Fix "beneath" conversion on AIX
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
e2882c85 3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
f00aae0f 48#include "location.h"
e1b2624a 49#include "auxv.h"
c906108c 50
3c0aa29a
PA
51/* Forward declarations. */
52extern const struct sym_fns elf_sym_fns_gdb_index;
53extern const struct sym_fns elf_sym_fns_debug_names;
54extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
c906108c 56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
5d9cf8a4 66/* Per-BFD data for probe info. */
55aa24fb 67
5d9cf8a4 68static const struct bfd_data *probe_key = NULL;
55aa24fb 69
07be84bf
JK
70/* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
31d99776
DJ
77/* Locate the segments in ABFD. */
78
79static struct symfile_segment_data *
80elf_symfile_segments (bfd *abfd)
81{
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
224c3ddb 92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
8d749320 98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
41bf6aca 106 data = XCNEW (struct symfile_segment_data);
31d99776 107 data->num_segments = num_segments;
fc270c35
TT
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
fc270c35 118 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
31d99776
DJ
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
62b74cb8 127 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
128
129 for (j = 0; j < num_segments; j++)
62b74cb8 130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
131 {
132 data->segment_info[i] = j + 1;
133 break;
134 }
135
ad09a548
DJ
136 /* We should have found a segment for every non-empty section.
137 If we haven't, we will not relocate this section by any
138 offsets we apply to the segments. As an exception, do not
139 warn about SHT_NOBITS sections; in normal ELF execution
140 environments, SHT_NOBITS means zero-initialized and belongs
141 in a segment, but in no-OS environments some tools (e.g. ARM
142 RealView) use SHT_NOBITS for uninitialized data. Since it is
143 uninitialized, it doesn't need a program header. Such
144 binaries are not relocatable. */
145 if (bfd_get_section_size (sect) > 0 && j == num_segments
146 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 147 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
148 bfd_section_name (abfd, sect));
149 }
150
151 return data;
152}
153
c906108c
SS
154/* We are called once per section from elf_symfile_read. We
155 need to examine each section we are passed, check to see
156 if it is something we are interested in processing, and
157 if so, stash away some access information for the section.
158
159 For now we recognize the dwarf debug information sections and
160 line number sections from matching their section names. The
161 ELF definition is no real help here since it has no direct
162 knowledge of DWARF (by design, so any debugging format can be
163 used).
164
165 We also recognize the ".stab" sections used by the Sun compilers
166 released with Solaris 2.
167
168 FIXME: The section names should not be hardwired strings (what
169 should they be? I don't think most object file formats have enough
0963b4bd 170 section flags to specify what kind of debug section it is.
c906108c
SS
171 -kingdon). */
172
173static void
12b9c64f 174elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 175{
52f0bd74 176 struct elfinfo *ei;
c906108c
SS
177
178 ei = (struct elfinfo *) eip;
7ce59000 179 if (strcmp (sectp->name, ".stab") == 0)
c906108c 180 {
c5aa993b 181 ei->stabsect = sectp;
c906108c 182 }
6314a349 183 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 184 {
c5aa993b 185 ei->mdebugsect = sectp;
c906108c
SS
186 }
187}
188
c906108c 189static struct minimal_symbol *
8dddcb8f 190record_minimal_symbol (minimal_symbol_reader &reader,
ce6c454e 191 const char *name, int name_len, bool copy_name,
04a679b8 192 CORE_ADDR address,
f594e5e9
MC
193 enum minimal_symbol_type ms_type,
194 asection *bfd_section, struct objfile *objfile)
c906108c 195{
5e2b427d
UW
196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
197
0875794a
JK
198 if (ms_type == mst_text || ms_type == mst_file_text
199 || ms_type == mst_text_gnu_ifunc)
85ddcc70 200 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 201
8dddcb8f
TT
202 return reader.record_full (name, name_len, copy_name, address,
203 ms_type,
204 gdb_bfd_section_index (objfile->obfd,
205 bfd_section));
c906108c
SS
206}
207
7f86f058 208/* Read the symbol table of an ELF file.
c906108c 209
62553543 210 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
211 symbol table contains regular, dynamic, or synthetic symbols, add all
212 the global function and data symbols to the minimal symbol table.
c906108c 213
c5aa993b
JM
214 In stabs-in-ELF, as implemented by Sun, there are some local symbols
215 defined in the ELF symbol table, which can be used to locate
216 the beginnings of sections from each ".o" file that was linked to
217 form the executable objfile. We gather any such info and record it
7f86f058 218 in data structures hung off the objfile's private data. */
c906108c 219
6f610d07
UW
220#define ST_REGULAR 0
221#define ST_DYNAMIC 1
222#define ST_SYNTHETIC 2
223
c906108c 224static void
8dddcb8f
TT
225elf_symtab_read (minimal_symbol_reader &reader,
226 struct objfile *objfile, int type,
04a679b8 227 long number_of_symbols, asymbol **symbol_table,
ce6c454e 228 bool copy_names)
c906108c 229{
5e2b427d 230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 231 asymbol *sym;
c906108c 232 long i;
c906108c
SS
233 CORE_ADDR symaddr;
234 enum minimal_symbol_type ms_type;
18a94d75
DE
235 /* Name of the last file symbol. This is either a constant string or is
236 saved on the objfile's filename cache. */
0af1e9a5 237 const char *filesymname = "";
d4f3574e 238 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
239 int elf_make_msymbol_special_p
240 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 241
0cc7b392 242 for (i = 0; i < number_of_symbols; i++)
c906108c 243 {
0cc7b392
DJ
244 sym = symbol_table[i];
245 if (sym->name == NULL || *sym->name == '\0')
c906108c 246 {
0cc7b392 247 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 248 that are null strings (may happen). */
0cc7b392
DJ
249 continue;
250 }
c906108c 251
74763737
DJ
252 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
253 symbols which do not correspond to objects in the symbol table,
254 but have some other target-specific meaning. */
255 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
256 {
257 if (gdbarch_record_special_symbol_p (gdbarch))
258 gdbarch_record_special_symbol (gdbarch, objfile, sym);
259 continue;
260 }
74763737 261
6f610d07 262 if (type == ST_DYNAMIC
45dfa85a 263 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
264 && (sym->flags & BSF_FUNCTION))
265 {
266 struct minimal_symbol *msym;
02c75f72 267 bfd *abfd = objfile->obfd;
dea91a5c 268 asection *sect;
0cc7b392
DJ
269
270 /* Symbol is a reference to a function defined in
271 a shared library.
272 If its value is non zero then it is usually the address
273 of the corresponding entry in the procedure linkage table,
274 plus the desired section offset.
275 If its value is zero then the dynamic linker has to resolve
0963b4bd 276 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
277 for this symbol in the executable file, so we skip it. */
278 symaddr = sym->value;
279 if (symaddr == 0)
280 continue;
02c75f72
UW
281
282 /* sym->section is the undefined section. However, we want to
283 record the section where the PLT stub resides with the
284 minimal symbol. Search the section table for the one that
285 covers the stub's address. */
286 for (sect = abfd->sections; sect != NULL; sect = sect->next)
287 {
288 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
289 continue;
290
291 if (symaddr >= bfd_get_section_vma (abfd, sect)
292 && symaddr < bfd_get_section_vma (abfd, sect)
293 + bfd_get_section_size (sect))
294 break;
295 }
296 if (!sect)
297 continue;
298
828cfa8d
JB
299 /* On ia64-hpux, we have discovered that the system linker
300 adds undefined symbols with nonzero addresses that cannot
301 be right (their address points inside the code of another
302 function in the .text section). This creates problems
303 when trying to determine which symbol corresponds to
304 a given address.
305
306 We try to detect those buggy symbols by checking which
307 section we think they correspond to. Normally, PLT symbols
308 are stored inside their own section, and the typical name
309 for that section is ".plt". So, if there is a ".plt"
310 section, and yet the section name of our symbol does not
311 start with ".plt", we ignore that symbol. */
61012eef 312 if (!startswith (sect->name, ".plt")
828cfa8d
JB
313 && bfd_get_section_by_name (abfd, ".plt") != NULL)
314 continue;
315
0cc7b392 316 msym = record_minimal_symbol
8dddcb8f 317 (reader, sym->name, strlen (sym->name), copy_names,
04a679b8 318 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 319 if (msym != NULL)
9b807e7b
MR
320 {
321 msym->filename = filesymname;
3e29f34a
MR
322 if (elf_make_msymbol_special_p)
323 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 324 }
0cc7b392
DJ
325 continue;
326 }
c906108c 327
0cc7b392
DJ
328 /* If it is a nonstripped executable, do not enter dynamic
329 symbols, as the dynamic symbol table is usually a subset
330 of the main symbol table. */
6f610d07 331 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
332 continue;
333 if (sym->flags & BSF_FILE)
334 {
9a3c8263
SM
335 filesymname
336 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
337 objfile->per_bfd->filename_cache);
0cc7b392
DJ
338 }
339 else if (sym->flags & BSF_SECTION_SYM)
340 continue;
bb869963
SDJ
341 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
342 | BSF_GNU_UNIQUE))
0cc7b392
DJ
343 {
344 struct minimal_symbol *msym;
345
346 /* Select global/local/weak symbols. Note that bfd puts abs
347 symbols in their own section, so all symbols we are
0963b4bd
MS
348 interested in will have a section. */
349 /* Bfd symbols are section relative. */
0cc7b392 350 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
351 /* For non-absolute symbols, use the type of the section
352 they are relative to, to intuit text/data. Bfd provides
0963b4bd 353 no way of figuring this out for absolute symbols. */
45dfa85a 354 if (sym->section == bfd_abs_section_ptr)
c906108c 355 {
0cc7b392
DJ
356 /* This is a hack to get the minimal symbol type
357 right for Irix 5, which has absolute addresses
6f610d07
UW
358 with special section indices for dynamic symbols.
359
360 NOTE: uweigand-20071112: Synthetic symbols do not
361 have an ELF-private part, so do not touch those. */
dea91a5c 362 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
363 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
364
365 switch (shndx)
c906108c 366 {
0cc7b392
DJ
367 case SHN_MIPS_TEXT:
368 ms_type = mst_text;
369 break;
370 case SHN_MIPS_DATA:
371 ms_type = mst_data;
372 break;
373 case SHN_MIPS_ACOMMON:
374 ms_type = mst_bss;
375 break;
376 default:
377 ms_type = mst_abs;
378 }
379
380 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 381 symbols, relocate all others by section offset. */
0cc7b392
DJ
382 if (ms_type != mst_abs)
383 {
384 if (sym->name[0] == '.')
385 continue;
c906108c 386 }
0cc7b392
DJ
387 }
388 else if (sym->section->flags & SEC_CODE)
389 {
bb869963 390 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 391 {
0875794a
JK
392 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
393 ms_type = mst_text_gnu_ifunc;
394 else
395 ms_type = mst_text;
0cc7b392 396 }
90359a16
JK
397 /* The BSF_SYNTHETIC check is there to omit ppc64 function
398 descriptors mistaken for static functions starting with 'L'.
399 */
400 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
401 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
402 || ((sym->flags & BSF_LOCAL)
403 && sym->name[0] == '$'
404 && sym->name[1] == 'L'))
405 /* Looks like a compiler-generated label. Skip
406 it. The assembler should be skipping these (to
407 keep executables small), but apparently with
408 gcc on the (deleted) delta m88k SVR4, it loses.
409 So to have us check too should be harmless (but
410 I encourage people to fix this in the assembler
411 instead of adding checks here). */
412 continue;
413 else
414 {
415 ms_type = mst_file_text;
c906108c 416 }
0cc7b392
DJ
417 }
418 else if (sym->section->flags & SEC_ALLOC)
419 {
bb869963 420 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 421 {
f50776aa
PA
422 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
423 {
424 ms_type = mst_data_gnu_ifunc;
425 }
426 else if (sym->section->flags & SEC_LOAD)
c906108c 427 {
0cc7b392 428 ms_type = mst_data;
c906108c 429 }
c906108c
SS
430 else
431 {
0cc7b392 432 ms_type = mst_bss;
c906108c
SS
433 }
434 }
0cc7b392 435 else if (sym->flags & BSF_LOCAL)
c906108c 436 {
0cc7b392
DJ
437 if (sym->section->flags & SEC_LOAD)
438 {
439 ms_type = mst_file_data;
c906108c
SS
440 }
441 else
442 {
0cc7b392 443 ms_type = mst_file_bss;
c906108c
SS
444 }
445 }
446 else
447 {
0cc7b392 448 ms_type = mst_unknown;
c906108c 449 }
0cc7b392
DJ
450 }
451 else
452 {
453 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 454 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
455 hob with actions like finding what function the PC
456 is in. Ignore them if they aren't text, data, or bss. */
457 /* ms_type = mst_unknown; */
0963b4bd 458 continue; /* Skip this symbol. */
0cc7b392
DJ
459 }
460 msym = record_minimal_symbol
8dddcb8f 461 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 462 ms_type, sym->section, objfile);
6f610d07 463
0cc7b392
DJ
464 if (msym)
465 {
6f610d07 466 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 467 ELF-private part. */
6f610d07 468 if (type != ST_SYNTHETIC)
24c274a1
AM
469 {
470 /* Pass symbol size field in via BFD. FIXME!!! */
471 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
472 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
473 }
dea91a5c 474
a103a963 475 msym->filename = filesymname;
3e29f34a
MR
476 if (elf_make_msymbol_special_p)
477 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 478 }
2eaf8d2a 479
715c6909
TT
480 /* If we see a default versioned symbol, install it under
481 its version-less name. */
482 if (msym != NULL)
483 {
484 const char *atsign = strchr (sym->name, '@');
485
486 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
487 {
488 int len = atsign - sym->name;
489
ce6c454e 490 record_minimal_symbol (reader, sym->name, len, true, symaddr,
715c6909
TT
491 ms_type, sym->section, objfile);
492 }
493 }
494
2eaf8d2a
DJ
495 /* For @plt symbols, also record a trampoline to the
496 destination symbol. The @plt symbol will be used in
497 disassembly, and the trampoline will be used when we are
498 trying to find the target. */
499 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
500 {
501 int len = strlen (sym->name);
502
503 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
504 {
2eaf8d2a
DJ
505 struct minimal_symbol *mtramp;
506
ce6c454e
TT
507 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
508 true, symaddr,
2eaf8d2a
DJ
509 mst_solib_trampoline,
510 sym->section, objfile);
511 if (mtramp)
512 {
d9eaeb59 513 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 514 mtramp->created_by_gdb = 1;
2eaf8d2a 515 mtramp->filename = filesymname;
3e29f34a
MR
516 if (elf_make_msymbol_special_p)
517 gdbarch_elf_make_msymbol_special (gdbarch,
518 sym, mtramp);
2eaf8d2a
DJ
519 }
520 }
521 }
c906108c 522 }
c906108c
SS
523 }
524}
525
07be84bf
JK
526/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
527 for later look ups of which function to call when user requests
528 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
529 library defining `function' we cannot yet know while reading OBJFILE which
530 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
531 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
532
533static void
8dddcb8f
TT
534elf_rel_plt_read (minimal_symbol_reader &reader,
535 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
536{
537 bfd *obfd = objfile->obfd;
538 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 539 asection *relplt, *got_plt;
07be84bf 540 bfd_size_type reloc_count, reloc;
df6d5441 541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
542 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
543 size_t ptr_size = TYPE_LENGTH (ptr_type);
544
545 if (objfile->separate_debug_objfile_backlink)
546 return;
547
07be84bf
JK
548 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
549 if (got_plt == NULL)
4b7d1f7f
WN
550 {
551 /* For platforms where there is no separate .got.plt. */
552 got_plt = bfd_get_section_by_name (obfd, ".got");
553 if (got_plt == NULL)
554 return;
555 }
07be84bf 556
02e169e2
PA
557 /* Depending on system, we may find jump slots in a relocation
558 section for either .got.plt or .plt. */
559 asection *plt = bfd_get_section_by_name (obfd, ".plt");
560 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
561
562 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
563
07be84bf
JK
564 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
565 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
566 {
567 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
568
569 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
570 {
571 if (this_hdr.sh_info == plt_elf_idx
572 || this_hdr.sh_info == got_plt_elf_idx)
573 break;
574 }
575 }
07be84bf
JK
576 if (relplt == NULL)
577 return;
578
579 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
580 return;
581
26fcd5d7 582 std::string string_buffer;
07be84bf 583
02e169e2
PA
584 /* Does ADDRESS reside in SECTION of OBFD? */
585 auto within_section = [obfd] (asection *section, CORE_ADDR address)
586 {
587 if (section == NULL)
588 return false;
589
590 return (bfd_get_section_vma (obfd, section) <= address
591 && (address < bfd_get_section_vma (obfd, section)
592 + bfd_get_section_size (section)));
593 };
594
07be84bf
JK
595 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
596 for (reloc = 0; reloc < reloc_count; reloc++)
597 {
22e048c9 598 const char *name;
07be84bf
JK
599 struct minimal_symbol *msym;
600 CORE_ADDR address;
26fcd5d7 601 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 602 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
603
604 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
605 address = relplt->relocation[reloc].address;
606
02e169e2
PA
607 asection *msym_section;
608
609 /* Does the pointer reside in either the .got.plt or .plt
610 sections? */
611 if (within_section (got_plt, address))
612 msym_section = got_plt;
613 else if (within_section (plt, address))
614 msym_section = plt;
615 else
07be84bf
JK
616 continue;
617
f50776aa
PA
618 /* We cannot check if NAME is a reference to
619 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
620 symbol is undefined and the objfile having NAME defined may
621 not yet have been loaded. */
07be84bf 622
26fcd5d7
TT
623 string_buffer.assign (name);
624 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 625
26fcd5d7
TT
626 msym = record_minimal_symbol (reader, string_buffer.c_str (),
627 string_buffer.size (),
02e169e2
PA
628 true, address, mst_slot_got_plt,
629 msym_section, objfile);
07be84bf 630 if (msym)
d9eaeb59 631 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 632 }
07be84bf
JK
633}
634
635/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
636
637static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
638
639/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
640
641struct elf_gnu_ifunc_cache
642{
643 /* This is always a function entry address, not a function descriptor. */
644 CORE_ADDR addr;
645
646 char name[1];
647};
648
649/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
650
651static hashval_t
652elf_gnu_ifunc_cache_hash (const void *a_voidp)
653{
9a3c8263
SM
654 const struct elf_gnu_ifunc_cache *a
655 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
656
657 return htab_hash_string (a->name);
658}
659
660/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
661
662static int
663elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
664{
9a3c8263
SM
665 const struct elf_gnu_ifunc_cache *a
666 = (const struct elf_gnu_ifunc_cache *) a_voidp;
667 const struct elf_gnu_ifunc_cache *b
668 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
669
670 return strcmp (a->name, b->name) == 0;
671}
672
673/* Record the target function address of a STT_GNU_IFUNC function NAME is the
674 function entry address ADDR. Return 1 if NAME and ADDR are considered as
675 valid and therefore they were successfully recorded, return 0 otherwise.
676
677 Function does not expect a duplicate entry. Use
678 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
679 exists. */
680
681static int
682elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
683{
7cbd4a93 684 struct bound_minimal_symbol msym;
07be84bf
JK
685 struct objfile *objfile;
686 htab_t htab;
687 struct elf_gnu_ifunc_cache entry_local, *entry_p;
688 void **slot;
689
690 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 691 if (msym.minsym == NULL)
07be84bf 692 return 0;
77e371c0 693 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 694 return 0;
e27d198c 695 objfile = msym.objfile;
07be84bf
JK
696
697 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822
PA
698 resolution and it has no use for GDB. */
699 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
700 size_t len = strlen (target_name);
701
702 /* Note we check the symbol's name instead of checking whether the
703 symbol is in the .plt section because some systems have @plt
704 symbols in the .text section. */
705 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
706 return 0;
707
9a3c8263 708 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
709 if (htab == NULL)
710 {
711 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
712 elf_gnu_ifunc_cache_eq,
713 NULL, &objfile->objfile_obstack,
714 hashtab_obstack_allocate,
715 dummy_obstack_deallocate);
716 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
717 }
718
719 entry_local.addr = addr;
720 obstack_grow (&objfile->objfile_obstack, &entry_local,
721 offsetof (struct elf_gnu_ifunc_cache, name));
722 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
723 entry_p
724 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
725
726 slot = htab_find_slot (htab, entry_p, INSERT);
727 if (*slot != NULL)
728 {
9a3c8263
SM
729 struct elf_gnu_ifunc_cache *entry_found_p
730 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 731 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
732
733 if (entry_found_p->addr != addr)
734 {
735 /* This case indicates buggy inferior program, the resolved address
736 should never change. */
737
738 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
739 "function_address from %s to %s"),
740 name, paddress (gdbarch, entry_found_p->addr),
741 paddress (gdbarch, addr));
742 }
743
744 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
745 }
746 *slot = entry_p;
747
748 return 1;
749}
750
751/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
752 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
753 is not NULL) and the function returns 1. It returns 0 otherwise.
754
755 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
756 function. */
757
758static int
759elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
760{
761 struct objfile *objfile;
762
763 ALL_PSPACE_OBJFILES (current_program_space, objfile)
764 {
765 htab_t htab;
766 struct elf_gnu_ifunc_cache *entry_p;
767 void **slot;
768
9a3c8263 769 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
770 if (htab == NULL)
771 continue;
772
224c3ddb
SM
773 entry_p = ((struct elf_gnu_ifunc_cache *)
774 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
775 strcpy (entry_p->name, name);
776
777 slot = htab_find_slot (htab, entry_p, NO_INSERT);
778 if (slot == NULL)
779 continue;
9a3c8263 780 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
781 gdb_assert (entry_p != NULL);
782
783 if (addr_p)
784 *addr_p = entry_p->addr;
785 return 1;
786 }
787
788 return 0;
789}
790
791/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
792 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
793 is not NULL) and the function returns 1. It returns 0 otherwise.
794
795 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
796 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
797 prevent cache entries duplicates. */
798
799static int
800elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
801{
802 char *name_got_plt;
803 struct objfile *objfile;
804 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
805
224c3ddb 806 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
807 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
808
809 ALL_PSPACE_OBJFILES (current_program_space, objfile)
810 {
811 bfd *obfd = objfile->obfd;
df6d5441 812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
813 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
814 size_t ptr_size = TYPE_LENGTH (ptr_type);
815 CORE_ADDR pointer_address, addr;
816 asection *plt;
224c3ddb 817 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 818 struct bound_minimal_symbol msym;
07be84bf
JK
819
820 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 821 if (msym.minsym == NULL)
07be84bf 822 continue;
3b7344d5 823 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 824 continue;
77e371c0 825 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
826
827 plt = bfd_get_section_by_name (obfd, ".plt");
828 if (plt == NULL)
829 continue;
830
3b7344d5 831 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
832 continue;
833 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
834 continue;
835 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
836 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
837 current_top_target ());
4b7d1f7f 838 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 839
07be84bf 840 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
841 {
842 if (addr_p != NULL)
843 *addr_p = addr;
844 return 1;
845 }
07be84bf
JK
846 }
847
848 return 0;
849}
850
851/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
852 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
853 is not NULL) and the function returns 1. It returns 0 otherwise.
854
855 Both the elf_objfile_gnu_ifunc_cache_data hash table and
856 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
857
858static int
859elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
860{
861 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
862 return 1;
dea91a5c 863
07be84bf
JK
864 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
865 return 1;
866
867 return 0;
868}
869
870/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
871 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
872 is the entry point of the resolved STT_GNU_IFUNC target function to call.
873 */
874
875static CORE_ADDR
876elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
877{
2c02bd72 878 const char *name_at_pc;
07be84bf
JK
879 CORE_ADDR start_at_pc, address;
880 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
881 struct value *function, *address_val;
e1b2624a
AA
882 CORE_ADDR hwcap = 0;
883 struct value *hwcap_val;
07be84bf
JK
884
885 /* Try first any non-intrusive methods without an inferior call. */
886
887 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
888 && start_at_pc == pc)
889 {
890 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
891 return address;
892 }
893 else
894 name_at_pc = NULL;
895
896 function = allocate_value (func_func_type);
1a088441 897 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
898 set_value_address (function, pc);
899
e1b2624a
AA
900 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
901 parameter. FUNCTION is the function entry address. ADDRESS may be a
902 function descriptor. */
07be84bf 903
8b88a78e 904 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
905 hwcap_val = value_from_longest (builtin_type (gdbarch)
906 ->builtin_unsigned_long, hwcap);
7022349d 907 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
07be84bf 908 address = value_as_address (address_val);
8b88a78e 909 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 910 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
911
912 if (name_at_pc)
913 elf_gnu_ifunc_record_cache (name_at_pc, address);
914
915 return address;
916}
917
0e30163f
JK
918/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
919
920static void
921elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
922{
923 struct breakpoint *b_return;
924 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
925 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
926 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
5d5658a1 927 int thread_id = ptid_to_global_thread_id (inferior_ptid);
0e30163f
JK
928
929 gdb_assert (b->type == bp_gnu_ifunc_resolver);
930
931 for (b_return = b->related_breakpoint; b_return != b;
932 b_return = b_return->related_breakpoint)
933 {
934 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
935 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
936 gdb_assert (frame_id_p (b_return->frame_id));
937
938 if (b_return->thread == thread_id
939 && b_return->loc->requested_address == prev_pc
940 && frame_id_eq (b_return->frame_id, prev_frame_id))
941 break;
942 }
943
944 if (b_return == b)
945 {
0e30163f
JK
946 /* No need to call find_pc_line for symbols resolving as this is only
947 a helper breakpointer never shown to the user. */
948
51abb421 949 symtab_and_line sal;
0e30163f
JK
950 sal.pspace = current_inferior ()->pspace;
951 sal.pc = prev_pc;
952 sal.section = find_pc_overlay (sal.pc);
953 sal.explicit_pc = 1;
454dafbd
TT
954 b_return
955 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
956 prev_frame_id,
957 bp_gnu_ifunc_resolver_return).release ();
0e30163f 958
c70a6932
JK
959 /* set_momentary_breakpoint invalidates PREV_FRAME. */
960 prev_frame = NULL;
961
0e30163f
JK
962 /* Add new b_return to the ring list b->related_breakpoint. */
963 gdb_assert (b_return->related_breakpoint == b_return);
964 b_return->related_breakpoint = b->related_breakpoint;
965 b->related_breakpoint = b_return;
966 }
967}
968
969/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
970
971static void
972elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
973{
974 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
975 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
976 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
977 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 978 struct value *func_func;
0e30163f
JK
979 struct value *value;
980 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
981
982 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
983
0e30163f
JK
984 while (b->related_breakpoint != b)
985 {
986 struct breakpoint *b_next = b->related_breakpoint;
987
988 switch (b->type)
989 {
990 case bp_gnu_ifunc_resolver:
991 break;
992 case bp_gnu_ifunc_resolver_return:
993 delete_breakpoint (b);
994 break;
995 default:
996 internal_error (__FILE__, __LINE__,
997 _("handle_inferior_event: Invalid "
998 "gnu-indirect-function breakpoint type %d"),
999 (int) b->type);
1000 }
1001 b = b_next;
1002 }
1003 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1004 gdb_assert (b->loc->next == NULL);
1005
1006 func_func = allocate_value (func_func_type);
1a088441 1007 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1008 set_value_address (func_func, b->loc->related_address);
1009
1010 value = allocate_value (value_type);
1011 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1012 value_contents_raw (value), NULL);
1013 resolved_address = value_as_address (value);
1014 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1015 resolved_address,
8b88a78e 1016 current_top_target ());
4b7d1f7f 1017 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1018
f8eba3c6 1019 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1020 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1021 resolved_pc);
0e30163f 1022
0e30163f 1023 b->type = bp_breakpoint;
6c5b2ebe 1024 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1025 find_function_start_sal (resolved_pc, NULL, true),
1026 {});
0e30163f
JK
1027}
1028
2750ef27
TT
1029/* A helper function for elf_symfile_read that reads the minimal
1030 symbols. */
c906108c
SS
1031
1032static void
5f6cac40
TT
1033elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1034 const struct elfinfo *ei)
c906108c 1035{
63524580 1036 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1037 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1038 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1039 asymbol *synthsyms;
d2f4b8fe 1040 struct dbx_symfile_info *dbx;
c906108c 1041
45cfd468
DE
1042 if (symtab_create_debug)
1043 {
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1046 objfile_name (objfile));
45cfd468
DE
1047 }
1048
5f6cac40
TT
1049 /* If we already have minsyms, then we can skip some work here.
1050 However, if there were stabs or mdebug sections, we go ahead and
1051 redo all the work anyway, because the psym readers for those
1052 kinds of debuginfo need extra information found here. This can
1053 go away once all types of symbols are in the per-BFD object. */
1054 if (objfile->per_bfd->minsyms_read
1055 && ei->stabsect == NULL
1056 && ei->mdebugsect == NULL)
1057 {
1058 if (symtab_create_debug)
1059 fprintf_unfiltered (gdb_stdlog,
1060 "... minimal symbols previously read\n");
1061 return;
1062 }
1063
d25e8719 1064 minimal_symbol_reader reader (objfile);
c906108c 1065
0963b4bd 1066 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1067 dbx = XCNEW (struct dbx_symfile_info);
1068 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1069
18a94d75 1070 /* Process the normal ELF symbol table first. */
c906108c 1071
62553543
EZ
1072 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1073 if (storage_needed < 0)
3e43a32a
MS
1074 error (_("Can't read symbols from %s: %s"),
1075 bfd_get_filename (objfile->obfd),
62553543
EZ
1076 bfd_errmsg (bfd_get_error ()));
1077
1078 if (storage_needed > 0)
1079 {
80c57053
JK
1080 /* Memory gets permanently referenced from ABFD after
1081 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1082
224c3ddb 1083 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1084 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1085
1086 if (symcount < 0)
3e43a32a
MS
1087 error (_("Can't read symbols from %s: %s"),
1088 bfd_get_filename (objfile->obfd),
62553543
EZ
1089 bfd_errmsg (bfd_get_error ()));
1090
ce6c454e
TT
1091 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1092 false);
62553543 1093 }
c906108c
SS
1094
1095 /* Add the dynamic symbols. */
1096
62553543
EZ
1097 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1098
1099 if (storage_needed > 0)
1100 {
3f1eff0a
JK
1101 /* Memory gets permanently referenced from ABFD after
1102 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1103 It happens only in the case when elf_slurp_reloc_table sees
1104 asection->relocation NULL. Determining which section is asection is
1105 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1106 implementation detail, though. */
1107
224c3ddb 1108 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1109 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1110 dyn_symbol_table);
1111
1112 if (dynsymcount < 0)
3e43a32a
MS
1113 error (_("Can't read symbols from %s: %s"),
1114 bfd_get_filename (objfile->obfd),
62553543
EZ
1115 bfd_errmsg (bfd_get_error ()));
1116
8dddcb8f 1117 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1118 dyn_symbol_table, false);
07be84bf 1119
8dddcb8f 1120 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1121 }
1122
63524580
JK
1123 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1124 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1125
1126 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1127 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1128 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1129 read the code address from .opd while it reads the .symtab section from
1130 a separate debug info file as the .opd section is SHT_NOBITS there.
1131
1132 With SYNTH_ABFD the .opd section will be read from the original
1133 backlinked binary where it is valid. */
1134
1135 if (objfile->separate_debug_objfile_backlink)
1136 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1137 else
1138 synth_abfd = abfd;
1139
62553543
EZ
1140 /* Add synthetic symbols - for instance, names for any PLT entries. */
1141
63524580 1142 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1143 dynsymcount, dyn_symbol_table,
1144 &synthsyms);
1145 if (synthcount > 0)
1146 {
62553543
EZ
1147 long i;
1148
b22e99fd 1149 std::unique_ptr<asymbol *[]>
d1e4a624 1150 synth_symbol_table (new asymbol *[synthcount]);
62553543 1151 for (i = 0; i < synthcount; i++)
9f20e3da 1152 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1153 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1154 synth_symbol_table.get (), true);
ba713918
AL
1155
1156 xfree (synthsyms);
1157 synthsyms = NULL;
62553543 1158 }
c906108c 1159
7134143f
DJ
1160 /* Install any minimal symbols that have been collected as the current
1161 minimal symbols for this objfile. The debug readers below this point
1162 should not generate new minimal symbols; if they do it's their
1163 responsibility to install them. "mdebug" appears to be the only one
1164 which will do this. */
1165
d25e8719 1166 reader.install ();
7134143f 1167
4f00dda3
DE
1168 if (symtab_create_debug)
1169 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1170}
1171
1172/* Scan and build partial symbols for a symbol file.
1173 We have been initialized by a call to elf_symfile_init, which
1174 currently does nothing.
1175
2750ef27
TT
1176 This function only does the minimum work necessary for letting the
1177 user "name" things symbolically; it does not read the entire symtab.
1178 Instead, it reads the external and static symbols and puts them in partial
1179 symbol tables. When more extensive information is requested of a
1180 file, the corresponding partial symbol table is mutated into a full
1181 fledged symbol table by going back and reading the symbols
1182 for real.
1183
1184 We look for sections with specific names, to tell us what debug
1185 format to look for: FIXME!!!
1186
1187 elfstab_build_psymtabs() handles STABS symbols;
1188 mdebug_build_psymtabs() handles ECOFF debugging information.
1189
1190 Note that ELF files have a "minimal" symbol table, which looks a lot
1191 like a COFF symbol table, but has only the minimal information necessary
1192 for linking. We process this also, and use the information to
1193 build gdb's minimal symbol table. This gives us some minimal debugging
1194 capability even for files compiled without -g. */
1195
1196static void
b15cc25c 1197elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1198{
1199 bfd *abfd = objfile->obfd;
1200 struct elfinfo ei;
1201
2750ef27 1202 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1203 if (!(objfile->flags & OBJF_READNEVER))
1204 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1205
5f6cac40
TT
1206 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1207
c906108c
SS
1208 /* ELF debugging information is inserted into the psymtab in the
1209 order of least informative first - most informative last. Since
1210 the psymtab table is searched `most recent insertion first' this
1211 increases the probability that more detailed debug information
1212 for a section is found.
1213
1214 For instance, an object file might contain both .mdebug (XCOFF)
1215 and .debug_info (DWARF2) sections then .mdebug is inserted first
1216 (searched last) and DWARF2 is inserted last (searched first). If
1217 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1218 an included file XCOFF info is useless. */
c906108c
SS
1219
1220 if (ei.mdebugsect)
1221 {
1222 const struct ecoff_debug_swap *swap;
1223
1224 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1225 information. */
c906108c
SS
1226 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1227 if (swap)
d4f3574e 1228 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1229 }
1230 if (ei.stabsect)
1231 {
1232 asection *str_sect;
1233
1234 /* Stab sections have an associated string table that looks like
c5aa993b 1235 a separate section. */
c906108c
SS
1236 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1237
1238 /* FIXME should probably warn about a stab section without a stabstr. */
1239 if (str_sect)
1240 elfstab_build_psymtabs (objfile,
086df311 1241 ei.stabsect,
c906108c
SS
1242 str_sect->filepos,
1243 bfd_section_size (abfd, str_sect));
1244 }
9291a0cd 1245
251d32d9 1246 if (dwarf2_has_info (objfile, NULL))
b11896a5 1247 {
3c0aa29a 1248 dw_index_kind index_kind;
3e03848b 1249
3c0aa29a
PA
1250 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1251 debug information present in OBJFILE. If there is such debug
1252 info present never use an index. */
1253 if (!objfile_has_partial_symbols (objfile)
1254 && dwarf2_initialize_objfile (objfile, &index_kind))
1255 {
1256 switch (index_kind)
1257 {
1258 case dw_index_kind::GDB_INDEX:
1259 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1260 break;
1261 case dw_index_kind::DEBUG_NAMES:
1262 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1263 break;
1264 }
1265 }
1266 else
b11896a5
TT
1267 {
1268 /* It is ok to do this even if the stabs reader made some
1269 partial symbols, because OBJF_PSYMTABS_READ has not been
1270 set, and so our lazy reader function will still be called
1271 when needed. */
8fb8eb5c 1272 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1273 }
1274 }
3e43a32a
MS
1275 /* If the file has its own symbol tables it has no separate debug
1276 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1277 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1278 `.note.gnu.build-id'.
1279
1280 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1281 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1282 an objfile via find_separate_debug_file_in_section there was no separate
1283 debug info available. Therefore do not attempt to search for another one,
1284 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1285 be NULL and we would possibly violate it. */
1286
1287 else if (!objfile_has_partial_symbols (objfile)
1288 && objfile->separate_debug_objfile == NULL
1289 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1290 {
a8dbfd58 1291 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1292
a8dbfd58
SM
1293 if (debugfile.empty ())
1294 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1295
a8dbfd58 1296 if (!debugfile.empty ())
9cce227f 1297 {
a8dbfd58 1298 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1299
a8dbfd58 1300 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
192b62ce 1301 symfile_flags, objfile);
9cce227f
TG
1302 }
1303 }
c906108c
SS
1304}
1305
b11896a5
TT
1306/* Callback to lazily read psymtabs. */
1307
1308static void
1309read_psyms (struct objfile *objfile)
1310{
251d32d9 1311 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1312 dwarf2_build_psymtabs (objfile);
1313}
1314
c906108c
SS
1315/* Initialize anything that needs initializing when a completely new symbol
1316 file is specified (not just adding some symbols from another file, e.g. a
1317 shared library).
1318
3e43a32a
MS
1319 We reinitialize buildsym, since we may be reading stabs from an ELF
1320 file. */
c906108c
SS
1321
1322static void
fba45db2 1323elf_new_init (struct objfile *ignore)
c906108c
SS
1324{
1325 stabsread_new_init ();
1326 buildsym_new_init ();
1327}
1328
1329/* Perform any local cleanups required when we are done with a particular
1330 objfile. I.E, we are in the process of discarding all symbol information
1331 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1332 objfile struct from the global list of known objfiles. */
c906108c
SS
1333
1334static void
fba45db2 1335elf_symfile_finish (struct objfile *objfile)
c906108c 1336{
fe3e1990 1337 dwarf2_free_objfile (objfile);
c906108c
SS
1338}
1339
db7a9bcd 1340/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1341
1342static void
fba45db2 1343elf_symfile_init (struct objfile *objfile)
c906108c
SS
1344{
1345 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1346 find this causes a significant slowdown in gdb then we could
1347 set it in the debug symbol readers only when necessary. */
1348 objfile->flags |= OBJF_REORDERED;
1349}
1350
55aa24fb
SDJ
1351/* Implementation of `sym_get_probes', as documented in symfile.h. */
1352
aaa63a31 1353static const std::vector<probe *> &
55aa24fb
SDJ
1354elf_get_probes (struct objfile *objfile)
1355{
aaa63a31 1356 std::vector<probe *> *probes_per_bfd;
55aa24fb
SDJ
1357
1358 /* Have we parsed this objfile's probes already? */
aaa63a31 1359 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
55aa24fb 1360
aaa63a31 1361 if (probes_per_bfd == NULL)
55aa24fb 1362 {
aaa63a31 1363 probes_per_bfd = new std::vector<probe *>;
55aa24fb
SDJ
1364
1365 /* Here we try to gather information about all types of probes from the
1366 objfile. */
935676c9 1367 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1368 ops->get_probes (probes_per_bfd, objfile);
55aa24fb 1369
5d9cf8a4 1370 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1371 }
1372
aaa63a31 1373 return *probes_per_bfd;
55aa24fb
SDJ
1374}
1375
55aa24fb
SDJ
1376/* Helper function used to free the space allocated for storing SystemTap
1377 probe information. */
1378
1379static void
5d9cf8a4 1380probe_key_free (bfd *abfd, void *d)
55aa24fb 1381{
aaa63a31 1382 std::vector<probe *> *probes = (std::vector<probe *> *) d;
55aa24fb 1383
63f0e930 1384 for (probe *p : *probes)
935676c9 1385 delete p;
55aa24fb 1386
aaa63a31 1387 delete probes;
55aa24fb
SDJ
1388}
1389
c906108c 1390\f
55aa24fb
SDJ
1391
1392/* Implementation `sym_probe_fns', as documented in symfile.h. */
1393
1394static const struct sym_probe_fns elf_probe_fns =
1395{
25f9533e 1396 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1397};
1398
c906108c
SS
1399/* Register that we are able to handle ELF object file formats. */
1400
00b5771c 1401static const struct sym_fns elf_sym_fns =
c906108c 1402{
3e43a32a
MS
1403 elf_new_init, /* init anything gbl to entire symtab */
1404 elf_symfile_init, /* read initial info, setup for sym_read() */
1405 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1406 NULL, /* sym_read_psymbols */
1407 elf_symfile_finish, /* finished with file, cleanup */
1408 default_symfile_offsets, /* Translate ext. to int. relocation */
1409 elf_symfile_segments, /* Get segment information from a file. */
1410 NULL,
1411 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1412 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1413 &psym_functions
1414};
1415
1416/* The same as elf_sym_fns, but not registered and lazily reads
1417 psymbols. */
1418
e36122e9 1419const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1420{
b11896a5
TT
1421 elf_new_init, /* init anything gbl to entire symtab */
1422 elf_symfile_init, /* read initial info, setup for sym_read() */
1423 elf_symfile_read, /* read a symbol file into symtab */
1424 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1425 elf_symfile_finish, /* finished with file, cleanup */
1426 default_symfile_offsets, /* Translate ext. to int. relocation */
1427 elf_symfile_segments, /* Get segment information from a file. */
1428 NULL,
1429 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1430 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1431 &psym_functions
c906108c
SS
1432};
1433
9291a0cd
TT
1434/* The same as elf_sym_fns, but not registered and uses the
1435 DWARF-specific GNU index rather than psymtab. */
e36122e9 1436const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1437{
3e43a32a
MS
1438 elf_new_init, /* init anything gbl to entire symab */
1439 elf_symfile_init, /* read initial info, setup for sym_red() */
1440 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1441 NULL, /* sym_read_psymbols */
3e43a32a
MS
1442 elf_symfile_finish, /* finished with file, cleanup */
1443 default_symfile_offsets, /* Translate ext. to int. relocatin */
1444 elf_symfile_segments, /* Get segment information from a file. */
1445 NULL,
1446 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1447 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1448 &dwarf2_gdb_index_functions
9291a0cd
TT
1449};
1450
927aa2e7
JK
1451/* The same as elf_sym_fns, but not registered and uses the
1452 DWARF-specific .debug_names index rather than psymtab. */
1453const struct sym_fns elf_sym_fns_debug_names =
1454{
1455 elf_new_init, /* init anything gbl to entire symab */
1456 elf_symfile_init, /* read initial info, setup for sym_red() */
1457 elf_symfile_read, /* read a symbol file into symtab */
1458 NULL, /* sym_read_psymbols */
1459 elf_symfile_finish, /* finished with file, cleanup */
1460 default_symfile_offsets, /* Translate ext. to int. relocatin */
1461 elf_symfile_segments, /* Get segment information from a file. */
1462 NULL,
1463 default_symfile_relocate, /* Relocate a debug section. */
1464 &elf_probe_fns, /* sym_probe_fns */
1465 &dwarf2_debug_names_functions
1466};
1467
07be84bf
JK
1468/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1469
1470static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1471{
1472 elf_gnu_ifunc_resolve_addr,
1473 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1474 elf_gnu_ifunc_resolver_stop,
1475 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1476};
1477
c906108c 1478void
fba45db2 1479_initialize_elfread (void)
c906108c 1480{
5d9cf8a4 1481 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1482 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1483
1484 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1485 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1486}
This page took 1.353184 seconds and 4 git commands to generate.