use gnulib's update-copyright script to update copyright years
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
6aba47ca 3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
7b6bb8da 4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 5 Free Software Foundation, Inc.
1bac305b 6
c906108c
SS
7 Written by Fred Fish at Cygnus Support.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "bfd.h"
26#include "gdb_string.h"
27#include "elf-bfd.h"
31d99776
DJ
28#include "elf/common.h"
29#include "elf/internal.h"
c906108c
SS
30#include "elf/mips.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "buildsym.h"
35#include "stabsread.h"
36#include "gdb-stabs.h"
37#include "complaints.h"
38#include "demangle.h"
ccefe4c4 39#include "psympriv.h"
0ba1096a 40#include "filenames.h"
07be84bf
JK
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
0e30163f
JK
44#include "gdbthread.h"
45#include "regcache.h"
0af1e9a5 46#include "bcache.h"
c906108c 47
a14ed312 48extern void _initialize_elfread (void);
392a587b 49
b11896a5 50/* Forward declarations. */
00b5771c 51static const struct sym_fns elf_sym_fns_gdb_index;
b11896a5 52static const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 53
c906108c 54/* The struct elfinfo is available only during ELF symbol table and
6426a772 55 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
56 It's local to elf_symfile_read. */
57
c5aa993b
JM
58struct elfinfo
59 {
c5aa993b
JM
60 asection *stabsect; /* Section pointer for .stab section */
61 asection *stabindexsect; /* Section pointer for .stab.index section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
c906108c 64
12b9c64f 65static void free_elfinfo (void *);
c906108c 66
07be84bf
JK
67/* Minimal symbols located at the GOT entries for .plt - that is the real
68 pointer where the given entry will jump to. It gets updated by the real
69 function address during lazy ld.so resolving in the inferior. These
70 minimal symbols are indexed for <tab>-completion. */
71
72#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
73
31d99776
DJ
74/* Locate the segments in ABFD. */
75
76static struct symfile_segment_data *
77elf_symfile_segments (bfd *abfd)
78{
79 Elf_Internal_Phdr *phdrs, **segments;
80 long phdrs_size;
81 int num_phdrs, num_segments, num_sections, i;
82 asection *sect;
83 struct symfile_segment_data *data;
84
85 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
86 if (phdrs_size == -1)
87 return NULL;
88
89 phdrs = alloca (phdrs_size);
90 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
91 if (num_phdrs == -1)
92 return NULL;
93
94 num_segments = 0;
95 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
96 for (i = 0; i < num_phdrs; i++)
97 if (phdrs[i].p_type == PT_LOAD)
98 segments[num_segments++] = &phdrs[i];
99
100 if (num_segments == 0)
101 return NULL;
102
103 data = XZALLOC (struct symfile_segment_data);
104 data->num_segments = num_segments;
105 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
106 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
107
108 for (i = 0; i < num_segments; i++)
109 {
110 data->segment_bases[i] = segments[i]->p_vaddr;
111 data->segment_sizes[i] = segments[i]->p_memsz;
112 }
113
114 num_sections = bfd_count_sections (abfd);
115 data->segment_info = XCALLOC (num_sections, int);
116
117 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
118 {
119 int j;
120 CORE_ADDR vma;
121
122 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
123 continue;
124
125 vma = bfd_get_section_vma (abfd, sect);
126
127 for (j = 0; j < num_segments; j++)
128 if (segments[j]->p_memsz > 0
129 && vma >= segments[j]->p_vaddr
a366c65a 130 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
131 {
132 data->segment_info[i] = j + 1;
133 break;
134 }
135
ad09a548
DJ
136 /* We should have found a segment for every non-empty section.
137 If we haven't, we will not relocate this section by any
138 offsets we apply to the segments. As an exception, do not
139 warn about SHT_NOBITS sections; in normal ELF execution
140 environments, SHT_NOBITS means zero-initialized and belongs
141 in a segment, but in no-OS environments some tools (e.g. ARM
142 RealView) use SHT_NOBITS for uninitialized data. Since it is
143 uninitialized, it doesn't need a program header. Such
144 binaries are not relocatable. */
145 if (bfd_get_section_size (sect) > 0 && j == num_segments
146 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
31d99776
DJ
147 warning (_("Loadable segment \"%s\" outside of ELF segments"),
148 bfd_section_name (abfd, sect));
149 }
150
151 return data;
152}
153
c906108c
SS
154/* We are called once per section from elf_symfile_read. We
155 need to examine each section we are passed, check to see
156 if it is something we are interested in processing, and
157 if so, stash away some access information for the section.
158
159 For now we recognize the dwarf debug information sections and
160 line number sections from matching their section names. The
161 ELF definition is no real help here since it has no direct
162 knowledge of DWARF (by design, so any debugging format can be
163 used).
164
165 We also recognize the ".stab" sections used by the Sun compilers
166 released with Solaris 2.
167
168 FIXME: The section names should not be hardwired strings (what
169 should they be? I don't think most object file formats have enough
0963b4bd 170 section flags to specify what kind of debug section it is.
c906108c
SS
171 -kingdon). */
172
173static void
12b9c64f 174elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 175{
52f0bd74 176 struct elfinfo *ei;
c906108c
SS
177
178 ei = (struct elfinfo *) eip;
7ce59000 179 if (strcmp (sectp->name, ".stab") == 0)
c906108c 180 {
c5aa993b 181 ei->stabsect = sectp;
c906108c 182 }
6314a349 183 else if (strcmp (sectp->name, ".stab.index") == 0)
c906108c 184 {
c5aa993b 185 ei->stabindexsect = sectp;
c906108c 186 }
6314a349 187 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 188 {
c5aa993b 189 ei->mdebugsect = sectp;
c906108c
SS
190 }
191}
192
c906108c 193static struct minimal_symbol *
04a679b8
TT
194record_minimal_symbol (const char *name, int name_len, int copy_name,
195 CORE_ADDR address,
f594e5e9
MC
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
c906108c 198{
5e2b427d
UW
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
0875794a
JK
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
5e2b427d 203 address = gdbarch_smash_text_address (gdbarch, address);
c906108c 204
04a679b8
TT
205 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
206 ms_type, bfd_section->index,
207 bfd_section, objfile);
c906108c
SS
208}
209
7f86f058 210/* Read the symbol table of an ELF file.
c906108c 211
62553543 212 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
213 symbol table contains regular, dynamic, or synthetic symbols, add all
214 the global function and data symbols to the minimal symbol table.
c906108c 215
c5aa993b
JM
216 In stabs-in-ELF, as implemented by Sun, there are some local symbols
217 defined in the ELF symbol table, which can be used to locate
218 the beginnings of sections from each ".o" file that was linked to
219 form the executable objfile. We gather any such info and record it
7f86f058 220 in data structures hung off the objfile's private data. */
c906108c 221
6f610d07
UW
222#define ST_REGULAR 0
223#define ST_DYNAMIC 1
224#define ST_SYNTHETIC 2
225
c906108c 226static void
6f610d07 227elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
228 long number_of_symbols, asymbol **symbol_table,
229 int copy_names)
c906108c 230{
5e2b427d 231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 232 asymbol *sym;
c906108c 233 long i;
c906108c 234 CORE_ADDR symaddr;
d4f3574e 235 CORE_ADDR offset;
c906108c
SS
236 enum minimal_symbol_type ms_type;
237 /* If sectinfo is nonNULL, it contains section info that should end up
238 filed in the objfile. */
239 struct stab_section_info *sectinfo = NULL;
240 /* If filesym is nonzero, it points to a file symbol, but we haven't
241 seen any section info for it yet. */
242 asymbol *filesym = 0;
1c9e8358 243 /* Name of filesym. This is either a constant string or is saved on
0af1e9a5
TT
244 the objfile's filename cache. */
245 const char *filesymname = "";
0a6ddd08 246 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
d4f3574e 247 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
c5aa993b 248
0cc7b392 249 for (i = 0; i < number_of_symbols; i++)
c906108c 250 {
0cc7b392
DJ
251 sym = symbol_table[i];
252 if (sym->name == NULL || *sym->name == '\0')
c906108c 253 {
0cc7b392 254 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 255 that are null strings (may happen). */
0cc7b392
DJ
256 continue;
257 }
c906108c 258
74763737
DJ
259 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
260 symbols which do not correspond to objects in the symbol table,
261 but have some other target-specific meaning. */
262 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
263 {
264 if (gdbarch_record_special_symbol_p (gdbarch))
265 gdbarch_record_special_symbol (gdbarch, objfile, sym);
266 continue;
267 }
74763737 268
0cc7b392 269 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
6f610d07 270 if (type == ST_DYNAMIC
0cc7b392
DJ
271 && sym->section == &bfd_und_section
272 && (sym->flags & BSF_FUNCTION))
273 {
274 struct minimal_symbol *msym;
02c75f72 275 bfd *abfd = objfile->obfd;
dea91a5c 276 asection *sect;
0cc7b392
DJ
277
278 /* Symbol is a reference to a function defined in
279 a shared library.
280 If its value is non zero then it is usually the address
281 of the corresponding entry in the procedure linkage table,
282 plus the desired section offset.
283 If its value is zero then the dynamic linker has to resolve
0963b4bd 284 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
285 for this symbol in the executable file, so we skip it. */
286 symaddr = sym->value;
287 if (symaddr == 0)
288 continue;
02c75f72
UW
289
290 /* sym->section is the undefined section. However, we want to
291 record the section where the PLT stub resides with the
292 minimal symbol. Search the section table for the one that
293 covers the stub's address. */
294 for (sect = abfd->sections; sect != NULL; sect = sect->next)
295 {
296 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
297 continue;
298
299 if (symaddr >= bfd_get_section_vma (abfd, sect)
300 && symaddr < bfd_get_section_vma (abfd, sect)
301 + bfd_get_section_size (sect))
302 break;
303 }
304 if (!sect)
305 continue;
306
828cfa8d
JB
307 /* On ia64-hpux, we have discovered that the system linker
308 adds undefined symbols with nonzero addresses that cannot
309 be right (their address points inside the code of another
310 function in the .text section). This creates problems
311 when trying to determine which symbol corresponds to
312 a given address.
313
314 We try to detect those buggy symbols by checking which
315 section we think they correspond to. Normally, PLT symbols
316 are stored inside their own section, and the typical name
317 for that section is ".plt". So, if there is a ".plt"
318 section, and yet the section name of our symbol does not
319 start with ".plt", we ignore that symbol. */
320 if (strncmp (sect->name, ".plt", 4) != 0
321 && bfd_get_section_by_name (abfd, ".plt") != NULL)
322 continue;
323
02c75f72
UW
324 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
325
0cc7b392 326 msym = record_minimal_symbol
04a679b8
TT
327 (sym->name, strlen (sym->name), copy_names,
328 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392
DJ
329 if (msym != NULL)
330 msym->filename = filesymname;
0cc7b392
DJ
331 continue;
332 }
c906108c 333
0cc7b392
DJ
334 /* If it is a nonstripped executable, do not enter dynamic
335 symbols, as the dynamic symbol table is usually a subset
336 of the main symbol table. */
6f610d07 337 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
338 continue;
339 if (sym->flags & BSF_FILE)
340 {
341 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
342 Chain any old one onto the objfile; remember new sym. */
343 if (sectinfo != NULL)
c906108c 344 {
0cc7b392
DJ
345 sectinfo->next = dbx->stab_section_info;
346 dbx->stab_section_info = sectinfo;
347 sectinfo = NULL;
348 }
349 filesym = sym;
0af1e9a5
TT
350 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
351 objfile->filename_cache);
0cc7b392
DJ
352 }
353 else if (sym->flags & BSF_SECTION_SYM)
354 continue;
355 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
356 {
357 struct minimal_symbol *msym;
358
359 /* Select global/local/weak symbols. Note that bfd puts abs
360 symbols in their own section, so all symbols we are
0963b4bd
MS
361 interested in will have a section. */
362 /* Bfd symbols are section relative. */
0cc7b392 363 symaddr = sym->value + sym->section->vma;
45148c2e
UW
364 /* Relocate all non-absolute and non-TLS symbols by the
365 section offset. */
366 if (sym->section != &bfd_abs_section
367 && !(sym->section->flags & SEC_THREAD_LOCAL))
0cc7b392
DJ
368 {
369 symaddr += offset;
c906108c 370 }
0cc7b392
DJ
371 /* For non-absolute symbols, use the type of the section
372 they are relative to, to intuit text/data. Bfd provides
0963b4bd 373 no way of figuring this out for absolute symbols. */
0cc7b392 374 if (sym->section == &bfd_abs_section)
c906108c 375 {
0cc7b392
DJ
376 /* This is a hack to get the minimal symbol type
377 right for Irix 5, which has absolute addresses
6f610d07
UW
378 with special section indices for dynamic symbols.
379
380 NOTE: uweigand-20071112: Synthetic symbols do not
381 have an ELF-private part, so do not touch those. */
dea91a5c 382 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
383 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
384
385 switch (shndx)
c906108c 386 {
0cc7b392
DJ
387 case SHN_MIPS_TEXT:
388 ms_type = mst_text;
389 break;
390 case SHN_MIPS_DATA:
391 ms_type = mst_data;
392 break;
393 case SHN_MIPS_ACOMMON:
394 ms_type = mst_bss;
395 break;
396 default:
397 ms_type = mst_abs;
398 }
399
400 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 401 symbols, relocate all others by section offset. */
0cc7b392
DJ
402 if (ms_type != mst_abs)
403 {
404 if (sym->name[0] == '.')
405 continue;
d4f3574e 406 symaddr += offset;
c906108c 407 }
0cc7b392
DJ
408 }
409 else if (sym->section->flags & SEC_CODE)
410 {
08232497 411 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
c906108c 412 {
0875794a
JK
413 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
414 ms_type = mst_text_gnu_ifunc;
415 else
416 ms_type = mst_text;
0cc7b392 417 }
90359a16
JK
418 /* The BSF_SYNTHETIC check is there to omit ppc64 function
419 descriptors mistaken for static functions starting with 'L'.
420 */
421 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
422 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
423 || ((sym->flags & BSF_LOCAL)
424 && sym->name[0] == '$'
425 && sym->name[1] == 'L'))
426 /* Looks like a compiler-generated label. Skip
427 it. The assembler should be skipping these (to
428 keep executables small), but apparently with
429 gcc on the (deleted) delta m88k SVR4, it loses.
430 So to have us check too should be harmless (but
431 I encourage people to fix this in the assembler
432 instead of adding checks here). */
433 continue;
434 else
435 {
436 ms_type = mst_file_text;
c906108c 437 }
0cc7b392
DJ
438 }
439 else if (sym->section->flags & SEC_ALLOC)
440 {
441 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
c906108c 442 {
0cc7b392 443 if (sym->section->flags & SEC_LOAD)
c906108c 444 {
0cc7b392 445 ms_type = mst_data;
c906108c 446 }
c906108c
SS
447 else
448 {
0cc7b392 449 ms_type = mst_bss;
c906108c
SS
450 }
451 }
0cc7b392 452 else if (sym->flags & BSF_LOCAL)
c906108c 453 {
0cc7b392
DJ
454 /* Named Local variable in a Data section.
455 Check its name for stabs-in-elf. */
456 int special_local_sect;
d7f9d729 457
0cc7b392
DJ
458 if (strcmp ("Bbss.bss", sym->name) == 0)
459 special_local_sect = SECT_OFF_BSS (objfile);
460 else if (strcmp ("Ddata.data", sym->name) == 0)
461 special_local_sect = SECT_OFF_DATA (objfile);
462 else if (strcmp ("Drodata.rodata", sym->name) == 0)
463 special_local_sect = SECT_OFF_RODATA (objfile);
464 else
465 special_local_sect = -1;
466 if (special_local_sect >= 0)
c906108c 467 {
0cc7b392
DJ
468 /* Found a special local symbol. Allocate a
469 sectinfo, if needed, and fill it in. */
470 if (sectinfo == NULL)
c906108c 471 {
0cc7b392
DJ
472 int max_index;
473 size_t size;
474
25c2f6ab
PP
475 max_index = SECT_OFF_BSS (objfile);
476 if (objfile->sect_index_data > max_index)
477 max_index = objfile->sect_index_data;
478 if (objfile->sect_index_rodata > max_index)
479 max_index = objfile->sect_index_rodata;
0cc7b392
DJ
480
481 /* max_index is the largest index we'll
482 use into this array, so we must
483 allocate max_index+1 elements for it.
484 However, 'struct stab_section_info'
485 already includes one element, so we
486 need to allocate max_index aadditional
487 elements. */
dea91a5c 488 size = (sizeof (struct stab_section_info)
c05d19c5 489 + (sizeof (CORE_ADDR) * max_index));
0cc7b392
DJ
490 sectinfo = (struct stab_section_info *)
491 xmalloc (size);
492 memset (sectinfo, 0, size);
493 sectinfo->num_sections = max_index;
494 if (filesym == NULL)
c906108c 495 {
0cc7b392 496 complaint (&symfile_complaints,
3e43a32a
MS
497 _("elf/stab section information %s "
498 "without a preceding file symbol"),
0cc7b392
DJ
499 sym->name);
500 }
501 else
502 {
503 sectinfo->filename =
504 (char *) filesym->name;
c906108c 505 }
c906108c 506 }
0cc7b392
DJ
507 if (sectinfo->sections[special_local_sect] != 0)
508 complaint (&symfile_complaints,
3e43a32a
MS
509 _("duplicated elf/stab section "
510 "information for %s"),
0cc7b392
DJ
511 sectinfo->filename);
512 /* BFD symbols are section relative. */
513 symaddr = sym->value + sym->section->vma;
514 /* Relocate non-absolute symbols by the
515 section offset. */
516 if (sym->section != &bfd_abs_section)
517 symaddr += offset;
518 sectinfo->sections[special_local_sect] = symaddr;
519 /* The special local symbols don't go in the
520 minimal symbol table, so ignore this one. */
521 continue;
522 }
523 /* Not a special stabs-in-elf symbol, do regular
524 symbol processing. */
525 if (sym->section->flags & SEC_LOAD)
526 {
527 ms_type = mst_file_data;
c906108c
SS
528 }
529 else
530 {
0cc7b392 531 ms_type = mst_file_bss;
c906108c
SS
532 }
533 }
534 else
535 {
0cc7b392 536 ms_type = mst_unknown;
c906108c 537 }
0cc7b392
DJ
538 }
539 else
540 {
541 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 542 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
543 hob with actions like finding what function the PC
544 is in. Ignore them if they aren't text, data, or bss. */
545 /* ms_type = mst_unknown; */
0963b4bd 546 continue; /* Skip this symbol. */
0cc7b392
DJ
547 }
548 msym = record_minimal_symbol
04a679b8 549 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 550 ms_type, sym->section, objfile);
6f610d07 551
0cc7b392
DJ
552 if (msym)
553 {
554 /* Pass symbol size field in via BFD. FIXME!!! */
6f610d07
UW
555 elf_symbol_type *elf_sym;
556
557 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
558 ELF-private part. However, in some cases (e.g. synthetic
559 'dot' symbols on ppc64) the udata.p entry is set to point back
560 to the original ELF symbol it was derived from. Get the size
dea91a5c 561 from that symbol. */
6f610d07
UW
562 if (type != ST_SYNTHETIC)
563 elf_sym = (elf_symbol_type *) sym;
564 else
565 elf_sym = (elf_symbol_type *) sym->udata.p;
566
567 if (elf_sym)
568 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
dea91a5c 569
a103a963
DJ
570 msym->filename = filesymname;
571 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 572 }
2eaf8d2a
DJ
573
574 /* For @plt symbols, also record a trampoline to the
575 destination symbol. The @plt symbol will be used in
576 disassembly, and the trampoline will be used when we are
577 trying to find the target. */
578 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
579 {
580 int len = strlen (sym->name);
581
582 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
583 {
2eaf8d2a
DJ
584 struct minimal_symbol *mtramp;
585
04a679b8
TT
586 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
587 symaddr,
2eaf8d2a
DJ
588 mst_solib_trampoline,
589 sym->section, objfile);
590 if (mtramp)
591 {
592 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
593 mtramp->filename = filesymname;
594 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
595 }
596 }
597 }
c906108c 598 }
c906108c
SS
599 }
600}
601
07be84bf
JK
602/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
603 for later look ups of which function to call when user requests
604 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
605 library defining `function' we cannot yet know while reading OBJFILE which
606 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
607 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
608
609static void
610elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
611{
612 bfd *obfd = objfile->obfd;
613 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
614 asection *plt, *relplt, *got_plt;
615 unsigned u;
616 int plt_elf_idx;
617 bfd_size_type reloc_count, reloc;
618 char *string_buffer = NULL;
619 size_t string_buffer_size = 0;
620 struct cleanup *back_to;
621 struct gdbarch *gdbarch = objfile->gdbarch;
622 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
623 size_t ptr_size = TYPE_LENGTH (ptr_type);
624
625 if (objfile->separate_debug_objfile_backlink)
626 return;
627
628 plt = bfd_get_section_by_name (obfd, ".plt");
629 if (plt == NULL)
630 return;
631 plt_elf_idx = elf_section_data (plt)->this_idx;
632
633 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
634 if (got_plt == NULL)
635 return;
636
637 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
638 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
639 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
640 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
641 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
642 break;
643 if (relplt == NULL)
644 return;
645
646 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
647 return;
648
649 back_to = make_cleanup (free_current_contents, &string_buffer);
650
651 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
652 for (reloc = 0; reloc < reloc_count; reloc++)
653 {
654 const char *name, *name_got_plt;
655 struct minimal_symbol *msym;
656 CORE_ADDR address;
657 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
658 size_t name_len;
659
660 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
661 name_len = strlen (name);
662 address = relplt->relocation[reloc].address;
663
664 /* Does the pointer reside in the .got.plt section? */
665 if (!(bfd_get_section_vma (obfd, got_plt) <= address
666 && address < bfd_get_section_vma (obfd, got_plt)
667 + bfd_get_section_size (got_plt)))
668 continue;
669
670 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
671 OBJFILE the symbol is undefined and the objfile having NAME defined
672 may not yet have been loaded. */
673
3807f613 674 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
675 {
676 string_buffer_size = 2 * (name_len + got_suffix_len);
677 string_buffer = xrealloc (string_buffer, string_buffer_size);
678 }
679 memcpy (string_buffer, name, name_len);
680 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 681 got_suffix_len + 1);
07be84bf
JK
682
683 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
684 1, address, mst_slot_got_plt, got_plt,
685 objfile);
686 if (msym)
687 MSYMBOL_SIZE (msym) = ptr_size;
688 }
689
690 do_cleanups (back_to);
691}
692
693/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
694
695static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
696
697/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
698
699struct elf_gnu_ifunc_cache
700{
701 /* This is always a function entry address, not a function descriptor. */
702 CORE_ADDR addr;
703
704 char name[1];
705};
706
707/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
708
709static hashval_t
710elf_gnu_ifunc_cache_hash (const void *a_voidp)
711{
712 const struct elf_gnu_ifunc_cache *a = a_voidp;
713
714 return htab_hash_string (a->name);
715}
716
717/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
718
719static int
720elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
721{
722 const struct elf_gnu_ifunc_cache *a = a_voidp;
723 const struct elf_gnu_ifunc_cache *b = b_voidp;
724
725 return strcmp (a->name, b->name) == 0;
726}
727
728/* Record the target function address of a STT_GNU_IFUNC function NAME is the
729 function entry address ADDR. Return 1 if NAME and ADDR are considered as
730 valid and therefore they were successfully recorded, return 0 otherwise.
731
732 Function does not expect a duplicate entry. Use
733 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
734 exists. */
735
736static int
737elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
738{
739 struct minimal_symbol *msym;
740 asection *sect;
741 struct objfile *objfile;
742 htab_t htab;
743 struct elf_gnu_ifunc_cache entry_local, *entry_p;
744 void **slot;
745
746 msym = lookup_minimal_symbol_by_pc (addr);
747 if (msym == NULL)
748 return 0;
749 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
750 return 0;
751 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
752 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
753 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
754
755 /* If .plt jumps back to .plt the symbol is still deferred for later
756 resolution and it has no use for GDB. Besides ".text" this symbol can
757 reside also in ".opd" for ppc64 function descriptor. */
758 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
759 return 0;
760
761 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
762 if (htab == NULL)
763 {
764 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
765 elf_gnu_ifunc_cache_eq,
766 NULL, &objfile->objfile_obstack,
767 hashtab_obstack_allocate,
768 dummy_obstack_deallocate);
769 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
770 }
771
772 entry_local.addr = addr;
773 obstack_grow (&objfile->objfile_obstack, &entry_local,
774 offsetof (struct elf_gnu_ifunc_cache, name));
775 obstack_grow_str0 (&objfile->objfile_obstack, name);
776 entry_p = obstack_finish (&objfile->objfile_obstack);
777
778 slot = htab_find_slot (htab, entry_p, INSERT);
779 if (*slot != NULL)
780 {
781 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
782 struct gdbarch *gdbarch = objfile->gdbarch;
783
784 if (entry_found_p->addr != addr)
785 {
786 /* This case indicates buggy inferior program, the resolved address
787 should never change. */
788
789 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
790 "function_address from %s to %s"),
791 name, paddress (gdbarch, entry_found_p->addr),
792 paddress (gdbarch, addr));
793 }
794
795 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
796 }
797 *slot = entry_p;
798
799 return 1;
800}
801
802/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
803 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
804 is not NULL) and the function returns 1. It returns 0 otherwise.
805
806 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
807 function. */
808
809static int
810elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
811{
812 struct objfile *objfile;
813
814 ALL_PSPACE_OBJFILES (current_program_space, objfile)
815 {
816 htab_t htab;
817 struct elf_gnu_ifunc_cache *entry_p;
818 void **slot;
819
820 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
821 if (htab == NULL)
822 continue;
823
824 entry_p = alloca (sizeof (*entry_p) + strlen (name));
825 strcpy (entry_p->name, name);
826
827 slot = htab_find_slot (htab, entry_p, NO_INSERT);
828 if (slot == NULL)
829 continue;
830 entry_p = *slot;
831 gdb_assert (entry_p != NULL);
832
833 if (addr_p)
834 *addr_p = entry_p->addr;
835 return 1;
836 }
837
838 return 0;
839}
840
841/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
842 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
843 is not NULL) and the function returns 1. It returns 0 otherwise.
844
845 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
846 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
847 prevent cache entries duplicates. */
848
849static int
850elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
851{
852 char *name_got_plt;
853 struct objfile *objfile;
854 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
855
856 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
857 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
858
859 ALL_PSPACE_OBJFILES (current_program_space, objfile)
860 {
861 bfd *obfd = objfile->obfd;
862 struct gdbarch *gdbarch = objfile->gdbarch;
863 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
864 size_t ptr_size = TYPE_LENGTH (ptr_type);
865 CORE_ADDR pointer_address, addr;
866 asection *plt;
867 gdb_byte *buf = alloca (ptr_size);
868 struct minimal_symbol *msym;
869
870 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
871 if (msym == NULL)
872 continue;
873 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
874 continue;
875 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
876
877 plt = bfd_get_section_by_name (obfd, ".plt");
878 if (plt == NULL)
879 continue;
880
881 if (MSYMBOL_SIZE (msym) != ptr_size)
882 continue;
883 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
884 continue;
885 addr = extract_typed_address (buf, ptr_type);
886 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
887 &current_target);
888
889 if (addr_p)
890 *addr_p = addr;
891 if (elf_gnu_ifunc_record_cache (name, addr))
892 return 1;
893 }
894
895 return 0;
896}
897
898/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
899 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
900 is not NULL) and the function returns 1. It returns 0 otherwise.
901
902 Both the elf_objfile_gnu_ifunc_cache_data hash table and
903 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
904
905static int
906elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
907{
908 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
909 return 1;
dea91a5c 910
07be84bf
JK
911 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
912 return 1;
913
914 return 0;
915}
916
917/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
918 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
919 is the entry point of the resolved STT_GNU_IFUNC target function to call.
920 */
921
922static CORE_ADDR
923elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
924{
925 char *name_at_pc;
926 CORE_ADDR start_at_pc, address;
927 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
928 struct value *function, *address_val;
929
930 /* Try first any non-intrusive methods without an inferior call. */
931
932 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
933 && start_at_pc == pc)
934 {
935 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
936 return address;
937 }
938 else
939 name_at_pc = NULL;
940
941 function = allocate_value (func_func_type);
942 set_value_address (function, pc);
943
944 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
945 function entry address. ADDRESS may be a function descriptor. */
946
947 address_val = call_function_by_hand (function, 0, NULL);
948 address = value_as_address (address_val);
949 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
950 &current_target);
951
952 if (name_at_pc)
953 elf_gnu_ifunc_record_cache (name_at_pc, address);
954
955 return address;
956}
957
0e30163f
JK
958/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
959
960static void
961elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
962{
963 struct breakpoint *b_return;
964 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
965 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
966 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
967 int thread_id = pid_to_thread_id (inferior_ptid);
968
969 gdb_assert (b->type == bp_gnu_ifunc_resolver);
970
971 for (b_return = b->related_breakpoint; b_return != b;
972 b_return = b_return->related_breakpoint)
973 {
974 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
975 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
976 gdb_assert (frame_id_p (b_return->frame_id));
977
978 if (b_return->thread == thread_id
979 && b_return->loc->requested_address == prev_pc
980 && frame_id_eq (b_return->frame_id, prev_frame_id))
981 break;
982 }
983
984 if (b_return == b)
985 {
986 struct symtab_and_line sal;
987
988 /* No need to call find_pc_line for symbols resolving as this is only
989 a helper breakpointer never shown to the user. */
990
991 init_sal (&sal);
992 sal.pspace = current_inferior ()->pspace;
993 sal.pc = prev_pc;
994 sal.section = find_pc_overlay (sal.pc);
995 sal.explicit_pc = 1;
996 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
997 prev_frame_id,
998 bp_gnu_ifunc_resolver_return);
999
1000 /* Add new b_return to the ring list b->related_breakpoint. */
1001 gdb_assert (b_return->related_breakpoint == b_return);
1002 b_return->related_breakpoint = b->related_breakpoint;
1003 b->related_breakpoint = b_return;
1004 }
1005}
1006
1007/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1008
1009static void
1010elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1011{
1012 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1013 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1014 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1015 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1016 struct value *value;
1017 CORE_ADDR resolved_address, resolved_pc;
1018 struct symtab_and_line sal;
f1310107 1019 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
1020
1021 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1022
1023 value = allocate_value (value_type);
1024 gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1025 value_contents_raw (value), NULL);
1026 resolved_address = value_as_address (value);
1027 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1028 resolved_address,
1029 &current_target);
1030
1031 while (b->related_breakpoint != b)
1032 {
1033 struct breakpoint *b_next = b->related_breakpoint;
1034
1035 switch (b->type)
1036 {
1037 case bp_gnu_ifunc_resolver:
1038 break;
1039 case bp_gnu_ifunc_resolver_return:
1040 delete_breakpoint (b);
1041 break;
1042 default:
1043 internal_error (__FILE__, __LINE__,
1044 _("handle_inferior_event: Invalid "
1045 "gnu-indirect-function breakpoint type %d"),
1046 (int) b->type);
1047 }
1048 b = b_next;
1049 }
1050 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1051
f8eba3c6 1052 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
0e30163f
JK
1053 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1054
1055 sal = find_pc_line (resolved_pc, 0);
1056 sals.nelts = 1;
1057 sals.sals = &sal;
f1310107 1058 sals_end.nelts = 0;
0e30163f
JK
1059
1060 b->type = bp_breakpoint;
f1310107 1061 update_breakpoint_locations (b, sals, sals_end);
0e30163f
JK
1062}
1063
874f5765
TG
1064struct build_id
1065 {
1066 size_t size;
1067 gdb_byte data[1];
1068 };
1069
1070/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1071
1072static struct build_id *
1073build_id_bfd_get (bfd *abfd)
1074{
1075 struct build_id *retval;
1076
1077 if (!bfd_check_format (abfd, bfd_object)
1078 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1079 || elf_tdata (abfd)->build_id == NULL)
1080 return NULL;
1081
1082 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1083 retval->size = elf_tdata (abfd)->build_id_size;
1084 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1085
1086 return retval;
1087}
1088
1089/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1090
1091static int
1092build_id_verify (const char *filename, struct build_id *check)
1093{
1094 bfd *abfd;
1095 struct build_id *found = NULL;
1096 int retval = 0;
1097
1098 /* We expect to be silent on the non-existing files. */
1099 abfd = bfd_open_maybe_remote (filename);
1100 if (abfd == NULL)
1101 return 0;
1102
1103 found = build_id_bfd_get (abfd);
1104
1105 if (found == NULL)
1106 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1107 else if (found->size != check->size
1108 || memcmp (found->data, check->data, found->size) != 0)
3e43a32a
MS
1109 warning (_("File \"%s\" has a different build-id, file skipped"),
1110 filename);
874f5765
TG
1111 else
1112 retval = 1;
1113
516ba659 1114 gdb_bfd_close_or_warn (abfd);
874f5765
TG
1115
1116 xfree (found);
1117
1118 return retval;
1119}
1120
1121static char *
1122build_id_to_debug_filename (struct build_id *build_id)
1123{
1124 char *link, *debugdir, *retval = NULL;
1125
1126 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1127 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1128 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1129
1130 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1131 cause "/.build-id/..." lookups. */
1132
1133 debugdir = debug_file_directory;
1134 do
1135 {
1136 char *s, *debugdir_end;
1137 gdb_byte *data = build_id->data;
1138 size_t size = build_id->size;
1139
1140 while (*debugdir == DIRNAME_SEPARATOR)
1141 debugdir++;
1142
1143 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1144 if (debugdir_end == NULL)
1145 debugdir_end = &debugdir[strlen (debugdir)];
1146
1147 memcpy (link, debugdir, debugdir_end - debugdir);
1148 s = &link[debugdir_end - debugdir];
1149 s += sprintf (s, "/.build-id/");
1150 if (size > 0)
1151 {
1152 size--;
1153 s += sprintf (s, "%02x", (unsigned) *data++);
1154 }
1155 if (size > 0)
1156 *s++ = '/';
1157 while (size-- > 0)
1158 s += sprintf (s, "%02x", (unsigned) *data++);
1159 strcpy (s, ".debug");
1160
1161 /* lrealpath() is expensive even for the usually non-existent files. */
1162 if (access (link, F_OK) == 0)
1163 retval = lrealpath (link);
1164
1165 if (retval != NULL && !build_id_verify (retval, build_id))
1166 {
1167 xfree (retval);
1168 retval = NULL;
1169 }
1170
1171 if (retval != NULL)
1172 break;
1173
1174 debugdir = debugdir_end;
1175 }
1176 while (*debugdir != 0);
1177
1178 return retval;
1179}
1180
1181static char *
1182find_separate_debug_file_by_buildid (struct objfile *objfile)
1183{
874f5765
TG
1184 struct build_id *build_id;
1185
1186 build_id = build_id_bfd_get (objfile->obfd);
1187 if (build_id != NULL)
1188 {
1189 char *build_id_name;
1190
1191 build_id_name = build_id_to_debug_filename (build_id);
1192 xfree (build_id);
1193 /* Prevent looping on a stripped .debug file. */
0ba1096a
KT
1194 if (build_id_name != NULL
1195 && filename_cmp (build_id_name, objfile->name) == 0)
874f5765
TG
1196 {
1197 warning (_("\"%s\": separate debug info file has no debug info"),
1198 build_id_name);
1199 xfree (build_id_name);
1200 }
1201 else if (build_id_name != NULL)
1202 return build_id_name;
1203 }
1204 return NULL;
1205}
1206
c906108c 1207/* Scan and build partial symbols for a symbol file.
dea91a5c 1208 We have been initialized by a call to elf_symfile_init, which
c906108c
SS
1209 currently does nothing.
1210
1211 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1212 in each section. We simplify it down to a single offset for all
1213 symbols. FIXME.
1214
c906108c
SS
1215 This function only does the minimum work necessary for letting the
1216 user "name" things symbolically; it does not read the entire symtab.
1217 Instead, it reads the external and static symbols and puts them in partial
1218 symbol tables. When more extensive information is requested of a
1219 file, the corresponding partial symbol table is mutated into a full
1220 fledged symbol table by going back and reading the symbols
1221 for real.
1222
1223 We look for sections with specific names, to tell us what debug
1224 format to look for: FIXME!!!
1225
c906108c
SS
1226 elfstab_build_psymtabs() handles STABS symbols;
1227 mdebug_build_psymtabs() handles ECOFF debugging information.
1228
1229 Note that ELF files have a "minimal" symbol table, which looks a lot
1230 like a COFF symbol table, but has only the minimal information necessary
1231 for linking. We process this also, and use the information to
1232 build gdb's minimal symbol table. This gives us some minimal debugging
1233 capability even for files compiled without -g. */
1234
1235static void
f4352531 1236elf_symfile_read (struct objfile *objfile, int symfile_flags)
c906108c 1237{
63524580 1238 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c
SS
1239 struct elfinfo ei;
1240 struct cleanup *back_to;
62553543
EZ
1241 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1242 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1243 asymbol *synthsyms;
c906108c
SS
1244
1245 init_minimal_symbol_collection ();
56e290f4 1246 back_to = make_cleanup_discard_minimal_symbols ();
c906108c
SS
1247
1248 memset ((char *) &ei, 0, sizeof (ei));
1249
0963b4bd 1250 /* Allocate struct to keep track of the symfile. */
0a6ddd08 1251 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
7936743b 1252 xmalloc (sizeof (struct dbx_symfile_info));
3e43a32a
MS
1253 memset ((char *) objfile->deprecated_sym_stab_info,
1254 0, sizeof (struct dbx_symfile_info));
12b9c64f 1255 make_cleanup (free_elfinfo, (void *) objfile);
c906108c 1256
3e43a32a
MS
1257 /* Process the normal ELF symbol table first. This may write some
1258 chain of info into the dbx_symfile_info in
1259 objfile->deprecated_sym_stab_info, which can later be used by
1260 elfstab_offset_sections. */
c906108c 1261
62553543
EZ
1262 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1263 if (storage_needed < 0)
3e43a32a
MS
1264 error (_("Can't read symbols from %s: %s"),
1265 bfd_get_filename (objfile->obfd),
62553543
EZ
1266 bfd_errmsg (bfd_get_error ()));
1267
1268 if (storage_needed > 0)
1269 {
1270 symbol_table = (asymbol **) xmalloc (storage_needed);
1271 make_cleanup (xfree, symbol_table);
1272 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1273
1274 if (symcount < 0)
3e43a32a
MS
1275 error (_("Can't read symbols from %s: %s"),
1276 bfd_get_filename (objfile->obfd),
62553543
EZ
1277 bfd_errmsg (bfd_get_error ()));
1278
04a679b8 1279 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1280 }
c906108c
SS
1281
1282 /* Add the dynamic symbols. */
1283
62553543
EZ
1284 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1285
1286 if (storage_needed > 0)
1287 {
3f1eff0a
JK
1288 /* Memory gets permanently referenced from ABFD after
1289 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1290 It happens only in the case when elf_slurp_reloc_table sees
1291 asection->relocation NULL. Determining which section is asection is
1292 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1293 implementation detail, though. */
1294
1295 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
62553543
EZ
1296 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1297 dyn_symbol_table);
1298
1299 if (dynsymcount < 0)
3e43a32a
MS
1300 error (_("Can't read symbols from %s: %s"),
1301 bfd_get_filename (objfile->obfd),
62553543
EZ
1302 bfd_errmsg (bfd_get_error ()));
1303
04a679b8 1304 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1305
1306 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1307 }
1308
63524580
JK
1309 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1310 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1311
1312 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1313 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1314 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1315 read the code address from .opd while it reads the .symtab section from
1316 a separate debug info file as the .opd section is SHT_NOBITS there.
1317
1318 With SYNTH_ABFD the .opd section will be read from the original
1319 backlinked binary where it is valid. */
1320
1321 if (objfile->separate_debug_objfile_backlink)
1322 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1323 else
1324 synth_abfd = abfd;
1325
62553543
EZ
1326 /* Add synthetic symbols - for instance, names for any PLT entries. */
1327
63524580 1328 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1329 dynsymcount, dyn_symbol_table,
1330 &synthsyms);
1331 if (synthcount > 0)
1332 {
1333 asymbol **synth_symbol_table;
1334 long i;
1335
1336 make_cleanup (xfree, synthsyms);
1337 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1338 for (i = 0; i < synthcount; i++)
9f20e3da 1339 synth_symbol_table[i] = synthsyms + i;
62553543 1340 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1341 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1342 synth_symbol_table, 1);
62553543 1343 }
c906108c 1344
7134143f
DJ
1345 /* Install any minimal symbols that have been collected as the current
1346 minimal symbols for this objfile. The debug readers below this point
1347 should not generate new minimal symbols; if they do it's their
1348 responsibility to install them. "mdebug" appears to be the only one
1349 which will do this. */
1350
1351 install_minimal_symbols (objfile);
1352 do_cleanups (back_to);
1353
c906108c 1354 /* Now process debugging information, which is contained in
0963b4bd 1355 special ELF sections. */
c906108c 1356
0963b4bd 1357 /* We first have to find them... */
12b9c64f 1358 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c
SS
1359
1360 /* ELF debugging information is inserted into the psymtab in the
1361 order of least informative first - most informative last. Since
1362 the psymtab table is searched `most recent insertion first' this
1363 increases the probability that more detailed debug information
1364 for a section is found.
1365
1366 For instance, an object file might contain both .mdebug (XCOFF)
1367 and .debug_info (DWARF2) sections then .mdebug is inserted first
1368 (searched last) and DWARF2 is inserted last (searched first). If
1369 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1370 an included file XCOFF info is useless. */
c906108c
SS
1371
1372 if (ei.mdebugsect)
1373 {
1374 const struct ecoff_debug_swap *swap;
1375
1376 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1377 information. */
c906108c
SS
1378 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1379 if (swap)
d4f3574e 1380 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1381 }
1382 if (ei.stabsect)
1383 {
1384 asection *str_sect;
1385
1386 /* Stab sections have an associated string table that looks like
c5aa993b 1387 a separate section. */
c906108c
SS
1388 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1389
1390 /* FIXME should probably warn about a stab section without a stabstr. */
1391 if (str_sect)
1392 elfstab_build_psymtabs (objfile,
086df311 1393 ei.stabsect,
c906108c
SS
1394 str_sect->filepos,
1395 bfd_section_size (abfd, str_sect));
1396 }
9291a0cd 1397
251d32d9 1398 if (dwarf2_has_info (objfile, NULL))
b11896a5 1399 {
3e03848b
JK
1400 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1401 information present in OBJFILE. If there is such debug info present
1402 never use .gdb_index. */
1403
1404 if (!objfile_has_partial_symbols (objfile)
1405 && dwarf2_initialize_objfile (objfile))
b11896a5
TT
1406 objfile->sf = &elf_sym_fns_gdb_index;
1407 else
1408 {
1409 /* It is ok to do this even if the stabs reader made some
1410 partial symbols, because OBJF_PSYMTABS_READ has not been
1411 set, and so our lazy reader function will still be called
1412 when needed. */
1413 objfile->sf = &elf_sym_fns_lazy_psyms;
1414 }
1415 }
3e43a32a
MS
1416 /* If the file has its own symbol tables it has no separate debug
1417 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1418 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1419 `.note.gnu.build-id'. */
b11896a5 1420 else if (!objfile_has_partial_symbols (objfile))
9cce227f
TG
1421 {
1422 char *debugfile;
1423
1424 debugfile = find_separate_debug_file_by_buildid (objfile);
1425
1426 if (debugfile == NULL)
1427 debugfile = find_separate_debug_file_by_debuglink (objfile);
1428
1429 if (debugfile)
1430 {
1431 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1432
9cce227f
TG
1433 symbol_file_add_separate (abfd, symfile_flags, objfile);
1434 xfree (debugfile);
1435 }
1436 }
c906108c
SS
1437}
1438
b11896a5
TT
1439/* Callback to lazily read psymtabs. */
1440
1441static void
1442read_psyms (struct objfile *objfile)
1443{
251d32d9 1444 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1445 dwarf2_build_psymtabs (objfile);
1446}
1447
0a6ddd08
AC
1448/* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1449 the chain of stab_section_info's, that might be dangling from
1450 it. */
c906108c
SS
1451
1452static void
12b9c64f 1453free_elfinfo (void *objp)
c906108c 1454{
c5aa993b 1455 struct objfile *objfile = (struct objfile *) objp;
0a6ddd08 1456 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
c906108c
SS
1457 struct stab_section_info *ssi, *nssi;
1458
1459 ssi = dbxinfo->stab_section_info;
1460 while (ssi)
1461 {
1462 nssi = ssi->next;
2dc74dc1 1463 xfree (ssi);
c906108c
SS
1464 ssi = nssi;
1465 }
1466
1467 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1468}
1469
1470
1471/* Initialize anything that needs initializing when a completely new symbol
1472 file is specified (not just adding some symbols from another file, e.g. a
1473 shared library).
1474
3e43a32a
MS
1475 We reinitialize buildsym, since we may be reading stabs from an ELF
1476 file. */
c906108c
SS
1477
1478static void
fba45db2 1479elf_new_init (struct objfile *ignore)
c906108c
SS
1480{
1481 stabsread_new_init ();
1482 buildsym_new_init ();
1483}
1484
1485/* Perform any local cleanups required when we are done with a particular
1486 objfile. I.E, we are in the process of discarding all symbol information
1487 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1488 objfile struct from the global list of known objfiles. */
c906108c
SS
1489
1490static void
fba45db2 1491elf_symfile_finish (struct objfile *objfile)
c906108c 1492{
0a6ddd08 1493 if (objfile->deprecated_sym_stab_info != NULL)
c906108c 1494 {
0a6ddd08 1495 xfree (objfile->deprecated_sym_stab_info);
c906108c 1496 }
fe3e1990
DJ
1497
1498 dwarf2_free_objfile (objfile);
c906108c
SS
1499}
1500
1501/* ELF specific initialization routine for reading symbols.
1502
1503 It is passed a pointer to a struct sym_fns which contains, among other
1504 things, the BFD for the file whose symbols are being read, and a slot for
1505 a pointer to "private data" which we can fill with goodies.
1506
1507 For now at least, we have nothing in particular to do, so this function is
0963b4bd 1508 just a stub. */
c906108c
SS
1509
1510static void
fba45db2 1511elf_symfile_init (struct objfile *objfile)
c906108c
SS
1512{
1513 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1514 find this causes a significant slowdown in gdb then we could
1515 set it in the debug symbol readers only when necessary. */
1516 objfile->flags |= OBJF_REORDERED;
1517}
1518
1519/* When handling an ELF file that contains Sun STABS debug info,
1520 some of the debug info is relative to the particular chunk of the
1521 section that was generated in its individual .o file. E.g.
1522 offsets to static variables are relative to the start of the data
1523 segment *for that module before linking*. This information is
1524 painfully squirreled away in the ELF symbol table as local symbols
1525 with wierd names. Go get 'em when needed. */
1526
1527void
fba45db2 1528elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
c906108c 1529{
72b9f47f 1530 const char *filename = pst->filename;
0a6ddd08 1531 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
c906108c
SS
1532 struct stab_section_info *maybe = dbx->stab_section_info;
1533 struct stab_section_info *questionable = 0;
1534 int i;
c906108c
SS
1535
1536 /* The ELF symbol info doesn't include path names, so strip the path
1537 (if any) from the psymtab filename. */
0ba1096a 1538 filename = lbasename (filename);
c906108c
SS
1539
1540 /* FIXME: This linear search could speed up significantly
1541 if it was chained in the right order to match how we search it,
0963b4bd 1542 and if we unchained when we found a match. */
c906108c
SS
1543 for (; maybe; maybe = maybe->next)
1544 {
1545 if (filename[0] == maybe->filename[0]
0ba1096a 1546 && filename_cmp (filename, maybe->filename) == 0)
c906108c
SS
1547 {
1548 /* We found a match. But there might be several source files
1549 (from different directories) with the same name. */
1550 if (0 == maybe->found)
1551 break;
c5aa993b 1552 questionable = maybe; /* Might use it later. */
c906108c
SS
1553 }
1554 }
1555
1556 if (maybe == 0 && questionable != 0)
1557 {
23136709 1558 complaint (&symfile_complaints,
3e43a32a
MS
1559 _("elf/stab section information questionable for %s"),
1560 filename);
c906108c
SS
1561 maybe = questionable;
1562 }
1563
1564 if (maybe)
1565 {
1566 /* Found it! Allocate a new psymtab struct, and fill it in. */
1567 maybe->found++;
1568 pst->section_offsets = (struct section_offsets *)
dea91a5c 1569 obstack_alloc (&objfile->objfile_obstack,
a39a16c4
MM
1570 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1571 for (i = 0; i < maybe->num_sections; i++)
a4c8257b 1572 (pst->section_offsets)->offsets[i] = maybe->sections[i];
c906108c
SS
1573 return;
1574 }
1575
1576 /* We were unable to find any offsets for this file. Complain. */
c5aa993b 1577 if (dbx->stab_section_info) /* If there *is* any info, */
23136709 1578 complaint (&symfile_complaints,
e2e0b3e5 1579 _("elf/stab section information missing for %s"), filename);
c906108c
SS
1580}
1581\f
1582/* Register that we are able to handle ELF object file formats. */
1583
00b5771c 1584static const struct sym_fns elf_sym_fns =
c906108c
SS
1585{
1586 bfd_target_elf_flavour,
3e43a32a
MS
1587 elf_new_init, /* init anything gbl to entire symtab */
1588 elf_symfile_init, /* read initial info, setup for sym_read() */
1589 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1590 NULL, /* sym_read_psymbols */
1591 elf_symfile_finish, /* finished with file, cleanup */
1592 default_symfile_offsets, /* Translate ext. to int. relocation */
1593 elf_symfile_segments, /* Get segment information from a file. */
1594 NULL,
1595 default_symfile_relocate, /* Relocate a debug section. */
1596 &psym_functions
1597};
1598
1599/* The same as elf_sym_fns, but not registered and lazily reads
1600 psymbols. */
1601
1602static const struct sym_fns elf_sym_fns_lazy_psyms =
1603{
1604 bfd_target_elf_flavour,
1605 elf_new_init, /* init anything gbl to entire symtab */
1606 elf_symfile_init, /* read initial info, setup for sym_read() */
1607 elf_symfile_read, /* read a symbol file into symtab */
1608 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1609 elf_symfile_finish, /* finished with file, cleanup */
1610 default_symfile_offsets, /* Translate ext. to int. relocation */
1611 elf_symfile_segments, /* Get segment information from a file. */
1612 NULL,
1613 default_symfile_relocate, /* Relocate a debug section. */
00b5771c 1614 &psym_functions
c906108c
SS
1615};
1616
9291a0cd
TT
1617/* The same as elf_sym_fns, but not registered and uses the
1618 DWARF-specific GNU index rather than psymtab. */
00b5771c 1619static const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd
TT
1620{
1621 bfd_target_elf_flavour,
3e43a32a
MS
1622 elf_new_init, /* init anything gbl to entire symab */
1623 elf_symfile_init, /* read initial info, setup for sym_red() */
1624 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1625 NULL, /* sym_read_psymbols */
3e43a32a
MS
1626 elf_symfile_finish, /* finished with file, cleanup */
1627 default_symfile_offsets, /* Translate ext. to int. relocatin */
1628 elf_symfile_segments, /* Get segment information from a file. */
1629 NULL,
1630 default_symfile_relocate, /* Relocate a debug section. */
00b5771c 1631 &dwarf2_gdb_index_functions
9291a0cd
TT
1632};
1633
07be84bf
JK
1634/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1635
1636static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1637{
1638 elf_gnu_ifunc_resolve_addr,
1639 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1640 elf_gnu_ifunc_resolver_stop,
1641 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1642};
1643
c906108c 1644void
fba45db2 1645_initialize_elfread (void)
c906108c
SS
1646{
1647 add_symtab_fns (&elf_sym_fns);
07be84bf
JK
1648
1649 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1650 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1651}
This page took 0.852993 seconds and 4 git commands to generate.