* tuiStack.c (tui_update_command): Rename _tuiUpdateLocation_command
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
181c1381 4# Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
d8864532
AC
22# Make certain that the script is running in an internationalized
23# environment.
24LANG=c ; export LANG
1bd316f0 25LC_ALL=c ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
0b8f9e4d 44read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
3d9a5942
AC
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
50248794
AC
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
34620563
AC
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
06b25f14
AC
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
34620563
AC
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
06b25f14 117
34620563
AC
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
72e74a21 121 if [ -n "${predefault}" ]
34620563
AC
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
72e74a21 140 if [ -n "${postdefault}" ]
34620563
AC
141 then
142 fallbackdefault="${postdefault}"
72e74a21 143 elif [ -n "${predefault}" ]
34620563
AC
144 then
145 fallbackdefault="${predefault}"
146 else
73d3c16e 147 fallbackdefault="0"
34620563
AC
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
f0d4cc9e 154 fi
34620563 155 done
72e74a21 156 if [ -n "${class}" ]
34620563
AC
157 then
158 true
c0e8c252
AC
159 else
160 false
161 fi
162}
163
104c1213 164
f0d4cc9e
AC
165fallback_default_p ()
166{
72e74a21
JB
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
169}
170
171class_is_variable_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
f0d4cc9e
AC
177}
178
179class_is_function_p ()
180{
4a5c6a1d
AC
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185}
186
187class_is_multiarch_p ()
188{
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_predicate_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203class_is_info_p ()
204{
4a5c6a1d
AC
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
f0d4cc9e
AC
209}
210
211
cff3e48b
JM
212# dump out/verify the doco
213for field in ${read}
214do
215 case ${field} in
216
217 class ) : ;;
c4093a6a 218
c0e8c252
AC
219 # # -> line disable
220 # f -> function
221 # hiding a function
2ada493a
AC
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
c0e8c252
AC
224 # v -> variable
225 # hiding a variable
2ada493a
AC
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
c0e8c252
AC
228 # i -> set from info
229 # hiding something from the ``struct info'' object
4a5c6a1d
AC
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
234
235 level ) : ;;
236
c0e8c252
AC
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
cff3e48b
JM
240
241 macro ) : ;;
242
c0e8c252 243 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
244
245 returntype ) : ;;
246
c0e8c252 247 # For functions, the return type; for variables, the data type
cff3e48b
JM
248
249 function ) : ;;
250
c0e8c252
AC
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
254
255 formal ) : ;;
256
c0e8c252
AC
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
cff3e48b
JM
261
262 actual ) : ;;
263
c0e8c252
AC
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
cff3e48b
JM
267
268 attrib ) : ;;
269
c0e8c252
AC
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
cff3e48b 272
0b8f9e4d 273 staticdefault ) : ;;
c0e8c252
AC
274
275 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
cff3e48b 279
0b8f9e4d 280 # If STATICDEFAULT is empty, zero is used.
c0e8c252 281
0b8f9e4d 282 predefault ) : ;;
cff3e48b 283
10312cc4
AC
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
cff3e48b 288
0b8f9e4d
AC
289 # If PREDEFAULT is empty, zero is used.
290
10312cc4
AC
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
f0d4cc9e
AC
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
0b8f9e4d
AC
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
10312cc4
AC
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
f0d4cc9e
AC
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
cff3e48b 322
c4093a6a 323 invalid_p ) : ;;
cff3e48b 324
0b8f9e4d 325 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 326 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
f0d4cc9e
AC
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
337
338 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
339
340 fmt ) : ;;
341
c0e8c252
AC
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
0b8f9e4d 346 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
347
348 print ) : ;;
349
c0e8c252
AC
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
0b8f9e4d 353 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
354
355 print_p ) : ;;
356
c0e8c252
AC
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
4b9b3959 360 # () -> Call a custom function to do the dump.
c0e8c252
AC
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
cff3e48b 363
0b8f9e4d
AC
364 # If PRINT_P is empty, ``1'' is always used.
365
cff3e48b
JM
366 description ) : ;;
367
0b8f9e4d 368 # Currently unused.
cff3e48b 369
50248794
AC
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
cff3e48b
JM
373 esac
374done
375
cff3e48b 376
104c1213
JM
377function_list ()
378{
cff3e48b 379 # See below (DOCO) for description of each field
34620563 380 cat <<EOF
0b8f9e4d 381i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 382#
d7449b42 383i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
66b43ecb
AC
384# Number of bits in a char or unsigned char for the target machine.
385# Just like CHAR_BIT in <limits.h> but describes the target machine.
386# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387#
388# Number of bits in a short or unsigned short for the target machine.
389v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390# Number of bits in an int or unsigned int for the target machine.
391v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392# Number of bits in a long or unsigned long for the target machine.
393v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394# Number of bits in a long long or unsigned long long for the target
395# machine.
396v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397# Number of bits in a float for the target machine.
398v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399# Number of bits in a double for the target machine.
400v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401# Number of bits in a long double for the target machine.
17ef5d92 402v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
403# For most targets, a pointer on the target and its representation as an
404# address in GDB have the same size and "look the same". For such a
405# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406# / addr_bit will be set from it.
407#
408# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410#
411# ptr_bit is the size of a pointer on the target
66b43ecb 412v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b
DT
413# addr_bit is the size of a target address as represented in gdb
414v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb
AC
415# Number of bits in a BFD_VMA for the target object file format.
416v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 417#
4e409299 418# One if \`char' acts like \`signed char', zero if \`unsigned char'.
2c283bc4 419v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 420#
39f77062
KB
421f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
be8dfb87 423f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
be8dfb87
AC
424f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
39d4ef09
AC
426# Function for getting target's idea of a frame pointer. FIXME: GDB's
427# whole scheme for dealing with "frames" and "frame pointers" needs a
428# serious shakedown.
429f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 430#
d8124050
AC
431M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
61a0eb5b 433#
104c1213 434v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
435# This macro gives the number of pseudo-registers that live in the
436# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
437# These pseudo-registers may be aliases for other registers,
438# combinations of other registers, or they may be computed by GDB.
0aba1244 439v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
440
441# GDB's standard (or well known) register numbers. These can map onto
442# a real register or a pseudo (computed) register or not be defined at
1200cd6e
AC
443# all (-1).
444v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 447v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d
AC
448v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
88c72b7d
AC
450# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452# Provide a default mapping from a ecoff register number to a gdb REGNUM.
453f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454# Provide a default mapping from a DWARF register number to a gdb REGNUM.
455f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456# Convert from an sdb register number to an internal gdb register number.
457# This should be defined in tm.h, if REGISTER_NAMES is not set up
458# to map one to one onto the sdb register numbers.
459f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
fa88f677 461f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
104c1213
JM
462v:2:REGISTER_SIZE:int:register_size::::0:-1
463v:2:REGISTER_BYTES:int:register_bytes::::0:-1
a7e3c2ad 464f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
b2e75d78 465f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
104c1213 466v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
b2e75d78 467f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
104c1213
JM
468v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
0ab7a791
AC
470#
471F:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 473M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 474M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
475# MAP a GDB RAW register number onto a simulator register number. See
476# also include/...-sim.h.
8238d0bf 477f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
2649061d 478F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
01fb7433
AC
479f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0
RE
481# setjmp/longjmp support.
482F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
104c1213 483#
028c194b
AC
484# Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485# much better but at least they are vaguely consistent). The headers
486# and body contain convoluted #if/#else sequences for determine how
487# things should be compiled. Instead of trying to mimic that
488# behaviour here (and hence entrench it further) gdbarch simply
489# reqires that these methods be set up from the word go. This also
490# avoids any potential problems with moving beyond multi-arch partial.
104c1213 491v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
a985cd41 492v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
0b8f9e4d
AC
493f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
83e6b173 495v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
104c1213 496v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
0b8f9e4d 497v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
a4a7d16f 498f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
104c1213 499v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
0b8f9e4d
AC
500v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
10312cc4 505f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
7824d2f2 506f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
104c1213 507#
f0d4cc9e
AC
508v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
0b8f9e4d 510f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
e4b415d9 511f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
104c1213 512#
6e6d6484 513f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
0b8f9e4d
AC
514f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
13d01224
AC
516#
517f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
104c1213 520#
ac2e2ef7
AC
521f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 523F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 524#
0b8f9e4d 525f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
6e6d6484 526f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
c0e8c252 527f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
c30e0066 528F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
c0e8c252 529f:2:POP_FRAME:void:pop_frame:void:-:::0
104c1213 530#
c0e8c252 531f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
ebba8386
AC
532#
533f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
537#
049ee0e4 538F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
26e9b323 539F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
56f12751 540f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213
JM
541#
542f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
5fdff426 543F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
104c1213
JM
544#
545f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 546f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 547f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
f4f9705a 548f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
0b8f9e4d
AC
549f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213 551v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
e02bc4cc 552f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
104c1213
JM
553v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554#
0b8f9e4d 555f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
556#
557v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 558f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
104c1213 559f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
7f55af32
AC
560# Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561# most targets. If FRAME_CHAIN_VALID returns zero it means that the
562# given frame is the outermost one and has no caller.
563#
564# XXXX - both default and alternate frame_chain_valid functions are
565# deprecated. New code should use dummy frames and one of the generic
566# functions.
ca0d0b52 567f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
104c1213
JM
568f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573#
2ada493a 574F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
6acf50cd 575v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
d03e67c9 576F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
d1e3cf49 577F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
58d5518e 578v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e
AC
579#
580v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
581v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
2fa5c1e0 582v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
875e1767
AC
583f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
584# On some machines there are bits in addresses which are not really
585# part of the address, but are used by the kernel, the hardware, etc.
586# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
587# we get a "real" address such as one would find in a symbol table.
588# This is used only for addresses of instructions, and even then I'm
589# not sure it's used in all contexts. It exists to deal with there
590# being a few stray bits in the PC which would mislead us, not as some
591# sort of generic thing to handle alignment or segmentation (it's
592# possible it should be in TARGET_READ_PC instead).
593f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
181c1381
RE
594# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
595# ADDR_BITS_REMOVE.
596f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
598# the target needs software single step. An ISA method to implement it.
599#
600# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
601# using the breakpoint system instead of blatting memory directly (as with rs6000).
602#
603# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
604# single step. If not, then implement single step using breakpoints.
605F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
2bf0cb65 606f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 607f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
608
609
68e9cc94
CV
610# For SVR4 shared libraries, each call goes through a small piece of
611# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 612# to nonzero if we are currently stopped in one of these.
68e9cc94 613f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
614
615# Some systems also have trampoline code for returning from shared libs.
616f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
617
d7bd68ca
AC
618# Sigtramp is a routine that the kernel calls (which then calls the
619# signal handler). On most machines it is a library routine that is
620# linked into the executable.
621#
622# This macro, given a program counter value and the name of the
623# function in which that PC resides (which can be null if the name is
624# not known), returns nonzero if the PC and name show that we are in
625# sigtramp.
626#
627# On most machines just see if the name is sigtramp (and if we have
628# no name, assume we are not in sigtramp).
629#
630# FIXME: cagney/2002-04-21: The function find_pc_partial_function
631# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
632# This means PC_IN_SIGTRAMP function can't be implemented by doing its
633# own local NAME lookup.
634#
635# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
636# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
637# does not.
638f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
c12260ac
CV
639# A target might have problems with watchpoints as soon as the stack
640# frame of the current function has been destroyed. This mostly happens
641# as the first action in a funtion's epilogue. in_function_epilogue_p()
642# is defined to return a non-zero value if either the given addr is one
643# instruction after the stack destroying instruction up to the trailing
644# return instruction or if we can figure out that the stack frame has
645# already been invalidated regardless of the value of addr. Targets
646# which don't suffer from that problem could just let this functionality
647# untouched.
648m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
649# Given a vector of command-line arguments, return a newly allocated
650# string which, when passed to the create_inferior function, will be
651# parsed (on Unix systems, by the shell) to yield the same vector.
652# This function should call error() if the argument vector is not
653# representable for this target or if this target does not support
654# command-line arguments.
655# ARGC is the number of elements in the vector.
656# ARGV is an array of strings, one per argument.
657m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
b6af0555 658F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
a2cf933a
EZ
659f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
660f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
104c1213 661EOF
104c1213
JM
662}
663
0b8f9e4d
AC
664#
665# The .log file
666#
667exec > new-gdbarch.log
34620563 668function_list | while do_read
0b8f9e4d
AC
669do
670 cat <<EOF
104c1213
JM
671${class} ${macro}(${actual})
672 ${returntype} ${function} ($formal)${attrib}
104c1213 673EOF
3d9a5942
AC
674 for r in ${read}
675 do
676 eval echo \"\ \ \ \ ${r}=\${${r}}\"
677 done
678# #fallbackdefault=${fallbackdefault}
679# #valid_p=${valid_p}
680#EOF
f0d4cc9e 681 if class_is_predicate_p && fallback_default_p
0b8f9e4d 682 then
66b43ecb 683 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
684 kill $$
685 exit 1
686 fi
72e74a21 687 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
688 then
689 echo "Error: postdefault is useless when invalid_p=0" 1>&2
690 kill $$
691 exit 1
692 fi
a72293e2
AC
693 if class_is_multiarch_p
694 then
695 if class_is_predicate_p ; then :
696 elif test "x${predefault}" = "x"
697 then
698 echo "Error: pure multi-arch function must have a predefault" 1>&2
699 kill $$
700 exit 1
701 fi
702 fi
3d9a5942 703 echo ""
0b8f9e4d
AC
704done
705
706exec 1>&2
707compare_new gdbarch.log
708
104c1213
JM
709
710copyright ()
711{
712cat <<EOF
59233f88
AC
713/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
714
104c1213 715/* Dynamic architecture support for GDB, the GNU debugger.
181c1381 716 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
104c1213
JM
717
718 This file is part of GDB.
719
720 This program is free software; you can redistribute it and/or modify
721 it under the terms of the GNU General Public License as published by
722 the Free Software Foundation; either version 2 of the License, or
723 (at your option) any later version.
724
725 This program is distributed in the hope that it will be useful,
726 but WITHOUT ANY WARRANTY; without even the implied warranty of
727 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
728 GNU General Public License for more details.
729
730 You should have received a copy of the GNU General Public License
731 along with this program; if not, write to the Free Software
732 Foundation, Inc., 59 Temple Place - Suite 330,
733 Boston, MA 02111-1307, USA. */
734
104c1213
JM
735/* This file was created with the aid of \`\`gdbarch.sh''.
736
52204a0b 737 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
738 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
739 against the existing \`\`gdbarch.[hc]''. Any differences found
740 being reported.
741
742 If editing this file, please also run gdbarch.sh and merge any
52204a0b 743 changes into that script. Conversely, when making sweeping changes
104c1213
JM
744 to this file, modifying gdbarch.sh and using its output may prove
745 easier. */
746
747EOF
748}
749
750#
751# The .h file
752#
753
754exec > new-gdbarch.h
755copyright
756cat <<EOF
757#ifndef GDBARCH_H
758#define GDBARCH_H
759
2bf0cb65 760#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6 761#if !GDB_MULTI_ARCH
67a2b77e 762/* Pull in function declarations refered to, indirectly, via macros. */
fd0407d6 763#include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
67a2b77e 764#include "inferior.h" /* For unsigned_address_to_pointer(). */
fd0407d6 765#endif
2bf0cb65 766
104c1213
JM
767struct frame_info;
768struct value;
b6af0555 769struct objfile;
a2cf933a 770struct minimal_symbol;
049ee0e4 771struct regcache;
104c1213 772
104c1213
JM
773extern struct gdbarch *current_gdbarch;
774
775
104c1213
JM
776/* If any of the following are defined, the target wasn't correctly
777 converted. */
778
104c1213
JM
779#if GDB_MULTI_ARCH
780#if defined (EXTRA_FRAME_INFO)
781#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
782#endif
783#endif
784
785#if GDB_MULTI_ARCH
786#if defined (FRAME_FIND_SAVED_REGS)
787#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
788#endif
789#endif
83905903
AC
790
791#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
792#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
793#endif
104c1213
JM
794EOF
795
796# function typedef's
3d9a5942
AC
797printf "\n"
798printf "\n"
799printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 800function_list | while do_read
104c1213 801do
2ada493a
AC
802 if class_is_info_p
803 then
3d9a5942
AC
804 printf "\n"
805 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
806 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 807 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
808 printf "#error \"Non multi-arch definition of ${macro}\"\n"
809 printf "#endif\n"
3d9a5942 810 printf "#if GDB_MULTI_ARCH\n"
028c194b 811 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
812 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
813 printf "#endif\n"
814 printf "#endif\n"
2ada493a 815 fi
104c1213
JM
816done
817
818# function typedef's
3d9a5942
AC
819printf "\n"
820printf "\n"
821printf "/* The following are initialized by the target dependent code. */\n"
34620563 822function_list | while do_read
104c1213 823do
72e74a21 824 if [ -n "${comment}" ]
34620563
AC
825 then
826 echo "${comment}" | sed \
827 -e '2 s,#,/*,' \
828 -e '3,$ s,#, ,' \
829 -e '$ s,$, */,'
830 fi
b77be6cf 831 if class_is_multiarch_p
2ada493a 832 then
b77be6cf
AC
833 if class_is_predicate_p
834 then
835 printf "\n"
836 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
837 fi
838 else
839 if class_is_predicate_p
840 then
841 printf "\n"
842 printf "#if defined (${macro})\n"
843 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
844 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 845 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
846 printf "#define ${macro}_P() (1)\n"
847 printf "#endif\n"
eee30e78 848 printf "#endif\n"
b77be6cf
AC
849 printf "\n"
850 printf "/* Default predicate for non- multi-arch targets. */\n"
851 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
852 printf "#define ${macro}_P() (0)\n"
853 printf "#endif\n"
854 printf "\n"
855 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 856 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
857 printf "#error \"Non multi-arch definition of ${macro}\"\n"
858 printf "#endif\n"
028c194b 859 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
860 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
861 printf "#endif\n"
862 fi
4a5c6a1d 863 fi
2ada493a
AC
864 if class_is_variable_p
865 then
f0d4cc9e 866 if fallback_default_p || class_is_predicate_p
33489c5b 867 then
3d9a5942
AC
868 printf "\n"
869 printf "/* Default (value) for non- multi-arch platforms. */\n"
870 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
871 echo "#define ${macro} (${fallbackdefault})" \
872 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 873 printf "#endif\n"
33489c5b 874 fi
3d9a5942
AC
875 printf "\n"
876 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
877 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 878 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
879 printf "#error \"Non multi-arch definition of ${macro}\"\n"
880 printf "#endif\n"
3d9a5942 881 printf "#if GDB_MULTI_ARCH\n"
028c194b 882 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
883 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
884 printf "#endif\n"
885 printf "#endif\n"
2ada493a
AC
886 fi
887 if class_is_function_p
888 then
b77be6cf
AC
889 if class_is_multiarch_p ; then :
890 elif fallback_default_p || class_is_predicate_p
33489c5b 891 then
3d9a5942
AC
892 printf "\n"
893 printf "/* Default (function) for non- multi-arch platforms. */\n"
894 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 895 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 896 then
8e65ff28 897 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
33489c5b 898 else
f0d4cc9e
AC
899 # FIXME: Should be passing current_gdbarch through!
900 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
901 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 902 fi
3d9a5942 903 printf "#endif\n"
33489c5b 904 fi
3d9a5942 905 printf "\n"
72e74a21 906 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
907 then
908 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
909 elif class_is_multiarch_p
910 then
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
912 else
913 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
914 fi
72e74a21 915 if [ "x${formal}" = "xvoid" ]
104c1213 916 then
3d9a5942 917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 918 else
3d9a5942 919 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 920 fi
3d9a5942 921 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
922 if class_is_multiarch_p ; then :
923 else
028c194b 924 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
925 printf "#error \"Non multi-arch definition of ${macro}\"\n"
926 printf "#endif\n"
4a5c6a1d 927 printf "#if GDB_MULTI_ARCH\n"
028c194b 928 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
72e74a21 929 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
930 then
931 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 932 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
933 then
934 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
935 else
936 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
937 fi
938 printf "#endif\n"
939 printf "#endif\n"
104c1213 940 fi
2ada493a 941 fi
104c1213
JM
942done
943
944# close it off
945cat <<EOF
946
947extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
948
949
950/* Mechanism for co-ordinating the selection of a specific
951 architecture.
952
953 GDB targets (*-tdep.c) can register an interest in a specific
954 architecture. Other GDB components can register a need to maintain
955 per-architecture data.
956
957 The mechanisms below ensures that there is only a loose connection
958 between the set-architecture command and the various GDB
0fa6923a 959 components. Each component can independently register their need
104c1213
JM
960 to maintain architecture specific data with gdbarch.
961
962 Pragmatics:
963
964 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
965 didn't scale.
966
967 The more traditional mega-struct containing architecture specific
968 data for all the various GDB components was also considered. Since
0fa6923a 969 GDB is built from a variable number of (fairly independent)
104c1213
JM
970 components it was determined that the global aproach was not
971 applicable. */
972
973
974/* Register a new architectural family with GDB.
975
976 Register support for the specified ARCHITECTURE with GDB. When
977 gdbarch determines that the specified architecture has been
978 selected, the corresponding INIT function is called.
979
980 --
981
982 The INIT function takes two parameters: INFO which contains the
983 information available to gdbarch about the (possibly new)
984 architecture; ARCHES which is a list of the previously created
985 \`\`struct gdbarch'' for this architecture.
986
0f79675b
AC
987 The INFO parameter is, as far as possible, be pre-initialized with
988 information obtained from INFO.ABFD or the previously selected
989 architecture.
990
991 The ARCHES parameter is a linked list (sorted most recently used)
992 of all the previously created architures for this architecture
993 family. The (possibly NULL) ARCHES->gdbarch can used to access
994 values from the previously selected architecture for this
995 architecture family. The global \`\`current_gdbarch'' shall not be
996 used.
104c1213
JM
997
998 The INIT function shall return any of: NULL - indicating that it
ec3d358c 999 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1000 gdbarch'' from the ARCHES list - indicating that the new
1001 architecture is just a synonym for an earlier architecture (see
1002 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1003 - that describes the selected architecture (see gdbarch_alloc()).
1004
1005 The DUMP_TDEP function shall print out all target specific values.
1006 Care should be taken to ensure that the function works in both the
1007 multi-arch and non- multi-arch cases. */
104c1213
JM
1008
1009struct gdbarch_list
1010{
1011 struct gdbarch *gdbarch;
1012 struct gdbarch_list *next;
1013};
1014
1015struct gdbarch_info
1016{
104c1213
JM
1017 /* Use default: NULL (ZERO). */
1018 const struct bfd_arch_info *bfd_arch_info;
1019
428721aa 1020 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1021 int byte_order;
1022
1023 /* Use default: NULL (ZERO). */
1024 bfd *abfd;
1025
1026 /* Use default: NULL (ZERO). */
1027 struct gdbarch_tdep_info *tdep_info;
1028};
1029
1030typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1031typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1032
4b9b3959 1033/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1034extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1035
4b9b3959
AC
1036extern void gdbarch_register (enum bfd_architecture architecture,
1037 gdbarch_init_ftype *,
1038 gdbarch_dump_tdep_ftype *);
1039
104c1213 1040
b4a20239
AC
1041/* Return a freshly allocated, NULL terminated, array of the valid
1042 architecture names. Since architectures are registered during the
1043 _initialize phase this function only returns useful information
1044 once initialization has been completed. */
1045
1046extern const char **gdbarch_printable_names (void);
1047
1048
104c1213
JM
1049/* Helper function. Search the list of ARCHES for a GDBARCH that
1050 matches the information provided by INFO. */
1051
1052extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1053
1054
1055/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1056 basic initialization using values obtained from the INFO andTDEP
1057 parameters. set_gdbarch_*() functions are called to complete the
1058 initialization of the object. */
1059
1060extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1061
1062
4b9b3959
AC
1063/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1064 It is assumed that the caller freeds the \`\`struct
1065 gdbarch_tdep''. */
1066
058f20d5
JB
1067extern void gdbarch_free (struct gdbarch *);
1068
1069
b732d07d 1070/* Helper function. Force an update of the current architecture.
104c1213 1071
b732d07d
AC
1072 The actual architecture selected is determined by INFO, \`\`(gdb) set
1073 architecture'' et.al., the existing architecture and BFD's default
1074 architecture. INFO should be initialized to zero and then selected
1075 fields should be updated.
104c1213 1076
16f33e29
AC
1077 Returns non-zero if the update succeeds */
1078
1079extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1080
1081
1082
1083/* Register per-architecture data-pointer.
1084
1085 Reserve space for a per-architecture data-pointer. An identifier
1086 for the reserved data-pointer is returned. That identifer should
95160752 1087 be saved in a local static variable.
104c1213 1088
76860b5f
AC
1089 The per-architecture data-pointer is either initialized explicitly
1090 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1091 gdbarch_data()). FREE() is called to delete either an existing
2af496cb 1092 data-pointer overridden by set_gdbarch_data() or when the
76860b5f 1093 architecture object is being deleted.
104c1213 1094
95160752
AC
1095 When a previously created architecture is re-selected, the
1096 per-architecture data-pointer for that previous architecture is
76860b5f 1097 restored. INIT() is not re-called.
104c1213
JM
1098
1099 Multiple registrarants for any architecture are allowed (and
1100 strongly encouraged). */
1101
95160752 1102struct gdbarch_data;
104c1213 1103
95160752
AC
1104typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1105typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1106 void *pointer);
1107extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1108 gdbarch_data_free_ftype *free);
1109extern void set_gdbarch_data (struct gdbarch *gdbarch,
1110 struct gdbarch_data *data,
1111 void *pointer);
104c1213 1112
451fbdda 1113extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1114
1115
104c1213
JM
1116/* Register per-architecture memory region.
1117
1118 Provide a memory-region swap mechanism. Per-architecture memory
1119 region are created. These memory regions are swapped whenever the
1120 architecture is changed. For a new architecture, the memory region
1121 is initialized with zero (0) and the INIT function is called.
1122
1123 Memory regions are swapped / initialized in the order that they are
1124 registered. NULL DATA and/or INIT values can be specified.
1125
1126 New code should use register_gdbarch_data(). */
1127
1128typedef void (gdbarch_swap_ftype) (void);
1129extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1130#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1131
1132
1133
0fa6923a 1134/* The target-system-dependent byte order is dynamic */
104c1213 1135
104c1213 1136extern int target_byte_order;
104c1213
JM
1137#ifndef TARGET_BYTE_ORDER
1138#define TARGET_BYTE_ORDER (target_byte_order + 0)
1139#endif
1140
1141extern int target_byte_order_auto;
1142#ifndef TARGET_BYTE_ORDER_AUTO
1143#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1144#endif
1145
1146
1147
0fa6923a 1148/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1149
1150extern int target_architecture_auto;
1151#ifndef TARGET_ARCHITECTURE_AUTO
1152#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1153#endif
1154
1155extern const struct bfd_arch_info *target_architecture;
1156#ifndef TARGET_ARCHITECTURE
1157#define TARGET_ARCHITECTURE (target_architecture + 0)
1158#endif
1159
104c1213 1160
0fa6923a 1161/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1162
104c1213 1163extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
ff844c8d 1164 unsigned int len, disassemble_info *info);
104c1213
JM
1165
1166extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1167 disassemble_info *info);
1168
1169extern void dis_asm_print_address (bfd_vma addr,
1170 disassemble_info *info);
1171
1172extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1173extern disassemble_info tm_print_insn_info;
104c1213
JM
1174#ifndef TARGET_PRINT_INSN_INFO
1175#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1176#endif
1177
1178
1179
0fa6923a 1180/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1181 byte-order, ...) using information found in the BFD */
1182
1183extern void set_gdbarch_from_file (bfd *);
1184
1185
e514a9d6
JM
1186/* Initialize the current architecture to the "first" one we find on
1187 our list. */
1188
1189extern void initialize_current_architecture (void);
1190
ceaa8edf
JB
1191/* For non-multiarched targets, do any initialization of the default
1192 gdbarch object necessary after the _initialize_MODULE functions
1193 have run. */
5ae5f592 1194extern void initialize_non_multiarch (void);
104c1213
JM
1195
1196/* gdbarch trace variable */
1197extern int gdbarch_debug;
1198
4b9b3959 1199extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1200
1201#endif
1202EOF
1203exec 1>&2
1204#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1205compare_new gdbarch.h
104c1213
JM
1206
1207
1208#
1209# C file
1210#
1211
1212exec > new-gdbarch.c
1213copyright
1214cat <<EOF
1215
1216#include "defs.h"
7355ddba 1217#include "arch-utils.h"
104c1213
JM
1218
1219#if GDB_MULTI_ARCH
1220#include "gdbcmd.h"
1221#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1222#else
1223/* Just include everything in sight so that the every old definition
1224 of macro is visible. */
1225#include "gdb_string.h"
1226#include <ctype.h>
1227#include "symtab.h"
1228#include "frame.h"
1229#include "inferior.h"
1230#include "breakpoint.h"
0596389c 1231#include "gdb_wait.h"
104c1213
JM
1232#include "gdbcore.h"
1233#include "gdbcmd.h"
1234#include "target.h"
1235#include "gdbthread.h"
1236#include "annotate.h"
1237#include "symfile.h" /* for overlay functions */
fd0407d6 1238#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1239#endif
1240#include "symcat.h"
1241
f0d4cc9e 1242#include "floatformat.h"
104c1213 1243
95160752 1244#include "gdb_assert.h"
b66d6d2e 1245#include "gdb_string.h"
67c2c32c 1246#include "gdb-events.h"
95160752 1247
104c1213
JM
1248/* Static function declarations */
1249
1250static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077 1251static void alloc_gdbarch_data (struct gdbarch *);
95160752 1252static void free_gdbarch_data (struct gdbarch *);
104c1213 1253static void init_gdbarch_swap (struct gdbarch *);
40af4b0c 1254static void clear_gdbarch_swap (struct gdbarch *);
104c1213
JM
1255static void swapout_gdbarch_swap (struct gdbarch *);
1256static void swapin_gdbarch_swap (struct gdbarch *);
1257
104c1213
JM
1258/* Non-zero if we want to trace architecture code. */
1259
1260#ifndef GDBARCH_DEBUG
1261#define GDBARCH_DEBUG 0
1262#endif
1263int gdbarch_debug = GDBARCH_DEBUG;
1264
1265EOF
1266
1267# gdbarch open the gdbarch object
3d9a5942
AC
1268printf "\n"
1269printf "/* Maintain the struct gdbarch object */\n"
1270printf "\n"
1271printf "struct gdbarch\n"
1272printf "{\n"
76860b5f
AC
1273printf " /* Has this architecture been fully initialized? */\n"
1274printf " int initialized_p;\n"
3d9a5942 1275printf " /* basic architectural information */\n"
34620563 1276function_list | while do_read
104c1213 1277do
2ada493a
AC
1278 if class_is_info_p
1279 then
3d9a5942 1280 printf " ${returntype} ${function};\n"
2ada493a 1281 fi
104c1213 1282done
3d9a5942
AC
1283printf "\n"
1284printf " /* target specific vector. */\n"
1285printf " struct gdbarch_tdep *tdep;\n"
1286printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1287printf "\n"
1288printf " /* per-architecture data-pointers */\n"
95160752 1289printf " unsigned nr_data;\n"
3d9a5942
AC
1290printf " void **data;\n"
1291printf "\n"
1292printf " /* per-architecture swap-regions */\n"
1293printf " struct gdbarch_swap *swap;\n"
1294printf "\n"
104c1213
JM
1295cat <<EOF
1296 /* Multi-arch values.
1297
1298 When extending this structure you must:
1299
1300 Add the field below.
1301
1302 Declare set/get functions and define the corresponding
1303 macro in gdbarch.h.
1304
1305 gdbarch_alloc(): If zero/NULL is not a suitable default,
1306 initialize the new field.
1307
1308 verify_gdbarch(): Confirm that the target updated the field
1309 correctly.
1310
7e73cedf 1311 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1312 field is dumped out
1313
c0e8c252 1314 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1315 variable (base values on the host's c-type system).
1316
1317 get_gdbarch(): Implement the set/get functions (probably using
1318 the macro's as shortcuts).
1319
1320 */
1321
1322EOF
34620563 1323function_list | while do_read
104c1213 1324do
2ada493a
AC
1325 if class_is_variable_p
1326 then
3d9a5942 1327 printf " ${returntype} ${function};\n"
2ada493a
AC
1328 elif class_is_function_p
1329 then
3d9a5942 1330 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1331 fi
104c1213 1332done
3d9a5942 1333printf "};\n"
104c1213
JM
1334
1335# A pre-initialized vector
3d9a5942
AC
1336printf "\n"
1337printf "\n"
104c1213
JM
1338cat <<EOF
1339/* The default architecture uses host values (for want of a better
1340 choice). */
1341EOF
3d9a5942
AC
1342printf "\n"
1343printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1344printf "\n"
1345printf "struct gdbarch startup_gdbarch =\n"
1346printf "{\n"
76860b5f 1347printf " 1, /* Always initialized. */\n"
3d9a5942 1348printf " /* basic architecture information */\n"
4b9b3959 1349function_list | while do_read
104c1213 1350do
2ada493a
AC
1351 if class_is_info_p
1352 then
3d9a5942 1353 printf " ${staticdefault},\n"
2ada493a 1354 fi
104c1213
JM
1355done
1356cat <<EOF
4b9b3959
AC
1357 /* target specific vector and its dump routine */
1358 NULL, NULL,
104c1213
JM
1359 /*per-architecture data-pointers and swap regions */
1360 0, NULL, NULL,
1361 /* Multi-arch values */
1362EOF
34620563 1363function_list | while do_read
104c1213 1364do
2ada493a
AC
1365 if class_is_function_p || class_is_variable_p
1366 then
3d9a5942 1367 printf " ${staticdefault},\n"
2ada493a 1368 fi
104c1213
JM
1369done
1370cat <<EOF
c0e8c252 1371 /* startup_gdbarch() */
104c1213 1372};
4b9b3959 1373
c0e8c252 1374struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1375
1376/* Do any initialization needed for a non-multiarch configuration
1377 after the _initialize_MODULE functions have been run. */
1378void
5ae5f592 1379initialize_non_multiarch (void)
ceaa8edf
JB
1380{
1381 alloc_gdbarch_data (&startup_gdbarch);
40af4b0c
AC
1382 /* Ensure that all swap areas are zeroed so that they again think
1383 they are starting from scratch. */
1384 clear_gdbarch_swap (&startup_gdbarch);
6c1e5d11 1385 init_gdbarch_swap (&startup_gdbarch);
ceaa8edf 1386}
104c1213
JM
1387EOF
1388
1389# Create a new gdbarch struct
3d9a5942
AC
1390printf "\n"
1391printf "\n"
104c1213 1392cat <<EOF
66b43ecb 1393/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1394 \`\`struct gdbarch_info''. */
1395EOF
3d9a5942 1396printf "\n"
104c1213
JM
1397cat <<EOF
1398struct gdbarch *
1399gdbarch_alloc (const struct gdbarch_info *info,
1400 struct gdbarch_tdep *tdep)
1401{
85de9627
AC
1402 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1403 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1404 the current local architecture and not the previous global
1405 architecture. This ensures that the new architectures initial
1406 values are not influenced by the previous architecture. Once
1407 everything is parameterised with gdbarch, this will go away. */
1408 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1409 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1410
1411 alloc_gdbarch_data (current_gdbarch);
1412
1413 current_gdbarch->tdep = tdep;
104c1213 1414EOF
3d9a5942 1415printf "\n"
34620563 1416function_list | while do_read
104c1213 1417do
2ada493a
AC
1418 if class_is_info_p
1419 then
85de9627 1420 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1421 fi
104c1213 1422done
3d9a5942
AC
1423printf "\n"
1424printf " /* Force the explicit initialization of these. */\n"
34620563 1425function_list | while do_read
104c1213 1426do
2ada493a
AC
1427 if class_is_function_p || class_is_variable_p
1428 then
72e74a21 1429 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1430 then
85de9627 1431 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1432 fi
2ada493a 1433 fi
104c1213
JM
1434done
1435cat <<EOF
1436 /* gdbarch_alloc() */
1437
85de9627 1438 return current_gdbarch;
104c1213
JM
1439}
1440EOF
1441
058f20d5 1442# Free a gdbarch struct.
3d9a5942
AC
1443printf "\n"
1444printf "\n"
058f20d5
JB
1445cat <<EOF
1446/* Free a gdbarch struct. This should never happen in normal
1447 operation --- once you've created a gdbarch, you keep it around.
1448 However, if an architecture's init function encounters an error
1449 building the structure, it may need to clean up a partially
1450 constructed gdbarch. */
4b9b3959 1451
058f20d5
JB
1452void
1453gdbarch_free (struct gdbarch *arch)
1454{
95160752
AC
1455 gdb_assert (arch != NULL);
1456 free_gdbarch_data (arch);
338d7c5c 1457 xfree (arch);
058f20d5
JB
1458}
1459EOF
1460
104c1213 1461# verify a new architecture
3d9a5942
AC
1462printf "\n"
1463printf "\n"
1464printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1465printf "\n"
104c1213
JM
1466cat <<EOF
1467static void
1468verify_gdbarch (struct gdbarch *gdbarch)
1469{
f16a1923
AC
1470 struct ui_file *log;
1471 struct cleanup *cleanups;
1472 long dummy;
1473 char *buf;
104c1213 1474 /* Only perform sanity checks on a multi-arch target. */
6166d547 1475 if (!GDB_MULTI_ARCH)
104c1213 1476 return;
f16a1923
AC
1477 log = mem_fileopen ();
1478 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1479 /* fundamental */
428721aa 1480 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1481 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1482 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1483 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1484 /* Check those that need to be defined for the given multi-arch level. */
1485EOF
34620563 1486function_list | while do_read
104c1213 1487do
2ada493a
AC
1488 if class_is_function_p || class_is_variable_p
1489 then
72e74a21 1490 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1491 then
3d9a5942 1492 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1493 elif class_is_predicate_p
1494 then
3d9a5942 1495 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1496 # FIXME: See do_read for potential simplification
72e74a21 1497 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1498 then
3d9a5942
AC
1499 printf " if (${invalid_p})\n"
1500 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1501 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1502 then
3d9a5942
AC
1503 printf " if (gdbarch->${function} == ${predefault})\n"
1504 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1505 elif [ -n "${postdefault}" ]
f0d4cc9e 1506 then
3d9a5942
AC
1507 printf " if (gdbarch->${function} == 0)\n"
1508 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1509 elif [ -n "${invalid_p}" ]
104c1213 1510 then
50248794 1511 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1512 printf " && (${invalid_p}))\n"
f16a1923 1513 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1514 elif [ -n "${predefault}" ]
104c1213 1515 then
50248794 1516 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1517 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1518 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1519 fi
2ada493a 1520 fi
104c1213
JM
1521done
1522cat <<EOF
f16a1923
AC
1523 buf = ui_file_xstrdup (log, &dummy);
1524 make_cleanup (xfree, buf);
1525 if (strlen (buf) > 0)
1526 internal_error (__FILE__, __LINE__,
1527 "verify_gdbarch: the following are invalid ...%s",
1528 buf);
1529 do_cleanups (cleanups);
104c1213
JM
1530}
1531EOF
1532
1533# dump the structure
3d9a5942
AC
1534printf "\n"
1535printf "\n"
104c1213 1536cat <<EOF
4b9b3959
AC
1537/* Print out the details of the current architecture. */
1538
1539/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1540 just happens to match the global variable \`\`current_gdbarch''. That
1541 way macros refering to that variable get the local and not the global
1542 version - ulgh. Once everything is parameterised with gdbarch, this
1543 will go away. */
1544
104c1213 1545void
4b9b3959 1546gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1547{
4b9b3959
AC
1548 fprintf_unfiltered (file,
1549 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1550 GDB_MULTI_ARCH);
104c1213 1551EOF
08e45a40 1552function_list | sort -t: +2 | while do_read
104c1213 1553do
4a5c6a1d 1554 # multiarch functions don't have macros.
08e45a40
AC
1555 if class_is_multiarch_p
1556 then
1557 printf " if (GDB_MULTI_ARCH)\n"
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1560 printf " (long) current_gdbarch->${function});\n"
1561 continue
1562 fi
06b25f14 1563 # Print the macro definition.
08e45a40 1564 printf "#ifdef ${macro}\n"
72e74a21 1565 if [ "x${returntype}" = "xvoid" ]
63e69063 1566 then
08e45a40 1567 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1568 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1569 fi
2ada493a
AC
1570 if class_is_function_p
1571 then
3d9a5942
AC
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1574 printf " \"${macro}(${actual})\",\n"
1575 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1576 else
3d9a5942
AC
1577 printf " fprintf_unfiltered (file,\n"
1578 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1579 printf " XSTRING (${macro}));\n"
4b9b3959 1580 fi
06b25f14 1581 # Print the architecture vector value
08e45a40 1582 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1583 then
08e45a40 1584 printf "#endif\n"
4a5c6a1d 1585 fi
72e74a21 1586 if [ "x${print_p}" = "x()" ]
4b9b3959 1587 then
4a5c6a1d 1588 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1589 elif [ "x${print_p}" = "x0" ]
4b9b3959 1590 then
4a5c6a1d 1591 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1592 elif [ -n "${print_p}" ]
4b9b3959 1593 then
4a5c6a1d 1594 printf " if (${print_p})\n"
3d9a5942
AC
1595 printf " fprintf_unfiltered (file,\n"
1596 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1597 printf " ${print});\n"
4b9b3959
AC
1598 elif class_is_function_p
1599 then
3d9a5942
AC
1600 printf " if (GDB_MULTI_ARCH)\n"
1601 printf " fprintf_unfiltered (file,\n"
1602 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1603 printf " (long) current_gdbarch->${function}\n"
1604 printf " /*${macro} ()*/);\n"
4b9b3959 1605 else
3d9a5942
AC
1606 printf " fprintf_unfiltered (file,\n"
1607 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1608 printf " ${print});\n"
2ada493a 1609 fi
3d9a5942 1610 printf "#endif\n"
104c1213 1611done
381323f4 1612cat <<EOF
4b9b3959
AC
1613 if (current_gdbarch->dump_tdep != NULL)
1614 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1615}
1616EOF
104c1213
JM
1617
1618
1619# GET/SET
3d9a5942 1620printf "\n"
104c1213
JM
1621cat <<EOF
1622struct gdbarch_tdep *
1623gdbarch_tdep (struct gdbarch *gdbarch)
1624{
1625 if (gdbarch_debug >= 2)
3d9a5942 1626 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1627 return gdbarch->tdep;
1628}
1629EOF
3d9a5942 1630printf "\n"
34620563 1631function_list | while do_read
104c1213 1632do
2ada493a
AC
1633 if class_is_predicate_p
1634 then
3d9a5942
AC
1635 printf "\n"
1636 printf "int\n"
1637 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1638 printf "{\n"
8de9bdc4 1639 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1640 if [ -n "${valid_p}" ]
2ada493a 1641 then
3d9a5942 1642 printf " return ${valid_p};\n"
2ada493a 1643 else
3d9a5942 1644 printf "#error \"gdbarch_${function}_p: not defined\"\n"
2ada493a 1645 fi
3d9a5942 1646 printf "}\n"
2ada493a
AC
1647 fi
1648 if class_is_function_p
1649 then
3d9a5942
AC
1650 printf "\n"
1651 printf "${returntype}\n"
72e74a21 1652 if [ "x${formal}" = "xvoid" ]
104c1213 1653 then
3d9a5942 1654 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1655 else
3d9a5942 1656 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1657 fi
3d9a5942 1658 printf "{\n"
8de9bdc4 1659 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 1660 printf " if (gdbarch->${function} == 0)\n"
8e65ff28
AC
1661 printf " internal_error (__FILE__, __LINE__,\n"
1662 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
3d9a5942
AC
1663 printf " if (gdbarch_debug >= 2)\n"
1664 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1665 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1666 then
1667 if class_is_multiarch_p
1668 then
1669 params="gdbarch"
1670 else
1671 params=""
1672 fi
1673 else
1674 if class_is_multiarch_p
1675 then
1676 params="gdbarch, ${actual}"
1677 else
1678 params="${actual}"
1679 fi
1680 fi
72e74a21 1681 if [ "x${returntype}" = "xvoid" ]
104c1213 1682 then
4a5c6a1d 1683 printf " gdbarch->${function} (${params});\n"
104c1213 1684 else
4a5c6a1d 1685 printf " return gdbarch->${function} (${params});\n"
104c1213 1686 fi
3d9a5942
AC
1687 printf "}\n"
1688 printf "\n"
1689 printf "void\n"
1690 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1691 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1692 printf "{\n"
1693 printf " gdbarch->${function} = ${function};\n"
1694 printf "}\n"
2ada493a
AC
1695 elif class_is_variable_p
1696 then
3d9a5942
AC
1697 printf "\n"
1698 printf "${returntype}\n"
1699 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1700 printf "{\n"
8de9bdc4 1701 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1702 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1703 then
3d9a5942 1704 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1705 elif [ -n "${invalid_p}" ]
104c1213 1706 then
3d9a5942 1707 printf " if (${invalid_p})\n"
8e65ff28
AC
1708 printf " internal_error (__FILE__, __LINE__,\n"
1709 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
72e74a21 1710 elif [ -n "${predefault}" ]
104c1213 1711 then
3d9a5942 1712 printf " if (gdbarch->${function} == ${predefault})\n"
8e65ff28
AC
1713 printf " internal_error (__FILE__, __LINE__,\n"
1714 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
104c1213 1715 fi
3d9a5942
AC
1716 printf " if (gdbarch_debug >= 2)\n"
1717 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1718 printf " return gdbarch->${function};\n"
1719 printf "}\n"
1720 printf "\n"
1721 printf "void\n"
1722 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1723 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1724 printf "{\n"
1725 printf " gdbarch->${function} = ${function};\n"
1726 printf "}\n"
2ada493a
AC
1727 elif class_is_info_p
1728 then
3d9a5942
AC
1729 printf "\n"
1730 printf "${returntype}\n"
1731 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1732 printf "{\n"
8de9bdc4 1733 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1734 printf " if (gdbarch_debug >= 2)\n"
1735 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1736 printf " return gdbarch->${function};\n"
1737 printf "}\n"
2ada493a 1738 fi
104c1213
JM
1739done
1740
1741# All the trailing guff
1742cat <<EOF
1743
1744
f44c642f 1745/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1746 modules. */
1747
1748struct gdbarch_data
1749{
95160752 1750 unsigned index;
76860b5f 1751 int init_p;
95160752
AC
1752 gdbarch_data_init_ftype *init;
1753 gdbarch_data_free_ftype *free;
104c1213
JM
1754};
1755
1756struct gdbarch_data_registration
1757{
104c1213
JM
1758 struct gdbarch_data *data;
1759 struct gdbarch_data_registration *next;
1760};
1761
f44c642f 1762struct gdbarch_data_registry
104c1213 1763{
95160752 1764 unsigned nr;
104c1213
JM
1765 struct gdbarch_data_registration *registrations;
1766};
1767
f44c642f 1768struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1769{
1770 0, NULL,
1771};
1772
1773struct gdbarch_data *
95160752
AC
1774register_gdbarch_data (gdbarch_data_init_ftype *init,
1775 gdbarch_data_free_ftype *free)
104c1213
JM
1776{
1777 struct gdbarch_data_registration **curr;
76860b5f 1778 /* Append the new registraration. */
f44c642f 1779 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1780 (*curr) != NULL;
1781 curr = &(*curr)->next);
1782 (*curr) = XMALLOC (struct gdbarch_data_registration);
1783 (*curr)->next = NULL;
104c1213 1784 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1785 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1786 (*curr)->data->init = init;
76860b5f 1787 (*curr)->data->init_p = 1;
95160752 1788 (*curr)->data->free = free;
104c1213
JM
1789 return (*curr)->data;
1790}
1791
1792
b3cc3077 1793/* Create/delete the gdbarch data vector. */
95160752
AC
1794
1795static void
b3cc3077 1796alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1797{
b3cc3077
JB
1798 gdb_assert (gdbarch->data == NULL);
1799 gdbarch->nr_data = gdbarch_data_registry.nr;
1800 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1801}
3c875b6f 1802
b3cc3077
JB
1803static void
1804free_gdbarch_data (struct gdbarch *gdbarch)
1805{
1806 struct gdbarch_data_registration *rego;
1807 gdb_assert (gdbarch->data != NULL);
1808 for (rego = gdbarch_data_registry.registrations;
1809 rego != NULL;
1810 rego = rego->next)
95160752 1811 {
b3cc3077
JB
1812 struct gdbarch_data *data = rego->data;
1813 gdb_assert (data->index < gdbarch->nr_data);
1814 if (data->free != NULL && gdbarch->data[data->index] != NULL)
95160752 1815 {
b3cc3077
JB
1816 data->free (gdbarch, gdbarch->data[data->index]);
1817 gdbarch->data[data->index] = NULL;
95160752 1818 }
104c1213 1819 }
b3cc3077
JB
1820 xfree (gdbarch->data);
1821 gdbarch->data = NULL;
104c1213
JM
1822}
1823
1824
76860b5f 1825/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1826 data-pointer. */
1827
95160752
AC
1828void
1829set_gdbarch_data (struct gdbarch *gdbarch,
1830 struct gdbarch_data *data,
1831 void *pointer)
1832{
1833 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1834 if (gdbarch->data[data->index] != NULL)
1835 {
1836 gdb_assert (data->free != NULL);
1837 data->free (gdbarch, gdbarch->data[data->index]);
1838 }
95160752
AC
1839 gdbarch->data[data->index] = pointer;
1840}
1841
104c1213
JM
1842/* Return the current value of the specified per-architecture
1843 data-pointer. */
1844
1845void *
451fbdda 1846gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1847{
451fbdda 1848 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1849 /* The data-pointer isn't initialized, call init() to get a value but
1850 only if the architecture initializaiton has completed. Otherwise
1851 punt - hope that the caller knows what they are doing. */
1852 if (gdbarch->data[data->index] == NULL
1853 && gdbarch->initialized_p)
1854 {
1855 /* Be careful to detect an initialization cycle. */
1856 gdb_assert (data->init_p);
1857 data->init_p = 0;
1858 gdb_assert (data->init != NULL);
1859 gdbarch->data[data->index] = data->init (gdbarch);
1860 data->init_p = 1;
1861 gdb_assert (gdbarch->data[data->index] != NULL);
1862 }
451fbdda 1863 return gdbarch->data[data->index];
104c1213
JM
1864}
1865
1866
1867
f44c642f 1868/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1869
1870struct gdbarch_swap
1871{
1872 void *swap;
1873 struct gdbarch_swap_registration *source;
1874 struct gdbarch_swap *next;
1875};
1876
1877struct gdbarch_swap_registration
1878{
1879 void *data;
1880 unsigned long sizeof_data;
1881 gdbarch_swap_ftype *init;
1882 struct gdbarch_swap_registration *next;
1883};
1884
f44c642f 1885struct gdbarch_swap_registry
104c1213
JM
1886{
1887 int nr;
1888 struct gdbarch_swap_registration *registrations;
1889};
1890
f44c642f 1891struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1892{
1893 0, NULL,
1894};
1895
1896void
1897register_gdbarch_swap (void *data,
1898 unsigned long sizeof_data,
1899 gdbarch_swap_ftype *init)
1900{
1901 struct gdbarch_swap_registration **rego;
f44c642f 1902 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1903 (*rego) != NULL;
1904 rego = &(*rego)->next);
1905 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1906 (*rego)->next = NULL;
1907 (*rego)->init = init;
1908 (*rego)->data = data;
1909 (*rego)->sizeof_data = sizeof_data;
1910}
1911
40af4b0c
AC
1912static void
1913clear_gdbarch_swap (struct gdbarch *gdbarch)
1914{
1915 struct gdbarch_swap *curr;
1916 for (curr = gdbarch->swap;
1917 curr != NULL;
1918 curr = curr->next)
1919 {
1920 memset (curr->source->data, 0, curr->source->sizeof_data);
1921 }
1922}
104c1213
JM
1923
1924static void
1925init_gdbarch_swap (struct gdbarch *gdbarch)
1926{
1927 struct gdbarch_swap_registration *rego;
1928 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 1929 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1930 rego != NULL;
1931 rego = rego->next)
1932 {
1933 if (rego->data != NULL)
1934 {
1935 (*curr) = XMALLOC (struct gdbarch_swap);
1936 (*curr)->source = rego;
1937 (*curr)->swap = xmalloc (rego->sizeof_data);
1938 (*curr)->next = NULL;
104c1213
JM
1939 curr = &(*curr)->next;
1940 }
1941 if (rego->init != NULL)
1942 rego->init ();
1943 }
1944}
1945
1946static void
1947swapout_gdbarch_swap (struct gdbarch *gdbarch)
1948{
1949 struct gdbarch_swap *curr;
1950 for (curr = gdbarch->swap;
1951 curr != NULL;
1952 curr = curr->next)
1953 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1954}
1955
1956static void
1957swapin_gdbarch_swap (struct gdbarch *gdbarch)
1958{
1959 struct gdbarch_swap *curr;
1960 for (curr = gdbarch->swap;
1961 curr != NULL;
1962 curr = curr->next)
1963 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1964}
1965
1966
f44c642f 1967/* Keep a registry of the architectures known by GDB. */
104c1213 1968
4b9b3959 1969struct gdbarch_registration
104c1213
JM
1970{
1971 enum bfd_architecture bfd_architecture;
1972 gdbarch_init_ftype *init;
4b9b3959 1973 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1974 struct gdbarch_list *arches;
4b9b3959 1975 struct gdbarch_registration *next;
104c1213
JM
1976};
1977
f44c642f 1978static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1979
b4a20239
AC
1980static void
1981append_name (const char ***buf, int *nr, const char *name)
1982{
1983 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1984 (*buf)[*nr] = name;
1985 *nr += 1;
1986}
1987
1988const char **
1989gdbarch_printable_names (void)
1990{
1991 if (GDB_MULTI_ARCH)
1992 {
1993 /* Accumulate a list of names based on the registed list of
1994 architectures. */
1995 enum bfd_architecture a;
1996 int nr_arches = 0;
1997 const char **arches = NULL;
4b9b3959 1998 struct gdbarch_registration *rego;
f44c642f 1999 for (rego = gdbarch_registry;
b4a20239
AC
2000 rego != NULL;
2001 rego = rego->next)
2002 {
2003 const struct bfd_arch_info *ap;
2004 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2005 if (ap == NULL)
8e65ff28
AC
2006 internal_error (__FILE__, __LINE__,
2007 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
2008 do
2009 {
2010 append_name (&arches, &nr_arches, ap->printable_name);
2011 ap = ap->next;
2012 }
2013 while (ap != NULL);
2014 }
2015 append_name (&arches, &nr_arches, NULL);
2016 return arches;
2017 }
2018 else
2019 /* Just return all the architectures that BFD knows. Assume that
2020 the legacy architecture framework supports them. */
2021 return bfd_arch_list ();
2022}
2023
2024
104c1213 2025void
4b9b3959
AC
2026gdbarch_register (enum bfd_architecture bfd_architecture,
2027 gdbarch_init_ftype *init,
2028 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2029{
4b9b3959 2030 struct gdbarch_registration **curr;
104c1213 2031 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2032 /* Check that BFD recognizes this architecture */
104c1213
JM
2033 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2034 if (bfd_arch_info == NULL)
2035 {
8e65ff28
AC
2036 internal_error (__FILE__, __LINE__,
2037 "gdbarch: Attempt to register unknown architecture (%d)",
2038 bfd_architecture);
104c1213
JM
2039 }
2040 /* Check that we haven't seen this architecture before */
f44c642f 2041 for (curr = &gdbarch_registry;
104c1213
JM
2042 (*curr) != NULL;
2043 curr = &(*curr)->next)
2044 {
2045 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2046 internal_error (__FILE__, __LINE__,
2047 "gdbarch: Duplicate registraration of architecture (%s)",
2048 bfd_arch_info->printable_name);
104c1213
JM
2049 }
2050 /* log it */
2051 if (gdbarch_debug)
2052 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2053 bfd_arch_info->printable_name,
2054 (long) init);
2055 /* Append it */
4b9b3959 2056 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2057 (*curr)->bfd_architecture = bfd_architecture;
2058 (*curr)->init = init;
4b9b3959 2059 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2060 (*curr)->arches = NULL;
2061 (*curr)->next = NULL;
8e1a459b
C
2062 /* When non- multi-arch, install whatever target dump routine we've
2063 been provided - hopefully that routine has been written correctly
4b9b3959
AC
2064 and works regardless of multi-arch. */
2065 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2066 && startup_gdbarch.dump_tdep == NULL)
2067 startup_gdbarch.dump_tdep = dump_tdep;
2068}
2069
2070void
2071register_gdbarch_init (enum bfd_architecture bfd_architecture,
2072 gdbarch_init_ftype *init)
2073{
2074 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2075}
104c1213
JM
2076
2077
2078/* Look for an architecture using gdbarch_info. Base search on only
2079 BFD_ARCH_INFO and BYTE_ORDER. */
2080
2081struct gdbarch_list *
2082gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2083 const struct gdbarch_info *info)
2084{
2085 for (; arches != NULL; arches = arches->next)
2086 {
2087 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2088 continue;
2089 if (info->byte_order != arches->gdbarch->byte_order)
2090 continue;
2091 return arches;
2092 }
2093 return NULL;
2094}
2095
2096
2097/* Update the current architecture. Return ZERO if the update request
2098 failed. */
2099
2100int
16f33e29 2101gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2102{
2103 struct gdbarch *new_gdbarch;
40af4b0c 2104 struct gdbarch *old_gdbarch;
4b9b3959 2105 struct gdbarch_registration *rego;
104c1213 2106
b732d07d
AC
2107 /* Fill in missing parts of the INFO struct using a number of
2108 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2109
2110 /* \`\`(gdb) set architecture ...'' */
2111 if (info.bfd_arch_info == NULL
2112 && !TARGET_ARCHITECTURE_AUTO)
2113 info.bfd_arch_info = TARGET_ARCHITECTURE;
2114 if (info.bfd_arch_info == NULL
2115 && info.abfd != NULL
2116 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2117 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2118 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2119 if (info.bfd_arch_info == NULL)
b732d07d
AC
2120 info.bfd_arch_info = TARGET_ARCHITECTURE;
2121
2122 /* \`\`(gdb) set byte-order ...'' */
428721aa 2123 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2124 && !TARGET_BYTE_ORDER_AUTO)
2125 info.byte_order = TARGET_BYTE_ORDER;
2126 /* From the INFO struct. */
428721aa 2127 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2128 && info.abfd != NULL)
d7449b42 2129 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2130 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2131 : BFD_ENDIAN_UNKNOWN);
b732d07d 2132 /* From the current target. */
428721aa 2133 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2134 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2135
b732d07d
AC
2136 /* Must have found some sort of architecture. */
2137 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2138
2139 if (gdbarch_debug)
2140 {
2141 fprintf_unfiltered (gdb_stdlog,
b732d07d 2142 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2143 (info.bfd_arch_info != NULL
2144 ? info.bfd_arch_info->printable_name
2145 : "(null)"));
2146 fprintf_unfiltered (gdb_stdlog,
b732d07d 2147 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2148 info.byte_order,
d7449b42 2149 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2150 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213
JM
2151 : "default"));
2152 fprintf_unfiltered (gdb_stdlog,
b732d07d 2153 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2154 (long) info.abfd);
2155 fprintf_unfiltered (gdb_stdlog,
b732d07d 2156 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2157 (long) info.tdep_info);
2158 }
2159
b732d07d
AC
2160 /* Find the target that knows about this architecture. */
2161 for (rego = gdbarch_registry;
2162 rego != NULL;
2163 rego = rego->next)
2164 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2165 break;
2166 if (rego == NULL)
2167 {
2168 if (gdbarch_debug)
2169 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2170 return 0;
2171 }
2172
40af4b0c
AC
2173 /* Swap the data belonging to the old target out setting the
2174 installed data to zero. This stops the ->init() function trying
2175 to refer to the previous architecture's global data structures. */
2176 swapout_gdbarch_swap (current_gdbarch);
2177 clear_gdbarch_swap (current_gdbarch);
2178
2179 /* Save the previously selected architecture, setting the global to
2180 NULL. This stops ->init() trying to use the previous
2181 architecture's configuration. The previous architecture may not
2182 even be of the same architecture family. The most recent
2183 architecture of the same family is found at the head of the
2184 rego->arches list. */
2185 old_gdbarch = current_gdbarch;
2186 current_gdbarch = NULL;
2187
104c1213
JM
2188 /* Ask the target for a replacement architecture. */
2189 new_gdbarch = rego->init (info, rego->arches);
2190
40af4b0c
AC
2191 /* Did the target like it? No. Reject the change and revert to the
2192 old architecture. */
104c1213
JM
2193 if (new_gdbarch == NULL)
2194 {
2195 if (gdbarch_debug)
3d9a5942 2196 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
40af4b0c
AC
2197 swapin_gdbarch_swap (old_gdbarch);
2198 current_gdbarch = old_gdbarch;
104c1213
JM
2199 return 0;
2200 }
2201
40af4b0c
AC
2202 /* Did the architecture change? No. Oops, put the old architecture
2203 back. */
2204 if (old_gdbarch == new_gdbarch)
104c1213
JM
2205 {
2206 if (gdbarch_debug)
3d9a5942 2207 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2208 (long) new_gdbarch,
2209 new_gdbarch->bfd_arch_info->printable_name);
40af4b0c
AC
2210 swapin_gdbarch_swap (old_gdbarch);
2211 current_gdbarch = old_gdbarch;
104c1213
JM
2212 return 1;
2213 }
2214
0f79675b
AC
2215 /* Is this a pre-existing architecture? Yes. Move it to the front
2216 of the list of architectures (keeping the list sorted Most
2217 Recently Used) and then copy it in. */
2218 {
2219 struct gdbarch_list **list;
2220 for (list = &rego->arches;
2221 (*list) != NULL;
2222 list = &(*list)->next)
2223 {
2224 if ((*list)->gdbarch == new_gdbarch)
2225 {
2226 struct gdbarch_list *this;
2227 if (gdbarch_debug)
2228 fprintf_unfiltered (gdb_stdlog,
2229 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2230 (long) new_gdbarch,
2231 new_gdbarch->bfd_arch_info->printable_name);
2232 /* Unlink this. */
2233 this = (*list);
2234 (*list) = this->next;
2235 /* Insert in the front. */
2236 this->next = rego->arches;
2237 rego->arches = this;
2238 /* Copy the new architecture in. */
2239 current_gdbarch = new_gdbarch;
2240 swapin_gdbarch_swap (new_gdbarch);
2241 architecture_changed_event ();
2242 return 1;
2243 }
2244 }
2245 }
2246
2247 /* Prepend this new architecture to the architecture list (keep the
2248 list sorted Most Recently Used). */
2249 {
2250 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2251 this->next = rego->arches;
2252 this->gdbarch = new_gdbarch;
2253 rego->arches = this;
2254 }
104c1213 2255
76860b5f 2256 /* Switch to this new architecture marking it initialized. */
104c1213 2257 current_gdbarch = new_gdbarch;
76860b5f 2258 current_gdbarch->initialized_p = 1;
104c1213
JM
2259 if (gdbarch_debug)
2260 {
2261 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2262 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2263 (long) new_gdbarch,
2264 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2265 }
2266
4b9b3959
AC
2267 /* Check that the newly installed architecture is valid. Plug in
2268 any post init values. */
2269 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2270 verify_gdbarch (new_gdbarch);
2271
cf17c188
AC
2272 /* Initialize the per-architecture memory (swap) areas.
2273 CURRENT_GDBARCH must be update before these modules are
2274 called. */
2275 init_gdbarch_swap (new_gdbarch);
2276
76860b5f 2277 /* Initialize the per-architecture data. CURRENT_GDBARCH
cf17c188 2278 must be updated before these modules are called. */
67c2c32c
KS
2279 architecture_changed_event ();
2280
4b9b3959
AC
2281 if (gdbarch_debug)
2282 gdbarch_dump (current_gdbarch, gdb_stdlog);
2283
104c1213
JM
2284 return 1;
2285}
2286
2287
104c1213
JM
2288/* Disassembler */
2289
2290/* Pointer to the target-dependent disassembly function. */
2291int (*tm_print_insn) (bfd_vma, disassemble_info *);
2292disassemble_info tm_print_insn_info;
2293
2294
104c1213 2295extern void _initialize_gdbarch (void);
b4a20239 2296
104c1213 2297void
34620563 2298_initialize_gdbarch (void)
104c1213 2299{
59233f88
AC
2300 struct cmd_list_element *c;
2301
104c1213
JM
2302 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2303 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2304 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2305 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2306 tm_print_insn_info.print_address_func = dis_asm_print_address;
2307
59233f88 2308 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2309 class_maintenance,
2310 var_zinteger,
2311 (char *)&gdbarch_debug,
3d9a5942 2312 "Set architecture debugging.\\n\\
59233f88
AC
2313When non-zero, architecture debugging is enabled.", &setdebuglist),
2314 &showdebuglist);
2315 c = add_set_cmd ("archdebug",
2316 class_maintenance,
2317 var_zinteger,
2318 (char *)&gdbarch_debug,
3d9a5942 2319 "Set architecture debugging.\\n\\
59233f88
AC
2320When non-zero, architecture debugging is enabled.", &setlist);
2321
2322 deprecate_cmd (c, "set debug arch");
2323 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2324}
2325EOF
2326
2327# close things off
2328exec 1>&2
2329#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2330compare_new gdbarch.c
This page took 0.372725 seconds and 4 git commands to generate.