* dwarf2read.c (follow_die_ref): Add comment.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6# 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
97030eea
UW
469f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
97030eea 566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
552c04a7
TT
578# Given a vector of command-line arguments, return a newly allocated
579# string which, when passed to the create_inferior function, will be
580# parsed (on Unix systems, by the shell) to yield the same vector.
581# This function should call error() if the argument vector is not
582# representable for this target or if this target does not support
583# command-line arguments.
584# ARGC is the number of elements in the vector.
585# ARGV is an array of strings, one per argument.
97030eea
UW
586m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
589v:int:cannot_step_breakpoint:::0:0::0
590v:int:have_nonsteppable_watchpoint:::0:0::0
591F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 594# Is a register in a group
97030eea 595m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 596# Fetch the pointer to the ith function argument.
97030eea 597F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
598
599# Return the appropriate register set for a core file section with
600# name SECT_NAME and size SECT_SIZE.
97030eea 601M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 602
959b8724
PA
603# When creating core dumps, some systems encode the PID in addition
604# to the LWP id in core file register section names. In those cases, the
605# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
606# is set to true for such architectures; false if "XXX" represents an LWP
607# or thread id with no special encoding.
608v:int:core_reg_section_encodes_pid:::0:0::0
609
17ea7499
CES
610# Supported register notes in a core file.
611v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
612
de584861
PA
613# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
614# core file into buffer READBUF with length LEN.
97030eea 615M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 616
28439f5e
PA
617# How the core_stratum layer converts a PTID from a core file to a
618# string.
619M:char *:core_pid_to_str:ptid_t ptid:ptid
620
0d5de010
DJ
621# If the elements of C++ vtables are in-place function descriptors rather
622# than normal function pointers (which may point to code or a descriptor),
623# set this to one.
97030eea 624v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
625
626# Set if the least significant bit of the delta is used instead of the least
627# significant bit of the pfn for pointers to virtual member functions.
97030eea 628v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
629
630# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 631F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 632
237fc4c9
PA
633# The maximum length of an instruction on this architecture.
634V:ULONGEST:max_insn_length:::0:0
635
636# Copy the instruction at FROM to TO, and make any adjustments
637# necessary to single-step it at that address.
638#
639# REGS holds the state the thread's registers will have before
640# executing the copied instruction; the PC in REGS will refer to FROM,
641# not the copy at TO. The caller should update it to point at TO later.
642#
643# Return a pointer to data of the architecture's choice to be passed
644# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
645# the instruction's effects have been completely simulated, with the
646# resulting state written back to REGS.
647#
648# For a general explanation of displaced stepping and how GDB uses it,
649# see the comments in infrun.c.
650#
651# The TO area is only guaranteed to have space for
652# gdbarch_max_insn_length (arch) bytes, so this function must not
653# write more bytes than that to that area.
654#
655# If you do not provide this function, GDB assumes that the
656# architecture does not support displaced stepping.
657#
658# If your architecture doesn't need to adjust instructions before
659# single-stepping them, consider using simple_displaced_step_copy_insn
660# here.
661M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
662
663# Fix up the state resulting from successfully single-stepping a
664# displaced instruction, to give the result we would have gotten from
665# stepping the instruction in its original location.
666#
667# REGS is the register state resulting from single-stepping the
668# displaced instruction.
669#
670# CLOSURE is the result from the matching call to
671# gdbarch_displaced_step_copy_insn.
672#
673# If you provide gdbarch_displaced_step_copy_insn.but not this
674# function, then GDB assumes that no fixup is needed after
675# single-stepping the instruction.
676#
677# For a general explanation of displaced stepping and how GDB uses it,
678# see the comments in infrun.c.
679M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
680
681# Free a closure returned by gdbarch_displaced_step_copy_insn.
682#
683# If you provide gdbarch_displaced_step_copy_insn, you must provide
684# this function as well.
685#
686# If your architecture uses closures that don't need to be freed, then
687# you can use simple_displaced_step_free_closure here.
688#
689# For a general explanation of displaced stepping and how GDB uses it,
690# see the comments in infrun.c.
691m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
692
693# Return the address of an appropriate place to put displaced
694# instructions while we step over them. There need only be one such
695# place, since we're only stepping one thread over a breakpoint at a
696# time.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
701
1c772458 702# Refresh overlay mapped state for section OSECT.
97030eea 703F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 704
97030eea 705M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
706
707# Handle special encoding of static variables in stabs debug info.
97030eea 708F:char *:static_transform_name:char *name:name
203c3895 709# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 710v:int:sofun_address_maybe_missing:::0:0::0
1cded358 711
0508c3ec
HZ
712# Parse the instruction at ADDR storing in the record execution log
713# the registers REGCACHE and memory ranges that will be affected when
714# the instruction executes, along with their current values.
715# Return -1 if something goes wrong, 0 otherwise.
716M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
717
1cded358
AR
718# Signal translation: translate inferior's signal (host's) number into
719# GDB's representation.
720m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
721# Signal translation: translate GDB's signal number into inferior's host
722# signal number.
723m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 724
4aa995e1
PA
725# Extra signal info inspection.
726#
727# Return a type suitable to inspect extra signal information.
728M:struct type *:get_siginfo_type:void:
729
60c5725c
DJ
730# Record architecture-specific information from the symbol table.
731M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf
PA
732
733# True if the list of shared libraries is one and only for all
734# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
735# This usually means that all processes, although may or may not share
736# an address space, will see the same set of symbols at the same
737# addresses.
50c71eaf 738v:int:has_global_solist:::0:0::0
2567c7d9
PA
739
740# On some targets, even though each inferior has its own private
741# address space, the debug interface takes care of making breakpoints
742# visible to all address spaces automatically. For such cases,
743# this property should be set to true.
744v:int:has_global_breakpoints:::0:0::0
104c1213 745EOF
104c1213
JM
746}
747
0b8f9e4d
AC
748#
749# The .log file
750#
751exec > new-gdbarch.log
34620563 752function_list | while do_read
0b8f9e4d
AC
753do
754 cat <<EOF
2f9b146e 755${class} ${returntype} ${function} ($formal)
104c1213 756EOF
3d9a5942
AC
757 for r in ${read}
758 do
759 eval echo \"\ \ \ \ ${r}=\${${r}}\"
760 done
f0d4cc9e 761 if class_is_predicate_p && fallback_default_p
0b8f9e4d 762 then
66d659b1 763 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
764 kill $$
765 exit 1
766 fi
72e74a21 767 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
768 then
769 echo "Error: postdefault is useless when invalid_p=0" 1>&2
770 kill $$
771 exit 1
772 fi
a72293e2
AC
773 if class_is_multiarch_p
774 then
775 if class_is_predicate_p ; then :
776 elif test "x${predefault}" = "x"
777 then
2f9b146e 778 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
779 kill $$
780 exit 1
781 fi
782 fi
3d9a5942 783 echo ""
0b8f9e4d
AC
784done
785
786exec 1>&2
787compare_new gdbarch.log
788
104c1213
JM
789
790copyright ()
791{
792cat <<EOF
59233f88
AC
793/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
794
104c1213 795/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 796
50efebf8 797 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 798 Free Software Foundation, Inc.
104c1213
JM
799
800 This file is part of GDB.
801
802 This program is free software; you can redistribute it and/or modify
803 it under the terms of the GNU General Public License as published by
50efebf8 804 the Free Software Foundation; either version 3 of the License, or
104c1213 805 (at your option) any later version.
50efebf8 806
104c1213
JM
807 This program is distributed in the hope that it will be useful,
808 but WITHOUT ANY WARRANTY; without even the implied warranty of
809 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
810 GNU General Public License for more details.
50efebf8 811
104c1213 812 You should have received a copy of the GNU General Public License
50efebf8 813 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 814
104c1213
JM
815/* This file was created with the aid of \`\`gdbarch.sh''.
816
52204a0b 817 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
818 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
819 against the existing \`\`gdbarch.[hc]''. Any differences found
820 being reported.
821
822 If editing this file, please also run gdbarch.sh and merge any
52204a0b 823 changes into that script. Conversely, when making sweeping changes
104c1213
JM
824 to this file, modifying gdbarch.sh and using its output may prove
825 easier. */
826
827EOF
828}
829
830#
831# The .h file
832#
833
834exec > new-gdbarch.h
835copyright
836cat <<EOF
837#ifndef GDBARCH_H
838#define GDBARCH_H
839
da3331ec
AC
840struct floatformat;
841struct ui_file;
104c1213
JM
842struct frame_info;
843struct value;
b6af0555 844struct objfile;
1c772458 845struct obj_section;
a2cf933a 846struct minimal_symbol;
049ee0e4 847struct regcache;
b59ff9d5 848struct reggroup;
6ce6d90f 849struct regset;
a89aa300 850struct disassemble_info;
e2d0e7eb 851struct target_ops;
030f20e1 852struct obstack;
8181d85f 853struct bp_target_info;
424163ea 854struct target_desc;
237fc4c9 855struct displaced_step_closure;
17ea7499 856struct core_regset_section;
104c1213 857
104c1213 858extern struct gdbarch *current_gdbarch;
9e2ace22
JB
859
860/* The architecture associated with the connection to the target.
861
862 The architecture vector provides some information that is really
863 a property of the target: The layout of certain packets, for instance;
864 or the solib_ops vector. Etc. To differentiate architecture accesses
865 to per-target properties from per-thread/per-frame/per-objfile properties,
866 accesses to per-target properties should be made through target_gdbarch.
867
868 Eventually, when support for multiple targets is implemented in
869 GDB, this global should be made target-specific. */
1cf3db46 870extern struct gdbarch *target_gdbarch;
104c1213
JM
871EOF
872
873# function typedef's
3d9a5942
AC
874printf "\n"
875printf "\n"
876printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 877function_list | while do_read
104c1213 878do
2ada493a
AC
879 if class_is_info_p
880 then
3d9a5942
AC
881 printf "\n"
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
883 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 884 fi
104c1213
JM
885done
886
887# function typedef's
3d9a5942
AC
888printf "\n"
889printf "\n"
890printf "/* The following are initialized by the target dependent code. */\n"
34620563 891function_list | while do_read
104c1213 892do
72e74a21 893 if [ -n "${comment}" ]
34620563
AC
894 then
895 echo "${comment}" | sed \
896 -e '2 s,#,/*,' \
897 -e '3,$ s,#, ,' \
898 -e '$ s,$, */,'
899 fi
412d5987
AC
900
901 if class_is_predicate_p
2ada493a 902 then
412d5987
AC
903 printf "\n"
904 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 905 fi
2ada493a
AC
906 if class_is_variable_p
907 then
3d9a5942
AC
908 printf "\n"
909 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
910 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
911 fi
912 if class_is_function_p
913 then
3d9a5942 914 printf "\n"
72e74a21 915 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
916 then
917 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
918 elif class_is_multiarch_p
919 then
920 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
921 else
922 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
923 fi
72e74a21 924 if [ "x${formal}" = "xvoid" ]
104c1213 925 then
3d9a5942 926 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 927 else
3d9a5942 928 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 929 fi
3d9a5942 930 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 931 fi
104c1213
JM
932done
933
934# close it off
935cat <<EOF
936
937extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
938
939
940/* Mechanism for co-ordinating the selection of a specific
941 architecture.
942
943 GDB targets (*-tdep.c) can register an interest in a specific
944 architecture. Other GDB components can register a need to maintain
945 per-architecture data.
946
947 The mechanisms below ensures that there is only a loose connection
948 between the set-architecture command and the various GDB
0fa6923a 949 components. Each component can independently register their need
104c1213
JM
950 to maintain architecture specific data with gdbarch.
951
952 Pragmatics:
953
954 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
955 didn't scale.
956
957 The more traditional mega-struct containing architecture specific
958 data for all the various GDB components was also considered. Since
0fa6923a 959 GDB is built from a variable number of (fairly independent)
104c1213
JM
960 components it was determined that the global aproach was not
961 applicable. */
962
963
964/* Register a new architectural family with GDB.
965
966 Register support for the specified ARCHITECTURE with GDB. When
967 gdbarch determines that the specified architecture has been
968 selected, the corresponding INIT function is called.
969
970 --
971
972 The INIT function takes two parameters: INFO which contains the
973 information available to gdbarch about the (possibly new)
974 architecture; ARCHES which is a list of the previously created
975 \`\`struct gdbarch'' for this architecture.
976
0f79675b 977 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 978 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
979
980 The ARCHES parameter is a linked list (sorted most recently used)
981 of all the previously created architures for this architecture
982 family. The (possibly NULL) ARCHES->gdbarch can used to access
983 values from the previously selected architecture for this
984 architecture family. The global \`\`current_gdbarch'' shall not be
985 used.
104c1213
JM
986
987 The INIT function shall return any of: NULL - indicating that it
ec3d358c 988 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
989 gdbarch'' from the ARCHES list - indicating that the new
990 architecture is just a synonym for an earlier architecture (see
991 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
992 - that describes the selected architecture (see gdbarch_alloc()).
993
994 The DUMP_TDEP function shall print out all target specific values.
995 Care should be taken to ensure that the function works in both the
996 multi-arch and non- multi-arch cases. */
104c1213
JM
997
998struct gdbarch_list
999{
1000 struct gdbarch *gdbarch;
1001 struct gdbarch_list *next;
1002};
1003
1004struct gdbarch_info
1005{
104c1213
JM
1006 /* Use default: NULL (ZERO). */
1007 const struct bfd_arch_info *bfd_arch_info;
1008
428721aa 1009 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1010 int byte_order;
1011
9d4fde75
SS
1012 int byte_order_for_code;
1013
104c1213
JM
1014 /* Use default: NULL (ZERO). */
1015 bfd *abfd;
1016
1017 /* Use default: NULL (ZERO). */
1018 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1019
1020 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1021 enum gdb_osabi osabi;
424163ea
DJ
1022
1023 /* Use default: NULL (ZERO). */
1024 const struct target_desc *target_desc;
104c1213
JM
1025};
1026
1027typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1028typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1029
4b9b3959 1030/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1031extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1032
4b9b3959
AC
1033extern void gdbarch_register (enum bfd_architecture architecture,
1034 gdbarch_init_ftype *,
1035 gdbarch_dump_tdep_ftype *);
1036
104c1213 1037
b4a20239
AC
1038/* Return a freshly allocated, NULL terminated, array of the valid
1039 architecture names. Since architectures are registered during the
1040 _initialize phase this function only returns useful information
1041 once initialization has been completed. */
1042
1043extern const char **gdbarch_printable_names (void);
1044
1045
104c1213
JM
1046/* Helper function. Search the list of ARCHES for a GDBARCH that
1047 matches the information provided by INFO. */
1048
424163ea 1049extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1050
1051
1052/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1053 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1054 parameters. set_gdbarch_*() functions are called to complete the
1055 initialization of the object. */
1056
1057extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1058
1059
4b9b3959
AC
1060/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1061 It is assumed that the caller freeds the \`\`struct
1062 gdbarch_tdep''. */
1063
058f20d5
JB
1064extern void gdbarch_free (struct gdbarch *);
1065
1066
aebd7893
AC
1067/* Helper function. Allocate memory from the \`\`struct gdbarch''
1068 obstack. The memory is freed when the corresponding architecture
1069 is also freed. */
1070
1071extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1072#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1073#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1074
1075
b732d07d 1076/* Helper function. Force an update of the current architecture.
104c1213 1077
b732d07d
AC
1078 The actual architecture selected is determined by INFO, \`\`(gdb) set
1079 architecture'' et.al., the existing architecture and BFD's default
1080 architecture. INFO should be initialized to zero and then selected
1081 fields should be updated.
104c1213 1082
16f33e29
AC
1083 Returns non-zero if the update succeeds */
1084
1085extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1086
1087
ebdba546
AC
1088/* Helper function. Find an architecture matching info.
1089
1090 INFO should be initialized using gdbarch_info_init, relevant fields
1091 set, and then finished using gdbarch_info_fill.
1092
1093 Returns the corresponding architecture, or NULL if no matching
1094 architecture was found. "current_gdbarch" is not updated. */
1095
1096extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1097
1098
1099/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1100
1101 FIXME: kettenis/20031124: Of the functions that follow, only
1102 gdbarch_from_bfd is supposed to survive. The others will
1103 dissappear since in the future GDB will (hopefully) be truly
1104 multi-arch. However, for now we're still stuck with the concept of
1105 a single active architecture. */
1106
1107extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1108
104c1213
JM
1109
1110/* Register per-architecture data-pointer.
1111
1112 Reserve space for a per-architecture data-pointer. An identifier
1113 for the reserved data-pointer is returned. That identifer should
95160752 1114 be saved in a local static variable.
104c1213 1115
fcc1c85c
AC
1116 Memory for the per-architecture data shall be allocated using
1117 gdbarch_obstack_zalloc. That memory will be deleted when the
1118 corresponding architecture object is deleted.
104c1213 1119
95160752
AC
1120 When a previously created architecture is re-selected, the
1121 per-architecture data-pointer for that previous architecture is
76860b5f 1122 restored. INIT() is not re-called.
104c1213
JM
1123
1124 Multiple registrarants for any architecture are allowed (and
1125 strongly encouraged). */
1126
95160752 1127struct gdbarch_data;
104c1213 1128
030f20e1
AC
1129typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1130extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1131typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1132extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1133extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1134 struct gdbarch_data *data,
1135 void *pointer);
104c1213 1136
451fbdda 1137extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1138
1139
0fa6923a 1140/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1141 byte-order, ...) using information found in the BFD */
1142
1143extern void set_gdbarch_from_file (bfd *);
1144
1145
e514a9d6
JM
1146/* Initialize the current architecture to the "first" one we find on
1147 our list. */
1148
1149extern void initialize_current_architecture (void);
1150
104c1213
JM
1151/* gdbarch trace variable */
1152extern int gdbarch_debug;
1153
4b9b3959 1154extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1155
1156#endif
1157EOF
1158exec 1>&2
1159#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1160compare_new gdbarch.h
104c1213
JM
1161
1162
1163#
1164# C file
1165#
1166
1167exec > new-gdbarch.c
1168copyright
1169cat <<EOF
1170
1171#include "defs.h"
7355ddba 1172#include "arch-utils.h"
104c1213 1173
104c1213 1174#include "gdbcmd.h"
faaf634c 1175#include "inferior.h"
104c1213
JM
1176#include "symcat.h"
1177
f0d4cc9e 1178#include "floatformat.h"
104c1213 1179
95160752 1180#include "gdb_assert.h"
b66d6d2e 1181#include "gdb_string.h"
b59ff9d5 1182#include "reggroups.h"
4be87837 1183#include "osabi.h"
aebd7893 1184#include "gdb_obstack.h"
383f836e 1185#include "observer.h"
a3ecef73 1186#include "regcache.h"
95160752 1187
104c1213
JM
1188/* Static function declarations */
1189
b3cc3077 1190static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1191
104c1213
JM
1192/* Non-zero if we want to trace architecture code. */
1193
1194#ifndef GDBARCH_DEBUG
1195#define GDBARCH_DEBUG 0
1196#endif
1197int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1198static void
1199show_gdbarch_debug (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c, const char *value)
1201{
1202 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1203}
104c1213 1204
456fcf94 1205static const char *
8da61cc4 1206pformat (const struct floatformat **format)
456fcf94
AC
1207{
1208 if (format == NULL)
1209 return "(null)";
1210 else
8da61cc4
DJ
1211 /* Just print out one of them - this is only for diagnostics. */
1212 return format[0]->name;
456fcf94
AC
1213}
1214
104c1213
JM
1215EOF
1216
1217# gdbarch open the gdbarch object
3d9a5942
AC
1218printf "\n"
1219printf "/* Maintain the struct gdbarch object */\n"
1220printf "\n"
1221printf "struct gdbarch\n"
1222printf "{\n"
76860b5f
AC
1223printf " /* Has this architecture been fully initialized? */\n"
1224printf " int initialized_p;\n"
aebd7893
AC
1225printf "\n"
1226printf " /* An obstack bound to the lifetime of the architecture. */\n"
1227printf " struct obstack *obstack;\n"
1228printf "\n"
3d9a5942 1229printf " /* basic architectural information */\n"
34620563 1230function_list | while do_read
104c1213 1231do
2ada493a
AC
1232 if class_is_info_p
1233 then
3d9a5942 1234 printf " ${returntype} ${function};\n"
2ada493a 1235 fi
104c1213 1236done
3d9a5942
AC
1237printf "\n"
1238printf " /* target specific vector. */\n"
1239printf " struct gdbarch_tdep *tdep;\n"
1240printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1241printf "\n"
1242printf " /* per-architecture data-pointers */\n"
95160752 1243printf " unsigned nr_data;\n"
3d9a5942
AC
1244printf " void **data;\n"
1245printf "\n"
1246printf " /* per-architecture swap-regions */\n"
1247printf " struct gdbarch_swap *swap;\n"
1248printf "\n"
104c1213
JM
1249cat <<EOF
1250 /* Multi-arch values.
1251
1252 When extending this structure you must:
1253
1254 Add the field below.
1255
1256 Declare set/get functions and define the corresponding
1257 macro in gdbarch.h.
1258
1259 gdbarch_alloc(): If zero/NULL is not a suitable default,
1260 initialize the new field.
1261
1262 verify_gdbarch(): Confirm that the target updated the field
1263 correctly.
1264
7e73cedf 1265 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1266 field is dumped out
1267
c0e8c252 1268 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1269 variable (base values on the host's c-type system).
1270
1271 get_gdbarch(): Implement the set/get functions (probably using
1272 the macro's as shortcuts).
1273
1274 */
1275
1276EOF
34620563 1277function_list | while do_read
104c1213 1278do
2ada493a
AC
1279 if class_is_variable_p
1280 then
3d9a5942 1281 printf " ${returntype} ${function};\n"
2ada493a
AC
1282 elif class_is_function_p
1283 then
2f9b146e 1284 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1285 fi
104c1213 1286done
3d9a5942 1287printf "};\n"
104c1213
JM
1288
1289# A pre-initialized vector
3d9a5942
AC
1290printf "\n"
1291printf "\n"
104c1213
JM
1292cat <<EOF
1293/* The default architecture uses host values (for want of a better
1294 choice). */
1295EOF
3d9a5942
AC
1296printf "\n"
1297printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1298printf "\n"
1299printf "struct gdbarch startup_gdbarch =\n"
1300printf "{\n"
76860b5f 1301printf " 1, /* Always initialized. */\n"
aebd7893 1302printf " NULL, /* The obstack. */\n"
3d9a5942 1303printf " /* basic architecture information */\n"
4b9b3959 1304function_list | while do_read
104c1213 1305do
2ada493a
AC
1306 if class_is_info_p
1307 then
ec5cbaec 1308 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1309 fi
104c1213
JM
1310done
1311cat <<EOF
4b9b3959
AC
1312 /* target specific vector and its dump routine */
1313 NULL, NULL,
104c1213
JM
1314 /*per-architecture data-pointers and swap regions */
1315 0, NULL, NULL,
1316 /* Multi-arch values */
1317EOF
34620563 1318function_list | while do_read
104c1213 1319do
2ada493a
AC
1320 if class_is_function_p || class_is_variable_p
1321 then
ec5cbaec 1322 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1323 fi
104c1213
JM
1324done
1325cat <<EOF
c0e8c252 1326 /* startup_gdbarch() */
104c1213 1327};
4b9b3959 1328
c0e8c252 1329struct gdbarch *current_gdbarch = &startup_gdbarch;
1cf3db46 1330struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1331EOF
1332
1333# Create a new gdbarch struct
104c1213 1334cat <<EOF
7de2341d 1335
66b43ecb 1336/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1337 \`\`struct gdbarch_info''. */
1338EOF
3d9a5942 1339printf "\n"
104c1213
JM
1340cat <<EOF
1341struct gdbarch *
1342gdbarch_alloc (const struct gdbarch_info *info,
1343 struct gdbarch_tdep *tdep)
1344{
be7811ad 1345 struct gdbarch *gdbarch;
aebd7893
AC
1346
1347 /* Create an obstack for allocating all the per-architecture memory,
1348 then use that to allocate the architecture vector. */
1349 struct obstack *obstack = XMALLOC (struct obstack);
1350 obstack_init (obstack);
be7811ad
MD
1351 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1352 memset (gdbarch, 0, sizeof (*gdbarch));
1353 gdbarch->obstack = obstack;
85de9627 1354
be7811ad 1355 alloc_gdbarch_data (gdbarch);
85de9627 1356
be7811ad 1357 gdbarch->tdep = tdep;
104c1213 1358EOF
3d9a5942 1359printf "\n"
34620563 1360function_list | while do_read
104c1213 1361do
2ada493a
AC
1362 if class_is_info_p
1363 then
be7811ad 1364 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1365 fi
104c1213 1366done
3d9a5942
AC
1367printf "\n"
1368printf " /* Force the explicit initialization of these. */\n"
34620563 1369function_list | while do_read
104c1213 1370do
2ada493a
AC
1371 if class_is_function_p || class_is_variable_p
1372 then
72e74a21 1373 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1374 then
be7811ad 1375 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1376 fi
2ada493a 1377 fi
104c1213
JM
1378done
1379cat <<EOF
1380 /* gdbarch_alloc() */
1381
be7811ad 1382 return gdbarch;
104c1213
JM
1383}
1384EOF
1385
058f20d5 1386# Free a gdbarch struct.
3d9a5942
AC
1387printf "\n"
1388printf "\n"
058f20d5 1389cat <<EOF
aebd7893
AC
1390/* Allocate extra space using the per-architecture obstack. */
1391
1392void *
1393gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1394{
1395 void *data = obstack_alloc (arch->obstack, size);
1396 memset (data, 0, size);
1397 return data;
1398}
1399
1400
058f20d5
JB
1401/* Free a gdbarch struct. This should never happen in normal
1402 operation --- once you've created a gdbarch, you keep it around.
1403 However, if an architecture's init function encounters an error
1404 building the structure, it may need to clean up a partially
1405 constructed gdbarch. */
4b9b3959 1406
058f20d5
JB
1407void
1408gdbarch_free (struct gdbarch *arch)
1409{
aebd7893 1410 struct obstack *obstack;
95160752 1411 gdb_assert (arch != NULL);
aebd7893
AC
1412 gdb_assert (!arch->initialized_p);
1413 obstack = arch->obstack;
1414 obstack_free (obstack, 0); /* Includes the ARCH. */
1415 xfree (obstack);
058f20d5
JB
1416}
1417EOF
1418
104c1213 1419# verify a new architecture
104c1213 1420cat <<EOF
db446970
AC
1421
1422
1423/* Ensure that all values in a GDBARCH are reasonable. */
1424
104c1213 1425static void
be7811ad 1426verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1427{
f16a1923
AC
1428 struct ui_file *log;
1429 struct cleanup *cleanups;
1430 long dummy;
1431 char *buf;
f16a1923
AC
1432 log = mem_fileopen ();
1433 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1434 /* fundamental */
be7811ad 1435 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1436 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1437 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1438 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1439 /* Check those that need to be defined for the given multi-arch level. */
1440EOF
34620563 1441function_list | while do_read
104c1213 1442do
2ada493a
AC
1443 if class_is_function_p || class_is_variable_p
1444 then
72e74a21 1445 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1446 then
3d9a5942 1447 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1448 elif class_is_predicate_p
1449 then
3d9a5942 1450 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1451 # FIXME: See do_read for potential simplification
72e74a21 1452 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1453 then
3d9a5942 1454 printf " if (${invalid_p})\n"
be7811ad 1455 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1456 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1457 then
be7811ad
MD
1458 printf " if (gdbarch->${function} == ${predefault})\n"
1459 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1460 elif [ -n "${postdefault}" ]
f0d4cc9e 1461 then
be7811ad
MD
1462 printf " if (gdbarch->${function} == 0)\n"
1463 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1464 elif [ -n "${invalid_p}" ]
104c1213 1465 then
4d60522e 1466 printf " if (${invalid_p})\n"
f16a1923 1467 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1468 elif [ -n "${predefault}" ]
104c1213 1469 then
be7811ad 1470 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1471 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1472 fi
2ada493a 1473 fi
104c1213
JM
1474done
1475cat <<EOF
f16a1923
AC
1476 buf = ui_file_xstrdup (log, &dummy);
1477 make_cleanup (xfree, buf);
1478 if (strlen (buf) > 0)
1479 internal_error (__FILE__, __LINE__,
85c07804 1480 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1481 buf);
1482 do_cleanups (cleanups);
104c1213
JM
1483}
1484EOF
1485
1486# dump the structure
3d9a5942
AC
1487printf "\n"
1488printf "\n"
104c1213 1489cat <<EOF
4b9b3959
AC
1490/* Print out the details of the current architecture. */
1491
104c1213 1492void
be7811ad 1493gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1494{
b78960be 1495 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1496#if defined (GDB_NM_FILE)
1497 gdb_nm_file = GDB_NM_FILE;
1498#endif
1499 fprintf_unfiltered (file,
1500 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1501 gdb_nm_file);
104c1213 1502EOF
97030eea 1503function_list | sort -t: -k 3 | while do_read
104c1213 1504do
1e9f55d0
AC
1505 # First the predicate
1506 if class_is_predicate_p
1507 then
7996bcec 1508 printf " fprintf_unfiltered (file,\n"
48f7351b 1509 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1510 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1511 fi
48f7351b 1512 # Print the corresponding value.
283354d8 1513 if class_is_function_p
4b9b3959 1514 then
7996bcec 1515 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1516 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1517 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1518 else
48f7351b 1519 # It is a variable
2f9b146e
AC
1520 case "${print}:${returntype}" in
1521 :CORE_ADDR )
0b1553bc
UW
1522 fmt="%s"
1523 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1524 ;;
2f9b146e 1525 :* )
48f7351b 1526 fmt="%s"
623d3eb1 1527 print="plongest (gdbarch->${function})"
48f7351b
AC
1528 ;;
1529 * )
2f9b146e 1530 fmt="%s"
48f7351b
AC
1531 ;;
1532 esac
3d9a5942 1533 printf " fprintf_unfiltered (file,\n"
48f7351b 1534 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1535 printf " ${print});\n"
2ada493a 1536 fi
104c1213 1537done
381323f4 1538cat <<EOF
be7811ad
MD
1539 if (gdbarch->dump_tdep != NULL)
1540 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1541}
1542EOF
104c1213
JM
1543
1544
1545# GET/SET
3d9a5942 1546printf "\n"
104c1213
JM
1547cat <<EOF
1548struct gdbarch_tdep *
1549gdbarch_tdep (struct gdbarch *gdbarch)
1550{
1551 if (gdbarch_debug >= 2)
3d9a5942 1552 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1553 return gdbarch->tdep;
1554}
1555EOF
3d9a5942 1556printf "\n"
34620563 1557function_list | while do_read
104c1213 1558do
2ada493a
AC
1559 if class_is_predicate_p
1560 then
3d9a5942
AC
1561 printf "\n"
1562 printf "int\n"
1563 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1564 printf "{\n"
8de9bdc4 1565 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1566 printf " return ${predicate};\n"
3d9a5942 1567 printf "}\n"
2ada493a
AC
1568 fi
1569 if class_is_function_p
1570 then
3d9a5942
AC
1571 printf "\n"
1572 printf "${returntype}\n"
72e74a21 1573 if [ "x${formal}" = "xvoid" ]
104c1213 1574 then
3d9a5942 1575 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1576 else
3d9a5942 1577 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1578 fi
3d9a5942 1579 printf "{\n"
8de9bdc4 1580 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1581 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1582 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1583 then
1584 # Allow a call to a function with a predicate.
956ac328 1585 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1586 fi
3d9a5942
AC
1587 printf " if (gdbarch_debug >= 2)\n"
1588 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1589 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1590 then
1591 if class_is_multiarch_p
1592 then
1593 params="gdbarch"
1594 else
1595 params=""
1596 fi
1597 else
1598 if class_is_multiarch_p
1599 then
1600 params="gdbarch, ${actual}"
1601 else
1602 params="${actual}"
1603 fi
1604 fi
72e74a21 1605 if [ "x${returntype}" = "xvoid" ]
104c1213 1606 then
4a5c6a1d 1607 printf " gdbarch->${function} (${params});\n"
104c1213 1608 else
4a5c6a1d 1609 printf " return gdbarch->${function} (${params});\n"
104c1213 1610 fi
3d9a5942
AC
1611 printf "}\n"
1612 printf "\n"
1613 printf "void\n"
1614 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1615 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1616 printf "{\n"
1617 printf " gdbarch->${function} = ${function};\n"
1618 printf "}\n"
2ada493a
AC
1619 elif class_is_variable_p
1620 then
3d9a5942
AC
1621 printf "\n"
1622 printf "${returntype}\n"
1623 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1624 printf "{\n"
8de9bdc4 1625 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1626 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1627 then
3d9a5942 1628 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1629 elif [ -n "${invalid_p}" ]
104c1213 1630 then
956ac328
AC
1631 printf " /* Check variable is valid. */\n"
1632 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1633 elif [ -n "${predefault}" ]
104c1213 1634 then
956ac328
AC
1635 printf " /* Check variable changed from pre-default. */\n"
1636 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1637 fi
3d9a5942
AC
1638 printf " if (gdbarch_debug >= 2)\n"
1639 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1640 printf " return gdbarch->${function};\n"
1641 printf "}\n"
1642 printf "\n"
1643 printf "void\n"
1644 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1645 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1646 printf "{\n"
1647 printf " gdbarch->${function} = ${function};\n"
1648 printf "}\n"
2ada493a
AC
1649 elif class_is_info_p
1650 then
3d9a5942
AC
1651 printf "\n"
1652 printf "${returntype}\n"
1653 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1654 printf "{\n"
8de9bdc4 1655 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1656 printf " if (gdbarch_debug >= 2)\n"
1657 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1658 printf " return gdbarch->${function};\n"
1659 printf "}\n"
2ada493a 1660 fi
104c1213
JM
1661done
1662
1663# All the trailing guff
1664cat <<EOF
1665
1666
f44c642f 1667/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1668 modules. */
1669
1670struct gdbarch_data
1671{
95160752 1672 unsigned index;
76860b5f 1673 int init_p;
030f20e1
AC
1674 gdbarch_data_pre_init_ftype *pre_init;
1675 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1676};
1677
1678struct gdbarch_data_registration
1679{
104c1213
JM
1680 struct gdbarch_data *data;
1681 struct gdbarch_data_registration *next;
1682};
1683
f44c642f 1684struct gdbarch_data_registry
104c1213 1685{
95160752 1686 unsigned nr;
104c1213
JM
1687 struct gdbarch_data_registration *registrations;
1688};
1689
f44c642f 1690struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1691{
1692 0, NULL,
1693};
1694
030f20e1
AC
1695static struct gdbarch_data *
1696gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1697 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1698{
1699 struct gdbarch_data_registration **curr;
76860b5f 1700 /* Append the new registraration. */
f44c642f 1701 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1702 (*curr) != NULL;
1703 curr = &(*curr)->next);
1704 (*curr) = XMALLOC (struct gdbarch_data_registration);
1705 (*curr)->next = NULL;
104c1213 1706 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1707 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1708 (*curr)->data->pre_init = pre_init;
1709 (*curr)->data->post_init = post_init;
76860b5f 1710 (*curr)->data->init_p = 1;
104c1213
JM
1711 return (*curr)->data;
1712}
1713
030f20e1
AC
1714struct gdbarch_data *
1715gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1716{
1717 return gdbarch_data_register (pre_init, NULL);
1718}
1719
1720struct gdbarch_data *
1721gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1722{
1723 return gdbarch_data_register (NULL, post_init);
1724}
104c1213 1725
b3cc3077 1726/* Create/delete the gdbarch data vector. */
95160752
AC
1727
1728static void
b3cc3077 1729alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1730{
b3cc3077
JB
1731 gdb_assert (gdbarch->data == NULL);
1732 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1733 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1734}
3c875b6f 1735
76860b5f 1736/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1737 data-pointer. */
1738
95160752 1739void
030f20e1
AC
1740deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1741 struct gdbarch_data *data,
1742 void *pointer)
95160752
AC
1743{
1744 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1745 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1746 gdb_assert (data->pre_init == NULL);
95160752
AC
1747 gdbarch->data[data->index] = pointer;
1748}
1749
104c1213
JM
1750/* Return the current value of the specified per-architecture
1751 data-pointer. */
1752
1753void *
451fbdda 1754gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1755{
451fbdda 1756 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1757 if (gdbarch->data[data->index] == NULL)
76860b5f 1758 {
030f20e1
AC
1759 /* The data-pointer isn't initialized, call init() to get a
1760 value. */
1761 if (data->pre_init != NULL)
1762 /* Mid architecture creation: pass just the obstack, and not
1763 the entire architecture, as that way it isn't possible for
1764 pre-init code to refer to undefined architecture
1765 fields. */
1766 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1767 else if (gdbarch->initialized_p
1768 && data->post_init != NULL)
1769 /* Post architecture creation: pass the entire architecture
1770 (as all fields are valid), but be careful to also detect
1771 recursive references. */
1772 {
1773 gdb_assert (data->init_p);
1774 data->init_p = 0;
1775 gdbarch->data[data->index] = data->post_init (gdbarch);
1776 data->init_p = 1;
1777 }
1778 else
1779 /* The architecture initialization hasn't completed - punt -
1780 hope that the caller knows what they are doing. Once
1781 deprecated_set_gdbarch_data has been initialized, this can be
1782 changed to an internal error. */
1783 return NULL;
76860b5f
AC
1784 gdb_assert (gdbarch->data[data->index] != NULL);
1785 }
451fbdda 1786 return gdbarch->data[data->index];
104c1213
JM
1787}
1788
1789
f44c642f 1790/* Keep a registry of the architectures known by GDB. */
104c1213 1791
4b9b3959 1792struct gdbarch_registration
104c1213
JM
1793{
1794 enum bfd_architecture bfd_architecture;
1795 gdbarch_init_ftype *init;
4b9b3959 1796 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1797 struct gdbarch_list *arches;
4b9b3959 1798 struct gdbarch_registration *next;
104c1213
JM
1799};
1800
f44c642f 1801static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1802
b4a20239
AC
1803static void
1804append_name (const char ***buf, int *nr, const char *name)
1805{
1806 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1807 (*buf)[*nr] = name;
1808 *nr += 1;
1809}
1810
1811const char **
1812gdbarch_printable_names (void)
1813{
7996bcec
AC
1814 /* Accumulate a list of names based on the registed list of
1815 architectures. */
1816 enum bfd_architecture a;
1817 int nr_arches = 0;
1818 const char **arches = NULL;
1819 struct gdbarch_registration *rego;
1820 for (rego = gdbarch_registry;
1821 rego != NULL;
1822 rego = rego->next)
b4a20239 1823 {
7996bcec
AC
1824 const struct bfd_arch_info *ap;
1825 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1826 if (ap == NULL)
1827 internal_error (__FILE__, __LINE__,
85c07804 1828 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1829 do
1830 {
1831 append_name (&arches, &nr_arches, ap->printable_name);
1832 ap = ap->next;
1833 }
1834 while (ap != NULL);
b4a20239 1835 }
7996bcec
AC
1836 append_name (&arches, &nr_arches, NULL);
1837 return arches;
b4a20239
AC
1838}
1839
1840
104c1213 1841void
4b9b3959
AC
1842gdbarch_register (enum bfd_architecture bfd_architecture,
1843 gdbarch_init_ftype *init,
1844 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1845{
4b9b3959 1846 struct gdbarch_registration **curr;
104c1213 1847 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1848 /* Check that BFD recognizes this architecture */
104c1213
JM
1849 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1850 if (bfd_arch_info == NULL)
1851 {
8e65ff28 1852 internal_error (__FILE__, __LINE__,
85c07804 1853 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1854 bfd_architecture);
104c1213
JM
1855 }
1856 /* Check that we haven't seen this architecture before */
f44c642f 1857 for (curr = &gdbarch_registry;
104c1213
JM
1858 (*curr) != NULL;
1859 curr = &(*curr)->next)
1860 {
1861 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1862 internal_error (__FILE__, __LINE__,
85c07804 1863 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1864 bfd_arch_info->printable_name);
104c1213
JM
1865 }
1866 /* log it */
1867 if (gdbarch_debug)
30737ed9 1868 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1869 bfd_arch_info->printable_name,
30737ed9 1870 host_address_to_string (init));
104c1213 1871 /* Append it */
4b9b3959 1872 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1873 (*curr)->bfd_architecture = bfd_architecture;
1874 (*curr)->init = init;
4b9b3959 1875 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1876 (*curr)->arches = NULL;
1877 (*curr)->next = NULL;
4b9b3959
AC
1878}
1879
1880void
1881register_gdbarch_init (enum bfd_architecture bfd_architecture,
1882 gdbarch_init_ftype *init)
1883{
1884 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1885}
104c1213
JM
1886
1887
424163ea 1888/* Look for an architecture using gdbarch_info. */
104c1213
JM
1889
1890struct gdbarch_list *
1891gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1892 const struct gdbarch_info *info)
1893{
1894 for (; arches != NULL; arches = arches->next)
1895 {
1896 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1897 continue;
1898 if (info->byte_order != arches->gdbarch->byte_order)
1899 continue;
4be87837
DJ
1900 if (info->osabi != arches->gdbarch->osabi)
1901 continue;
424163ea
DJ
1902 if (info->target_desc != arches->gdbarch->target_desc)
1903 continue;
104c1213
JM
1904 return arches;
1905 }
1906 return NULL;
1907}
1908
1909
ebdba546
AC
1910/* Find an architecture that matches the specified INFO. Create a new
1911 architecture if needed. Return that new architecture. Assumes
1912 that there is no current architecture. */
104c1213 1913
ebdba546 1914static struct gdbarch *
7a107747 1915find_arch_by_info (struct gdbarch_info info)
104c1213
JM
1916{
1917 struct gdbarch *new_gdbarch;
4b9b3959 1918 struct gdbarch_registration *rego;
104c1213 1919
ebdba546
AC
1920 /* The existing architecture has been swapped out - all this code
1921 works from a clean slate. */
1922 gdb_assert (current_gdbarch == NULL);
1923
b732d07d 1924 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1925 sources: "set ..."; INFOabfd supplied; and the global
1926 defaults. */
1927 gdbarch_info_fill (&info);
4be87837 1928
b732d07d
AC
1929 /* Must have found some sort of architecture. */
1930 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1931
1932 if (gdbarch_debug)
1933 {
1934 fprintf_unfiltered (gdb_stdlog,
ebdba546 1935 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1936 (info.bfd_arch_info != NULL
1937 ? info.bfd_arch_info->printable_name
1938 : "(null)"));
1939 fprintf_unfiltered (gdb_stdlog,
ebdba546 1940 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 1941 info.byte_order,
d7449b42 1942 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1943 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1944 : "default"));
4be87837 1945 fprintf_unfiltered (gdb_stdlog,
ebdba546 1946 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 1947 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1948 fprintf_unfiltered (gdb_stdlog,
30737ed9
JB
1949 "find_arch_by_info: info.abfd %s\n",
1950 host_address_to_string (info.abfd));
104c1213 1951 fprintf_unfiltered (gdb_stdlog,
30737ed9
JB
1952 "find_arch_by_info: info.tdep_info %s\n",
1953 host_address_to_string (info.tdep_info));
104c1213
JM
1954 }
1955
ebdba546 1956 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1957 for (rego = gdbarch_registry;
1958 rego != NULL;
1959 rego = rego->next)
1960 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1961 break;
1962 if (rego == NULL)
1963 {
1964 if (gdbarch_debug)
ebdba546
AC
1965 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1966 "No matching architecture\n");
b732d07d
AC
1967 return 0;
1968 }
1969
ebdba546 1970 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1971 new_gdbarch = rego->init (info, rego->arches);
1972
ebdba546
AC
1973 /* Did the tdep code like it? No. Reject the change and revert to
1974 the old architecture. */
104c1213
JM
1975 if (new_gdbarch == NULL)
1976 {
1977 if (gdbarch_debug)
ebdba546
AC
1978 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1979 "Target rejected architecture\n");
1980 return NULL;
104c1213
JM
1981 }
1982
ebdba546
AC
1983 /* Is this a pre-existing architecture (as determined by already
1984 being initialized)? Move it to the front of the architecture
1985 list (keeping the list sorted Most Recently Used). */
1986 if (new_gdbarch->initialized_p)
104c1213 1987 {
ebdba546
AC
1988 struct gdbarch_list **list;
1989 struct gdbarch_list *this;
104c1213 1990 if (gdbarch_debug)
ebdba546 1991 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
30737ed9
JB
1992 "Previous architecture %s (%s) selected\n",
1993 host_address_to_string (new_gdbarch),
104c1213 1994 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1995 /* Find the existing arch in the list. */
1996 for (list = &rego->arches;
1997 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1998 list = &(*list)->next);
1999 /* It had better be in the list of architectures. */
2000 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2001 /* Unlink THIS. */
2002 this = (*list);
2003 (*list) = this->next;
2004 /* Insert THIS at the front. */
2005 this->next = rego->arches;
2006 rego->arches = this;
2007 /* Return it. */
2008 return new_gdbarch;
104c1213
JM
2009 }
2010
ebdba546
AC
2011 /* It's a new architecture. */
2012 if (gdbarch_debug)
2013 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
30737ed9
JB
2014 "New architecture %s (%s) selected\n",
2015 host_address_to_string (new_gdbarch),
ebdba546
AC
2016 new_gdbarch->bfd_arch_info->printable_name);
2017
2018 /* Insert the new architecture into the front of the architecture
2019 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2020 {
2021 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2022 this->next = rego->arches;
2023 this->gdbarch = new_gdbarch;
2024 rego->arches = this;
2025 }
104c1213 2026
4b9b3959
AC
2027 /* Check that the newly installed architecture is valid. Plug in
2028 any post init values. */
2029 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2030 verify_gdbarch (new_gdbarch);
ebdba546 2031 new_gdbarch->initialized_p = 1;
104c1213 2032
4b9b3959 2033 if (gdbarch_debug)
ebdba546
AC
2034 gdbarch_dump (new_gdbarch, gdb_stdlog);
2035
2036 return new_gdbarch;
2037}
2038
2039struct gdbarch *
2040gdbarch_find_by_info (struct gdbarch_info info)
2041{
e487cc15
UW
2042 struct gdbarch *new_gdbarch;
2043
ebdba546
AC
2044 /* Save the previously selected architecture, setting the global to
2045 NULL. This stops things like gdbarch->init() trying to use the
2046 previous architecture's configuration. The previous architecture
2047 may not even be of the same architecture family. The most recent
2048 architecture of the same family is found at the head of the
2049 rego->arches list. */
e487cc15
UW
2050 struct gdbarch *old_gdbarch = current_gdbarch;
2051 current_gdbarch = NULL;
ebdba546
AC
2052
2053 /* Find the specified architecture. */
e487cc15 2054 new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2055
2056 /* Restore the existing architecture. */
2057 gdb_assert (current_gdbarch == NULL);
e487cc15 2058 current_gdbarch = old_gdbarch;
4b9b3959 2059
ebdba546 2060 return new_gdbarch;
104c1213
JM
2061}
2062
e487cc15 2063/* Make the specified architecture current. */
ebdba546
AC
2064
2065void
2066deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2067{
2068 gdb_assert (new_gdbarch != NULL);
2069 gdb_assert (current_gdbarch != NULL);
2070 gdb_assert (new_gdbarch->initialized_p);
e487cc15 2071 current_gdbarch = new_gdbarch;
1cf3db46 2072 target_gdbarch = new_gdbarch;
383f836e 2073 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2074 registers_changed ();
ebdba546 2075}
104c1213 2076
104c1213 2077extern void _initialize_gdbarch (void);
b4a20239 2078
104c1213 2079void
34620563 2080_initialize_gdbarch (void)
104c1213 2081{
59233f88
AC
2082 struct cmd_list_element *c;
2083
85c07804
AC
2084 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2085Set architecture debugging."), _("\\
2086Show architecture debugging."), _("\\
2087When non-zero, architecture debugging is enabled."),
2088 NULL,
920d2a44 2089 show_gdbarch_debug,
85c07804 2090 &setdebuglist, &showdebuglist);
104c1213
JM
2091}
2092EOF
2093
2094# close things off
2095exec 1>&2
2096#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2097compare_new gdbarch.c
This page took 1.156262 seconds and 4 git commands to generate.