfields++;
715cafcb 1793 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1794 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1795 sizeof (struct symbol));
4ed3a9ea 1796 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1797 SYMBOL_NAME (sym) = create_name (list -> field.name,
1798 &objfile->symbol_obstack);
7532cf10 1799 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1800 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1801 SYMBOL_CLASS (sym) = LOC_CONST;
1802 SYMBOL_TYPE (sym) = type;
1803 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1804 add_symbol_to_list (sym, list_in_scope);
35f5886e 1805 }
84ce6717 1806 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1807 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1808 reverse order from how they were inserted. If we have no fields
1809 (this is apparently possible in C++) then skip building a field
1810 vector. */
1811 if (nfields > 0)
1812 {
1813 TYPE_NFIELDS (type) = nfields;
1814 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1815 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1816 /* Copy the saved-up fields into the field vector. */
1817 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1818 {
1819 TYPE_FIELD (type, n++) = list -> field;
1820 }
1821 }
35f5886e 1822 }
35f5886e
FF
1823 return (type);
1824}
1825
1826/*
1827
1828LOCAL FUNCTION
1829
1830 read_func_scope -- process all dies within a function scope
1831
35f5886e
FF
1832DESCRIPTION
1833
1834 Process all dies within a given function scope. We are passed
1835 a die information structure pointer DIP for the die which
1836 starts the function scope, and pointers into the raw die data
1837 that define the dies within the function scope.
1838
1839 For now, we ignore lexical block scopes within the function.
1840 The problem is that AT&T cc does not define a DWARF lexical
1841 block scope for the function itself, while gcc defines a
1842 lexical block scope for the function. We need to think about
1843 how to handle this difference, or if it is even a problem.
1844 (FIXME)
1845 */
1846
1847static void
1ab3bf1b
JG
1848read_func_scope (dip, thisdie, enddie, objfile)
1849 struct dieinfo *dip;
1850 char *thisdie;
1851 char *enddie;
1852 struct objfile *objfile;
35f5886e 1853{
4d315a07 1854 register struct context_stack *new;
35f5886e 1855
5e2e79f8
FF
1856 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1857 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1858 {
5e2e79f8
FF
1859 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1860 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1861 }
4d315a07 1862 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1863 {
5e2e79f8
FF
1864 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1865 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1866 }
4d315a07 1867 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1868 new -> name = new_symbol (dip, objfile);
4d315a07 1869 list_in_scope = &local_symbols;
13b5a7ff 1870 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1871 new = pop_context ();
1872 /* Make a block for the local symbols within. */
1873 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1874 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1875 list_in_scope = &file_symbols;
35f5886e
FF
1876}
1877
2dbde378
FF
1878
1879/*
1880
1881LOCAL FUNCTION
1882
1883 handle_producer -- process the AT_producer attribute
1884
1885DESCRIPTION
1886
1887 Perform any operations that depend on finding a particular
1888 AT_producer attribute.
1889
1890 */
1891
1892static void
1893handle_producer (producer)
1894 char *producer;
1895{
1896
1897 /* If this compilation unit was compiled with g++ or gcc, then set the
1898 processing_gcc_compilation flag. */
1899
1900 processing_gcc_compilation =
1901 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1902 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1903 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1904
1905 /* Select a demangling style if we can identify the producer and if
1906 the current style is auto. We leave the current style alone if it
1907 is not auto. We also leave the demangling style alone if we find a
1908 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1909
3dc755fb 1910 if (AUTO_DEMANGLING)
2dbde378
FF
1911 {
1912 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1913 {
1914 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1915 }
1916 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1917 {
1918 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1919 }
2dbde378 1920 }
2dbde378
FF
1921}
1922
1923
35f5886e
FF
1924/*
1925
1926LOCAL FUNCTION
1927
1928 read_file_scope -- process all dies within a file scope
1929
35f5886e
FF
1930DESCRIPTION
1931
1932 Process all dies within a given file scope. We are passed a
1933 pointer to the die information structure for the die which
1934 starts the file scope, and pointers into the raw die data which
1935 mark the range of dies within the file scope.
1936
1937 When the partial symbol table is built, the file offset for the line
1938 number table for each compilation unit is saved in the partial symbol
1939 table entry for that compilation unit. As the symbols for each
1940 compilation unit are read, the line number table is read into memory
1941 and the variable lnbase is set to point to it. Thus all we have to
1942 do is use lnbase to access the line number table for the current
1943 compilation unit.
1944 */
1945
1946static void
1ab3bf1b
JG
1947read_file_scope (dip, thisdie, enddie, objfile)
1948 struct dieinfo *dip;
1949 char *thisdie;
1950 char *enddie;
1951 struct objfile *objfile;
35f5886e
FF
1952{
1953 struct cleanup *back_to;
4d315a07 1954 struct symtab *symtab;
35f5886e 1955
5e2e79f8
FF
1956 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1957 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1958 {
5e2e79f8
FF
1959 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1960 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1961 }
95ff889e 1962 set_cu_language (dip);
4d315a07
FF
1963 if (dip -> at_producer != NULL)
1964 {
2dbde378 1965 handle_producer (dip -> at_producer);
4d315a07 1966 }
35f5886e
FF
1967 numutypes = (enddie - thisdie) / 4;
1968 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1969 back_to = make_cleanup (free, utypes);
4ed3a9ea 1970 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1971 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1972 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1973 decode_line_numbers (lnbase);
13b5a7ff 1974 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b
JK
1975
1976 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
7b5d9650 1977 if (symtab != NULL)
4d315a07 1978 {
95ff889e 1979 symtab -> language = cu_language;
7b5d9650 1980 }
35f5886e
FF
1981 do_cleanups (back_to);
1982 utypes = NULL;
1983 numutypes = 0;
1984}
1985
1986/*
1987
35f5886e
FF
1988LOCAL FUNCTION
1989
1990 process_dies -- process a range of DWARF Information Entries
1991
1992SYNOPSIS
1993
8b5b6fae
FF
1994 static void process_dies (char *thisdie, char *enddie,
1995 struct objfile *objfile)
35f5886e
FF
1996
1997DESCRIPTION
1998
1999 Process all DIE's in a specified range. May be (and almost
2000 certainly will be) called recursively.
2001 */
2002
2003static void
1ab3bf1b
JG
2004process_dies (thisdie, enddie, objfile)
2005 char *thisdie;
2006 char *enddie;
2007 struct objfile *objfile;
35f5886e
FF
2008{
2009 char *nextdie;
2010 struct dieinfo di;
2011
2012 while (thisdie < enddie)
2013 {
95967e73 2014 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2015 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2016 {
2017 break;
2018 }
13b5a7ff 2019 else if (di.die_tag == TAG_padding)
35f5886e 2020 {
13b5a7ff 2021 nextdie = thisdie + di.die_length;
35f5886e
FF
2022 }
2023 else
2024 {
95967e73 2025 completedieinfo (&di, objfile);
35f5886e
FF
2026 if (di.at_sibling != 0)
2027 {
2028 nextdie = dbbase + di.at_sibling - dbroff;
2029 }
2030 else
2031 {
13b5a7ff 2032 nextdie = thisdie + di.die_length;
35f5886e 2033 }
13b5a7ff 2034 switch (di.die_tag)
35f5886e
FF
2035 {
2036 case TAG_compile_unit:
a048c8f5 2037 read_file_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2038 break;
2039 case TAG_global_subroutine:
2040 case TAG_subroutine:
2d6186f4 2041 if (di.has_at_low_pc)
35f5886e 2042 {
a048c8f5 2043 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2044 }
2045 break;
2046 case TAG_lexical_block:
a048c8f5 2047 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2048 break;
95ff889e 2049 case TAG_class_type:
35f5886e
FF
2050 case TAG_structure_type:
2051 case TAG_union_type:
8b5b6fae 2052 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2053 break;
2054 case TAG_enumeration_type:
1ab3bf1b 2055 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2056 break;
2057 case TAG_subroutine_type:
2058 read_subroutine_type (&di, thisdie, nextdie);
2059 break;
2060 case TAG_array_type:
4d315a07 2061 dwarf_read_array_type (&di);
35f5886e 2062 break;
9e4c1921
FF
2063 case TAG_pointer_type:
2064 read_tag_pointer_type (&di);
2065 break;
ec16f701
FF
2066 case TAG_string_type:
2067 read_tag_string_type (&di);
2068 break;
35f5886e 2069 default:
4ed3a9ea 2070 new_symbol (&di, objfile);
35f5886e
FF
2071 break;
2072 }
2073 }
2074 thisdie = nextdie;
2075 }
2076}
2077
2078/*
2079
35f5886e
FF
2080LOCAL FUNCTION
2081
2082 decode_line_numbers -- decode a line number table fragment
2083
2084SYNOPSIS
2085
2086 static void decode_line_numbers (char *tblscan, char *tblend,
2087 long length, long base, long line, long pc)
2088
2089DESCRIPTION
2090
2091 Translate the DWARF line number information to gdb form.
2092
2093 The ".line" section contains one or more line number tables, one for
2094 each ".line" section from the objects that were linked.
2095
2096 The AT_stmt_list attribute for each TAG_source_file entry in the
2097 ".debug" section contains the offset into the ".line" section for the
2098 start of the table for that file.
2099
2100 The table itself has the following structure:
2101
2102 <table length><base address><source statement entry>
2103 4 bytes 4 bytes 10 bytes
2104
2105 The table length is the total size of the table, including the 4 bytes
2106 for the length information.
2107
2108 The base address is the address of the first instruction generated
2109 for the source file.
2110
2111 Each source statement entry has the following structure:
2112
2113 <line number><statement position><address delta>
2114 4 bytes 2 bytes 4 bytes
2115
2116 The line number is relative to the start of the file, starting with
2117 line 1.
2118
2119 The statement position either -1 (0xFFFF) or the number of characters
2120 from the beginning of the line to the beginning of the statement.
2121
2122 The address delta is the difference between the base address and
2123 the address of the first instruction for the statement.
2124
2125 Note that we must copy the bytes from the packed table to our local
2126 variables before attempting to use them, to avoid alignment problems
2127 on some machines, particularly RISC processors.
2128
2129BUGS
2130
2131 Does gdb expect the line numbers to be sorted? They are now by
2132 chance/luck, but are not required to be. (FIXME)
2133
2134 The line with number 0 is unused, gdb apparently can discover the
2135 span of the last line some other way. How? (FIXME)
2136 */
2137
2138static void
1ab3bf1b
JG
2139decode_line_numbers (linetable)
2140 char *linetable;
35f5886e
FF
2141{
2142 char *tblscan;
2143 char *tblend;
13b5a7ff
FF
2144 unsigned long length;
2145 unsigned long base;
2146 unsigned long line;
2147 unsigned long pc;
35f5886e
FF
2148
2149 if (linetable != NULL)
2150 {
2151 tblscan = tblend = linetable;
13b5a7ff
FF
2152 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2153 current_objfile);
2154 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2155 tblend += length;
13b5a7ff
FF
2156 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2157 GET_UNSIGNED, current_objfile);
2158 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2159 base += baseaddr;
35f5886e
FF
2160 while (tblscan < tblend)
2161 {
13b5a7ff
FF
2162 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2163 current_objfile);
2164 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2165 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2166 current_objfile);
2167 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2168 pc += base;
13b5a7ff 2169 if (line != 0)
35f5886e 2170 {
4d315a07 2171 record_line (current_subfile, line, pc);
35f5886e
FF
2172 }
2173 }
2174 }
2175}
2176
2177/*
2178
35f5886e
FF
2179LOCAL FUNCTION
2180
2181 locval -- compute the value of a location attribute
2182
2183SYNOPSIS
2184
2185 static int locval (char *loc)
2186
2187DESCRIPTION
2188
2189 Given pointer to a string of bytes that define a location, compute
2190 the location and return the value.
2191
2192 When computing values involving the current value of the frame pointer,
2193 the value zero is used, which results in a value relative to the frame
2194 pointer, rather than the absolute value. This is what GDB wants
2195 anyway.
2196
2197 When the result is a register number, the global isreg flag is set,
2198 otherwise it is cleared. This is a kludge until we figure out a better
2199 way to handle the problem. Gdb's design does not mesh well with the
2200 DWARF notion of a location computing interpreter, which is a shame
2201 because the flexibility goes unused.
2202
2203NOTES
2204
2205 Note that stack[0] is unused except as a default error return.
2206 Note that stack overflow is not yet handled.
2207 */
2208
2209static int
1ab3bf1b
JG
2210locval (loc)
2211 char *loc;
35f5886e
FF
2212{
2213 unsigned short nbytes;
13b5a7ff
FF
2214 unsigned short locsize;
2215 auto long stack[64];
35f5886e
FF
2216 int stacki;
2217 char *end;
2218 long regno;
13b5a7ff
FF
2219 int loc_atom_code;
2220 int loc_value_size;
35f5886e 2221
13b5a7ff
FF
2222 nbytes = attribute_size (AT_location);
2223 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2224 loc += nbytes;
2225 end = loc + locsize;
35f5886e
FF
2226 stacki = 0;
2227 stack[stacki] = 0;
2228 isreg = 0;
a5bd5ba6 2229 offreg = 0;
13b5a7ff
FF
2230 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2231 while (loc < end)
35f5886e 2232 {
13b5a7ff
FF
2233 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2234 current_objfile);
2235 loc += SIZEOF_LOC_ATOM_CODE;
2236 switch (loc_atom_code)
2237 {
2238 case 0:
2239 /* error */
2240 loc = end;
2241 break;
2242 case OP_REG:
2243 /* push register (number) */
2244 stack[++stacki] = target_to_host (loc, loc_value_size,
2245 GET_UNSIGNED, current_objfile);
2246 loc += loc_value_size;
2247 isreg = 1;
2248 break;
2249 case OP_BASEREG:
2250 /* push value of register (number) */
2251 /* Actually, we compute the value as if register has 0 */
2252 offreg = 1;
2253 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2254 current_objfile);
2255 loc += loc_value_size;
2256 if (regno == R_FP)
2257 {
2258 stack[++stacki] = 0;
2259 }
2260 else
2261 {
2262 stack[++stacki] = 0;
51b80b00
FF
2263
2264 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
13b5a7ff
FF
2265 }
2266 break;
2267 case OP_ADDR:
2268 /* push address (relocated address) */
2269 stack[++stacki] = target_to_host (loc, loc_value_size,
2270 GET_UNSIGNED, current_objfile);
2271 loc += loc_value_size;
2272 break;
2273 case OP_CONST:
2274 /* push constant (number) FIXME: signed or unsigned! */
2275 stack[++stacki] = target_to_host (loc, loc_value_size,
2276 GET_SIGNED, current_objfile);
2277 loc += loc_value_size;
2278 break;
2279 case OP_DEREF2:
2280 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2281 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2282 break;
2283 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2284 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2285 break;
2286 case OP_ADD: /* pop top 2 items, add, push result */
2287 stack[stacki - 1] += stack[stacki];
2288 stacki--;
2289 break;
2290 }
35f5886e
FF
2291 }
2292 return (stack[stacki]);
2293}
2294
2295/*
2296
2297LOCAL FUNCTION
2298
2299 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2300
2301SYNOPSIS
2302
c701c14c 2303 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2304
2305DESCRIPTION
2306
1ab3bf1b
JG
2307 When expanding a partial symbol table entry to a full symbol table
2308 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2309 for the compilation unit. A pointer to the newly constructed symtab,
2310 which is now the new first one on the objfile's symtab list, is
2311 stashed in the partial symbol table entry.
35f5886e
FF
2312 */
2313
c701c14c 2314static void
1ab3bf1b
JG
2315read_ofile_symtab (pst)
2316 struct partial_symtab *pst;
35f5886e
FF
2317{
2318 struct cleanup *back_to;
13b5a7ff 2319 unsigned long lnsize;
d5931d79 2320 file_ptr foffset;
1ab3bf1b 2321 bfd *abfd;
13b5a7ff 2322 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2323
2324 abfd = pst -> objfile -> obfd;
2325 current_objfile = pst -> objfile;
2326
35f5886e
FF
2327 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2328 unit, seek to the location in the file, and read in all the DIE's. */
2329
2330 diecount = 0;
4090fe1c
FF
2331 dbsize = DBLENGTH (pst);
2332 dbbase = xmalloc (dbsize);
35f5886e
FF
2333 dbroff = DBROFF(pst);
2334 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2335 base_section_offsets = pst->section_offsets;
2336 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2337 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2338 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2339 {
2340 free (dbbase);
2341 error ("can't read DWARF data");
2342 }
2343 back_to = make_cleanup (free, dbbase);
2344
2345 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2346 then read the size of this fragment in bytes, from the fragment itself.
2347 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2348 processing. */
2349
2350 lnbase = NULL;
2351 if (LNFOFF (pst))
2352 {
d5931d79 2353 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2354 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2355 sizeof (lnsizedata)))
35f5886e
FF
2356 {
2357 error ("can't read DWARF line number table size");
2358 }
13b5a7ff
FF
2359 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2360 GET_UNSIGNED, pst -> objfile);
35f5886e 2361 lnbase = xmalloc (lnsize);
d5931d79 2362 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2363 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2364 {
2365 free (lnbase);
2366 error ("can't read DWARF line numbers");
2367 }
2368 make_cleanup (free, lnbase);
2369 }
2370
4090fe1c 2371 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2372 do_cleanups (back_to);
1ab3bf1b 2373 current_objfile = NULL;
c701c14c 2374 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2375}
2376
2377/*
2378
2379LOCAL FUNCTION
2380
2381 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2382
2383SYNOPSIS
2384
a048c8f5 2385 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2386
2387DESCRIPTION
2388
2389 Called once for each partial symbol table entry that needs to be
2390 expanded into a full symbol table entry.
2391
2392*/
2393
2394static void
1ab3bf1b
JG
2395psymtab_to_symtab_1 (pst)
2396 struct partial_symtab *pst;
35f5886e
FF
2397{
2398 int i;
d07734e3 2399 struct cleanup *old_chain;
35f5886e 2400
1ab3bf1b 2401 if (pst != NULL)
35f5886e 2402 {
1ab3bf1b 2403 if (pst->readin)
35f5886e 2404 {
318bf84f 2405 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2406 pst -> filename);
2407 }
2408 else
2409 {
2410 /* Read in all partial symtabs on which this one is dependent */
2411 for (i = 0; i < pst -> number_of_dependencies; i++)
2412 {
2413 if (!pst -> dependencies[i] -> readin)
2414 {
2415 /* Inform about additional files that need to be read in. */
2416 if (info_verbose)
2417 {
2418 fputs_filtered (" ", stdout);
2419 wrap_here ("");
2420 fputs_filtered ("and ", stdout);
2421 wrap_here ("");
2422 printf_filtered ("%s...",
2423 pst -> dependencies[i] -> filename);
2424 wrap_here ("");
2425 fflush (stdout); /* Flush output */
2426 }
2427 psymtab_to_symtab_1 (pst -> dependencies[i]);
2428 }
2429 }
2430 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2431 {
d07734e3
FF
2432 buildsym_init ();
2433 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2434 read_ofile_symtab (pst);
1ab3bf1b
JG
2435 if (info_verbose)
2436 {
2437 printf_filtered ("%d DIE's, sorting...", diecount);
2438 wrap_here ("");
2439 fflush (stdout);
2440 }
2441 sort_symtab_syms (pst -> symtab);
d07734e3 2442 do_cleanups (old_chain);
1ab3bf1b
JG
2443 }
2444 pst -> readin = 1;
35f5886e 2445 }
35f5886e 2446 }
35f5886e
FF
2447}
2448
2449/*
2450
2451LOCAL FUNCTION
2452
2453 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2454
2455SYNOPSIS
2456
2457 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2458
2459DESCRIPTION
2460
2461 This is the DWARF support entry point for building a full symbol
2462 table entry from a partial symbol table entry. We are passed a
2463 pointer to the partial symbol table entry that needs to be expanded.
2464
2465*/
2466
2467static void
1ab3bf1b
JG
2468dwarf_psymtab_to_symtab (pst)
2469 struct partial_symtab *pst;
35f5886e 2470{
7d9884b9 2471
1ab3bf1b 2472 if (pst != NULL)
35f5886e 2473 {
1ab3bf1b 2474 if (pst -> readin)
35f5886e 2475 {
318bf84f 2476 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2477 pst -> filename);
35f5886e 2478 }
1ab3bf1b 2479 else
35f5886e 2480 {
1ab3bf1b
JG
2481 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2482 {
2483 /* Print the message now, before starting serious work, to avoid
2484 disconcerting pauses. */
2485 if (info_verbose)
2486 {
2487 printf_filtered ("Reading in symbols for %s...",
2488 pst -> filename);
2489 fflush (stdout);
2490 }
2491
2492 psymtab_to_symtab_1 (pst);
2493
2494#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2495 we need to do an equivalent or is this something peculiar to
2496 stabs/a.out format.
2497 Match with global symbols. This only needs to be done once,
2498 after all of the symtabs and dependencies have been read in.
2499 */
2500 scan_file_globals (pst -> objfile);
2501#endif
2502
2503 /* Finish up the verbose info message. */
2504 if (info_verbose)
2505 {
2506 printf_filtered ("done.\n");
2507 fflush (stdout);
2508 }
2509 }
35f5886e
FF
2510 }
2511 }
2512}
2513
2514/*
2515
2516LOCAL FUNCTION
2517
2518 init_psymbol_list -- initialize storage for partial symbols
2519
2520SYNOPSIS
2521
1ab3bf1b 2522 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
35f5886e
FF
2523
2524DESCRIPTION
2525
2526 Initializes storage for all of the partial symbols that will be
2527 created by dwarf_build_psymtabs and subsidiaries.
2528 */
2529
2530static void
1ab3bf1b
JG
2531init_psymbol_list (objfile, total_symbols)
2532 struct objfile *objfile;
2533 int total_symbols;
35f5886e
FF
2534{
2535 /* Free any previously allocated psymbol lists. */
2536
1ab3bf1b 2537 if (objfile -> global_psymbols.list)
35f5886e 2538 {
84ffdec2 2539 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
35f5886e 2540 }
1ab3bf1b 2541 if (objfile -> static_psymbols.list)
35f5886e 2542 {
84ffdec2 2543 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
35f5886e
FF
2544 }
2545
2546 /* Current best guess is that there are approximately a twentieth
2547 of the total symbols (in a debugging file) are global or static
2548 oriented symbols */
2549
1ab3bf1b
JG
2550 objfile -> global_psymbols.size = total_symbols / 10;
2551 objfile -> static_psymbols.size = total_symbols / 10;
2552 objfile -> global_psymbols.next =
2553 objfile -> global_psymbols.list = (struct partial_symbol *)
318bf84f 2554 xmmalloc (objfile -> md, objfile -> global_psymbols.size
1ab3bf1b
JG
2555 * sizeof (struct partial_symbol));
2556 objfile -> static_psymbols.next =
2557 objfile -> static_psymbols.list = (struct partial_symbol *)
318bf84f 2558 xmmalloc (objfile -> md, objfile -> static_psymbols.size
1ab3bf1b 2559 * sizeof (struct partial_symbol));
35f5886e
FF
2560}
2561
35f5886e
FF
2562/*
2563
715cafcb
FF
2564LOCAL FUNCTION
2565
2566 add_enum_psymbol -- add enumeration members to partial symbol table
2567
2568DESCRIPTION
2569
2570 Given pointer to a DIE that is known to be for an enumeration,
2571 extract the symbolic names of the enumeration members and add
2572 partial symbols for them.
2573*/
2574
2575static void
1ab3bf1b
JG
2576add_enum_psymbol (dip, objfile)
2577 struct dieinfo *dip;
2578 struct objfile *objfile;
715cafcb
FF
2579{
2580 char *scan;
2581 char *listend;
13b5a7ff
FF
2582 unsigned short blocksz;
2583 int nbytes;
715cafcb
FF
2584
2585 if ((scan = dip -> at_element_list) != NULL)
2586 {
2587 if (dip -> short_element_list)
2588 {
13b5a7ff 2589 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2590 }
2591 else
2592 {
13b5a7ff 2593 nbytes = attribute_size (AT_element_list);
715cafcb 2594 }
13b5a7ff
FF
2595 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2596 scan += nbytes;
2597 listend = scan + blocksz;
715cafcb
FF
2598 while (scan < listend)
2599 {
13b5a7ff 2600 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2601 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2602 objfile -> static_psymbols, 0, cu_language,
2603 objfile);
715cafcb
FF
2604 scan += strlen (scan) + 1;
2605 }
2606 }
2607}
2608
2609/*
2610
35f5886e
FF
2611LOCAL FUNCTION
2612
2613 add_partial_symbol -- add symbol to partial symbol table
2614
2615DESCRIPTION
2616
2617 Given a DIE, if it is one of the types that we want to
2618 add to a partial symbol table, finish filling in the die info
2619 and then add a partial symbol table entry for it.
2620
95ff889e
FF
2621NOTES
2622
2623 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2624*/
2625
2626static void
1ab3bf1b
JG
2627add_partial_symbol (dip, objfile)
2628 struct dieinfo *dip;
2629 struct objfile *objfile;
35f5886e 2630{
13b5a7ff 2631 switch (dip -> die_tag)
35f5886e
FF
2632 {
2633 case TAG_global_subroutine:
1ab3bf1b
JG
2634 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2635 objfile);
b440b1e9 2636 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2637 VAR_NAMESPACE, LOC_BLOCK,
2638 objfile -> global_psymbols,
2e4964ad 2639 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2640 break;
2641 case TAG_global_variable:
1ab3bf1b
JG
2642 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2643 mst_data, objfile);
b440b1e9 2644 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2645 VAR_NAMESPACE, LOC_STATIC,
2646 objfile -> global_psymbols,
2e4964ad 2647 0, cu_language, objfile);
35f5886e
FF
2648 break;
2649 case TAG_subroutine:
b440b1e9 2650 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2651 VAR_NAMESPACE, LOC_BLOCK,
2652 objfile -> static_psymbols,
2e4964ad 2653 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2654 break;
2655 case TAG_local_variable:
b440b1e9 2656 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2657 VAR_NAMESPACE, LOC_STATIC,
2658 objfile -> static_psymbols,
2e4964ad 2659 0, cu_language, objfile);
35f5886e
FF
2660 break;
2661 case TAG_typedef:
b440b1e9 2662 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2663 VAR_NAMESPACE, LOC_TYPEDEF,
2664 objfile -> static_psymbols,
2e4964ad 2665 0, cu_language, objfile);
35f5886e 2666 break;
95ff889e 2667 case TAG_class_type:
35f5886e
FF
2668 case TAG_structure_type:
2669 case TAG_union_type:
95ff889e 2670 case TAG_enumeration_type:
b440b1e9 2671 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2672 STRUCT_NAMESPACE, LOC_TYPEDEF,
2673 objfile -> static_psymbols,
2e4964ad 2674 0, cu_language, objfile);
95ff889e 2675 if (cu_language == language_cplus)
715cafcb 2676 {
95ff889e 2677 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2678 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2679 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2680 objfile -> static_psymbols,
2e4964ad 2681 0, cu_language, objfile);
715cafcb 2682 }
715cafcb 2683 break;
35f5886e
FF
2684 }
2685}
2686
2687/*
2688
2689LOCAL FUNCTION
2690
2691 scan_partial_symbols -- scan DIE's within a single compilation unit
2692
2693DESCRIPTION
2694
2695 Process the DIE's within a single compilation unit, looking for
2696 interesting DIE's that contribute to the partial symbol table entry
a679650f 2697 for this compilation unit.
35f5886e 2698
2d6186f4
FF
2699NOTES
2700
a679650f
FF
2701 There are some DIE's that may appear both at file scope and within
2702 the scope of a function. We are only interested in the ones at file
2703 scope, and the only way to tell them apart is to keep track of the
2704 scope. For example, consider the test case:
2705
2706 static int i;
2707 main () { int j; }
2708
2709 for which the relevant DWARF segment has the structure:
2710
2711 0x51:
2712 0x23 global subrtn sibling 0x9b
2713 name main
2714 fund_type FT_integer
2715 low_pc 0x800004cc
2716 high_pc 0x800004d4
2717
2718 0x74:
2719 0x23 local var sibling 0x97
2720 name j
2721 fund_type FT_integer
2722 location OP_BASEREG 0xe
2723 OP_CONST 0xfffffffc
2724 OP_ADD
2725 0x97:
2726 0x4
2727
2728 0x9b:
2729 0x1d local var sibling 0xb8
2730 name i
2731 fund_type FT_integer
2732 location OP_ADDR 0x800025dc
2733
2734 0xb8:
2735 0x4
2736
2737 We want to include the symbol 'i' in the partial symbol table, but
2738 not the symbol 'j'. In essence, we want to skip all the dies within
2739 the scope of a TAG_global_subroutine DIE.
2740
715cafcb
FF
2741 Don't attempt to add anonymous structures or unions since they have
2742 no name. Anonymous enumerations however are processed, because we
2743 want to extract their member names (the check for a tag name is
2744 done later).
2d6186f4 2745
715cafcb
FF
2746 Also, for variables and subroutines, check that this is the place
2747 where the actual definition occurs, rather than just a reference
2748 to an external.
35f5886e
FF
2749 */
2750
2751static void
1ab3bf1b
JG
2752scan_partial_symbols (thisdie, enddie, objfile)
2753 char *thisdie;
2754 char *enddie;
2755 struct objfile *objfile;
35f5886e
FF
2756{
2757 char *nextdie;
a679650f 2758 char *temp;
35f5886e
FF
2759 struct dieinfo di;
2760
2761 while (thisdie < enddie)
2762 {
95967e73 2763 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2764 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2765 {
2766 break;
2767 }
2768 else
2769 {
13b5a7ff 2770 nextdie = thisdie + di.die_length;
715cafcb
FF
2771 /* To avoid getting complete die information for every die, we
2772 only do it (below) for the cases we are interested in. */
13b5a7ff 2773 switch (di.die_tag)
35f5886e
FF
2774 {
2775 case TAG_global_subroutine:
35f5886e 2776 case TAG_subroutine:
a679650f
FF
2777 completedieinfo (&di, objfile);
2778 if (di.at_name && (di.has_at_low_pc || di.at_location))
2779 {
2780 add_partial_symbol (&di, objfile);
2781 /* If there is a sibling attribute, adjust the nextdie
2782 pointer to skip the entire scope of the subroutine.
2783 Apply some sanity checking to make sure we don't
2784 overrun or underrun the range of remaining DIE's */
2785 if (di.at_sibling != 0)
2786 {
2787 temp = dbbase + di.at_sibling - dbroff;
2788 if ((temp < thisdie) || (temp >= enddie))
2789 {
51b80b00
FF
2790 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2791 di.at_sibling);
a679650f
FF
2792 }
2793 else
2794 {
2795 nextdie = temp;
2796 }
2797 }
2798 }
2799 break;
2d6186f4 2800 case TAG_global_variable:
35f5886e 2801 case TAG_local_variable:
95967e73 2802 completedieinfo (&di, objfile);
2d6186f4
FF
2803 if (di.at_name && (di.has_at_low_pc || di.at_location))
2804 {
1ab3bf1b 2805 add_partial_symbol (&di, objfile);
2d6186f4
FF
2806 }
2807 break;
35f5886e 2808 case TAG_typedef:
95ff889e 2809 case TAG_class_type:
35f5886e
FF
2810 case TAG_structure_type:
2811 case TAG_union_type:
95967e73 2812 completedieinfo (&di, objfile);
2d6186f4 2813 if (di.at_name)
35f5886e 2814 {
1ab3bf1b 2815 add_partial_symbol (&di, objfile);
35f5886e
FF
2816 }
2817 break;
715cafcb 2818 case TAG_enumeration_type:
95967e73 2819 completedieinfo (&di, objfile);
95ff889e
FF
2820 if (di.at_name)
2821 {
2822 add_partial_symbol (&di, objfile);
2823 }
2824 add_enum_psymbol (&di, objfile);
715cafcb 2825 break;
35f5886e
FF
2826 }
2827 }
2828 thisdie = nextdie;
2829 }
2830}
2831
2832/*
2833
2834LOCAL FUNCTION
2835
2836 scan_compilation_units -- build a psymtab entry for each compilation
2837
2838DESCRIPTION
2839
2840 This is the top level dwarf parsing routine for building partial
2841 symbol tables.
2842
2843 It scans from the beginning of the DWARF table looking for the first
2844 TAG_compile_unit DIE, and then follows the sibling chain to locate
2845 each additional TAG_compile_unit DIE.
2846
2847 For each TAG_compile_unit DIE it creates a partial symtab structure,
2848 calls a subordinate routine to collect all the compilation unit's
2849 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2850 new partial symtab structure into the partial symbol table. It also
2851 records the appropriate information in the partial symbol table entry
2852 to allow the chunk of DIE's and line number table for this compilation
2853 unit to be located and re-read later, to generate a complete symbol
2854 table entry for the compilation unit.
2855
2856 Thus it effectively partitions up a chunk of DIE's for multiple
2857 compilation units into smaller DIE chunks and line number tables,
2858 and associates them with a partial symbol table entry.
2859
2860NOTES
2861
2862 If any compilation unit has no line number table associated with
2863 it for some reason (a missing at_stmt_list attribute, rather than
2864 just one with a value of zero, which is valid) then we ensure that
2865 the recorded file offset is zero so that the routine which later
2866 reads line number table fragments knows that there is no fragment
2867 to read.
2868
2869RETURNS
2870
2871 Returns no value.
2872
2873 */
2874
2875static void
d5931d79 2876scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2877 char *thisdie;
2878 char *enddie;
d5931d79
JG
2879 file_ptr dbfoff;
2880 file_ptr lnoffset;
1ab3bf1b 2881 struct objfile *objfile;
35f5886e
FF
2882{
2883 char *nextdie;
2884 struct dieinfo di;
2885 struct partial_symtab *pst;
2886 int culength;
2887 int curoff;
d5931d79 2888 file_ptr curlnoffset;
35f5886e
FF
2889
2890 while (thisdie < enddie)
2891 {
95967e73 2892 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2893 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2894 {
2895 break;
2896 }
13b5a7ff 2897 else if (di.die_tag != TAG_compile_unit)
35f5886e 2898 {
13b5a7ff 2899 nextdie = thisdie + di.die_length;
35f5886e
FF
2900 }
2901 else
2902 {
95967e73 2903 completedieinfo (&di, objfile);
95ff889e 2904 set_cu_language (&di);
35f5886e
FF
2905 if (di.at_sibling != 0)
2906 {
2907 nextdie = dbbase + di.at_sibling - dbroff;
2908 }
2909 else
2910 {
13b5a7ff 2911 nextdie = thisdie + di.die_length;
35f5886e
FF
2912 }
2913 curoff = thisdie - dbbase;
2914 culength = nextdie - thisdie;
2d6186f4 2915 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2916
2917 /* First allocate a new partial symbol table structure */
2918
95ff889e
FF
2919 pst = start_psymtab_common (objfile, base_section_offsets,
2920 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2921 objfile -> global_psymbols.next,
2922 objfile -> static_psymbols.next);
2923
2924 pst -> texthigh = di.at_high_pc;
2925 pst -> read_symtab_private = (char *)
2926 obstack_alloc (&objfile -> psymbol_obstack,
2927 sizeof (struct dwfinfo));
2928 DBFOFF (pst) = dbfoff;
2929 DBROFF (pst) = curoff;
2930 DBLENGTH (pst) = culength;
2931 LNFOFF (pst) = curlnoffset;
2932 pst -> read_symtab = dwarf_psymtab_to_symtab;
2933
2934 /* Now look for partial symbols */
2935
13b5a7ff 2936 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2937
2938 pst -> n_global_syms = objfile -> global_psymbols.next -
2939 (objfile -> global_psymbols.list + pst -> globals_offset);
2940 pst -> n_static_syms = objfile -> static_psymbols.next -
2941 (objfile -> static_psymbols.list + pst -> statics_offset);
2942 sort_pst_symbols (pst);
35f5886e
FF
2943 /* If there is already a psymtab or symtab for a file of this name,
2944 remove it. (If there is a symtab, more drastic things also
2945 happen.) This happens in VxWorks. */
2946 free_named_symtabs (pst -> filename);
35f5886e
FF
2947 }
2948 thisdie = nextdie;
2949 }
2950}
2951
2952/*
2953
2954LOCAL FUNCTION
2955
2956 new_symbol -- make a symbol table entry for a new symbol
2957
2958SYNOPSIS
2959
1ab3bf1b
JG
2960 static struct symbol *new_symbol (struct dieinfo *dip,
2961 struct objfile *objfile)
35f5886e
FF
2962
2963DESCRIPTION
2964
2965 Given a pointer to a DWARF information entry, figure out if we need
2966 to make a symbol table entry for it, and if so, create a new entry
2967 and return a pointer to it.
2968 */
2969
2970static struct symbol *
1ab3bf1b
JG
2971new_symbol (dip, objfile)
2972 struct dieinfo *dip;
2973 struct objfile *objfile;
35f5886e
FF
2974{
2975 struct symbol *sym = NULL;
2976
2977 if (dip -> at_name != NULL)
2978 {
1ab3bf1b 2979 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2980 sizeof (struct symbol));
4ed3a9ea 2981 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2982 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2983 &objfile->symbol_obstack);
35f5886e
FF
2984 /* default assumptions */
2985 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2986 SYMBOL_CLASS (sym) = LOC_STATIC;
2987 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2988
2989 /* If this symbol is from a C++ compilation, then attempt to cache the
2990 demangled form for future reference. This is a typical time versus
2991 space tradeoff, that was decided in favor of time because it sped up
2992 C++ symbol lookups by a factor of about 20. */
2993
2994 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2995 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2996 switch (dip -> die_tag)
35f5886e
FF
2997 {
2998 case TAG_label:
4d315a07 2999 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
3000 SYMBOL_CLASS (sym) = LOC_LABEL;
3001 break;
3002 case TAG_global_subroutine:
3003 case TAG_subroutine:
4d315a07 3004 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
3005 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
3006 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 3007 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
3008 {
3009 add_symbol_to_list (sym, &global_symbols);
3010 }
3011 else
3012 {
4d315a07 3013 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3014 }
3015 break;
3016 case TAG_global_variable:
35f5886e
FF
3017 if (dip -> at_location != NULL)
3018 {
3019 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
3020 add_symbol_to_list (sym, &global_symbols);
3021 SYMBOL_CLASS (sym) = LOC_STATIC;
3022 SYMBOL_VALUE (sym) += baseaddr;
3023 }
a5bd5ba6
FF
3024 break;
3025 case TAG_local_variable:
3026 if (dip -> at_location != NULL)
35f5886e 3027 {
a5bd5ba6 3028 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 3029 add_symbol_to_list (sym, list_in_scope);
a5bd5ba6
FF
3030 if (isreg)
3031 {
3032 SYMBOL_CLASS (sym) = LOC_REGISTER;
3033 }
3034 else if (offreg)
35f5886e 3035 {
a5bd5ba6 3036 SYMBOL_CLASS (sym) = LOC_LOCAL;
35f5886e
FF
3037 }
3038 else
3039 {
3040 SYMBOL_CLASS (sym) = LOC_STATIC;
3041 SYMBOL_VALUE (sym) += baseaddr;
3042 }
3043 }
3044 break;
3045 case TAG_formal_parameter:
3046 if (dip -> at_location != NULL)
3047 {
3048 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3049 }
4d315a07 3050 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3051 if (isreg)
3052 {
3053 SYMBOL_CLASS (sym) = LOC_REGPARM;
3054 }
3055 else
3056 {
3057 SYMBOL_CLASS (sym) = LOC_ARG;
3058 }
3059 break;
3060 case TAG_unspecified_parameters:
3061 /* From varargs functions; gdb doesn't seem to have any interest in
3062 this information, so just ignore it for now. (FIXME?) */
3063 break;
95ff889e 3064 case TAG_class_type:
35f5886e
FF
3065 case TAG_structure_type:
3066 case TAG_union_type:
3067 case TAG_enumeration_type:
3068 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3069 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3070 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3071 break;
3072 case TAG_typedef:
3073 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3074 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3075 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3076 break;
3077 default:
3078 /* Not a tag we recognize. Hopefully we aren't processing trash
3079 data, but since we must specifically ignore things we don't
3080 recognize, there is nothing else we should do at this point. */
3081 break;
3082 }
3083 }
3084 return (sym);
3085}
3086
3087/*
3088
95ff889e
FF
3089LOCAL FUNCTION
3090
3091 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3092
3093SYNOPSIS
3094
3095 static void synthesize_typedef (struct dieinfo *dip,
3096 struct objfile *objfile,
3097 struct type *type);
3098
3099DESCRIPTION
3100
3101 Given a pointer to a DWARF information entry, synthesize a typedef
3102 for the name in the DIE, using the specified type.
3103
3104 This is used for C++ class, structs, unions, and enumerations to
3105 set up the tag name as a type.
3106
3107 */
3108
3109static void
3110synthesize_typedef (dip, objfile, type)
3111 struct dieinfo *dip;
3112 struct objfile *objfile;
3113 struct type *type;
3114{
3115 struct symbol *sym = NULL;
3116
3117 if (dip -> at_name != NULL)
3118 {
3119 sym = (struct symbol *)
3120 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3121 memset (sym, 0, sizeof (struct symbol));
3122 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3123 &objfile->symbol_obstack);
7532cf10 3124 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3125 SYMBOL_TYPE (sym) = type;
3126 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3127 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3128 add_symbol_to_list (sym, list_in_scope);
3129 }
3130}
3131
3132/*
3133
35f5886e
FF
3134LOCAL FUNCTION
3135
3136 decode_mod_fund_type -- decode a modified fundamental type
3137
3138SYNOPSIS
3139
3140 static struct type *decode_mod_fund_type (char *typedata)
3141
3142DESCRIPTION
3143
3144 Decode a block of data containing a modified fundamental
3145 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3146 which starts with a length containing the size of the rest
3147 of the block. At the end of the block is a fundmental type
3148 code value that gives the fundamental type. Everything
35f5886e
FF
3149 in between are type modifiers.
3150
3151 We simply compute the number of modifiers and call the general
3152 function decode_modified_type to do the actual work.
3153*/
3154
3155static struct type *
1ab3bf1b
JG
3156decode_mod_fund_type (typedata)
3157 char *typedata;
35f5886e
FF
3158{
3159 struct type *typep = NULL;
3160 unsigned short modcount;
13b5a7ff 3161 int nbytes;
35f5886e
FF
3162
3163 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3164
3165 nbytes = attribute_size (AT_mod_fund_type);
3166 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3167 typedata += nbytes;
3168
35f5886e 3169 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3170
3171 modcount -= attribute_size (AT_fund_type);
3172
35f5886e 3173 /* Now do the actual decoding */
13b5a7ff
FF
3174
3175 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3176 return (typep);
3177}
3178
3179/*
3180
3181LOCAL FUNCTION
3182
3183 decode_mod_u_d_type -- decode a modified user defined type
3184
3185SYNOPSIS
3186
3187 static struct type *decode_mod_u_d_type (char *typedata)
3188
3189DESCRIPTION
3190
3191 Decode a block of data containing a modified user defined
3192 type specification. TYPEDATA is a pointer to the block,
3193 which consists of a two byte length, containing the size
3194 of the rest of the block. At the end of the block is a
3195 four byte value that gives a reference to a user defined type.
3196 Everything in between are type modifiers.
3197
3198 We simply compute the number of modifiers and call the general
3199 function decode_modified_type to do the actual work.
3200*/
3201
3202static struct type *
1ab3bf1b
JG
3203decode_mod_u_d_type (typedata)
3204 char *typedata;
35f5886e
FF
3205{
3206 struct type *typep = NULL;
3207 unsigned short modcount;
13b5a7ff 3208 int nbytes;
35f5886e
FF
3209
3210 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3211
3212 nbytes = attribute_size (AT_mod_u_d_type);
3213 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3214 typedata += nbytes;
3215
35f5886e 3216 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3217
3218 modcount -= attribute_size (AT_user_def_type);
3219
35f5886e 3220 /* Now do the actual decoding */
13b5a7ff
FF
3221
3222 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3223 return (typep);
3224}
3225
3226/*
3227
3228LOCAL FUNCTION
3229
3230 decode_modified_type -- decode modified user or fundamental type
3231
3232SYNOPSIS
3233
1c92ca6f 3234 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3235 unsigned short modcount, int mtype)
3236
3237DESCRIPTION
3238
3239 Decode a modified type, either a modified fundamental type or
3240 a modified user defined type. MODIFIERS is a pointer to the
3241 block of bytes that define MODCOUNT modifiers. Immediately
3242 following the last modifier is a short containing the fundamental
3243 type or a long containing the reference to the user defined
3244 type. Which one is determined by MTYPE, which is either
3245 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3246 type we are generating.
3247
3248 We call ourself recursively to generate each modified type,`
3249 until MODCOUNT reaches zero, at which point we have consumed
3250 all the modifiers and generate either the fundamental type or
3251 user defined type. When the recursion unwinds, each modifier
3252 is applied in turn to generate the full modified type.
3253
3254NOTES
3255
3256 If we find a modifier that we don't recognize, and it is not one
3257 of those reserved for application specific use, then we issue a
3258 warning and simply ignore the modifier.
3259
3260BUGS
3261
3262 We currently ignore MOD_const and MOD_volatile. (FIXME)
3263
3264 */
3265
3266static struct type *
1ab3bf1b 3267decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3268 char *modifiers;
1ab3bf1b
JG
3269 unsigned int modcount;
3270 int mtype;
35f5886e
FF
3271{
3272 struct type *typep = NULL;
3273 unsigned short fundtype;
13b5a7ff 3274 DIE_REF die_ref;
1c92ca6f 3275 char modifier;
13b5a7ff 3276 int nbytes;
35f5886e
FF
3277
3278 if (modcount == 0)
3279 {
3280 switch (mtype)
3281 {
3282 case AT_mod_fund_type:
13b5a7ff
FF
3283 nbytes = attribute_size (AT_fund_type);
3284 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3285 current_objfile);
35f5886e
FF
3286 typep = decode_fund_type (fundtype);
3287 break;
3288 case AT_mod_u_d_type:
13b5a7ff
FF
3289 nbytes = attribute_size (AT_user_def_type);
3290 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3291 current_objfile);
3292 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3293 {
13b5a7ff 3294 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3295 }
3296 break;
3297 default:
51b80b00 3298 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3299 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3300 break;
3301 }
3302 }
3303 else
3304 {
3305 modifier = *modifiers++;
3306 typep = decode_modified_type (modifiers, --modcount, mtype);
3307 switch (modifier)
3308 {
13b5a7ff
FF
3309 case MOD_pointer_to:
3310 typep = lookup_pointer_type (typep);
3311 break;
3312 case MOD_reference_to:
3313 typep = lookup_reference_type (typep);
3314 break;
3315 case MOD_const:
51b80b00 3316 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3317 break;
3318 case MOD_volatile:
51b80b00 3319 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3320 break;
3321 default:
1c92ca6f
FF
3322 if (!(MOD_lo_user <= (unsigned char) modifier
3323 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3324 {
51b80b00 3325 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3326 }
3327 break;
35f5886e
FF
3328 }
3329 }
3330 return (typep);
3331}
3332
3333/*
3334
3335LOCAL FUNCTION
3336
3337 decode_fund_type -- translate basic DWARF type to gdb base type
3338
3339DESCRIPTION
3340
3341 Given an integer that is one of the fundamental DWARF types,
3342 translate it to one of the basic internal gdb types and return
3343 a pointer to the appropriate gdb type (a "struct type *").
3344
3345NOTES
3346
85f0a848
FF
3347 For robustness, if we are asked to translate a fundamental
3348 type that we are unprepared to deal with, we return int so
3349 callers can always depend upon a valid type being returned,
3350 and so gdb may at least do something reasonable by default.
3351 If the type is not in the range of those types defined as
3352 application specific types, we also issue a warning.
35f5886e
FF
3353*/
3354
3355static struct type *
1ab3bf1b
JG
3356decode_fund_type (fundtype)
3357 unsigned int fundtype;
35f5886e
FF
3358{
3359 struct type *typep = NULL;
3360
3361 switch (fundtype)
3362 {
3363
3364 case FT_void:
bf229b4e 3365 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3366 break;
3367
1ab3bf1b 3368 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3369 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3370 break;
3371
35f5886e 3372 case FT_pointer: /* (void *) */
bf229b4e 3373 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3374 typep = lookup_pointer_type (typep);
35f5886e
FF
3375 break;
3376
3377 case FT_char:
bf229b4e 3378 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3379 break;
3380
35f5886e 3381 case FT_signed_char:
bf229b4e 3382 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3383 break;
3384
3385 case FT_unsigned_char:
bf229b4e 3386 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3387 break;
3388
3389 case FT_short:
bf229b4e 3390 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3391 break;
3392
35f5886e 3393 case FT_signed_short:
bf229b4e 3394 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3395 break;
3396
3397 case FT_unsigned_short:
bf229b4e 3398 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3399 break;
3400
3401 case FT_integer:
bf229b4e 3402 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3403 break;
3404
35f5886e 3405 case FT_signed_integer:
bf229b4e 3406 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3407 break;
3408
3409 case FT_unsigned_integer:
bf229b4e 3410 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3411 break;
3412
3413 case FT_long:
bf229b4e 3414 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3415 break;
3416
35f5886e 3417 case FT_signed_long:
bf229b4e 3418 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3419 break;
3420
1ab3bf1b 3421 case FT_unsigned_long:
bf229b4e 3422 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3423 break;
3424
1ab3bf1b 3425 case FT_long_long:
bf229b4e 3426 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3427 break;
1ab3bf1b
JG
3428
3429 case FT_signed_long_long:
bf229b4e 3430 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3431 break;
1ab3bf1b
JG
3432
3433 case FT_unsigned_long_long:
bf229b4e 3434 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3435 break;
1ab3bf1b
JG
3436
3437 case FT_float:
bf229b4e 3438 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3439 break;
3440
1ab3bf1b 3441 case FT_dbl_prec_float:
bf229b4e 3442 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3443 break;
3444
3445 case FT_ext_prec_float:
bf229b4e 3446 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3447 break;
3448
3449 case FT_complex:
bf229b4e 3450 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3451 break;
3452
3453 case FT_dbl_prec_complex:
bf229b4e 3454 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3455 break;
3456
1ab3bf1b 3457 case FT_ext_prec_complex:
bf229b4e 3458 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3459 break;
1ab3bf1b 3460
35f5886e
FF
3461 }
3462
85f0a848 3463 if (typep == NULL)
35f5886e 3464 {
85f0a848
FF
3465 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3466 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3467 {
51b80b00 3468 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3469 }
35f5886e
FF
3470 }
3471
3472 return (typep);
3473}
3474
3475/*
3476
3477LOCAL FUNCTION
3478
3479 create_name -- allocate a fresh copy of a string on an obstack
3480
3481DESCRIPTION
3482
3483 Given a pointer to a string and a pointer to an obstack, allocates
3484 a fresh copy of the string on the specified obstack.
3485
3486*/
3487
3488static char *
1ab3bf1b
JG
3489create_name (name, obstackp)
3490 char *name;
3491 struct obstack *obstackp;
35f5886e
FF
3492{
3493 int length;
3494 char *newname;
3495
3496 length = strlen (name) + 1;
3497 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3498 strcpy (newname, name);
35f5886e
FF
3499 return (newname);
3500}
3501
3502/*
3503
3504LOCAL FUNCTION
3505
3506 basicdieinfo -- extract the minimal die info from raw die data
3507
3508SYNOPSIS
3509
95967e73
FF
3510 void basicdieinfo (char *diep, struct dieinfo *dip,
3511 struct objfile *objfile)
35f5886e
FF
3512
3513DESCRIPTION
3514
3515 Given a pointer to raw DIE data, and a pointer to an instance of a
3516 die info structure, this function extracts the basic information
3517 from the DIE data required to continue processing this DIE, along
3518 with some bookkeeping information about the DIE.
3519
3520 The information we absolutely must have includes the DIE tag,
3521 and the DIE length. If we need the sibling reference, then we
3522 will have to call completedieinfo() to process all the remaining
3523 DIE information.
3524
3525 Note that since there is no guarantee that the data is properly
3526 aligned in memory for the type of access required (indirection
95967e73
FF
3527 through anything other than a char pointer), and there is no
3528 guarantee that it is in the same byte order as the gdb host,
3529 we call a function which deals with both alignment and byte
3530 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3531
3532 We also take care of some other basic things at this point, such
3533 as ensuring that the instance of the die info structure starts
3534 out completely zero'd and that curdie is initialized for use
3535 in error reporting if we have a problem with the current die.
3536
3537NOTES
3538
3539 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3540 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3541 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3542 are forced to be TAG_padding DIES.
3543
13b5a7ff
FF
3544 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3545 that if a padding DIE is used for alignment and the amount needed is
3546 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3547 enough to align to the next alignment boundry.
4090fe1c
FF
3548
3549 We do some basic sanity checking here, such as verifying that the
3550 length of the die would not cause it to overrun the recorded end of
3551 the buffer holding the DIE info. If we find a DIE that is either
3552 too small or too large, we force it's length to zero which should
3553 cause the caller to take appropriate action.
35f5886e
FF
3554 */
3555
3556static void
95967e73 3557basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3558 struct dieinfo *dip;
3559 char *diep;
95967e73 3560 struct objfile *objfile;
35f5886e
FF
3561{
3562 curdie = dip;
4ed3a9ea 3563 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3564 dip -> die = diep;
13b5a7ff
FF
3565 dip -> die_ref = dbroff + (diep - dbbase);
3566 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3567 objfile);
4090fe1c
FF
3568 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3569 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3570 {
51b80b00 3571 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3572 dip -> die_length = 0;
35f5886e 3573 }
13b5a7ff 3574 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3575 {
13b5a7ff 3576 dip -> die_tag = TAG_padding;
35f5886e
FF
3577 }
3578 else
3579 {
13b5a7ff
FF
3580 diep += SIZEOF_DIE_LENGTH;
3581 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3582 objfile);
35f5886e
FF
3583 }
3584}
3585
3586/*
3587
3588LOCAL FUNCTION
3589
3590 completedieinfo -- finish reading the information for a given DIE
3591
3592SYNOPSIS
3593
95967e73 3594 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3595
3596DESCRIPTION
3597
3598 Given a pointer to an already partially initialized die info structure,
3599 scan the raw DIE data and finish filling in the die info structure
3600 from the various attributes found.
3601
3602 Note that since there is no guarantee that the data is properly
3603 aligned in memory for the type of access required (indirection
95967e73
FF
3604 through anything other than a char pointer), and there is no
3605 guarantee that it is in the same byte order as the gdb host,
3606 we call a function which deals with both alignment and byte
3607 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3608
3609NOTES
3610
3611 Each time we are called, we increment the diecount variable, which
3612 keeps an approximate count of the number of dies processed for
3613 each compilation unit. This information is presented to the user
3614 if the info_verbose flag is set.
3615
3616 */
3617
3618static void
95967e73 3619completedieinfo (dip, objfile)
1ab3bf1b 3620 struct dieinfo *dip;
95967e73 3621 struct objfile *objfile;
35f5886e
FF
3622{
3623 char *diep; /* Current pointer into raw DIE data */
3624 char *end; /* Terminate DIE scan here */
3625 unsigned short attr; /* Current attribute being scanned */
3626 unsigned short form; /* Form of the attribute */
13b5a7ff 3627 int nbytes; /* Size of next field to read */
35f5886e
FF
3628
3629 diecount++;
3630 diep = dip -> die;
13b5a7ff
FF
3631 end = diep + dip -> die_length;
3632 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3633 while (diep < end)
3634 {
13b5a7ff
FF
3635 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3636 diep += SIZEOF_ATTRIBUTE;
3637 if ((nbytes = attribute_size (attr)) == -1)
3638 {
51b80b00 3639 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3640 diep = end;
3641 continue;
3642 }
35f5886e
FF
3643 switch (attr)
3644 {
3645 case AT_fund_type:
13b5a7ff
FF
3646 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
35f5886e
FF
3648 break;
3649 case AT_ordering:
13b5a7ff
FF
3650 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
35f5886e
FF
3652 break;
3653 case AT_bit_offset:
13b5a7ff
FF
3654 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 objfile);
35f5886e 3656 break;
35f5886e 3657 case AT_sibling:
13b5a7ff
FF
3658 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 objfile);
35f5886e
FF
3660 break;
3661 case AT_stmt_list:
13b5a7ff
FF
3662 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3663 objfile);
2d6186f4 3664 dip -> has_at_stmt_list = 1;
35f5886e
FF
3665 break;
3666 case AT_low_pc:
13b5a7ff
FF
3667 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3668 objfile);
4d315a07 3669 dip -> at_low_pc += baseaddr;
2d6186f4 3670 dip -> has_at_low_pc = 1;
35f5886e
FF
3671 break;
3672 case AT_high_pc:
13b5a7ff
FF
3673 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3674 objfile);
4d315a07 3675 dip -> at_high_pc += baseaddr;
35f5886e
FF
3676 break;
3677 case AT_language:
13b5a7ff
FF
3678 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3679 objfile);
35f5886e
FF
3680 break;
3681 case AT_user_def_type:
13b5a7ff
FF
3682 dip -> at_user_def_type = target_to_host (diep, nbytes,
3683 GET_UNSIGNED, objfile);
35f5886e
FF
3684 break;
3685 case AT_byte_size:
13b5a7ff
FF
3686 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3687 objfile);
50055e94 3688 dip -> has_at_byte_size = 1;
35f5886e
FF
3689 break;
3690 case AT_bit_size:
13b5a7ff
FF
3691 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3692 objfile);
35f5886e
FF
3693 break;
3694 case AT_member:
13b5a7ff
FF
3695 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3696 objfile);
35f5886e
FF
3697 break;
3698 case AT_discr:
13b5a7ff
FF
3699 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3700 objfile);
35f5886e 3701 break;
35f5886e
FF
3702 case AT_location:
3703 dip -> at_location = diep;
3704 break;
3705 case AT_mod_fund_type:
3706 dip -> at_mod_fund_type = diep;
3707 break;
3708 case AT_subscr_data:
3709 dip -> at_subscr_data = diep;
3710 break;
3711 case AT_mod_u_d_type:
3712 dip -> at_mod_u_d_type = diep;
3713 break;
35f5886e
FF
3714 case AT_element_list:
3715 dip -> at_element_list = diep;
768be6e1
FF
3716 dip -> short_element_list = 0;
3717 break;
3718 case AT_short_element_list:
3719 dip -> at_element_list = diep;
3720 dip -> short_element_list = 1;
35f5886e
FF
3721 break;
3722 case AT_discr_value:
3723 dip -> at_discr_value = diep;
3724 break;
3725 case AT_string_length:
3726 dip -> at_string_length = diep;
3727 break;
3728 case AT_name:
3729 dip -> at_name = diep;
3730 break;
3731 case AT_comp_dir:
d4902ab0
FF
3732 /* For now, ignore any "hostname:" portion, since gdb doesn't
3733 know how to deal with it. (FIXME). */
3734 dip -> at_comp_dir = strrchr (diep, ':');
3735 if (dip -> at_comp_dir != NULL)
3736 {
3737 dip -> at_comp_dir++;
3738 }
3739 else
3740 {
3741 dip -> at_comp_dir = diep;
3742 }
35f5886e
FF
3743 break;
3744 case AT_producer:
3745 dip -> at_producer = diep;
3746 break;
35f5886e 3747 case AT_start_scope:
13b5a7ff
FF
3748 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3749 objfile);
35f5886e
FF
3750 break;
3751 case AT_stride_size:
13b5a7ff
FF
3752 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3753 objfile);
35f5886e
FF
3754 break;
3755 case AT_src_info:
13b5a7ff
FF
3756 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3757 objfile);
35f5886e
FF
3758 break;
3759 case AT_prototyped:
13b5a7ff 3760 dip -> at_prototyped = diep;
35f5886e 3761 break;
35f5886e
FF
3762 default:
3763 /* Found an attribute that we are unprepared to handle. However
3764 it is specifically one of the design goals of DWARF that
3765 consumers should ignore unknown attributes. As long as the
3766 form is one that we recognize (so we know how to skip it),
3767 we can just ignore the unknown attribute. */
3768 break;
3769 }
13b5a7ff 3770 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3771 switch (form)
3772 {
3773 case FORM_DATA2:
13b5a7ff 3774 diep += 2;
35f5886e
FF
3775 break;
3776 case FORM_DATA4:
13b5a7ff
FF
3777 case FORM_REF:
3778 diep += 4;
35f5886e
FF
3779 break;
3780 case FORM_DATA8:
13b5a7ff 3781 diep += 8;
35f5886e
FF
3782 break;
3783 case FORM_ADDR:
13b5a7ff 3784 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3785 break;
3786 case FORM_BLOCK2:
13b5a7ff 3787 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3788 break;
3789 case FORM_BLOCK4:
13b5a7ff 3790 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3791 break;
3792 case FORM_STRING:
3793 diep += strlen (diep) + 1;
3794 break;
3795 default:
51b80b00 3796 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3797 diep = end;
3798 break;
3799 }
3800 }
3801}
95967e73 3802
13b5a7ff 3803/*
95967e73 3804
13b5a7ff
FF
3805LOCAL FUNCTION
3806
3807 target_to_host -- swap in target data to host
3808
3809SYNOPSIS
3810
3811 target_to_host (char *from, int nbytes, int signextend,
3812 struct objfile *objfile)
3813
3814DESCRIPTION
3815
3816 Given pointer to data in target format in FROM, a byte count for
3817 the size of the data in NBYTES, a flag indicating whether or not
3818 the data is signed in SIGNEXTEND, and a pointer to the current
3819 objfile in OBJFILE, convert the data to host format and return
3820 the converted value.
3821
3822NOTES
3823
3824 FIXME: If we read data that is known to be signed, and expect to
3825 use it as signed data, then we need to explicitly sign extend the
3826 result until the bfd library is able to do this for us.
3827
3828 */
3829
3830static unsigned long
3831target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3832 char *from;
3833 int nbytes;
13b5a7ff 3834 int signextend; /* FIXME: Unused */
95967e73
FF
3835 struct objfile *objfile;
3836{
13b5a7ff 3837 unsigned long rtnval;
95967e73
FF
3838
3839 switch (nbytes)
3840 {
95967e73 3841 case 8:
13b5a7ff 3842 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3843 break;
95967e73 3844 case 4:
13b5a7ff 3845 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3846 break;
3847 case 2:
13b5a7ff 3848 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3849 break;
3850 case 1:
13b5a7ff 3851 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3852 break;
3853 default:
51b80b00 3854 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3855 rtnval = 0;
95967e73
FF
3856 break;
3857 }
13b5a7ff 3858 return (rtnval);
95967e73
FF
3859}
3860
13b5a7ff
FF
3861/*
3862
3863LOCAL FUNCTION
3864
3865 attribute_size -- compute size of data for a DWARF attribute
3866
3867SYNOPSIS
3868
3869 static int attribute_size (unsigned int attr)
3870
3871DESCRIPTION
3872
3873 Given a DWARF attribute in ATTR, compute the size of the first
3874 piece of data associated with this attribute and return that
3875 size.
3876
3877 Returns -1 for unrecognized attributes.
3878
3879 */
3880
3881static int
3882attribute_size (attr)
3883 unsigned int attr;
3884{
3885 int nbytes; /* Size of next data for this attribute */
3886 unsigned short form; /* Form of the attribute */
3887
3888 form = FORM_FROM_ATTR (attr);
3889 switch (form)
3890 {
3891 case FORM_STRING: /* A variable length field is next */
3892 nbytes = 0;
3893 break;
3894 case FORM_DATA2: /* Next 2 byte field is the data itself */
3895 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3896 nbytes = 2;
3897 break;
3898 case FORM_DATA4: /* Next 4 byte field is the data itself */
3899 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3900 case FORM_REF: /* Next 4 byte field is a DIE offset */
3901 nbytes = 4;
3902 break;
3903 case FORM_DATA8: /* Next 8 byte field is the data itself */
3904 nbytes = 8;
3905 break;
3906 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3907 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3908 break;
3909 default:
51b80b00 3910 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3911 nbytes = -1;
3912 break;
3913 }
3914 return (nbytes);
3915}
This page took 0.289456 seconds and 4 git commands to generate.