gdb: move all "current target" wrapper implementations to target.c
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
3666a048 3 Copyright (C) 1991-2021 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
30d1f018 50#include "ctfread.h"
31edb802 51#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
52#include "gdbsupport/scoped_fd.h"
53#include "debuginfod-support.h"
70182375 54#include "dwarf2/public.h"
c906108c 55
eb00e468
TT
56/* A subclass of psymbol_functions that arranges to read the DWARF
57 partial symbols when needed. */
58struct lazy_dwarf_reader : public psymbol_functions
59{
60 using psymbol_functions::psymbol_functions;
61
62 bool can_lazily_read_symbols () override
63 {
64 return true;
65 }
66
67 void read_partial_symbols (struct objfile *objfile) override
68 {
69 if (dwarf2_has_info (objfile, nullptr))
eb36a3eb 70 dwarf2_build_psymtabs (objfile, this);
eb00e468
TT
71 }
72};
73
3c0aa29a
PA
74extern const struct sym_fns elf_sym_fns_lazy_psyms;
75
c906108c 76/* The struct elfinfo is available only during ELF symbol table and
6426a772 77 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
78 It's local to elf_symfile_read. */
79
c5aa993b
JM
80struct elfinfo
81 {
c5aa993b 82 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 83 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 84 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 85 };
c906108c 86
814cf43a
TT
87/* Type for per-BFD data. */
88
89typedef std::vector<std::unique_ptr<probe>> elfread_data;
90
5d9cf8a4 91/* Per-BFD data for probe info. */
55aa24fb 92
814cf43a 93static const struct bfd_key<elfread_data> probe_key;
55aa24fb 94
07be84bf
JK
95/* Minimal symbols located at the GOT entries for .plt - that is the real
96 pointer where the given entry will jump to. It gets updated by the real
97 function address during lazy ld.so resolving in the inferior. These
98 minimal symbols are indexed for <tab>-completion. */
99
100#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
101
31d99776
DJ
102/* Locate the segments in ABFD. */
103
62982abd 104static symfile_segment_data_up
31d99776
DJ
105elf_symfile_segments (bfd *abfd)
106{
107 Elf_Internal_Phdr *phdrs, **segments;
108 long phdrs_size;
109 int num_phdrs, num_segments, num_sections, i;
110 asection *sect;
31d99776
DJ
111
112 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
113 if (phdrs_size == -1)
114 return NULL;
115
224c3ddb 116 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
117 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
118 if (num_phdrs == -1)
119 return NULL;
120
121 num_segments = 0;
8d749320 122 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
123 for (i = 0; i < num_phdrs; i++)
124 if (phdrs[i].p_type == PT_LOAD)
125 segments[num_segments++] = &phdrs[i];
126
127 if (num_segments == 0)
128 return NULL;
129
62982abd 130 symfile_segment_data_up data (new symfile_segment_data);
68b888ff 131 data->segments.reserve (num_segments);
31d99776
DJ
132
133 for (i = 0; i < num_segments; i++)
68b888ff 134 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
31d99776
DJ
135
136 num_sections = bfd_count_sections (abfd);
9005fbbb
SM
137
138 /* All elements are initialized to 0 (map to no segment). */
139 data->segment_info.resize (num_sections);
31d99776
DJ
140
141 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
142 {
143 int j;
31d99776 144
fd361982 145 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
146 continue;
147
62b74cb8 148 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
149
150 for (j = 0; j < num_segments; j++)
62b74cb8 151 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
152 {
153 data->segment_info[i] = j + 1;
154 break;
155 }
156
ad09a548
DJ
157 /* We should have found a segment for every non-empty section.
158 If we haven't, we will not relocate this section by any
159 offsets we apply to the segments. As an exception, do not
160 warn about SHT_NOBITS sections; in normal ELF execution
161 environments, SHT_NOBITS means zero-initialized and belongs
162 in a segment, but in no-OS environments some tools (e.g. ARM
163 RealView) use SHT_NOBITS for uninitialized data. Since it is
164 uninitialized, it doesn't need a program header. Such
165 binaries are not relocatable. */
25f4c262
KS
166
167 /* Exclude debuginfo files from this warning, too, since those
168 are often not strictly compliant with the standard. See, e.g.,
169 ld/24717 for more discussion. */
170 if (!is_debuginfo_file (abfd)
171 && bfd_section_size (sect) > 0 && j == num_segments
fd361982 172 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
9d3ab915
KS
173 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
174 bfd_section_name (sect), bfd_get_filename (abfd));
31d99776
DJ
175 }
176
177 return data;
178}
179
c906108c
SS
180/* We are called once per section from elf_symfile_read. We
181 need to examine each section we are passed, check to see
182 if it is something we are interested in processing, and
183 if so, stash away some access information for the section.
184
185 For now we recognize the dwarf debug information sections and
186 line number sections from matching their section names. The
187 ELF definition is no real help here since it has no direct
188 knowledge of DWARF (by design, so any debugging format can be
189 used).
190
191 We also recognize the ".stab" sections used by the Sun compilers
192 released with Solaris 2.
193
194 FIXME: The section names should not be hardwired strings (what
195 should they be? I don't think most object file formats have enough
0963b4bd 196 section flags to specify what kind of debug section it is.
c906108c
SS
197 -kingdon). */
198
199static void
08f93a1a 200elf_locate_sections (asection *sectp, struct elfinfo *ei)
c906108c 201{
7ce59000 202 if (strcmp (sectp->name, ".stab") == 0)
c906108c 203 {
c5aa993b 204 ei->stabsect = sectp;
c906108c 205 }
6314a349 206 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 207 {
c5aa993b 208 ei->mdebugsect = sectp;
c906108c 209 }
30d1f018
WP
210 else if (strcmp (sectp->name, ".ctf") == 0)
211 {
212 ei->ctfsect = sectp;
213 }
c906108c
SS
214}
215
c906108c 216static struct minimal_symbol *
8dddcb8f 217record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 218 gdb::string_view name, bool copy_name,
04a679b8 219 CORE_ADDR address,
f594e5e9
MC
220 enum minimal_symbol_type ms_type,
221 asection *bfd_section, struct objfile *objfile)
c906108c 222{
08feed99 223 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 224
0875794a
JK
225 if (ms_type == mst_text || ms_type == mst_file_text
226 || ms_type == mst_text_gnu_ifunc)
85ddcc70 227 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 228
44e4c775
AB
229 /* We only setup section information for allocatable sections. Usually
230 we'd only expect to find msymbols for allocatable sections, but if the
231 ELF is malformed then this might not be the case. In that case don't
232 create an msymbol that references an uninitialised section object. */
233 int section_index = 0;
234 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
235 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
236
4b610737 237 struct minimal_symbol *result
44e4c775 238 = reader.record_full (name, copy_name, address, ms_type, section_index);
4b610737
TT
239 if ((objfile->flags & OBJF_MAINLINE) == 0
240 && (ms_type == mst_data || ms_type == mst_bss))
241 result->maybe_copied = 1;
242
243 return result;
c906108c
SS
244}
245
7f86f058 246/* Read the symbol table of an ELF file.
c906108c 247
62553543 248 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
249 symbol table contains regular, dynamic, or synthetic symbols, add all
250 the global function and data symbols to the minimal symbol table.
c906108c 251
c5aa993b
JM
252 In stabs-in-ELF, as implemented by Sun, there are some local symbols
253 defined in the ELF symbol table, which can be used to locate
254 the beginnings of sections from each ".o" file that was linked to
255 form the executable objfile. We gather any such info and record it
7f86f058 256 in data structures hung off the objfile's private data. */
c906108c 257
6f610d07
UW
258#define ST_REGULAR 0
259#define ST_DYNAMIC 1
260#define ST_SYNTHETIC 2
261
c906108c 262static void
8dddcb8f
TT
263elf_symtab_read (minimal_symbol_reader &reader,
264 struct objfile *objfile, int type,
04a679b8 265 long number_of_symbols, asymbol **symbol_table,
ce6c454e 266 bool copy_names)
c906108c 267{
08feed99 268 struct gdbarch *gdbarch = objfile->arch ();
c906108c 269 asymbol *sym;
c906108c 270 long i;
c906108c
SS
271 CORE_ADDR symaddr;
272 enum minimal_symbol_type ms_type;
18a94d75
DE
273 /* Name of the last file symbol. This is either a constant string or is
274 saved on the objfile's filename cache. */
0af1e9a5 275 const char *filesymname = "";
d4f3574e 276 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
277 int elf_make_msymbol_special_p
278 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 279
0cc7b392 280 for (i = 0; i < number_of_symbols; i++)
c906108c 281 {
0cc7b392
DJ
282 sym = symbol_table[i];
283 if (sym->name == NULL || *sym->name == '\0')
c906108c 284 {
0cc7b392 285 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 286 that are null strings (may happen). */
0cc7b392
DJ
287 continue;
288 }
c906108c 289
74763737
DJ
290 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
291 symbols which do not correspond to objects in the symbol table,
292 but have some other target-specific meaning. */
293 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
294 {
295 if (gdbarch_record_special_symbol_p (gdbarch))
296 gdbarch_record_special_symbol (gdbarch, objfile, sym);
297 continue;
298 }
74763737 299
6f610d07 300 if (type == ST_DYNAMIC
45dfa85a 301 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
302 && (sym->flags & BSF_FUNCTION))
303 {
304 struct minimal_symbol *msym;
02c75f72 305 bfd *abfd = objfile->obfd;
dea91a5c 306 asection *sect;
0cc7b392
DJ
307
308 /* Symbol is a reference to a function defined in
309 a shared library.
310 If its value is non zero then it is usually the address
311 of the corresponding entry in the procedure linkage table,
312 plus the desired section offset.
313 If its value is zero then the dynamic linker has to resolve
0963b4bd 314 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
315 for this symbol in the executable file, so we skip it. */
316 symaddr = sym->value;
317 if (symaddr == 0)
318 continue;
02c75f72
UW
319
320 /* sym->section is the undefined section. However, we want to
321 record the section where the PLT stub resides with the
322 minimal symbol. Search the section table for the one that
323 covers the stub's address. */
324 for (sect = abfd->sections; sect != NULL; sect = sect->next)
325 {
fd361982 326 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
327 continue;
328
fd361982
AM
329 if (symaddr >= bfd_section_vma (sect)
330 && symaddr < bfd_section_vma (sect)
331 + bfd_section_size (sect))
02c75f72
UW
332 break;
333 }
334 if (!sect)
335 continue;
336
828cfa8d
JB
337 /* On ia64-hpux, we have discovered that the system linker
338 adds undefined symbols with nonzero addresses that cannot
339 be right (their address points inside the code of another
340 function in the .text section). This creates problems
341 when trying to determine which symbol corresponds to
342 a given address.
343
344 We try to detect those buggy symbols by checking which
345 section we think they correspond to. Normally, PLT symbols
346 are stored inside their own section, and the typical name
347 for that section is ".plt". So, if there is a ".plt"
348 section, and yet the section name of our symbol does not
349 start with ".plt", we ignore that symbol. */
61012eef 350 if (!startswith (sect->name, ".plt")
828cfa8d
JB
351 && bfd_get_section_by_name (abfd, ".plt") != NULL)
352 continue;
353
0cc7b392 354 msym = record_minimal_symbol
31edb802 355 (reader, sym->name, copy_names,
04a679b8 356 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 357 if (msym != NULL)
9b807e7b
MR
358 {
359 msym->filename = filesymname;
3e29f34a
MR
360 if (elf_make_msymbol_special_p)
361 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 362 }
0cc7b392
DJ
363 continue;
364 }
c906108c 365
0cc7b392
DJ
366 /* If it is a nonstripped executable, do not enter dynamic
367 symbols, as the dynamic symbol table is usually a subset
368 of the main symbol table. */
6f610d07 369 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
370 continue;
371 if (sym->flags & BSF_FILE)
be1e3d3e 372 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
373 else if (sym->flags & BSF_SECTION_SYM)
374 continue;
bb869963
SDJ
375 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
376 | BSF_GNU_UNIQUE))
0cc7b392
DJ
377 {
378 struct minimal_symbol *msym;
379
380 /* Select global/local/weak symbols. Note that bfd puts abs
381 symbols in their own section, so all symbols we are
0963b4bd
MS
382 interested in will have a section. */
383 /* Bfd symbols are section relative. */
0cc7b392 384 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
385 /* For non-absolute symbols, use the type of the section
386 they are relative to, to intuit text/data. Bfd provides
0963b4bd 387 no way of figuring this out for absolute symbols. */
45dfa85a 388 if (sym->section == bfd_abs_section_ptr)
c906108c 389 {
0cc7b392
DJ
390 /* This is a hack to get the minimal symbol type
391 right for Irix 5, which has absolute addresses
6f610d07
UW
392 with special section indices for dynamic symbols.
393
394 NOTE: uweigand-20071112: Synthetic symbols do not
395 have an ELF-private part, so do not touch those. */
dea91a5c 396 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
397 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
398
399 switch (shndx)
c906108c 400 {
0cc7b392
DJ
401 case SHN_MIPS_TEXT:
402 ms_type = mst_text;
403 break;
404 case SHN_MIPS_DATA:
405 ms_type = mst_data;
406 break;
407 case SHN_MIPS_ACOMMON:
408 ms_type = mst_bss;
409 break;
410 default:
411 ms_type = mst_abs;
412 }
413
414 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 415 symbols, relocate all others by section offset. */
0cc7b392
DJ
416 if (ms_type != mst_abs)
417 {
418 if (sym->name[0] == '.')
419 continue;
c906108c 420 }
0cc7b392
DJ
421 }
422 else if (sym->section->flags & SEC_CODE)
423 {
bb869963 424 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 425 {
0875794a
JK
426 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
427 ms_type = mst_text_gnu_ifunc;
428 else
429 ms_type = mst_text;
0cc7b392 430 }
90359a16
JK
431 /* The BSF_SYNTHETIC check is there to omit ppc64 function
432 descriptors mistaken for static functions starting with 'L'.
433 */
434 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
435 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
436 || ((sym->flags & BSF_LOCAL)
437 && sym->name[0] == '$'
438 && sym->name[1] == 'L'))
439 /* Looks like a compiler-generated label. Skip
440 it. The assembler should be skipping these (to
441 keep executables small), but apparently with
442 gcc on the (deleted) delta m88k SVR4, it loses.
443 So to have us check too should be harmless (but
444 I encourage people to fix this in the assembler
445 instead of adding checks here). */
446 continue;
447 else
448 {
449 ms_type = mst_file_text;
c906108c 450 }
0cc7b392
DJ
451 }
452 else if (sym->section->flags & SEC_ALLOC)
453 {
bb869963 454 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 455 {
f50776aa
PA
456 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
457 {
458 ms_type = mst_data_gnu_ifunc;
459 }
460 else if (sym->section->flags & SEC_LOAD)
c906108c 461 {
0cc7b392 462 ms_type = mst_data;
c906108c 463 }
c906108c
SS
464 else
465 {
0cc7b392 466 ms_type = mst_bss;
c906108c
SS
467 }
468 }
0cc7b392 469 else if (sym->flags & BSF_LOCAL)
c906108c 470 {
0cc7b392
DJ
471 if (sym->section->flags & SEC_LOAD)
472 {
473 ms_type = mst_file_data;
c906108c
SS
474 }
475 else
476 {
0cc7b392 477 ms_type = mst_file_bss;
c906108c
SS
478 }
479 }
480 else
481 {
0cc7b392 482 ms_type = mst_unknown;
c906108c 483 }
0cc7b392
DJ
484 }
485 else
486 {
487 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 488 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
489 hob with actions like finding what function the PC
490 is in. Ignore them if they aren't text, data, or bss. */
491 /* ms_type = mst_unknown; */
0963b4bd 492 continue; /* Skip this symbol. */
0cc7b392
DJ
493 }
494 msym = record_minimal_symbol
31edb802 495 (reader, sym->name, copy_names, symaddr,
0cc7b392 496 ms_type, sym->section, objfile);
6f610d07 497
0cc7b392
DJ
498 if (msym)
499 {
6f610d07 500 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 501 ELF-private part. */
6f610d07 502 if (type != ST_SYNTHETIC)
24c274a1
AM
503 {
504 /* Pass symbol size field in via BFD. FIXME!!! */
505 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
506 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
507 }
dea91a5c 508
a103a963 509 msym->filename = filesymname;
3e29f34a
MR
510 if (elf_make_msymbol_special_p)
511 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 512 }
2eaf8d2a 513
715c6909
TT
514 /* If we see a default versioned symbol, install it under
515 its version-less name. */
516 if (msym != NULL)
517 {
518 const char *atsign = strchr (sym->name, '@');
519
520 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
521 {
522 int len = atsign - sym->name;
523
31edb802
CB
524 record_minimal_symbol (reader,
525 gdb::string_view (sym->name, len),
526 true, symaddr, ms_type, sym->section,
527 objfile);
715c6909
TT
528 }
529 }
530
2eaf8d2a
DJ
531 /* For @plt symbols, also record a trampoline to the
532 destination symbol. The @plt symbol will be used in
533 disassembly, and the trampoline will be used when we are
534 trying to find the target. */
535 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
536 {
537 int len = strlen (sym->name);
538
539 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
540 {
2eaf8d2a
DJ
541 struct minimal_symbol *mtramp;
542
31edb802
CB
543 mtramp = record_minimal_symbol
544 (reader, gdb::string_view (sym->name, len - 4), true,
545 symaddr, mst_solib_trampoline, sym->section, objfile);
2eaf8d2a
DJ
546 if (mtramp)
547 {
d9eaeb59 548 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 549 mtramp->created_by_gdb = 1;
2eaf8d2a 550 mtramp->filename = filesymname;
3e29f34a
MR
551 if (elf_make_msymbol_special_p)
552 gdbarch_elf_make_msymbol_special (gdbarch,
553 sym, mtramp);
2eaf8d2a
DJ
554 }
555 }
556 }
c906108c 557 }
c906108c
SS
558 }
559}
560
07be84bf
JK
561/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
562 for later look ups of which function to call when user requests
563 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
564 library defining `function' we cannot yet know while reading OBJFILE which
565 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
566 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
567
568static void
8dddcb8f
TT
569elf_rel_plt_read (minimal_symbol_reader &reader,
570 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
571{
572 bfd *obfd = objfile->obfd;
573 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 574 asection *relplt, *got_plt;
07be84bf 575 bfd_size_type reloc_count, reloc;
08feed99 576 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
577 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
578 size_t ptr_size = TYPE_LENGTH (ptr_type);
579
580 if (objfile->separate_debug_objfile_backlink)
581 return;
582
07be84bf
JK
583 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
584 if (got_plt == NULL)
4b7d1f7f
WN
585 {
586 /* For platforms where there is no separate .got.plt. */
587 got_plt = bfd_get_section_by_name (obfd, ".got");
588 if (got_plt == NULL)
589 return;
590 }
07be84bf 591
02e169e2
PA
592 /* Depending on system, we may find jump slots in a relocation
593 section for either .got.plt or .plt. */
594 asection *plt = bfd_get_section_by_name (obfd, ".plt");
595 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
596
597 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
598
07be84bf
JK
599 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
600 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
601 {
602 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
603
604 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
605 {
606 if (this_hdr.sh_info == plt_elf_idx
607 || this_hdr.sh_info == got_plt_elf_idx)
608 break;
609 }
610 }
07be84bf
JK
611 if (relplt == NULL)
612 return;
613
614 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
615 return;
616
26fcd5d7 617 std::string string_buffer;
07be84bf 618
02e169e2
PA
619 /* Does ADDRESS reside in SECTION of OBFD? */
620 auto within_section = [obfd] (asection *section, CORE_ADDR address)
621 {
622 if (section == NULL)
623 return false;
624
fd361982
AM
625 return (bfd_section_vma (section) <= address
626 && (address < bfd_section_vma (section)
627 + bfd_section_size (section)));
02e169e2
PA
628 };
629
07be84bf
JK
630 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
631 for (reloc = 0; reloc < reloc_count; reloc++)
632 {
22e048c9 633 const char *name;
07be84bf
JK
634 struct minimal_symbol *msym;
635 CORE_ADDR address;
26fcd5d7 636 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 637 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
638
639 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
640 address = relplt->relocation[reloc].address;
641
02e169e2
PA
642 asection *msym_section;
643
644 /* Does the pointer reside in either the .got.plt or .plt
645 sections? */
646 if (within_section (got_plt, address))
647 msym_section = got_plt;
648 else if (within_section (plt, address))
649 msym_section = plt;
650 else
07be84bf
JK
651 continue;
652
f50776aa
PA
653 /* We cannot check if NAME is a reference to
654 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
655 symbol is undefined and the objfile having NAME defined may
656 not yet have been loaded. */
07be84bf 657
26fcd5d7
TT
658 string_buffer.assign (name);
659 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 660
31edb802 661 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
662 true, address, mst_slot_got_plt,
663 msym_section, objfile);
07be84bf 664 if (msym)
d9eaeb59 665 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 666 }
07be84bf
JK
667}
668
669/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
670
8127a2fa
TT
671static const struct objfile_key<htab, htab_deleter>
672 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
673
674/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
675
676struct elf_gnu_ifunc_cache
677{
678 /* This is always a function entry address, not a function descriptor. */
679 CORE_ADDR addr;
680
681 char name[1];
682};
683
684/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
685
686static hashval_t
687elf_gnu_ifunc_cache_hash (const void *a_voidp)
688{
9a3c8263
SM
689 const struct elf_gnu_ifunc_cache *a
690 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
691
692 return htab_hash_string (a->name);
693}
694
695/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
696
697static int
698elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
699{
9a3c8263
SM
700 const struct elf_gnu_ifunc_cache *a
701 = (const struct elf_gnu_ifunc_cache *) a_voidp;
702 const struct elf_gnu_ifunc_cache *b
703 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
704
705 return strcmp (a->name, b->name) == 0;
706}
707
708/* Record the target function address of a STT_GNU_IFUNC function NAME is the
709 function entry address ADDR. Return 1 if NAME and ADDR are considered as
710 valid and therefore they were successfully recorded, return 0 otherwise.
711
712 Function does not expect a duplicate entry. Use
713 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
714 exists. */
715
716static int
717elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
718{
7cbd4a93 719 struct bound_minimal_symbol msym;
07be84bf
JK
720 struct objfile *objfile;
721 htab_t htab;
722 struct elf_gnu_ifunc_cache entry_local, *entry_p;
723 void **slot;
724
725 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 726 if (msym.minsym == NULL)
07be84bf 727 return 0;
77e371c0 728 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 729 return 0;
e27d198c 730 objfile = msym.objfile;
07be84bf
JK
731
732 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 733 resolution and it has no use for GDB. */
c9d95fa3 734 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
735 size_t len = strlen (target_name);
736
737 /* Note we check the symbol's name instead of checking whether the
738 symbol is in the .plt section because some systems have @plt
739 symbols in the .text section. */
740 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
741 return 0;
742
8127a2fa 743 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
744 if (htab == NULL)
745 {
8127a2fa
TT
746 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
747 elf_gnu_ifunc_cache_eq,
748 NULL, xcalloc, xfree);
749 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
750 }
751
752 entry_local.addr = addr;
753 obstack_grow (&objfile->objfile_obstack, &entry_local,
754 offsetof (struct elf_gnu_ifunc_cache, name));
755 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
756 entry_p
757 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
758
759 slot = htab_find_slot (htab, entry_p, INSERT);
760 if (*slot != NULL)
761 {
9a3c8263
SM
762 struct elf_gnu_ifunc_cache *entry_found_p
763 = (struct elf_gnu_ifunc_cache *) *slot;
08feed99 764 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
765
766 if (entry_found_p->addr != addr)
767 {
768 /* This case indicates buggy inferior program, the resolved address
769 should never change. */
770
771 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
772 "function_address from %s to %s"),
773 name, paddress (gdbarch, entry_found_p->addr),
774 paddress (gdbarch, addr));
775 }
776
777 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
778 }
779 *slot = entry_p;
780
781 return 1;
782}
783
784/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
785 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
786 is not NULL) and the function returns 1. It returns 0 otherwise.
787
788 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
789 function. */
790
791static int
792elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
793{
2030c079 794 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
795 {
796 htab_t htab;
797 struct elf_gnu_ifunc_cache *entry_p;
798 void **slot;
799
8127a2fa 800 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
801 if (htab == NULL)
802 continue;
803
224c3ddb
SM
804 entry_p = ((struct elf_gnu_ifunc_cache *)
805 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
806 strcpy (entry_p->name, name);
807
808 slot = htab_find_slot (htab, entry_p, NO_INSERT);
809 if (slot == NULL)
810 continue;
9a3c8263 811 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
812 gdb_assert (entry_p != NULL);
813
814 if (addr_p)
815 *addr_p = entry_p->addr;
816 return 1;
817 }
818
819 return 0;
820}
821
822/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
823 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
824 is not NULL) and the function returns 1. It returns 0 otherwise.
825
826 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
827 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
828 prevent cache entries duplicates. */
829
830static int
831elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
832{
833 char *name_got_plt;
07be84bf
JK
834 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
835
224c3ddb 836 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
837 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
838
2030c079 839 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
840 {
841 bfd *obfd = objfile->obfd;
08feed99 842 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
843 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
844 size_t ptr_size = TYPE_LENGTH (ptr_type);
845 CORE_ADDR pointer_address, addr;
846 asection *plt;
224c3ddb 847 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 848 struct bound_minimal_symbol msym;
07be84bf
JK
849
850 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 851 if (msym.minsym == NULL)
07be84bf 852 continue;
3b7344d5 853 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 854 continue;
77e371c0 855 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
856
857 plt = bfd_get_section_by_name (obfd, ".plt");
858 if (plt == NULL)
859 continue;
860
3b7344d5 861 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
862 continue;
863 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
864 continue;
865 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
866 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
867 current_top_target ());
4b7d1f7f 868 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 869
07be84bf 870 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
871 {
872 if (addr_p != NULL)
873 *addr_p = addr;
874 return 1;
875 }
07be84bf
JK
876 }
877
878 return 0;
879}
880
881/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
882 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 883 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
884
885 Both the elf_objfile_gnu_ifunc_cache_data hash table and
886 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
887
ececd218 888static bool
07be84bf
JK
889elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
890{
891 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 892 return true;
dea91a5c 893
07be84bf 894 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 895 return true;
07be84bf 896
ececd218 897 return false;
07be84bf
JK
898}
899
900/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
901 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
902 is the entry point of the resolved STT_GNU_IFUNC target function to call.
903 */
904
905static CORE_ADDR
906elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
907{
2c02bd72 908 const char *name_at_pc;
07be84bf
JK
909 CORE_ADDR start_at_pc, address;
910 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
911 struct value *function, *address_val;
e1b2624a
AA
912 CORE_ADDR hwcap = 0;
913 struct value *hwcap_val;
07be84bf
JK
914
915 /* Try first any non-intrusive methods without an inferior call. */
916
917 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
918 && start_at_pc == pc)
919 {
920 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
921 return address;
922 }
923 else
924 name_at_pc = NULL;
925
926 function = allocate_value (func_func_type);
1a088441 927 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
928 set_value_address (function, pc);
929
e1b2624a
AA
930 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
931 parameter. FUNCTION is the function entry address. ADDRESS may be a
932 function descriptor. */
07be84bf 933
8b88a78e 934 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
935 hwcap_val = value_from_longest (builtin_type (gdbarch)
936 ->builtin_unsigned_long, hwcap);
e71585ff 937 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 938 address = value_as_address (address_val);
8b88a78e 939 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 940 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
941
942 if (name_at_pc)
943 elf_gnu_ifunc_record_cache (name_at_pc, address);
944
945 return address;
946}
947
0e30163f
JK
948/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
949
950static void
951elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
952{
953 struct breakpoint *b_return;
954 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
955 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
956 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 957 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
958
959 gdb_assert (b->type == bp_gnu_ifunc_resolver);
960
961 for (b_return = b->related_breakpoint; b_return != b;
962 b_return = b_return->related_breakpoint)
963 {
964 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
965 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
966 gdb_assert (frame_id_p (b_return->frame_id));
967
968 if (b_return->thread == thread_id
969 && b_return->loc->requested_address == prev_pc
970 && frame_id_eq (b_return->frame_id, prev_frame_id))
971 break;
972 }
973
974 if (b_return == b)
975 {
0e30163f
JK
976 /* No need to call find_pc_line for symbols resolving as this is only
977 a helper breakpointer never shown to the user. */
978
51abb421 979 symtab_and_line sal;
0e30163f
JK
980 sal.pspace = current_inferior ()->pspace;
981 sal.pc = prev_pc;
982 sal.section = find_pc_overlay (sal.pc);
983 sal.explicit_pc = 1;
454dafbd
TT
984 b_return
985 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
986 prev_frame_id,
987 bp_gnu_ifunc_resolver_return).release ();
0e30163f 988
c70a6932
JK
989 /* set_momentary_breakpoint invalidates PREV_FRAME. */
990 prev_frame = NULL;
991
0e30163f
JK
992 /* Add new b_return to the ring list b->related_breakpoint. */
993 gdb_assert (b_return->related_breakpoint == b_return);
994 b_return->related_breakpoint = b->related_breakpoint;
995 b->related_breakpoint = b_return;
996 }
997}
998
999/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1000
1001static void
1002elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1003{
00431a78 1004 thread_info *thread = inferior_thread ();
0e30163f
JK
1005 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1006 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1007 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 1008 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 1009 struct value *func_func;
0e30163f
JK
1010 struct value *value;
1011 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
1012
1013 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1014
0e30163f
JK
1015 while (b->related_breakpoint != b)
1016 {
1017 struct breakpoint *b_next = b->related_breakpoint;
1018
1019 switch (b->type)
1020 {
1021 case bp_gnu_ifunc_resolver:
1022 break;
1023 case bp_gnu_ifunc_resolver_return:
1024 delete_breakpoint (b);
1025 break;
1026 default:
1027 internal_error (__FILE__, __LINE__,
1028 _("handle_inferior_event: Invalid "
1029 "gnu-indirect-function breakpoint type %d"),
1030 (int) b->type);
1031 }
1032 b = b_next;
1033 }
1034 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1035 gdb_assert (b->loc->next == NULL);
1036
1037 func_func = allocate_value (func_func_type);
1a088441 1038 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1039 set_value_address (func_func, b->loc->related_address);
1040
1041 value = allocate_value (value_type);
1042 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1043 value_contents_raw (value), NULL);
1044 resolved_address = value_as_address (value);
1045 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1046 resolved_address,
8b88a78e 1047 current_top_target ());
4b7d1f7f 1048 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1049
f8eba3c6 1050 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1051 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1052 resolved_pc);
0e30163f 1053
0e30163f 1054 b->type = bp_breakpoint;
6c5b2ebe 1055 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1056 find_function_start_sal (resolved_pc, NULL, true),
1057 {});
0e30163f
JK
1058}
1059
2750ef27
TT
1060/* A helper function for elf_symfile_read that reads the minimal
1061 symbols. */
c906108c
SS
1062
1063static void
5f6cac40
TT
1064elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1065 const struct elfinfo *ei)
c906108c 1066{
63524580 1067 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1068 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1069 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1070 asymbol *synthsyms;
c906108c 1071
45cfd468
DE
1072 if (symtab_create_debug)
1073 {
1074 fprintf_unfiltered (gdb_stdlog,
1075 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1076 objfile_name (objfile));
45cfd468
DE
1077 }
1078
5f6cac40
TT
1079 /* If we already have minsyms, then we can skip some work here.
1080 However, if there were stabs or mdebug sections, we go ahead and
1081 redo all the work anyway, because the psym readers for those
1082 kinds of debuginfo need extra information found here. This can
1083 go away once all types of symbols are in the per-BFD object. */
1084 if (objfile->per_bfd->minsyms_read
1085 && ei->stabsect == NULL
30d1f018
WP
1086 && ei->mdebugsect == NULL
1087 && ei->ctfsect == NULL)
5f6cac40
TT
1088 {
1089 if (symtab_create_debug)
1090 fprintf_unfiltered (gdb_stdlog,
1091 "... minimal symbols previously read\n");
1092 return;
1093 }
1094
d25e8719 1095 minimal_symbol_reader reader (objfile);
c906108c 1096
18a94d75 1097 /* Process the normal ELF symbol table first. */
c906108c 1098
62553543
EZ
1099 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1100 if (storage_needed < 0)
3e43a32a
MS
1101 error (_("Can't read symbols from %s: %s"),
1102 bfd_get_filename (objfile->obfd),
62553543
EZ
1103 bfd_errmsg (bfd_get_error ()));
1104
1105 if (storage_needed > 0)
1106 {
80c57053
JK
1107 /* Memory gets permanently referenced from ABFD after
1108 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1109
224c3ddb 1110 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1111 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1112
1113 if (symcount < 0)
3e43a32a
MS
1114 error (_("Can't read symbols from %s: %s"),
1115 bfd_get_filename (objfile->obfd),
62553543
EZ
1116 bfd_errmsg (bfd_get_error ()));
1117
ce6c454e
TT
1118 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1119 false);
62553543 1120 }
c906108c
SS
1121
1122 /* Add the dynamic symbols. */
1123
62553543
EZ
1124 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1125
1126 if (storage_needed > 0)
1127 {
3f1eff0a
JK
1128 /* Memory gets permanently referenced from ABFD after
1129 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1130 It happens only in the case when elf_slurp_reloc_table sees
1131 asection->relocation NULL. Determining which section is asection is
1132 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1133 implementation detail, though. */
1134
224c3ddb 1135 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1136 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1137 dyn_symbol_table);
1138
1139 if (dynsymcount < 0)
3e43a32a
MS
1140 error (_("Can't read symbols from %s: %s"),
1141 bfd_get_filename (objfile->obfd),
62553543
EZ
1142 bfd_errmsg (bfd_get_error ()));
1143
8dddcb8f 1144 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1145 dyn_symbol_table, false);
07be84bf 1146
8dddcb8f 1147 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1148 }
1149
63524580
JK
1150 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1151 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1152
1153 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1154 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1155 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1156 read the code address from .opd while it reads the .symtab section from
1157 a separate debug info file as the .opd section is SHT_NOBITS there.
1158
1159 With SYNTH_ABFD the .opd section will be read from the original
1160 backlinked binary where it is valid. */
1161
1162 if (objfile->separate_debug_objfile_backlink)
1163 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1164 else
1165 synth_abfd = abfd;
1166
62553543
EZ
1167 /* Add synthetic symbols - for instance, names for any PLT entries. */
1168
63524580 1169 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1170 dynsymcount, dyn_symbol_table,
1171 &synthsyms);
1172 if (synthcount > 0)
1173 {
62553543
EZ
1174 long i;
1175
b22e99fd 1176 std::unique_ptr<asymbol *[]>
d1e4a624 1177 synth_symbol_table (new asymbol *[synthcount]);
62553543 1178 for (i = 0; i < synthcount; i++)
9f20e3da 1179 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1180 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1181 synth_symbol_table.get (), true);
ba713918
AL
1182
1183 xfree (synthsyms);
1184 synthsyms = NULL;
62553543 1185 }
c906108c 1186
7134143f
DJ
1187 /* Install any minimal symbols that have been collected as the current
1188 minimal symbols for this objfile. The debug readers below this point
1189 should not generate new minimal symbols; if they do it's their
1190 responsibility to install them. "mdebug" appears to be the only one
1191 which will do this. */
1192
d25e8719 1193 reader.install ();
7134143f 1194
4f00dda3
DE
1195 if (symtab_create_debug)
1196 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1197}
1198
1199/* Scan and build partial symbols for a symbol file.
1200 We have been initialized by a call to elf_symfile_init, which
1201 currently does nothing.
1202
2750ef27
TT
1203 This function only does the minimum work necessary for letting the
1204 user "name" things symbolically; it does not read the entire symtab.
1205 Instead, it reads the external and static symbols and puts them in partial
1206 symbol tables. When more extensive information is requested of a
1207 file, the corresponding partial symbol table is mutated into a full
1208 fledged symbol table by going back and reading the symbols
1209 for real.
1210
1211 We look for sections with specific names, to tell us what debug
1212 format to look for: FIXME!!!
1213
1214 elfstab_build_psymtabs() handles STABS symbols;
1215 mdebug_build_psymtabs() handles ECOFF debugging information.
1216
1217 Note that ELF files have a "minimal" symbol table, which looks a lot
1218 like a COFF symbol table, but has only the minimal information necessary
1219 for linking. We process this also, and use the information to
1220 build gdb's minimal symbol table. This gives us some minimal debugging
1221 capability even for files compiled without -g. */
1222
1223static void
b15cc25c 1224elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1225{
1226 bfd *abfd = objfile->obfd;
1227 struct elfinfo ei;
30d1f018 1228 bool has_dwarf2 = true;
2750ef27 1229
2750ef27 1230 memset ((char *) &ei, 0, sizeof (ei));
97cbe998 1231 if (!(objfile->flags & OBJF_READNEVER))
08f93a1a
TT
1232 {
1233 for (asection *sect : gdb_bfd_sections (abfd))
1234 elf_locate_sections (sect, &ei);
1235 }
c906108c 1236
5f6cac40
TT
1237 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1238
c906108c
SS
1239 /* ELF debugging information is inserted into the psymtab in the
1240 order of least informative first - most informative last. Since
1241 the psymtab table is searched `most recent insertion first' this
1242 increases the probability that more detailed debug information
1243 for a section is found.
1244
1245 For instance, an object file might contain both .mdebug (XCOFF)
1246 and .debug_info (DWARF2) sections then .mdebug is inserted first
1247 (searched last) and DWARF2 is inserted last (searched first). If
1248 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1249 an included file XCOFF info is useless. */
c906108c
SS
1250
1251 if (ei.mdebugsect)
1252 {
1253 const struct ecoff_debug_swap *swap;
1254
1255 /* .mdebug section, presumably holding ECOFF debugging
dda83cd7 1256 information. */
c906108c
SS
1257 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1258 if (swap)
d4f3574e 1259 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1260 }
1261 if (ei.stabsect)
1262 {
1263 asection *str_sect;
1264
1265 /* Stab sections have an associated string table that looks like
dda83cd7 1266 a separate section. */
c906108c
SS
1267 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1268
1269 /* FIXME should probably warn about a stab section without a stabstr. */
1270 if (str_sect)
1271 elfstab_build_psymtabs (objfile,
086df311 1272 ei.stabsect,
c906108c 1273 str_sect->filepos,
fd361982 1274 bfd_section_size (str_sect));
c906108c 1275 }
9291a0cd 1276
4b610737 1277 if (dwarf2_has_info (objfile, NULL, true))
b11896a5 1278 {
3c0aa29a 1279 dw_index_kind index_kind;
3e03848b 1280
eb36a3eb 1281 if (dwarf2_initialize_objfile (objfile, &index_kind))
3c0aa29a
PA
1282 {
1283 switch (index_kind)
1284 {
1285 case dw_index_kind::GDB_INDEX:
e1114590 1286 objfile->qf.push_front (make_dwarf_gdb_index ());
3c0aa29a
PA
1287 break;
1288 case dw_index_kind::DEBUG_NAMES:
e1114590
TT
1289 objfile->qf.clear ();
1290 objfile->qf.push_front (make_dwarf_debug_names ());
3c0aa29a
PA
1291 break;
1292 }
1293 }
1294 else
eb36a3eb 1295 objfile->qf.emplace_front (new lazy_dwarf_reader);
b11896a5 1296 }
3e43a32a
MS
1297 /* If the file has its own symbol tables it has no separate debug
1298 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1299 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1300 `.note.gnu.build-id'.
1301
a8ad4f3c 1302 .gnu_debugdata is !objfile::has_partial_symbols because it contains only
8a92335b
JK
1303 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1304 an objfile via find_separate_debug_file_in_section there was no separate
1305 debug info available. Therefore do not attempt to search for another one,
1306 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1307 be NULL and we would possibly violate it. */
1308
a8ad4f3c 1309 else if (!objfile->has_partial_symbols ()
8a92335b
JK
1310 && objfile->separate_debug_objfile == NULL
1311 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1312 {
a8dbfd58 1313 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1314
a8dbfd58
SM
1315 if (debugfile.empty ())
1316 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1317
a8dbfd58 1318 if (!debugfile.empty ())
9cce227f 1319 {
b926417a 1320 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1321
b926417a 1322 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1323 symfile_flags, objfile);
9cce227f 1324 }
0d79cdc4
AM
1325 else
1326 {
30d1f018 1327 has_dwarf2 = false;
0d79cdc4
AM
1328 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1329
1330 if (build_id != nullptr)
1331 {
1332 gdb::unique_xmalloc_ptr<char> symfile_path;
1333 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1334 build_id->size,
1335 objfile->original_name,
1336 &symfile_path));
1337
1338 if (fd.get () >= 0)
1339 {
1340 /* File successfully retrieved from server. */
1341 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1342
1343 if (debug_bfd == nullptr)
1344 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1345 objfile->original_name);
1346 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1347 {
1348 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1349 symfile_flags, objfile);
1350 has_dwarf2 = true;
1351 }
1352 }
1353 }
1354 }
30d1f018
WP
1355 }
1356
1357 /* Read the CTF section only if there is no DWARF info. */
1358 if (!has_dwarf2 && ei.ctfsect)
1359 {
1360 elfctf_build_psymtabs (objfile);
9cce227f 1361 }
c906108c
SS
1362}
1363
c906108c
SS
1364/* Initialize anything that needs initializing when a completely new symbol
1365 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1366 shared library). */
c906108c
SS
1367
1368static void
fba45db2 1369elf_new_init (struct objfile *ignore)
c906108c 1370{
c906108c
SS
1371}
1372
1373/* Perform any local cleanups required when we are done with a particular
1374 objfile. I.E, we are in the process of discarding all symbol information
1375 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1376 objfile struct from the global list of known objfiles. */
c906108c
SS
1377
1378static void
fba45db2 1379elf_symfile_finish (struct objfile *objfile)
c906108c 1380{
c906108c
SS
1381}
1382
db7a9bcd 1383/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1384
1385static void
fba45db2 1386elf_symfile_init (struct objfile *objfile)
c906108c
SS
1387{
1388 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1389 find this causes a significant slowdown in gdb then we could
1390 set it in the debug symbol readers only when necessary. */
1391 objfile->flags |= OBJF_REORDERED;
1392}
1393
55aa24fb
SDJ
1394/* Implementation of `sym_get_probes', as documented in symfile.h. */
1395
814cf43a 1396static const elfread_data &
55aa24fb
SDJ
1397elf_get_probes (struct objfile *objfile)
1398{
814cf43a 1399 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1400
aaa63a31 1401 if (probes_per_bfd == NULL)
55aa24fb 1402 {
814cf43a 1403 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1404
1405 /* Here we try to gather information about all types of probes from the
1406 objfile. */
935676c9 1407 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1408 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1409 }
1410
aaa63a31 1411 return *probes_per_bfd;
55aa24fb
SDJ
1412}
1413
c906108c 1414\f
55aa24fb
SDJ
1415
1416/* Implementation `sym_probe_fns', as documented in symfile.h. */
1417
1418static const struct sym_probe_fns elf_probe_fns =
1419{
25f9533e 1420 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1421};
1422
c906108c
SS
1423/* Register that we are able to handle ELF object file formats. */
1424
00b5771c 1425static const struct sym_fns elf_sym_fns =
c906108c 1426{
3e43a32a
MS
1427 elf_new_init, /* init anything gbl to entire symtab */
1428 elf_symfile_init, /* read initial info, setup for sym_read() */
1429 elf_symfile_read, /* read a symbol file into symtab */
1430 elf_symfile_finish, /* finished with file, cleanup */
1431 default_symfile_offsets, /* Translate ext. to int. relocation */
1432 elf_symfile_segments, /* Get segment information from a file. */
1433 NULL,
1434 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1435 &elf_probe_fns, /* sym_probe_fns */
927aa2e7
JK
1436};
1437
07be84bf
JK
1438/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1439
1440static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1441{
1442 elf_gnu_ifunc_resolve_addr,
1443 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1444 elf_gnu_ifunc_resolver_stop,
1445 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1446};
1447
6c265988 1448void _initialize_elfread ();
c906108c 1449void
6c265988 1450_initialize_elfread ()
c906108c 1451{
c256e171 1452 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1453
07be84bf 1454 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1455}
This page took 2.056719 seconds and 4 git commands to generate.