Change tui_update_locator_fullname to take a symtab
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
42a4f53d 3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
30d1f018 50#include "ctfread.h"
31edb802 51#include "gdbsupport/gdb_string_view.h"
c906108c 52
3c0aa29a
PA
53/* Forward declarations. */
54extern const struct sym_fns elf_sym_fns_gdb_index;
55extern const struct sym_fns elf_sym_fns_debug_names;
56extern const struct sym_fns elf_sym_fns_lazy_psyms;
57
c906108c 58/* The struct elfinfo is available only during ELF symbol table and
6426a772 59 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
60 It's local to elf_symfile_read. */
61
c5aa993b
JM
62struct elfinfo
63 {
c5aa993b 64 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 65 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 66 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 67 };
c906108c 68
814cf43a
TT
69/* Type for per-BFD data. */
70
71typedef std::vector<std::unique_ptr<probe>> elfread_data;
72
5d9cf8a4 73/* Per-BFD data for probe info. */
55aa24fb 74
814cf43a 75static const struct bfd_key<elfread_data> probe_key;
55aa24fb 76
07be84bf
JK
77/* Minimal symbols located at the GOT entries for .plt - that is the real
78 pointer where the given entry will jump to. It gets updated by the real
79 function address during lazy ld.so resolving in the inferior. These
80 minimal symbols are indexed for <tab>-completion. */
81
82#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
83
31d99776
DJ
84/* Locate the segments in ABFD. */
85
86static struct symfile_segment_data *
87elf_symfile_segments (bfd *abfd)
88{
89 Elf_Internal_Phdr *phdrs, **segments;
90 long phdrs_size;
91 int num_phdrs, num_segments, num_sections, i;
92 asection *sect;
93 struct symfile_segment_data *data;
94
95 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
96 if (phdrs_size == -1)
97 return NULL;
98
224c3ddb 99 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
100 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
101 if (num_phdrs == -1)
102 return NULL;
103
104 num_segments = 0;
8d749320 105 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
106 for (i = 0; i < num_phdrs; i++)
107 if (phdrs[i].p_type == PT_LOAD)
108 segments[num_segments++] = &phdrs[i];
109
110 if (num_segments == 0)
111 return NULL;
112
41bf6aca 113 data = XCNEW (struct symfile_segment_data);
31d99776 114 data->num_segments = num_segments;
fc270c35
TT
115 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
116 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
117
118 for (i = 0; i < num_segments; i++)
119 {
120 data->segment_bases[i] = segments[i]->p_vaddr;
121 data->segment_sizes[i] = segments[i]->p_memsz;
122 }
123
124 num_sections = bfd_count_sections (abfd);
fc270c35 125 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
126
127 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
128 {
129 int j;
31d99776 130
fd361982 131 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
132 continue;
133
62b74cb8 134 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
135
136 for (j = 0; j < num_segments; j++)
62b74cb8 137 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
138 {
139 data->segment_info[i] = j + 1;
140 break;
141 }
142
ad09a548
DJ
143 /* We should have found a segment for every non-empty section.
144 If we haven't, we will not relocate this section by any
145 offsets we apply to the segments. As an exception, do not
146 warn about SHT_NOBITS sections; in normal ELF execution
147 environments, SHT_NOBITS means zero-initialized and belongs
148 in a segment, but in no-OS environments some tools (e.g. ARM
149 RealView) use SHT_NOBITS for uninitialized data. Since it is
150 uninitialized, it doesn't need a program header. Such
151 binaries are not relocatable. */
fd361982
AM
152 if (bfd_section_size (sect) > 0 && j == num_segments
153 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
28ee876a 154 warning (_("Loadable section \"%s\" outside of ELF segments"),
fd361982 155 bfd_section_name (sect));
31d99776
DJ
156 }
157
158 return data;
159}
160
c906108c
SS
161/* We are called once per section from elf_symfile_read. We
162 need to examine each section we are passed, check to see
163 if it is something we are interested in processing, and
164 if so, stash away some access information for the section.
165
166 For now we recognize the dwarf debug information sections and
167 line number sections from matching their section names. The
168 ELF definition is no real help here since it has no direct
169 knowledge of DWARF (by design, so any debugging format can be
170 used).
171
172 We also recognize the ".stab" sections used by the Sun compilers
173 released with Solaris 2.
174
175 FIXME: The section names should not be hardwired strings (what
176 should they be? I don't think most object file formats have enough
0963b4bd 177 section flags to specify what kind of debug section it is.
c906108c
SS
178 -kingdon). */
179
180static void
12b9c64f 181elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 182{
52f0bd74 183 struct elfinfo *ei;
c906108c
SS
184
185 ei = (struct elfinfo *) eip;
7ce59000 186 if (strcmp (sectp->name, ".stab") == 0)
c906108c 187 {
c5aa993b 188 ei->stabsect = sectp;
c906108c 189 }
6314a349 190 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 191 {
c5aa993b 192 ei->mdebugsect = sectp;
c906108c 193 }
30d1f018
WP
194 else if (strcmp (sectp->name, ".ctf") == 0)
195 {
196 ei->ctfsect = sectp;
197 }
c906108c
SS
198}
199
c906108c 200static struct minimal_symbol *
8dddcb8f 201record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 202 gdb::string_view name, bool copy_name,
04a679b8 203 CORE_ADDR address,
f594e5e9
MC
204 enum minimal_symbol_type ms_type,
205 asection *bfd_section, struct objfile *objfile)
c906108c 206{
5e2b427d
UW
207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
208
0875794a
JK
209 if (ms_type == mst_text || ms_type == mst_file_text
210 || ms_type == mst_text_gnu_ifunc)
85ddcc70 211 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 212
4b610737 213 struct minimal_symbol *result
31edb802 214 = reader.record_full (name, copy_name, address,
4b610737
TT
215 ms_type,
216 gdb_bfd_section_index (objfile->obfd,
217 bfd_section));
218 if ((objfile->flags & OBJF_MAINLINE) == 0
219 && (ms_type == mst_data || ms_type == mst_bss))
220 result->maybe_copied = 1;
221
222 return result;
c906108c
SS
223}
224
7f86f058 225/* Read the symbol table of an ELF file.
c906108c 226
62553543 227 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
228 symbol table contains regular, dynamic, or synthetic symbols, add all
229 the global function and data symbols to the minimal symbol table.
c906108c 230
c5aa993b
JM
231 In stabs-in-ELF, as implemented by Sun, there are some local symbols
232 defined in the ELF symbol table, which can be used to locate
233 the beginnings of sections from each ".o" file that was linked to
234 form the executable objfile. We gather any such info and record it
7f86f058 235 in data structures hung off the objfile's private data. */
c906108c 236
6f610d07
UW
237#define ST_REGULAR 0
238#define ST_DYNAMIC 1
239#define ST_SYNTHETIC 2
240
c906108c 241static void
8dddcb8f
TT
242elf_symtab_read (minimal_symbol_reader &reader,
243 struct objfile *objfile, int type,
04a679b8 244 long number_of_symbols, asymbol **symbol_table,
ce6c454e 245 bool copy_names)
c906108c 246{
5e2b427d 247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 248 asymbol *sym;
c906108c 249 long i;
c906108c
SS
250 CORE_ADDR symaddr;
251 enum minimal_symbol_type ms_type;
18a94d75
DE
252 /* Name of the last file symbol. This is either a constant string or is
253 saved on the objfile's filename cache. */
0af1e9a5 254 const char *filesymname = "";
d4f3574e 255 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
256 int elf_make_msymbol_special_p
257 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 258
0cc7b392 259 for (i = 0; i < number_of_symbols; i++)
c906108c 260 {
0cc7b392
DJ
261 sym = symbol_table[i];
262 if (sym->name == NULL || *sym->name == '\0')
c906108c 263 {
0cc7b392 264 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 265 that are null strings (may happen). */
0cc7b392
DJ
266 continue;
267 }
c906108c 268
74763737
DJ
269 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
270 symbols which do not correspond to objects in the symbol table,
271 but have some other target-specific meaning. */
272 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
273 {
274 if (gdbarch_record_special_symbol_p (gdbarch))
275 gdbarch_record_special_symbol (gdbarch, objfile, sym);
276 continue;
277 }
74763737 278
6f610d07 279 if (type == ST_DYNAMIC
45dfa85a 280 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
281 && (sym->flags & BSF_FUNCTION))
282 {
283 struct minimal_symbol *msym;
02c75f72 284 bfd *abfd = objfile->obfd;
dea91a5c 285 asection *sect;
0cc7b392
DJ
286
287 /* Symbol is a reference to a function defined in
288 a shared library.
289 If its value is non zero then it is usually the address
290 of the corresponding entry in the procedure linkage table,
291 plus the desired section offset.
292 If its value is zero then the dynamic linker has to resolve
0963b4bd 293 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
294 for this symbol in the executable file, so we skip it. */
295 symaddr = sym->value;
296 if (symaddr == 0)
297 continue;
02c75f72
UW
298
299 /* sym->section is the undefined section. However, we want to
300 record the section where the PLT stub resides with the
301 minimal symbol. Search the section table for the one that
302 covers the stub's address. */
303 for (sect = abfd->sections; sect != NULL; sect = sect->next)
304 {
fd361982 305 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
306 continue;
307
fd361982
AM
308 if (symaddr >= bfd_section_vma (sect)
309 && symaddr < bfd_section_vma (sect)
310 + bfd_section_size (sect))
02c75f72
UW
311 break;
312 }
313 if (!sect)
314 continue;
315
828cfa8d
JB
316 /* On ia64-hpux, we have discovered that the system linker
317 adds undefined symbols with nonzero addresses that cannot
318 be right (their address points inside the code of another
319 function in the .text section). This creates problems
320 when trying to determine which symbol corresponds to
321 a given address.
322
323 We try to detect those buggy symbols by checking which
324 section we think they correspond to. Normally, PLT symbols
325 are stored inside their own section, and the typical name
326 for that section is ".plt". So, if there is a ".plt"
327 section, and yet the section name of our symbol does not
328 start with ".plt", we ignore that symbol. */
61012eef 329 if (!startswith (sect->name, ".plt")
828cfa8d
JB
330 && bfd_get_section_by_name (abfd, ".plt") != NULL)
331 continue;
332
0cc7b392 333 msym = record_minimal_symbol
31edb802 334 (reader, sym->name, copy_names,
04a679b8 335 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 336 if (msym != NULL)
9b807e7b
MR
337 {
338 msym->filename = filesymname;
3e29f34a
MR
339 if (elf_make_msymbol_special_p)
340 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 341 }
0cc7b392
DJ
342 continue;
343 }
c906108c 344
0cc7b392
DJ
345 /* If it is a nonstripped executable, do not enter dynamic
346 symbols, as the dynamic symbol table is usually a subset
347 of the main symbol table. */
6f610d07 348 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
349 continue;
350 if (sym->flags & BSF_FILE)
351 {
9a3c8263 352 filesymname
25629dfd
TT
353 = ((const char *) objfile->per_bfd->filename_cache.insert
354 (sym->name, strlen (sym->name) + 1));
0cc7b392
DJ
355 }
356 else if (sym->flags & BSF_SECTION_SYM)
357 continue;
bb869963
SDJ
358 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
359 | BSF_GNU_UNIQUE))
0cc7b392
DJ
360 {
361 struct minimal_symbol *msym;
362
363 /* Select global/local/weak symbols. Note that bfd puts abs
364 symbols in their own section, so all symbols we are
0963b4bd
MS
365 interested in will have a section. */
366 /* Bfd symbols are section relative. */
0cc7b392 367 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
368 /* For non-absolute symbols, use the type of the section
369 they are relative to, to intuit text/data. Bfd provides
0963b4bd 370 no way of figuring this out for absolute symbols. */
45dfa85a 371 if (sym->section == bfd_abs_section_ptr)
c906108c 372 {
0cc7b392
DJ
373 /* This is a hack to get the minimal symbol type
374 right for Irix 5, which has absolute addresses
6f610d07
UW
375 with special section indices for dynamic symbols.
376
377 NOTE: uweigand-20071112: Synthetic symbols do not
378 have an ELF-private part, so do not touch those. */
dea91a5c 379 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
380 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
381
382 switch (shndx)
c906108c 383 {
0cc7b392
DJ
384 case SHN_MIPS_TEXT:
385 ms_type = mst_text;
386 break;
387 case SHN_MIPS_DATA:
388 ms_type = mst_data;
389 break;
390 case SHN_MIPS_ACOMMON:
391 ms_type = mst_bss;
392 break;
393 default:
394 ms_type = mst_abs;
395 }
396
397 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 398 symbols, relocate all others by section offset. */
0cc7b392
DJ
399 if (ms_type != mst_abs)
400 {
401 if (sym->name[0] == '.')
402 continue;
c906108c 403 }
0cc7b392
DJ
404 }
405 else if (sym->section->flags & SEC_CODE)
406 {
bb869963 407 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 408 {
0875794a
JK
409 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
410 ms_type = mst_text_gnu_ifunc;
411 else
412 ms_type = mst_text;
0cc7b392 413 }
90359a16
JK
414 /* The BSF_SYNTHETIC check is there to omit ppc64 function
415 descriptors mistaken for static functions starting with 'L'.
416 */
417 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
418 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
419 || ((sym->flags & BSF_LOCAL)
420 && sym->name[0] == '$'
421 && sym->name[1] == 'L'))
422 /* Looks like a compiler-generated label. Skip
423 it. The assembler should be skipping these (to
424 keep executables small), but apparently with
425 gcc on the (deleted) delta m88k SVR4, it loses.
426 So to have us check too should be harmless (but
427 I encourage people to fix this in the assembler
428 instead of adding checks here). */
429 continue;
430 else
431 {
432 ms_type = mst_file_text;
c906108c 433 }
0cc7b392
DJ
434 }
435 else if (sym->section->flags & SEC_ALLOC)
436 {
bb869963 437 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 438 {
f50776aa
PA
439 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
440 {
441 ms_type = mst_data_gnu_ifunc;
442 }
443 else if (sym->section->flags & SEC_LOAD)
c906108c 444 {
0cc7b392 445 ms_type = mst_data;
c906108c 446 }
c906108c
SS
447 else
448 {
0cc7b392 449 ms_type = mst_bss;
c906108c
SS
450 }
451 }
0cc7b392 452 else if (sym->flags & BSF_LOCAL)
c906108c 453 {
0cc7b392
DJ
454 if (sym->section->flags & SEC_LOAD)
455 {
456 ms_type = mst_file_data;
c906108c
SS
457 }
458 else
459 {
0cc7b392 460 ms_type = mst_file_bss;
c906108c
SS
461 }
462 }
463 else
464 {
0cc7b392 465 ms_type = mst_unknown;
c906108c 466 }
0cc7b392
DJ
467 }
468 else
469 {
470 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 471 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
472 hob with actions like finding what function the PC
473 is in. Ignore them if they aren't text, data, or bss. */
474 /* ms_type = mst_unknown; */
0963b4bd 475 continue; /* Skip this symbol. */
0cc7b392
DJ
476 }
477 msym = record_minimal_symbol
31edb802 478 (reader, sym->name, copy_names, symaddr,
0cc7b392 479 ms_type, sym->section, objfile);
6f610d07 480
0cc7b392
DJ
481 if (msym)
482 {
6f610d07 483 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 484 ELF-private part. */
6f610d07 485 if (type != ST_SYNTHETIC)
24c274a1
AM
486 {
487 /* Pass symbol size field in via BFD. FIXME!!! */
488 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
489 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
490 }
dea91a5c 491
a103a963 492 msym->filename = filesymname;
3e29f34a
MR
493 if (elf_make_msymbol_special_p)
494 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 495 }
2eaf8d2a 496
715c6909
TT
497 /* If we see a default versioned symbol, install it under
498 its version-less name. */
499 if (msym != NULL)
500 {
501 const char *atsign = strchr (sym->name, '@');
502
503 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
504 {
505 int len = atsign - sym->name;
506
31edb802
CB
507 record_minimal_symbol (reader,
508 gdb::string_view (sym->name, len),
509 true, symaddr, ms_type, sym->section,
510 objfile);
715c6909
TT
511 }
512 }
513
2eaf8d2a
DJ
514 /* For @plt symbols, also record a trampoline to the
515 destination symbol. The @plt symbol will be used in
516 disassembly, and the trampoline will be used when we are
517 trying to find the target. */
518 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
519 {
520 int len = strlen (sym->name);
521
522 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
523 {
2eaf8d2a
DJ
524 struct minimal_symbol *mtramp;
525
31edb802
CB
526 mtramp = record_minimal_symbol
527 (reader, gdb::string_view (sym->name, len - 4), true,
528 symaddr, mst_solib_trampoline, sym->section, objfile);
2eaf8d2a
DJ
529 if (mtramp)
530 {
d9eaeb59 531 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 532 mtramp->created_by_gdb = 1;
2eaf8d2a 533 mtramp->filename = filesymname;
3e29f34a
MR
534 if (elf_make_msymbol_special_p)
535 gdbarch_elf_make_msymbol_special (gdbarch,
536 sym, mtramp);
2eaf8d2a
DJ
537 }
538 }
539 }
c906108c 540 }
c906108c
SS
541 }
542}
543
07be84bf
JK
544/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
545 for later look ups of which function to call when user requests
546 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
547 library defining `function' we cannot yet know while reading OBJFILE which
548 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
549 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
550
551static void
8dddcb8f
TT
552elf_rel_plt_read (minimal_symbol_reader &reader,
553 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
554{
555 bfd *obfd = objfile->obfd;
556 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 557 asection *relplt, *got_plt;
07be84bf 558 bfd_size_type reloc_count, reloc;
df6d5441 559 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
560 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
561 size_t ptr_size = TYPE_LENGTH (ptr_type);
562
563 if (objfile->separate_debug_objfile_backlink)
564 return;
565
07be84bf
JK
566 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
567 if (got_plt == NULL)
4b7d1f7f
WN
568 {
569 /* For platforms where there is no separate .got.plt. */
570 got_plt = bfd_get_section_by_name (obfd, ".got");
571 if (got_plt == NULL)
572 return;
573 }
07be84bf 574
02e169e2
PA
575 /* Depending on system, we may find jump slots in a relocation
576 section for either .got.plt or .plt. */
577 asection *plt = bfd_get_section_by_name (obfd, ".plt");
578 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
579
580 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
581
07be84bf
JK
582 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
583 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
584 {
585 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
586
587 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
588 {
589 if (this_hdr.sh_info == plt_elf_idx
590 || this_hdr.sh_info == got_plt_elf_idx)
591 break;
592 }
593 }
07be84bf
JK
594 if (relplt == NULL)
595 return;
596
597 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
598 return;
599
26fcd5d7 600 std::string string_buffer;
07be84bf 601
02e169e2
PA
602 /* Does ADDRESS reside in SECTION of OBFD? */
603 auto within_section = [obfd] (asection *section, CORE_ADDR address)
604 {
605 if (section == NULL)
606 return false;
607
fd361982
AM
608 return (bfd_section_vma (section) <= address
609 && (address < bfd_section_vma (section)
610 + bfd_section_size (section)));
02e169e2
PA
611 };
612
07be84bf
JK
613 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
614 for (reloc = 0; reloc < reloc_count; reloc++)
615 {
22e048c9 616 const char *name;
07be84bf
JK
617 struct minimal_symbol *msym;
618 CORE_ADDR address;
26fcd5d7 619 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 620 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
621
622 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
623 address = relplt->relocation[reloc].address;
624
02e169e2
PA
625 asection *msym_section;
626
627 /* Does the pointer reside in either the .got.plt or .plt
628 sections? */
629 if (within_section (got_plt, address))
630 msym_section = got_plt;
631 else if (within_section (plt, address))
632 msym_section = plt;
633 else
07be84bf
JK
634 continue;
635
f50776aa
PA
636 /* We cannot check if NAME is a reference to
637 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
638 symbol is undefined and the objfile having NAME defined may
639 not yet have been loaded. */
07be84bf 640
26fcd5d7
TT
641 string_buffer.assign (name);
642 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 643
31edb802 644 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
645 true, address, mst_slot_got_plt,
646 msym_section, objfile);
07be84bf 647 if (msym)
d9eaeb59 648 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 649 }
07be84bf
JK
650}
651
652/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
653
8127a2fa
TT
654static const struct objfile_key<htab, htab_deleter>
655 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
656
657/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
658
659struct elf_gnu_ifunc_cache
660{
661 /* This is always a function entry address, not a function descriptor. */
662 CORE_ADDR addr;
663
664 char name[1];
665};
666
667/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
668
669static hashval_t
670elf_gnu_ifunc_cache_hash (const void *a_voidp)
671{
9a3c8263
SM
672 const struct elf_gnu_ifunc_cache *a
673 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
674
675 return htab_hash_string (a->name);
676}
677
678/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
679
680static int
681elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
682{
9a3c8263
SM
683 const struct elf_gnu_ifunc_cache *a
684 = (const struct elf_gnu_ifunc_cache *) a_voidp;
685 const struct elf_gnu_ifunc_cache *b
686 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
687
688 return strcmp (a->name, b->name) == 0;
689}
690
691/* Record the target function address of a STT_GNU_IFUNC function NAME is the
692 function entry address ADDR. Return 1 if NAME and ADDR are considered as
693 valid and therefore they were successfully recorded, return 0 otherwise.
694
695 Function does not expect a duplicate entry. Use
696 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
697 exists. */
698
699static int
700elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
701{
7cbd4a93 702 struct bound_minimal_symbol msym;
07be84bf
JK
703 struct objfile *objfile;
704 htab_t htab;
705 struct elf_gnu_ifunc_cache entry_local, *entry_p;
706 void **slot;
707
708 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 709 if (msym.minsym == NULL)
07be84bf 710 return 0;
77e371c0 711 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 712 return 0;
e27d198c 713 objfile = msym.objfile;
07be84bf
JK
714
715 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 716 resolution and it has no use for GDB. */
c9d95fa3 717 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
718 size_t len = strlen (target_name);
719
720 /* Note we check the symbol's name instead of checking whether the
721 symbol is in the .plt section because some systems have @plt
722 symbols in the .text section. */
723 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
724 return 0;
725
8127a2fa 726 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
727 if (htab == NULL)
728 {
8127a2fa
TT
729 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
730 elf_gnu_ifunc_cache_eq,
731 NULL, xcalloc, xfree);
732 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
733 }
734
735 entry_local.addr = addr;
736 obstack_grow (&objfile->objfile_obstack, &entry_local,
737 offsetof (struct elf_gnu_ifunc_cache, name));
738 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
739 entry_p
740 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
741
742 slot = htab_find_slot (htab, entry_p, INSERT);
743 if (*slot != NULL)
744 {
9a3c8263
SM
745 struct elf_gnu_ifunc_cache *entry_found_p
746 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 747 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
748
749 if (entry_found_p->addr != addr)
750 {
751 /* This case indicates buggy inferior program, the resolved address
752 should never change. */
753
754 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
755 "function_address from %s to %s"),
756 name, paddress (gdbarch, entry_found_p->addr),
757 paddress (gdbarch, addr));
758 }
759
760 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
761 }
762 *slot = entry_p;
763
764 return 1;
765}
766
767/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
768 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
769 is not NULL) and the function returns 1. It returns 0 otherwise.
770
771 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
772 function. */
773
774static int
775elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
776{
2030c079 777 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
778 {
779 htab_t htab;
780 struct elf_gnu_ifunc_cache *entry_p;
781 void **slot;
782
8127a2fa 783 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
784 if (htab == NULL)
785 continue;
786
224c3ddb
SM
787 entry_p = ((struct elf_gnu_ifunc_cache *)
788 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
789 strcpy (entry_p->name, name);
790
791 slot = htab_find_slot (htab, entry_p, NO_INSERT);
792 if (slot == NULL)
793 continue;
9a3c8263 794 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
795 gdb_assert (entry_p != NULL);
796
797 if (addr_p)
798 *addr_p = entry_p->addr;
799 return 1;
800 }
801
802 return 0;
803}
804
805/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
806 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
807 is not NULL) and the function returns 1. It returns 0 otherwise.
808
809 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
810 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
811 prevent cache entries duplicates. */
812
813static int
814elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
815{
816 char *name_got_plt;
07be84bf
JK
817 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
818
224c3ddb 819 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
820 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
821
2030c079 822 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
823 {
824 bfd *obfd = objfile->obfd;
df6d5441 825 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
826 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
827 size_t ptr_size = TYPE_LENGTH (ptr_type);
828 CORE_ADDR pointer_address, addr;
829 asection *plt;
224c3ddb 830 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 831 struct bound_minimal_symbol msym;
07be84bf
JK
832
833 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 834 if (msym.minsym == NULL)
07be84bf 835 continue;
3b7344d5 836 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 837 continue;
77e371c0 838 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
839
840 plt = bfd_get_section_by_name (obfd, ".plt");
841 if (plt == NULL)
842 continue;
843
3b7344d5 844 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
845 continue;
846 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
847 continue;
848 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
849 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
850 current_top_target ());
4b7d1f7f 851 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 852
07be84bf 853 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
854 {
855 if (addr_p != NULL)
856 *addr_p = addr;
857 return 1;
858 }
07be84bf
JK
859 }
860
861 return 0;
862}
863
864/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
865 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 866 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
867
868 Both the elf_objfile_gnu_ifunc_cache_data hash table and
869 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
870
ececd218 871static bool
07be84bf
JK
872elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
873{
874 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 875 return true;
dea91a5c 876
07be84bf 877 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 878 return true;
07be84bf 879
ececd218 880 return false;
07be84bf
JK
881}
882
883/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
884 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
885 is the entry point of the resolved STT_GNU_IFUNC target function to call.
886 */
887
888static CORE_ADDR
889elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
890{
2c02bd72 891 const char *name_at_pc;
07be84bf
JK
892 CORE_ADDR start_at_pc, address;
893 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
894 struct value *function, *address_val;
e1b2624a
AA
895 CORE_ADDR hwcap = 0;
896 struct value *hwcap_val;
07be84bf
JK
897
898 /* Try first any non-intrusive methods without an inferior call. */
899
900 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
901 && start_at_pc == pc)
902 {
903 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
904 return address;
905 }
906 else
907 name_at_pc = NULL;
908
909 function = allocate_value (func_func_type);
1a088441 910 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
911 set_value_address (function, pc);
912
e1b2624a
AA
913 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
914 parameter. FUNCTION is the function entry address. ADDRESS may be a
915 function descriptor. */
07be84bf 916
8b88a78e 917 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
918 hwcap_val = value_from_longest (builtin_type (gdbarch)
919 ->builtin_unsigned_long, hwcap);
e71585ff 920 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 921 address = value_as_address (address_val);
8b88a78e 922 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 923 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
924
925 if (name_at_pc)
926 elf_gnu_ifunc_record_cache (name_at_pc, address);
927
928 return address;
929}
930
0e30163f
JK
931/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
932
933static void
934elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
935{
936 struct breakpoint *b_return;
937 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
938 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
939 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 940 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
941
942 gdb_assert (b->type == bp_gnu_ifunc_resolver);
943
944 for (b_return = b->related_breakpoint; b_return != b;
945 b_return = b_return->related_breakpoint)
946 {
947 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
948 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
949 gdb_assert (frame_id_p (b_return->frame_id));
950
951 if (b_return->thread == thread_id
952 && b_return->loc->requested_address == prev_pc
953 && frame_id_eq (b_return->frame_id, prev_frame_id))
954 break;
955 }
956
957 if (b_return == b)
958 {
0e30163f
JK
959 /* No need to call find_pc_line for symbols resolving as this is only
960 a helper breakpointer never shown to the user. */
961
51abb421 962 symtab_and_line sal;
0e30163f
JK
963 sal.pspace = current_inferior ()->pspace;
964 sal.pc = prev_pc;
965 sal.section = find_pc_overlay (sal.pc);
966 sal.explicit_pc = 1;
454dafbd
TT
967 b_return
968 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
969 prev_frame_id,
970 bp_gnu_ifunc_resolver_return).release ();
0e30163f 971
c70a6932
JK
972 /* set_momentary_breakpoint invalidates PREV_FRAME. */
973 prev_frame = NULL;
974
0e30163f
JK
975 /* Add new b_return to the ring list b->related_breakpoint. */
976 gdb_assert (b_return->related_breakpoint == b_return);
977 b_return->related_breakpoint = b->related_breakpoint;
978 b->related_breakpoint = b_return;
979 }
980}
981
982/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
983
984static void
985elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
986{
00431a78 987 thread_info *thread = inferior_thread ();
0e30163f
JK
988 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
989 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
990 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 991 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 992 struct value *func_func;
0e30163f
JK
993 struct value *value;
994 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
995
996 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
997
0e30163f
JK
998 while (b->related_breakpoint != b)
999 {
1000 struct breakpoint *b_next = b->related_breakpoint;
1001
1002 switch (b->type)
1003 {
1004 case bp_gnu_ifunc_resolver:
1005 break;
1006 case bp_gnu_ifunc_resolver_return:
1007 delete_breakpoint (b);
1008 break;
1009 default:
1010 internal_error (__FILE__, __LINE__,
1011 _("handle_inferior_event: Invalid "
1012 "gnu-indirect-function breakpoint type %d"),
1013 (int) b->type);
1014 }
1015 b = b_next;
1016 }
1017 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1018 gdb_assert (b->loc->next == NULL);
1019
1020 func_func = allocate_value (func_func_type);
1a088441 1021 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1022 set_value_address (func_func, b->loc->related_address);
1023
1024 value = allocate_value (value_type);
1025 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1026 value_contents_raw (value), NULL);
1027 resolved_address = value_as_address (value);
1028 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1029 resolved_address,
8b88a78e 1030 current_top_target ());
4b7d1f7f 1031 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1032
f8eba3c6 1033 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1034 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1035 resolved_pc);
0e30163f 1036
0e30163f 1037 b->type = bp_breakpoint;
6c5b2ebe 1038 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1039 find_function_start_sal (resolved_pc, NULL, true),
1040 {});
0e30163f
JK
1041}
1042
2750ef27
TT
1043/* A helper function for elf_symfile_read that reads the minimal
1044 symbols. */
c906108c
SS
1045
1046static void
5f6cac40
TT
1047elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1048 const struct elfinfo *ei)
c906108c 1049{
63524580 1050 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1051 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1052 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1053 asymbol *synthsyms;
c906108c 1054
45cfd468
DE
1055 if (symtab_create_debug)
1056 {
1057 fprintf_unfiltered (gdb_stdlog,
1058 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1059 objfile_name (objfile));
45cfd468
DE
1060 }
1061
5f6cac40
TT
1062 /* If we already have minsyms, then we can skip some work here.
1063 However, if there were stabs or mdebug sections, we go ahead and
1064 redo all the work anyway, because the psym readers for those
1065 kinds of debuginfo need extra information found here. This can
1066 go away once all types of symbols are in the per-BFD object. */
1067 if (objfile->per_bfd->minsyms_read
1068 && ei->stabsect == NULL
30d1f018
WP
1069 && ei->mdebugsect == NULL
1070 && ei->ctfsect == NULL)
5f6cac40
TT
1071 {
1072 if (symtab_create_debug)
1073 fprintf_unfiltered (gdb_stdlog,
1074 "... minimal symbols previously read\n");
1075 return;
1076 }
1077
d25e8719 1078 minimal_symbol_reader reader (objfile);
c906108c 1079
18a94d75 1080 /* Process the normal ELF symbol table first. */
c906108c 1081
62553543
EZ
1082 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1083 if (storage_needed < 0)
3e43a32a
MS
1084 error (_("Can't read symbols from %s: %s"),
1085 bfd_get_filename (objfile->obfd),
62553543
EZ
1086 bfd_errmsg (bfd_get_error ()));
1087
1088 if (storage_needed > 0)
1089 {
80c57053
JK
1090 /* Memory gets permanently referenced from ABFD after
1091 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1092
224c3ddb 1093 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1094 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1095
1096 if (symcount < 0)
3e43a32a
MS
1097 error (_("Can't read symbols from %s: %s"),
1098 bfd_get_filename (objfile->obfd),
62553543
EZ
1099 bfd_errmsg (bfd_get_error ()));
1100
ce6c454e
TT
1101 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1102 false);
62553543 1103 }
c906108c
SS
1104
1105 /* Add the dynamic symbols. */
1106
62553543
EZ
1107 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1108
1109 if (storage_needed > 0)
1110 {
3f1eff0a
JK
1111 /* Memory gets permanently referenced from ABFD after
1112 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1113 It happens only in the case when elf_slurp_reloc_table sees
1114 asection->relocation NULL. Determining which section is asection is
1115 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1116 implementation detail, though. */
1117
224c3ddb 1118 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1119 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1120 dyn_symbol_table);
1121
1122 if (dynsymcount < 0)
3e43a32a
MS
1123 error (_("Can't read symbols from %s: %s"),
1124 bfd_get_filename (objfile->obfd),
62553543
EZ
1125 bfd_errmsg (bfd_get_error ()));
1126
8dddcb8f 1127 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1128 dyn_symbol_table, false);
07be84bf 1129
8dddcb8f 1130 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1131 }
1132
63524580
JK
1133 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1134 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1135
1136 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1137 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1138 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1139 read the code address from .opd while it reads the .symtab section from
1140 a separate debug info file as the .opd section is SHT_NOBITS there.
1141
1142 With SYNTH_ABFD the .opd section will be read from the original
1143 backlinked binary where it is valid. */
1144
1145 if (objfile->separate_debug_objfile_backlink)
1146 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1147 else
1148 synth_abfd = abfd;
1149
62553543
EZ
1150 /* Add synthetic symbols - for instance, names for any PLT entries. */
1151
63524580 1152 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1153 dynsymcount, dyn_symbol_table,
1154 &synthsyms);
1155 if (synthcount > 0)
1156 {
62553543
EZ
1157 long i;
1158
b22e99fd 1159 std::unique_ptr<asymbol *[]>
d1e4a624 1160 synth_symbol_table (new asymbol *[synthcount]);
62553543 1161 for (i = 0; i < synthcount; i++)
9f20e3da 1162 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1163 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1164 synth_symbol_table.get (), true);
ba713918
AL
1165
1166 xfree (synthsyms);
1167 synthsyms = NULL;
62553543 1168 }
c906108c 1169
7134143f
DJ
1170 /* Install any minimal symbols that have been collected as the current
1171 minimal symbols for this objfile. The debug readers below this point
1172 should not generate new minimal symbols; if they do it's their
1173 responsibility to install them. "mdebug" appears to be the only one
1174 which will do this. */
1175
d25e8719 1176 reader.install ();
7134143f 1177
4f00dda3
DE
1178 if (symtab_create_debug)
1179 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1180}
1181
1182/* Scan and build partial symbols for a symbol file.
1183 We have been initialized by a call to elf_symfile_init, which
1184 currently does nothing.
1185
2750ef27
TT
1186 This function only does the minimum work necessary for letting the
1187 user "name" things symbolically; it does not read the entire symtab.
1188 Instead, it reads the external and static symbols and puts them in partial
1189 symbol tables. When more extensive information is requested of a
1190 file, the corresponding partial symbol table is mutated into a full
1191 fledged symbol table by going back and reading the symbols
1192 for real.
1193
1194 We look for sections with specific names, to tell us what debug
1195 format to look for: FIXME!!!
1196
1197 elfstab_build_psymtabs() handles STABS symbols;
1198 mdebug_build_psymtabs() handles ECOFF debugging information.
1199
1200 Note that ELF files have a "minimal" symbol table, which looks a lot
1201 like a COFF symbol table, but has only the minimal information necessary
1202 for linking. We process this also, and use the information to
1203 build gdb's minimal symbol table. This gives us some minimal debugging
1204 capability even for files compiled without -g. */
1205
1206static void
b15cc25c 1207elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1208{
1209 bfd *abfd = objfile->obfd;
1210 struct elfinfo ei;
30d1f018 1211 bool has_dwarf2 = true;
2750ef27 1212
2750ef27 1213 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1214 if (!(objfile->flags & OBJF_READNEVER))
1215 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1216
5f6cac40
TT
1217 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1218
c906108c
SS
1219 /* ELF debugging information is inserted into the psymtab in the
1220 order of least informative first - most informative last. Since
1221 the psymtab table is searched `most recent insertion first' this
1222 increases the probability that more detailed debug information
1223 for a section is found.
1224
1225 For instance, an object file might contain both .mdebug (XCOFF)
1226 and .debug_info (DWARF2) sections then .mdebug is inserted first
1227 (searched last) and DWARF2 is inserted last (searched first). If
1228 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1229 an included file XCOFF info is useless. */
c906108c
SS
1230
1231 if (ei.mdebugsect)
1232 {
1233 const struct ecoff_debug_swap *swap;
1234
1235 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1236 information. */
c906108c
SS
1237 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1238 if (swap)
d4f3574e 1239 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1240 }
1241 if (ei.stabsect)
1242 {
1243 asection *str_sect;
1244
1245 /* Stab sections have an associated string table that looks like
c5aa993b 1246 a separate section. */
c906108c
SS
1247 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1248
1249 /* FIXME should probably warn about a stab section without a stabstr. */
1250 if (str_sect)
1251 elfstab_build_psymtabs (objfile,
086df311 1252 ei.stabsect,
c906108c 1253 str_sect->filepos,
fd361982 1254 bfd_section_size (str_sect));
c906108c 1255 }
9291a0cd 1256
4b610737 1257 if (dwarf2_has_info (objfile, NULL, true))
b11896a5 1258 {
3c0aa29a 1259 dw_index_kind index_kind;
3e03848b 1260
3c0aa29a
PA
1261 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1262 debug information present in OBJFILE. If there is such debug
1263 info present never use an index. */
1264 if (!objfile_has_partial_symbols (objfile)
1265 && dwarf2_initialize_objfile (objfile, &index_kind))
1266 {
1267 switch (index_kind)
1268 {
1269 case dw_index_kind::GDB_INDEX:
1270 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1271 break;
1272 case dw_index_kind::DEBUG_NAMES:
1273 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1274 break;
1275 }
1276 }
1277 else
b11896a5
TT
1278 {
1279 /* It is ok to do this even if the stabs reader made some
1280 partial symbols, because OBJF_PSYMTABS_READ has not been
1281 set, and so our lazy reader function will still be called
1282 when needed. */
8fb8eb5c 1283 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1284 }
1285 }
3e43a32a
MS
1286 /* If the file has its own symbol tables it has no separate debug
1287 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1288 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1289 `.note.gnu.build-id'.
1290
1291 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1292 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1293 an objfile via find_separate_debug_file_in_section there was no separate
1294 debug info available. Therefore do not attempt to search for another one,
1295 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1296 be NULL and we would possibly violate it. */
1297
1298 else if (!objfile_has_partial_symbols (objfile)
1299 && objfile->separate_debug_objfile == NULL
1300 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1301 {
a8dbfd58 1302 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1303
a8dbfd58
SM
1304 if (debugfile.empty ())
1305 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1306
a8dbfd58 1307 if (!debugfile.empty ())
9cce227f 1308 {
b926417a 1309 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1310
b926417a 1311 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1312 symfile_flags, objfile);
9cce227f 1313 }
30d1f018
WP
1314 else
1315 has_dwarf2 = false;
1316 }
1317
1318 /* Read the CTF section only if there is no DWARF info. */
1319 if (!has_dwarf2 && ei.ctfsect)
1320 {
1321 elfctf_build_psymtabs (objfile);
9cce227f 1322 }
c906108c
SS
1323}
1324
b11896a5
TT
1325/* Callback to lazily read psymtabs. */
1326
1327static void
1328read_psyms (struct objfile *objfile)
1329{
251d32d9 1330 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1331 dwarf2_build_psymtabs (objfile);
1332}
1333
c906108c
SS
1334/* Initialize anything that needs initializing when a completely new symbol
1335 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1336 shared library). */
c906108c
SS
1337
1338static void
fba45db2 1339elf_new_init (struct objfile *ignore)
c906108c 1340{
c906108c
SS
1341}
1342
1343/* Perform any local cleanups required when we are done with a particular
1344 objfile. I.E, we are in the process of discarding all symbol information
1345 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1346 objfile struct from the global list of known objfiles. */
c906108c
SS
1347
1348static void
fba45db2 1349elf_symfile_finish (struct objfile *objfile)
c906108c 1350{
c906108c
SS
1351}
1352
db7a9bcd 1353/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1354
1355static void
fba45db2 1356elf_symfile_init (struct objfile *objfile)
c906108c
SS
1357{
1358 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1359 find this causes a significant slowdown in gdb then we could
1360 set it in the debug symbol readers only when necessary. */
1361 objfile->flags |= OBJF_REORDERED;
1362}
1363
55aa24fb
SDJ
1364/* Implementation of `sym_get_probes', as documented in symfile.h. */
1365
814cf43a 1366static const elfread_data &
55aa24fb
SDJ
1367elf_get_probes (struct objfile *objfile)
1368{
814cf43a 1369 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1370
aaa63a31 1371 if (probes_per_bfd == NULL)
55aa24fb 1372 {
814cf43a 1373 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1374
1375 /* Here we try to gather information about all types of probes from the
1376 objfile. */
935676c9 1377 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1378 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1379 }
1380
aaa63a31 1381 return *probes_per_bfd;
55aa24fb
SDJ
1382}
1383
c906108c 1384\f
55aa24fb
SDJ
1385
1386/* Implementation `sym_probe_fns', as documented in symfile.h. */
1387
1388static const struct sym_probe_fns elf_probe_fns =
1389{
25f9533e 1390 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1391};
1392
c906108c
SS
1393/* Register that we are able to handle ELF object file formats. */
1394
00b5771c 1395static const struct sym_fns elf_sym_fns =
c906108c 1396{
3e43a32a
MS
1397 elf_new_init, /* init anything gbl to entire symtab */
1398 elf_symfile_init, /* read initial info, setup for sym_read() */
1399 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1400 NULL, /* sym_read_psymbols */
1401 elf_symfile_finish, /* finished with file, cleanup */
1402 default_symfile_offsets, /* Translate ext. to int. relocation */
1403 elf_symfile_segments, /* Get segment information from a file. */
1404 NULL,
1405 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1406 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1407 &psym_functions
1408};
1409
1410/* The same as elf_sym_fns, but not registered and lazily reads
1411 psymbols. */
1412
e36122e9 1413const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1414{
b11896a5
TT
1415 elf_new_init, /* init anything gbl to entire symtab */
1416 elf_symfile_init, /* read initial info, setup for sym_read() */
1417 elf_symfile_read, /* read a symbol file into symtab */
1418 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1419 elf_symfile_finish, /* finished with file, cleanup */
1420 default_symfile_offsets, /* Translate ext. to int. relocation */
1421 elf_symfile_segments, /* Get segment information from a file. */
1422 NULL,
1423 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1424 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1425 &psym_functions
c906108c
SS
1426};
1427
9291a0cd
TT
1428/* The same as elf_sym_fns, but not registered and uses the
1429 DWARF-specific GNU index rather than psymtab. */
e36122e9 1430const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1431{
3e43a32a
MS
1432 elf_new_init, /* init anything gbl to entire symab */
1433 elf_symfile_init, /* read initial info, setup for sym_red() */
1434 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1435 NULL, /* sym_read_psymbols */
3e43a32a 1436 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1437 default_symfile_offsets, /* Translate ext. to int. relocation */
3e43a32a
MS
1438 elf_symfile_segments, /* Get segment information from a file. */
1439 NULL,
1440 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1441 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1442 &dwarf2_gdb_index_functions
9291a0cd
TT
1443};
1444
927aa2e7
JK
1445/* The same as elf_sym_fns, but not registered and uses the
1446 DWARF-specific .debug_names index rather than psymtab. */
1447const struct sym_fns elf_sym_fns_debug_names =
1448{
1449 elf_new_init, /* init anything gbl to entire symab */
1450 elf_symfile_init, /* read initial info, setup for sym_red() */
1451 elf_symfile_read, /* read a symbol file into symtab */
1452 NULL, /* sym_read_psymbols */
1453 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1454 default_symfile_offsets, /* Translate ext. to int. relocation */
927aa2e7
JK
1455 elf_symfile_segments, /* Get segment information from a file. */
1456 NULL,
1457 default_symfile_relocate, /* Relocate a debug section. */
1458 &elf_probe_fns, /* sym_probe_fns */
1459 &dwarf2_debug_names_functions
1460};
1461
07be84bf
JK
1462/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1463
1464static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1465{
1466 elf_gnu_ifunc_resolve_addr,
1467 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1468 elf_gnu_ifunc_resolver_stop,
1469 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1470};
1471
c906108c 1472void
fba45db2 1473_initialize_elfread (void)
c906108c 1474{
c256e171 1475 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1476
07be84bf 1477 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1478}
This page took 1.765528 seconds and 4 git commands to generate.