DWARF-5: .debug_names index producer
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
61baf725 3 Copyright (C) 1991-2017 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
f00aae0f 48#include "location.h"
e1b2624a 49#include "auxv.h"
c906108c 50
b11896a5 51/* Forward declarations. */
e36122e9
TT
52extern const struct sym_fns elf_sym_fns_gdb_index;
53extern const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 54
c906108c 55/* The struct elfinfo is available only during ELF symbol table and
6426a772 56 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
57 It's local to elf_symfile_read. */
58
c5aa993b
JM
59struct elfinfo
60 {
c5aa993b 61 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
c906108c 64
5d9cf8a4 65/* Per-BFD data for probe info. */
55aa24fb 66
5d9cf8a4 67static const struct bfd_data *probe_key = NULL;
55aa24fb 68
07be84bf
JK
69/* Minimal symbols located at the GOT entries for .plt - that is the real
70 pointer where the given entry will jump to. It gets updated by the real
71 function address during lazy ld.so resolving in the inferior. These
72 minimal symbols are indexed for <tab>-completion. */
73
74#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
75
31d99776
DJ
76/* Locate the segments in ABFD. */
77
78static struct symfile_segment_data *
79elf_symfile_segments (bfd *abfd)
80{
81 Elf_Internal_Phdr *phdrs, **segments;
82 long phdrs_size;
83 int num_phdrs, num_segments, num_sections, i;
84 asection *sect;
85 struct symfile_segment_data *data;
86
87 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
88 if (phdrs_size == -1)
89 return NULL;
90
224c3ddb 91 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
92 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
93 if (num_phdrs == -1)
94 return NULL;
95
96 num_segments = 0;
8d749320 97 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
98 for (i = 0; i < num_phdrs; i++)
99 if (phdrs[i].p_type == PT_LOAD)
100 segments[num_segments++] = &phdrs[i];
101
102 if (num_segments == 0)
103 return NULL;
104
41bf6aca 105 data = XCNEW (struct symfile_segment_data);
31d99776 106 data->num_segments = num_segments;
fc270c35
TT
107 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
108 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
109
110 for (i = 0; i < num_segments; i++)
111 {
112 data->segment_bases[i] = segments[i]->p_vaddr;
113 data->segment_sizes[i] = segments[i]->p_memsz;
114 }
115
116 num_sections = bfd_count_sections (abfd);
fc270c35 117 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
118
119 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
120 {
121 int j;
122 CORE_ADDR vma;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 vma = bfd_get_section_vma (abfd, sect);
128
129 for (j = 0; j < num_segments; j++)
130 if (segments[j]->p_memsz > 0
131 && vma >= segments[j]->p_vaddr
a366c65a 132 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
133 {
134 data->segment_info[i] = j + 1;
135 break;
136 }
137
ad09a548
DJ
138 /* We should have found a segment for every non-empty section.
139 If we haven't, we will not relocate this section by any
140 offsets we apply to the segments. As an exception, do not
141 warn about SHT_NOBITS sections; in normal ELF execution
142 environments, SHT_NOBITS means zero-initialized and belongs
143 in a segment, but in no-OS environments some tools (e.g. ARM
144 RealView) use SHT_NOBITS for uninitialized data. Since it is
145 uninitialized, it doesn't need a program header. Such
146 binaries are not relocatable. */
147 if (bfd_get_section_size (sect) > 0 && j == num_segments
148 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 149 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
150 bfd_section_name (abfd, sect));
151 }
152
153 return data;
154}
155
c906108c
SS
156/* We are called once per section from elf_symfile_read. We
157 need to examine each section we are passed, check to see
158 if it is something we are interested in processing, and
159 if so, stash away some access information for the section.
160
161 For now we recognize the dwarf debug information sections and
162 line number sections from matching their section names. The
163 ELF definition is no real help here since it has no direct
164 knowledge of DWARF (by design, so any debugging format can be
165 used).
166
167 We also recognize the ".stab" sections used by the Sun compilers
168 released with Solaris 2.
169
170 FIXME: The section names should not be hardwired strings (what
171 should they be? I don't think most object file formats have enough
0963b4bd 172 section flags to specify what kind of debug section it is.
c906108c
SS
173 -kingdon). */
174
175static void
12b9c64f 176elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 177{
52f0bd74 178 struct elfinfo *ei;
c906108c
SS
179
180 ei = (struct elfinfo *) eip;
7ce59000 181 if (strcmp (sectp->name, ".stab") == 0)
c906108c 182 {
c5aa993b 183 ei->stabsect = sectp;
c906108c 184 }
6314a349 185 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 186 {
c5aa993b 187 ei->mdebugsect = sectp;
c906108c
SS
188 }
189}
190
c906108c 191static struct minimal_symbol *
8dddcb8f 192record_minimal_symbol (minimal_symbol_reader &reader,
ce6c454e 193 const char *name, int name_len, bool copy_name,
04a679b8 194 CORE_ADDR address,
f594e5e9
MC
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
c906108c 197{
5e2b427d
UW
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
0875794a
JK
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
85ddcc70 202 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 203
8dddcb8f
TT
204 return reader.record_full (name, name_len, copy_name, address,
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section));
c906108c
SS
208}
209
7f86f058 210/* Read the symbol table of an ELF file.
c906108c 211
62553543 212 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
213 symbol table contains regular, dynamic, or synthetic symbols, add all
214 the global function and data symbols to the minimal symbol table.
c906108c 215
c5aa993b
JM
216 In stabs-in-ELF, as implemented by Sun, there are some local symbols
217 defined in the ELF symbol table, which can be used to locate
218 the beginnings of sections from each ".o" file that was linked to
219 form the executable objfile. We gather any such info and record it
7f86f058 220 in data structures hung off the objfile's private data. */
c906108c 221
6f610d07
UW
222#define ST_REGULAR 0
223#define ST_DYNAMIC 1
224#define ST_SYNTHETIC 2
225
c906108c 226static void
8dddcb8f
TT
227elf_symtab_read (minimal_symbol_reader &reader,
228 struct objfile *objfile, int type,
04a679b8 229 long number_of_symbols, asymbol **symbol_table,
ce6c454e 230 bool copy_names)
c906108c 231{
5e2b427d 232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 233 asymbol *sym;
c906108c 234 long i;
c906108c
SS
235 CORE_ADDR symaddr;
236 enum minimal_symbol_type ms_type;
18a94d75
DE
237 /* Name of the last file symbol. This is either a constant string or is
238 saved on the objfile's filename cache. */
0af1e9a5 239 const char *filesymname = "";
d4f3574e 240 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
241 int elf_make_msymbol_special_p
242 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 243
0cc7b392 244 for (i = 0; i < number_of_symbols; i++)
c906108c 245 {
0cc7b392
DJ
246 sym = symbol_table[i];
247 if (sym->name == NULL || *sym->name == '\0')
c906108c 248 {
0cc7b392 249 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 250 that are null strings (may happen). */
0cc7b392
DJ
251 continue;
252 }
c906108c 253
74763737
DJ
254 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
255 symbols which do not correspond to objects in the symbol table,
256 but have some other target-specific meaning. */
257 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
258 {
259 if (gdbarch_record_special_symbol_p (gdbarch))
260 gdbarch_record_special_symbol (gdbarch, objfile, sym);
261 continue;
262 }
74763737 263
6f610d07 264 if (type == ST_DYNAMIC
45dfa85a 265 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
266 && (sym->flags & BSF_FUNCTION))
267 {
268 struct minimal_symbol *msym;
02c75f72 269 bfd *abfd = objfile->obfd;
dea91a5c 270 asection *sect;
0cc7b392
DJ
271
272 /* Symbol is a reference to a function defined in
273 a shared library.
274 If its value is non zero then it is usually the address
275 of the corresponding entry in the procedure linkage table,
276 plus the desired section offset.
277 If its value is zero then the dynamic linker has to resolve
0963b4bd 278 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
279 for this symbol in the executable file, so we skip it. */
280 symaddr = sym->value;
281 if (symaddr == 0)
282 continue;
02c75f72
UW
283
284 /* sym->section is the undefined section. However, we want to
285 record the section where the PLT stub resides with the
286 minimal symbol. Search the section table for the one that
287 covers the stub's address. */
288 for (sect = abfd->sections; sect != NULL; sect = sect->next)
289 {
290 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
291 continue;
292
293 if (symaddr >= bfd_get_section_vma (abfd, sect)
294 && symaddr < bfd_get_section_vma (abfd, sect)
295 + bfd_get_section_size (sect))
296 break;
297 }
298 if (!sect)
299 continue;
300
828cfa8d
JB
301 /* On ia64-hpux, we have discovered that the system linker
302 adds undefined symbols with nonzero addresses that cannot
303 be right (their address points inside the code of another
304 function in the .text section). This creates problems
305 when trying to determine which symbol corresponds to
306 a given address.
307
308 We try to detect those buggy symbols by checking which
309 section we think they correspond to. Normally, PLT symbols
310 are stored inside their own section, and the typical name
311 for that section is ".plt". So, if there is a ".plt"
312 section, and yet the section name of our symbol does not
313 start with ".plt", we ignore that symbol. */
61012eef 314 if (!startswith (sect->name, ".plt")
828cfa8d
JB
315 && bfd_get_section_by_name (abfd, ".plt") != NULL)
316 continue;
317
0cc7b392 318 msym = record_minimal_symbol
8dddcb8f 319 (reader, sym->name, strlen (sym->name), copy_names,
04a679b8 320 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 321 if (msym != NULL)
9b807e7b
MR
322 {
323 msym->filename = filesymname;
3e29f34a
MR
324 if (elf_make_msymbol_special_p)
325 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 326 }
0cc7b392
DJ
327 continue;
328 }
c906108c 329
0cc7b392
DJ
330 /* If it is a nonstripped executable, do not enter dynamic
331 symbols, as the dynamic symbol table is usually a subset
332 of the main symbol table. */
6f610d07 333 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
334 continue;
335 if (sym->flags & BSF_FILE)
336 {
9a3c8263
SM
337 filesymname
338 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
339 objfile->per_bfd->filename_cache);
0cc7b392
DJ
340 }
341 else if (sym->flags & BSF_SECTION_SYM)
342 continue;
bb869963
SDJ
343 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
344 | BSF_GNU_UNIQUE))
0cc7b392
DJ
345 {
346 struct minimal_symbol *msym;
347
348 /* Select global/local/weak symbols. Note that bfd puts abs
349 symbols in their own section, so all symbols we are
0963b4bd
MS
350 interested in will have a section. */
351 /* Bfd symbols are section relative. */
0cc7b392 352 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
353 /* For non-absolute symbols, use the type of the section
354 they are relative to, to intuit text/data. Bfd provides
0963b4bd 355 no way of figuring this out for absolute symbols. */
45dfa85a 356 if (sym->section == bfd_abs_section_ptr)
c906108c 357 {
0cc7b392
DJ
358 /* This is a hack to get the minimal symbol type
359 right for Irix 5, which has absolute addresses
6f610d07
UW
360 with special section indices for dynamic symbols.
361
362 NOTE: uweigand-20071112: Synthetic symbols do not
363 have an ELF-private part, so do not touch those. */
dea91a5c 364 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
365 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
366
367 switch (shndx)
c906108c 368 {
0cc7b392
DJ
369 case SHN_MIPS_TEXT:
370 ms_type = mst_text;
371 break;
372 case SHN_MIPS_DATA:
373 ms_type = mst_data;
374 break;
375 case SHN_MIPS_ACOMMON:
376 ms_type = mst_bss;
377 break;
378 default:
379 ms_type = mst_abs;
380 }
381
382 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 383 symbols, relocate all others by section offset. */
0cc7b392
DJ
384 if (ms_type != mst_abs)
385 {
386 if (sym->name[0] == '.')
387 continue;
c906108c 388 }
0cc7b392
DJ
389 }
390 else if (sym->section->flags & SEC_CODE)
391 {
bb869963 392 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 393 {
0875794a
JK
394 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
395 ms_type = mst_text_gnu_ifunc;
396 else
397 ms_type = mst_text;
0cc7b392 398 }
90359a16
JK
399 /* The BSF_SYNTHETIC check is there to omit ppc64 function
400 descriptors mistaken for static functions starting with 'L'.
401 */
402 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
403 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
404 || ((sym->flags & BSF_LOCAL)
405 && sym->name[0] == '$'
406 && sym->name[1] == 'L'))
407 /* Looks like a compiler-generated label. Skip
408 it. The assembler should be skipping these (to
409 keep executables small), but apparently with
410 gcc on the (deleted) delta m88k SVR4, it loses.
411 So to have us check too should be harmless (but
412 I encourage people to fix this in the assembler
413 instead of adding checks here). */
414 continue;
415 else
416 {
417 ms_type = mst_file_text;
c906108c 418 }
0cc7b392
DJ
419 }
420 else if (sym->section->flags & SEC_ALLOC)
421 {
bb869963 422 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 423 {
0cc7b392 424 if (sym->section->flags & SEC_LOAD)
c906108c 425 {
0cc7b392 426 ms_type = mst_data;
c906108c 427 }
c906108c
SS
428 else
429 {
0cc7b392 430 ms_type = mst_bss;
c906108c
SS
431 }
432 }
0cc7b392 433 else if (sym->flags & BSF_LOCAL)
c906108c 434 {
0cc7b392
DJ
435 if (sym->section->flags & SEC_LOAD)
436 {
437 ms_type = mst_file_data;
c906108c
SS
438 }
439 else
440 {
0cc7b392 441 ms_type = mst_file_bss;
c906108c
SS
442 }
443 }
444 else
445 {
0cc7b392 446 ms_type = mst_unknown;
c906108c 447 }
0cc7b392
DJ
448 }
449 else
450 {
451 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 452 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
453 hob with actions like finding what function the PC
454 is in. Ignore them if they aren't text, data, or bss. */
455 /* ms_type = mst_unknown; */
0963b4bd 456 continue; /* Skip this symbol. */
0cc7b392
DJ
457 }
458 msym = record_minimal_symbol
8dddcb8f 459 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 460 ms_type, sym->section, objfile);
6f610d07 461
0cc7b392
DJ
462 if (msym)
463 {
6f610d07 464 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 465 ELF-private part. */
6f610d07 466 if (type != ST_SYNTHETIC)
24c274a1
AM
467 {
468 /* Pass symbol size field in via BFD. FIXME!!! */
469 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
470 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
471 }
dea91a5c 472
a103a963 473 msym->filename = filesymname;
3e29f34a
MR
474 if (elf_make_msymbol_special_p)
475 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 476 }
2eaf8d2a 477
715c6909
TT
478 /* If we see a default versioned symbol, install it under
479 its version-less name. */
480 if (msym != NULL)
481 {
482 const char *atsign = strchr (sym->name, '@');
483
484 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
485 {
486 int len = atsign - sym->name;
487
ce6c454e 488 record_minimal_symbol (reader, sym->name, len, true, symaddr,
715c6909
TT
489 ms_type, sym->section, objfile);
490 }
491 }
492
2eaf8d2a
DJ
493 /* For @plt symbols, also record a trampoline to the
494 destination symbol. The @plt symbol will be used in
495 disassembly, and the trampoline will be used when we are
496 trying to find the target. */
497 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
498 {
499 int len = strlen (sym->name);
500
501 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
502 {
2eaf8d2a
DJ
503 struct minimal_symbol *mtramp;
504
ce6c454e
TT
505 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
506 true, symaddr,
2eaf8d2a
DJ
507 mst_solib_trampoline,
508 sym->section, objfile);
509 if (mtramp)
510 {
d9eaeb59 511 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 512 mtramp->created_by_gdb = 1;
2eaf8d2a 513 mtramp->filename = filesymname;
3e29f34a
MR
514 if (elf_make_msymbol_special_p)
515 gdbarch_elf_make_msymbol_special (gdbarch,
516 sym, mtramp);
2eaf8d2a
DJ
517 }
518 }
519 }
c906108c 520 }
c906108c
SS
521 }
522}
523
07be84bf
JK
524/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
525 for later look ups of which function to call when user requests
526 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
527 library defining `function' we cannot yet know while reading OBJFILE which
528 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
529 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
530
531static void
8dddcb8f
TT
532elf_rel_plt_read (minimal_symbol_reader &reader,
533 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
534{
535 bfd *obfd = objfile->obfd;
536 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
537 asection *plt, *relplt, *got_plt;
07be84bf
JK
538 int plt_elf_idx;
539 bfd_size_type reloc_count, reloc;
df6d5441 540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
541 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
542 size_t ptr_size = TYPE_LENGTH (ptr_type);
543
544 if (objfile->separate_debug_objfile_backlink)
545 return;
546
547 plt = bfd_get_section_by_name (obfd, ".plt");
548 if (plt == NULL)
549 return;
550 plt_elf_idx = elf_section_data (plt)->this_idx;
551
552 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
553 if (got_plt == NULL)
4b7d1f7f
WN
554 {
555 /* For platforms where there is no separate .got.plt. */
556 got_plt = bfd_get_section_by_name (obfd, ".got");
557 if (got_plt == NULL)
558 return;
559 }
07be84bf
JK
560
561 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
562 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
563 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
564 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
565 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
566 break;
567 if (relplt == NULL)
568 return;
569
570 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
571 return;
572
26fcd5d7 573 std::string string_buffer;
07be84bf
JK
574
575 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
576 for (reloc = 0; reloc < reloc_count; reloc++)
577 {
22e048c9 578 const char *name;
07be84bf
JK
579 struct minimal_symbol *msym;
580 CORE_ADDR address;
26fcd5d7 581 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 582 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
583
584 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
585 address = relplt->relocation[reloc].address;
586
587 /* Does the pointer reside in the .got.plt section? */
588 if (!(bfd_get_section_vma (obfd, got_plt) <= address
589 && address < bfd_get_section_vma (obfd, got_plt)
590 + bfd_get_section_size (got_plt)))
591 continue;
592
593 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
594 OBJFILE the symbol is undefined and the objfile having NAME defined
595 may not yet have been loaded. */
596
26fcd5d7
TT
597 string_buffer.assign (name);
598 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 599
26fcd5d7
TT
600 msym = record_minimal_symbol (reader, string_buffer.c_str (),
601 string_buffer.size (),
ce6c454e 602 true, address, mst_slot_got_plt, got_plt,
07be84bf
JK
603 objfile);
604 if (msym)
d9eaeb59 605 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 606 }
07be84bf
JK
607}
608
609/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
610
611static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
612
613/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
614
615struct elf_gnu_ifunc_cache
616{
617 /* This is always a function entry address, not a function descriptor. */
618 CORE_ADDR addr;
619
620 char name[1];
621};
622
623/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
624
625static hashval_t
626elf_gnu_ifunc_cache_hash (const void *a_voidp)
627{
9a3c8263
SM
628 const struct elf_gnu_ifunc_cache *a
629 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
630
631 return htab_hash_string (a->name);
632}
633
634/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
635
636static int
637elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
638{
9a3c8263
SM
639 const struct elf_gnu_ifunc_cache *a
640 = (const struct elf_gnu_ifunc_cache *) a_voidp;
641 const struct elf_gnu_ifunc_cache *b
642 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
643
644 return strcmp (a->name, b->name) == 0;
645}
646
647/* Record the target function address of a STT_GNU_IFUNC function NAME is the
648 function entry address ADDR. Return 1 if NAME and ADDR are considered as
649 valid and therefore they were successfully recorded, return 0 otherwise.
650
651 Function does not expect a duplicate entry. Use
652 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
653 exists. */
654
655static int
656elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
657{
7cbd4a93 658 struct bound_minimal_symbol msym;
07be84bf
JK
659 asection *sect;
660 struct objfile *objfile;
661 htab_t htab;
662 struct elf_gnu_ifunc_cache entry_local, *entry_p;
663 void **slot;
664
665 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 666 if (msym.minsym == NULL)
07be84bf 667 return 0;
77e371c0 668 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
669 return 0;
670 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 671 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 672 objfile = msym.objfile;
07be84bf
JK
673
674 /* If .plt jumps back to .plt the symbol is still deferred for later
675 resolution and it has no use for GDB. Besides ".text" this symbol can
676 reside also in ".opd" for ppc64 function descriptor. */
677 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
678 return 0;
679
9a3c8263 680 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
681 if (htab == NULL)
682 {
683 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
684 elf_gnu_ifunc_cache_eq,
685 NULL, &objfile->objfile_obstack,
686 hashtab_obstack_allocate,
687 dummy_obstack_deallocate);
688 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
689 }
690
691 entry_local.addr = addr;
692 obstack_grow (&objfile->objfile_obstack, &entry_local,
693 offsetof (struct elf_gnu_ifunc_cache, name));
694 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
695 entry_p
696 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
697
698 slot = htab_find_slot (htab, entry_p, INSERT);
699 if (*slot != NULL)
700 {
9a3c8263
SM
701 struct elf_gnu_ifunc_cache *entry_found_p
702 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 703 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
704
705 if (entry_found_p->addr != addr)
706 {
707 /* This case indicates buggy inferior program, the resolved address
708 should never change. */
709
710 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
711 "function_address from %s to %s"),
712 name, paddress (gdbarch, entry_found_p->addr),
713 paddress (gdbarch, addr));
714 }
715
716 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
717 }
718 *slot = entry_p;
719
720 return 1;
721}
722
723/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
724 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
725 is not NULL) and the function returns 1. It returns 0 otherwise.
726
727 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
728 function. */
729
730static int
731elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
732{
733 struct objfile *objfile;
734
735 ALL_PSPACE_OBJFILES (current_program_space, objfile)
736 {
737 htab_t htab;
738 struct elf_gnu_ifunc_cache *entry_p;
739 void **slot;
740
9a3c8263 741 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
742 if (htab == NULL)
743 continue;
744
224c3ddb
SM
745 entry_p = ((struct elf_gnu_ifunc_cache *)
746 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
747 strcpy (entry_p->name, name);
748
749 slot = htab_find_slot (htab, entry_p, NO_INSERT);
750 if (slot == NULL)
751 continue;
9a3c8263 752 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
753 gdb_assert (entry_p != NULL);
754
755 if (addr_p)
756 *addr_p = entry_p->addr;
757 return 1;
758 }
759
760 return 0;
761}
762
763/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
764 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
765 is not NULL) and the function returns 1. It returns 0 otherwise.
766
767 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
768 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
769 prevent cache entries duplicates. */
770
771static int
772elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
773{
774 char *name_got_plt;
775 struct objfile *objfile;
776 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
777
224c3ddb 778 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
779 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
780
781 ALL_PSPACE_OBJFILES (current_program_space, objfile)
782 {
783 bfd *obfd = objfile->obfd;
df6d5441 784 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
785 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
786 size_t ptr_size = TYPE_LENGTH (ptr_type);
787 CORE_ADDR pointer_address, addr;
788 asection *plt;
224c3ddb 789 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 790 struct bound_minimal_symbol msym;
07be84bf
JK
791
792 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 793 if (msym.minsym == NULL)
07be84bf 794 continue;
3b7344d5 795 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 796 continue;
77e371c0 797 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
798
799 plt = bfd_get_section_by_name (obfd, ".plt");
800 if (plt == NULL)
801 continue;
802
3b7344d5 803 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
804 continue;
805 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
806 continue;
807 addr = extract_typed_address (buf, ptr_type);
808 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
809 &current_target);
4b7d1f7f 810 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
811
812 if (addr_p)
813 *addr_p = addr;
814 if (elf_gnu_ifunc_record_cache (name, addr))
815 return 1;
816 }
817
818 return 0;
819}
820
821/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
822 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
823 is not NULL) and the function returns 1. It returns 0 otherwise.
824
825 Both the elf_objfile_gnu_ifunc_cache_data hash table and
826 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
827
828static int
829elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
830{
831 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
832 return 1;
dea91a5c 833
07be84bf
JK
834 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
835 return 1;
836
837 return 0;
838}
839
840/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
841 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
842 is the entry point of the resolved STT_GNU_IFUNC target function to call.
843 */
844
845static CORE_ADDR
846elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
847{
2c02bd72 848 const char *name_at_pc;
07be84bf
JK
849 CORE_ADDR start_at_pc, address;
850 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
851 struct value *function, *address_val;
e1b2624a
AA
852 CORE_ADDR hwcap = 0;
853 struct value *hwcap_val;
07be84bf
JK
854
855 /* Try first any non-intrusive methods without an inferior call. */
856
857 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
858 && start_at_pc == pc)
859 {
860 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
861 return address;
862 }
863 else
864 name_at_pc = NULL;
865
866 function = allocate_value (func_func_type);
1a088441 867 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
868 set_value_address (function, pc);
869
e1b2624a
AA
870 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
871 parameter. FUNCTION is the function entry address. ADDRESS may be a
872 function descriptor. */
07be84bf 873
e1b2624a
AA
874 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
875 hwcap_val = value_from_longest (builtin_type (gdbarch)
876 ->builtin_unsigned_long, hwcap);
7022349d 877 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
07be84bf
JK
878 address = value_as_address (address_val);
879 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
880 &current_target);
4b7d1f7f 881 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
882
883 if (name_at_pc)
884 elf_gnu_ifunc_record_cache (name_at_pc, address);
885
886 return address;
887}
888
0e30163f
JK
889/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
890
891static void
892elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
893{
894 struct breakpoint *b_return;
895 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
896 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
897 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
5d5658a1 898 int thread_id = ptid_to_global_thread_id (inferior_ptid);
0e30163f
JK
899
900 gdb_assert (b->type == bp_gnu_ifunc_resolver);
901
902 for (b_return = b->related_breakpoint; b_return != b;
903 b_return = b_return->related_breakpoint)
904 {
905 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
906 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
907 gdb_assert (frame_id_p (b_return->frame_id));
908
909 if (b_return->thread == thread_id
910 && b_return->loc->requested_address == prev_pc
911 && frame_id_eq (b_return->frame_id, prev_frame_id))
912 break;
913 }
914
915 if (b_return == b)
916 {
0e30163f
JK
917 /* No need to call find_pc_line for symbols resolving as this is only
918 a helper breakpointer never shown to the user. */
919
51abb421 920 symtab_and_line sal;
0e30163f
JK
921 sal.pspace = current_inferior ()->pspace;
922 sal.pc = prev_pc;
923 sal.section = find_pc_overlay (sal.pc);
924 sal.explicit_pc = 1;
454dafbd
TT
925 b_return
926 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
927 prev_frame_id,
928 bp_gnu_ifunc_resolver_return).release ();
0e30163f 929
c70a6932
JK
930 /* set_momentary_breakpoint invalidates PREV_FRAME. */
931 prev_frame = NULL;
932
0e30163f
JK
933 /* Add new b_return to the ring list b->related_breakpoint. */
934 gdb_assert (b_return->related_breakpoint == b_return);
935 b_return->related_breakpoint = b->related_breakpoint;
936 b->related_breakpoint = b_return;
937 }
938}
939
940/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
941
942static void
943elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
944{
945 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
946 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
947 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
948 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 949 struct value *func_func;
0e30163f
JK
950 struct value *value;
951 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
952
953 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
954
0e30163f
JK
955 while (b->related_breakpoint != b)
956 {
957 struct breakpoint *b_next = b->related_breakpoint;
958
959 switch (b->type)
960 {
961 case bp_gnu_ifunc_resolver:
962 break;
963 case bp_gnu_ifunc_resolver_return:
964 delete_breakpoint (b);
965 break;
966 default:
967 internal_error (__FILE__, __LINE__,
968 _("handle_inferior_event: Invalid "
969 "gnu-indirect-function breakpoint type %d"),
970 (int) b->type);
971 }
972 b = b_next;
973 }
974 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
975 gdb_assert (b->loc->next == NULL);
976
977 func_func = allocate_value (func_func_type);
1a088441 978 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
979 set_value_address (func_func, b->loc->related_address);
980
981 value = allocate_value (value_type);
982 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
983 value_contents_raw (value), NULL);
984 resolved_address = value_as_address (value);
985 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
986 resolved_address,
987 &current_target);
4b7d1f7f 988 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 989
f8eba3c6 990 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 991 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 992 resolved_pc);
0e30163f 993
0e30163f 994 b->type = bp_breakpoint;
6c5b2ebe
PA
995 update_breakpoint_locations (b, current_program_space,
996 find_pc_line (resolved_pc, 0), {});
0e30163f
JK
997}
998
2750ef27
TT
999/* A helper function for elf_symfile_read that reads the minimal
1000 symbols. */
c906108c
SS
1001
1002static void
5f6cac40
TT
1003elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1004 const struct elfinfo *ei)
c906108c 1005{
63524580 1006 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1007 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1008 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1009 asymbol *synthsyms;
d2f4b8fe 1010 struct dbx_symfile_info *dbx;
c906108c 1011
45cfd468
DE
1012 if (symtab_create_debug)
1013 {
1014 fprintf_unfiltered (gdb_stdlog,
1015 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1016 objfile_name (objfile));
45cfd468
DE
1017 }
1018
5f6cac40
TT
1019 /* If we already have minsyms, then we can skip some work here.
1020 However, if there were stabs or mdebug sections, we go ahead and
1021 redo all the work anyway, because the psym readers for those
1022 kinds of debuginfo need extra information found here. This can
1023 go away once all types of symbols are in the per-BFD object. */
1024 if (objfile->per_bfd->minsyms_read
1025 && ei->stabsect == NULL
1026 && ei->mdebugsect == NULL)
1027 {
1028 if (symtab_create_debug)
1029 fprintf_unfiltered (gdb_stdlog,
1030 "... minimal symbols previously read\n");
1031 return;
1032 }
1033
d25e8719 1034 minimal_symbol_reader reader (objfile);
c906108c 1035
0963b4bd 1036 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1037 dbx = XCNEW (struct dbx_symfile_info);
1038 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1039
18a94d75 1040 /* Process the normal ELF symbol table first. */
c906108c 1041
62553543
EZ
1042 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1043 if (storage_needed < 0)
3e43a32a
MS
1044 error (_("Can't read symbols from %s: %s"),
1045 bfd_get_filename (objfile->obfd),
62553543
EZ
1046 bfd_errmsg (bfd_get_error ()));
1047
1048 if (storage_needed > 0)
1049 {
80c57053
JK
1050 /* Memory gets permanently referenced from ABFD after
1051 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1052
224c3ddb 1053 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1054 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1055
1056 if (symcount < 0)
3e43a32a
MS
1057 error (_("Can't read symbols from %s: %s"),
1058 bfd_get_filename (objfile->obfd),
62553543
EZ
1059 bfd_errmsg (bfd_get_error ()));
1060
ce6c454e
TT
1061 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1062 false);
62553543 1063 }
c906108c
SS
1064
1065 /* Add the dynamic symbols. */
1066
62553543
EZ
1067 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1068
1069 if (storage_needed > 0)
1070 {
3f1eff0a
JK
1071 /* Memory gets permanently referenced from ABFD after
1072 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1073 It happens only in the case when elf_slurp_reloc_table sees
1074 asection->relocation NULL. Determining which section is asection is
1075 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1076 implementation detail, though. */
1077
224c3ddb 1078 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1079 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1080 dyn_symbol_table);
1081
1082 if (dynsymcount < 0)
3e43a32a
MS
1083 error (_("Can't read symbols from %s: %s"),
1084 bfd_get_filename (objfile->obfd),
62553543
EZ
1085 bfd_errmsg (bfd_get_error ()));
1086
8dddcb8f 1087 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1088 dyn_symbol_table, false);
07be84bf 1089
8dddcb8f 1090 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1091 }
1092
63524580
JK
1093 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1094 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1095
1096 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1097 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1098 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1099 read the code address from .opd while it reads the .symtab section from
1100 a separate debug info file as the .opd section is SHT_NOBITS there.
1101
1102 With SYNTH_ABFD the .opd section will be read from the original
1103 backlinked binary where it is valid. */
1104
1105 if (objfile->separate_debug_objfile_backlink)
1106 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1107 else
1108 synth_abfd = abfd;
1109
62553543
EZ
1110 /* Add synthetic symbols - for instance, names for any PLT entries. */
1111
63524580 1112 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1113 dynsymcount, dyn_symbol_table,
1114 &synthsyms);
1115 if (synthcount > 0)
1116 {
62553543
EZ
1117 long i;
1118
b22e99fd 1119 std::unique_ptr<asymbol *[]>
d1e4a624 1120 synth_symbol_table (new asymbol *[synthcount]);
62553543 1121 for (i = 0; i < synthcount; i++)
9f20e3da 1122 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1123 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1124 synth_symbol_table.get (), true);
ba713918
AL
1125
1126 xfree (synthsyms);
1127 synthsyms = NULL;
62553543 1128 }
c906108c 1129
7134143f
DJ
1130 /* Install any minimal symbols that have been collected as the current
1131 minimal symbols for this objfile. The debug readers below this point
1132 should not generate new minimal symbols; if they do it's their
1133 responsibility to install them. "mdebug" appears to be the only one
1134 which will do this. */
1135
d25e8719 1136 reader.install ();
7134143f 1137
4f00dda3
DE
1138 if (symtab_create_debug)
1139 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1140}
1141
1142/* Scan and build partial symbols for a symbol file.
1143 We have been initialized by a call to elf_symfile_init, which
1144 currently does nothing.
1145
2750ef27
TT
1146 This function only does the minimum work necessary for letting the
1147 user "name" things symbolically; it does not read the entire symtab.
1148 Instead, it reads the external and static symbols and puts them in partial
1149 symbol tables. When more extensive information is requested of a
1150 file, the corresponding partial symbol table is mutated into a full
1151 fledged symbol table by going back and reading the symbols
1152 for real.
1153
1154 We look for sections with specific names, to tell us what debug
1155 format to look for: FIXME!!!
1156
1157 elfstab_build_psymtabs() handles STABS symbols;
1158 mdebug_build_psymtabs() handles ECOFF debugging information.
1159
1160 Note that ELF files have a "minimal" symbol table, which looks a lot
1161 like a COFF symbol table, but has only the minimal information necessary
1162 for linking. We process this also, and use the information to
1163 build gdb's minimal symbol table. This gives us some minimal debugging
1164 capability even for files compiled without -g. */
1165
1166static void
b15cc25c 1167elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1168{
1169 bfd *abfd = objfile->obfd;
1170 struct elfinfo ei;
1171
2750ef27 1172 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1173 if (!(objfile->flags & OBJF_READNEVER))
1174 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1175
5f6cac40
TT
1176 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1177
c906108c
SS
1178 /* ELF debugging information is inserted into the psymtab in the
1179 order of least informative first - most informative last. Since
1180 the psymtab table is searched `most recent insertion first' this
1181 increases the probability that more detailed debug information
1182 for a section is found.
1183
1184 For instance, an object file might contain both .mdebug (XCOFF)
1185 and .debug_info (DWARF2) sections then .mdebug is inserted first
1186 (searched last) and DWARF2 is inserted last (searched first). If
1187 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1188 an included file XCOFF info is useless. */
c906108c
SS
1189
1190 if (ei.mdebugsect)
1191 {
1192 const struct ecoff_debug_swap *swap;
1193
1194 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1195 information. */
c906108c
SS
1196 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1197 if (swap)
d4f3574e 1198 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1199 }
1200 if (ei.stabsect)
1201 {
1202 asection *str_sect;
1203
1204 /* Stab sections have an associated string table that looks like
c5aa993b 1205 a separate section. */
c906108c
SS
1206 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1207
1208 /* FIXME should probably warn about a stab section without a stabstr. */
1209 if (str_sect)
1210 elfstab_build_psymtabs (objfile,
086df311 1211 ei.stabsect,
c906108c
SS
1212 str_sect->filepos,
1213 bfd_section_size (abfd, str_sect));
1214 }
9291a0cd 1215
251d32d9 1216 if (dwarf2_has_info (objfile, NULL))
b11896a5 1217 {
3e03848b
JK
1218 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1219 information present in OBJFILE. If there is such debug info present
1220 never use .gdb_index. */
1221
1222 if (!objfile_has_partial_symbols (objfile)
1223 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1224 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1225 else
1226 {
1227 /* It is ok to do this even if the stabs reader made some
1228 partial symbols, because OBJF_PSYMTABS_READ has not been
1229 set, and so our lazy reader function will still be called
1230 when needed. */
8fb8eb5c 1231 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1232 }
1233 }
3e43a32a
MS
1234 /* If the file has its own symbol tables it has no separate debug
1235 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1236 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1237 `.note.gnu.build-id'.
1238
1239 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1240 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1241 an objfile via find_separate_debug_file_in_section there was no separate
1242 debug info available. Therefore do not attempt to search for another one,
1243 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1244 be NULL and we would possibly violate it. */
1245
1246 else if (!objfile_has_partial_symbols (objfile)
1247 && objfile->separate_debug_objfile == NULL
1248 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1249 {
192b62ce
TT
1250 gdb::unique_xmalloc_ptr<char> debugfile
1251 (find_separate_debug_file_by_buildid (objfile));
9cce227f
TG
1252
1253 if (debugfile == NULL)
192b62ce 1254 debugfile.reset (find_separate_debug_file_by_debuglink (objfile));
9cce227f 1255
192b62ce 1256 if (debugfile != NULL)
9cce227f 1257 {
192b62ce 1258 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.get ()));
d7f9d729 1259
192b62ce
TT
1260 symbol_file_add_separate (abfd.get (), debugfile.get (),
1261 symfile_flags, objfile);
9cce227f
TG
1262 }
1263 }
c906108c
SS
1264}
1265
b11896a5
TT
1266/* Callback to lazily read psymtabs. */
1267
1268static void
1269read_psyms (struct objfile *objfile)
1270{
251d32d9 1271 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1272 dwarf2_build_psymtabs (objfile);
1273}
1274
c906108c
SS
1275/* Initialize anything that needs initializing when a completely new symbol
1276 file is specified (not just adding some symbols from another file, e.g. a
1277 shared library).
1278
3e43a32a
MS
1279 We reinitialize buildsym, since we may be reading stabs from an ELF
1280 file. */
c906108c
SS
1281
1282static void
fba45db2 1283elf_new_init (struct objfile *ignore)
c906108c
SS
1284{
1285 stabsread_new_init ();
1286 buildsym_new_init ();
1287}
1288
1289/* Perform any local cleanups required when we are done with a particular
1290 objfile. I.E, we are in the process of discarding all symbol information
1291 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1292 objfile struct from the global list of known objfiles. */
c906108c
SS
1293
1294static void
fba45db2 1295elf_symfile_finish (struct objfile *objfile)
c906108c 1296{
fe3e1990 1297 dwarf2_free_objfile (objfile);
c906108c
SS
1298}
1299
db7a9bcd 1300/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1301
1302static void
fba45db2 1303elf_symfile_init (struct objfile *objfile)
c906108c
SS
1304{
1305 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1306 find this causes a significant slowdown in gdb then we could
1307 set it in the debug symbol readers only when necessary. */
1308 objfile->flags |= OBJF_REORDERED;
1309}
1310
55aa24fb
SDJ
1311/* Implementation of `sym_get_probes', as documented in symfile.h. */
1312
aaa63a31 1313static const std::vector<probe *> &
55aa24fb
SDJ
1314elf_get_probes (struct objfile *objfile)
1315{
aaa63a31 1316 std::vector<probe *> *probes_per_bfd;
55aa24fb
SDJ
1317
1318 /* Have we parsed this objfile's probes already? */
aaa63a31 1319 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
55aa24fb 1320
aaa63a31 1321 if (probes_per_bfd == NULL)
55aa24fb 1322 {
aaa63a31 1323 probes_per_bfd = new std::vector<probe *>;
55aa24fb
SDJ
1324
1325 /* Here we try to gather information about all types of probes from the
1326 objfile. */
935676c9 1327 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1328 ops->get_probes (probes_per_bfd, objfile);
55aa24fb 1329
5d9cf8a4 1330 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1331 }
1332
aaa63a31 1333 return *probes_per_bfd;
55aa24fb
SDJ
1334}
1335
55aa24fb
SDJ
1336/* Helper function used to free the space allocated for storing SystemTap
1337 probe information. */
1338
1339static void
5d9cf8a4 1340probe_key_free (bfd *abfd, void *d)
55aa24fb 1341{
aaa63a31 1342 std::vector<probe *> *probes = (std::vector<probe *> *) d;
55aa24fb 1343
63f0e930 1344 for (probe *p : *probes)
935676c9 1345 delete p;
55aa24fb 1346
aaa63a31 1347 delete probes;
55aa24fb
SDJ
1348}
1349
c906108c 1350\f
55aa24fb
SDJ
1351
1352/* Implementation `sym_probe_fns', as documented in symfile.h. */
1353
1354static const struct sym_probe_fns elf_probe_fns =
1355{
25f9533e 1356 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1357};
1358
c906108c
SS
1359/* Register that we are able to handle ELF object file formats. */
1360
00b5771c 1361static const struct sym_fns elf_sym_fns =
c906108c 1362{
3e43a32a
MS
1363 elf_new_init, /* init anything gbl to entire symtab */
1364 elf_symfile_init, /* read initial info, setup for sym_read() */
1365 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1366 NULL, /* sym_read_psymbols */
1367 elf_symfile_finish, /* finished with file, cleanup */
1368 default_symfile_offsets, /* Translate ext. to int. relocation */
1369 elf_symfile_segments, /* Get segment information from a file. */
1370 NULL,
1371 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1372 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1373 &psym_functions
1374};
1375
1376/* The same as elf_sym_fns, but not registered and lazily reads
1377 psymbols. */
1378
e36122e9 1379const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1380{
b11896a5
TT
1381 elf_new_init, /* init anything gbl to entire symtab */
1382 elf_symfile_init, /* read initial info, setup for sym_read() */
1383 elf_symfile_read, /* read a symbol file into symtab */
1384 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1385 elf_symfile_finish, /* finished with file, cleanup */
1386 default_symfile_offsets, /* Translate ext. to int. relocation */
1387 elf_symfile_segments, /* Get segment information from a file. */
1388 NULL,
1389 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1390 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1391 &psym_functions
c906108c
SS
1392};
1393
9291a0cd
TT
1394/* The same as elf_sym_fns, but not registered and uses the
1395 DWARF-specific GNU index rather than psymtab. */
e36122e9 1396const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1397{
3e43a32a
MS
1398 elf_new_init, /* init anything gbl to entire symab */
1399 elf_symfile_init, /* read initial info, setup for sym_red() */
1400 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1401 NULL, /* sym_read_psymbols */
3e43a32a
MS
1402 elf_symfile_finish, /* finished with file, cleanup */
1403 default_symfile_offsets, /* Translate ext. to int. relocatin */
1404 elf_symfile_segments, /* Get segment information from a file. */
1405 NULL,
1406 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1407 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1408 &dwarf2_gdb_index_functions
9291a0cd
TT
1409};
1410
07be84bf
JK
1411/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1412
1413static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1414{
1415 elf_gnu_ifunc_resolve_addr,
1416 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1417 elf_gnu_ifunc_resolver_stop,
1418 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1419};
1420
c906108c 1421void
fba45db2 1422_initialize_elfread (void)
c906108c 1423{
5d9cf8a4 1424 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1425 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1426
1427 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1428 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1429}
This page took 1.294839 seconds and 4 git commands to generate.