*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532 24# environment.
0e05dfcb
DJ
25LANG=C ; export LANG
26LC_ALL=C ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
489# Return the adjusted address and kind to use for Z0/Z1 packets.
490# KIND is usually the memory length of the breakpoint, but may have a
491# different target-specific meaning.
0e05dfcb 492m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 493M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
494m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 496v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
497
498# A function can be addressed by either it's "pointer" (possibly a
499# descriptor address) or "entry point" (first executable instruction).
500# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 501# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
502# a simplified subset of that functionality - the function's address
503# corresponds to the "function pointer" and the function's start
504# corresponds to the "function entry point" - and hence is redundant.
505
97030eea 506v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 507
123dc839
DJ
508# Return the remote protocol register number associated with this
509# register. Normally the identity mapping.
97030eea 510m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 511
b2756930 512# Fetch the target specific address used to represent a load module.
97030eea 513F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 514#
97030eea
UW
515v:CORE_ADDR:frame_args_skip:::0:::0
516M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
518# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519# frame-base. Enable frame-base before frame-unwind.
97030eea 520F:int:frame_num_args:struct frame_info *frame:frame
104c1213 521#
97030eea
UW
522M:CORE_ADDR:frame_align:CORE_ADDR address:address
523m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524v:int:frame_red_zone_size
f0d4cc9e 525#
97030eea 526m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
527# On some machines there are bits in addresses which are not really
528# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 529# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
530# we get a "real" address such as one would find in a symbol table.
531# This is used only for addresses of instructions, and even then I'm
532# not sure it's used in all contexts. It exists to deal with there
533# being a few stray bits in the PC which would mislead us, not as some
534# sort of generic thing to handle alignment or segmentation (it's
535# possible it should be in TARGET_READ_PC instead).
24568a2c 536m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 537# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 538# gdbarch_addr_bits_remove.
24568a2c 539m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
540
541# FIXME/cagney/2001-01-18: This should be split in two. A target method that
542# indicates if the target needs software single step. An ISA method to
543# implement it.
544#
545# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546# breakpoints using the breakpoint system instead of blatting memory directly
547# (as with rs6000).
64c4637f 548#
e6590a1b
UW
549# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550# target can single step. If not, then implement single step using breakpoints.
64c4637f 551#
e6590a1b
UW
552# A return value of 1 means that the software_single_step breakpoints
553# were inserted; 0 means they were not.
97030eea 554F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 555
3352ef37
AC
556# Return non-zero if the processor is executing a delay slot and a
557# further single-step is needed before the instruction finishes.
97030eea 558M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 559# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 560# disassembler. Perhaps objdump can handle it?
97030eea
UW
561f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
563
564
cfd8ab24 565# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
566# evaluates non-zero, this is the address where the debugger will place
567# a step-resume breakpoint to get us past the dynamic linker.
97030eea 568m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 569# Some systems also have trampoline code for returning from shared libs.
e17a4113 570m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 571
c12260ac
CV
572# A target might have problems with watchpoints as soon as the stack
573# frame of the current function has been destroyed. This mostly happens
574# as the first action in a funtion's epilogue. in_function_epilogue_p()
575# is defined to return a non-zero value if either the given addr is one
576# instruction after the stack destroying instruction up to the trailing
577# return instruction or if we can figure out that the stack frame has
578# already been invalidated regardless of the value of addr. Targets
579# which don't suffer from that problem could just let this functionality
580# untouched.
97030eea 581m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
582f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
584v:int:cannot_step_breakpoint:::0:0::0
585v:int:have_nonsteppable_watchpoint:::0:0::0
586F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 589# Is a register in a group
97030eea 590m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 591# Fetch the pointer to the ith function argument.
97030eea 592F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
593
594# Return the appropriate register set for a core file section with
595# name SECT_NAME and size SECT_SIZE.
97030eea 596M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 597
959b8724
PA
598# When creating core dumps, some systems encode the PID in addition
599# to the LWP id in core file register section names. In those cases, the
600# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601# is set to true for such architectures; false if "XXX" represents an LWP
602# or thread id with no special encoding.
603v:int:core_reg_section_encodes_pid:::0:0::0
604
17ea7499
CES
605# Supported register notes in a core file.
606v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
de584861
PA
608# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609# core file into buffer READBUF with length LEN.
97030eea 610M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 611
28439f5e
PA
612# How the core_stratum layer converts a PTID from a core file to a
613# string.
614M:char *:core_pid_to_str:ptid_t ptid:ptid
615
a78c2d62
UW
616# BFD target to use when generating a core file.
617V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
0d5de010
DJ
619# If the elements of C++ vtables are in-place function descriptors rather
620# than normal function pointers (which may point to code or a descriptor),
621# set this to one.
97030eea 622v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
623
624# Set if the least significant bit of the delta is used instead of the least
625# significant bit of the pfn for pointers to virtual member functions.
97030eea 626v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
627
628# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 629F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 630
237fc4c9
PA
631# The maximum length of an instruction on this architecture.
632V:ULONGEST:max_insn_length:::0:0
633
634# Copy the instruction at FROM to TO, and make any adjustments
635# necessary to single-step it at that address.
636#
637# REGS holds the state the thread's registers will have before
638# executing the copied instruction; the PC in REGS will refer to FROM,
639# not the copy at TO. The caller should update it to point at TO later.
640#
641# Return a pointer to data of the architecture's choice to be passed
642# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643# the instruction's effects have been completely simulated, with the
644# resulting state written back to REGS.
645#
646# For a general explanation of displaced stepping and how GDB uses it,
647# see the comments in infrun.c.
648#
649# The TO area is only guaranteed to have space for
650# gdbarch_max_insn_length (arch) bytes, so this function must not
651# write more bytes than that to that area.
652#
653# If you do not provide this function, GDB assumes that the
654# architecture does not support displaced stepping.
655#
656# If your architecture doesn't need to adjust instructions before
657# single-stepping them, consider using simple_displaced_step_copy_insn
658# here.
659M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
99e40580
UW
661# Return true if GDB should use hardware single-stepping to execute
662# the displaced instruction identified by CLOSURE. If false,
663# GDB will simply restart execution at the displaced instruction
664# location, and it is up to the target to ensure GDB will receive
665# control again (e.g. by placing a software breakpoint instruction
666# into the displaced instruction buffer).
667#
668# The default implementation returns false on all targets that
669# provide a gdbarch_software_single_step routine, and true otherwise.
670m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
237fc4c9
PA
672# Fix up the state resulting from successfully single-stepping a
673# displaced instruction, to give the result we would have gotten from
674# stepping the instruction in its original location.
675#
676# REGS is the register state resulting from single-stepping the
677# displaced instruction.
678#
679# CLOSURE is the result from the matching call to
680# gdbarch_displaced_step_copy_insn.
681#
682# If you provide gdbarch_displaced_step_copy_insn.but not this
683# function, then GDB assumes that no fixup is needed after
684# single-stepping the instruction.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690# Free a closure returned by gdbarch_displaced_step_copy_insn.
691#
692# If you provide gdbarch_displaced_step_copy_insn, you must provide
693# this function as well.
694#
695# If your architecture uses closures that don't need to be freed, then
696# you can use simple_displaced_step_free_closure here.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702# Return the address of an appropriate place to put displaced
703# instructions while we step over them. There need only be one such
704# place, since we're only stepping one thread over a breakpoint at a
705# time.
706#
707# For a general explanation of displaced stepping and how GDB uses it,
708# see the comments in infrun.c.
709m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
1c772458 711# Refresh overlay mapped state for section OSECT.
97030eea 712F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 713
97030eea 714M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
715
716# Handle special encoding of static variables in stabs debug info.
97030eea 717F:char *:static_transform_name:char *name:name
203c3895 718# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 719v:int:sofun_address_maybe_missing:::0:0::0
1cded358 720
0508c3ec
HZ
721# Parse the instruction at ADDR storing in the record execution log
722# the registers REGCACHE and memory ranges that will be affected when
723# the instruction executes, along with their current values.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
3846b520
HZ
727# Save process state after a signal.
728# Return -1 if something goes wrong, 0 otherwise.
729M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
1cded358
AR
731# Signal translation: translate inferior's signal (host's) number into
732# GDB's representation.
733m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734# Signal translation: translate GDB's signal number into inferior's host
735# signal number.
736m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 737
4aa995e1
PA
738# Extra signal info inspection.
739#
740# Return a type suitable to inspect extra signal information.
741M:struct type *:get_siginfo_type:void:
742
60c5725c
DJ
743# Record architecture-specific information from the symbol table.
744M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 745
a96d9b2e
SDJ
746# Function for the 'catch syscall' feature.
747
748# Get architecture-specific system calls information from registers.
749M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
50c71eaf
PA
751# True if the list of shared libraries is one and only for all
752# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
753# This usually means that all processes, although may or may not share
754# an address space, will see the same set of symbols at the same
755# addresses.
50c71eaf 756v:int:has_global_solist:::0:0::0
2567c7d9
PA
757
758# On some targets, even though each inferior has its own private
759# address space, the debug interface takes care of making breakpoints
760# visible to all address spaces automatically. For such cases,
761# this property should be set to true.
762v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
763
764# True if inferiors share an address space (e.g., uClinux).
765m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
766
767# True if a fast tracepoint can be set at an address.
768m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9
L
769
770# Not NULL if a target has additonal field for qSupported.
771v:const char *:qsupported:::0:0::0:gdbarch->qsupported
104c1213 772EOF
104c1213
JM
773}
774
0b8f9e4d
AC
775#
776# The .log file
777#
778exec > new-gdbarch.log
34620563 779function_list | while do_read
0b8f9e4d
AC
780do
781 cat <<EOF
2f9b146e 782${class} ${returntype} ${function} ($formal)
104c1213 783EOF
3d9a5942
AC
784 for r in ${read}
785 do
786 eval echo \"\ \ \ \ ${r}=\${${r}}\"
787 done
f0d4cc9e 788 if class_is_predicate_p && fallback_default_p
0b8f9e4d 789 then
66d659b1 790 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
791 kill $$
792 exit 1
793 fi
72e74a21 794 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
795 then
796 echo "Error: postdefault is useless when invalid_p=0" 1>&2
797 kill $$
798 exit 1
799 fi
a72293e2
AC
800 if class_is_multiarch_p
801 then
802 if class_is_predicate_p ; then :
803 elif test "x${predefault}" = "x"
804 then
2f9b146e 805 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
806 kill $$
807 exit 1
808 fi
809 fi
3d9a5942 810 echo ""
0b8f9e4d
AC
811done
812
813exec 1>&2
814compare_new gdbarch.log
815
104c1213
JM
816
817copyright ()
818{
819cat <<EOF
59233f88
AC
820/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
821
104c1213 822/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 823
f801e1e0
MS
824 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
825 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
826
827 This file is part of GDB.
828
829 This program is free software; you can redistribute it and/or modify
830 it under the terms of the GNU General Public License as published by
50efebf8 831 the Free Software Foundation; either version 3 of the License, or
104c1213 832 (at your option) any later version.
50efebf8 833
104c1213
JM
834 This program is distributed in the hope that it will be useful,
835 but WITHOUT ANY WARRANTY; without even the implied warranty of
836 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
837 GNU General Public License for more details.
50efebf8 838
104c1213 839 You should have received a copy of the GNU General Public License
50efebf8 840 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 841
104c1213
JM
842/* This file was created with the aid of \`\`gdbarch.sh''.
843
52204a0b 844 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
845 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
846 against the existing \`\`gdbarch.[hc]''. Any differences found
847 being reported.
848
849 If editing this file, please also run gdbarch.sh and merge any
52204a0b 850 changes into that script. Conversely, when making sweeping changes
104c1213
JM
851 to this file, modifying gdbarch.sh and using its output may prove
852 easier. */
853
854EOF
855}
856
857#
858# The .h file
859#
860
861exec > new-gdbarch.h
862copyright
863cat <<EOF
864#ifndef GDBARCH_H
865#define GDBARCH_H
866
da3331ec
AC
867struct floatformat;
868struct ui_file;
104c1213
JM
869struct frame_info;
870struct value;
b6af0555 871struct objfile;
1c772458 872struct obj_section;
a2cf933a 873struct minimal_symbol;
049ee0e4 874struct regcache;
b59ff9d5 875struct reggroup;
6ce6d90f 876struct regset;
a89aa300 877struct disassemble_info;
e2d0e7eb 878struct target_ops;
030f20e1 879struct obstack;
8181d85f 880struct bp_target_info;
424163ea 881struct target_desc;
237fc4c9 882struct displaced_step_closure;
17ea7499 883struct core_regset_section;
a96d9b2e 884struct syscall;
104c1213 885
9e2ace22
JB
886/* The architecture associated with the connection to the target.
887
888 The architecture vector provides some information that is really
889 a property of the target: The layout of certain packets, for instance;
890 or the solib_ops vector. Etc. To differentiate architecture accesses
891 to per-target properties from per-thread/per-frame/per-objfile properties,
892 accesses to per-target properties should be made through target_gdbarch.
893
894 Eventually, when support for multiple targets is implemented in
895 GDB, this global should be made target-specific. */
1cf3db46 896extern struct gdbarch *target_gdbarch;
104c1213
JM
897EOF
898
899# function typedef's
3d9a5942
AC
900printf "\n"
901printf "\n"
902printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 903function_list | while do_read
104c1213 904do
2ada493a
AC
905 if class_is_info_p
906 then
3d9a5942
AC
907 printf "\n"
908 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
909 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 910 fi
104c1213
JM
911done
912
913# function typedef's
3d9a5942
AC
914printf "\n"
915printf "\n"
916printf "/* The following are initialized by the target dependent code. */\n"
34620563 917function_list | while do_read
104c1213 918do
72e74a21 919 if [ -n "${comment}" ]
34620563
AC
920 then
921 echo "${comment}" | sed \
922 -e '2 s,#,/*,' \
923 -e '3,$ s,#, ,' \
924 -e '$ s,$, */,'
925 fi
412d5987
AC
926
927 if class_is_predicate_p
2ada493a 928 then
412d5987
AC
929 printf "\n"
930 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 931 fi
2ada493a
AC
932 if class_is_variable_p
933 then
3d9a5942
AC
934 printf "\n"
935 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
936 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
937 fi
938 if class_is_function_p
939 then
3d9a5942 940 printf "\n"
72e74a21 941 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
942 then
943 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
944 elif class_is_multiarch_p
945 then
946 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
947 else
948 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
949 fi
72e74a21 950 if [ "x${formal}" = "xvoid" ]
104c1213 951 then
3d9a5942 952 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 953 else
3d9a5942 954 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 955 fi
3d9a5942 956 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 957 fi
104c1213
JM
958done
959
960# close it off
961cat <<EOF
962
a96d9b2e
SDJ
963/* Definition for an unknown syscall, used basically in error-cases. */
964#define UNKNOWN_SYSCALL (-1)
965
104c1213
JM
966extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
967
968
969/* Mechanism for co-ordinating the selection of a specific
970 architecture.
971
972 GDB targets (*-tdep.c) can register an interest in a specific
973 architecture. Other GDB components can register a need to maintain
974 per-architecture data.
975
976 The mechanisms below ensures that there is only a loose connection
977 between the set-architecture command and the various GDB
0fa6923a 978 components. Each component can independently register their need
104c1213
JM
979 to maintain architecture specific data with gdbarch.
980
981 Pragmatics:
982
983 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
984 didn't scale.
985
986 The more traditional mega-struct containing architecture specific
987 data for all the various GDB components was also considered. Since
0fa6923a 988 GDB is built from a variable number of (fairly independent)
104c1213
JM
989 components it was determined that the global aproach was not
990 applicable. */
991
992
993/* Register a new architectural family with GDB.
994
995 Register support for the specified ARCHITECTURE with GDB. When
996 gdbarch determines that the specified architecture has been
997 selected, the corresponding INIT function is called.
998
999 --
1000
1001 The INIT function takes two parameters: INFO which contains the
1002 information available to gdbarch about the (possibly new)
1003 architecture; ARCHES which is a list of the previously created
1004 \`\`struct gdbarch'' for this architecture.
1005
0f79675b 1006 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1007 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1008
1009 The ARCHES parameter is a linked list (sorted most recently used)
1010 of all the previously created architures for this architecture
1011 family. The (possibly NULL) ARCHES->gdbarch can used to access
1012 values from the previously selected architecture for this
59837fe0 1013 architecture family.
104c1213
JM
1014
1015 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1016 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1017 gdbarch'' from the ARCHES list - indicating that the new
1018 architecture is just a synonym for an earlier architecture (see
1019 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1020 - that describes the selected architecture (see gdbarch_alloc()).
1021
1022 The DUMP_TDEP function shall print out all target specific values.
1023 Care should be taken to ensure that the function works in both the
1024 multi-arch and non- multi-arch cases. */
104c1213
JM
1025
1026struct gdbarch_list
1027{
1028 struct gdbarch *gdbarch;
1029 struct gdbarch_list *next;
1030};
1031
1032struct gdbarch_info
1033{
104c1213
JM
1034 /* Use default: NULL (ZERO). */
1035 const struct bfd_arch_info *bfd_arch_info;
1036
428721aa 1037 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1038 int byte_order;
1039
9d4fde75
SS
1040 int byte_order_for_code;
1041
104c1213
JM
1042 /* Use default: NULL (ZERO). */
1043 bfd *abfd;
1044
1045 /* Use default: NULL (ZERO). */
1046 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1047
1048 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1049 enum gdb_osabi osabi;
424163ea
DJ
1050
1051 /* Use default: NULL (ZERO). */
1052 const struct target_desc *target_desc;
104c1213
JM
1053};
1054
1055typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1056typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1057
4b9b3959 1058/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1059extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1060
4b9b3959
AC
1061extern void gdbarch_register (enum bfd_architecture architecture,
1062 gdbarch_init_ftype *,
1063 gdbarch_dump_tdep_ftype *);
1064
104c1213 1065
b4a20239
AC
1066/* Return a freshly allocated, NULL terminated, array of the valid
1067 architecture names. Since architectures are registered during the
1068 _initialize phase this function only returns useful information
1069 once initialization has been completed. */
1070
1071extern const char **gdbarch_printable_names (void);
1072
1073
104c1213
JM
1074/* Helper function. Search the list of ARCHES for a GDBARCH that
1075 matches the information provided by INFO. */
1076
424163ea 1077extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1078
1079
1080/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1081 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1082 parameters. set_gdbarch_*() functions are called to complete the
1083 initialization of the object. */
1084
1085extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1086
1087
4b9b3959
AC
1088/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1089 It is assumed that the caller freeds the \`\`struct
1090 gdbarch_tdep''. */
1091
058f20d5
JB
1092extern void gdbarch_free (struct gdbarch *);
1093
1094
aebd7893
AC
1095/* Helper function. Allocate memory from the \`\`struct gdbarch''
1096 obstack. The memory is freed when the corresponding architecture
1097 is also freed. */
1098
1099extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1100#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1101#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1102
1103
b732d07d 1104/* Helper function. Force an update of the current architecture.
104c1213 1105
b732d07d
AC
1106 The actual architecture selected is determined by INFO, \`\`(gdb) set
1107 architecture'' et.al., the existing architecture and BFD's default
1108 architecture. INFO should be initialized to zero and then selected
1109 fields should be updated.
104c1213 1110
16f33e29
AC
1111 Returns non-zero if the update succeeds */
1112
1113extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1114
1115
ebdba546
AC
1116/* Helper function. Find an architecture matching info.
1117
1118 INFO should be initialized using gdbarch_info_init, relevant fields
1119 set, and then finished using gdbarch_info_fill.
1120
1121 Returns the corresponding architecture, or NULL if no matching
59837fe0 1122 architecture was found. */
ebdba546
AC
1123
1124extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1125
1126
59837fe0 1127/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1128
1129 FIXME: kettenis/20031124: Of the functions that follow, only
1130 gdbarch_from_bfd is supposed to survive. The others will
1131 dissappear since in the future GDB will (hopefully) be truly
1132 multi-arch. However, for now we're still stuck with the concept of
1133 a single active architecture. */
1134
59837fe0 1135extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1136
104c1213
JM
1137
1138/* Register per-architecture data-pointer.
1139
1140 Reserve space for a per-architecture data-pointer. An identifier
1141 for the reserved data-pointer is returned. That identifer should
95160752 1142 be saved in a local static variable.
104c1213 1143
fcc1c85c
AC
1144 Memory for the per-architecture data shall be allocated using
1145 gdbarch_obstack_zalloc. That memory will be deleted when the
1146 corresponding architecture object is deleted.
104c1213 1147
95160752
AC
1148 When a previously created architecture is re-selected, the
1149 per-architecture data-pointer for that previous architecture is
76860b5f 1150 restored. INIT() is not re-called.
104c1213
JM
1151
1152 Multiple registrarants for any architecture are allowed (and
1153 strongly encouraged). */
1154
95160752 1155struct gdbarch_data;
104c1213 1156
030f20e1
AC
1157typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1158extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1159typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1160extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1161extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1162 struct gdbarch_data *data,
1163 void *pointer);
104c1213 1164
451fbdda 1165extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1166
1167
0fa6923a 1168/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1169 byte-order, ...) using information found in the BFD */
1170
1171extern void set_gdbarch_from_file (bfd *);
1172
1173
e514a9d6
JM
1174/* Initialize the current architecture to the "first" one we find on
1175 our list. */
1176
1177extern void initialize_current_architecture (void);
1178
104c1213
JM
1179/* gdbarch trace variable */
1180extern int gdbarch_debug;
1181
4b9b3959 1182extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1183
1184#endif
1185EOF
1186exec 1>&2
1187#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1188compare_new gdbarch.h
104c1213
JM
1189
1190
1191#
1192# C file
1193#
1194
1195exec > new-gdbarch.c
1196copyright
1197cat <<EOF
1198
1199#include "defs.h"
7355ddba 1200#include "arch-utils.h"
104c1213 1201
104c1213 1202#include "gdbcmd.h"
faaf634c 1203#include "inferior.h"
104c1213
JM
1204#include "symcat.h"
1205
f0d4cc9e 1206#include "floatformat.h"
104c1213 1207
95160752 1208#include "gdb_assert.h"
b66d6d2e 1209#include "gdb_string.h"
b59ff9d5 1210#include "reggroups.h"
4be87837 1211#include "osabi.h"
aebd7893 1212#include "gdb_obstack.h"
383f836e 1213#include "observer.h"
a3ecef73 1214#include "regcache.h"
95160752 1215
104c1213
JM
1216/* Static function declarations */
1217
b3cc3077 1218static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1219
104c1213
JM
1220/* Non-zero if we want to trace architecture code. */
1221
1222#ifndef GDBARCH_DEBUG
1223#define GDBARCH_DEBUG 0
1224#endif
1225int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1226static void
1227show_gdbarch_debug (struct ui_file *file, int from_tty,
1228 struct cmd_list_element *c, const char *value)
1229{
1230 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1231}
104c1213 1232
456fcf94 1233static const char *
8da61cc4 1234pformat (const struct floatformat **format)
456fcf94
AC
1235{
1236 if (format == NULL)
1237 return "(null)";
1238 else
8da61cc4
DJ
1239 /* Just print out one of them - this is only for diagnostics. */
1240 return format[0]->name;
456fcf94
AC
1241}
1242
104c1213
JM
1243EOF
1244
1245# gdbarch open the gdbarch object
3d9a5942
AC
1246printf "\n"
1247printf "/* Maintain the struct gdbarch object */\n"
1248printf "\n"
1249printf "struct gdbarch\n"
1250printf "{\n"
76860b5f
AC
1251printf " /* Has this architecture been fully initialized? */\n"
1252printf " int initialized_p;\n"
aebd7893
AC
1253printf "\n"
1254printf " /* An obstack bound to the lifetime of the architecture. */\n"
1255printf " struct obstack *obstack;\n"
1256printf "\n"
3d9a5942 1257printf " /* basic architectural information */\n"
34620563 1258function_list | while do_read
104c1213 1259do
2ada493a
AC
1260 if class_is_info_p
1261 then
3d9a5942 1262 printf " ${returntype} ${function};\n"
2ada493a 1263 fi
104c1213 1264done
3d9a5942
AC
1265printf "\n"
1266printf " /* target specific vector. */\n"
1267printf " struct gdbarch_tdep *tdep;\n"
1268printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1269printf "\n"
1270printf " /* per-architecture data-pointers */\n"
95160752 1271printf " unsigned nr_data;\n"
3d9a5942
AC
1272printf " void **data;\n"
1273printf "\n"
1274printf " /* per-architecture swap-regions */\n"
1275printf " struct gdbarch_swap *swap;\n"
1276printf "\n"
104c1213
JM
1277cat <<EOF
1278 /* Multi-arch values.
1279
1280 When extending this structure you must:
1281
1282 Add the field below.
1283
1284 Declare set/get functions and define the corresponding
1285 macro in gdbarch.h.
1286
1287 gdbarch_alloc(): If zero/NULL is not a suitable default,
1288 initialize the new field.
1289
1290 verify_gdbarch(): Confirm that the target updated the field
1291 correctly.
1292
7e73cedf 1293 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1294 field is dumped out
1295
c0e8c252 1296 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1297 variable (base values on the host's c-type system).
1298
1299 get_gdbarch(): Implement the set/get functions (probably using
1300 the macro's as shortcuts).
1301
1302 */
1303
1304EOF
34620563 1305function_list | while do_read
104c1213 1306do
2ada493a
AC
1307 if class_is_variable_p
1308 then
3d9a5942 1309 printf " ${returntype} ${function};\n"
2ada493a
AC
1310 elif class_is_function_p
1311 then
2f9b146e 1312 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1313 fi
104c1213 1314done
3d9a5942 1315printf "};\n"
104c1213
JM
1316
1317# A pre-initialized vector
3d9a5942
AC
1318printf "\n"
1319printf "\n"
104c1213
JM
1320cat <<EOF
1321/* The default architecture uses host values (for want of a better
1322 choice). */
1323EOF
3d9a5942
AC
1324printf "\n"
1325printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1326printf "\n"
1327printf "struct gdbarch startup_gdbarch =\n"
1328printf "{\n"
76860b5f 1329printf " 1, /* Always initialized. */\n"
aebd7893 1330printf " NULL, /* The obstack. */\n"
3d9a5942 1331printf " /* basic architecture information */\n"
4b9b3959 1332function_list | while do_read
104c1213 1333do
2ada493a
AC
1334 if class_is_info_p
1335 then
ec5cbaec 1336 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1337 fi
104c1213
JM
1338done
1339cat <<EOF
4b9b3959
AC
1340 /* target specific vector and its dump routine */
1341 NULL, NULL,
104c1213
JM
1342 /*per-architecture data-pointers and swap regions */
1343 0, NULL, NULL,
1344 /* Multi-arch values */
1345EOF
34620563 1346function_list | while do_read
104c1213 1347do
2ada493a
AC
1348 if class_is_function_p || class_is_variable_p
1349 then
ec5cbaec 1350 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1351 fi
104c1213
JM
1352done
1353cat <<EOF
c0e8c252 1354 /* startup_gdbarch() */
104c1213 1355};
4b9b3959 1356
1cf3db46 1357struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1358EOF
1359
1360# Create a new gdbarch struct
104c1213 1361cat <<EOF
7de2341d 1362
66b43ecb 1363/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1364 \`\`struct gdbarch_info''. */
1365EOF
3d9a5942 1366printf "\n"
104c1213
JM
1367cat <<EOF
1368struct gdbarch *
1369gdbarch_alloc (const struct gdbarch_info *info,
1370 struct gdbarch_tdep *tdep)
1371{
be7811ad 1372 struct gdbarch *gdbarch;
aebd7893
AC
1373
1374 /* Create an obstack for allocating all the per-architecture memory,
1375 then use that to allocate the architecture vector. */
1376 struct obstack *obstack = XMALLOC (struct obstack);
1377 obstack_init (obstack);
be7811ad
MD
1378 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1379 memset (gdbarch, 0, sizeof (*gdbarch));
1380 gdbarch->obstack = obstack;
85de9627 1381
be7811ad 1382 alloc_gdbarch_data (gdbarch);
85de9627 1383
be7811ad 1384 gdbarch->tdep = tdep;
104c1213 1385EOF
3d9a5942 1386printf "\n"
34620563 1387function_list | while do_read
104c1213 1388do
2ada493a
AC
1389 if class_is_info_p
1390 then
be7811ad 1391 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1392 fi
104c1213 1393done
3d9a5942
AC
1394printf "\n"
1395printf " /* Force the explicit initialization of these. */\n"
34620563 1396function_list | while do_read
104c1213 1397do
2ada493a
AC
1398 if class_is_function_p || class_is_variable_p
1399 then
72e74a21 1400 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1401 then
be7811ad 1402 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1403 fi
2ada493a 1404 fi
104c1213
JM
1405done
1406cat <<EOF
1407 /* gdbarch_alloc() */
1408
be7811ad 1409 return gdbarch;
104c1213
JM
1410}
1411EOF
1412
058f20d5 1413# Free a gdbarch struct.
3d9a5942
AC
1414printf "\n"
1415printf "\n"
058f20d5 1416cat <<EOF
aebd7893
AC
1417/* Allocate extra space using the per-architecture obstack. */
1418
1419void *
1420gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1421{
1422 void *data = obstack_alloc (arch->obstack, size);
1423 memset (data, 0, size);
1424 return data;
1425}
1426
1427
058f20d5
JB
1428/* Free a gdbarch struct. This should never happen in normal
1429 operation --- once you've created a gdbarch, you keep it around.
1430 However, if an architecture's init function encounters an error
1431 building the structure, it may need to clean up a partially
1432 constructed gdbarch. */
4b9b3959 1433
058f20d5
JB
1434void
1435gdbarch_free (struct gdbarch *arch)
1436{
aebd7893 1437 struct obstack *obstack;
95160752 1438 gdb_assert (arch != NULL);
aebd7893
AC
1439 gdb_assert (!arch->initialized_p);
1440 obstack = arch->obstack;
1441 obstack_free (obstack, 0); /* Includes the ARCH. */
1442 xfree (obstack);
058f20d5
JB
1443}
1444EOF
1445
104c1213 1446# verify a new architecture
104c1213 1447cat <<EOF
db446970
AC
1448
1449
1450/* Ensure that all values in a GDBARCH are reasonable. */
1451
104c1213 1452static void
be7811ad 1453verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1454{
f16a1923
AC
1455 struct ui_file *log;
1456 struct cleanup *cleanups;
759ef836 1457 long length;
f16a1923 1458 char *buf;
f16a1923
AC
1459 log = mem_fileopen ();
1460 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1461 /* fundamental */
be7811ad 1462 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1463 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1464 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1465 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1466 /* Check those that need to be defined for the given multi-arch level. */
1467EOF
34620563 1468function_list | while do_read
104c1213 1469do
2ada493a
AC
1470 if class_is_function_p || class_is_variable_p
1471 then
72e74a21 1472 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1473 then
3d9a5942 1474 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1475 elif class_is_predicate_p
1476 then
3d9a5942 1477 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1478 # FIXME: See do_read for potential simplification
72e74a21 1479 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1480 then
3d9a5942 1481 printf " if (${invalid_p})\n"
be7811ad 1482 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1483 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1484 then
be7811ad
MD
1485 printf " if (gdbarch->${function} == ${predefault})\n"
1486 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1487 elif [ -n "${postdefault}" ]
f0d4cc9e 1488 then
be7811ad
MD
1489 printf " if (gdbarch->${function} == 0)\n"
1490 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1491 elif [ -n "${invalid_p}" ]
104c1213 1492 then
4d60522e 1493 printf " if (${invalid_p})\n"
f16a1923 1494 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1495 elif [ -n "${predefault}" ]
104c1213 1496 then
be7811ad 1497 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1498 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1499 fi
2ada493a 1500 fi
104c1213
JM
1501done
1502cat <<EOF
759ef836 1503 buf = ui_file_xstrdup (log, &length);
f16a1923 1504 make_cleanup (xfree, buf);
759ef836 1505 if (length > 0)
f16a1923 1506 internal_error (__FILE__, __LINE__,
85c07804 1507 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1508 buf);
1509 do_cleanups (cleanups);
104c1213
JM
1510}
1511EOF
1512
1513# dump the structure
3d9a5942
AC
1514printf "\n"
1515printf "\n"
104c1213 1516cat <<EOF
4b9b3959
AC
1517/* Print out the details of the current architecture. */
1518
104c1213 1519void
be7811ad 1520gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1521{
b78960be 1522 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1523#if defined (GDB_NM_FILE)
1524 gdb_nm_file = GDB_NM_FILE;
1525#endif
1526 fprintf_unfiltered (file,
1527 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1528 gdb_nm_file);
104c1213 1529EOF
97030eea 1530function_list | sort -t: -k 3 | while do_read
104c1213 1531do
1e9f55d0
AC
1532 # First the predicate
1533 if class_is_predicate_p
1534 then
7996bcec 1535 printf " fprintf_unfiltered (file,\n"
48f7351b 1536 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1537 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1538 fi
48f7351b 1539 # Print the corresponding value.
283354d8 1540 if class_is_function_p
4b9b3959 1541 then
7996bcec 1542 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1543 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1544 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1545 else
48f7351b 1546 # It is a variable
2f9b146e
AC
1547 case "${print}:${returntype}" in
1548 :CORE_ADDR )
0b1553bc
UW
1549 fmt="%s"
1550 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1551 ;;
2f9b146e 1552 :* )
48f7351b 1553 fmt="%s"
623d3eb1 1554 print="plongest (gdbarch->${function})"
48f7351b
AC
1555 ;;
1556 * )
2f9b146e 1557 fmt="%s"
48f7351b
AC
1558 ;;
1559 esac
3d9a5942 1560 printf " fprintf_unfiltered (file,\n"
48f7351b 1561 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1562 printf " ${print});\n"
2ada493a 1563 fi
104c1213 1564done
381323f4 1565cat <<EOF
be7811ad
MD
1566 if (gdbarch->dump_tdep != NULL)
1567 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1568}
1569EOF
104c1213
JM
1570
1571
1572# GET/SET
3d9a5942 1573printf "\n"
104c1213
JM
1574cat <<EOF
1575struct gdbarch_tdep *
1576gdbarch_tdep (struct gdbarch *gdbarch)
1577{
1578 if (gdbarch_debug >= 2)
3d9a5942 1579 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1580 return gdbarch->tdep;
1581}
1582EOF
3d9a5942 1583printf "\n"
34620563 1584function_list | while do_read
104c1213 1585do
2ada493a
AC
1586 if class_is_predicate_p
1587 then
3d9a5942
AC
1588 printf "\n"
1589 printf "int\n"
1590 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1591 printf "{\n"
8de9bdc4 1592 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1593 printf " return ${predicate};\n"
3d9a5942 1594 printf "}\n"
2ada493a
AC
1595 fi
1596 if class_is_function_p
1597 then
3d9a5942
AC
1598 printf "\n"
1599 printf "${returntype}\n"
72e74a21 1600 if [ "x${formal}" = "xvoid" ]
104c1213 1601 then
3d9a5942 1602 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1603 else
3d9a5942 1604 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1605 fi
3d9a5942 1606 printf "{\n"
8de9bdc4 1607 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1608 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1609 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1610 then
1611 # Allow a call to a function with a predicate.
956ac328 1612 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1613 fi
3d9a5942
AC
1614 printf " if (gdbarch_debug >= 2)\n"
1615 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1616 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1617 then
1618 if class_is_multiarch_p
1619 then
1620 params="gdbarch"
1621 else
1622 params=""
1623 fi
1624 else
1625 if class_is_multiarch_p
1626 then
1627 params="gdbarch, ${actual}"
1628 else
1629 params="${actual}"
1630 fi
1631 fi
72e74a21 1632 if [ "x${returntype}" = "xvoid" ]
104c1213 1633 then
4a5c6a1d 1634 printf " gdbarch->${function} (${params});\n"
104c1213 1635 else
4a5c6a1d 1636 printf " return gdbarch->${function} (${params});\n"
104c1213 1637 fi
3d9a5942
AC
1638 printf "}\n"
1639 printf "\n"
1640 printf "void\n"
1641 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1642 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1643 printf "{\n"
1644 printf " gdbarch->${function} = ${function};\n"
1645 printf "}\n"
2ada493a
AC
1646 elif class_is_variable_p
1647 then
3d9a5942
AC
1648 printf "\n"
1649 printf "${returntype}\n"
1650 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1651 printf "{\n"
8de9bdc4 1652 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1653 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1654 then
3d9a5942 1655 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1656 elif [ -n "${invalid_p}" ]
104c1213 1657 then
956ac328
AC
1658 printf " /* Check variable is valid. */\n"
1659 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1660 elif [ -n "${predefault}" ]
104c1213 1661 then
956ac328
AC
1662 printf " /* Check variable changed from pre-default. */\n"
1663 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1664 fi
3d9a5942
AC
1665 printf " if (gdbarch_debug >= 2)\n"
1666 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1667 printf " return gdbarch->${function};\n"
1668 printf "}\n"
1669 printf "\n"
1670 printf "void\n"
1671 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1672 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1673 printf "{\n"
1674 printf " gdbarch->${function} = ${function};\n"
1675 printf "}\n"
2ada493a
AC
1676 elif class_is_info_p
1677 then
3d9a5942
AC
1678 printf "\n"
1679 printf "${returntype}\n"
1680 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1681 printf "{\n"
8de9bdc4 1682 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1683 printf " if (gdbarch_debug >= 2)\n"
1684 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1685 printf " return gdbarch->${function};\n"
1686 printf "}\n"
2ada493a 1687 fi
104c1213
JM
1688done
1689
1690# All the trailing guff
1691cat <<EOF
1692
1693
f44c642f 1694/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1695 modules. */
1696
1697struct gdbarch_data
1698{
95160752 1699 unsigned index;
76860b5f 1700 int init_p;
030f20e1
AC
1701 gdbarch_data_pre_init_ftype *pre_init;
1702 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1703};
1704
1705struct gdbarch_data_registration
1706{
104c1213
JM
1707 struct gdbarch_data *data;
1708 struct gdbarch_data_registration *next;
1709};
1710
f44c642f 1711struct gdbarch_data_registry
104c1213 1712{
95160752 1713 unsigned nr;
104c1213
JM
1714 struct gdbarch_data_registration *registrations;
1715};
1716
f44c642f 1717struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1718{
1719 0, NULL,
1720};
1721
030f20e1
AC
1722static struct gdbarch_data *
1723gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1724 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1725{
1726 struct gdbarch_data_registration **curr;
76860b5f 1727 /* Append the new registraration. */
f44c642f 1728 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1729 (*curr) != NULL;
1730 curr = &(*curr)->next);
1731 (*curr) = XMALLOC (struct gdbarch_data_registration);
1732 (*curr)->next = NULL;
104c1213 1733 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1734 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1735 (*curr)->data->pre_init = pre_init;
1736 (*curr)->data->post_init = post_init;
76860b5f 1737 (*curr)->data->init_p = 1;
104c1213
JM
1738 return (*curr)->data;
1739}
1740
030f20e1
AC
1741struct gdbarch_data *
1742gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1743{
1744 return gdbarch_data_register (pre_init, NULL);
1745}
1746
1747struct gdbarch_data *
1748gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1749{
1750 return gdbarch_data_register (NULL, post_init);
1751}
104c1213 1752
b3cc3077 1753/* Create/delete the gdbarch data vector. */
95160752
AC
1754
1755static void
b3cc3077 1756alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1757{
b3cc3077
JB
1758 gdb_assert (gdbarch->data == NULL);
1759 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1760 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1761}
3c875b6f 1762
76860b5f 1763/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1764 data-pointer. */
1765
95160752 1766void
030f20e1
AC
1767deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1768 struct gdbarch_data *data,
1769 void *pointer)
95160752
AC
1770{
1771 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1772 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1773 gdb_assert (data->pre_init == NULL);
95160752
AC
1774 gdbarch->data[data->index] = pointer;
1775}
1776
104c1213
JM
1777/* Return the current value of the specified per-architecture
1778 data-pointer. */
1779
1780void *
451fbdda 1781gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1782{
451fbdda 1783 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1784 if (gdbarch->data[data->index] == NULL)
76860b5f 1785 {
030f20e1
AC
1786 /* The data-pointer isn't initialized, call init() to get a
1787 value. */
1788 if (data->pre_init != NULL)
1789 /* Mid architecture creation: pass just the obstack, and not
1790 the entire architecture, as that way it isn't possible for
1791 pre-init code to refer to undefined architecture
1792 fields. */
1793 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1794 else if (gdbarch->initialized_p
1795 && data->post_init != NULL)
1796 /* Post architecture creation: pass the entire architecture
1797 (as all fields are valid), but be careful to also detect
1798 recursive references. */
1799 {
1800 gdb_assert (data->init_p);
1801 data->init_p = 0;
1802 gdbarch->data[data->index] = data->post_init (gdbarch);
1803 data->init_p = 1;
1804 }
1805 else
1806 /* The architecture initialization hasn't completed - punt -
1807 hope that the caller knows what they are doing. Once
1808 deprecated_set_gdbarch_data has been initialized, this can be
1809 changed to an internal error. */
1810 return NULL;
76860b5f
AC
1811 gdb_assert (gdbarch->data[data->index] != NULL);
1812 }
451fbdda 1813 return gdbarch->data[data->index];
104c1213
JM
1814}
1815
1816
f44c642f 1817/* Keep a registry of the architectures known by GDB. */
104c1213 1818
4b9b3959 1819struct gdbarch_registration
104c1213
JM
1820{
1821 enum bfd_architecture bfd_architecture;
1822 gdbarch_init_ftype *init;
4b9b3959 1823 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1824 struct gdbarch_list *arches;
4b9b3959 1825 struct gdbarch_registration *next;
104c1213
JM
1826};
1827
f44c642f 1828static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1829
b4a20239
AC
1830static void
1831append_name (const char ***buf, int *nr, const char *name)
1832{
1833 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1834 (*buf)[*nr] = name;
1835 *nr += 1;
1836}
1837
1838const char **
1839gdbarch_printable_names (void)
1840{
7996bcec
AC
1841 /* Accumulate a list of names based on the registed list of
1842 architectures. */
1843 enum bfd_architecture a;
1844 int nr_arches = 0;
1845 const char **arches = NULL;
1846 struct gdbarch_registration *rego;
1847 for (rego = gdbarch_registry;
1848 rego != NULL;
1849 rego = rego->next)
b4a20239 1850 {
7996bcec
AC
1851 const struct bfd_arch_info *ap;
1852 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1853 if (ap == NULL)
1854 internal_error (__FILE__, __LINE__,
85c07804 1855 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1856 do
1857 {
1858 append_name (&arches, &nr_arches, ap->printable_name);
1859 ap = ap->next;
1860 }
1861 while (ap != NULL);
b4a20239 1862 }
7996bcec
AC
1863 append_name (&arches, &nr_arches, NULL);
1864 return arches;
b4a20239
AC
1865}
1866
1867
104c1213 1868void
4b9b3959
AC
1869gdbarch_register (enum bfd_architecture bfd_architecture,
1870 gdbarch_init_ftype *init,
1871 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1872{
4b9b3959 1873 struct gdbarch_registration **curr;
104c1213 1874 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1875 /* Check that BFD recognizes this architecture */
104c1213
JM
1876 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1877 if (bfd_arch_info == NULL)
1878 {
8e65ff28 1879 internal_error (__FILE__, __LINE__,
85c07804 1880 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1881 bfd_architecture);
104c1213
JM
1882 }
1883 /* Check that we haven't seen this architecture before */
f44c642f 1884 for (curr = &gdbarch_registry;
104c1213
JM
1885 (*curr) != NULL;
1886 curr = &(*curr)->next)
1887 {
1888 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1889 internal_error (__FILE__, __LINE__,
85c07804 1890 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1891 bfd_arch_info->printable_name);
104c1213
JM
1892 }
1893 /* log it */
1894 if (gdbarch_debug)
30737ed9 1895 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1896 bfd_arch_info->printable_name,
30737ed9 1897 host_address_to_string (init));
104c1213 1898 /* Append it */
4b9b3959 1899 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1900 (*curr)->bfd_architecture = bfd_architecture;
1901 (*curr)->init = init;
4b9b3959 1902 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1903 (*curr)->arches = NULL;
1904 (*curr)->next = NULL;
4b9b3959
AC
1905}
1906
1907void
1908register_gdbarch_init (enum bfd_architecture bfd_architecture,
1909 gdbarch_init_ftype *init)
1910{
1911 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1912}
104c1213
JM
1913
1914
424163ea 1915/* Look for an architecture using gdbarch_info. */
104c1213
JM
1916
1917struct gdbarch_list *
1918gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1919 const struct gdbarch_info *info)
1920{
1921 for (; arches != NULL; arches = arches->next)
1922 {
1923 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1924 continue;
1925 if (info->byte_order != arches->gdbarch->byte_order)
1926 continue;
4be87837
DJ
1927 if (info->osabi != arches->gdbarch->osabi)
1928 continue;
424163ea
DJ
1929 if (info->target_desc != arches->gdbarch->target_desc)
1930 continue;
104c1213
JM
1931 return arches;
1932 }
1933 return NULL;
1934}
1935
1936
ebdba546 1937/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1938 architecture if needed. Return that new architecture. */
104c1213 1939
59837fe0
UW
1940struct gdbarch *
1941gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1942{
1943 struct gdbarch *new_gdbarch;
4b9b3959 1944 struct gdbarch_registration *rego;
104c1213 1945
b732d07d 1946 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1947 sources: "set ..."; INFOabfd supplied; and the global
1948 defaults. */
1949 gdbarch_info_fill (&info);
4be87837 1950
b732d07d
AC
1951 /* Must have found some sort of architecture. */
1952 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1953
1954 if (gdbarch_debug)
1955 {
1956 fprintf_unfiltered (gdb_stdlog,
59837fe0 1957 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1958 (info.bfd_arch_info != NULL
1959 ? info.bfd_arch_info->printable_name
1960 : "(null)"));
1961 fprintf_unfiltered (gdb_stdlog,
59837fe0 1962 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1963 info.byte_order,
d7449b42 1964 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1965 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1966 : "default"));
4be87837 1967 fprintf_unfiltered (gdb_stdlog,
59837fe0 1968 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1969 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1970 fprintf_unfiltered (gdb_stdlog,
59837fe0 1971 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1972 host_address_to_string (info.abfd));
104c1213 1973 fprintf_unfiltered (gdb_stdlog,
59837fe0 1974 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1975 host_address_to_string (info.tdep_info));
104c1213
JM
1976 }
1977
ebdba546 1978 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1979 for (rego = gdbarch_registry;
1980 rego != NULL;
1981 rego = rego->next)
1982 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1983 break;
1984 if (rego == NULL)
1985 {
1986 if (gdbarch_debug)
59837fe0 1987 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 1988 "No matching architecture\n");
b732d07d
AC
1989 return 0;
1990 }
1991
ebdba546 1992 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1993 new_gdbarch = rego->init (info, rego->arches);
1994
ebdba546
AC
1995 /* Did the tdep code like it? No. Reject the change and revert to
1996 the old architecture. */
104c1213
JM
1997 if (new_gdbarch == NULL)
1998 {
1999 if (gdbarch_debug)
59837fe0 2000 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2001 "Target rejected architecture\n");
2002 return NULL;
104c1213
JM
2003 }
2004
ebdba546
AC
2005 /* Is this a pre-existing architecture (as determined by already
2006 being initialized)? Move it to the front of the architecture
2007 list (keeping the list sorted Most Recently Used). */
2008 if (new_gdbarch->initialized_p)
104c1213 2009 {
ebdba546
AC
2010 struct gdbarch_list **list;
2011 struct gdbarch_list *this;
104c1213 2012 if (gdbarch_debug)
59837fe0 2013 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2014 "Previous architecture %s (%s) selected\n",
2015 host_address_to_string (new_gdbarch),
104c1213 2016 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2017 /* Find the existing arch in the list. */
2018 for (list = &rego->arches;
2019 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2020 list = &(*list)->next);
2021 /* It had better be in the list of architectures. */
2022 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2023 /* Unlink THIS. */
2024 this = (*list);
2025 (*list) = this->next;
2026 /* Insert THIS at the front. */
2027 this->next = rego->arches;
2028 rego->arches = this;
2029 /* Return it. */
2030 return new_gdbarch;
104c1213
JM
2031 }
2032
ebdba546
AC
2033 /* It's a new architecture. */
2034 if (gdbarch_debug)
59837fe0 2035 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2036 "New architecture %s (%s) selected\n",
2037 host_address_to_string (new_gdbarch),
ebdba546
AC
2038 new_gdbarch->bfd_arch_info->printable_name);
2039
2040 /* Insert the new architecture into the front of the architecture
2041 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2042 {
2043 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2044 this->next = rego->arches;
2045 this->gdbarch = new_gdbarch;
2046 rego->arches = this;
2047 }
104c1213 2048
4b9b3959
AC
2049 /* Check that the newly installed architecture is valid. Plug in
2050 any post init values. */
2051 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2052 verify_gdbarch (new_gdbarch);
ebdba546 2053 new_gdbarch->initialized_p = 1;
104c1213 2054
4b9b3959 2055 if (gdbarch_debug)
ebdba546
AC
2056 gdbarch_dump (new_gdbarch, gdb_stdlog);
2057
2058 return new_gdbarch;
2059}
2060
e487cc15 2061/* Make the specified architecture current. */
ebdba546
AC
2062
2063void
59837fe0 2064deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2065{
2066 gdb_assert (new_gdbarch != NULL);
ebdba546 2067 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2068 target_gdbarch = new_gdbarch;
383f836e 2069 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2070 registers_changed ();
ebdba546 2071}
104c1213 2072
104c1213 2073extern void _initialize_gdbarch (void);
b4a20239 2074
104c1213 2075void
34620563 2076_initialize_gdbarch (void)
104c1213 2077{
59233f88
AC
2078 struct cmd_list_element *c;
2079
85c07804
AC
2080 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2081Set architecture debugging."), _("\\
2082Show architecture debugging."), _("\\
2083When non-zero, architecture debugging is enabled."),
2084 NULL,
920d2a44 2085 show_gdbarch_debug,
85c07804 2086 &setdebuglist, &showdebuglist);
104c1213
JM
2087}
2088EOF
2089
2090# close things off
2091exec 1>&2
2092#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2093compare_new gdbarch.c
This page took 0.989886 seconds and 4 git commands to generate.