parse_number("0") reads uninitialized memory
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
ecd75fc8 3 Copyright (C) 1991-2014 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
c906108c 48
a14ed312 49extern void _initialize_elfread (void);
392a587b 50
b11896a5 51/* Forward declarations. */
00b5771c 52static const struct sym_fns elf_sym_fns_gdb_index;
b11896a5 53static const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 54
c906108c 55/* The struct elfinfo is available only during ELF symbol table and
6426a772 56 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
57 It's local to elf_symfile_read. */
58
c5aa993b
JM
59struct elfinfo
60 {
c5aa993b 61 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
c906108c 64
5d9cf8a4 65/* Per-BFD data for probe info. */
55aa24fb 66
5d9cf8a4 67static const struct bfd_data *probe_key = NULL;
55aa24fb 68
12b9c64f 69static void free_elfinfo (void *);
c906108c 70
07be84bf
JK
71/* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
31d99776
DJ
78/* Locate the segments in ABFD. */
79
80static struct symfile_segment_data *
81elf_symfile_segments (bfd *abfd)
82{
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
41bf6aca 107 data = XCNEW (struct symfile_segment_data);
31d99776 108 data->num_segments = num_segments;
fc270c35
TT
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
fc270c35 119 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
a366c65a 134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
ad09a548
DJ
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 151 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156}
157
c906108c
SS
158/* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
0963b4bd 174 section flags to specify what kind of debug section it is.
c906108c
SS
175 -kingdon). */
176
177static void
12b9c64f 178elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 179{
52f0bd74 180 struct elfinfo *ei;
c906108c
SS
181
182 ei = (struct elfinfo *) eip;
7ce59000 183 if (strcmp (sectp->name, ".stab") == 0)
c906108c 184 {
c5aa993b 185 ei->stabsect = sectp;
c906108c 186 }
6314a349 187 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 188 {
c5aa993b 189 ei->mdebugsect = sectp;
c906108c
SS
190 }
191}
192
c906108c 193static struct minimal_symbol *
04a679b8
TT
194record_minimal_symbol (const char *name, int name_len, int copy_name,
195 CORE_ADDR address,
f594e5e9
MC
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
c906108c 198{
5e2b427d
UW
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
0875794a
JK
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
85ddcc70 203 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 204
04a679b8 205 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
65cf3563
TT
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section),
e6dc44a8 209 objfile);
c906108c
SS
210}
211
7f86f058 212/* Read the symbol table of an ELF file.
c906108c 213
62553543 214 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
215 symbol table contains regular, dynamic, or synthetic symbols, add all
216 the global function and data symbols to the minimal symbol table.
c906108c 217
c5aa993b
JM
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
7f86f058 222 in data structures hung off the objfile's private data. */
c906108c 223
6f610d07
UW
224#define ST_REGULAR 0
225#define ST_DYNAMIC 1
226#define ST_SYNTHETIC 2
227
c906108c 228static void
6f610d07 229elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
230 long number_of_symbols, asymbol **symbol_table,
231 int copy_names)
c906108c 232{
5e2b427d 233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 234 asymbol *sym;
c906108c 235 long i;
c906108c 236 CORE_ADDR symaddr;
d4f3574e 237 CORE_ADDR offset;
c906108c
SS
238 enum minimal_symbol_type ms_type;
239 /* If sectinfo is nonNULL, it contains section info that should end up
240 filed in the objfile. */
241 struct stab_section_info *sectinfo = NULL;
242 /* If filesym is nonzero, it points to a file symbol, but we haven't
243 seen any section info for it yet. */
244 asymbol *filesym = 0;
1c9e8358 245 /* Name of filesym. This is either a constant string or is saved on
0af1e9a5
TT
246 the objfile's filename cache. */
247 const char *filesymname = "";
d2f4b8fe 248 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 249 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
c5aa993b 250
0cc7b392 251 for (i = 0; i < number_of_symbols; i++)
c906108c 252 {
0cc7b392
DJ
253 sym = symbol_table[i];
254 if (sym->name == NULL || *sym->name == '\0')
c906108c 255 {
0cc7b392 256 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 257 that are null strings (may happen). */
0cc7b392
DJ
258 continue;
259 }
c906108c 260
74763737
DJ
261 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
262 symbols which do not correspond to objects in the symbol table,
263 but have some other target-specific meaning. */
264 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
265 {
266 if (gdbarch_record_special_symbol_p (gdbarch))
267 gdbarch_record_special_symbol (gdbarch, objfile, sym);
268 continue;
269 }
74763737 270
65cf3563
TT
271 offset = ANOFFSET (objfile->section_offsets,
272 gdb_bfd_section_index (objfile->obfd, sym->section));
6f610d07 273 if (type == ST_DYNAMIC
45dfa85a 274 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
275 && (sym->flags & BSF_FUNCTION))
276 {
277 struct minimal_symbol *msym;
02c75f72 278 bfd *abfd = objfile->obfd;
dea91a5c 279 asection *sect;
0cc7b392
DJ
280
281 /* Symbol is a reference to a function defined in
282 a shared library.
283 If its value is non zero then it is usually the address
284 of the corresponding entry in the procedure linkage table,
285 plus the desired section offset.
286 If its value is zero then the dynamic linker has to resolve
0963b4bd 287 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
288 for this symbol in the executable file, so we skip it. */
289 symaddr = sym->value;
290 if (symaddr == 0)
291 continue;
02c75f72
UW
292
293 /* sym->section is the undefined section. However, we want to
294 record the section where the PLT stub resides with the
295 minimal symbol. Search the section table for the one that
296 covers the stub's address. */
297 for (sect = abfd->sections; sect != NULL; sect = sect->next)
298 {
299 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
300 continue;
301
302 if (symaddr >= bfd_get_section_vma (abfd, sect)
303 && symaddr < bfd_get_section_vma (abfd, sect)
304 + bfd_get_section_size (sect))
305 break;
306 }
307 if (!sect)
308 continue;
309
828cfa8d
JB
310 /* On ia64-hpux, we have discovered that the system linker
311 adds undefined symbols with nonzero addresses that cannot
312 be right (their address points inside the code of another
313 function in the .text section). This creates problems
314 when trying to determine which symbol corresponds to
315 a given address.
316
317 We try to detect those buggy symbols by checking which
318 section we think they correspond to. Normally, PLT symbols
319 are stored inside their own section, and the typical name
320 for that section is ".plt". So, if there is a ".plt"
321 section, and yet the section name of our symbol does not
322 start with ".plt", we ignore that symbol. */
323 if (strncmp (sect->name, ".plt", 4) != 0
324 && bfd_get_section_by_name (abfd, ".plt") != NULL)
325 continue;
326
0cc7b392 327 msym = record_minimal_symbol
04a679b8
TT
328 (sym->name, strlen (sym->name), copy_names,
329 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392
DJ
330 if (msym != NULL)
331 msym->filename = filesymname;
0cc7b392
DJ
332 continue;
333 }
c906108c 334
0cc7b392
DJ
335 /* If it is a nonstripped executable, do not enter dynamic
336 symbols, as the dynamic symbol table is usually a subset
337 of the main symbol table. */
6f610d07 338 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
339 continue;
340 if (sym->flags & BSF_FILE)
341 {
342 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
343 Chain any old one onto the objfile; remember new sym. */
344 if (sectinfo != NULL)
c906108c 345 {
0cc7b392
DJ
346 sectinfo->next = dbx->stab_section_info;
347 dbx->stab_section_info = sectinfo;
348 sectinfo = NULL;
349 }
350 filesym = sym;
0af1e9a5 351 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
706e3705 352 objfile->per_bfd->filename_cache);
0cc7b392
DJ
353 }
354 else if (sym->flags & BSF_SECTION_SYM)
355 continue;
bb869963
SDJ
356 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
357 | BSF_GNU_UNIQUE))
0cc7b392
DJ
358 {
359 struct minimal_symbol *msym;
360
361 /* Select global/local/weak symbols. Note that bfd puts abs
362 symbols in their own section, so all symbols we are
0963b4bd
MS
363 interested in will have a section. */
364 /* Bfd symbols are section relative. */
0cc7b392 365 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
366 /* For non-absolute symbols, use the type of the section
367 they are relative to, to intuit text/data. Bfd provides
0963b4bd 368 no way of figuring this out for absolute symbols. */
45dfa85a 369 if (sym->section == bfd_abs_section_ptr)
c906108c 370 {
0cc7b392
DJ
371 /* This is a hack to get the minimal symbol type
372 right for Irix 5, which has absolute addresses
6f610d07
UW
373 with special section indices for dynamic symbols.
374
375 NOTE: uweigand-20071112: Synthetic symbols do not
376 have an ELF-private part, so do not touch those. */
dea91a5c 377 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
378 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
379
380 switch (shndx)
c906108c 381 {
0cc7b392
DJ
382 case SHN_MIPS_TEXT:
383 ms_type = mst_text;
384 break;
385 case SHN_MIPS_DATA:
386 ms_type = mst_data;
387 break;
388 case SHN_MIPS_ACOMMON:
389 ms_type = mst_bss;
390 break;
391 default:
392 ms_type = mst_abs;
393 }
394
395 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 396 symbols, relocate all others by section offset. */
0cc7b392
DJ
397 if (ms_type != mst_abs)
398 {
399 if (sym->name[0] == '.')
400 continue;
c906108c 401 }
0cc7b392
DJ
402 }
403 else if (sym->section->flags & SEC_CODE)
404 {
bb869963 405 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 406 {
0875794a
JK
407 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
408 ms_type = mst_text_gnu_ifunc;
409 else
410 ms_type = mst_text;
0cc7b392 411 }
90359a16
JK
412 /* The BSF_SYNTHETIC check is there to omit ppc64 function
413 descriptors mistaken for static functions starting with 'L'.
414 */
415 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
416 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
417 || ((sym->flags & BSF_LOCAL)
418 && sym->name[0] == '$'
419 && sym->name[1] == 'L'))
420 /* Looks like a compiler-generated label. Skip
421 it. The assembler should be skipping these (to
422 keep executables small), but apparently with
423 gcc on the (deleted) delta m88k SVR4, it loses.
424 So to have us check too should be harmless (but
425 I encourage people to fix this in the assembler
426 instead of adding checks here). */
427 continue;
428 else
429 {
430 ms_type = mst_file_text;
c906108c 431 }
0cc7b392
DJ
432 }
433 else if (sym->section->flags & SEC_ALLOC)
434 {
bb869963 435 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 436 {
0cc7b392 437 if (sym->section->flags & SEC_LOAD)
c906108c 438 {
0cc7b392 439 ms_type = mst_data;
c906108c 440 }
c906108c
SS
441 else
442 {
0cc7b392 443 ms_type = mst_bss;
c906108c
SS
444 }
445 }
0cc7b392 446 else if (sym->flags & BSF_LOCAL)
c906108c 447 {
0cc7b392
DJ
448 /* Named Local variable in a Data section.
449 Check its name for stabs-in-elf. */
450 int special_local_sect;
d7f9d729 451
0cc7b392
DJ
452 if (strcmp ("Bbss.bss", sym->name) == 0)
453 special_local_sect = SECT_OFF_BSS (objfile);
454 else if (strcmp ("Ddata.data", sym->name) == 0)
455 special_local_sect = SECT_OFF_DATA (objfile);
456 else if (strcmp ("Drodata.rodata", sym->name) == 0)
457 special_local_sect = SECT_OFF_RODATA (objfile);
458 else
459 special_local_sect = -1;
460 if (special_local_sect >= 0)
c906108c 461 {
0cc7b392
DJ
462 /* Found a special local symbol. Allocate a
463 sectinfo, if needed, and fill it in. */
464 if (sectinfo == NULL)
c906108c 465 {
0cc7b392
DJ
466 int max_index;
467 size_t size;
468
25c2f6ab
PP
469 max_index = SECT_OFF_BSS (objfile);
470 if (objfile->sect_index_data > max_index)
471 max_index = objfile->sect_index_data;
472 if (objfile->sect_index_rodata > max_index)
473 max_index = objfile->sect_index_rodata;
0cc7b392
DJ
474
475 /* max_index is the largest index we'll
476 use into this array, so we must
477 allocate max_index+1 elements for it.
478 However, 'struct stab_section_info'
479 already includes one element, so we
480 need to allocate max_index aadditional
481 elements. */
dea91a5c 482 size = (sizeof (struct stab_section_info)
c05d19c5 483 + (sizeof (CORE_ADDR) * max_index));
0cc7b392
DJ
484 sectinfo = (struct stab_section_info *)
485 xmalloc (size);
486 memset (sectinfo, 0, size);
487 sectinfo->num_sections = max_index;
488 if (filesym == NULL)
c906108c 489 {
0cc7b392 490 complaint (&symfile_complaints,
3e43a32a
MS
491 _("elf/stab section information %s "
492 "without a preceding file symbol"),
0cc7b392
DJ
493 sym->name);
494 }
495 else
496 {
497 sectinfo->filename =
498 (char *) filesym->name;
c906108c 499 }
c906108c 500 }
0cc7b392
DJ
501 if (sectinfo->sections[special_local_sect] != 0)
502 complaint (&symfile_complaints,
3e43a32a
MS
503 _("duplicated elf/stab section "
504 "information for %s"),
0cc7b392
DJ
505 sectinfo->filename);
506 /* BFD symbols are section relative. */
507 symaddr = sym->value + sym->section->vma;
508 /* Relocate non-absolute symbols by the
509 section offset. */
45dfa85a 510 if (sym->section != bfd_abs_section_ptr)
0cc7b392
DJ
511 symaddr += offset;
512 sectinfo->sections[special_local_sect] = symaddr;
513 /* The special local symbols don't go in the
514 minimal symbol table, so ignore this one. */
515 continue;
516 }
517 /* Not a special stabs-in-elf symbol, do regular
518 symbol processing. */
519 if (sym->section->flags & SEC_LOAD)
520 {
521 ms_type = mst_file_data;
c906108c
SS
522 }
523 else
524 {
0cc7b392 525 ms_type = mst_file_bss;
c906108c
SS
526 }
527 }
528 else
529 {
0cc7b392 530 ms_type = mst_unknown;
c906108c 531 }
0cc7b392
DJ
532 }
533 else
534 {
535 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 536 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
537 hob with actions like finding what function the PC
538 is in. Ignore them if they aren't text, data, or bss. */
539 /* ms_type = mst_unknown; */
0963b4bd 540 continue; /* Skip this symbol. */
0cc7b392
DJ
541 }
542 msym = record_minimal_symbol
04a679b8 543 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 544 ms_type, sym->section, objfile);
6f610d07 545
0cc7b392
DJ
546 if (msym)
547 {
6f610d07 548 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 549 ELF-private part. */
6f610d07 550 if (type != ST_SYNTHETIC)
24c274a1
AM
551 {
552 /* Pass symbol size field in via BFD. FIXME!!! */
553 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
554 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
555 }
dea91a5c 556
a103a963
DJ
557 msym->filename = filesymname;
558 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 559 }
2eaf8d2a 560
715c6909
TT
561 /* If we see a default versioned symbol, install it under
562 its version-less name. */
563 if (msym != NULL)
564 {
565 const char *atsign = strchr (sym->name, '@');
566
567 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
568 {
569 int len = atsign - sym->name;
570
571 record_minimal_symbol (sym->name, len, 1, symaddr,
572 ms_type, sym->section, objfile);
573 }
574 }
575
2eaf8d2a
DJ
576 /* For @plt symbols, also record a trampoline to the
577 destination symbol. The @plt symbol will be used in
578 disassembly, and the trampoline will be used when we are
579 trying to find the target. */
580 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
581 {
582 int len = strlen (sym->name);
583
584 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
585 {
2eaf8d2a
DJ
586 struct minimal_symbol *mtramp;
587
04a679b8
TT
588 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
589 symaddr,
2eaf8d2a
DJ
590 mst_solib_trampoline,
591 sym->section, objfile);
592 if (mtramp)
593 {
d9eaeb59 594 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 595 mtramp->created_by_gdb = 1;
2eaf8d2a
DJ
596 mtramp->filename = filesymname;
597 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
598 }
599 }
600 }
c906108c 601 }
c906108c
SS
602 }
603}
604
07be84bf
JK
605/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
606 for later look ups of which function to call when user requests
607 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
608 library defining `function' we cannot yet know while reading OBJFILE which
609 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
610 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
611
612static void
613elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
614{
615 bfd *obfd = objfile->obfd;
616 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
617 asection *plt, *relplt, *got_plt;
07be84bf
JK
618 int plt_elf_idx;
619 bfd_size_type reloc_count, reloc;
620 char *string_buffer = NULL;
621 size_t string_buffer_size = 0;
622 struct cleanup *back_to;
df6d5441 623 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
624 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
625 size_t ptr_size = TYPE_LENGTH (ptr_type);
626
627 if (objfile->separate_debug_objfile_backlink)
628 return;
629
630 plt = bfd_get_section_by_name (obfd, ".plt");
631 if (plt == NULL)
632 return;
633 plt_elf_idx = elf_section_data (plt)->this_idx;
634
635 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
636 if (got_plt == NULL)
4b7d1f7f
WN
637 {
638 /* For platforms where there is no separate .got.plt. */
639 got_plt = bfd_get_section_by_name (obfd, ".got");
640 if (got_plt == NULL)
641 return;
642 }
07be84bf
JK
643
644 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
645 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
646 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
647 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
648 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
649 break;
650 if (relplt == NULL)
651 return;
652
653 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
654 return;
655
656 back_to = make_cleanup (free_current_contents, &string_buffer);
657
658 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
659 for (reloc = 0; reloc < reloc_count; reloc++)
660 {
22e048c9 661 const char *name;
07be84bf
JK
662 struct minimal_symbol *msym;
663 CORE_ADDR address;
664 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
665 size_t name_len;
666
667 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
668 name_len = strlen (name);
669 address = relplt->relocation[reloc].address;
670
671 /* Does the pointer reside in the .got.plt section? */
672 if (!(bfd_get_section_vma (obfd, got_plt) <= address
673 && address < bfd_get_section_vma (obfd, got_plt)
674 + bfd_get_section_size (got_plt)))
675 continue;
676
677 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
678 OBJFILE the symbol is undefined and the objfile having NAME defined
679 may not yet have been loaded. */
680
3807f613 681 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
682 {
683 string_buffer_size = 2 * (name_len + got_suffix_len);
684 string_buffer = xrealloc (string_buffer, string_buffer_size);
685 }
686 memcpy (string_buffer, name, name_len);
687 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 688 got_suffix_len + 1);
07be84bf
JK
689
690 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
691 1, address, mst_slot_got_plt, got_plt,
692 objfile);
693 if (msym)
d9eaeb59 694 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf
JK
695 }
696
697 do_cleanups (back_to);
698}
699
700/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
701
702static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
703
704/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
705
706struct elf_gnu_ifunc_cache
707{
708 /* This is always a function entry address, not a function descriptor. */
709 CORE_ADDR addr;
710
711 char name[1];
712};
713
714/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
715
716static hashval_t
717elf_gnu_ifunc_cache_hash (const void *a_voidp)
718{
719 const struct elf_gnu_ifunc_cache *a = a_voidp;
720
721 return htab_hash_string (a->name);
722}
723
724/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
725
726static int
727elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
728{
729 const struct elf_gnu_ifunc_cache *a = a_voidp;
730 const struct elf_gnu_ifunc_cache *b = b_voidp;
731
732 return strcmp (a->name, b->name) == 0;
733}
734
735/* Record the target function address of a STT_GNU_IFUNC function NAME is the
736 function entry address ADDR. Return 1 if NAME and ADDR are considered as
737 valid and therefore they were successfully recorded, return 0 otherwise.
738
739 Function does not expect a duplicate entry. Use
740 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
741 exists. */
742
743static int
744elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
745{
7cbd4a93 746 struct bound_minimal_symbol msym;
07be84bf
JK
747 asection *sect;
748 struct objfile *objfile;
749 htab_t htab;
750 struct elf_gnu_ifunc_cache entry_local, *entry_p;
751 void **slot;
752
753 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 754 if (msym.minsym == NULL)
07be84bf 755 return 0;
77e371c0 756 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
757 return 0;
758 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 759 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 760 objfile = msym.objfile;
07be84bf
JK
761
762 /* If .plt jumps back to .plt the symbol is still deferred for later
763 resolution and it has no use for GDB. Besides ".text" this symbol can
764 reside also in ".opd" for ppc64 function descriptor. */
765 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
766 return 0;
767
768 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
769 if (htab == NULL)
770 {
771 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
772 elf_gnu_ifunc_cache_eq,
773 NULL, &objfile->objfile_obstack,
774 hashtab_obstack_allocate,
775 dummy_obstack_deallocate);
776 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
777 }
778
779 entry_local.addr = addr;
780 obstack_grow (&objfile->objfile_obstack, &entry_local,
781 offsetof (struct elf_gnu_ifunc_cache, name));
782 obstack_grow_str0 (&objfile->objfile_obstack, name);
783 entry_p = obstack_finish (&objfile->objfile_obstack);
784
785 slot = htab_find_slot (htab, entry_p, INSERT);
786 if (*slot != NULL)
787 {
788 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
df6d5441 789 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
790
791 if (entry_found_p->addr != addr)
792 {
793 /* This case indicates buggy inferior program, the resolved address
794 should never change. */
795
796 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
797 "function_address from %s to %s"),
798 name, paddress (gdbarch, entry_found_p->addr),
799 paddress (gdbarch, addr));
800 }
801
802 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
803 }
804 *slot = entry_p;
805
806 return 1;
807}
808
809/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
810 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
811 is not NULL) and the function returns 1. It returns 0 otherwise.
812
813 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
814 function. */
815
816static int
817elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
818{
819 struct objfile *objfile;
820
821 ALL_PSPACE_OBJFILES (current_program_space, objfile)
822 {
823 htab_t htab;
824 struct elf_gnu_ifunc_cache *entry_p;
825 void **slot;
826
827 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
828 if (htab == NULL)
829 continue;
830
831 entry_p = alloca (sizeof (*entry_p) + strlen (name));
832 strcpy (entry_p->name, name);
833
834 slot = htab_find_slot (htab, entry_p, NO_INSERT);
835 if (slot == NULL)
836 continue;
837 entry_p = *slot;
838 gdb_assert (entry_p != NULL);
839
840 if (addr_p)
841 *addr_p = entry_p->addr;
842 return 1;
843 }
844
845 return 0;
846}
847
848/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
849 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
850 is not NULL) and the function returns 1. It returns 0 otherwise.
851
852 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
853 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
854 prevent cache entries duplicates. */
855
856static int
857elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
858{
859 char *name_got_plt;
860 struct objfile *objfile;
861 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
862
863 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
864 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
865
866 ALL_PSPACE_OBJFILES (current_program_space, objfile)
867 {
868 bfd *obfd = objfile->obfd;
df6d5441 869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
870 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
871 size_t ptr_size = TYPE_LENGTH (ptr_type);
872 CORE_ADDR pointer_address, addr;
873 asection *plt;
874 gdb_byte *buf = alloca (ptr_size);
3b7344d5 875 struct bound_minimal_symbol msym;
07be84bf
JK
876
877 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 878 if (msym.minsym == NULL)
07be84bf 879 continue;
3b7344d5 880 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 881 continue;
77e371c0 882 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
883
884 plt = bfd_get_section_by_name (obfd, ".plt");
885 if (plt == NULL)
886 continue;
887
3b7344d5 888 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
889 continue;
890 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
891 continue;
892 addr = extract_typed_address (buf, ptr_type);
893 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
894 &current_target);
4b7d1f7f 895 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
896
897 if (addr_p)
898 *addr_p = addr;
899 if (elf_gnu_ifunc_record_cache (name, addr))
900 return 1;
901 }
902
903 return 0;
904}
905
906/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
907 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
908 is not NULL) and the function returns 1. It returns 0 otherwise.
909
910 Both the elf_objfile_gnu_ifunc_cache_data hash table and
911 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
912
913static int
914elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
915{
916 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
917 return 1;
dea91a5c 918
07be84bf
JK
919 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
920 return 1;
921
922 return 0;
923}
924
925/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
926 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
927 is the entry point of the resolved STT_GNU_IFUNC target function to call.
928 */
929
930static CORE_ADDR
931elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
932{
2c02bd72 933 const char *name_at_pc;
07be84bf
JK
934 CORE_ADDR start_at_pc, address;
935 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
936 struct value *function, *address_val;
937
938 /* Try first any non-intrusive methods without an inferior call. */
939
940 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
941 && start_at_pc == pc)
942 {
943 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
944 return address;
945 }
946 else
947 name_at_pc = NULL;
948
949 function = allocate_value (func_func_type);
950 set_value_address (function, pc);
951
952 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
953 function entry address. ADDRESS may be a function descriptor. */
954
955 address_val = call_function_by_hand (function, 0, NULL);
956 address = value_as_address (address_val);
957 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
958 &current_target);
4b7d1f7f 959 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
960
961 if (name_at_pc)
962 elf_gnu_ifunc_record_cache (name_at_pc, address);
963
964 return address;
965}
966
0e30163f
JK
967/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
968
969static void
970elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
971{
972 struct breakpoint *b_return;
973 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
974 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
975 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
976 int thread_id = pid_to_thread_id (inferior_ptid);
977
978 gdb_assert (b->type == bp_gnu_ifunc_resolver);
979
980 for (b_return = b->related_breakpoint; b_return != b;
981 b_return = b_return->related_breakpoint)
982 {
983 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
984 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
985 gdb_assert (frame_id_p (b_return->frame_id));
986
987 if (b_return->thread == thread_id
988 && b_return->loc->requested_address == prev_pc
989 && frame_id_eq (b_return->frame_id, prev_frame_id))
990 break;
991 }
992
993 if (b_return == b)
994 {
995 struct symtab_and_line sal;
996
997 /* No need to call find_pc_line for symbols resolving as this is only
998 a helper breakpointer never shown to the user. */
999
1000 init_sal (&sal);
1001 sal.pspace = current_inferior ()->pspace;
1002 sal.pc = prev_pc;
1003 sal.section = find_pc_overlay (sal.pc);
1004 sal.explicit_pc = 1;
1005 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1006 prev_frame_id,
1007 bp_gnu_ifunc_resolver_return);
1008
c70a6932
JK
1009 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1010 prev_frame = NULL;
1011
0e30163f
JK
1012 /* Add new b_return to the ring list b->related_breakpoint. */
1013 gdb_assert (b_return->related_breakpoint == b_return);
1014 b_return->related_breakpoint = b->related_breakpoint;
1015 b->related_breakpoint = b_return;
1016 }
1017}
1018
1019/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1020
1021static void
1022elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1023{
1024 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1025 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1026 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1027 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 1028 struct value *func_func;
0e30163f
JK
1029 struct value *value;
1030 CORE_ADDR resolved_address, resolved_pc;
1031 struct symtab_and_line sal;
f1310107 1032 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
1033
1034 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1035
0e30163f
JK
1036 while (b->related_breakpoint != b)
1037 {
1038 struct breakpoint *b_next = b->related_breakpoint;
1039
1040 switch (b->type)
1041 {
1042 case bp_gnu_ifunc_resolver:
1043 break;
1044 case bp_gnu_ifunc_resolver_return:
1045 delete_breakpoint (b);
1046 break;
1047 default:
1048 internal_error (__FILE__, __LINE__,
1049 _("handle_inferior_event: Invalid "
1050 "gnu-indirect-function breakpoint type %d"),
1051 (int) b->type);
1052 }
1053 b = b_next;
1054 }
1055 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1056 gdb_assert (b->loc->next == NULL);
1057
1058 func_func = allocate_value (func_func_type);
1059 set_value_address (func_func, b->loc->related_address);
1060
1061 value = allocate_value (value_type);
1062 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1063 value_contents_raw (value), NULL);
1064 resolved_address = value_as_address (value);
1065 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1066 resolved_address,
1067 &current_target);
4b7d1f7f 1068 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1069
f8eba3c6 1070 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
0e30163f
JK
1071 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1072
1073 sal = find_pc_line (resolved_pc, 0);
1074 sals.nelts = 1;
1075 sals.sals = &sal;
f1310107 1076 sals_end.nelts = 0;
0e30163f
JK
1077
1078 b->type = bp_breakpoint;
f1310107 1079 update_breakpoint_locations (b, sals, sals_end);
0e30163f
JK
1080}
1081
2750ef27
TT
1082/* A helper function for elf_symfile_read that reads the minimal
1083 symbols. */
c906108c
SS
1084
1085static void
5f6cac40
TT
1086elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1087 const struct elfinfo *ei)
c906108c 1088{
63524580 1089 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c 1090 struct cleanup *back_to;
62553543
EZ
1091 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1092 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1093 asymbol *synthsyms;
d2f4b8fe 1094 struct dbx_symfile_info *dbx;
c906108c 1095
45cfd468
DE
1096 if (symtab_create_debug)
1097 {
1098 fprintf_unfiltered (gdb_stdlog,
1099 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1100 objfile_name (objfile));
45cfd468
DE
1101 }
1102
5f6cac40
TT
1103 /* If we already have minsyms, then we can skip some work here.
1104 However, if there were stabs or mdebug sections, we go ahead and
1105 redo all the work anyway, because the psym readers for those
1106 kinds of debuginfo need extra information found here. This can
1107 go away once all types of symbols are in the per-BFD object. */
1108 if (objfile->per_bfd->minsyms_read
1109 && ei->stabsect == NULL
1110 && ei->mdebugsect == NULL)
1111 {
1112 if (symtab_create_debug)
1113 fprintf_unfiltered (gdb_stdlog,
1114 "... minimal symbols previously read\n");
1115 return;
1116 }
1117
c906108c 1118 init_minimal_symbol_collection ();
56e290f4 1119 back_to = make_cleanup_discard_minimal_symbols ();
c906108c 1120
0963b4bd 1121 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1122 dbx = XCNEW (struct dbx_symfile_info);
1123 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
12b9c64f 1124 make_cleanup (free_elfinfo, (void *) objfile);
c906108c 1125
3e43a32a 1126 /* Process the normal ELF symbol table first. This may write some
d2f4b8fe
TT
1127 chain of info into the dbx_symfile_info of the objfile, which can
1128 later be used by elfstab_offset_sections. */
c906108c 1129
62553543
EZ
1130 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1131 if (storage_needed < 0)
3e43a32a
MS
1132 error (_("Can't read symbols from %s: %s"),
1133 bfd_get_filename (objfile->obfd),
62553543
EZ
1134 bfd_errmsg (bfd_get_error ()));
1135
1136 if (storage_needed > 0)
1137 {
1138 symbol_table = (asymbol **) xmalloc (storage_needed);
1139 make_cleanup (xfree, symbol_table);
1140 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1141
1142 if (symcount < 0)
3e43a32a
MS
1143 error (_("Can't read symbols from %s: %s"),
1144 bfd_get_filename (objfile->obfd),
62553543
EZ
1145 bfd_errmsg (bfd_get_error ()));
1146
04a679b8 1147 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1148 }
c906108c
SS
1149
1150 /* Add the dynamic symbols. */
1151
62553543
EZ
1152 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1153
1154 if (storage_needed > 0)
1155 {
3f1eff0a
JK
1156 /* Memory gets permanently referenced from ABFD after
1157 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1158 It happens only in the case when elf_slurp_reloc_table sees
1159 asection->relocation NULL. Determining which section is asection is
1160 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1161 implementation detail, though. */
1162
1163 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
62553543
EZ
1164 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1165 dyn_symbol_table);
1166
1167 if (dynsymcount < 0)
3e43a32a
MS
1168 error (_("Can't read symbols from %s: %s"),
1169 bfd_get_filename (objfile->obfd),
62553543
EZ
1170 bfd_errmsg (bfd_get_error ()));
1171
04a679b8 1172 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1173
1174 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1175 }
1176
63524580
JK
1177 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1178 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1179
1180 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1181 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1182 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1183 read the code address from .opd while it reads the .symtab section from
1184 a separate debug info file as the .opd section is SHT_NOBITS there.
1185
1186 With SYNTH_ABFD the .opd section will be read from the original
1187 backlinked binary where it is valid. */
1188
1189 if (objfile->separate_debug_objfile_backlink)
1190 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1191 else
1192 synth_abfd = abfd;
1193
62553543
EZ
1194 /* Add synthetic symbols - for instance, names for any PLT entries. */
1195
63524580 1196 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1197 dynsymcount, dyn_symbol_table,
1198 &synthsyms);
1199 if (synthcount > 0)
1200 {
1201 asymbol **synth_symbol_table;
1202 long i;
1203
1204 make_cleanup (xfree, synthsyms);
1205 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1206 for (i = 0; i < synthcount; i++)
9f20e3da 1207 synth_symbol_table[i] = synthsyms + i;
62553543 1208 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1209 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1210 synth_symbol_table, 1);
62553543 1211 }
c906108c 1212
7134143f
DJ
1213 /* Install any minimal symbols that have been collected as the current
1214 minimal symbols for this objfile. The debug readers below this point
1215 should not generate new minimal symbols; if they do it's their
1216 responsibility to install them. "mdebug" appears to be the only one
1217 which will do this. */
1218
1219 install_minimal_symbols (objfile);
1220 do_cleanups (back_to);
1221
4f00dda3
DE
1222 if (symtab_create_debug)
1223 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1224}
1225
1226/* Scan and build partial symbols for a symbol file.
1227 We have been initialized by a call to elf_symfile_init, which
1228 currently does nothing.
1229
1230 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1231 in each section. We simplify it down to a single offset for all
1232 symbols. FIXME.
1233
1234 This function only does the minimum work necessary for letting the
1235 user "name" things symbolically; it does not read the entire symtab.
1236 Instead, it reads the external and static symbols and puts them in partial
1237 symbol tables. When more extensive information is requested of a
1238 file, the corresponding partial symbol table is mutated into a full
1239 fledged symbol table by going back and reading the symbols
1240 for real.
1241
1242 We look for sections with specific names, to tell us what debug
1243 format to look for: FIXME!!!
1244
1245 elfstab_build_psymtabs() handles STABS symbols;
1246 mdebug_build_psymtabs() handles ECOFF debugging information.
1247
1248 Note that ELF files have a "minimal" symbol table, which looks a lot
1249 like a COFF symbol table, but has only the minimal information necessary
1250 for linking. We process this also, and use the information to
1251 build gdb's minimal symbol table. This gives us some minimal debugging
1252 capability even for files compiled without -g. */
1253
1254static void
1255elf_symfile_read (struct objfile *objfile, int symfile_flags)
1256{
1257 bfd *abfd = objfile->obfd;
1258 struct elfinfo ei;
1259
2750ef27 1260 memset ((char *) &ei, 0, sizeof (ei));
12b9c64f 1261 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1262
5f6cac40
TT
1263 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1264
c906108c
SS
1265 /* ELF debugging information is inserted into the psymtab in the
1266 order of least informative first - most informative last. Since
1267 the psymtab table is searched `most recent insertion first' this
1268 increases the probability that more detailed debug information
1269 for a section is found.
1270
1271 For instance, an object file might contain both .mdebug (XCOFF)
1272 and .debug_info (DWARF2) sections then .mdebug is inserted first
1273 (searched last) and DWARF2 is inserted last (searched first). If
1274 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1275 an included file XCOFF info is useless. */
c906108c
SS
1276
1277 if (ei.mdebugsect)
1278 {
1279 const struct ecoff_debug_swap *swap;
1280
1281 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1282 information. */
c906108c
SS
1283 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1284 if (swap)
d4f3574e 1285 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1286 }
1287 if (ei.stabsect)
1288 {
1289 asection *str_sect;
1290
1291 /* Stab sections have an associated string table that looks like
c5aa993b 1292 a separate section. */
c906108c
SS
1293 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1294
1295 /* FIXME should probably warn about a stab section without a stabstr. */
1296 if (str_sect)
1297 elfstab_build_psymtabs (objfile,
086df311 1298 ei.stabsect,
c906108c
SS
1299 str_sect->filepos,
1300 bfd_section_size (abfd, str_sect));
1301 }
9291a0cd 1302
251d32d9 1303 if (dwarf2_has_info (objfile, NULL))
b11896a5 1304 {
3e03848b
JK
1305 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1306 information present in OBJFILE. If there is such debug info present
1307 never use .gdb_index. */
1308
1309 if (!objfile_has_partial_symbols (objfile)
1310 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1311 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1312 else
1313 {
1314 /* It is ok to do this even if the stabs reader made some
1315 partial symbols, because OBJF_PSYMTABS_READ has not been
1316 set, and so our lazy reader function will still be called
1317 when needed. */
8fb8eb5c 1318 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1319 }
1320 }
3e43a32a
MS
1321 /* If the file has its own symbol tables it has no separate debug
1322 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1323 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1324 `.note.gnu.build-id'.
1325
1326 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1327 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1328 an objfile via find_separate_debug_file_in_section there was no separate
1329 debug info available. Therefore do not attempt to search for another one,
1330 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1331 be NULL and we would possibly violate it. */
1332
1333 else if (!objfile_has_partial_symbols (objfile)
1334 && objfile->separate_debug_objfile == NULL
1335 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f
TG
1336 {
1337 char *debugfile;
1338
1339 debugfile = find_separate_debug_file_by_buildid (objfile);
1340
1341 if (debugfile == NULL)
1342 debugfile = find_separate_debug_file_by_debuglink (objfile);
1343
1344 if (debugfile)
1345 {
8ac244b4 1346 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
9cce227f 1347 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1348
8ac244b4 1349 make_cleanup_bfd_unref (abfd);
24ba069a 1350 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
8ac244b4 1351 do_cleanups (cleanup);
9cce227f
TG
1352 }
1353 }
c906108c
SS
1354}
1355
b11896a5
TT
1356/* Callback to lazily read psymtabs. */
1357
1358static void
1359read_psyms (struct objfile *objfile)
1360{
251d32d9 1361 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1362 dwarf2_build_psymtabs (objfile);
1363}
1364
d2f4b8fe
TT
1365/* This cleans up the objfile's dbx symfile info, and the chain of
1366 stab_section_info's, that might be dangling from it. */
c906108c
SS
1367
1368static void
12b9c64f 1369free_elfinfo (void *objp)
c906108c 1370{
c5aa993b 1371 struct objfile *objfile = (struct objfile *) objp;
d2f4b8fe 1372 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1373 struct stab_section_info *ssi, *nssi;
1374
1375 ssi = dbxinfo->stab_section_info;
1376 while (ssi)
1377 {
1378 nssi = ssi->next;
2dc74dc1 1379 xfree (ssi);
c906108c
SS
1380 ssi = nssi;
1381 }
1382
1383 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1384}
1385
1386
1387/* Initialize anything that needs initializing when a completely new symbol
1388 file is specified (not just adding some symbols from another file, e.g. a
1389 shared library).
1390
3e43a32a
MS
1391 We reinitialize buildsym, since we may be reading stabs from an ELF
1392 file. */
c906108c
SS
1393
1394static void
fba45db2 1395elf_new_init (struct objfile *ignore)
c906108c
SS
1396{
1397 stabsread_new_init ();
1398 buildsym_new_init ();
1399}
1400
1401/* Perform any local cleanups required when we are done with a particular
1402 objfile. I.E, we are in the process of discarding all symbol information
1403 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1404 objfile struct from the global list of known objfiles. */
c906108c
SS
1405
1406static void
fba45db2 1407elf_symfile_finish (struct objfile *objfile)
c906108c 1408{
fe3e1990 1409 dwarf2_free_objfile (objfile);
c906108c
SS
1410}
1411
1412/* ELF specific initialization routine for reading symbols.
1413
1414 It is passed a pointer to a struct sym_fns which contains, among other
1415 things, the BFD for the file whose symbols are being read, and a slot for
1416 a pointer to "private data" which we can fill with goodies.
1417
1418 For now at least, we have nothing in particular to do, so this function is
0963b4bd 1419 just a stub. */
c906108c
SS
1420
1421static void
fba45db2 1422elf_symfile_init (struct objfile *objfile)
c906108c
SS
1423{
1424 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1425 find this causes a significant slowdown in gdb then we could
1426 set it in the debug symbol readers only when necessary. */
1427 objfile->flags |= OBJF_REORDERED;
1428}
1429
1430/* When handling an ELF file that contains Sun STABS debug info,
1431 some of the debug info is relative to the particular chunk of the
1432 section that was generated in its individual .o file. E.g.
1433 offsets to static variables are relative to the start of the data
1434 segment *for that module before linking*. This information is
1435 painfully squirreled away in the ELF symbol table as local symbols
1436 with wierd names. Go get 'em when needed. */
1437
1438void
fba45db2 1439elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
c906108c 1440{
72b9f47f 1441 const char *filename = pst->filename;
d2f4b8fe 1442 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1443 struct stab_section_info *maybe = dbx->stab_section_info;
1444 struct stab_section_info *questionable = 0;
1445 int i;
c906108c
SS
1446
1447 /* The ELF symbol info doesn't include path names, so strip the path
1448 (if any) from the psymtab filename. */
0ba1096a 1449 filename = lbasename (filename);
c906108c
SS
1450
1451 /* FIXME: This linear search could speed up significantly
1452 if it was chained in the right order to match how we search it,
0963b4bd 1453 and if we unchained when we found a match. */
c906108c
SS
1454 for (; maybe; maybe = maybe->next)
1455 {
1456 if (filename[0] == maybe->filename[0]
0ba1096a 1457 && filename_cmp (filename, maybe->filename) == 0)
c906108c
SS
1458 {
1459 /* We found a match. But there might be several source files
1460 (from different directories) with the same name. */
1461 if (0 == maybe->found)
1462 break;
c5aa993b 1463 questionable = maybe; /* Might use it later. */
c906108c
SS
1464 }
1465 }
1466
1467 if (maybe == 0 && questionable != 0)
1468 {
23136709 1469 complaint (&symfile_complaints,
3e43a32a
MS
1470 _("elf/stab section information questionable for %s"),
1471 filename);
c906108c
SS
1472 maybe = questionable;
1473 }
1474
1475 if (maybe)
1476 {
1477 /* Found it! Allocate a new psymtab struct, and fill it in. */
1478 maybe->found++;
1479 pst->section_offsets = (struct section_offsets *)
dea91a5c 1480 obstack_alloc (&objfile->objfile_obstack,
a39a16c4
MM
1481 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1482 for (i = 0; i < maybe->num_sections; i++)
a4c8257b 1483 (pst->section_offsets)->offsets[i] = maybe->sections[i];
c906108c
SS
1484 return;
1485 }
1486
1487 /* We were unable to find any offsets for this file. Complain. */
c5aa993b 1488 if (dbx->stab_section_info) /* If there *is* any info, */
23136709 1489 complaint (&symfile_complaints,
e2e0b3e5 1490 _("elf/stab section information missing for %s"), filename);
c906108c 1491}
55aa24fb
SDJ
1492
1493/* Implementation of `sym_get_probes', as documented in symfile.h. */
1494
1495static VEC (probe_p) *
1496elf_get_probes (struct objfile *objfile)
1497{
5d9cf8a4 1498 VEC (probe_p) *probes_per_bfd;
55aa24fb
SDJ
1499
1500 /* Have we parsed this objfile's probes already? */
5d9cf8a4 1501 probes_per_bfd = bfd_data (objfile->obfd, probe_key);
55aa24fb 1502
5d9cf8a4 1503 if (!probes_per_bfd)
55aa24fb
SDJ
1504 {
1505 int ix;
1506 const struct probe_ops *probe_ops;
1507
1508 /* Here we try to gather information about all types of probes from the
1509 objfile. */
1510 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1511 ix++)
5d9cf8a4 1512 probe_ops->get_probes (&probes_per_bfd, objfile);
55aa24fb 1513
5d9cf8a4 1514 if (probes_per_bfd == NULL)
55aa24fb 1515 {
5d9cf8a4
TT
1516 VEC_reserve (probe_p, probes_per_bfd, 1);
1517 gdb_assert (probes_per_bfd != NULL);
55aa24fb
SDJ
1518 }
1519
5d9cf8a4 1520 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1521 }
1522
5d9cf8a4 1523 return probes_per_bfd;
55aa24fb
SDJ
1524}
1525
55aa24fb
SDJ
1526/* Helper function used to free the space allocated for storing SystemTap
1527 probe information. */
1528
1529static void
5d9cf8a4 1530probe_key_free (bfd *abfd, void *d)
55aa24fb
SDJ
1531{
1532 int ix;
1533 VEC (probe_p) *probes = d;
1534 struct probe *probe;
1535
1536 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1537 probe->pops->destroy (probe);
1538
1539 VEC_free (probe_p, probes);
1540}
1541
c906108c 1542\f
55aa24fb
SDJ
1543
1544/* Implementation `sym_probe_fns', as documented in symfile.h. */
1545
1546static const struct sym_probe_fns elf_probe_fns =
1547{
25f9533e 1548 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1549};
1550
c906108c
SS
1551/* Register that we are able to handle ELF object file formats. */
1552
00b5771c 1553static const struct sym_fns elf_sym_fns =
c906108c 1554{
3e43a32a
MS
1555 elf_new_init, /* init anything gbl to entire symtab */
1556 elf_symfile_init, /* read initial info, setup for sym_read() */
1557 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1558 NULL, /* sym_read_psymbols */
1559 elf_symfile_finish, /* finished with file, cleanup */
1560 default_symfile_offsets, /* Translate ext. to int. relocation */
1561 elf_symfile_segments, /* Get segment information from a file. */
1562 NULL,
1563 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1564 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1565 &psym_functions
1566};
1567
1568/* The same as elf_sym_fns, but not registered and lazily reads
1569 psymbols. */
1570
1571static const struct sym_fns elf_sym_fns_lazy_psyms =
1572{
b11896a5
TT
1573 elf_new_init, /* init anything gbl to entire symtab */
1574 elf_symfile_init, /* read initial info, setup for sym_read() */
1575 elf_symfile_read, /* read a symbol file into symtab */
1576 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1577 elf_symfile_finish, /* finished with file, cleanup */
1578 default_symfile_offsets, /* Translate ext. to int. relocation */
1579 elf_symfile_segments, /* Get segment information from a file. */
1580 NULL,
1581 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1582 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1583 &psym_functions
c906108c
SS
1584};
1585
9291a0cd
TT
1586/* The same as elf_sym_fns, but not registered and uses the
1587 DWARF-specific GNU index rather than psymtab. */
00b5771c 1588static const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1589{
3e43a32a
MS
1590 elf_new_init, /* init anything gbl to entire symab */
1591 elf_symfile_init, /* read initial info, setup for sym_red() */
1592 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1593 NULL, /* sym_read_psymbols */
3e43a32a
MS
1594 elf_symfile_finish, /* finished with file, cleanup */
1595 default_symfile_offsets, /* Translate ext. to int. relocatin */
1596 elf_symfile_segments, /* Get segment information from a file. */
1597 NULL,
1598 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1599 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1600 &dwarf2_gdb_index_functions
9291a0cd
TT
1601};
1602
07be84bf
JK
1603/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1604
1605static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1606{
1607 elf_gnu_ifunc_resolve_addr,
1608 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1609 elf_gnu_ifunc_resolver_stop,
1610 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1611};
1612
c906108c 1613void
fba45db2 1614_initialize_elfread (void)
c906108c 1615{
5d9cf8a4 1616 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1617 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1618
1619 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1620 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1621}
This page took 1.039121 seconds and 4 git commands to generate.