PR gas/14201
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
0b302171 5# Copyright (C) 1998-2012 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
283354d8
AC
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
3d9a5942
AC
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14 97
ae45cd16
AC
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
34620563 101 "" )
f7968451 102 if test -n "${predefault}"
34620563
AC
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 105 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
34620563
AC
112 fi
113 ;;
ae45cd16 114 * )
1e9f55d0 115 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
116 kill $$
117 exit 1
118 ;;
119 esac
34620563
AC
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
72e74a21 129 if [ -n "${postdefault}" ]
34620563
AC
130 then
131 fallbackdefault="${postdefault}"
72e74a21 132 elif [ -n "${predefault}" ]
34620563
AC
133 then
134 fallbackdefault="${predefault}"
135 else
73d3c16e 136 fallbackdefault="0"
34620563
AC
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
f0d4cc9e 143 fi
34620563 144 done
72e74a21 145 if [ -n "${class}" ]
34620563
AC
146 then
147 true
c0e8c252
AC
148 else
149 false
150 fi
151}
152
104c1213 153
f0d4cc9e
AC
154fallback_default_p ()
155{
72e74a21
JB
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
158}
159
160class_is_variable_p ()
161{
4a5c6a1d
AC
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
f0d4cc9e
AC
166}
167
168class_is_function_p ()
169{
4a5c6a1d
AC
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174}
175
176class_is_multiarch_p ()
177{
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
f0d4cc9e
AC
182}
183
184class_is_predicate_p ()
185{
4a5c6a1d
AC
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
f0d4cc9e
AC
190}
191
192class_is_info_p ()
193{
4a5c6a1d
AC
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
f0d4cc9e
AC
198}
199
200
cff3e48b
JM
201# dump out/verify the doco
202for field in ${read}
203do
204 case ${field} in
205
206 class ) : ;;
c4093a6a 207
c0e8c252
AC
208 # # -> line disable
209 # f -> function
210 # hiding a function
2ada493a
AC
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
c0e8c252
AC
213 # v -> variable
214 # hiding a variable
2ada493a
AC
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
c0e8c252
AC
217 # i -> set from info
218 # hiding something from the ``struct info'' object
4a5c6a1d
AC
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
cff3e48b 223
cff3e48b
JM
224 returntype ) : ;;
225
c0e8c252 226 # For functions, the return type; for variables, the data type
cff3e48b
JM
227
228 function ) : ;;
229
c0e8c252
AC
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
233
234 formal ) : ;;
235
c0e8c252
AC
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
cff3e48b
JM
240
241 actual ) : ;;
242
c0e8c252
AC
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
cff3e48b 246
0b8f9e4d 247 staticdefault ) : ;;
c0e8c252
AC
248
249 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
cff3e48b 253
0b8f9e4d 254 # If STATICDEFAULT is empty, zero is used.
c0e8c252 255
0b8f9e4d 256 predefault ) : ;;
cff3e48b 257
10312cc4
AC
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
cff3e48b 262
0b8f9e4d
AC
263 # If PREDEFAULT is empty, zero is used.
264
10312cc4
AC
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
f0d4cc9e
AC
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
0b8f9e4d
AC
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
10312cc4
AC
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
f0d4cc9e
AC
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
be7811ad 294 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
295 # will contain the current architecture. Care should be
296 # taken.
cff3e48b 297
c4093a6a 298 invalid_p ) : ;;
cff3e48b 299
0b8f9e4d 300 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 301 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
f0d4cc9e
AC
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
312
313 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 314
cff3e48b
JM
315 print ) : ;;
316
2f9b146e
AC
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
c0e8c252 319
0b1553bc
UW
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
cff3e48b 322
283354d8 323 garbage_at_eol ) : ;;
0b8f9e4d 324
283354d8 325 # Catches stray fields.
cff3e48b 326
50248794
AC
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
cff3e48b
JM
330 esac
331done
332
cff3e48b 333
104c1213
JM
334function_list ()
335{
cff3e48b 336 # See below (DOCO) for description of each field
34620563 337 cat <<EOF
be7811ad 338i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 339#
97030eea 340i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 341i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 342#
97030eea 343i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 344#
30737ed9 345i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
346
347# The bit byte-order has to do just with numbering of bits in debugging symbols
348# and such. Conceptually, it's quite separate from byte/word byte order.
349v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
66b43ecb
AC
351# Number of bits in a char or unsigned char for the target machine.
352# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 353# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
354#
355# Number of bits in a short or unsigned short for the target machine.
97030eea 356v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 357# Number of bits in an int or unsigned int for the target machine.
97030eea 358v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 359# Number of bits in a long or unsigned long for the target machine.
97030eea 360v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
361# Number of bits in a long long or unsigned long long for the target
362# machine.
be7811ad 363v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
364# Alignment of a long long or unsigned long long for the target
365# machine.
366v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 367
f9e9243a
UW
368# The ABI default bit-size and format for "half", "float", "double", and
369# "long double". These bit/format pairs should eventually be combined
370# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
371# Each format describes both the big and little endian layouts (if
372# useful).
456fcf94 373
f9e9243a
UW
374v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 376v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 378v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 379v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 380v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 381v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 382
52204a0b
DT
383# For most targets, a pointer on the target and its representation as an
384# address in GDB have the same size and "look the same". For such a
17a912b6 385# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
386# / addr_bit will be set from it.
387#
17a912b6 388# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
389# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390# gdbarch_address_to_pointer as well.
52204a0b
DT
391#
392# ptr_bit is the size of a pointer on the target
be7811ad 393v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 394# addr_bit is the size of a target address as represented in gdb
be7811ad 395v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 396#
8da614df
CV
397# dwarf2_addr_size is the target address size as used in the Dwarf debug
398# info. For .debug_frame FDEs, this is supposed to be the target address
399# size from the associated CU header, and which is equivalent to the
400# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401# Unfortunately there is no good way to determine this value. Therefore
402# dwarf2_addr_size simply defaults to the target pointer size.
403#
404# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405# defined using the target's pointer size so far.
406#
407# Note that dwarf2_addr_size only needs to be redefined by a target if the
408# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409# and if Dwarf versions < 4 need to be supported.
410v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411#
4e409299 412# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 413v:int:char_signed:::1:-1:1
4e409299 414#
97030eea
UW
415F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
417# Function for getting target's idea of a frame pointer. FIXME: GDB's
418# whole scheme for dealing with "frames" and "frame pointers" needs a
419# serious shakedown.
a54fba4c 420m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 421#
05d1431c 422M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
423# Read a register into a new struct value. If the register is wholly
424# or partly unavailable, this should call mark_value_bytes_unavailable
425# as appropriate. If this is defined, then pseudo_register_read will
426# never be called.
427M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 428M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 429#
97030eea 430v:int:num_regs:::0:-1
0aba1244
EZ
431# This macro gives the number of pseudo-registers that live in the
432# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
433# These pseudo-registers may be aliases for other registers,
434# combinations of other registers, or they may be computed by GDB.
97030eea 435v:int:num_pseudo_regs:::0:0::0
c2169756 436
175ff332
HZ
437# Assemble agent expression bytecode to collect pseudo-register REG.
438# Return -1 if something goes wrong, 0 otherwise.
439M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441# Assemble agent expression bytecode to push the value of pseudo-register
442# REG on the interpreter stack.
443# Return -1 if something goes wrong, 0 otherwise.
444M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
c2169756
AC
446# GDB's standard (or well known) register numbers. These can map onto
447# a real register or a pseudo (computed) register or not be defined at
1200cd6e 448# all (-1).
3e8c568d 449# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
450v:int:sp_regnum:::-1:-1::0
451v:int:pc_regnum:::-1:-1::0
452v:int:ps_regnum:::-1:-1::0
453v:int:fp0_regnum:::0:-1::0
88c72b7d 454# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 455m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 456# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 457m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 458# Convert from an sdb register number to an internal gdb register number.
d3f73121 459m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 460# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 461m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 462m:const char *:register_name:int regnr:regnr::0
9c04cab7 463
7b9ee6a8
DJ
464# Return the type of a register specified by the architecture. Only
465# the register cache should call this function directly; others should
466# use "register_type".
97030eea 467M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 468
f3be58bc 469# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
470M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 472# deprecated_fp_regnum.
97030eea 473v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 474
a86c5fc9 475# See gdbint.texinfo. See infcall.c.
97030eea
UW
476M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477v:int:call_dummy_location::::AT_ENTRY_POINT::0
478M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 479
97030eea
UW
480m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
483# MAP a GDB RAW register number onto a simulator register number. See
484# also include/...-sim.h.
e7faf938 485m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
486m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 488# setjmp/longjmp support.
97030eea 489F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 490#
97030eea 491v:int:believe_pcc_promotion:::::::
104c1213 492#
0abe36f5 493m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 494f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 495f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
496# Construct a value representing the contents of register REGNUM in
497# frame FRAME, interpreted as type TYPE. The routine needs to
498# allocate and return a struct value with all value attributes
499# (but not the value contents) filled in.
97030eea 500f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 501#
9898f801
UW
502m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 504M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 505
6a3a010b
MR
506# Return the return-value convention that will be used by FUNCTION
507# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
508# case the return convention is computed based only on VALTYPE.
509#
510# If READBUF is not NULL, extract the return value and save it in this buffer.
511#
512# If WRITEBUF is not NULL, it contains a return value which will be
513# stored into the appropriate register. This can be used when we want
514# to force the value returned by a function (see the "return" command
515# for instance).
6a3a010b 516M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 517
6093d2eb 518m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 519M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 520f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 521m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
522# Return the adjusted address and kind to use for Z0/Z1 packets.
523# KIND is usually the memory length of the breakpoint, but may have a
524# different target-specific meaning.
0e05dfcb 525m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 526M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
527m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 529v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
530
531# A function can be addressed by either it's "pointer" (possibly a
532# descriptor address) or "entry point" (first executable instruction).
533# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 534# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
535# a simplified subset of that functionality - the function's address
536# corresponds to the "function pointer" and the function's start
537# corresponds to the "function entry point" - and hence is redundant.
538
97030eea 539v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 540
123dc839
DJ
541# Return the remote protocol register number associated with this
542# register. Normally the identity mapping.
97030eea 543m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 544
b2756930 545# Fetch the target specific address used to represent a load module.
97030eea 546F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 547#
97030eea
UW
548v:CORE_ADDR:frame_args_skip:::0:::0
549M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
551# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552# frame-base. Enable frame-base before frame-unwind.
97030eea 553F:int:frame_num_args:struct frame_info *frame:frame
104c1213 554#
97030eea
UW
555M:CORE_ADDR:frame_align:CORE_ADDR address:address
556m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557v:int:frame_red_zone_size
f0d4cc9e 558#
97030eea 559m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
560# On some machines there are bits in addresses which are not really
561# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 562# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
563# we get a "real" address such as one would find in a symbol table.
564# This is used only for addresses of instructions, and even then I'm
565# not sure it's used in all contexts. It exists to deal with there
566# being a few stray bits in the PC which would mislead us, not as some
567# sort of generic thing to handle alignment or segmentation (it's
568# possible it should be in TARGET_READ_PC instead).
24568a2c 569m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 570# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 571# gdbarch_addr_bits_remove.
24568a2c 572m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
573
574# FIXME/cagney/2001-01-18: This should be split in two. A target method that
575# indicates if the target needs software single step. An ISA method to
576# implement it.
577#
578# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579# breakpoints using the breakpoint system instead of blatting memory directly
580# (as with rs6000).
64c4637f 581#
e6590a1b
UW
582# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583# target can single step. If not, then implement single step using breakpoints.
64c4637f 584#
e6590a1b
UW
585# A return value of 1 means that the software_single_step breakpoints
586# were inserted; 0 means they were not.
97030eea 587F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 588
3352ef37
AC
589# Return non-zero if the processor is executing a delay slot and a
590# further single-step is needed before the instruction finishes.
97030eea 591M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 592# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 593# disassembler. Perhaps objdump can handle it?
97030eea
UW
594f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
596
597
cfd8ab24 598# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
599# evaluates non-zero, this is the address where the debugger will place
600# a step-resume breakpoint to get us past the dynamic linker.
97030eea 601m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 602# Some systems also have trampoline code for returning from shared libs.
2c02bd72 603m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 604
c12260ac
CV
605# A target might have problems with watchpoints as soon as the stack
606# frame of the current function has been destroyed. This mostly happens
607# as the first action in a funtion's epilogue. in_function_epilogue_p()
608# is defined to return a non-zero value if either the given addr is one
609# instruction after the stack destroying instruction up to the trailing
610# return instruction or if we can figure out that the stack frame has
611# already been invalidated regardless of the value of addr. Targets
612# which don't suffer from that problem could just let this functionality
613# untouched.
97030eea 614m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
615f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
617v:int:cannot_step_breakpoint:::0:0::0
618v:int:have_nonsteppable_watchpoint:::0:0::0
619F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 622# Is a register in a group
97030eea 623m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 624# Fetch the pointer to the ith function argument.
97030eea 625F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
626
627# Return the appropriate register set for a core file section with
628# name SECT_NAME and size SECT_SIZE.
97030eea 629M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 630
17ea7499
CES
631# Supported register notes in a core file.
632v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
6432734d
UW
634# Create core file notes
635M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
35c2fab7
UW
637# Find core file memory regions
638M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
de584861
PA
640# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641# core file into buffer READBUF with length LEN.
97030eea 642M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 643
c0edd9ed 644# How the core target converts a PTID from a core file to a string.
28439f5e
PA
645M:char *:core_pid_to_str:ptid_t ptid:ptid
646
a78c2d62 647# BFD target to use when generating a core file.
86ba1042 648V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 649
0d5de010
DJ
650# If the elements of C++ vtables are in-place function descriptors rather
651# than normal function pointers (which may point to code or a descriptor),
652# set this to one.
97030eea 653v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
654
655# Set if the least significant bit of the delta is used instead of the least
656# significant bit of the pfn for pointers to virtual member functions.
97030eea 657v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
658
659# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 660F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 661
1668ae25 662# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
663V:ULONGEST:max_insn_length:::0:0
664
665# Copy the instruction at FROM to TO, and make any adjustments
666# necessary to single-step it at that address.
667#
668# REGS holds the state the thread's registers will have before
669# executing the copied instruction; the PC in REGS will refer to FROM,
670# not the copy at TO. The caller should update it to point at TO later.
671#
672# Return a pointer to data of the architecture's choice to be passed
673# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674# the instruction's effects have been completely simulated, with the
675# resulting state written back to REGS.
676#
677# For a general explanation of displaced stepping and how GDB uses it,
678# see the comments in infrun.c.
679#
680# The TO area is only guaranteed to have space for
681# gdbarch_max_insn_length (arch) bytes, so this function must not
682# write more bytes than that to that area.
683#
684# If you do not provide this function, GDB assumes that the
685# architecture does not support displaced stepping.
686#
687# If your architecture doesn't need to adjust instructions before
688# single-stepping them, consider using simple_displaced_step_copy_insn
689# here.
690M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
99e40580
UW
692# Return true if GDB should use hardware single-stepping to execute
693# the displaced instruction identified by CLOSURE. If false,
694# GDB will simply restart execution at the displaced instruction
695# location, and it is up to the target to ensure GDB will receive
696# control again (e.g. by placing a software breakpoint instruction
697# into the displaced instruction buffer).
698#
699# The default implementation returns false on all targets that
700# provide a gdbarch_software_single_step routine, and true otherwise.
701m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
237fc4c9
PA
703# Fix up the state resulting from successfully single-stepping a
704# displaced instruction, to give the result we would have gotten from
705# stepping the instruction in its original location.
706#
707# REGS is the register state resulting from single-stepping the
708# displaced instruction.
709#
710# CLOSURE is the result from the matching call to
711# gdbarch_displaced_step_copy_insn.
712#
713# If you provide gdbarch_displaced_step_copy_insn.but not this
714# function, then GDB assumes that no fixup is needed after
715# single-stepping the instruction.
716#
717# For a general explanation of displaced stepping and how GDB uses it,
718# see the comments in infrun.c.
719M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721# Free a closure returned by gdbarch_displaced_step_copy_insn.
722#
723# If you provide gdbarch_displaced_step_copy_insn, you must provide
724# this function as well.
725#
726# If your architecture uses closures that don't need to be freed, then
727# you can use simple_displaced_step_free_closure here.
728#
729# For a general explanation of displaced stepping and how GDB uses it,
730# see the comments in infrun.c.
731m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733# Return the address of an appropriate place to put displaced
734# instructions while we step over them. There need only be one such
735# place, since we're only stepping one thread over a breakpoint at a
736# time.
737#
738# For a general explanation of displaced stepping and how GDB uses it,
739# see the comments in infrun.c.
740m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
dde08ee1
PA
742# Relocate an instruction to execute at a different address. OLDLOC
743# is the address in the inferior memory where the instruction to
744# relocate is currently at. On input, TO points to the destination
745# where we want the instruction to be copied (and possibly adjusted)
746# to. On output, it points to one past the end of the resulting
747# instruction(s). The effect of executing the instruction at TO shall
748# be the same as if executing it at FROM. For example, call
749# instructions that implicitly push the return address on the stack
750# should be adjusted to return to the instruction after OLDLOC;
751# relative branches, and other PC-relative instructions need the
752# offset adjusted; etc.
753M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
1c772458 755# Refresh overlay mapped state for section OSECT.
97030eea 756F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 757
97030eea 758M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
759
760# Handle special encoding of static variables in stabs debug info.
0d5cff50 761F:const char *:static_transform_name:const char *name:name
203c3895 762# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 763v:int:sofun_address_maybe_missing:::0:0::0
1cded358 764
0508c3ec
HZ
765# Parse the instruction at ADDR storing in the record execution log
766# the registers REGCACHE and memory ranges that will be affected when
767# the instruction executes, along with their current values.
768# Return -1 if something goes wrong, 0 otherwise.
769M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
3846b520
HZ
771# Save process state after a signal.
772# Return -1 if something goes wrong, 0 otherwise.
2ea28649 773M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 774
22203bbf 775# Signal translation: translate inferior's signal (target's) number
86b49880
PA
776# into GDB's representation. The implementation of this method must
777# be host independent. IOW, don't rely on symbols of the NAT_FILE
778# header (the nm-*.h files), the host <signal.h> header, or similar
779# headers. This is mainly used when cross-debugging core files ---
780# "Live" targets hide the translation behind the target interface
1f8cf220
PA
781# (target_wait, target_resume, etc.).
782M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 783
4aa995e1
PA
784# Extra signal info inspection.
785#
786# Return a type suitable to inspect extra signal information.
787M:struct type *:get_siginfo_type:void:
788
60c5725c
DJ
789# Record architecture-specific information from the symbol table.
790M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 791
a96d9b2e
SDJ
792# Function for the 'catch syscall' feature.
793
794# Get architecture-specific system calls information from registers.
795M:LONGEST:get_syscall_number:ptid_t ptid:ptid
796
55aa24fb
SDJ
797# SystemTap related fields and functions.
798
799# Prefix used to mark an integer constant on the architecture's assembly
800# For example, on x86 integer constants are written as:
801#
802# \$10 ;; integer constant 10
803#
804# in this case, this prefix would be the character \`\$\'.
805v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
806
807# Suffix used to mark an integer constant on the architecture's assembly.
808v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
809
810# Prefix used to mark a register name on the architecture's assembly.
811# For example, on x86 the register name is written as:
812#
813# \%eax ;; register eax
814#
815# in this case, this prefix would be the character \`\%\'.
816v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
817
818# Suffix used to mark a register name on the architecture's assembly
819v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
820
821# Prefix used to mark a register indirection on the architecture's assembly.
822# For example, on x86 the register indirection is written as:
823#
824# \(\%eax\) ;; indirecting eax
825#
826# in this case, this prefix would be the charater \`\(\'.
827#
828# Please note that we use the indirection prefix also for register
829# displacement, e.g., \`4\(\%eax\)\' on x86.
830v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
831
832# Suffix used to mark a register indirection on the architecture's assembly.
833# For example, on x86 the register indirection is written as:
834#
835# \(\%eax\) ;; indirecting eax
836#
837# in this case, this prefix would be the charater \`\)\'.
838#
839# Please note that we use the indirection suffix also for register
840# displacement, e.g., \`4\(\%eax\)\' on x86.
841v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
842
843# Prefix used to name a register using GDB's nomenclature.
844#
845# For example, on PPC a register is represented by a number in the assembly
846# language (e.g., \`10\' is the 10th general-purpose register). However,
847# inside GDB this same register has an \`r\' appended to its name, so the 10th
848# register would be represented as \`r10\' internally.
849v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
850
851# Suffix used to name a register using GDB's nomenclature.
852v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
853
854# Check if S is a single operand.
855#
856# Single operands can be:
857# \- Literal integers, e.g. \`\$10\' on x86
858# \- Register access, e.g. \`\%eax\' on x86
859# \- Register indirection, e.g. \`\(\%eax\)\' on x86
860# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
861#
862# This function should check for these patterns on the string
863# and return 1 if some were found, or zero otherwise. Please try to match
864# as much info as you can from the string, i.e., if you have to match
865# something like \`\(\%\', do not match just the \`\(\'.
866M:int:stap_is_single_operand:const char *s:s
867
868# Function used to handle a "special case" in the parser.
869#
870# A "special case" is considered to be an unknown token, i.e., a token
871# that the parser does not know how to parse. A good example of special
872# case would be ARM's register displacement syntax:
873#
874# [R0, #4] ;; displacing R0 by 4
875#
876# Since the parser assumes that a register displacement is of the form:
877#
878# <number> <indirection_prefix> <register_name> <indirection_suffix>
879#
880# it means that it will not be able to recognize and parse this odd syntax.
881# Therefore, we should add a special case function that will handle this token.
882#
883# This function should generate the proper expression form of the expression
884# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
885# and so on). It should also return 1 if the parsing was successful, or zero
886# if the token was not recognized as a special token (in this case, returning
887# zero means that the special parser is deferring the parsing to the generic
888# parser), and should advance the buffer pointer (p->arg).
889M:int:stap_parse_special_token:struct stap_parse_info *p:p
890
891
50c71eaf
PA
892# True if the list of shared libraries is one and only for all
893# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
894# This usually means that all processes, although may or may not share
895# an address space, will see the same set of symbols at the same
896# addresses.
50c71eaf 897v:int:has_global_solist:::0:0::0
2567c7d9
PA
898
899# On some targets, even though each inferior has its own private
900# address space, the debug interface takes care of making breakpoints
901# visible to all address spaces automatically. For such cases,
902# this property should be set to true.
903v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
904
905# True if inferiors share an address space (e.g., uClinux).
906m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
907
908# True if a fast tracepoint can be set at an address.
909m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 910
f870a310
TT
911# Return the "auto" target charset.
912f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
913# Return the "auto" target wide charset.
914f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
915
916# If non-empty, this is a file extension that will be opened in place
917# of the file extension reported by the shared library list.
918#
919# This is most useful for toolchains that use a post-linker tool,
920# where the names of the files run on the target differ in extension
921# compared to the names of the files GDB should load for debug info.
922v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
923
924# If true, the target OS has DOS-based file system semantics. That
925# is, absolute paths include a drive name, and the backslash is
926# considered a directory separator.
927v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
928
929# Generate bytecodes to collect the return address in a frame.
930# Since the bytecodes run on the target, possibly with GDB not even
931# connected, the full unwinding machinery is not available, and
932# typically this function will issue bytecodes for one or more likely
933# places that the return address may be found.
934m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
935
3030c96e
UW
936# Implement the "info proc" command.
937M:void:info_proc:char *args, enum info_proc_what what:args, what
938
19630284
JB
939# Iterate over all objfiles in the order that makes the most sense
940# for the architecture to make global symbol searches.
941#
942# CB is a callback function where OBJFILE is the objfile to be searched,
943# and CB_DATA a pointer to user-defined data (the same data that is passed
944# when calling this gdbarch method). The iteration stops if this function
945# returns nonzero.
946#
947# CB_DATA is a pointer to some user-defined data to be passed to
948# the callback.
949#
950# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
951# inspected when the symbol search was requested.
952m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
953
104c1213 954EOF
104c1213
JM
955}
956
0b8f9e4d
AC
957#
958# The .log file
959#
960exec > new-gdbarch.log
34620563 961function_list | while do_read
0b8f9e4d
AC
962do
963 cat <<EOF
2f9b146e 964${class} ${returntype} ${function} ($formal)
104c1213 965EOF
3d9a5942
AC
966 for r in ${read}
967 do
968 eval echo \"\ \ \ \ ${r}=\${${r}}\"
969 done
f0d4cc9e 970 if class_is_predicate_p && fallback_default_p
0b8f9e4d 971 then
66d659b1 972 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
973 kill $$
974 exit 1
975 fi
72e74a21 976 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
977 then
978 echo "Error: postdefault is useless when invalid_p=0" 1>&2
979 kill $$
980 exit 1
981 fi
a72293e2
AC
982 if class_is_multiarch_p
983 then
984 if class_is_predicate_p ; then :
985 elif test "x${predefault}" = "x"
986 then
2f9b146e 987 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
988 kill $$
989 exit 1
990 fi
991 fi
3d9a5942 992 echo ""
0b8f9e4d
AC
993done
994
995exec 1>&2
996compare_new gdbarch.log
997
104c1213
JM
998
999copyright ()
1000{
1001cat <<EOF
59233f88
AC
1002/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
1003
104c1213 1004/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1005
f801e1e0
MS
1006 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1007 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
1008
1009 This file is part of GDB.
1010
1011 This program is free software; you can redistribute it and/or modify
1012 it under the terms of the GNU General Public License as published by
50efebf8 1013 the Free Software Foundation; either version 3 of the License, or
104c1213 1014 (at your option) any later version.
50efebf8 1015
104c1213
JM
1016 This program is distributed in the hope that it will be useful,
1017 but WITHOUT ANY WARRANTY; without even the implied warranty of
1018 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1019 GNU General Public License for more details.
50efebf8 1020
104c1213 1021 You should have received a copy of the GNU General Public License
50efebf8 1022 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1023
104c1213
JM
1024/* This file was created with the aid of \`\`gdbarch.sh''.
1025
52204a0b 1026 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1027 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1028 against the existing \`\`gdbarch.[hc]''. Any differences found
1029 being reported.
1030
1031 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1032 changes into that script. Conversely, when making sweeping changes
104c1213 1033 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1034 easier. */
104c1213
JM
1035
1036EOF
1037}
1038
1039#
1040# The .h file
1041#
1042
1043exec > new-gdbarch.h
1044copyright
1045cat <<EOF
1046#ifndef GDBARCH_H
1047#define GDBARCH_H
1048
da3331ec
AC
1049struct floatformat;
1050struct ui_file;
104c1213
JM
1051struct frame_info;
1052struct value;
b6af0555 1053struct objfile;
1c772458 1054struct obj_section;
a2cf933a 1055struct minimal_symbol;
049ee0e4 1056struct regcache;
b59ff9d5 1057struct reggroup;
6ce6d90f 1058struct regset;
a89aa300 1059struct disassemble_info;
e2d0e7eb 1060struct target_ops;
030f20e1 1061struct obstack;
8181d85f 1062struct bp_target_info;
424163ea 1063struct target_desc;
237fc4c9 1064struct displaced_step_closure;
17ea7499 1065struct core_regset_section;
a96d9b2e 1066struct syscall;
175ff332 1067struct agent_expr;
6710bf39 1068struct axs_value;
55aa24fb 1069struct stap_parse_info;
104c1213 1070
9e2ace22
JB
1071/* The architecture associated with the connection to the target.
1072
1073 The architecture vector provides some information that is really
1074 a property of the target: The layout of certain packets, for instance;
1075 or the solib_ops vector. Etc. To differentiate architecture accesses
1076 to per-target properties from per-thread/per-frame/per-objfile properties,
1077 accesses to per-target properties should be made through target_gdbarch.
1078
1079 Eventually, when support for multiple targets is implemented in
1080 GDB, this global should be made target-specific. */
1cf3db46 1081extern struct gdbarch *target_gdbarch;
19630284
JB
1082
1083/* Callback type for the 'iterate_over_objfiles_in_search_order'
1084 gdbarch method. */
1085
1086typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1087 (struct objfile *objfile, void *cb_data);
104c1213
JM
1088EOF
1089
1090# function typedef's
3d9a5942
AC
1091printf "\n"
1092printf "\n"
0963b4bd 1093printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1094function_list | while do_read
104c1213 1095do
2ada493a
AC
1096 if class_is_info_p
1097 then
3d9a5942
AC
1098 printf "\n"
1099 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1100 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1101 fi
104c1213
JM
1102done
1103
1104# function typedef's
3d9a5942
AC
1105printf "\n"
1106printf "\n"
0963b4bd 1107printf "/* The following are initialized by the target dependent code. */\n"
34620563 1108function_list | while do_read
104c1213 1109do
72e74a21 1110 if [ -n "${comment}" ]
34620563
AC
1111 then
1112 echo "${comment}" | sed \
1113 -e '2 s,#,/*,' \
1114 -e '3,$ s,#, ,' \
1115 -e '$ s,$, */,'
1116 fi
412d5987
AC
1117
1118 if class_is_predicate_p
2ada493a 1119 then
412d5987
AC
1120 printf "\n"
1121 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1122 fi
2ada493a
AC
1123 if class_is_variable_p
1124 then
3d9a5942
AC
1125 printf "\n"
1126 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1127 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1128 fi
1129 if class_is_function_p
1130 then
3d9a5942 1131 printf "\n"
72e74a21 1132 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1133 then
1134 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1135 elif class_is_multiarch_p
1136 then
1137 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1138 else
1139 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1140 fi
72e74a21 1141 if [ "x${formal}" = "xvoid" ]
104c1213 1142 then
3d9a5942 1143 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1144 else
3d9a5942 1145 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1146 fi
3d9a5942 1147 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1148 fi
104c1213
JM
1149done
1150
1151# close it off
1152cat <<EOF
1153
a96d9b2e
SDJ
1154/* Definition for an unknown syscall, used basically in error-cases. */
1155#define UNKNOWN_SYSCALL (-1)
1156
104c1213
JM
1157extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1158
1159
1160/* Mechanism for co-ordinating the selection of a specific
1161 architecture.
1162
1163 GDB targets (*-tdep.c) can register an interest in a specific
1164 architecture. Other GDB components can register a need to maintain
1165 per-architecture data.
1166
1167 The mechanisms below ensures that there is only a loose connection
1168 between the set-architecture command and the various GDB
0fa6923a 1169 components. Each component can independently register their need
104c1213
JM
1170 to maintain architecture specific data with gdbarch.
1171
1172 Pragmatics:
1173
1174 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1175 didn't scale.
1176
1177 The more traditional mega-struct containing architecture specific
1178 data for all the various GDB components was also considered. Since
0fa6923a 1179 GDB is built from a variable number of (fairly independent)
104c1213 1180 components it was determined that the global aproach was not
0963b4bd 1181 applicable. */
104c1213
JM
1182
1183
1184/* Register a new architectural family with GDB.
1185
1186 Register support for the specified ARCHITECTURE with GDB. When
1187 gdbarch determines that the specified architecture has been
1188 selected, the corresponding INIT function is called.
1189
1190 --
1191
1192 The INIT function takes two parameters: INFO which contains the
1193 information available to gdbarch about the (possibly new)
1194 architecture; ARCHES which is a list of the previously created
1195 \`\`struct gdbarch'' for this architecture.
1196
0f79675b 1197 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1198 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1199
1200 The ARCHES parameter is a linked list (sorted most recently used)
1201 of all the previously created architures for this architecture
1202 family. The (possibly NULL) ARCHES->gdbarch can used to access
1203 values from the previously selected architecture for this
59837fe0 1204 architecture family.
104c1213
JM
1205
1206 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1207 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1208 gdbarch'' from the ARCHES list - indicating that the new
1209 architecture is just a synonym for an earlier architecture (see
1210 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1211 - that describes the selected architecture (see gdbarch_alloc()).
1212
1213 The DUMP_TDEP function shall print out all target specific values.
1214 Care should be taken to ensure that the function works in both the
0963b4bd 1215 multi-arch and non- multi-arch cases. */
104c1213
JM
1216
1217struct gdbarch_list
1218{
1219 struct gdbarch *gdbarch;
1220 struct gdbarch_list *next;
1221};
1222
1223struct gdbarch_info
1224{
0963b4bd 1225 /* Use default: NULL (ZERO). */
104c1213
JM
1226 const struct bfd_arch_info *bfd_arch_info;
1227
428721aa 1228 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1229 int byte_order;
1230
9d4fde75
SS
1231 int byte_order_for_code;
1232
0963b4bd 1233 /* Use default: NULL (ZERO). */
104c1213
JM
1234 bfd *abfd;
1235
0963b4bd 1236 /* Use default: NULL (ZERO). */
104c1213 1237 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1238
1239 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1240 enum gdb_osabi osabi;
424163ea
DJ
1241
1242 /* Use default: NULL (ZERO). */
1243 const struct target_desc *target_desc;
104c1213
JM
1244};
1245
1246typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1247typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1248
4b9b3959 1249/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1250extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1251
4b9b3959
AC
1252extern void gdbarch_register (enum bfd_architecture architecture,
1253 gdbarch_init_ftype *,
1254 gdbarch_dump_tdep_ftype *);
1255
104c1213 1256
b4a20239
AC
1257/* Return a freshly allocated, NULL terminated, array of the valid
1258 architecture names. Since architectures are registered during the
1259 _initialize phase this function only returns useful information
0963b4bd 1260 once initialization has been completed. */
b4a20239
AC
1261
1262extern const char **gdbarch_printable_names (void);
1263
1264
104c1213 1265/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1266 matches the information provided by INFO. */
104c1213 1267
424163ea 1268extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1269
1270
1271/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1272 basic initialization using values obtained from the INFO and TDEP
104c1213 1273 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1274 initialization of the object. */
104c1213
JM
1275
1276extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1277
1278
4b9b3959
AC
1279/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1280 It is assumed that the caller freeds the \`\`struct
0963b4bd 1281 gdbarch_tdep''. */
4b9b3959 1282
058f20d5
JB
1283extern void gdbarch_free (struct gdbarch *);
1284
1285
aebd7893
AC
1286/* Helper function. Allocate memory from the \`\`struct gdbarch''
1287 obstack. The memory is freed when the corresponding architecture
1288 is also freed. */
1289
1290extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1291#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1292#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1293
1294
0963b4bd 1295/* Helper function. Force an update of the current architecture.
104c1213 1296
b732d07d
AC
1297 The actual architecture selected is determined by INFO, \`\`(gdb) set
1298 architecture'' et.al., the existing architecture and BFD's default
1299 architecture. INFO should be initialized to zero and then selected
1300 fields should be updated.
104c1213 1301
0963b4bd 1302 Returns non-zero if the update succeeds. */
16f33e29
AC
1303
1304extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1305
1306
ebdba546
AC
1307/* Helper function. Find an architecture matching info.
1308
1309 INFO should be initialized using gdbarch_info_init, relevant fields
1310 set, and then finished using gdbarch_info_fill.
1311
1312 Returns the corresponding architecture, or NULL if no matching
59837fe0 1313 architecture was found. */
ebdba546
AC
1314
1315extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1316
1317
59837fe0 1318/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1319
1320 FIXME: kettenis/20031124: Of the functions that follow, only
1321 gdbarch_from_bfd is supposed to survive. The others will
1322 dissappear since in the future GDB will (hopefully) be truly
1323 multi-arch. However, for now we're still stuck with the concept of
1324 a single active architecture. */
1325
59837fe0 1326extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1327
104c1213
JM
1328
1329/* Register per-architecture data-pointer.
1330
1331 Reserve space for a per-architecture data-pointer. An identifier
1332 for the reserved data-pointer is returned. That identifer should
95160752 1333 be saved in a local static variable.
104c1213 1334
fcc1c85c
AC
1335 Memory for the per-architecture data shall be allocated using
1336 gdbarch_obstack_zalloc. That memory will be deleted when the
1337 corresponding architecture object is deleted.
104c1213 1338
95160752
AC
1339 When a previously created architecture is re-selected, the
1340 per-architecture data-pointer for that previous architecture is
76860b5f 1341 restored. INIT() is not re-called.
104c1213
JM
1342
1343 Multiple registrarants for any architecture are allowed (and
1344 strongly encouraged). */
1345
95160752 1346struct gdbarch_data;
104c1213 1347
030f20e1
AC
1348typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1349extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1350typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1351extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1352extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1353 struct gdbarch_data *data,
1354 void *pointer);
104c1213 1355
451fbdda 1356extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1357
1358
0fa6923a 1359/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1360 byte-order, ...) using information found in the BFD. */
104c1213
JM
1361
1362extern void set_gdbarch_from_file (bfd *);
1363
1364
e514a9d6
JM
1365/* Initialize the current architecture to the "first" one we find on
1366 our list. */
1367
1368extern void initialize_current_architecture (void);
1369
104c1213
JM
1370/* gdbarch trace variable */
1371extern int gdbarch_debug;
1372
4b9b3959 1373extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1374
1375#endif
1376EOF
1377exec 1>&2
1378#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1379compare_new gdbarch.h
104c1213
JM
1380
1381
1382#
1383# C file
1384#
1385
1386exec > new-gdbarch.c
1387copyright
1388cat <<EOF
1389
1390#include "defs.h"
7355ddba 1391#include "arch-utils.h"
104c1213 1392
104c1213 1393#include "gdbcmd.h"
faaf634c 1394#include "inferior.h"
104c1213
JM
1395#include "symcat.h"
1396
f0d4cc9e 1397#include "floatformat.h"
104c1213 1398
95160752 1399#include "gdb_assert.h"
b66d6d2e 1400#include "gdb_string.h"
b59ff9d5 1401#include "reggroups.h"
4be87837 1402#include "osabi.h"
aebd7893 1403#include "gdb_obstack.h"
383f836e 1404#include "observer.h"
a3ecef73 1405#include "regcache.h"
19630284 1406#include "objfiles.h"
95160752 1407
104c1213
JM
1408/* Static function declarations */
1409
b3cc3077 1410static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1411
104c1213
JM
1412/* Non-zero if we want to trace architecture code. */
1413
1414#ifndef GDBARCH_DEBUG
1415#define GDBARCH_DEBUG 0
1416#endif
1417int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1418static void
1419show_gdbarch_debug (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421{
1422 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1423}
104c1213 1424
456fcf94 1425static const char *
8da61cc4 1426pformat (const struct floatformat **format)
456fcf94
AC
1427{
1428 if (format == NULL)
1429 return "(null)";
1430 else
8da61cc4
DJ
1431 /* Just print out one of them - this is only for diagnostics. */
1432 return format[0]->name;
456fcf94
AC
1433}
1434
08105857
PA
1435static const char *
1436pstring (const char *string)
1437{
1438 if (string == NULL)
1439 return "(null)";
1440 return string;
1441}
1442
104c1213
JM
1443EOF
1444
1445# gdbarch open the gdbarch object
3d9a5942 1446printf "\n"
0963b4bd 1447printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1448printf "\n"
1449printf "struct gdbarch\n"
1450printf "{\n"
76860b5f
AC
1451printf " /* Has this architecture been fully initialized? */\n"
1452printf " int initialized_p;\n"
aebd7893
AC
1453printf "\n"
1454printf " /* An obstack bound to the lifetime of the architecture. */\n"
1455printf " struct obstack *obstack;\n"
1456printf "\n"
0963b4bd 1457printf " /* basic architectural information. */\n"
34620563 1458function_list | while do_read
104c1213 1459do
2ada493a
AC
1460 if class_is_info_p
1461 then
3d9a5942 1462 printf " ${returntype} ${function};\n"
2ada493a 1463 fi
104c1213 1464done
3d9a5942 1465printf "\n"
0963b4bd 1466printf " /* target specific vector. */\n"
3d9a5942
AC
1467printf " struct gdbarch_tdep *tdep;\n"
1468printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1469printf "\n"
0963b4bd 1470printf " /* per-architecture data-pointers. */\n"
95160752 1471printf " unsigned nr_data;\n"
3d9a5942
AC
1472printf " void **data;\n"
1473printf "\n"
0963b4bd 1474printf " /* per-architecture swap-regions. */\n"
3d9a5942
AC
1475printf " struct gdbarch_swap *swap;\n"
1476printf "\n"
104c1213
JM
1477cat <<EOF
1478 /* Multi-arch values.
1479
1480 When extending this structure you must:
1481
1482 Add the field below.
1483
1484 Declare set/get functions and define the corresponding
1485 macro in gdbarch.h.
1486
1487 gdbarch_alloc(): If zero/NULL is not a suitable default,
1488 initialize the new field.
1489
1490 verify_gdbarch(): Confirm that the target updated the field
1491 correctly.
1492
7e73cedf 1493 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1494 field is dumped out
1495
c0e8c252 1496 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1497 variable (base values on the host's c-type system).
1498
1499 get_gdbarch(): Implement the set/get functions (probably using
1500 the macro's as shortcuts).
1501
1502 */
1503
1504EOF
34620563 1505function_list | while do_read
104c1213 1506do
2ada493a
AC
1507 if class_is_variable_p
1508 then
3d9a5942 1509 printf " ${returntype} ${function};\n"
2ada493a
AC
1510 elif class_is_function_p
1511 then
2f9b146e 1512 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1513 fi
104c1213 1514done
3d9a5942 1515printf "};\n"
104c1213
JM
1516
1517# A pre-initialized vector
3d9a5942
AC
1518printf "\n"
1519printf "\n"
104c1213
JM
1520cat <<EOF
1521/* The default architecture uses host values (for want of a better
0963b4bd 1522 choice). */
104c1213 1523EOF
3d9a5942
AC
1524printf "\n"
1525printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1526printf "\n"
1527printf "struct gdbarch startup_gdbarch =\n"
1528printf "{\n"
76860b5f 1529printf " 1, /* Always initialized. */\n"
aebd7893 1530printf " NULL, /* The obstack. */\n"
0963b4bd 1531printf " /* basic architecture information. */\n"
4b9b3959 1532function_list | while do_read
104c1213 1533do
2ada493a
AC
1534 if class_is_info_p
1535 then
ec5cbaec 1536 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1537 fi
104c1213
JM
1538done
1539cat <<EOF
0963b4bd 1540 /* target specific vector and its dump routine. */
4b9b3959 1541 NULL, NULL,
0963b4bd 1542 /*per-architecture data-pointers and swap regions. */
104c1213
JM
1543 0, NULL, NULL,
1544 /* Multi-arch values */
1545EOF
34620563 1546function_list | while do_read
104c1213 1547do
2ada493a
AC
1548 if class_is_function_p || class_is_variable_p
1549 then
ec5cbaec 1550 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1551 fi
104c1213
JM
1552done
1553cat <<EOF
c0e8c252 1554 /* startup_gdbarch() */
104c1213 1555};
4b9b3959 1556
1cf3db46 1557struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1558EOF
1559
1560# Create a new gdbarch struct
104c1213 1561cat <<EOF
7de2341d 1562
66b43ecb 1563/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1564 \`\`struct gdbarch_info''. */
104c1213 1565EOF
3d9a5942 1566printf "\n"
104c1213
JM
1567cat <<EOF
1568struct gdbarch *
1569gdbarch_alloc (const struct gdbarch_info *info,
1570 struct gdbarch_tdep *tdep)
1571{
be7811ad 1572 struct gdbarch *gdbarch;
aebd7893
AC
1573
1574 /* Create an obstack for allocating all the per-architecture memory,
1575 then use that to allocate the architecture vector. */
1576 struct obstack *obstack = XMALLOC (struct obstack);
1577 obstack_init (obstack);
be7811ad
MD
1578 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1579 memset (gdbarch, 0, sizeof (*gdbarch));
1580 gdbarch->obstack = obstack;
85de9627 1581
be7811ad 1582 alloc_gdbarch_data (gdbarch);
85de9627 1583
be7811ad 1584 gdbarch->tdep = tdep;
104c1213 1585EOF
3d9a5942 1586printf "\n"
34620563 1587function_list | while do_read
104c1213 1588do
2ada493a
AC
1589 if class_is_info_p
1590 then
be7811ad 1591 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1592 fi
104c1213 1593done
3d9a5942 1594printf "\n"
0963b4bd 1595printf " /* Force the explicit initialization of these. */\n"
34620563 1596function_list | while do_read
104c1213 1597do
2ada493a
AC
1598 if class_is_function_p || class_is_variable_p
1599 then
72e74a21 1600 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1601 then
be7811ad 1602 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1603 fi
2ada493a 1604 fi
104c1213
JM
1605done
1606cat <<EOF
1607 /* gdbarch_alloc() */
1608
be7811ad 1609 return gdbarch;
104c1213
JM
1610}
1611EOF
1612
058f20d5 1613# Free a gdbarch struct.
3d9a5942
AC
1614printf "\n"
1615printf "\n"
058f20d5 1616cat <<EOF
aebd7893
AC
1617/* Allocate extra space using the per-architecture obstack. */
1618
1619void *
1620gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1621{
1622 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1623
aebd7893
AC
1624 memset (data, 0, size);
1625 return data;
1626}
1627
1628
058f20d5
JB
1629/* Free a gdbarch struct. This should never happen in normal
1630 operation --- once you've created a gdbarch, you keep it around.
1631 However, if an architecture's init function encounters an error
1632 building the structure, it may need to clean up a partially
1633 constructed gdbarch. */
4b9b3959 1634
058f20d5
JB
1635void
1636gdbarch_free (struct gdbarch *arch)
1637{
aebd7893 1638 struct obstack *obstack;
05c547f6 1639
95160752 1640 gdb_assert (arch != NULL);
aebd7893
AC
1641 gdb_assert (!arch->initialized_p);
1642 obstack = arch->obstack;
1643 obstack_free (obstack, 0); /* Includes the ARCH. */
1644 xfree (obstack);
058f20d5
JB
1645}
1646EOF
1647
104c1213 1648# verify a new architecture
104c1213 1649cat <<EOF
db446970
AC
1650
1651
1652/* Ensure that all values in a GDBARCH are reasonable. */
1653
104c1213 1654static void
be7811ad 1655verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1656{
f16a1923
AC
1657 struct ui_file *log;
1658 struct cleanup *cleanups;
759ef836 1659 long length;
f16a1923 1660 char *buf;
05c547f6 1661
f16a1923
AC
1662 log = mem_fileopen ();
1663 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1664 /* fundamental */
be7811ad 1665 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1666 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1667 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1668 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1669 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1670EOF
34620563 1671function_list | while do_read
104c1213 1672do
2ada493a
AC
1673 if class_is_function_p || class_is_variable_p
1674 then
72e74a21 1675 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1676 then
3d9a5942 1677 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1678 elif class_is_predicate_p
1679 then
0963b4bd 1680 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1681 # FIXME: See do_read for potential simplification
72e74a21 1682 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1683 then
3d9a5942 1684 printf " if (${invalid_p})\n"
be7811ad 1685 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1686 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1687 then
be7811ad
MD
1688 printf " if (gdbarch->${function} == ${predefault})\n"
1689 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1690 elif [ -n "${postdefault}" ]
f0d4cc9e 1691 then
be7811ad
MD
1692 printf " if (gdbarch->${function} == 0)\n"
1693 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1694 elif [ -n "${invalid_p}" ]
104c1213 1695 then
4d60522e 1696 printf " if (${invalid_p})\n"
f16a1923 1697 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1698 elif [ -n "${predefault}" ]
104c1213 1699 then
be7811ad 1700 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1701 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1702 fi
2ada493a 1703 fi
104c1213
JM
1704done
1705cat <<EOF
759ef836 1706 buf = ui_file_xstrdup (log, &length);
f16a1923 1707 make_cleanup (xfree, buf);
759ef836 1708 if (length > 0)
f16a1923 1709 internal_error (__FILE__, __LINE__,
85c07804 1710 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1711 buf);
1712 do_cleanups (cleanups);
104c1213
JM
1713}
1714EOF
1715
1716# dump the structure
3d9a5942
AC
1717printf "\n"
1718printf "\n"
104c1213 1719cat <<EOF
0963b4bd 1720/* Print out the details of the current architecture. */
4b9b3959 1721
104c1213 1722void
be7811ad 1723gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1724{
b78960be 1725 const char *gdb_nm_file = "<not-defined>";
05c547f6 1726
b78960be
AC
1727#if defined (GDB_NM_FILE)
1728 gdb_nm_file = GDB_NM_FILE;
1729#endif
1730 fprintf_unfiltered (file,
1731 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1732 gdb_nm_file);
104c1213 1733EOF
97030eea 1734function_list | sort -t: -k 3 | while do_read
104c1213 1735do
1e9f55d0
AC
1736 # First the predicate
1737 if class_is_predicate_p
1738 then
7996bcec 1739 printf " fprintf_unfiltered (file,\n"
48f7351b 1740 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1741 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1742 fi
48f7351b 1743 # Print the corresponding value.
283354d8 1744 if class_is_function_p
4b9b3959 1745 then
7996bcec 1746 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1747 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1748 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1749 else
48f7351b 1750 # It is a variable
2f9b146e
AC
1751 case "${print}:${returntype}" in
1752 :CORE_ADDR )
0b1553bc
UW
1753 fmt="%s"
1754 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1755 ;;
2f9b146e 1756 :* )
48f7351b 1757 fmt="%s"
623d3eb1 1758 print="plongest (gdbarch->${function})"
48f7351b
AC
1759 ;;
1760 * )
2f9b146e 1761 fmt="%s"
48f7351b
AC
1762 ;;
1763 esac
3d9a5942 1764 printf " fprintf_unfiltered (file,\n"
48f7351b 1765 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1766 printf " ${print});\n"
2ada493a 1767 fi
104c1213 1768done
381323f4 1769cat <<EOF
be7811ad
MD
1770 if (gdbarch->dump_tdep != NULL)
1771 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1772}
1773EOF
104c1213
JM
1774
1775
1776# GET/SET
3d9a5942 1777printf "\n"
104c1213
JM
1778cat <<EOF
1779struct gdbarch_tdep *
1780gdbarch_tdep (struct gdbarch *gdbarch)
1781{
1782 if (gdbarch_debug >= 2)
3d9a5942 1783 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1784 return gdbarch->tdep;
1785}
1786EOF
3d9a5942 1787printf "\n"
34620563 1788function_list | while do_read
104c1213 1789do
2ada493a
AC
1790 if class_is_predicate_p
1791 then
3d9a5942
AC
1792 printf "\n"
1793 printf "int\n"
1794 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1795 printf "{\n"
8de9bdc4 1796 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1797 printf " return ${predicate};\n"
3d9a5942 1798 printf "}\n"
2ada493a
AC
1799 fi
1800 if class_is_function_p
1801 then
3d9a5942
AC
1802 printf "\n"
1803 printf "${returntype}\n"
72e74a21 1804 if [ "x${formal}" = "xvoid" ]
104c1213 1805 then
3d9a5942 1806 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1807 else
3d9a5942 1808 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1809 fi
3d9a5942 1810 printf "{\n"
8de9bdc4 1811 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1812 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1813 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1814 then
1815 # Allow a call to a function with a predicate.
956ac328 1816 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1817 fi
3d9a5942
AC
1818 printf " if (gdbarch_debug >= 2)\n"
1819 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1820 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1821 then
1822 if class_is_multiarch_p
1823 then
1824 params="gdbarch"
1825 else
1826 params=""
1827 fi
1828 else
1829 if class_is_multiarch_p
1830 then
1831 params="gdbarch, ${actual}"
1832 else
1833 params="${actual}"
1834 fi
1835 fi
72e74a21 1836 if [ "x${returntype}" = "xvoid" ]
104c1213 1837 then
4a5c6a1d 1838 printf " gdbarch->${function} (${params});\n"
104c1213 1839 else
4a5c6a1d 1840 printf " return gdbarch->${function} (${params});\n"
104c1213 1841 fi
3d9a5942
AC
1842 printf "}\n"
1843 printf "\n"
1844 printf "void\n"
1845 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1846 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1847 printf "{\n"
1848 printf " gdbarch->${function} = ${function};\n"
1849 printf "}\n"
2ada493a
AC
1850 elif class_is_variable_p
1851 then
3d9a5942
AC
1852 printf "\n"
1853 printf "${returntype}\n"
1854 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1855 printf "{\n"
8de9bdc4 1856 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1857 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1858 then
3d9a5942 1859 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1860 elif [ -n "${invalid_p}" ]
104c1213 1861 then
956ac328
AC
1862 printf " /* Check variable is valid. */\n"
1863 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1864 elif [ -n "${predefault}" ]
104c1213 1865 then
956ac328
AC
1866 printf " /* Check variable changed from pre-default. */\n"
1867 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1868 fi
3d9a5942
AC
1869 printf " if (gdbarch_debug >= 2)\n"
1870 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1871 printf " return gdbarch->${function};\n"
1872 printf "}\n"
1873 printf "\n"
1874 printf "void\n"
1875 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1876 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1877 printf "{\n"
1878 printf " gdbarch->${function} = ${function};\n"
1879 printf "}\n"
2ada493a
AC
1880 elif class_is_info_p
1881 then
3d9a5942
AC
1882 printf "\n"
1883 printf "${returntype}\n"
1884 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1885 printf "{\n"
8de9bdc4 1886 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1887 printf " if (gdbarch_debug >= 2)\n"
1888 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1889 printf " return gdbarch->${function};\n"
1890 printf "}\n"
2ada493a 1891 fi
104c1213
JM
1892done
1893
1894# All the trailing guff
1895cat <<EOF
1896
1897
f44c642f 1898/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1899 modules. */
104c1213
JM
1900
1901struct gdbarch_data
1902{
95160752 1903 unsigned index;
76860b5f 1904 int init_p;
030f20e1
AC
1905 gdbarch_data_pre_init_ftype *pre_init;
1906 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1907};
1908
1909struct gdbarch_data_registration
1910{
104c1213
JM
1911 struct gdbarch_data *data;
1912 struct gdbarch_data_registration *next;
1913};
1914
f44c642f 1915struct gdbarch_data_registry
104c1213 1916{
95160752 1917 unsigned nr;
104c1213
JM
1918 struct gdbarch_data_registration *registrations;
1919};
1920
f44c642f 1921struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1922{
1923 0, NULL,
1924};
1925
030f20e1
AC
1926static struct gdbarch_data *
1927gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1928 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1929{
1930 struct gdbarch_data_registration **curr;
05c547f6
MS
1931
1932 /* Append the new registration. */
f44c642f 1933 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1934 (*curr) != NULL;
1935 curr = &(*curr)->next);
1936 (*curr) = XMALLOC (struct gdbarch_data_registration);
1937 (*curr)->next = NULL;
104c1213 1938 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1939 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1940 (*curr)->data->pre_init = pre_init;
1941 (*curr)->data->post_init = post_init;
76860b5f 1942 (*curr)->data->init_p = 1;
104c1213
JM
1943 return (*curr)->data;
1944}
1945
030f20e1
AC
1946struct gdbarch_data *
1947gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1948{
1949 return gdbarch_data_register (pre_init, NULL);
1950}
1951
1952struct gdbarch_data *
1953gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1954{
1955 return gdbarch_data_register (NULL, post_init);
1956}
104c1213 1957
0963b4bd 1958/* Create/delete the gdbarch data vector. */
95160752
AC
1959
1960static void
b3cc3077 1961alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1962{
b3cc3077
JB
1963 gdb_assert (gdbarch->data == NULL);
1964 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1965 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1966}
3c875b6f 1967
76860b5f 1968/* Initialize the current value of the specified per-architecture
0963b4bd 1969 data-pointer. */
b3cc3077 1970
95160752 1971void
030f20e1
AC
1972deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1973 struct gdbarch_data *data,
1974 void *pointer)
95160752
AC
1975{
1976 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1977 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1978 gdb_assert (data->pre_init == NULL);
95160752
AC
1979 gdbarch->data[data->index] = pointer;
1980}
1981
104c1213 1982/* Return the current value of the specified per-architecture
0963b4bd 1983 data-pointer. */
104c1213
JM
1984
1985void *
451fbdda 1986gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1987{
451fbdda 1988 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1989 if (gdbarch->data[data->index] == NULL)
76860b5f 1990 {
030f20e1
AC
1991 /* The data-pointer isn't initialized, call init() to get a
1992 value. */
1993 if (data->pre_init != NULL)
1994 /* Mid architecture creation: pass just the obstack, and not
1995 the entire architecture, as that way it isn't possible for
1996 pre-init code to refer to undefined architecture
1997 fields. */
1998 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1999 else if (gdbarch->initialized_p
2000 && data->post_init != NULL)
2001 /* Post architecture creation: pass the entire architecture
2002 (as all fields are valid), but be careful to also detect
2003 recursive references. */
2004 {
2005 gdb_assert (data->init_p);
2006 data->init_p = 0;
2007 gdbarch->data[data->index] = data->post_init (gdbarch);
2008 data->init_p = 1;
2009 }
2010 else
2011 /* The architecture initialization hasn't completed - punt -
2012 hope that the caller knows what they are doing. Once
2013 deprecated_set_gdbarch_data has been initialized, this can be
2014 changed to an internal error. */
2015 return NULL;
76860b5f
AC
2016 gdb_assert (gdbarch->data[data->index] != NULL);
2017 }
451fbdda 2018 return gdbarch->data[data->index];
104c1213
JM
2019}
2020
2021
0963b4bd 2022/* Keep a registry of the architectures known by GDB. */
104c1213 2023
4b9b3959 2024struct gdbarch_registration
104c1213
JM
2025{
2026 enum bfd_architecture bfd_architecture;
2027 gdbarch_init_ftype *init;
4b9b3959 2028 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2029 struct gdbarch_list *arches;
4b9b3959 2030 struct gdbarch_registration *next;
104c1213
JM
2031};
2032
f44c642f 2033static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2034
b4a20239
AC
2035static void
2036append_name (const char ***buf, int *nr, const char *name)
2037{
2038 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2039 (*buf)[*nr] = name;
2040 *nr += 1;
2041}
2042
2043const char **
2044gdbarch_printable_names (void)
2045{
7996bcec 2046 /* Accumulate a list of names based on the registed list of
0963b4bd 2047 architectures. */
7996bcec
AC
2048 int nr_arches = 0;
2049 const char **arches = NULL;
2050 struct gdbarch_registration *rego;
05c547f6 2051
7996bcec
AC
2052 for (rego = gdbarch_registry;
2053 rego != NULL;
2054 rego = rego->next)
b4a20239 2055 {
7996bcec
AC
2056 const struct bfd_arch_info *ap;
2057 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2058 if (ap == NULL)
2059 internal_error (__FILE__, __LINE__,
85c07804 2060 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2061 do
2062 {
2063 append_name (&arches, &nr_arches, ap->printable_name);
2064 ap = ap->next;
2065 }
2066 while (ap != NULL);
b4a20239 2067 }
7996bcec
AC
2068 append_name (&arches, &nr_arches, NULL);
2069 return arches;
b4a20239
AC
2070}
2071
2072
104c1213 2073void
4b9b3959
AC
2074gdbarch_register (enum bfd_architecture bfd_architecture,
2075 gdbarch_init_ftype *init,
2076 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2077{
4b9b3959 2078 struct gdbarch_registration **curr;
104c1213 2079 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2080
ec3d358c 2081 /* Check that BFD recognizes this architecture */
104c1213
JM
2082 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2083 if (bfd_arch_info == NULL)
2084 {
8e65ff28 2085 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2086 _("gdbarch: Attempt to register "
2087 "unknown architecture (%d)"),
8e65ff28 2088 bfd_architecture);
104c1213 2089 }
0963b4bd 2090 /* Check that we haven't seen this architecture before. */
f44c642f 2091 for (curr = &gdbarch_registry;
104c1213
JM
2092 (*curr) != NULL;
2093 curr = &(*curr)->next)
2094 {
2095 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2096 internal_error (__FILE__, __LINE__,
64b9b334 2097 _("gdbarch: Duplicate registration "
0963b4bd 2098 "of architecture (%s)"),
8e65ff28 2099 bfd_arch_info->printable_name);
104c1213
JM
2100 }
2101 /* log it */
2102 if (gdbarch_debug)
30737ed9 2103 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2104 bfd_arch_info->printable_name,
30737ed9 2105 host_address_to_string (init));
104c1213 2106 /* Append it */
4b9b3959 2107 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2108 (*curr)->bfd_architecture = bfd_architecture;
2109 (*curr)->init = init;
4b9b3959 2110 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2111 (*curr)->arches = NULL;
2112 (*curr)->next = NULL;
4b9b3959
AC
2113}
2114
2115void
2116register_gdbarch_init (enum bfd_architecture bfd_architecture,
2117 gdbarch_init_ftype *init)
2118{
2119 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2120}
104c1213
JM
2121
2122
424163ea 2123/* Look for an architecture using gdbarch_info. */
104c1213
JM
2124
2125struct gdbarch_list *
2126gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2127 const struct gdbarch_info *info)
2128{
2129 for (; arches != NULL; arches = arches->next)
2130 {
2131 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2132 continue;
2133 if (info->byte_order != arches->gdbarch->byte_order)
2134 continue;
4be87837
DJ
2135 if (info->osabi != arches->gdbarch->osabi)
2136 continue;
424163ea
DJ
2137 if (info->target_desc != arches->gdbarch->target_desc)
2138 continue;
104c1213
JM
2139 return arches;
2140 }
2141 return NULL;
2142}
2143
2144
ebdba546 2145/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2146 architecture if needed. Return that new architecture. */
104c1213 2147
59837fe0
UW
2148struct gdbarch *
2149gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2150{
2151 struct gdbarch *new_gdbarch;
4b9b3959 2152 struct gdbarch_registration *rego;
104c1213 2153
b732d07d 2154 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2155 sources: "set ..."; INFOabfd supplied; and the global
2156 defaults. */
2157 gdbarch_info_fill (&info);
4be87837 2158
0963b4bd 2159 /* Must have found some sort of architecture. */
b732d07d 2160 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2161
2162 if (gdbarch_debug)
2163 {
2164 fprintf_unfiltered (gdb_stdlog,
59837fe0 2165 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2166 (info.bfd_arch_info != NULL
2167 ? info.bfd_arch_info->printable_name
2168 : "(null)"));
2169 fprintf_unfiltered (gdb_stdlog,
59837fe0 2170 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2171 info.byte_order,
d7449b42 2172 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2173 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2174 : "default"));
4be87837 2175 fprintf_unfiltered (gdb_stdlog,
59837fe0 2176 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2177 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2178 fprintf_unfiltered (gdb_stdlog,
59837fe0 2179 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2180 host_address_to_string (info.abfd));
104c1213 2181 fprintf_unfiltered (gdb_stdlog,
59837fe0 2182 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2183 host_address_to_string (info.tdep_info));
104c1213
JM
2184 }
2185
ebdba546 2186 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2187 for (rego = gdbarch_registry;
2188 rego != NULL;
2189 rego = rego->next)
2190 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2191 break;
2192 if (rego == NULL)
2193 {
2194 if (gdbarch_debug)
59837fe0 2195 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2196 "No matching architecture\n");
b732d07d
AC
2197 return 0;
2198 }
2199
ebdba546 2200 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2201 new_gdbarch = rego->init (info, rego->arches);
2202
ebdba546
AC
2203 /* Did the tdep code like it? No. Reject the change and revert to
2204 the old architecture. */
104c1213
JM
2205 if (new_gdbarch == NULL)
2206 {
2207 if (gdbarch_debug)
59837fe0 2208 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2209 "Target rejected architecture\n");
2210 return NULL;
104c1213
JM
2211 }
2212
ebdba546
AC
2213 /* Is this a pre-existing architecture (as determined by already
2214 being initialized)? Move it to the front of the architecture
2215 list (keeping the list sorted Most Recently Used). */
2216 if (new_gdbarch->initialized_p)
104c1213 2217 {
ebdba546
AC
2218 struct gdbarch_list **list;
2219 struct gdbarch_list *this;
104c1213 2220 if (gdbarch_debug)
59837fe0 2221 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2222 "Previous architecture %s (%s) selected\n",
2223 host_address_to_string (new_gdbarch),
104c1213 2224 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2225 /* Find the existing arch in the list. */
2226 for (list = &rego->arches;
2227 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2228 list = &(*list)->next);
2229 /* It had better be in the list of architectures. */
2230 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2231 /* Unlink THIS. */
2232 this = (*list);
2233 (*list) = this->next;
2234 /* Insert THIS at the front. */
2235 this->next = rego->arches;
2236 rego->arches = this;
2237 /* Return it. */
2238 return new_gdbarch;
104c1213
JM
2239 }
2240
ebdba546
AC
2241 /* It's a new architecture. */
2242 if (gdbarch_debug)
59837fe0 2243 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2244 "New architecture %s (%s) selected\n",
2245 host_address_to_string (new_gdbarch),
ebdba546
AC
2246 new_gdbarch->bfd_arch_info->printable_name);
2247
2248 /* Insert the new architecture into the front of the architecture
2249 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2250 {
2251 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2252 this->next = rego->arches;
2253 this->gdbarch = new_gdbarch;
2254 rego->arches = this;
2255 }
104c1213 2256
4b9b3959
AC
2257 /* Check that the newly installed architecture is valid. Plug in
2258 any post init values. */
2259 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2260 verify_gdbarch (new_gdbarch);
ebdba546 2261 new_gdbarch->initialized_p = 1;
104c1213 2262
4b9b3959 2263 if (gdbarch_debug)
ebdba546
AC
2264 gdbarch_dump (new_gdbarch, gdb_stdlog);
2265
2266 return new_gdbarch;
2267}
2268
e487cc15 2269/* Make the specified architecture current. */
ebdba546
AC
2270
2271void
59837fe0 2272deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2273{
2274 gdb_assert (new_gdbarch != NULL);
ebdba546 2275 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2276 target_gdbarch = new_gdbarch;
383f836e 2277 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2278 registers_changed ();
ebdba546 2279}
104c1213 2280
104c1213 2281extern void _initialize_gdbarch (void);
b4a20239 2282
104c1213 2283void
34620563 2284_initialize_gdbarch (void)
104c1213 2285{
85c07804
AC
2286 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2287Set architecture debugging."), _("\\
2288Show architecture debugging."), _("\\
2289When non-zero, architecture debugging is enabled."),
2290 NULL,
920d2a44 2291 show_gdbarch_debug,
85c07804 2292 &setdebuglist, &showdebuglist);
104c1213
JM
2293}
2294EOF
2295
2296# close things off
2297exec 1>&2
2298#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2299compare_new gdbarch.c
This page took 1.503593 seconds and 4 git commands to generate.