Tue Jan 19 09:06:14 1993 Ian Lance Taylor (ian@cygnus.com)
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
1ab3bf1b
JG
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/*
23
24FIXME: Figure out how to get the frame pointer register number in the
25execution environment of the target. Remove R_FP kludge
26
27FIXME: Add generation of dependencies list to partial symtab code.
28
35f5886e
FF
29FIXME: Resolve minor differences between what information we put in the
30partial symbol table and what dbxread puts in. For example, we don't yet
31put enum constants there. And dbxread seems to invent a lot of typedefs
32we never see. Use the new printpsym command to see the partial symbol table
33contents.
34
35f5886e
FF
35FIXME: Figure out a better way to tell gdb about the name of the function
36contain the user's entry point (I.E. main())
37
35f5886e
FF
38FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39other things to work on, if you get bored. :-)
40
41*/
4d315a07 42
d747e0af 43#include "defs.h"
35f5886e
FF
44#include "bfd.h"
45#include "symtab.h"
1ab3bf1b 46#include "gdbtypes.h"
35f5886e 47#include "symfile.h"
5e2e79f8 48#include "objfiles.h"
13b5a7ff 49#include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
f5f0679a 50#include "elf/dwarf.h"
4d315a07 51#include "buildsym.h"
2dbde378 52#include "demangle.h"
bf229b4e
FF
53#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54#include "language.h"
51b80b00 55#include "complaints.h"
35f5886e 56
d5931d79
JG
57#include <fcntl.h>
58#include <string.h>
603900c7 59#include <sys/types.h>
51b80b00 60
d5931d79
JG
61#ifndef NO_SYS_FILE
62#include <sys/file.h>
63#endif
64
65/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66#ifndef L_SET
67#define L_SET 0
68#endif
69
51b80b00
FF
70/* Some macros to provide DIE info for complaints. */
71
72#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75/* Complaints that can be issued during DWARF debug info reading. */
76
77struct complaint no_bfd_get_N =
78{
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80};
81
82struct complaint malformed_die =
83{
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85};
86
87struct complaint bad_die_ref =
88{
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90};
91
92struct complaint unknown_attribute_form =
93{
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95};
96
97struct complaint unknown_attribute_length =
98{
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100};
101
102struct complaint unexpected_fund_type =
103{
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105};
106
107struct complaint unknown_type_modifier =
108{
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110};
111
112struct complaint volatile_ignored =
113{
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115};
116
117struct complaint const_ignored =
118{
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120};
121
122struct complaint botched_modified_type =
123{
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125};
126
127struct complaint op_deref2 =
128{
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130};
131
132struct complaint op_deref4 =
133{
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135};
136
137struct complaint basereg_not_handled =
138{
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140};
141
142struct complaint dup_user_type_allocation =
143{
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145};
146
147struct complaint dup_user_type_definition =
148{
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150};
151
152struct complaint missing_tag =
153{
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155};
156
157struct complaint bad_array_element_type =
158{
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160};
161
162struct complaint subscript_data_items =
163{
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165};
166
167struct complaint unhandled_array_subscript_format =
168{
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170};
171
172struct complaint unknown_array_subscript_format =
173{
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175};
176
177struct complaint not_row_major =
178{
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180};
35f5886e
FF
181
182#ifndef R_FP /* FIXME */
183#define R_FP 14 /* Kludge to get frame pointer register number */
184#endif
185
13b5a7ff 186typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 187
4d315a07
FF
188#ifndef GCC_PRODUCER
189#define GCC_PRODUCER "GNU C "
190#endif
35f5886e 191
2dbde378
FF
192#ifndef GPLUS_PRODUCER
193#define GPLUS_PRODUCER "GNU C++ "
194#endif
195
196#ifndef LCC_PRODUCER
3dc755fb 197#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
198#endif
199
200#ifndef CFRONT_PRODUCER
201#define CFRONT_PRODUCER "CFRONT " /* A wild a** guess... */
202#endif
203
93bb6e65
FF
204/* start-sanitize-chill */
205#ifndef CHILL_PRODUCER
206#define CHILL_PRODUCER "GNU Chill "
207#endif
208/* end-sanitize-chill */
209
13b5a7ff
FF
210/* Flags to target_to_host() that tell whether or not the data object is
211 expected to be signed. Used, for example, when fetching a signed
212 integer in the target environment which is used as a signed integer
213 in the host environment, and the two environments have different sized
214 ints. In this case, *somebody* has to sign extend the smaller sized
215 int. */
216
217#define GET_UNSIGNED 0 /* No sign extension required */
218#define GET_SIGNED 1 /* Sign extension required */
219
220/* Defines for things which are specified in the document "DWARF Debugging
221 Information Format" published by UNIX International, Programming Languages
222 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
223
224#define SIZEOF_DIE_LENGTH 4
225#define SIZEOF_DIE_TAG 2
226#define SIZEOF_ATTRIBUTE 2
227#define SIZEOF_FORMAT_SPECIFIER 1
228#define SIZEOF_FMT_FT 2
229#define SIZEOF_LINETBL_LENGTH 4
230#define SIZEOF_LINETBL_LINENO 4
231#define SIZEOF_LINETBL_STMT 2
232#define SIZEOF_LINETBL_DELTA 4
233#define SIZEOF_LOC_ATOM_CODE 1
234
235#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
236
237/* Macros that return the sizes of various types of data in the target
238 environment.
239
2d6d969c
FF
240 FIXME: Currently these are just compile time constants (as they are in
241 other parts of gdb as well). They need to be able to get the right size
242 either from the bfd or possibly from the DWARF info. It would be nice if
243 the DWARF producer inserted DIES that describe the fundamental types in
244 the target environment into the DWARF info, similar to the way dbx stabs
245 producers produce information about their fundamental types. */
246
247#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
248#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 249
768be6e1
FF
250/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
251 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
252 However, the Issue 2 DWARF specification from AT&T defines it as
253 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
254 For backwards compatibility with the AT&T compiler produced executables
255 we define AT_short_element_list for this variant. */
256
257#define AT_short_element_list (0x00f0|FORM_BLOCK2)
258
259/* External variables referenced. */
260
35f5886e 261extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 262extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
263
264/* The DWARF debugging information consists of two major pieces,
265 one is a block of DWARF Information Entries (DIE's) and the other
266 is a line number table. The "struct dieinfo" structure contains
267 the information for a single DIE, the one currently being processed.
268
269 In order to make it easier to randomly access the attribute fields
13b5a7ff 270 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
271 each DIE is scanned and an instance of the "struct dieinfo"
272 structure is initialized.
273
274 Initialization is done in two levels. The first, done by basicdieinfo(),
275 just initializes those fields that are vital to deciding whether or not
276 to use this DIE, how to skip past it, etc. The second, done by the
277 function completedieinfo(), fills in the rest of the information.
278
279 Attributes which have block forms are not interpreted at the time
280 the DIE is scanned, instead we just save pointers to the start
281 of their value fields.
282
283 Some fields have a flag <name>_p that is set when the value of the
284 field is valid (I.E. we found a matching attribute in the DIE). Since
285 we may want to test for the presence of some attributes in the DIE,
2d6186f4 286 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
287 we need someway to note that we found such an attribute.
288
289 */
290
291typedef char BLOCK;
292
293struct dieinfo {
13b5a7ff
FF
294 char * die; /* Pointer to the raw DIE data */
295 unsigned long die_length; /* Length of the raw DIE data */
296 DIE_REF die_ref; /* Offset of this DIE */
297 unsigned short die_tag; /* Tag for this DIE */
298 unsigned long at_padding;
299 unsigned long at_sibling;
300 BLOCK * at_location;
301 char * at_name;
302 unsigned short at_fund_type;
303 BLOCK * at_mod_fund_type;
304 unsigned long at_user_def_type;
305 BLOCK * at_mod_u_d_type;
306 unsigned short at_ordering;
307 BLOCK * at_subscr_data;
308 unsigned long at_byte_size;
309 unsigned short at_bit_offset;
310 unsigned long at_bit_size;
311 BLOCK * at_element_list;
312 unsigned long at_stmt_list;
313 unsigned long at_low_pc;
314 unsigned long at_high_pc;
315 unsigned long at_language;
316 unsigned long at_member;
317 unsigned long at_discr;
318 BLOCK * at_discr_value;
13b5a7ff
FF
319 BLOCK * at_string_length;
320 char * at_comp_dir;
321 char * at_producer;
13b5a7ff
FF
322 unsigned long at_start_scope;
323 unsigned long at_stride_size;
324 unsigned long at_src_info;
325 char * at_prototyped;
326 unsigned int has_at_low_pc:1;
327 unsigned int has_at_stmt_list:1;
50055e94 328 unsigned int has_at_byte_size:1;
13b5a7ff 329 unsigned int short_element_list:1;
35f5886e
FF
330};
331
332static int diecount; /* Approximate count of dies for compilation unit */
333static struct dieinfo *curdie; /* For warnings and such */
334
335static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 336static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
337static int dbroff; /* Relative offset from start of .debug section */
338static char *lnbase; /* Base pointer to line section */
339static int isreg; /* Kludge to identify register variables */
a5bd5ba6 340static int offreg; /* Kludge to identify basereg references */
35f5886e 341
2670f34d
JG
342/* This value is added to each symbol value. FIXME: Generalize to
343 the section_offsets structure used by dbxread. */
35f5886e
FF
344static CORE_ADDR baseaddr; /* Add to each symbol value */
345
2670f34d
JG
346/* The section offsets used in the current psymtab or symtab. FIXME,
347 only used to pass one value (baseaddr) at the moment. */
348static struct section_offsets *base_section_offsets;
349
35f5886e
FF
350/* Each partial symbol table entry contains a pointer to private data for the
351 read_symtab() function to use when expanding a partial symbol table entry
352 to a full symbol table entry. For DWARF debugging info, this data is
353 contained in the following structure and macros are provided for easy
354 access to the members given a pointer to a partial symbol table entry.
355
356 dbfoff Always the absolute file offset to the start of the ".debug"
357 section for the file containing the DIE's being accessed.
358
359 dbroff Relative offset from the start of the ".debug" access to the
360 first DIE to be accessed. When building the partial symbol
361 table, this value will be zero since we are accessing the
362 entire ".debug" section. When expanding a partial symbol
363 table entry, this value will be the offset to the first
364 DIE for the compilation unit containing the symbol that
365 triggers the expansion.
366
367 dblength The size of the chunk of DIE's being examined, in bytes.
368
369 lnfoff The absolute file offset to the line table fragment. Ignored
370 when building partial symbol tables, but used when expanding
371 them, and contains the absolute file offset to the fragment
372 of the ".line" section containing the line numbers for the
373 current compilation unit.
374 */
375
376struct dwfinfo {
d5931d79 377 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
35f5886e
FF
378 int dbroff; /* Relative offset from start of .debug section */
379 int dblength; /* Size of the chunk of DIE's being examined */
d5931d79 380 file_ptr lnfoff; /* Absolute file offset to line table fragment */
35f5886e
FF
381};
382
383#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
384#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
385#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
386#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
387
4d315a07
FF
388/* The generic symbol table building routines have separate lists for
389 file scope symbols and all all other scopes (local scopes). So
390 we need to select the right one to pass to add_symbol_to_list().
391 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 392
4d315a07
FF
393 FIXME: The original dwarf code just treated the file scope as the first
394 local scope, and all other local scopes as nested local scopes, and worked
395 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 396
99140c31 397struct pending **list_in_scope = &file_symbols;
35f5886e
FF
398
399/* DIES which have user defined types or modified user defined types refer to
400 other DIES for the type information. Thus we need to associate the offset
401 of a DIE for a user defined type with a pointer to the type information.
402
403 Originally this was done using a simple but expensive algorithm, with an
404 array of unsorted structures, each containing an offset/type-pointer pair.
405 This array was scanned linearly each time a lookup was done. The result
406 was that gdb was spending over half it's startup time munging through this
407 array of pointers looking for a structure that had the right offset member.
408
409 The second attempt used the same array of structures, but the array was
410 sorted using qsort each time a new offset/type was recorded, and a binary
411 search was used to find the type pointer for a given DIE offset. This was
412 even slower, due to the overhead of sorting the array each time a new
413 offset/type pair was entered.
414
415 The third attempt uses a fixed size array of type pointers, indexed by a
416 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
417 we can divide any DIE offset by 4 to obtain a unique index into this fixed
418 size array. Since each element is a 4 byte pointer, it takes exactly as
419 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
420 compilation unit. But it gets freed as soon as we are done with it.
421 This has worked well in practice, as a reasonable tradeoff between memory
422 consumption and speed, without having to resort to much more complicated
423 algorithms. */
35f5886e
FF
424
425static struct type **utypes; /* Pointer to array of user type pointers */
426static int numutypes; /* Max number of user type pointers */
427
bf229b4e
FF
428/* Maintain an array of referenced fundamental types for the current
429 compilation unit being read. For DWARF version 1, we have to construct
430 the fundamental types on the fly, since no information about the
431 fundamental types is supplied. Each such fundamental type is created by
432 calling a language dependent routine to create the type, and then a
433 pointer to that type is then placed in the array at the index specified
434 by it's FT_<TYPENAME> value. The array has a fixed size set by the
435 FT_NUM_MEMBERS compile time constant, which is the number of predefined
436 fundamental types gdb knows how to construct. */
437
438static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
439
95ff889e
FF
440/* Record the language for the compilation unit which is currently being
441 processed. We know it once we have seen the TAG_compile_unit DIE,
442 and we need it while processing the DIE's for that compilation unit.
443 It is eventually saved in the symtab structure, but we don't finalize
444 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
445 compilation unit. We also need to get and save a pointer to the
446 language struct for this language, so we can call the language
447 dependent routines for doing things such as creating fundamental
448 types. */
95ff889e
FF
449
450static enum language cu_language;
bf229b4e 451static const struct language_defn *cu_language_defn;
95ff889e 452
35f5886e 453/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
454 about ordering within this file. */
455
13b5a7ff
FF
456static int
457attribute_size PARAMS ((unsigned int));
458
459static unsigned long
460target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 461
1ab3bf1b
JG
462static void
463add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
464
2dbde378
FF
465static void
466handle_producer PARAMS ((char *));
467
1ab3bf1b
JG
468static void
469read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 470
58050209 471static void
1ab3bf1b 472read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
473
474static void
1ab3bf1b
JG
475read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
476 struct objfile *));
35f5886e 477
35f5886e 478static void
1ab3bf1b 479scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 480
35f5886e 481static void
d5931d79
JG
482scan_compilation_units PARAMS ((char *, char *, file_ptr,
483 file_ptr, struct objfile *));
35f5886e
FF
484
485static void
1ab3bf1b 486add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e
FF
487
488static void
1ab3bf1b 489init_psymbol_list PARAMS ((struct objfile *, int));
35f5886e
FF
490
491static void
95967e73 492basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
493
494static void
95967e73 495completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
496
497static void
498dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
499
500static void
501psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e
FF
502
503static struct symtab *
1ab3bf1b 504read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
505
506static void
1ab3bf1b 507process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
508
509static void
1ab3bf1b
JG
510read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
511 struct objfile *));
35f5886e
FF
512
513static struct type *
84ffdec2 514decode_array_element_type PARAMS ((char *));
35f5886e
FF
515
516static struct type *
85f0a848 517decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
518
519static void
1ab3bf1b 520dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 521
9e4c1921 522static void
1ab3bf1b 523read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 524
35f5886e 525static void
1ab3bf1b 526read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
527
528static void
1ab3bf1b 529read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
530
531static struct type *
1ab3bf1b 532struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
533
534static struct type *
1ab3bf1b 535enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 536
35f5886e 537static void
1ab3bf1b 538decode_line_numbers PARAMS ((char *));
35f5886e
FF
539
540static struct type *
1ab3bf1b 541decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
542
543static struct type *
1ab3bf1b 544decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
545
546static struct type *
1ab3bf1b 547decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
548
549static struct type *
1c92ca6f 550decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
551
552static struct type *
1ab3bf1b 553decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
554
555static char *
1ab3bf1b 556create_name PARAMS ((char *, struct obstack *));
35f5886e 557
35f5886e 558static struct type *
13b5a7ff 559lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
560
561static struct type *
13b5a7ff 562alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
563
564static struct symbol *
1ab3bf1b 565new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 566
95ff889e
FF
567static void
568synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
569 struct type *));
570
35f5886e 571static int
1ab3bf1b 572locval PARAMS ((char *));
35f5886e
FF
573
574static void
1ab3bf1b
JG
575record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
576 struct objfile *));
35f5886e 577
95ff889e
FF
578static void
579set_cu_language PARAMS ((struct dieinfo *));
580
bf229b4e
FF
581static struct type *
582dwarf_fundamental_type PARAMS ((struct objfile *, int));
583
584
585/*
586
587LOCAL FUNCTION
588
589 dwarf_fundamental_type -- lookup or create a fundamental type
590
591SYNOPSIS
592
593 struct type *
594 dwarf_fundamental_type (struct objfile *objfile, int typeid)
595
596DESCRIPTION
597
598 DWARF version 1 doesn't supply any fundamental type information,
599 so gdb has to construct such types. It has a fixed number of
600 fundamental types that it knows how to construct, which is the
601 union of all types that it knows how to construct for all languages
602 that it knows about. These are enumerated in gdbtypes.h.
603
604 As an example, assume we find a DIE that references a DWARF
605 fundamental type of FT_integer. We first look in the ftypes
606 array to see if we already have such a type, indexed by the
607 gdb internal value of FT_INTEGER. If so, we simply return a
608 pointer to that type. If not, then we ask an appropriate
609 language dependent routine to create a type FT_INTEGER, using
610 defaults reasonable for the current target machine, and install
611 that type in ftypes for future reference.
612
613RETURNS
614
615 Pointer to a fundamental type.
616
617*/
618
619static struct type *
620dwarf_fundamental_type (objfile, typeid)
621 struct objfile *objfile;
622 int typeid;
623{
624 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
625 {
626 error ("internal error - invalid fundamental type id %d", typeid);
627 }
628
629 /* Look for this particular type in the fundamental type vector. If one is
630 not found, create and install one appropriate for the current language
631 and the current target machine. */
632
633 if (ftypes[typeid] == NULL)
634 {
635 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
636 }
637
638 return (ftypes[typeid]);
639}
640
95ff889e
FF
641/*
642
643LOCAL FUNCTION
644
645 set_cu_language -- set local copy of language for compilation unit
646
647SYNOPSIS
648
649 void
650 set_cu_language (struct dieinfo *dip)
651
652DESCRIPTION
653
654 Decode the language attribute for a compilation unit DIE and
655 remember what the language was. We use this at various times
656 when processing DIE's for a given compilation unit.
657
658RETURNS
659
660 No return value.
661
662 */
663
664static void
665set_cu_language (dip)
666 struct dieinfo *dip;
667{
668 switch (dip -> at_language)
669 {
670 case LANG_C89:
671 case LANG_C:
672 cu_language = language_c;
673 break;
674 case LANG_C_PLUS_PLUS:
675 cu_language = language_cplus;
676 break;
19cfe25d 677 /* start-sanitize-chill */
e58de8a2
FF
678 case LANG_CHILL:
679 cu_language = language_chill;
680 break;
19cfe25d 681 /* end-sanitize-chill */
e58de8a2
FF
682 case LANG_MODULA2:
683 cu_language = language_m2;
684 break;
95ff889e
FF
685 case LANG_ADA83:
686 case LANG_COBOL74:
687 case LANG_COBOL85:
688 case LANG_FORTRAN77:
689 case LANG_FORTRAN90:
690 case LANG_PASCAL83:
2e4964ad 691 /* We don't know anything special about these yet. */
95ff889e
FF
692 cu_language = language_unknown;
693 break;
2e4964ad
FF
694 default:
695 /* If no at_language, try to deduce one from the filename */
696 cu_language = deduce_language_from_filename (dip -> at_name);
697 break;
95ff889e 698 }
bf229b4e 699 cu_language_defn = language_def (cu_language);
95ff889e
FF
700}
701
35f5886e
FF
702/*
703
704GLOBAL FUNCTION
705
706 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
707
708SYNOPSIS
709
d5931d79 710 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 711 struct section_offsets *section_offsets,
d5931d79
JG
712 int mainline, file_ptr dbfoff, unsigned int dbfsize,
713 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
714
715DESCRIPTION
716
717 This function is called upon to build partial symtabs from files
718 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
719
d5931d79 720 It is passed a bfd* containing the DIES
35f5886e
FF
721 and line number information, the corresponding filename for that
722 file, a base address for relocating the symbols, a flag indicating
723 whether or not this debugging information is from a "main symbol
724 table" rather than a shared library or dynamically linked file,
725 and file offset/size pairs for the DIE information and line number
726 information.
727
728RETURNS
729
730 No return value.
731
732 */
733
734void
d5931d79
JG
735dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
736 lnoffset, lnsize)
737 struct objfile *objfile;
2670f34d 738 struct section_offsets *section_offsets;
1ab3bf1b 739 int mainline;
d5931d79 740 file_ptr dbfoff;
4090fe1c 741 unsigned int dbfsize;
d5931d79 742 file_ptr lnoffset;
1ab3bf1b 743 unsigned int lnsize;
35f5886e 744{
d5931d79 745 bfd *abfd = objfile->obfd;
35f5886e
FF
746 struct cleanup *back_to;
747
95967e73 748 current_objfile = objfile;
4090fe1c 749 dbsize = dbfsize;
35f5886e
FF
750 dbbase = xmalloc (dbsize);
751 dbroff = 0;
d5931d79
JG
752 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
753 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
754 {
755 free (dbbase);
d5931d79 756 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
757 }
758 back_to = make_cleanup (free, dbbase);
759
760 /* If we are reinitializing, or if we have never loaded syms yet, init.
761 Since we have no idea how many DIES we are looking at, we just guess
762 some arbitrary value. */
763
13b5a7ff
FF
764 if (mainline || objfile -> global_psymbols.size == 0 ||
765 objfile -> static_psymbols.size == 0)
35f5886e 766 {
1ab3bf1b 767 init_psymbol_list (objfile, 1024);
35f5886e
FF
768 }
769
84ffdec2 770 /* Save the relocation factor where everybody can see it. */
f8b76e70 771
2670f34d
JG
772 base_section_offsets = section_offsets;
773 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 774
35f5886e
FF
775 /* Follow the compilation unit sibling chain, building a partial symbol
776 table entry for each one. Save enough information about each compilation
777 unit to locate the full DWARF information later. */
778
d5931d79 779 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 780
35f5886e 781 do_cleanups (back_to);
95967e73 782 current_objfile = NULL;
35f5886e
FF
783}
784
785
786/*
787
788LOCAL FUNCTION
789
1ab3bf1b 790 record_minimal_symbol -- add entry to gdb's minimal symbol table
35f5886e
FF
791
792SYNOPSIS
793
1ab3bf1b
JG
794 static void record_minimal_symbol (char *name, CORE_ADDR address,
795 enum minimal_symbol_type ms_type,
796 struct objfile *objfile)
35f5886e
FF
797
798DESCRIPTION
799
800 Given a pointer to the name of a symbol that should be added to the
1ab3bf1b 801 minimal symbol table, and the address associated with that
35f5886e 802 symbol, records this information for later use in building the
1ab3bf1b 803 minimal symbol table.
35f5886e 804
35f5886e
FF
805 */
806
807static void
1ab3bf1b
JG
808record_minimal_symbol (name, address, ms_type, objfile)
809 char *name;
810 CORE_ADDR address;
811 enum minimal_symbol_type ms_type;
812 struct objfile *objfile;
35f5886e 813{
1ab3bf1b
JG
814 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
815 prim_record_minimal_symbol (name, address, ms_type);
35f5886e
FF
816}
817
818/*
819
35f5886e
FF
820LOCAL FUNCTION
821
822 read_lexical_block_scope -- process all dies in a lexical block
823
824SYNOPSIS
825
826 static void read_lexical_block_scope (struct dieinfo *dip,
827 char *thisdie, char *enddie)
828
829DESCRIPTION
830
831 Process all the DIES contained within a lexical block scope.
832 Start a new scope, process the dies, and then close the scope.
833
834 */
835
836static void
1ab3bf1b
JG
837read_lexical_block_scope (dip, thisdie, enddie, objfile)
838 struct dieinfo *dip;
839 char *thisdie;
840 char *enddie;
841 struct objfile *objfile;
35f5886e 842{
4d315a07
FF
843 register struct context_stack *new;
844
4ed3a9ea 845 push_context (0, dip -> at_low_pc);
13b5a7ff 846 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
847 new = pop_context ();
848 if (local_symbols != NULL)
849 {
850 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 851 dip -> at_high_pc, objfile);
4d315a07
FF
852 }
853 local_symbols = new -> locals;
35f5886e
FF
854}
855
856/*
857
858LOCAL FUNCTION
859
860 lookup_utype -- look up a user defined type from die reference
861
862SYNOPSIS
863
13b5a7ff 864 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
865
866DESCRIPTION
867
868 Given a DIE reference, lookup the user defined type associated with
869 that DIE, if it has been registered already. If not registered, then
870 return NULL. Alloc_utype() can be called to register an empty
871 type for this reference, which will be filled in later when the
872 actual referenced DIE is processed.
873 */
874
875static struct type *
13b5a7ff
FF
876lookup_utype (die_ref)
877 DIE_REF die_ref;
35f5886e
FF
878{
879 struct type *type = NULL;
880 int utypeidx;
881
13b5a7ff 882 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
883 if ((utypeidx < 0) || (utypeidx >= numutypes))
884 {
51b80b00 885 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
886 }
887 else
888 {
889 type = *(utypes + utypeidx);
890 }
891 return (type);
892}
893
894
895/*
896
897LOCAL FUNCTION
898
899 alloc_utype -- add a user defined type for die reference
900
901SYNOPSIS
902
13b5a7ff 903 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
904
905DESCRIPTION
906
13b5a7ff 907 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
908 defined type UTYPEP, register that this reference has a user
909 defined type and either use the specified type in UTYPEP or
910 make a new empty type that will be filled in later.
911
912 We should only be called after calling lookup_utype() to verify that
13b5a7ff 913 there is not currently a type registered for DIE_REF.
35f5886e
FF
914 */
915
916static struct type *
13b5a7ff
FF
917alloc_utype (die_ref, utypep)
918 DIE_REF die_ref;
1ab3bf1b 919 struct type *utypep;
35f5886e
FF
920{
921 struct type **typep;
922 int utypeidx;
923
13b5a7ff 924 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
925 typep = utypes + utypeidx;
926 if ((utypeidx < 0) || (utypeidx >= numutypes))
927 {
bf229b4e 928 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 929 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
930 }
931 else if (*typep != NULL)
932 {
933 utypep = *typep;
51b80b00 934 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
935 }
936 else
937 {
938 if (utypep == NULL)
939 {
8050a57b 940 utypep = alloc_type (current_objfile);
35f5886e
FF
941 }
942 *typep = utypep;
943 }
944 return (utypep);
945}
946
947/*
948
949LOCAL FUNCTION
950
951 decode_die_type -- return a type for a specified die
952
953SYNOPSIS
954
955 static struct type *decode_die_type (struct dieinfo *dip)
956
957DESCRIPTION
958
959 Given a pointer to a die information structure DIP, decode the
960 type of the die and return a pointer to the decoded type. All
961 dies without specific types default to type int.
962 */
963
964static struct type *
1ab3bf1b
JG
965decode_die_type (dip)
966 struct dieinfo *dip;
35f5886e
FF
967{
968 struct type *type = NULL;
969
970 if (dip -> at_fund_type != 0)
971 {
972 type = decode_fund_type (dip -> at_fund_type);
973 }
974 else if (dip -> at_mod_fund_type != NULL)
975 {
976 type = decode_mod_fund_type (dip -> at_mod_fund_type);
977 }
978 else if (dip -> at_user_def_type)
979 {
980 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
981 {
982 type = alloc_utype (dip -> at_user_def_type, NULL);
983 }
984 }
985 else if (dip -> at_mod_u_d_type)
986 {
987 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
988 }
989 else
990 {
bf229b4e 991 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
992 }
993 return (type);
994}
995
996/*
997
998LOCAL FUNCTION
999
1000 struct_type -- compute and return the type for a struct or union
1001
1002SYNOPSIS
1003
1004 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 1005 char *enddie, struct objfile *objfile)
35f5886e
FF
1006
1007DESCRIPTION
1008
1009 Given pointer to a die information structure for a die which
715cafcb
FF
1010 defines a union or structure (and MUST define one or the other),
1011 and pointers to the raw die data that define the range of dies which
1012 define the members, compute and return the user defined type for the
1013 structure or union.
35f5886e
FF
1014 */
1015
1016static struct type *
1ab3bf1b
JG
1017struct_type (dip, thisdie, enddie, objfile)
1018 struct dieinfo *dip;
1019 char *thisdie;
1020 char *enddie;
1021 struct objfile *objfile;
35f5886e
FF
1022{
1023 struct type *type;
1024 struct nextfield {
1025 struct nextfield *next;
1026 struct field field;
1027 };
1028 struct nextfield *list = NULL;
1029 struct nextfield *new;
1030 int nfields = 0;
1031 int n;
1032 char *tpart1;
35f5886e 1033 struct dieinfo mbr;
8b5b6fae 1034 char *nextdie;
a8a69e63 1035#if !BITS_BIG_ENDIAN
50055e94 1036 int anonymous_size;
a8a69e63 1037#endif
35f5886e 1038
13b5a7ff 1039 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1040 {
5edf98d7 1041 /* No forward references created an empty type, so install one now */
13b5a7ff 1042 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 1043 }
a3723a43 1044 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 1045 switch (dip -> die_tag)
35f5886e 1046 {
95ff889e
FF
1047 case TAG_class_type:
1048 TYPE_CODE (type) = TYPE_CODE_CLASS;
1049 tpart1 = "class";
1050 break;
715cafcb 1051 case TAG_structure_type:
5edf98d7 1052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
1053 tpart1 = "struct";
1054 break;
1055 case TAG_union_type:
1056 TYPE_CODE (type) = TYPE_CODE_UNION;
1057 tpart1 = "union";
1058 break;
1059 default:
1060 /* Should never happen */
1061 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1062 tpart1 = "???";
51b80b00 1063 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1064 break;
35f5886e 1065 }
5edf98d7
FF
1066 /* Some compilers try to be helpful by inventing "fake" names for
1067 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1068 Thanks, but no thanks... */
715cafcb
FF
1069 if (dip -> at_name != NULL
1070 && *dip -> at_name != '~'
1071 && *dip -> at_name != '.')
35f5886e 1072 {
95967e73 1073 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1ab3bf1b 1074 tpart1, " ", dip -> at_name);
35f5886e 1075 }
50055e94
FF
1076 /* Use whatever size is known. Zero is a valid size. We might however
1077 wish to check has_at_byte_size to make sure that some byte size was
1078 given explicitly, but DWARF doesn't specify that explicit sizes of
1079 zero have to present, so complaining about missing sizes should
1080 probably not be the default. */
1081 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1082 thisdie += dip -> die_length;
35f5886e
FF
1083 while (thisdie < enddie)
1084 {
95967e73
FF
1085 basicdieinfo (&mbr, thisdie, objfile);
1086 completedieinfo (&mbr, objfile);
13b5a7ff 1087 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1088 {
1089 break;
1090 }
8b5b6fae
FF
1091 else if (mbr.at_sibling != 0)
1092 {
1093 nextdie = dbbase + mbr.at_sibling - dbroff;
1094 }
1095 else
1096 {
13b5a7ff 1097 nextdie = thisdie + mbr.die_length;
8b5b6fae 1098 }
13b5a7ff 1099 switch (mbr.die_tag)
35f5886e
FF
1100 {
1101 case TAG_member:
1102 /* Get space to record the next field's data. */
1103 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1104 new -> next = list;
1105 list = new;
1106 /* Save the data. */
50e0dc41
FF
1107 list -> field.name =
1108 obsavestring (mbr.at_name, strlen (mbr.at_name),
1109 &objfile -> type_obstack);
35f5886e
FF
1110 list -> field.type = decode_die_type (&mbr);
1111 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1112 /* Handle bit fields. */
1113 list -> field.bitsize = mbr.at_bit_size;
1114#if BITS_BIG_ENDIAN
1115 /* For big endian bits, the at_bit_offset gives the additional
1116 bit offset from the MSB of the containing anonymous object to
1117 the MSB of the field. We don't have to do anything special
1118 since we don't need to know the size of the anonymous object. */
1119 list -> field.bitpos += mbr.at_bit_offset;
1120#else
1121 /* For little endian bits, we need to have a non-zero at_bit_size,
1122 so that we know we are in fact dealing with a bitfield. Compute
1123 the bit offset to the MSB of the anonymous object, subtract off
1124 the number of bits from the MSB of the field to the MSB of the
1125 object, and then subtract off the number of bits of the field
1126 itself. The result is the bit offset of the LSB of the field. */
1127 if (mbr.at_bit_size > 0)
1128 {
50055e94
FF
1129 if (mbr.has_at_byte_size)
1130 {
1131 /* The size of the anonymous object containing the bit field
1132 is explicit, so use the indicated size (in bytes). */
1133 anonymous_size = mbr.at_byte_size;
1134 }
1135 else
1136 {
1137 /* The size of the anonymous object containing the bit field
1138 matches the size of an object of the bit field's type.
1139 DWARF allows at_byte_size to be left out in such cases,
1140 as a debug information size optimization. */
1141 anonymous_size = TYPE_LENGTH (list -> field.type);
1142 }
4db8e515 1143 list -> field.bitpos +=
50055e94 1144 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
4db8e515
FF
1145 }
1146#endif
35f5886e
FF
1147 nfields++;
1148 break;
1149 default:
8b5b6fae 1150 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1151 break;
1152 }
8b5b6fae 1153 thisdie = nextdie;
35f5886e 1154 }
5edf98d7
FF
1155 /* Now create the vector of fields, and record how big it is. We may
1156 not even have any fields, if this DIE was generated due to a reference
1157 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1158 set, which clues gdb in to the fact that it needs to search elsewhere
1159 for the full structure definition. */
1160 if (nfields == 0)
35f5886e 1161 {
5edf98d7
FF
1162 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1163 }
1164 else
1165 {
1166 TYPE_NFIELDS (type) = nfields;
1167 TYPE_FIELDS (type) = (struct field *)
dac9734e 1168 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1169 /* Copy the saved-up fields into the field vector. */
1170 for (n = nfields; list; list = list -> next)
1171 {
1172 TYPE_FIELD (type, --n) = list -> field;
1173 }
1174 }
35f5886e
FF
1175 return (type);
1176}
1177
1178/*
1179
1180LOCAL FUNCTION
1181
1182 read_structure_scope -- process all dies within struct or union
1183
1184SYNOPSIS
1185
1186 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1187 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1188
1189DESCRIPTION
1190
1191 Called when we find the DIE that starts a structure or union
1192 scope (definition) to process all dies that define the members
1193 of the structure or union. DIP is a pointer to the die info
1194 struct for the DIE that names the structure or union.
1195
1196NOTES
1197
1198 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1199 the DIE has an at_name attribute, since it might be an anonymous
1200 structure or union. This gets the type entered into our set of
1201 user defined types.
1202
1203 However, if the structure is incomplete (an opaque struct/union)
1204 then suppress creating a symbol table entry for it since gdb only
1205 wants to find the one with the complete definition. Note that if
1206 it is complete, we just call new_symbol, which does it's own
1207 checking about whether the struct/union is anonymous or not (and
1208 suppresses creating a symbol table entry itself).
1209
35f5886e
FF
1210 */
1211
1212static void
1ab3bf1b
JG
1213read_structure_scope (dip, thisdie, enddie, objfile)
1214 struct dieinfo *dip;
1215 char *thisdie;
1216 char *enddie;
1217 struct objfile *objfile;
35f5886e
FF
1218{
1219 struct type *type;
1220 struct symbol *sym;
1221
8b5b6fae 1222 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1223 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1224 {
95ff889e
FF
1225 sym = new_symbol (dip, objfile);
1226 if (sym != NULL)
84ce6717
FF
1227 {
1228 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1229 if (cu_language == language_cplus)
1230 {
1231 synthesize_typedef (dip, objfile, type);
1232 }
84ce6717 1233 }
35f5886e
FF
1234 }
1235}
1236
1237/*
1238
1239LOCAL FUNCTION
1240
1241 decode_array_element_type -- decode type of the array elements
1242
1243SYNOPSIS
1244
1245 static struct type *decode_array_element_type (char *scan, char *end)
1246
1247DESCRIPTION
1248
1249 As the last step in decoding the array subscript information for an
1250 array DIE, we need to decode the type of the array elements. We are
1251 passed a pointer to this last part of the subscript information and
1252 must return the appropriate type. If the type attribute is not
1253 recognized, just warn about the problem and return type int.
1254 */
1255
1256static struct type *
84ffdec2 1257decode_array_element_type (scan)
1ab3bf1b 1258 char *scan;
35f5886e
FF
1259{
1260 struct type *typep;
13b5a7ff
FF
1261 DIE_REF die_ref;
1262 unsigned short attribute;
35f5886e 1263 unsigned short fundtype;
13b5a7ff 1264 int nbytes;
35f5886e 1265
13b5a7ff
FF
1266 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1267 current_objfile);
1268 scan += SIZEOF_ATTRIBUTE;
1269 if ((nbytes = attribute_size (attribute)) == -1)
1270 {
51b80b00 1271 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1272 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1273 }
1274 else
1275 {
1276 switch (attribute)
1277 {
1278 case AT_fund_type:
1279 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1280 current_objfile);
1281 typep = decode_fund_type (fundtype);
1282 break;
1283 case AT_mod_fund_type:
1284 typep = decode_mod_fund_type (scan);
1285 break;
1286 case AT_user_def_type:
1287 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1288 current_objfile);
1289 if ((typep = lookup_utype (die_ref)) == NULL)
1290 {
1291 typep = alloc_utype (die_ref, NULL);
1292 }
1293 break;
1294 case AT_mod_u_d_type:
1295 typep = decode_mod_u_d_type (scan);
1296 break;
1297 default:
51b80b00 1298 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1299 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1300 break;
1301 }
35f5886e
FF
1302 }
1303 return (typep);
1304}
1305
1306/*
1307
1308LOCAL FUNCTION
1309
85f0a848 1310 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1311
1312SYNOPSIS
1313
85f0a848
FF
1314 static struct type *
1315 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1316
1317DESCRIPTION
1318
1319 The array subscripts and the data type of the elements of an
1320 array are described by a list of data items, stored as a block
1321 of contiguous bytes. There is a data item describing each array
1322 dimension, and a final data item describing the element type.
1323 The data items are ordered the same as their appearance in the
1324 source (I.E. leftmost dimension first, next to leftmost second,
1325 etc).
1326
85f0a848
FF
1327 The data items describing each array dimension consist of four
1328 parts: (1) a format specifier, (2) type type of the subscript
1329 index, (3) a description of the low bound of the array dimension,
1330 and (4) a description of the high bound of the array dimension.
1331
1332 The last data item is the description of the type of each of
1333 the array elements.
1334
35f5886e 1335 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1336 containing the remaining data items, and a pointer to the first
1337 byte past the data. This function recursively decodes the
1338 remaining data items and returns a type.
1339
1340 If we somehow fail to decode some data, we complain about it
1341 and return a type "array of int".
35f5886e
FF
1342
1343BUGS
1344 FIXME: This code only implements the forms currently used
1345 by the AT&T and GNU C compilers.
1346
1347 The end pointer is supplied for error checking, maybe we should
1348 use it for that...
1349 */
1350
1351static struct type *
85f0a848 1352decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1353 char *scan;
1354 char *end;
35f5886e 1355{
85f0a848
FF
1356 struct type *typep = NULL; /* Array type we are building */
1357 struct type *nexttype; /* Type of each element (may be array) */
1358 struct type *indextype; /* Type of this index */
a8a69e63 1359 struct type *rangetype;
13b5a7ff
FF
1360 unsigned int format;
1361 unsigned short fundtype;
1362 unsigned long lowbound;
1363 unsigned long highbound;
1364 int nbytes;
35f5886e 1365
13b5a7ff
FF
1366 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1367 current_objfile);
1368 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1369 switch (format)
1370 {
1371 case FMT_ET:
84ffdec2 1372 typep = decode_array_element_type (scan);
35f5886e
FF
1373 break;
1374 case FMT_FT_C_C:
13b5a7ff
FF
1375 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1376 current_objfile);
85f0a848 1377 indextype = decode_fund_type (fundtype);
13b5a7ff 1378 scan += SIZEOF_FMT_FT;
160be0de
FF
1379 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1380 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1381 scan += nbytes;
1382 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1383 scan += nbytes;
85f0a848
FF
1384 nexttype = decode_subscript_data_item (scan, end);
1385 if (nexttype == NULL)
35f5886e 1386 {
85f0a848 1387 /* Munged subscript data or other problem, fake it. */
51b80b00 1388 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1389 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1390 }
a8a69e63
FF
1391 rangetype = create_range_type ((struct type *) NULL, indextype,
1392 lowbound, highbound);
1393 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1394 break;
1395 case FMT_FT_C_X:
1396 case FMT_FT_X_C:
1397 case FMT_FT_X_X:
1398 case FMT_UT_C_C:
1399 case FMT_UT_C_X:
1400 case FMT_UT_X_C:
1401 case FMT_UT_X_X:
51b80b00 1402 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1403 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1404 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1405 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1406 break;
1407 default:
51b80b00 1408 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1409 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1410 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1411 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1412 break;
1413 }
1414 return (typep);
1415}
1416
1417/*
1418
1419LOCAL FUNCTION
1420
4d315a07 1421 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1422
1423SYNOPSIS
1424
4d315a07 1425 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1426
1427DESCRIPTION
1428
1429 Extract all information from a TAG_array_type DIE and add to
1430 the user defined type vector.
1431 */
1432
1433static void
1ab3bf1b
JG
1434dwarf_read_array_type (dip)
1435 struct dieinfo *dip;
35f5886e
FF
1436{
1437 struct type *type;
af213624 1438 struct type *utype;
35f5886e
FF
1439 char *sub;
1440 char *subend;
13b5a7ff
FF
1441 unsigned short blocksz;
1442 int nbytes;
35f5886e
FF
1443
1444 if (dip -> at_ordering != ORD_row_major)
1445 {
1446 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1447 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1448 }
1449 if ((sub = dip -> at_subscr_data) != NULL)
1450 {
13b5a7ff
FF
1451 nbytes = attribute_size (AT_subscr_data);
1452 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1453 subend = sub + nbytes + blocksz;
1454 sub += nbytes;
85f0a848
FF
1455 type = decode_subscript_data_item (sub, subend);
1456 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1457 {
85f0a848
FF
1458 /* Install user defined type that has not been referenced yet. */
1459 alloc_utype (dip -> die_ref, type);
1460 }
1461 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1462 {
1463 /* Ick! A forward ref has already generated a blank type in our
1464 slot, and this type probably already has things pointing to it
1465 (which is what caused it to be created in the first place).
1466 If it's just a place holder we can plop our fully defined type
1467 on top of it. We can't recover the space allocated for our
1468 new type since it might be on an obstack, but we could reuse
1469 it if we kept a list of them, but it might not be worth it
1470 (FIXME). */
1471 *utype = *type;
35f5886e
FF
1472 }
1473 else
1474 {
85f0a848
FF
1475 /* Double ick! Not only is a type already in our slot, but
1476 someone has decorated it. Complain and leave it alone. */
51b80b00 1477 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1478 }
1479 }
1480}
1481
1482/*
1483
9e4c1921
FF
1484LOCAL FUNCTION
1485
1486 read_tag_pointer_type -- read TAG_pointer_type DIE
1487
1488SYNOPSIS
1489
1490 static void read_tag_pointer_type (struct dieinfo *dip)
1491
1492DESCRIPTION
1493
1494 Extract all information from a TAG_pointer_type DIE and add to
1495 the user defined type vector.
1496 */
1497
1498static void
1ab3bf1b
JG
1499read_tag_pointer_type (dip)
1500 struct dieinfo *dip;
9e4c1921
FF
1501{
1502 struct type *type;
1503 struct type *utype;
9e4c1921
FF
1504
1505 type = decode_die_type (dip);
13b5a7ff 1506 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1507 {
1508 utype = lookup_pointer_type (type);
4ed3a9ea 1509 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1510 }
1511 else
1512 {
1513 TYPE_TARGET_TYPE (utype) = type;
1514 TYPE_POINTER_TYPE (type) = utype;
1515
1516 /* We assume the machine has only one representation for pointers! */
1517 /* FIXME: This confuses host<->target data representations, and is a
1518 poor assumption besides. */
1519
1520 TYPE_LENGTH (utype) = sizeof (char *);
1521 TYPE_CODE (utype) = TYPE_CODE_PTR;
1522 }
1523}
1524
1525/*
1526
35f5886e
FF
1527LOCAL FUNCTION
1528
1529 read_subroutine_type -- process TAG_subroutine_type dies
1530
1531SYNOPSIS
1532
1533 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1534 char *enddie)
1535
1536DESCRIPTION
1537
1538 Handle DIES due to C code like:
1539
1540 struct foo {
1541 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1542 int b;
1543 };
1544
1545NOTES
1546
1547 The parameter DIES are currently ignored. See if gdb has a way to
1548 include this info in it's type system, and decode them if so. Is
1549 this what the type structure's "arg_types" field is for? (FIXME)
1550 */
1551
1552static void
1ab3bf1b
JG
1553read_subroutine_type (dip, thisdie, enddie)
1554 struct dieinfo *dip;
1555 char *thisdie;
1556 char *enddie;
35f5886e 1557{
af213624
FF
1558 struct type *type; /* Type that this function returns */
1559 struct type *ftype; /* Function that returns above type */
35f5886e 1560
af213624
FF
1561 /* Decode the type that this subroutine returns */
1562
35f5886e 1563 type = decode_die_type (dip);
af213624
FF
1564
1565 /* Check to see if we already have a partially constructed user
1566 defined type for this DIE, from a forward reference. */
1567
13b5a7ff 1568 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1569 {
1570 /* This is the first reference to one of these types. Make
1571 a new one and place it in the user defined types. */
1572 ftype = lookup_function_type (type);
4ed3a9ea 1573 alloc_utype (dip -> die_ref, ftype);
af213624 1574 }
85f0a848 1575 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1576 {
1577 /* We have an existing partially constructed type, so bash it
1578 into the correct type. */
1579 TYPE_TARGET_TYPE (ftype) = type;
1580 TYPE_FUNCTION_TYPE (type) = ftype;
1581 TYPE_LENGTH (ftype) = 1;
1582 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1583 }
85f0a848
FF
1584 else
1585 {
51b80b00 1586 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1587 }
35f5886e
FF
1588}
1589
1590/*
1591
1592LOCAL FUNCTION
1593
1594 read_enumeration -- process dies which define an enumeration
1595
1596SYNOPSIS
1597
1598 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1599 char *enddie, struct objfile *objfile)
35f5886e
FF
1600
1601DESCRIPTION
1602
1603 Given a pointer to a die which begins an enumeration, process all
1604 the dies that define the members of the enumeration.
1605
1606NOTES
1607
1608 Note that we need to call enum_type regardless of whether or not we
1609 have a symbol, since we might have an enum without a tag name (thus
1610 no symbol for the tagname).
1611 */
1612
1613static void
1ab3bf1b
JG
1614read_enumeration (dip, thisdie, enddie, objfile)
1615 struct dieinfo *dip;
1616 char *thisdie;
1617 char *enddie;
1618 struct objfile *objfile;
35f5886e
FF
1619{
1620 struct type *type;
1621 struct symbol *sym;
1622
1ab3bf1b 1623 type = enum_type (dip, objfile);
95ff889e
FF
1624 sym = new_symbol (dip, objfile);
1625 if (sym != NULL)
35f5886e
FF
1626 {
1627 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1628 if (cu_language == language_cplus)
1629 {
1630 synthesize_typedef (dip, objfile, type);
1631 }
35f5886e
FF
1632 }
1633}
1634
1635/*
1636
1637LOCAL FUNCTION
1638
1639 enum_type -- decode and return a type for an enumeration
1640
1641SYNOPSIS
1642
1ab3bf1b 1643 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1644
1645DESCRIPTION
1646
1647 Given a pointer to a die information structure for the die which
1648 starts an enumeration, process all the dies that define the members
1649 of the enumeration and return a type pointer for the enumeration.
98618bf7 1650
715cafcb
FF
1651 At the same time, for each member of the enumeration, create a
1652 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1653 and give it the type of the enumeration itself.
1654
1655NOTES
1656
98618bf7
FF
1657 Note that the DWARF specification explicitly mandates that enum
1658 constants occur in reverse order from the source program order,
1659 for "consistency" and because this ordering is easier for many
1ab3bf1b 1660 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1661 Entries). Because gdb wants to see the enum members in program
1662 source order, we have to ensure that the order gets reversed while
98618bf7 1663 we are processing them.
35f5886e
FF
1664 */
1665
1666static struct type *
1ab3bf1b
JG
1667enum_type (dip, objfile)
1668 struct dieinfo *dip;
1669 struct objfile *objfile;
35f5886e
FF
1670{
1671 struct type *type;
1672 struct nextfield {
1673 struct nextfield *next;
1674 struct field field;
1675 };
1676 struct nextfield *list = NULL;
1677 struct nextfield *new;
1678 int nfields = 0;
1679 int n;
35f5886e
FF
1680 char *scan;
1681 char *listend;
13b5a7ff 1682 unsigned short blocksz;
715cafcb 1683 struct symbol *sym;
13b5a7ff 1684 int nbytes;
35f5886e 1685
13b5a7ff 1686 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1687 {
84ce6717 1688 /* No forward references created an empty type, so install one now */
13b5a7ff 1689 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1690 }
1691 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1692 /* Some compilers try to be helpful by inventing "fake" names for
1693 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1694 Thanks, but no thanks... */
715cafcb
FF
1695 if (dip -> at_name != NULL
1696 && *dip -> at_name != '~'
1697 && *dip -> at_name != '.')
35f5886e 1698 {
95967e73 1699 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1ab3bf1b 1700 " ", dip -> at_name);
35f5886e 1701 }
715cafcb 1702 if (dip -> at_byte_size != 0)
35f5886e
FF
1703 {
1704 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1705 }
35f5886e
FF
1706 if ((scan = dip -> at_element_list) != NULL)
1707 {
768be6e1
FF
1708 if (dip -> short_element_list)
1709 {
13b5a7ff 1710 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1711 }
1712 else
1713 {
13b5a7ff 1714 nbytes = attribute_size (AT_element_list);
768be6e1 1715 }
13b5a7ff
FF
1716 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1717 listend = scan + nbytes + blocksz;
1718 scan += nbytes;
35f5886e
FF
1719 while (scan < listend)
1720 {
1721 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1722 new -> next = list;
1723 list = new;
1724 list -> field.type = NULL;
1725 list -> field.bitsize = 0;
13b5a7ff
FF
1726 list -> field.bitpos =
1727 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1728 objfile);
1729 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1730 list -> field.name = obsavestring (scan, strlen (scan),
1731 &objfile -> type_obstack);
35f5886e
FF
1732 scan += strlen (scan) + 1;
1733 nfields++;
715cafcb 1734 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1735 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1736 sizeof (struct symbol));
4ed3a9ea 1737 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1738 SYMBOL_NAME (sym) = create_name (list -> field.name,
1739 &objfile->symbol_obstack);
7532cf10 1740 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1741 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1742 SYMBOL_CLASS (sym) = LOC_CONST;
1743 SYMBOL_TYPE (sym) = type;
1744 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1745 add_symbol_to_list (sym, list_in_scope);
35f5886e 1746 }
84ce6717 1747 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1748 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1749 reverse order from how they were inserted. If we have no fields
1750 (this is apparently possible in C++) then skip building a field
1751 vector. */
1752 if (nfields > 0)
1753 {
1754 TYPE_NFIELDS (type) = nfields;
1755 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1756 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1757 /* Copy the saved-up fields into the field vector. */
1758 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1759 {
1760 TYPE_FIELD (type, n++) = list -> field;
1761 }
1762 }
35f5886e 1763 }
35f5886e
FF
1764 return (type);
1765}
1766
1767/*
1768
1769LOCAL FUNCTION
1770
1771 read_func_scope -- process all dies within a function scope
1772
35f5886e
FF
1773DESCRIPTION
1774
1775 Process all dies within a given function scope. We are passed
1776 a die information structure pointer DIP for the die which
1777 starts the function scope, and pointers into the raw die data
1778 that define the dies within the function scope.
1779
1780 For now, we ignore lexical block scopes within the function.
1781 The problem is that AT&T cc does not define a DWARF lexical
1782 block scope for the function itself, while gcc defines a
1783 lexical block scope for the function. We need to think about
1784 how to handle this difference, or if it is even a problem.
1785 (FIXME)
1786 */
1787
1788static void
1ab3bf1b
JG
1789read_func_scope (dip, thisdie, enddie, objfile)
1790 struct dieinfo *dip;
1791 char *thisdie;
1792 char *enddie;
1793 struct objfile *objfile;
35f5886e 1794{
4d315a07 1795 register struct context_stack *new;
35f5886e 1796
5e2e79f8
FF
1797 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1798 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1799 {
5e2e79f8
FF
1800 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1801 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1802 }
4d315a07 1803 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1804 {
5e2e79f8
FF
1805 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1806 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1807 }
4d315a07 1808 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1809 new -> name = new_symbol (dip, objfile);
4d315a07 1810 list_in_scope = &local_symbols;
13b5a7ff 1811 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1812 new = pop_context ();
1813 /* Make a block for the local symbols within. */
1814 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1815 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1816 list_in_scope = &file_symbols;
35f5886e
FF
1817}
1818
2dbde378
FF
1819
1820/*
1821
1822LOCAL FUNCTION
1823
1824 handle_producer -- process the AT_producer attribute
1825
1826DESCRIPTION
1827
1828 Perform any operations that depend on finding a particular
1829 AT_producer attribute.
1830
1831 */
1832
1833static void
1834handle_producer (producer)
1835 char *producer;
1836{
1837
1838 /* If this compilation unit was compiled with g++ or gcc, then set the
1839 processing_gcc_compilation flag. */
1840
1841 processing_gcc_compilation =
1842 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65
FF
1843 /* start-sanitize-chill */
1844 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1845 /* end-sanitize-chill */
2dbde378
FF
1846 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1847
1848 /* Select a demangling style if we can identify the producer and if
1849 the current style is auto. We leave the current style alone if it
1850 is not auto. We also leave the demangling style alone if we find a
1851 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1852
d23639b2 1853#if 1 /* Works, but is experimental. -fnf */
3dc755fb 1854 if (AUTO_DEMANGLING)
2dbde378
FF
1855 {
1856 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1857 {
1858 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1859 }
1860 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1861 {
1862 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1863 }
1864 else if (STREQN (producer, CFRONT_PRODUCER, strlen (CFRONT_PRODUCER)))
1865 {
1866 set_demangling_style (CFRONT_DEMANGLING_STYLE_STRING);
1867 }
1868 }
1869#endif
1870}
1871
1872
35f5886e
FF
1873/*
1874
1875LOCAL FUNCTION
1876
1877 read_file_scope -- process all dies within a file scope
1878
35f5886e
FF
1879DESCRIPTION
1880
1881 Process all dies within a given file scope. We are passed a
1882 pointer to the die information structure for the die which
1883 starts the file scope, and pointers into the raw die data which
1884 mark the range of dies within the file scope.
1885
1886 When the partial symbol table is built, the file offset for the line
1887 number table for each compilation unit is saved in the partial symbol
1888 table entry for that compilation unit. As the symbols for each
1889 compilation unit are read, the line number table is read into memory
1890 and the variable lnbase is set to point to it. Thus all we have to
1891 do is use lnbase to access the line number table for the current
1892 compilation unit.
1893 */
1894
1895static void
1ab3bf1b
JG
1896read_file_scope (dip, thisdie, enddie, objfile)
1897 struct dieinfo *dip;
1898 char *thisdie;
1899 char *enddie;
1900 struct objfile *objfile;
35f5886e
FF
1901{
1902 struct cleanup *back_to;
4d315a07 1903 struct symtab *symtab;
35f5886e 1904
5e2e79f8
FF
1905 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1906 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1907 {
5e2e79f8
FF
1908 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1909 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1910 }
95ff889e 1911 set_cu_language (dip);
4d315a07
FF
1912 if (dip -> at_producer != NULL)
1913 {
2dbde378 1914 handle_producer (dip -> at_producer);
4d315a07 1915 }
35f5886e
FF
1916 numutypes = (enddie - thisdie) / 4;
1917 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1918 back_to = make_cleanup (free, utypes);
4ed3a9ea 1919 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1920 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1921 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1922 decode_line_numbers (lnbase);
13b5a7ff 1923 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07 1924 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile);
7b5d9650 1925 if (symtab != NULL)
4d315a07 1926 {
95ff889e 1927 symtab -> language = cu_language;
7b5d9650 1928 }
35f5886e
FF
1929 do_cleanups (back_to);
1930 utypes = NULL;
1931 numutypes = 0;
1932}
1933
1934/*
1935
35f5886e
FF
1936LOCAL FUNCTION
1937
1938 process_dies -- process a range of DWARF Information Entries
1939
1940SYNOPSIS
1941
8b5b6fae
FF
1942 static void process_dies (char *thisdie, char *enddie,
1943 struct objfile *objfile)
35f5886e
FF
1944
1945DESCRIPTION
1946
1947 Process all DIE's in a specified range. May be (and almost
1948 certainly will be) called recursively.
1949 */
1950
1951static void
1ab3bf1b
JG
1952process_dies (thisdie, enddie, objfile)
1953 char *thisdie;
1954 char *enddie;
1955 struct objfile *objfile;
35f5886e
FF
1956{
1957 char *nextdie;
1958 struct dieinfo di;
1959
1960 while (thisdie < enddie)
1961 {
95967e73 1962 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 1963 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
1964 {
1965 break;
1966 }
13b5a7ff 1967 else if (di.die_tag == TAG_padding)
35f5886e 1968 {
13b5a7ff 1969 nextdie = thisdie + di.die_length;
35f5886e
FF
1970 }
1971 else
1972 {
95967e73 1973 completedieinfo (&di, objfile);
35f5886e
FF
1974 if (di.at_sibling != 0)
1975 {
1976 nextdie = dbbase + di.at_sibling - dbroff;
1977 }
1978 else
1979 {
13b5a7ff 1980 nextdie = thisdie + di.die_length;
35f5886e 1981 }
13b5a7ff 1982 switch (di.die_tag)
35f5886e
FF
1983 {
1984 case TAG_compile_unit:
a048c8f5 1985 read_file_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
1986 break;
1987 case TAG_global_subroutine:
1988 case TAG_subroutine:
2d6186f4 1989 if (di.has_at_low_pc)
35f5886e 1990 {
a048c8f5 1991 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
1992 }
1993 break;
1994 case TAG_lexical_block:
a048c8f5 1995 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 1996 break;
95ff889e 1997 case TAG_class_type:
35f5886e
FF
1998 case TAG_structure_type:
1999 case TAG_union_type:
8b5b6fae 2000 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2001 break;
2002 case TAG_enumeration_type:
1ab3bf1b 2003 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2004 break;
2005 case TAG_subroutine_type:
2006 read_subroutine_type (&di, thisdie, nextdie);
2007 break;
2008 case TAG_array_type:
4d315a07 2009 dwarf_read_array_type (&di);
35f5886e 2010 break;
9e4c1921
FF
2011 case TAG_pointer_type:
2012 read_tag_pointer_type (&di);
2013 break;
35f5886e 2014 default:
4ed3a9ea 2015 new_symbol (&di, objfile);
35f5886e
FF
2016 break;
2017 }
2018 }
2019 thisdie = nextdie;
2020 }
2021}
2022
2023/*
2024
35f5886e
FF
2025LOCAL FUNCTION
2026
2027 decode_line_numbers -- decode a line number table fragment
2028
2029SYNOPSIS
2030
2031 static void decode_line_numbers (char *tblscan, char *tblend,
2032 long length, long base, long line, long pc)
2033
2034DESCRIPTION
2035
2036 Translate the DWARF line number information to gdb form.
2037
2038 The ".line" section contains one or more line number tables, one for
2039 each ".line" section from the objects that were linked.
2040
2041 The AT_stmt_list attribute for each TAG_source_file entry in the
2042 ".debug" section contains the offset into the ".line" section for the
2043 start of the table for that file.
2044
2045 The table itself has the following structure:
2046
2047 <table length><base address><source statement entry>
2048 4 bytes 4 bytes 10 bytes
2049
2050 The table length is the total size of the table, including the 4 bytes
2051 for the length information.
2052
2053 The base address is the address of the first instruction generated
2054 for the source file.
2055
2056 Each source statement entry has the following structure:
2057
2058 <line number><statement position><address delta>
2059 4 bytes 2 bytes 4 bytes
2060
2061 The line number is relative to the start of the file, starting with
2062 line 1.
2063
2064 The statement position either -1 (0xFFFF) or the number of characters
2065 from the beginning of the line to the beginning of the statement.
2066
2067 The address delta is the difference between the base address and
2068 the address of the first instruction for the statement.
2069
2070 Note that we must copy the bytes from the packed table to our local
2071 variables before attempting to use them, to avoid alignment problems
2072 on some machines, particularly RISC processors.
2073
2074BUGS
2075
2076 Does gdb expect the line numbers to be sorted? They are now by
2077 chance/luck, but are not required to be. (FIXME)
2078
2079 The line with number 0 is unused, gdb apparently can discover the
2080 span of the last line some other way. How? (FIXME)
2081 */
2082
2083static void
1ab3bf1b
JG
2084decode_line_numbers (linetable)
2085 char *linetable;
35f5886e
FF
2086{
2087 char *tblscan;
2088 char *tblend;
13b5a7ff
FF
2089 unsigned long length;
2090 unsigned long base;
2091 unsigned long line;
2092 unsigned long pc;
35f5886e
FF
2093
2094 if (linetable != NULL)
2095 {
2096 tblscan = tblend = linetable;
13b5a7ff
FF
2097 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2098 current_objfile);
2099 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2100 tblend += length;
13b5a7ff
FF
2101 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2102 GET_UNSIGNED, current_objfile);
2103 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2104 base += baseaddr;
35f5886e
FF
2105 while (tblscan < tblend)
2106 {
13b5a7ff
FF
2107 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2108 current_objfile);
2109 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2110 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2111 current_objfile);
2112 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2113 pc += base;
13b5a7ff 2114 if (line != 0)
35f5886e 2115 {
4d315a07 2116 record_line (current_subfile, line, pc);
35f5886e
FF
2117 }
2118 }
2119 }
2120}
2121
2122/*
2123
35f5886e
FF
2124LOCAL FUNCTION
2125
2126 locval -- compute the value of a location attribute
2127
2128SYNOPSIS
2129
2130 static int locval (char *loc)
2131
2132DESCRIPTION
2133
2134 Given pointer to a string of bytes that define a location, compute
2135 the location and return the value.
2136
2137 When computing values involving the current value of the frame pointer,
2138 the value zero is used, which results in a value relative to the frame
2139 pointer, rather than the absolute value. This is what GDB wants
2140 anyway.
2141
2142 When the result is a register number, the global isreg flag is set,
2143 otherwise it is cleared. This is a kludge until we figure out a better
2144 way to handle the problem. Gdb's design does not mesh well with the
2145 DWARF notion of a location computing interpreter, which is a shame
2146 because the flexibility goes unused.
2147
2148NOTES
2149
2150 Note that stack[0] is unused except as a default error return.
2151 Note that stack overflow is not yet handled.
2152 */
2153
2154static int
1ab3bf1b
JG
2155locval (loc)
2156 char *loc;
35f5886e
FF
2157{
2158 unsigned short nbytes;
13b5a7ff
FF
2159 unsigned short locsize;
2160 auto long stack[64];
35f5886e
FF
2161 int stacki;
2162 char *end;
2163 long regno;
13b5a7ff
FF
2164 int loc_atom_code;
2165 int loc_value_size;
35f5886e 2166
13b5a7ff
FF
2167 nbytes = attribute_size (AT_location);
2168 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2169 loc += nbytes;
2170 end = loc + locsize;
35f5886e
FF
2171 stacki = 0;
2172 stack[stacki] = 0;
2173 isreg = 0;
a5bd5ba6 2174 offreg = 0;
13b5a7ff
FF
2175 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2176 while (loc < end)
35f5886e 2177 {
13b5a7ff
FF
2178 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2179 current_objfile);
2180 loc += SIZEOF_LOC_ATOM_CODE;
2181 switch (loc_atom_code)
2182 {
2183 case 0:
2184 /* error */
2185 loc = end;
2186 break;
2187 case OP_REG:
2188 /* push register (number) */
2189 stack[++stacki] = target_to_host (loc, loc_value_size,
2190 GET_UNSIGNED, current_objfile);
2191 loc += loc_value_size;
2192 isreg = 1;
2193 break;
2194 case OP_BASEREG:
2195 /* push value of register (number) */
2196 /* Actually, we compute the value as if register has 0 */
2197 offreg = 1;
2198 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2199 current_objfile);
2200 loc += loc_value_size;
2201 if (regno == R_FP)
2202 {
2203 stack[++stacki] = 0;
2204 }
2205 else
2206 {
2207 stack[++stacki] = 0;
51b80b00
FF
2208
2209 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
13b5a7ff
FF
2210 }
2211 break;
2212 case OP_ADDR:
2213 /* push address (relocated address) */
2214 stack[++stacki] = target_to_host (loc, loc_value_size,
2215 GET_UNSIGNED, current_objfile);
2216 loc += loc_value_size;
2217 break;
2218 case OP_CONST:
2219 /* push constant (number) FIXME: signed or unsigned! */
2220 stack[++stacki] = target_to_host (loc, loc_value_size,
2221 GET_SIGNED, current_objfile);
2222 loc += loc_value_size;
2223 break;
2224 case OP_DEREF2:
2225 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2226 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2227 break;
2228 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2229 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2230 break;
2231 case OP_ADD: /* pop top 2 items, add, push result */
2232 stack[stacki - 1] += stack[stacki];
2233 stacki--;
2234 break;
2235 }
35f5886e
FF
2236 }
2237 return (stack[stacki]);
2238}
2239
2240/*
2241
2242LOCAL FUNCTION
2243
2244 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2245
2246SYNOPSIS
2247
a048c8f5 2248 static struct symtab *read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2249
2250DESCRIPTION
2251
1ab3bf1b
JG
2252 When expanding a partial symbol table entry to a full symbol table
2253 entry, this is the function that gets called to read in the symbols
2254 for the compilation unit.
2255
2256 Returns a pointer to the newly constructed symtab (which is now
2257 the new first one on the objfile's symtab list).
35f5886e
FF
2258 */
2259
2260static struct symtab *
1ab3bf1b
JG
2261read_ofile_symtab (pst)
2262 struct partial_symtab *pst;
35f5886e
FF
2263{
2264 struct cleanup *back_to;
13b5a7ff 2265 unsigned long lnsize;
d5931d79 2266 file_ptr foffset;
1ab3bf1b 2267 bfd *abfd;
13b5a7ff 2268 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2269
2270 abfd = pst -> objfile -> obfd;
2271 current_objfile = pst -> objfile;
2272
35f5886e
FF
2273 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2274 unit, seek to the location in the file, and read in all the DIE's. */
2275
2276 diecount = 0;
4090fe1c
FF
2277 dbsize = DBLENGTH (pst);
2278 dbbase = xmalloc (dbsize);
35f5886e
FF
2279 dbroff = DBROFF(pst);
2280 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2281 base_section_offsets = pst->section_offsets;
2282 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2283 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2284 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2285 {
2286 free (dbbase);
2287 error ("can't read DWARF data");
2288 }
2289 back_to = make_cleanup (free, dbbase);
2290
2291 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2292 then read the size of this fragment in bytes, from the fragment itself.
2293 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2294 processing. */
2295
2296 lnbase = NULL;
2297 if (LNFOFF (pst))
2298 {
d5931d79 2299 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2300 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2301 sizeof (lnsizedata)))
35f5886e
FF
2302 {
2303 error ("can't read DWARF line number table size");
2304 }
13b5a7ff
FF
2305 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2306 GET_UNSIGNED, pst -> objfile);
35f5886e 2307 lnbase = xmalloc (lnsize);
d5931d79 2308 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2309 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2310 {
2311 free (lnbase);
2312 error ("can't read DWARF line numbers");
2313 }
2314 make_cleanup (free, lnbase);
2315 }
2316
4090fe1c 2317 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2318 do_cleanups (back_to);
1ab3bf1b
JG
2319 current_objfile = NULL;
2320 return (pst -> objfile -> symtabs);
35f5886e
FF
2321}
2322
2323/*
2324
2325LOCAL FUNCTION
2326
2327 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2328
2329SYNOPSIS
2330
a048c8f5 2331 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2332
2333DESCRIPTION
2334
2335 Called once for each partial symbol table entry that needs to be
2336 expanded into a full symbol table entry.
2337
2338*/
2339
2340static void
1ab3bf1b
JG
2341psymtab_to_symtab_1 (pst)
2342 struct partial_symtab *pst;
35f5886e
FF
2343{
2344 int i;
d07734e3 2345 struct cleanup *old_chain;
35f5886e 2346
1ab3bf1b 2347 if (pst != NULL)
35f5886e 2348 {
1ab3bf1b 2349 if (pst->readin)
35f5886e 2350 {
318bf84f 2351 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2352 pst -> filename);
2353 }
2354 else
2355 {
2356 /* Read in all partial symtabs on which this one is dependent */
2357 for (i = 0; i < pst -> number_of_dependencies; i++)
2358 {
2359 if (!pst -> dependencies[i] -> readin)
2360 {
2361 /* Inform about additional files that need to be read in. */
2362 if (info_verbose)
2363 {
2364 fputs_filtered (" ", stdout);
2365 wrap_here ("");
2366 fputs_filtered ("and ", stdout);
2367 wrap_here ("");
2368 printf_filtered ("%s...",
2369 pst -> dependencies[i] -> filename);
2370 wrap_here ("");
2371 fflush (stdout); /* Flush output */
2372 }
2373 psymtab_to_symtab_1 (pst -> dependencies[i]);
2374 }
2375 }
2376 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2377 {
d07734e3
FF
2378 buildsym_init ();
2379 old_chain = make_cleanup (really_free_pendings, 0);
1ab3bf1b
JG
2380 pst -> symtab = read_ofile_symtab (pst);
2381 if (info_verbose)
2382 {
2383 printf_filtered ("%d DIE's, sorting...", diecount);
2384 wrap_here ("");
2385 fflush (stdout);
2386 }
2387 sort_symtab_syms (pst -> symtab);
d07734e3 2388 do_cleanups (old_chain);
1ab3bf1b
JG
2389 }
2390 pst -> readin = 1;
35f5886e 2391 }
35f5886e 2392 }
35f5886e
FF
2393}
2394
2395/*
2396
2397LOCAL FUNCTION
2398
2399 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2400
2401SYNOPSIS
2402
2403 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2404
2405DESCRIPTION
2406
2407 This is the DWARF support entry point for building a full symbol
2408 table entry from a partial symbol table entry. We are passed a
2409 pointer to the partial symbol table entry that needs to be expanded.
2410
2411*/
2412
2413static void
1ab3bf1b
JG
2414dwarf_psymtab_to_symtab (pst)
2415 struct partial_symtab *pst;
35f5886e 2416{
7d9884b9 2417
1ab3bf1b 2418 if (pst != NULL)
35f5886e 2419 {
1ab3bf1b 2420 if (pst -> readin)
35f5886e 2421 {
318bf84f 2422 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2423 pst -> filename);
35f5886e 2424 }
1ab3bf1b 2425 else
35f5886e 2426 {
1ab3bf1b
JG
2427 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2428 {
2429 /* Print the message now, before starting serious work, to avoid
2430 disconcerting pauses. */
2431 if (info_verbose)
2432 {
2433 printf_filtered ("Reading in symbols for %s...",
2434 pst -> filename);
2435 fflush (stdout);
2436 }
2437
2438 psymtab_to_symtab_1 (pst);
2439
2440#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2441 we need to do an equivalent or is this something peculiar to
2442 stabs/a.out format.
2443 Match with global symbols. This only needs to be done once,
2444 after all of the symtabs and dependencies have been read in.
2445 */
2446 scan_file_globals (pst -> objfile);
2447#endif
2448
2449 /* Finish up the verbose info message. */
2450 if (info_verbose)
2451 {
2452 printf_filtered ("done.\n");
2453 fflush (stdout);
2454 }
2455 }
35f5886e
FF
2456 }
2457 }
2458}
2459
2460/*
2461
2462LOCAL FUNCTION
2463
2464 init_psymbol_list -- initialize storage for partial symbols
2465
2466SYNOPSIS
2467
1ab3bf1b 2468 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
35f5886e
FF
2469
2470DESCRIPTION
2471
2472 Initializes storage for all of the partial symbols that will be
2473 created by dwarf_build_psymtabs and subsidiaries.
2474 */
2475
2476static void
1ab3bf1b
JG
2477init_psymbol_list (objfile, total_symbols)
2478 struct objfile *objfile;
2479 int total_symbols;
35f5886e
FF
2480{
2481 /* Free any previously allocated psymbol lists. */
2482
1ab3bf1b 2483 if (objfile -> global_psymbols.list)
35f5886e 2484 {
84ffdec2 2485 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
35f5886e 2486 }
1ab3bf1b 2487 if (objfile -> static_psymbols.list)
35f5886e 2488 {
84ffdec2 2489 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
35f5886e
FF
2490 }
2491
2492 /* Current best guess is that there are approximately a twentieth
2493 of the total symbols (in a debugging file) are global or static
2494 oriented symbols */
2495
1ab3bf1b
JG
2496 objfile -> global_psymbols.size = total_symbols / 10;
2497 objfile -> static_psymbols.size = total_symbols / 10;
2498 objfile -> global_psymbols.next =
2499 objfile -> global_psymbols.list = (struct partial_symbol *)
318bf84f 2500 xmmalloc (objfile -> md, objfile -> global_psymbols.size
1ab3bf1b
JG
2501 * sizeof (struct partial_symbol));
2502 objfile -> static_psymbols.next =
2503 objfile -> static_psymbols.list = (struct partial_symbol *)
318bf84f 2504 xmmalloc (objfile -> md, objfile -> static_psymbols.size
1ab3bf1b 2505 * sizeof (struct partial_symbol));
35f5886e
FF
2506}
2507
35f5886e
FF
2508/*
2509
715cafcb
FF
2510LOCAL FUNCTION
2511
2512 add_enum_psymbol -- add enumeration members to partial symbol table
2513
2514DESCRIPTION
2515
2516 Given pointer to a DIE that is known to be for an enumeration,
2517 extract the symbolic names of the enumeration members and add
2518 partial symbols for them.
2519*/
2520
2521static void
1ab3bf1b
JG
2522add_enum_psymbol (dip, objfile)
2523 struct dieinfo *dip;
2524 struct objfile *objfile;
715cafcb
FF
2525{
2526 char *scan;
2527 char *listend;
13b5a7ff
FF
2528 unsigned short blocksz;
2529 int nbytes;
715cafcb
FF
2530
2531 if ((scan = dip -> at_element_list) != NULL)
2532 {
2533 if (dip -> short_element_list)
2534 {
13b5a7ff 2535 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2536 }
2537 else
2538 {
13b5a7ff 2539 nbytes = attribute_size (AT_element_list);
715cafcb 2540 }
13b5a7ff
FF
2541 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2542 scan += nbytes;
2543 listend = scan + blocksz;
715cafcb
FF
2544 while (scan < listend)
2545 {
13b5a7ff 2546 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2547 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2548 objfile -> static_psymbols, 0, cu_language,
2549 objfile);
715cafcb
FF
2550 scan += strlen (scan) + 1;
2551 }
2552 }
2553}
2554
2555/*
2556
35f5886e
FF
2557LOCAL FUNCTION
2558
2559 add_partial_symbol -- add symbol to partial symbol table
2560
2561DESCRIPTION
2562
2563 Given a DIE, if it is one of the types that we want to
2564 add to a partial symbol table, finish filling in the die info
2565 and then add a partial symbol table entry for it.
2566
95ff889e
FF
2567NOTES
2568
2569 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2570*/
2571
2572static void
1ab3bf1b
JG
2573add_partial_symbol (dip, objfile)
2574 struct dieinfo *dip;
2575 struct objfile *objfile;
35f5886e 2576{
13b5a7ff 2577 switch (dip -> die_tag)
35f5886e
FF
2578 {
2579 case TAG_global_subroutine:
1ab3bf1b
JG
2580 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2581 objfile);
b440b1e9 2582 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2583 VAR_NAMESPACE, LOC_BLOCK,
2584 objfile -> global_psymbols,
2e4964ad 2585 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2586 break;
2587 case TAG_global_variable:
1ab3bf1b
JG
2588 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2589 mst_data, objfile);
b440b1e9 2590 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2591 VAR_NAMESPACE, LOC_STATIC,
2592 objfile -> global_psymbols,
2e4964ad 2593 0, cu_language, objfile);
35f5886e
FF
2594 break;
2595 case TAG_subroutine:
b440b1e9 2596 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2597 VAR_NAMESPACE, LOC_BLOCK,
2598 objfile -> static_psymbols,
2e4964ad 2599 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2600 break;
2601 case TAG_local_variable:
b440b1e9 2602 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2603 VAR_NAMESPACE, LOC_STATIC,
2604 objfile -> static_psymbols,
2e4964ad 2605 0, cu_language, objfile);
35f5886e
FF
2606 break;
2607 case TAG_typedef:
b440b1e9 2608 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2609 VAR_NAMESPACE, LOC_TYPEDEF,
2610 objfile -> static_psymbols,
2e4964ad 2611 0, cu_language, objfile);
35f5886e 2612 break;
95ff889e 2613 case TAG_class_type:
35f5886e
FF
2614 case TAG_structure_type:
2615 case TAG_union_type:
95ff889e 2616 case TAG_enumeration_type:
b440b1e9 2617 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2618 STRUCT_NAMESPACE, LOC_TYPEDEF,
2619 objfile -> static_psymbols,
2e4964ad 2620 0, cu_language, objfile);
95ff889e 2621 if (cu_language == language_cplus)
715cafcb 2622 {
95ff889e 2623 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2624 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2625 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2626 objfile -> static_psymbols,
2e4964ad 2627 0, cu_language, objfile);
715cafcb 2628 }
715cafcb 2629 break;
35f5886e
FF
2630 }
2631}
2632
2633/*
2634
2635LOCAL FUNCTION
2636
2637 scan_partial_symbols -- scan DIE's within a single compilation unit
2638
2639DESCRIPTION
2640
2641 Process the DIE's within a single compilation unit, looking for
2642 interesting DIE's that contribute to the partial symbol table entry
a679650f 2643 for this compilation unit.
35f5886e 2644
2d6186f4
FF
2645NOTES
2646
a679650f
FF
2647 There are some DIE's that may appear both at file scope and within
2648 the scope of a function. We are only interested in the ones at file
2649 scope, and the only way to tell them apart is to keep track of the
2650 scope. For example, consider the test case:
2651
2652 static int i;
2653 main () { int j; }
2654
2655 for which the relevant DWARF segment has the structure:
2656
2657 0x51:
2658 0x23 global subrtn sibling 0x9b
2659 name main
2660 fund_type FT_integer
2661 low_pc 0x800004cc
2662 high_pc 0x800004d4
2663
2664 0x74:
2665 0x23 local var sibling 0x97
2666 name j
2667 fund_type FT_integer
2668 location OP_BASEREG 0xe
2669 OP_CONST 0xfffffffc
2670 OP_ADD
2671 0x97:
2672 0x4
2673
2674 0x9b:
2675 0x1d local var sibling 0xb8
2676 name i
2677 fund_type FT_integer
2678 location OP_ADDR 0x800025dc
2679
2680 0xb8:
2681 0x4
2682
2683 We want to include the symbol 'i' in the partial symbol table, but
2684 not the symbol 'j'. In essence, we want to skip all the dies within
2685 the scope of a TAG_global_subroutine DIE.
2686
715cafcb
FF
2687 Don't attempt to add anonymous structures or unions since they have
2688 no name. Anonymous enumerations however are processed, because we
2689 want to extract their member names (the check for a tag name is
2690 done later).
2d6186f4 2691
715cafcb
FF
2692 Also, for variables and subroutines, check that this is the place
2693 where the actual definition occurs, rather than just a reference
2694 to an external.
35f5886e
FF
2695 */
2696
2697static void
1ab3bf1b
JG
2698scan_partial_symbols (thisdie, enddie, objfile)
2699 char *thisdie;
2700 char *enddie;
2701 struct objfile *objfile;
35f5886e
FF
2702{
2703 char *nextdie;
a679650f 2704 char *temp;
35f5886e
FF
2705 struct dieinfo di;
2706
2707 while (thisdie < enddie)
2708 {
95967e73 2709 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2710 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2711 {
2712 break;
2713 }
2714 else
2715 {
13b5a7ff 2716 nextdie = thisdie + di.die_length;
715cafcb
FF
2717 /* To avoid getting complete die information for every die, we
2718 only do it (below) for the cases we are interested in. */
13b5a7ff 2719 switch (di.die_tag)
35f5886e
FF
2720 {
2721 case TAG_global_subroutine:
35f5886e 2722 case TAG_subroutine:
a679650f
FF
2723 completedieinfo (&di, objfile);
2724 if (di.at_name && (di.has_at_low_pc || di.at_location))
2725 {
2726 add_partial_symbol (&di, objfile);
2727 /* If there is a sibling attribute, adjust the nextdie
2728 pointer to skip the entire scope of the subroutine.
2729 Apply some sanity checking to make sure we don't
2730 overrun or underrun the range of remaining DIE's */
2731 if (di.at_sibling != 0)
2732 {
2733 temp = dbbase + di.at_sibling - dbroff;
2734 if ((temp < thisdie) || (temp >= enddie))
2735 {
51b80b00
FF
2736 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2737 di.at_sibling);
a679650f
FF
2738 }
2739 else
2740 {
2741 nextdie = temp;
2742 }
2743 }
2744 }
2745 break;
2d6186f4 2746 case TAG_global_variable:
35f5886e 2747 case TAG_local_variable:
95967e73 2748 completedieinfo (&di, objfile);
2d6186f4
FF
2749 if (di.at_name && (di.has_at_low_pc || di.at_location))
2750 {
1ab3bf1b 2751 add_partial_symbol (&di, objfile);
2d6186f4
FF
2752 }
2753 break;
35f5886e 2754 case TAG_typedef:
95ff889e 2755 case TAG_class_type:
35f5886e
FF
2756 case TAG_structure_type:
2757 case TAG_union_type:
95967e73 2758 completedieinfo (&di, objfile);
2d6186f4 2759 if (di.at_name)
35f5886e 2760 {
1ab3bf1b 2761 add_partial_symbol (&di, objfile);
35f5886e
FF
2762 }
2763 break;
715cafcb 2764 case TAG_enumeration_type:
95967e73 2765 completedieinfo (&di, objfile);
95ff889e
FF
2766 if (di.at_name)
2767 {
2768 add_partial_symbol (&di, objfile);
2769 }
2770 add_enum_psymbol (&di, objfile);
715cafcb 2771 break;
35f5886e
FF
2772 }
2773 }
2774 thisdie = nextdie;
2775 }
2776}
2777
2778/*
2779
2780LOCAL FUNCTION
2781
2782 scan_compilation_units -- build a psymtab entry for each compilation
2783
2784DESCRIPTION
2785
2786 This is the top level dwarf parsing routine for building partial
2787 symbol tables.
2788
2789 It scans from the beginning of the DWARF table looking for the first
2790 TAG_compile_unit DIE, and then follows the sibling chain to locate
2791 each additional TAG_compile_unit DIE.
2792
2793 For each TAG_compile_unit DIE it creates a partial symtab structure,
2794 calls a subordinate routine to collect all the compilation unit's
2795 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2796 new partial symtab structure into the partial symbol table. It also
2797 records the appropriate information in the partial symbol table entry
2798 to allow the chunk of DIE's and line number table for this compilation
2799 unit to be located and re-read later, to generate a complete symbol
2800 table entry for the compilation unit.
2801
2802 Thus it effectively partitions up a chunk of DIE's for multiple
2803 compilation units into smaller DIE chunks and line number tables,
2804 and associates them with a partial symbol table entry.
2805
2806NOTES
2807
2808 If any compilation unit has no line number table associated with
2809 it for some reason (a missing at_stmt_list attribute, rather than
2810 just one with a value of zero, which is valid) then we ensure that
2811 the recorded file offset is zero so that the routine which later
2812 reads line number table fragments knows that there is no fragment
2813 to read.
2814
2815RETURNS
2816
2817 Returns no value.
2818
2819 */
2820
2821static void
d5931d79 2822scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2823 char *thisdie;
2824 char *enddie;
d5931d79
JG
2825 file_ptr dbfoff;
2826 file_ptr lnoffset;
1ab3bf1b 2827 struct objfile *objfile;
35f5886e
FF
2828{
2829 char *nextdie;
2830 struct dieinfo di;
2831 struct partial_symtab *pst;
2832 int culength;
2833 int curoff;
d5931d79 2834 file_ptr curlnoffset;
35f5886e
FF
2835
2836 while (thisdie < enddie)
2837 {
95967e73 2838 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2839 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2840 {
2841 break;
2842 }
13b5a7ff 2843 else if (di.die_tag != TAG_compile_unit)
35f5886e 2844 {
13b5a7ff 2845 nextdie = thisdie + di.die_length;
35f5886e
FF
2846 }
2847 else
2848 {
95967e73 2849 completedieinfo (&di, objfile);
95ff889e 2850 set_cu_language (&di);
35f5886e
FF
2851 if (di.at_sibling != 0)
2852 {
2853 nextdie = dbbase + di.at_sibling - dbroff;
2854 }
2855 else
2856 {
13b5a7ff 2857 nextdie = thisdie + di.die_length;
35f5886e
FF
2858 }
2859 curoff = thisdie - dbbase;
2860 culength = nextdie - thisdie;
2d6186f4 2861 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2862
2863 /* First allocate a new partial symbol table structure */
2864
95ff889e
FF
2865 pst = start_psymtab_common (objfile, base_section_offsets,
2866 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2867 objfile -> global_psymbols.next,
2868 objfile -> static_psymbols.next);
2869
2870 pst -> texthigh = di.at_high_pc;
2871 pst -> read_symtab_private = (char *)
2872 obstack_alloc (&objfile -> psymbol_obstack,
2873 sizeof (struct dwfinfo));
2874 DBFOFF (pst) = dbfoff;
2875 DBROFF (pst) = curoff;
2876 DBLENGTH (pst) = culength;
2877 LNFOFF (pst) = curlnoffset;
2878 pst -> read_symtab = dwarf_psymtab_to_symtab;
2879
2880 /* Now look for partial symbols */
2881
13b5a7ff 2882 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2883
2884 pst -> n_global_syms = objfile -> global_psymbols.next -
2885 (objfile -> global_psymbols.list + pst -> globals_offset);
2886 pst -> n_static_syms = objfile -> static_psymbols.next -
2887 (objfile -> static_psymbols.list + pst -> statics_offset);
2888 sort_pst_symbols (pst);
35f5886e
FF
2889 /* If there is already a psymtab or symtab for a file of this name,
2890 remove it. (If there is a symtab, more drastic things also
2891 happen.) This happens in VxWorks. */
2892 free_named_symtabs (pst -> filename);
35f5886e
FF
2893 }
2894 thisdie = nextdie;
2895 }
2896}
2897
2898/*
2899
2900LOCAL FUNCTION
2901
2902 new_symbol -- make a symbol table entry for a new symbol
2903
2904SYNOPSIS
2905
1ab3bf1b
JG
2906 static struct symbol *new_symbol (struct dieinfo *dip,
2907 struct objfile *objfile)
35f5886e
FF
2908
2909DESCRIPTION
2910
2911 Given a pointer to a DWARF information entry, figure out if we need
2912 to make a symbol table entry for it, and if so, create a new entry
2913 and return a pointer to it.
2914 */
2915
2916static struct symbol *
1ab3bf1b
JG
2917new_symbol (dip, objfile)
2918 struct dieinfo *dip;
2919 struct objfile *objfile;
35f5886e
FF
2920{
2921 struct symbol *sym = NULL;
2922
2923 if (dip -> at_name != NULL)
2924 {
1ab3bf1b 2925 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2926 sizeof (struct symbol));
4ed3a9ea 2927 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2928 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2929 &objfile->symbol_obstack);
35f5886e
FF
2930 /* default assumptions */
2931 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2932 SYMBOL_CLASS (sym) = LOC_STATIC;
2933 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2934
2935 /* If this symbol is from a C++ compilation, then attempt to cache the
2936 demangled form for future reference. This is a typical time versus
2937 space tradeoff, that was decided in favor of time because it sped up
2938 C++ symbol lookups by a factor of about 20. */
2939
2940 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2941 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2942 switch (dip -> die_tag)
35f5886e
FF
2943 {
2944 case TAG_label:
4d315a07 2945 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2946 SYMBOL_CLASS (sym) = LOC_LABEL;
2947 break;
2948 case TAG_global_subroutine:
2949 case TAG_subroutine:
4d315a07 2950 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2951 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2952 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2953 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2954 {
2955 add_symbol_to_list (sym, &global_symbols);
2956 }
2957 else
2958 {
4d315a07 2959 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2960 }
2961 break;
2962 case TAG_global_variable:
35f5886e
FF
2963 if (dip -> at_location != NULL)
2964 {
2965 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
2966 add_symbol_to_list (sym, &global_symbols);
2967 SYMBOL_CLASS (sym) = LOC_STATIC;
2968 SYMBOL_VALUE (sym) += baseaddr;
2969 }
a5bd5ba6
FF
2970 break;
2971 case TAG_local_variable:
2972 if (dip -> at_location != NULL)
35f5886e 2973 {
a5bd5ba6 2974 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 2975 add_symbol_to_list (sym, list_in_scope);
a5bd5ba6
FF
2976 if (isreg)
2977 {
2978 SYMBOL_CLASS (sym) = LOC_REGISTER;
2979 }
2980 else if (offreg)
35f5886e 2981 {
a5bd5ba6 2982 SYMBOL_CLASS (sym) = LOC_LOCAL;
35f5886e
FF
2983 }
2984 else
2985 {
2986 SYMBOL_CLASS (sym) = LOC_STATIC;
2987 SYMBOL_VALUE (sym) += baseaddr;
2988 }
2989 }
2990 break;
2991 case TAG_formal_parameter:
2992 if (dip -> at_location != NULL)
2993 {
2994 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2995 }
4d315a07 2996 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2997 if (isreg)
2998 {
2999 SYMBOL_CLASS (sym) = LOC_REGPARM;
3000 }
3001 else
3002 {
3003 SYMBOL_CLASS (sym) = LOC_ARG;
3004 }
3005 break;
3006 case TAG_unspecified_parameters:
3007 /* From varargs functions; gdb doesn't seem to have any interest in
3008 this information, so just ignore it for now. (FIXME?) */
3009 break;
95ff889e 3010 case TAG_class_type:
35f5886e
FF
3011 case TAG_structure_type:
3012 case TAG_union_type:
3013 case TAG_enumeration_type:
3014 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3015 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 3016 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3017 break;
3018 case TAG_typedef:
3019 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3020 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 3021 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
3022 break;
3023 default:
3024 /* Not a tag we recognize. Hopefully we aren't processing trash
3025 data, but since we must specifically ignore things we don't
3026 recognize, there is nothing else we should do at this point. */
3027 break;
3028 }
3029 }
3030 return (sym);
3031}
3032
3033/*
3034
95ff889e
FF
3035LOCAL FUNCTION
3036
3037 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3038
3039SYNOPSIS
3040
3041 static void synthesize_typedef (struct dieinfo *dip,
3042 struct objfile *objfile,
3043 struct type *type);
3044
3045DESCRIPTION
3046
3047 Given a pointer to a DWARF information entry, synthesize a typedef
3048 for the name in the DIE, using the specified type.
3049
3050 This is used for C++ class, structs, unions, and enumerations to
3051 set up the tag name as a type.
3052
3053 */
3054
3055static void
3056synthesize_typedef (dip, objfile, type)
3057 struct dieinfo *dip;
3058 struct objfile *objfile;
3059 struct type *type;
3060{
3061 struct symbol *sym = NULL;
3062
3063 if (dip -> at_name != NULL)
3064 {
3065 sym = (struct symbol *)
3066 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3067 memset (sym, 0, sizeof (struct symbol));
3068 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3069 &objfile->symbol_obstack);
7532cf10 3070 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3071 SYMBOL_TYPE (sym) = type;
3072 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3073 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3074 add_symbol_to_list (sym, list_in_scope);
3075 }
3076}
3077
3078/*
3079
35f5886e
FF
3080LOCAL FUNCTION
3081
3082 decode_mod_fund_type -- decode a modified fundamental type
3083
3084SYNOPSIS
3085
3086 static struct type *decode_mod_fund_type (char *typedata)
3087
3088DESCRIPTION
3089
3090 Decode a block of data containing a modified fundamental
3091 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3092 which starts with a length containing the size of the rest
3093 of the block. At the end of the block is a fundmental type
3094 code value that gives the fundamental type. Everything
35f5886e
FF
3095 in between are type modifiers.
3096
3097 We simply compute the number of modifiers and call the general
3098 function decode_modified_type to do the actual work.
3099*/
3100
3101static struct type *
1ab3bf1b
JG
3102decode_mod_fund_type (typedata)
3103 char *typedata;
35f5886e
FF
3104{
3105 struct type *typep = NULL;
3106 unsigned short modcount;
13b5a7ff 3107 int nbytes;
35f5886e
FF
3108
3109 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3110
3111 nbytes = attribute_size (AT_mod_fund_type);
3112 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3113 typedata += nbytes;
3114
35f5886e 3115 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3116
3117 modcount -= attribute_size (AT_fund_type);
3118
35f5886e 3119 /* Now do the actual decoding */
13b5a7ff
FF
3120
3121 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3122 return (typep);
3123}
3124
3125/*
3126
3127LOCAL FUNCTION
3128
3129 decode_mod_u_d_type -- decode a modified user defined type
3130
3131SYNOPSIS
3132
3133 static struct type *decode_mod_u_d_type (char *typedata)
3134
3135DESCRIPTION
3136
3137 Decode a block of data containing a modified user defined
3138 type specification. TYPEDATA is a pointer to the block,
3139 which consists of a two byte length, containing the size
3140 of the rest of the block. At the end of the block is a
3141 four byte value that gives a reference to a user defined type.
3142 Everything in between are type modifiers.
3143
3144 We simply compute the number of modifiers and call the general
3145 function decode_modified_type to do the actual work.
3146*/
3147
3148static struct type *
1ab3bf1b
JG
3149decode_mod_u_d_type (typedata)
3150 char *typedata;
35f5886e
FF
3151{
3152 struct type *typep = NULL;
3153 unsigned short modcount;
13b5a7ff 3154 int nbytes;
35f5886e
FF
3155
3156 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3157
3158 nbytes = attribute_size (AT_mod_u_d_type);
3159 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3160 typedata += nbytes;
3161
35f5886e 3162 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3163
3164 modcount -= attribute_size (AT_user_def_type);
3165
35f5886e 3166 /* Now do the actual decoding */
13b5a7ff
FF
3167
3168 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3169 return (typep);
3170}
3171
3172/*
3173
3174LOCAL FUNCTION
3175
3176 decode_modified_type -- decode modified user or fundamental type
3177
3178SYNOPSIS
3179
1c92ca6f 3180 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3181 unsigned short modcount, int mtype)
3182
3183DESCRIPTION
3184
3185 Decode a modified type, either a modified fundamental type or
3186 a modified user defined type. MODIFIERS is a pointer to the
3187 block of bytes that define MODCOUNT modifiers. Immediately
3188 following the last modifier is a short containing the fundamental
3189 type or a long containing the reference to the user defined
3190 type. Which one is determined by MTYPE, which is either
3191 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3192 type we are generating.
3193
3194 We call ourself recursively to generate each modified type,`
3195 until MODCOUNT reaches zero, at which point we have consumed
3196 all the modifiers and generate either the fundamental type or
3197 user defined type. When the recursion unwinds, each modifier
3198 is applied in turn to generate the full modified type.
3199
3200NOTES
3201
3202 If we find a modifier that we don't recognize, and it is not one
3203 of those reserved for application specific use, then we issue a
3204 warning and simply ignore the modifier.
3205
3206BUGS
3207
3208 We currently ignore MOD_const and MOD_volatile. (FIXME)
3209
3210 */
3211
3212static struct type *
1ab3bf1b 3213decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3214 char *modifiers;
1ab3bf1b
JG
3215 unsigned int modcount;
3216 int mtype;
35f5886e
FF
3217{
3218 struct type *typep = NULL;
3219 unsigned short fundtype;
13b5a7ff 3220 DIE_REF die_ref;
1c92ca6f 3221 char modifier;
13b5a7ff 3222 int nbytes;
35f5886e
FF
3223
3224 if (modcount == 0)
3225 {
3226 switch (mtype)
3227 {
3228 case AT_mod_fund_type:
13b5a7ff
FF
3229 nbytes = attribute_size (AT_fund_type);
3230 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3231 current_objfile);
35f5886e
FF
3232 typep = decode_fund_type (fundtype);
3233 break;
3234 case AT_mod_u_d_type:
13b5a7ff
FF
3235 nbytes = attribute_size (AT_user_def_type);
3236 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3237 current_objfile);
3238 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3239 {
13b5a7ff 3240 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3241 }
3242 break;
3243 default:
51b80b00 3244 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3245 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3246 break;
3247 }
3248 }
3249 else
3250 {
3251 modifier = *modifiers++;
3252 typep = decode_modified_type (modifiers, --modcount, mtype);
3253 switch (modifier)
3254 {
13b5a7ff
FF
3255 case MOD_pointer_to:
3256 typep = lookup_pointer_type (typep);
3257 break;
3258 case MOD_reference_to:
3259 typep = lookup_reference_type (typep);
3260 break;
3261 case MOD_const:
51b80b00 3262 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3263 break;
3264 case MOD_volatile:
51b80b00 3265 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3266 break;
3267 default:
1c92ca6f
FF
3268 if (!(MOD_lo_user <= (unsigned char) modifier
3269 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3270 {
51b80b00 3271 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3272 }
3273 break;
35f5886e
FF
3274 }
3275 }
3276 return (typep);
3277}
3278
3279/*
3280
3281LOCAL FUNCTION
3282
3283 decode_fund_type -- translate basic DWARF type to gdb base type
3284
3285DESCRIPTION
3286
3287 Given an integer that is one of the fundamental DWARF types,
3288 translate it to one of the basic internal gdb types and return
3289 a pointer to the appropriate gdb type (a "struct type *").
3290
3291NOTES
3292
85f0a848
FF
3293 For robustness, if we are asked to translate a fundamental
3294 type that we are unprepared to deal with, we return int so
3295 callers can always depend upon a valid type being returned,
3296 and so gdb may at least do something reasonable by default.
3297 If the type is not in the range of those types defined as
3298 application specific types, we also issue a warning.
35f5886e
FF
3299*/
3300
3301static struct type *
1ab3bf1b
JG
3302decode_fund_type (fundtype)
3303 unsigned int fundtype;
35f5886e
FF
3304{
3305 struct type *typep = NULL;
3306
3307 switch (fundtype)
3308 {
3309
3310 case FT_void:
bf229b4e 3311 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3312 break;
3313
1ab3bf1b 3314 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3315 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3316 break;
3317
35f5886e 3318 case FT_pointer: /* (void *) */
bf229b4e 3319 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3320 typep = lookup_pointer_type (typep);
35f5886e
FF
3321 break;
3322
3323 case FT_char:
bf229b4e 3324 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3325 break;
3326
35f5886e 3327 case FT_signed_char:
bf229b4e 3328 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3329 break;
3330
3331 case FT_unsigned_char:
bf229b4e 3332 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3333 break;
3334
3335 case FT_short:
bf229b4e 3336 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3337 break;
3338
35f5886e 3339 case FT_signed_short:
bf229b4e 3340 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3341 break;
3342
3343 case FT_unsigned_short:
bf229b4e 3344 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3345 break;
3346
3347 case FT_integer:
bf229b4e 3348 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3349 break;
3350
35f5886e 3351 case FT_signed_integer:
bf229b4e 3352 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3353 break;
3354
3355 case FT_unsigned_integer:
bf229b4e 3356 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3357 break;
3358
3359 case FT_long:
bf229b4e 3360 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3361 break;
3362
35f5886e 3363 case FT_signed_long:
bf229b4e 3364 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3365 break;
3366
1ab3bf1b 3367 case FT_unsigned_long:
bf229b4e 3368 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3369 break;
3370
1ab3bf1b 3371 case FT_long_long:
bf229b4e 3372 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3373 break;
1ab3bf1b
JG
3374
3375 case FT_signed_long_long:
bf229b4e 3376 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3377 break;
1ab3bf1b
JG
3378
3379 case FT_unsigned_long_long:
bf229b4e 3380 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3381 break;
1ab3bf1b
JG
3382
3383 case FT_float:
bf229b4e 3384 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3385 break;
3386
1ab3bf1b 3387 case FT_dbl_prec_float:
bf229b4e 3388 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3389 break;
3390
3391 case FT_ext_prec_float:
bf229b4e 3392 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3393 break;
3394
3395 case FT_complex:
bf229b4e 3396 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3397 break;
3398
3399 case FT_dbl_prec_complex:
bf229b4e 3400 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3401 break;
3402
1ab3bf1b 3403 case FT_ext_prec_complex:
bf229b4e 3404 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3405 break;
1ab3bf1b 3406
35f5886e
FF
3407 }
3408
85f0a848 3409 if (typep == NULL)
35f5886e 3410 {
85f0a848
FF
3411 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3412 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3413 {
51b80b00 3414 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3415 }
35f5886e
FF
3416 }
3417
3418 return (typep);
3419}
3420
3421/*
3422
3423LOCAL FUNCTION
3424
3425 create_name -- allocate a fresh copy of a string on an obstack
3426
3427DESCRIPTION
3428
3429 Given a pointer to a string and a pointer to an obstack, allocates
3430 a fresh copy of the string on the specified obstack.
3431
3432*/
3433
3434static char *
1ab3bf1b
JG
3435create_name (name, obstackp)
3436 char *name;
3437 struct obstack *obstackp;
35f5886e
FF
3438{
3439 int length;
3440 char *newname;
3441
3442 length = strlen (name) + 1;
3443 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3444 strcpy (newname, name);
35f5886e
FF
3445 return (newname);
3446}
3447
3448/*
3449
3450LOCAL FUNCTION
3451
3452 basicdieinfo -- extract the minimal die info from raw die data
3453
3454SYNOPSIS
3455
95967e73
FF
3456 void basicdieinfo (char *diep, struct dieinfo *dip,
3457 struct objfile *objfile)
35f5886e
FF
3458
3459DESCRIPTION
3460
3461 Given a pointer to raw DIE data, and a pointer to an instance of a
3462 die info structure, this function extracts the basic information
3463 from the DIE data required to continue processing this DIE, along
3464 with some bookkeeping information about the DIE.
3465
3466 The information we absolutely must have includes the DIE tag,
3467 and the DIE length. If we need the sibling reference, then we
3468 will have to call completedieinfo() to process all the remaining
3469 DIE information.
3470
3471 Note that since there is no guarantee that the data is properly
3472 aligned in memory for the type of access required (indirection
95967e73
FF
3473 through anything other than a char pointer), and there is no
3474 guarantee that it is in the same byte order as the gdb host,
3475 we call a function which deals with both alignment and byte
3476 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3477
3478 We also take care of some other basic things at this point, such
3479 as ensuring that the instance of the die info structure starts
3480 out completely zero'd and that curdie is initialized for use
3481 in error reporting if we have a problem with the current die.
3482
3483NOTES
3484
3485 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3486 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3487 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3488 are forced to be TAG_padding DIES.
3489
13b5a7ff
FF
3490 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3491 that if a padding DIE is used for alignment and the amount needed is
3492 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3493 enough to align to the next alignment boundry.
4090fe1c
FF
3494
3495 We do some basic sanity checking here, such as verifying that the
3496 length of the die would not cause it to overrun the recorded end of
3497 the buffer holding the DIE info. If we find a DIE that is either
3498 too small or too large, we force it's length to zero which should
3499 cause the caller to take appropriate action.
35f5886e
FF
3500 */
3501
3502static void
95967e73 3503basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3504 struct dieinfo *dip;
3505 char *diep;
95967e73 3506 struct objfile *objfile;
35f5886e
FF
3507{
3508 curdie = dip;
4ed3a9ea 3509 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3510 dip -> die = diep;
13b5a7ff
FF
3511 dip -> die_ref = dbroff + (diep - dbbase);
3512 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3513 objfile);
4090fe1c
FF
3514 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3515 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3516 {
51b80b00 3517 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3518 dip -> die_length = 0;
35f5886e 3519 }
13b5a7ff 3520 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3521 {
13b5a7ff 3522 dip -> die_tag = TAG_padding;
35f5886e
FF
3523 }
3524 else
3525 {
13b5a7ff
FF
3526 diep += SIZEOF_DIE_LENGTH;
3527 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3528 objfile);
35f5886e
FF
3529 }
3530}
3531
3532/*
3533
3534LOCAL FUNCTION
3535
3536 completedieinfo -- finish reading the information for a given DIE
3537
3538SYNOPSIS
3539
95967e73 3540 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3541
3542DESCRIPTION
3543
3544 Given a pointer to an already partially initialized die info structure,
3545 scan the raw DIE data and finish filling in the die info structure
3546 from the various attributes found.
3547
3548 Note that since there is no guarantee that the data is properly
3549 aligned in memory for the type of access required (indirection
95967e73
FF
3550 through anything other than a char pointer), and there is no
3551 guarantee that it is in the same byte order as the gdb host,
3552 we call a function which deals with both alignment and byte
3553 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3554
3555NOTES
3556
3557 Each time we are called, we increment the diecount variable, which
3558 keeps an approximate count of the number of dies processed for
3559 each compilation unit. This information is presented to the user
3560 if the info_verbose flag is set.
3561
3562 */
3563
3564static void
95967e73 3565completedieinfo (dip, objfile)
1ab3bf1b 3566 struct dieinfo *dip;
95967e73 3567 struct objfile *objfile;
35f5886e
FF
3568{
3569 char *diep; /* Current pointer into raw DIE data */
3570 char *end; /* Terminate DIE scan here */
3571 unsigned short attr; /* Current attribute being scanned */
3572 unsigned short form; /* Form of the attribute */
13b5a7ff 3573 int nbytes; /* Size of next field to read */
35f5886e
FF
3574
3575 diecount++;
3576 diep = dip -> die;
13b5a7ff
FF
3577 end = diep + dip -> die_length;
3578 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3579 while (diep < end)
3580 {
13b5a7ff
FF
3581 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3582 diep += SIZEOF_ATTRIBUTE;
3583 if ((nbytes = attribute_size (attr)) == -1)
3584 {
51b80b00 3585 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3586 diep = end;
3587 continue;
3588 }
35f5886e
FF
3589 switch (attr)
3590 {
3591 case AT_fund_type:
13b5a7ff
FF
3592 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3593 objfile);
35f5886e
FF
3594 break;
3595 case AT_ordering:
13b5a7ff
FF
3596 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3597 objfile);
35f5886e
FF
3598 break;
3599 case AT_bit_offset:
13b5a7ff
FF
3600 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3601 objfile);
35f5886e 3602 break;
35f5886e 3603 case AT_sibling:
13b5a7ff
FF
3604 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3605 objfile);
35f5886e
FF
3606 break;
3607 case AT_stmt_list:
13b5a7ff
FF
3608 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3609 objfile);
2d6186f4 3610 dip -> has_at_stmt_list = 1;
35f5886e
FF
3611 break;
3612 case AT_low_pc:
13b5a7ff
FF
3613 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 objfile);
4d315a07 3615 dip -> at_low_pc += baseaddr;
2d6186f4 3616 dip -> has_at_low_pc = 1;
35f5886e
FF
3617 break;
3618 case AT_high_pc:
13b5a7ff
FF
3619 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3620 objfile);
4d315a07 3621 dip -> at_high_pc += baseaddr;
35f5886e
FF
3622 break;
3623 case AT_language:
13b5a7ff
FF
3624 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3625 objfile);
35f5886e
FF
3626 break;
3627 case AT_user_def_type:
13b5a7ff
FF
3628 dip -> at_user_def_type = target_to_host (diep, nbytes,
3629 GET_UNSIGNED, objfile);
35f5886e
FF
3630 break;
3631 case AT_byte_size:
13b5a7ff
FF
3632 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3633 objfile);
50055e94 3634 dip -> has_at_byte_size = 1;
35f5886e
FF
3635 break;
3636 case AT_bit_size:
13b5a7ff
FF
3637 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3638 objfile);
35f5886e
FF
3639 break;
3640 case AT_member:
13b5a7ff
FF
3641 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3642 objfile);
35f5886e
FF
3643 break;
3644 case AT_discr:
13b5a7ff
FF
3645 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3646 objfile);
35f5886e 3647 break;
35f5886e
FF
3648 case AT_location:
3649 dip -> at_location = diep;
3650 break;
3651 case AT_mod_fund_type:
3652 dip -> at_mod_fund_type = diep;
3653 break;
3654 case AT_subscr_data:
3655 dip -> at_subscr_data = diep;
3656 break;
3657 case AT_mod_u_d_type:
3658 dip -> at_mod_u_d_type = diep;
3659 break;
35f5886e
FF
3660 case AT_element_list:
3661 dip -> at_element_list = diep;
768be6e1
FF
3662 dip -> short_element_list = 0;
3663 break;
3664 case AT_short_element_list:
3665 dip -> at_element_list = diep;
3666 dip -> short_element_list = 1;
35f5886e
FF
3667 break;
3668 case AT_discr_value:
3669 dip -> at_discr_value = diep;
3670 break;
3671 case AT_string_length:
3672 dip -> at_string_length = diep;
3673 break;
3674 case AT_name:
3675 dip -> at_name = diep;
3676 break;
3677 case AT_comp_dir:
d4902ab0
FF
3678 /* For now, ignore any "hostname:" portion, since gdb doesn't
3679 know how to deal with it. (FIXME). */
3680 dip -> at_comp_dir = strrchr (diep, ':');
3681 if (dip -> at_comp_dir != NULL)
3682 {
3683 dip -> at_comp_dir++;
3684 }
3685 else
3686 {
3687 dip -> at_comp_dir = diep;
3688 }
35f5886e
FF
3689 break;
3690 case AT_producer:
3691 dip -> at_producer = diep;
3692 break;
35f5886e 3693 case AT_start_scope:
13b5a7ff
FF
3694 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3695 objfile);
35f5886e
FF
3696 break;
3697 case AT_stride_size:
13b5a7ff
FF
3698 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3699 objfile);
35f5886e
FF
3700 break;
3701 case AT_src_info:
13b5a7ff
FF
3702 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3703 objfile);
35f5886e
FF
3704 break;
3705 case AT_prototyped:
13b5a7ff 3706 dip -> at_prototyped = diep;
35f5886e 3707 break;
35f5886e
FF
3708 default:
3709 /* Found an attribute that we are unprepared to handle. However
3710 it is specifically one of the design goals of DWARF that
3711 consumers should ignore unknown attributes. As long as the
3712 form is one that we recognize (so we know how to skip it),
3713 we can just ignore the unknown attribute. */
3714 break;
3715 }
13b5a7ff 3716 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3717 switch (form)
3718 {
3719 case FORM_DATA2:
13b5a7ff 3720 diep += 2;
35f5886e
FF
3721 break;
3722 case FORM_DATA4:
13b5a7ff
FF
3723 case FORM_REF:
3724 diep += 4;
35f5886e
FF
3725 break;
3726 case FORM_DATA8:
13b5a7ff 3727 diep += 8;
35f5886e
FF
3728 break;
3729 case FORM_ADDR:
13b5a7ff 3730 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3731 break;
3732 case FORM_BLOCK2:
13b5a7ff 3733 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3734 break;
3735 case FORM_BLOCK4:
13b5a7ff 3736 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3737 break;
3738 case FORM_STRING:
3739 diep += strlen (diep) + 1;
3740 break;
3741 default:
51b80b00 3742 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3743 diep = end;
3744 break;
3745 }
3746 }
3747}
95967e73 3748
13b5a7ff 3749/*
95967e73 3750
13b5a7ff
FF
3751LOCAL FUNCTION
3752
3753 target_to_host -- swap in target data to host
3754
3755SYNOPSIS
3756
3757 target_to_host (char *from, int nbytes, int signextend,
3758 struct objfile *objfile)
3759
3760DESCRIPTION
3761
3762 Given pointer to data in target format in FROM, a byte count for
3763 the size of the data in NBYTES, a flag indicating whether or not
3764 the data is signed in SIGNEXTEND, and a pointer to the current
3765 objfile in OBJFILE, convert the data to host format and return
3766 the converted value.
3767
3768NOTES
3769
3770 FIXME: If we read data that is known to be signed, and expect to
3771 use it as signed data, then we need to explicitly sign extend the
3772 result until the bfd library is able to do this for us.
3773
3774 */
3775
3776static unsigned long
3777target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3778 char *from;
3779 int nbytes;
13b5a7ff 3780 int signextend; /* FIXME: Unused */
95967e73
FF
3781 struct objfile *objfile;
3782{
13b5a7ff 3783 unsigned long rtnval;
95967e73
FF
3784
3785 switch (nbytes)
3786 {
95967e73 3787 case 8:
13b5a7ff 3788 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3789 break;
95967e73 3790 case 4:
13b5a7ff 3791 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3792 break;
3793 case 2:
13b5a7ff 3794 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3795 break;
3796 case 1:
13b5a7ff 3797 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3798 break;
3799 default:
51b80b00 3800 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3801 rtnval = 0;
95967e73
FF
3802 break;
3803 }
13b5a7ff 3804 return (rtnval);
95967e73
FF
3805}
3806
13b5a7ff
FF
3807/*
3808
3809LOCAL FUNCTION
3810
3811 attribute_size -- compute size of data for a DWARF attribute
3812
3813SYNOPSIS
3814
3815 static int attribute_size (unsigned int attr)
3816
3817DESCRIPTION
3818
3819 Given a DWARF attribute in ATTR, compute the size of the first
3820 piece of data associated with this attribute and return that
3821 size.
3822
3823 Returns -1 for unrecognized attributes.
3824
3825 */
3826
3827static int
3828attribute_size (attr)
3829 unsigned int attr;
3830{
3831 int nbytes; /* Size of next data for this attribute */
3832 unsigned short form; /* Form of the attribute */
3833
3834 form = FORM_FROM_ATTR (attr);
3835 switch (form)
3836 {
3837 case FORM_STRING: /* A variable length field is next */
3838 nbytes = 0;
3839 break;
3840 case FORM_DATA2: /* Next 2 byte field is the data itself */
3841 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3842 nbytes = 2;
3843 break;
3844 case FORM_DATA4: /* Next 4 byte field is the data itself */
3845 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3846 case FORM_REF: /* Next 4 byte field is a DIE offset */
3847 nbytes = 4;
3848 break;
3849 case FORM_DATA8: /* Next 8 byte field is the data itself */
3850 nbytes = 8;
3851 break;
3852 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3853 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3854 break;
3855 default:
51b80b00 3856 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3857 nbytes = -1;
3858 break;
3859 }
3860 return (nbytes);
3861}
This page took 0.259028 seconds and 4 git commands to generate.