arc/gas: Accept, but ignore, dummy arguments.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
32d0add0 5# Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 464# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 465m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 466m:const char *:register_name:int regnr:regnr::0
9c04cab7 467
7b9ee6a8
DJ
468# Return the type of a register specified by the architecture. Only
469# the register cache should call this function directly; others should
470# use "register_type".
97030eea 471M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 472
669fac23
DJ
473M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 475# deprecated_fp_regnum.
97030eea 476v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 477
97030eea
UW
478M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
479v:int:call_dummy_location::::AT_ENTRY_POINT::0
480M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 481
97030eea 482m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 483m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 484M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
485# MAP a GDB RAW register number onto a simulator register number. See
486# also include/...-sim.h.
e7faf938 487m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
488m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
489m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
490
491# Determine the address where a longjmp will land and save this address
492# in PC. Return nonzero on success.
493#
494# FRAME corresponds to the longjmp frame.
97030eea 495F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 496
104c1213 497#
97030eea 498v:int:believe_pcc_promotion:::::::
104c1213 499#
0abe36f5 500m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 501f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 502f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 503# Construct a value representing the contents of register REGNUM in
2ed3c037 504# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
505# allocate and return a struct value with all value attributes
506# (but not the value contents) filled in.
2ed3c037 507m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 508#
9898f801
UW
509m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
510m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 511M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 512
6a3a010b
MR
513# Return the return-value convention that will be used by FUNCTION
514# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
515# case the return convention is computed based only on VALTYPE.
516#
517# If READBUF is not NULL, extract the return value and save it in this buffer.
518#
519# If WRITEBUF is not NULL, it contains a return value which will be
520# stored into the appropriate register. This can be used when we want
521# to force the value returned by a function (see the "return" command
522# for instance).
6a3a010b 523M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 524
18648a37
YQ
525# Return true if the return value of function is stored in the first hidden
526# parameter. In theory, this feature should be language-dependent, specified
527# by language and its ABI, such as C++. Unfortunately, compiler may
528# implement it to a target-dependent feature. So that we need such hook here
529# to be aware of this in GDB.
530m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
531
6093d2eb 532m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 533M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
534# On some platforms, a single function may provide multiple entry points,
535# e.g. one that is used for function-pointer calls and a different one
536# that is used for direct function calls.
537# In order to ensure that breakpoints set on the function will trigger
538# no matter via which entry point the function is entered, a platform
539# may provide the skip_entrypoint callback. It is called with IP set
540# to the main entry point of a function (as determined by the symbol table),
541# and should return the address of the innermost entry point, where the
542# actual breakpoint needs to be set. Note that skip_entrypoint is used
543# by GDB common code even when debugging optimized code, where skip_prologue
544# is not used.
545M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
546
97030eea 547f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 548m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
549# Return the adjusted address and kind to use for Z0/Z1 packets.
550# KIND is usually the memory length of the breakpoint, but may have a
551# different target-specific meaning.
0e05dfcb 552m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 553M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
554m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
555m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 556v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
557
558# A function can be addressed by either it's "pointer" (possibly a
559# descriptor address) or "entry point" (first executable instruction).
560# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 561# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
562# a simplified subset of that functionality - the function's address
563# corresponds to the "function pointer" and the function's start
564# corresponds to the "function entry point" - and hence is redundant.
565
97030eea 566v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 567
123dc839
DJ
568# Return the remote protocol register number associated with this
569# register. Normally the identity mapping.
97030eea 570m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 571
b2756930 572# Fetch the target specific address used to represent a load module.
97030eea 573F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 574#
97030eea
UW
575v:CORE_ADDR:frame_args_skip:::0:::0
576M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
577M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
578# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
579# frame-base. Enable frame-base before frame-unwind.
97030eea 580F:int:frame_num_args:struct frame_info *frame:frame
104c1213 581#
97030eea
UW
582M:CORE_ADDR:frame_align:CORE_ADDR address:address
583m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
584v:int:frame_red_zone_size
f0d4cc9e 585#
97030eea 586m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
587# On some machines there are bits in addresses which are not really
588# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 589# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
590# we get a "real" address such as one would find in a symbol table.
591# This is used only for addresses of instructions, and even then I'm
592# not sure it's used in all contexts. It exists to deal with there
593# being a few stray bits in the PC which would mislead us, not as some
594# sort of generic thing to handle alignment or segmentation (it's
595# possible it should be in TARGET_READ_PC instead).
24568a2c 596m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
597
598# FIXME/cagney/2001-01-18: This should be split in two. A target method that
599# indicates if the target needs software single step. An ISA method to
600# implement it.
601#
602# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
603# breakpoints using the breakpoint system instead of blatting memory directly
604# (as with rs6000).
64c4637f 605#
e6590a1b
UW
606# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
607# target can single step. If not, then implement single step using breakpoints.
64c4637f 608#
6f112b18 609# A return value of 1 means that the software_single_step breakpoints
e6590a1b 610# were inserted; 0 means they were not.
97030eea 611F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 612
3352ef37
AC
613# Return non-zero if the processor is executing a delay slot and a
614# further single-step is needed before the instruction finishes.
97030eea 615M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 616# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 617# disassembler. Perhaps objdump can handle it?
97030eea
UW
618f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
620
621
cfd8ab24 622# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
623# evaluates non-zero, this is the address where the debugger will place
624# a step-resume breakpoint to get us past the dynamic linker.
97030eea 625m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 626# Some systems also have trampoline code for returning from shared libs.
2c02bd72 627m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 628
c12260ac
CV
629# A target might have problems with watchpoints as soon as the stack
630# frame of the current function has been destroyed. This mostly happens
c9cf6e20 631# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
632# is defined to return a non-zero value if either the given addr is one
633# instruction after the stack destroying instruction up to the trailing
634# return instruction or if we can figure out that the stack frame has
635# already been invalidated regardless of the value of addr. Targets
636# which don't suffer from that problem could just let this functionality
637# untouched.
c9cf6e20 638m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
639# Process an ELF symbol in the minimal symbol table in a backend-specific
640# way. Normally this hook is supposed to do nothing, however if required,
641# then this hook can be used to apply tranformations to symbols that are
642# considered special in some way. For example the MIPS backend uses it
643# to interpret \`st_other' information to mark compressed code symbols so
644# that they can be treated in the appropriate manner in the processing of
645# the main symbol table and DWARF-2 records.
646F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 647f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
648# Process a symbol in the main symbol table in a backend-specific way.
649# Normally this hook is supposed to do nothing, however if required,
650# then this hook can be used to apply tranformations to symbols that
651# are considered special in some way. This is currently used by the
652# MIPS backend to make sure compressed code symbols have the ISA bit
653# set. This in turn is needed for symbol values seen in GDB to match
654# the values used at the runtime by the program itself, for function
655# and label references.
656f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
657# Adjust the address retrieved from a DWARF-2 record other than a line
658# entry in a backend-specific way. Normally this hook is supposed to
659# return the address passed unchanged, however if that is incorrect for
660# any reason, then this hook can be used to fix the address up in the
661# required manner. This is currently used by the MIPS backend to make
662# sure addresses in FDE, range records, etc. referring to compressed
663# code have the ISA bit set, matching line information and the symbol
664# table.
665f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
666# Adjust the address updated by a line entry in a backend-specific way.
667# Normally this hook is supposed to return the address passed unchanged,
668# however in the case of inconsistencies in these records, this hook can
669# be used to fix them up in the required manner. This is currently used
670# by the MIPS backend to make sure all line addresses in compressed code
671# are presented with the ISA bit set, which is not always the case. This
672# in turn ensures breakpoint addresses are correctly matched against the
673# stop PC.
674f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
675v:int:cannot_step_breakpoint:::0:0::0
676v:int:have_nonsteppable_watchpoint:::0:0::0
677F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
678M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
679
680# Return the appropriate type_flags for the supplied address class.
681# This function should return 1 if the address class was recognized and
682# type_flags was set, zero otherwise.
97030eea 683M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 684# Is a register in a group
97030eea 685m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 686# Fetch the pointer to the ith function argument.
97030eea 687F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 688
5aa82d05
AA
689# Iterate over all supported register notes in a core file. For each
690# supported register note section, the iterator must call CB and pass
691# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
692# the supported register note sections based on the current register
693# values. Otherwise it should enumerate all supported register note
694# sections.
695M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 696
6432734d
UW
697# Create core file notes
698M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
699
b3ac9c77
SDJ
700# The elfcore writer hook to use to write Linux prpsinfo notes to core
701# files. Most Linux architectures use the same prpsinfo32 or
702# prpsinfo64 layouts, and so won't need to provide this hook, as we
703# call the Linux generic routines in bfd to write prpsinfo notes by
704# default.
705F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
706
35c2fab7
UW
707# Find core file memory regions
708M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
709
de584861 710# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
711# core file into buffer READBUF with length LEN. Return the number of bytes read
712# (zero indicates failure).
713# failed, otherwise, return the red length of READBUF.
714M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 715
356a5233
JB
716# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
717# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
718# Return the number of bytes read (zero indicates failure).
719M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 720
c0edd9ed 721# How the core target converts a PTID from a core file to a string.
28439f5e
PA
722M:char *:core_pid_to_str:ptid_t ptid:ptid
723
a78c2d62 724# BFD target to use when generating a core file.
86ba1042 725V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 726
0d5de010
DJ
727# If the elements of C++ vtables are in-place function descriptors rather
728# than normal function pointers (which may point to code or a descriptor),
729# set this to one.
97030eea 730v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
731
732# Set if the least significant bit of the delta is used instead of the least
733# significant bit of the pfn for pointers to virtual member functions.
97030eea 734v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
735
736# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 737f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 738
1668ae25 739# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
740V:ULONGEST:max_insn_length:::0:0
741
742# Copy the instruction at FROM to TO, and make any adjustments
743# necessary to single-step it at that address.
744#
745# REGS holds the state the thread's registers will have before
746# executing the copied instruction; the PC in REGS will refer to FROM,
747# not the copy at TO. The caller should update it to point at TO later.
748#
749# Return a pointer to data of the architecture's choice to be passed
750# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
751# the instruction's effects have been completely simulated, with the
752# resulting state written back to REGS.
753#
754# For a general explanation of displaced stepping and how GDB uses it,
755# see the comments in infrun.c.
756#
757# The TO area is only guaranteed to have space for
758# gdbarch_max_insn_length (arch) bytes, so this function must not
759# write more bytes than that to that area.
760#
761# If you do not provide this function, GDB assumes that the
762# architecture does not support displaced stepping.
763#
764# If your architecture doesn't need to adjust instructions before
765# single-stepping them, consider using simple_displaced_step_copy_insn
766# here.
7f03bd92
PA
767#
768# If the instruction cannot execute out of line, return NULL. The
769# core falls back to stepping past the instruction in-line instead in
770# that case.
237fc4c9
PA
771M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
772
99e40580
UW
773# Return true if GDB should use hardware single-stepping to execute
774# the displaced instruction identified by CLOSURE. If false,
775# GDB will simply restart execution at the displaced instruction
776# location, and it is up to the target to ensure GDB will receive
777# control again (e.g. by placing a software breakpoint instruction
778# into the displaced instruction buffer).
779#
780# The default implementation returns false on all targets that
781# provide a gdbarch_software_single_step routine, and true otherwise.
782m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
783
237fc4c9
PA
784# Fix up the state resulting from successfully single-stepping a
785# displaced instruction, to give the result we would have gotten from
786# stepping the instruction in its original location.
787#
788# REGS is the register state resulting from single-stepping the
789# displaced instruction.
790#
791# CLOSURE is the result from the matching call to
792# gdbarch_displaced_step_copy_insn.
793#
794# If you provide gdbarch_displaced_step_copy_insn.but not this
795# function, then GDB assumes that no fixup is needed after
796# single-stepping the instruction.
797#
798# For a general explanation of displaced stepping and how GDB uses it,
799# see the comments in infrun.c.
800M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
801
802# Free a closure returned by gdbarch_displaced_step_copy_insn.
803#
804# If you provide gdbarch_displaced_step_copy_insn, you must provide
805# this function as well.
806#
807# If your architecture uses closures that don't need to be freed, then
808# you can use simple_displaced_step_free_closure here.
809#
810# For a general explanation of displaced stepping and how GDB uses it,
811# see the comments in infrun.c.
812m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
813
814# Return the address of an appropriate place to put displaced
815# instructions while we step over them. There need only be one such
816# place, since we're only stepping one thread over a breakpoint at a
817# time.
818#
819# For a general explanation of displaced stepping and how GDB uses it,
820# see the comments in infrun.c.
821m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
822
dde08ee1
PA
823# Relocate an instruction to execute at a different address. OLDLOC
824# is the address in the inferior memory where the instruction to
825# relocate is currently at. On input, TO points to the destination
826# where we want the instruction to be copied (and possibly adjusted)
827# to. On output, it points to one past the end of the resulting
828# instruction(s). The effect of executing the instruction at TO shall
829# be the same as if executing it at FROM. For example, call
830# instructions that implicitly push the return address on the stack
831# should be adjusted to return to the instruction after OLDLOC;
832# relative branches, and other PC-relative instructions need the
833# offset adjusted; etc.
834M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
835
1c772458 836# Refresh overlay mapped state for section OSECT.
97030eea 837F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 838
97030eea 839M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
840
841# Handle special encoding of static variables in stabs debug info.
0d5cff50 842F:const char *:static_transform_name:const char *name:name
203c3895 843# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 844v:int:sofun_address_maybe_missing:::0:0::0
1cded358 845
0508c3ec
HZ
846# Parse the instruction at ADDR storing in the record execution log
847# the registers REGCACHE and memory ranges that will be affected when
848# the instruction executes, along with their current values.
849# Return -1 if something goes wrong, 0 otherwise.
850M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
851
3846b520
HZ
852# Save process state after a signal.
853# Return -1 if something goes wrong, 0 otherwise.
2ea28649 854M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 855
22203bbf 856# Signal translation: translate inferior's signal (target's) number
86b49880
PA
857# into GDB's representation. The implementation of this method must
858# be host independent. IOW, don't rely on symbols of the NAT_FILE
859# header (the nm-*.h files), the host <signal.h> header, or similar
860# headers. This is mainly used when cross-debugging core files ---
861# "Live" targets hide the translation behind the target interface
1f8cf220
PA
862# (target_wait, target_resume, etc.).
863M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 864
eb14d406
SDJ
865# Signal translation: translate the GDB's internal signal number into
866# the inferior's signal (target's) representation. The implementation
867# of this method must be host independent. IOW, don't rely on symbols
868# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
869# header, or similar headers.
870# Return the target signal number if found, or -1 if the GDB internal
871# signal number is invalid.
872M:int:gdb_signal_to_target:enum gdb_signal signal:signal
873
4aa995e1
PA
874# Extra signal info inspection.
875#
876# Return a type suitable to inspect extra signal information.
877M:struct type *:get_siginfo_type:void:
878
60c5725c
DJ
879# Record architecture-specific information from the symbol table.
880M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 881
a96d9b2e
SDJ
882# Function for the 'catch syscall' feature.
883
884# Get architecture-specific system calls information from registers.
885M:LONGEST:get_syscall_number:ptid_t ptid:ptid
886
458c8db8
SDJ
887# The filename of the XML syscall for this architecture.
888v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
889
890# Information about system calls from this architecture
891v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
892
55aa24fb
SDJ
893# SystemTap related fields and functions.
894
05c0465e
SDJ
895# A NULL-terminated array of prefixes used to mark an integer constant
896# on the architecture's assembly.
55aa24fb
SDJ
897# For example, on x86 integer constants are written as:
898#
899# \$10 ;; integer constant 10
900#
901# in this case, this prefix would be the character \`\$\'.
05c0465e 902v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 903
05c0465e
SDJ
904# A NULL-terminated array of suffixes used to mark an integer constant
905# on the architecture's assembly.
906v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 907
05c0465e
SDJ
908# A NULL-terminated array of prefixes used to mark a register name on
909# the architecture's assembly.
55aa24fb
SDJ
910# For example, on x86 the register name is written as:
911#
912# \%eax ;; register eax
913#
914# in this case, this prefix would be the character \`\%\'.
05c0465e 915v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 916
05c0465e
SDJ
917# A NULL-terminated array of suffixes used to mark a register name on
918# the architecture's assembly.
919v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 920
05c0465e
SDJ
921# A NULL-terminated array of prefixes used to mark a register
922# indirection on the architecture's assembly.
55aa24fb
SDJ
923# For example, on x86 the register indirection is written as:
924#
925# \(\%eax\) ;; indirecting eax
926#
927# in this case, this prefix would be the charater \`\(\'.
928#
929# Please note that we use the indirection prefix also for register
930# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 931v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 932
05c0465e
SDJ
933# A NULL-terminated array of suffixes used to mark a register
934# indirection on the architecture's assembly.
55aa24fb
SDJ
935# For example, on x86 the register indirection is written as:
936#
937# \(\%eax\) ;; indirecting eax
938#
939# in this case, this prefix would be the charater \`\)\'.
940#
941# Please note that we use the indirection suffix also for register
942# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 943v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 944
05c0465e 945# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
946#
947# For example, on PPC a register is represented by a number in the assembly
948# language (e.g., \`10\' is the 10th general-purpose register). However,
949# inside GDB this same register has an \`r\' appended to its name, so the 10th
950# register would be represented as \`r10\' internally.
08af7a40 951v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
952
953# Suffix used to name a register using GDB's nomenclature.
08af7a40 954v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
955
956# Check if S is a single operand.
957#
958# Single operands can be:
959# \- Literal integers, e.g. \`\$10\' on x86
960# \- Register access, e.g. \`\%eax\' on x86
961# \- Register indirection, e.g. \`\(\%eax\)\' on x86
962# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
963#
964# This function should check for these patterns on the string
965# and return 1 if some were found, or zero otherwise. Please try to match
966# as much info as you can from the string, i.e., if you have to match
967# something like \`\(\%\', do not match just the \`\(\'.
968M:int:stap_is_single_operand:const char *s:s
969
970# Function used to handle a "special case" in the parser.
971#
972# A "special case" is considered to be an unknown token, i.e., a token
973# that the parser does not know how to parse. A good example of special
974# case would be ARM's register displacement syntax:
975#
976# [R0, #4] ;; displacing R0 by 4
977#
978# Since the parser assumes that a register displacement is of the form:
979#
980# <number> <indirection_prefix> <register_name> <indirection_suffix>
981#
982# it means that it will not be able to recognize and parse this odd syntax.
983# Therefore, we should add a special case function that will handle this token.
984#
985# This function should generate the proper expression form of the expression
986# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
987# and so on). It should also return 1 if the parsing was successful, or zero
988# if the token was not recognized as a special token (in this case, returning
989# zero means that the special parser is deferring the parsing to the generic
990# parser), and should advance the buffer pointer (p->arg).
991M:int:stap_parse_special_token:struct stap_parse_info *p:p
992
8b367e17
JM
993# DTrace related functions.
994
995# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
996# NARG must be >= 0.
997M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
998
999# True if the given ADDR does not contain the instruction sequence
1000# corresponding to a disabled DTrace is-enabled probe.
1001M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1002
1003# Enable a DTrace is-enabled probe at ADDR.
1004M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1005
1006# Disable a DTrace is-enabled probe at ADDR.
1007M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1008
50c71eaf
PA
1009# True if the list of shared libraries is one and only for all
1010# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1011# This usually means that all processes, although may or may not share
1012# an address space, will see the same set of symbols at the same
1013# addresses.
50c71eaf 1014v:int:has_global_solist:::0:0::0
2567c7d9
PA
1015
1016# On some targets, even though each inferior has its own private
1017# address space, the debug interface takes care of making breakpoints
1018# visible to all address spaces automatically. For such cases,
1019# this property should be set to true.
1020v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1021
1022# True if inferiors share an address space (e.g., uClinux).
1023m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1024
1025# True if a fast tracepoint can be set at an address.
6b940e6a 1026m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1027
f870a310
TT
1028# Return the "auto" target charset.
1029f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1030# Return the "auto" target wide charset.
1031f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1032
1033# If non-empty, this is a file extension that will be opened in place
1034# of the file extension reported by the shared library list.
1035#
1036# This is most useful for toolchains that use a post-linker tool,
1037# where the names of the files run on the target differ in extension
1038# compared to the names of the files GDB should load for debug info.
1039v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1040
1041# If true, the target OS has DOS-based file system semantics. That
1042# is, absolute paths include a drive name, and the backslash is
1043# considered a directory separator.
1044v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1045
1046# Generate bytecodes to collect the return address in a frame.
1047# Since the bytecodes run on the target, possibly with GDB not even
1048# connected, the full unwinding machinery is not available, and
1049# typically this function will issue bytecodes for one or more likely
1050# places that the return address may be found.
1051m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1052
3030c96e 1053# Implement the "info proc" command.
7bc112c1 1054M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1055
451b7c33
TT
1056# Implement the "info proc" command for core files. Noe that there
1057# are two "info_proc"-like methods on gdbarch -- one for core files,
1058# one for live targets.
7bc112c1 1059M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1060
19630284
JB
1061# Iterate over all objfiles in the order that makes the most sense
1062# for the architecture to make global symbol searches.
1063#
1064# CB is a callback function where OBJFILE is the objfile to be searched,
1065# and CB_DATA a pointer to user-defined data (the same data that is passed
1066# when calling this gdbarch method). The iteration stops if this function
1067# returns nonzero.
1068#
1069# CB_DATA is a pointer to some user-defined data to be passed to
1070# the callback.
1071#
1072# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1073# inspected when the symbol search was requested.
1074m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1075
7e35103a
JB
1076# Ravenscar arch-dependent ops.
1077v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1078
1079# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1080m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1081
1082# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1083m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1084
1085# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1086m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1087
1088# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1089# Return 0 if *READPTR is already at the end of the buffer.
1090# Return -1 if there is insufficient buffer for a whole entry.
1091# Return 1 if an entry was read into *TYPEP and *VALP.
1092M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1093
1094# Find the address range of the current inferior's vsyscall/vDSO, and
1095# write it to *RANGE. If the vsyscall's length can't be determined, a
1096# range with zero length is returned. Returns true if the vsyscall is
1097# found, false otherwise.
1098m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1099
1100# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1101# PROT has GDB_MMAP_PROT_* bitmask format.
1102# Throw an error if it is not possible. Returned address is always valid.
1103f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1104
7f361056
JK
1105# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1106# Print a warning if it is not possible.
1107f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1108
f208eee0
JK
1109# Return string (caller has to use xfree for it) with options for GCC
1110# to produce code for this target, typically "-m64", "-m32" or "-m31".
1111# These options are put before CU's DW_AT_producer compilation options so that
1112# they can override it. Method may also return NULL.
1113m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1114
1115# Return a regular expression that matches names used by this
1116# architecture in GNU configury triplets. The result is statically
1117# allocated and must not be freed. The default implementation simply
1118# returns the BFD architecture name, which is correct in nearly every
1119# case.
1120m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1121
1122# Return the size in 8-bit bytes of an addressable memory unit on this
1123# architecture. This corresponds to the number of 8-bit bytes associated to
1124# each address in memory.
1125m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1126
104c1213 1127EOF
104c1213
JM
1128}
1129
0b8f9e4d
AC
1130#
1131# The .log file
1132#
1133exec > new-gdbarch.log
34620563 1134function_list | while do_read
0b8f9e4d
AC
1135do
1136 cat <<EOF
2f9b146e 1137${class} ${returntype} ${function} ($formal)
104c1213 1138EOF
3d9a5942
AC
1139 for r in ${read}
1140 do
1141 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1142 done
f0d4cc9e 1143 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1144 then
66d659b1 1145 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1146 kill $$
1147 exit 1
1148 fi
72e74a21 1149 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1150 then
1151 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1152 kill $$
1153 exit 1
1154 fi
a72293e2
AC
1155 if class_is_multiarch_p
1156 then
1157 if class_is_predicate_p ; then :
1158 elif test "x${predefault}" = "x"
1159 then
2f9b146e 1160 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1161 kill $$
1162 exit 1
1163 fi
1164 fi
3d9a5942 1165 echo ""
0b8f9e4d
AC
1166done
1167
1168exec 1>&2
1169compare_new gdbarch.log
1170
104c1213
JM
1171
1172copyright ()
1173{
1174cat <<EOF
c4bfde41
JK
1175/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1176/* vi:set ro: */
59233f88 1177
104c1213 1178/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1179
32d0add0 1180 Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
1181
1182 This file is part of GDB.
1183
1184 This program is free software; you can redistribute it and/or modify
1185 it under the terms of the GNU General Public License as published by
50efebf8 1186 the Free Software Foundation; either version 3 of the License, or
104c1213 1187 (at your option) any later version.
50efebf8 1188
104c1213
JM
1189 This program is distributed in the hope that it will be useful,
1190 but WITHOUT ANY WARRANTY; without even the implied warranty of
1191 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1192 GNU General Public License for more details.
50efebf8 1193
104c1213 1194 You should have received a copy of the GNU General Public License
50efebf8 1195 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1196
104c1213
JM
1197/* This file was created with the aid of \`\`gdbarch.sh''.
1198
52204a0b 1199 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1200 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1201 against the existing \`\`gdbarch.[hc]''. Any differences found
1202 being reported.
1203
1204 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1205 changes into that script. Conversely, when making sweeping changes
104c1213 1206 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1207 easier. */
104c1213
JM
1208
1209EOF
1210}
1211
1212#
1213# The .h file
1214#
1215
1216exec > new-gdbarch.h
1217copyright
1218cat <<EOF
1219#ifndef GDBARCH_H
1220#define GDBARCH_H
1221
eb7a547a
JB
1222#include "frame.h"
1223
da3331ec
AC
1224struct floatformat;
1225struct ui_file;
104c1213 1226struct value;
b6af0555 1227struct objfile;
1c772458 1228struct obj_section;
a2cf933a 1229struct minimal_symbol;
049ee0e4 1230struct regcache;
b59ff9d5 1231struct reggroup;
6ce6d90f 1232struct regset;
a89aa300 1233struct disassemble_info;
e2d0e7eb 1234struct target_ops;
030f20e1 1235struct obstack;
8181d85f 1236struct bp_target_info;
424163ea 1237struct target_desc;
3e29f34a
MR
1238struct objfile;
1239struct symbol;
237fc4c9 1240struct displaced_step_closure;
a96d9b2e 1241struct syscall;
175ff332 1242struct agent_expr;
6710bf39 1243struct axs_value;
55aa24fb 1244struct stap_parse_info;
8b367e17 1245struct parser_state;
7e35103a 1246struct ravenscar_arch_ops;
b3ac9c77 1247struct elf_internal_linux_prpsinfo;
3437254d 1248struct mem_range;
458c8db8 1249struct syscalls_info;
104c1213 1250
8a526fa6
PA
1251#include "regcache.h"
1252
6ecd4729
PA
1253/* The architecture associated with the inferior through the
1254 connection to the target.
1255
1256 The architecture vector provides some information that is really a
1257 property of the inferior, accessed through a particular target:
1258 ptrace operations; the layout of certain RSP packets; the solib_ops
1259 vector; etc. To differentiate architecture accesses to
1260 per-inferior/target properties from
1261 per-thread/per-frame/per-objfile properties, accesses to
1262 per-inferior/target properties should be made through this
1263 gdbarch. */
1264
1265/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1266extern struct gdbarch *target_gdbarch (void);
6ecd4729 1267
19630284
JB
1268/* Callback type for the 'iterate_over_objfiles_in_search_order'
1269 gdbarch method. */
1270
1271typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1272 (struct objfile *objfile, void *cb_data);
5aa82d05 1273
1528345d
AA
1274/* Callback type for regset section iterators. The callback usually
1275 invokes the REGSET's supply or collect method, to which it must
1276 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1277 section name, and HUMAN_NAME is used for diagnostic messages.
1278 CB_DATA should have been passed unchanged through the iterator. */
1279
5aa82d05 1280typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1281 (const char *sect_name, int size, const struct regset *regset,
1282 const char *human_name, void *cb_data);
104c1213
JM
1283EOF
1284
1285# function typedef's
3d9a5942
AC
1286printf "\n"
1287printf "\n"
0963b4bd 1288printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1289function_list | while do_read
104c1213 1290do
2ada493a
AC
1291 if class_is_info_p
1292 then
3d9a5942
AC
1293 printf "\n"
1294 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1295 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1296 fi
104c1213
JM
1297done
1298
1299# function typedef's
3d9a5942
AC
1300printf "\n"
1301printf "\n"
0963b4bd 1302printf "/* The following are initialized by the target dependent code. */\n"
34620563 1303function_list | while do_read
104c1213 1304do
72e74a21 1305 if [ -n "${comment}" ]
34620563
AC
1306 then
1307 echo "${comment}" | sed \
1308 -e '2 s,#,/*,' \
1309 -e '3,$ s,#, ,' \
1310 -e '$ s,$, */,'
1311 fi
412d5987
AC
1312
1313 if class_is_predicate_p
2ada493a 1314 then
412d5987
AC
1315 printf "\n"
1316 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1317 fi
2ada493a
AC
1318 if class_is_variable_p
1319 then
3d9a5942
AC
1320 printf "\n"
1321 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1322 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1323 fi
1324 if class_is_function_p
1325 then
3d9a5942 1326 printf "\n"
72e74a21 1327 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1328 then
1329 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1330 elif class_is_multiarch_p
1331 then
1332 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1333 else
1334 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1335 fi
72e74a21 1336 if [ "x${formal}" = "xvoid" ]
104c1213 1337 then
3d9a5942 1338 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1339 else
3d9a5942 1340 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1341 fi
3d9a5942 1342 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1343 fi
104c1213
JM
1344done
1345
1346# close it off
1347cat <<EOF
1348
a96d9b2e
SDJ
1349/* Definition for an unknown syscall, used basically in error-cases. */
1350#define UNKNOWN_SYSCALL (-1)
1351
104c1213
JM
1352extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1353
1354
1355/* Mechanism for co-ordinating the selection of a specific
1356 architecture.
1357
1358 GDB targets (*-tdep.c) can register an interest in a specific
1359 architecture. Other GDB components can register a need to maintain
1360 per-architecture data.
1361
1362 The mechanisms below ensures that there is only a loose connection
1363 between the set-architecture command and the various GDB
0fa6923a 1364 components. Each component can independently register their need
104c1213
JM
1365 to maintain architecture specific data with gdbarch.
1366
1367 Pragmatics:
1368
1369 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1370 didn't scale.
1371
1372 The more traditional mega-struct containing architecture specific
1373 data for all the various GDB components was also considered. Since
0fa6923a 1374 GDB is built from a variable number of (fairly independent)
104c1213 1375 components it was determined that the global aproach was not
0963b4bd 1376 applicable. */
104c1213
JM
1377
1378
1379/* Register a new architectural family with GDB.
1380
1381 Register support for the specified ARCHITECTURE with GDB. When
1382 gdbarch determines that the specified architecture has been
1383 selected, the corresponding INIT function is called.
1384
1385 --
1386
1387 The INIT function takes two parameters: INFO which contains the
1388 information available to gdbarch about the (possibly new)
1389 architecture; ARCHES which is a list of the previously created
1390 \`\`struct gdbarch'' for this architecture.
1391
0f79675b 1392 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1393 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1394
1395 The ARCHES parameter is a linked list (sorted most recently used)
1396 of all the previously created architures for this architecture
1397 family. The (possibly NULL) ARCHES->gdbarch can used to access
1398 values from the previously selected architecture for this
59837fe0 1399 architecture family.
104c1213
JM
1400
1401 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1402 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1403 gdbarch'' from the ARCHES list - indicating that the new
1404 architecture is just a synonym for an earlier architecture (see
1405 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1406 - that describes the selected architecture (see gdbarch_alloc()).
1407
1408 The DUMP_TDEP function shall print out all target specific values.
1409 Care should be taken to ensure that the function works in both the
0963b4bd 1410 multi-arch and non- multi-arch cases. */
104c1213
JM
1411
1412struct gdbarch_list
1413{
1414 struct gdbarch *gdbarch;
1415 struct gdbarch_list *next;
1416};
1417
1418struct gdbarch_info
1419{
0963b4bd 1420 /* Use default: NULL (ZERO). */
104c1213
JM
1421 const struct bfd_arch_info *bfd_arch_info;
1422
428721aa 1423 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1424 enum bfd_endian byte_order;
104c1213 1425
94123b4f 1426 enum bfd_endian byte_order_for_code;
9d4fde75 1427
0963b4bd 1428 /* Use default: NULL (ZERO). */
104c1213
JM
1429 bfd *abfd;
1430
0963b4bd 1431 /* Use default: NULL (ZERO). */
ede5f151 1432 void *tdep_info;
4be87837
DJ
1433
1434 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1435 enum gdb_osabi osabi;
424163ea
DJ
1436
1437 /* Use default: NULL (ZERO). */
1438 const struct target_desc *target_desc;
104c1213
JM
1439};
1440
1441typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1442typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1443
4b9b3959 1444/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1445extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1446
4b9b3959
AC
1447extern void gdbarch_register (enum bfd_architecture architecture,
1448 gdbarch_init_ftype *,
1449 gdbarch_dump_tdep_ftype *);
1450
104c1213 1451
b4a20239
AC
1452/* Return a freshly allocated, NULL terminated, array of the valid
1453 architecture names. Since architectures are registered during the
1454 _initialize phase this function only returns useful information
0963b4bd 1455 once initialization has been completed. */
b4a20239
AC
1456
1457extern const char **gdbarch_printable_names (void);
1458
1459
104c1213 1460/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1461 matches the information provided by INFO. */
104c1213 1462
424163ea 1463extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1464
1465
1466/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1467 basic initialization using values obtained from the INFO and TDEP
104c1213 1468 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1469 initialization of the object. */
104c1213
JM
1470
1471extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1472
1473
4b9b3959
AC
1474/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1475 It is assumed that the caller freeds the \`\`struct
0963b4bd 1476 gdbarch_tdep''. */
4b9b3959 1477
058f20d5
JB
1478extern void gdbarch_free (struct gdbarch *);
1479
1480
aebd7893
AC
1481/* Helper function. Allocate memory from the \`\`struct gdbarch''
1482 obstack. The memory is freed when the corresponding architecture
1483 is also freed. */
1484
1485extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1486#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1487#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1488
6c214e7c
PP
1489/* Duplicate STRING, returning an equivalent string that's allocated on the
1490 obstack associated with GDBARCH. The string is freed when the corresponding
1491 architecture is also freed. */
1492
1493extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1494
0963b4bd 1495/* Helper function. Force an update of the current architecture.
104c1213 1496
b732d07d
AC
1497 The actual architecture selected is determined by INFO, \`\`(gdb) set
1498 architecture'' et.al., the existing architecture and BFD's default
1499 architecture. INFO should be initialized to zero and then selected
1500 fields should be updated.
104c1213 1501
0963b4bd 1502 Returns non-zero if the update succeeds. */
16f33e29
AC
1503
1504extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1505
1506
ebdba546
AC
1507/* Helper function. Find an architecture matching info.
1508
1509 INFO should be initialized using gdbarch_info_init, relevant fields
1510 set, and then finished using gdbarch_info_fill.
1511
1512 Returns the corresponding architecture, or NULL if no matching
59837fe0 1513 architecture was found. */
ebdba546
AC
1514
1515extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1516
1517
aff68abb 1518/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1519
aff68abb 1520extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1521
104c1213
JM
1522
1523/* Register per-architecture data-pointer.
1524
1525 Reserve space for a per-architecture data-pointer. An identifier
1526 for the reserved data-pointer is returned. That identifer should
95160752 1527 be saved in a local static variable.
104c1213 1528
fcc1c85c
AC
1529 Memory for the per-architecture data shall be allocated using
1530 gdbarch_obstack_zalloc. That memory will be deleted when the
1531 corresponding architecture object is deleted.
104c1213 1532
95160752
AC
1533 When a previously created architecture is re-selected, the
1534 per-architecture data-pointer for that previous architecture is
76860b5f 1535 restored. INIT() is not re-called.
104c1213
JM
1536
1537 Multiple registrarants for any architecture are allowed (and
1538 strongly encouraged). */
1539
95160752 1540struct gdbarch_data;
104c1213 1541
030f20e1
AC
1542typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1543extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1544typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1545extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1546extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1547 struct gdbarch_data *data,
1548 void *pointer);
104c1213 1549
451fbdda 1550extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1551
1552
0fa6923a 1553/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1554 byte-order, ...) using information found in the BFD. */
104c1213
JM
1555
1556extern void set_gdbarch_from_file (bfd *);
1557
1558
e514a9d6
JM
1559/* Initialize the current architecture to the "first" one we find on
1560 our list. */
1561
1562extern void initialize_current_architecture (void);
1563
104c1213 1564/* gdbarch trace variable */
ccce17b0 1565extern unsigned int gdbarch_debug;
104c1213 1566
4b9b3959 1567extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1568
1569#endif
1570EOF
1571exec 1>&2
1572#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1573compare_new gdbarch.h
104c1213
JM
1574
1575
1576#
1577# C file
1578#
1579
1580exec > new-gdbarch.c
1581copyright
1582cat <<EOF
1583
1584#include "defs.h"
7355ddba 1585#include "arch-utils.h"
104c1213 1586
104c1213 1587#include "gdbcmd.h"
faaf634c 1588#include "inferior.h"
104c1213
JM
1589#include "symcat.h"
1590
f0d4cc9e 1591#include "floatformat.h"
b59ff9d5 1592#include "reggroups.h"
4be87837 1593#include "osabi.h"
aebd7893 1594#include "gdb_obstack.h"
383f836e 1595#include "observer.h"
a3ecef73 1596#include "regcache.h"
19630284 1597#include "objfiles.h"
95160752 1598
104c1213
JM
1599/* Static function declarations */
1600
b3cc3077 1601static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1602
104c1213
JM
1603/* Non-zero if we want to trace architecture code. */
1604
1605#ifndef GDBARCH_DEBUG
1606#define GDBARCH_DEBUG 0
1607#endif
ccce17b0 1608unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1609static void
1610show_gdbarch_debug (struct ui_file *file, int from_tty,
1611 struct cmd_list_element *c, const char *value)
1612{
1613 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1614}
104c1213 1615
456fcf94 1616static const char *
8da61cc4 1617pformat (const struct floatformat **format)
456fcf94
AC
1618{
1619 if (format == NULL)
1620 return "(null)";
1621 else
8da61cc4
DJ
1622 /* Just print out one of them - this is only for diagnostics. */
1623 return format[0]->name;
456fcf94
AC
1624}
1625
08105857
PA
1626static const char *
1627pstring (const char *string)
1628{
1629 if (string == NULL)
1630 return "(null)";
1631 return string;
05c0465e
SDJ
1632}
1633
1634/* Helper function to print a list of strings, represented as "const
1635 char *const *". The list is printed comma-separated. */
1636
1637static char *
1638pstring_list (const char *const *list)
1639{
1640 static char ret[100];
1641 const char *const *p;
1642 size_t offset = 0;
1643
1644 if (list == NULL)
1645 return "(null)";
1646
1647 ret[0] = '\0';
1648 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1649 {
1650 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1651 offset += 2 + s;
1652 }
1653
1654 if (offset > 0)
1655 {
1656 gdb_assert (offset - 2 < sizeof (ret));
1657 ret[offset - 2] = '\0';
1658 }
1659
1660 return ret;
08105857
PA
1661}
1662
104c1213
JM
1663EOF
1664
1665# gdbarch open the gdbarch object
3d9a5942 1666printf "\n"
0963b4bd 1667printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1668printf "\n"
1669printf "struct gdbarch\n"
1670printf "{\n"
76860b5f
AC
1671printf " /* Has this architecture been fully initialized? */\n"
1672printf " int initialized_p;\n"
aebd7893
AC
1673printf "\n"
1674printf " /* An obstack bound to the lifetime of the architecture. */\n"
1675printf " struct obstack *obstack;\n"
1676printf "\n"
0963b4bd 1677printf " /* basic architectural information. */\n"
34620563 1678function_list | while do_read
104c1213 1679do
2ada493a
AC
1680 if class_is_info_p
1681 then
3d9a5942 1682 printf " ${returntype} ${function};\n"
2ada493a 1683 fi
104c1213 1684done
3d9a5942 1685printf "\n"
0963b4bd 1686printf " /* target specific vector. */\n"
3d9a5942
AC
1687printf " struct gdbarch_tdep *tdep;\n"
1688printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1689printf "\n"
0963b4bd 1690printf " /* per-architecture data-pointers. */\n"
95160752 1691printf " unsigned nr_data;\n"
3d9a5942
AC
1692printf " void **data;\n"
1693printf "\n"
104c1213
JM
1694cat <<EOF
1695 /* Multi-arch values.
1696
1697 When extending this structure you must:
1698
1699 Add the field below.
1700
1701 Declare set/get functions and define the corresponding
1702 macro in gdbarch.h.
1703
1704 gdbarch_alloc(): If zero/NULL is not a suitable default,
1705 initialize the new field.
1706
1707 verify_gdbarch(): Confirm that the target updated the field
1708 correctly.
1709
7e73cedf 1710 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1711 field is dumped out
1712
104c1213
JM
1713 get_gdbarch(): Implement the set/get functions (probably using
1714 the macro's as shortcuts).
1715
1716 */
1717
1718EOF
34620563 1719function_list | while do_read
104c1213 1720do
2ada493a
AC
1721 if class_is_variable_p
1722 then
3d9a5942 1723 printf " ${returntype} ${function};\n"
2ada493a
AC
1724 elif class_is_function_p
1725 then
2f9b146e 1726 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1727 fi
104c1213 1728done
3d9a5942 1729printf "};\n"
104c1213 1730
104c1213 1731# Create a new gdbarch struct
104c1213 1732cat <<EOF
7de2341d 1733
66b43ecb 1734/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1735 \`\`struct gdbarch_info''. */
104c1213 1736EOF
3d9a5942 1737printf "\n"
104c1213
JM
1738cat <<EOF
1739struct gdbarch *
1740gdbarch_alloc (const struct gdbarch_info *info,
1741 struct gdbarch_tdep *tdep)
1742{
be7811ad 1743 struct gdbarch *gdbarch;
aebd7893
AC
1744
1745 /* Create an obstack for allocating all the per-architecture memory,
1746 then use that to allocate the architecture vector. */
70ba0933 1747 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1748 obstack_init (obstack);
8d749320 1749 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1750 memset (gdbarch, 0, sizeof (*gdbarch));
1751 gdbarch->obstack = obstack;
85de9627 1752
be7811ad 1753 alloc_gdbarch_data (gdbarch);
85de9627 1754
be7811ad 1755 gdbarch->tdep = tdep;
104c1213 1756EOF
3d9a5942 1757printf "\n"
34620563 1758function_list | while do_read
104c1213 1759do
2ada493a
AC
1760 if class_is_info_p
1761 then
be7811ad 1762 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1763 fi
104c1213 1764done
3d9a5942 1765printf "\n"
0963b4bd 1766printf " /* Force the explicit initialization of these. */\n"
34620563 1767function_list | while do_read
104c1213 1768do
2ada493a
AC
1769 if class_is_function_p || class_is_variable_p
1770 then
72e74a21 1771 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1772 then
be7811ad 1773 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1774 fi
2ada493a 1775 fi
104c1213
JM
1776done
1777cat <<EOF
1778 /* gdbarch_alloc() */
1779
be7811ad 1780 return gdbarch;
104c1213
JM
1781}
1782EOF
1783
058f20d5 1784# Free a gdbarch struct.
3d9a5942
AC
1785printf "\n"
1786printf "\n"
058f20d5 1787cat <<EOF
aebd7893
AC
1788/* Allocate extra space using the per-architecture obstack. */
1789
1790void *
1791gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1792{
1793 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1794
aebd7893
AC
1795 memset (data, 0, size);
1796 return data;
1797}
1798
6c214e7c
PP
1799/* See gdbarch.h. */
1800
1801char *
1802gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1803{
1804 return obstack_strdup (arch->obstack, string);
1805}
1806
aebd7893 1807
058f20d5
JB
1808/* Free a gdbarch struct. This should never happen in normal
1809 operation --- once you've created a gdbarch, you keep it around.
1810 However, if an architecture's init function encounters an error
1811 building the structure, it may need to clean up a partially
1812 constructed gdbarch. */
4b9b3959 1813
058f20d5
JB
1814void
1815gdbarch_free (struct gdbarch *arch)
1816{
aebd7893 1817 struct obstack *obstack;
05c547f6 1818
95160752 1819 gdb_assert (arch != NULL);
aebd7893
AC
1820 gdb_assert (!arch->initialized_p);
1821 obstack = arch->obstack;
1822 obstack_free (obstack, 0); /* Includes the ARCH. */
1823 xfree (obstack);
058f20d5
JB
1824}
1825EOF
1826
104c1213 1827# verify a new architecture
104c1213 1828cat <<EOF
db446970
AC
1829
1830
1831/* Ensure that all values in a GDBARCH are reasonable. */
1832
104c1213 1833static void
be7811ad 1834verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1835{
f16a1923
AC
1836 struct ui_file *log;
1837 struct cleanup *cleanups;
759ef836 1838 long length;
f16a1923 1839 char *buf;
05c547f6 1840
f16a1923
AC
1841 log = mem_fileopen ();
1842 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1843 /* fundamental */
be7811ad 1844 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1845 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1846 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1847 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1848 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1849EOF
34620563 1850function_list | while do_read
104c1213 1851do
2ada493a
AC
1852 if class_is_function_p || class_is_variable_p
1853 then
72e74a21 1854 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1855 then
3d9a5942 1856 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1857 elif class_is_predicate_p
1858 then
0963b4bd 1859 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1860 # FIXME: See do_read for potential simplification
72e74a21 1861 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1862 then
3d9a5942 1863 printf " if (${invalid_p})\n"
be7811ad 1864 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1865 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1866 then
be7811ad
MD
1867 printf " if (gdbarch->${function} == ${predefault})\n"
1868 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1869 elif [ -n "${postdefault}" ]
f0d4cc9e 1870 then
be7811ad
MD
1871 printf " if (gdbarch->${function} == 0)\n"
1872 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1873 elif [ -n "${invalid_p}" ]
104c1213 1874 then
4d60522e 1875 printf " if (${invalid_p})\n"
f16a1923 1876 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1877 elif [ -n "${predefault}" ]
104c1213 1878 then
be7811ad 1879 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1880 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1881 fi
2ada493a 1882 fi
104c1213
JM
1883done
1884cat <<EOF
759ef836 1885 buf = ui_file_xstrdup (log, &length);
f16a1923 1886 make_cleanup (xfree, buf);
759ef836 1887 if (length > 0)
f16a1923 1888 internal_error (__FILE__, __LINE__,
85c07804 1889 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1890 buf);
1891 do_cleanups (cleanups);
104c1213
JM
1892}
1893EOF
1894
1895# dump the structure
3d9a5942
AC
1896printf "\n"
1897printf "\n"
104c1213 1898cat <<EOF
0963b4bd 1899/* Print out the details of the current architecture. */
4b9b3959 1900
104c1213 1901void
be7811ad 1902gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1903{
b78960be 1904 const char *gdb_nm_file = "<not-defined>";
05c547f6 1905
b78960be
AC
1906#if defined (GDB_NM_FILE)
1907 gdb_nm_file = GDB_NM_FILE;
1908#endif
1909 fprintf_unfiltered (file,
1910 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1911 gdb_nm_file);
104c1213 1912EOF
97030eea 1913function_list | sort -t: -k 3 | while do_read
104c1213 1914do
1e9f55d0
AC
1915 # First the predicate
1916 if class_is_predicate_p
1917 then
7996bcec 1918 printf " fprintf_unfiltered (file,\n"
48f7351b 1919 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1920 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1921 fi
48f7351b 1922 # Print the corresponding value.
283354d8 1923 if class_is_function_p
4b9b3959 1924 then
7996bcec 1925 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1926 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1927 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1928 else
48f7351b 1929 # It is a variable
2f9b146e
AC
1930 case "${print}:${returntype}" in
1931 :CORE_ADDR )
0b1553bc
UW
1932 fmt="%s"
1933 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1934 ;;
2f9b146e 1935 :* )
48f7351b 1936 fmt="%s"
623d3eb1 1937 print="plongest (gdbarch->${function})"
48f7351b
AC
1938 ;;
1939 * )
2f9b146e 1940 fmt="%s"
48f7351b
AC
1941 ;;
1942 esac
3d9a5942 1943 printf " fprintf_unfiltered (file,\n"
48f7351b 1944 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1945 printf " ${print});\n"
2ada493a 1946 fi
104c1213 1947done
381323f4 1948cat <<EOF
be7811ad
MD
1949 if (gdbarch->dump_tdep != NULL)
1950 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1951}
1952EOF
104c1213
JM
1953
1954
1955# GET/SET
3d9a5942 1956printf "\n"
104c1213
JM
1957cat <<EOF
1958struct gdbarch_tdep *
1959gdbarch_tdep (struct gdbarch *gdbarch)
1960{
1961 if (gdbarch_debug >= 2)
3d9a5942 1962 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1963 return gdbarch->tdep;
1964}
1965EOF
3d9a5942 1966printf "\n"
34620563 1967function_list | while do_read
104c1213 1968do
2ada493a
AC
1969 if class_is_predicate_p
1970 then
3d9a5942
AC
1971 printf "\n"
1972 printf "int\n"
1973 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1974 printf "{\n"
8de9bdc4 1975 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1976 printf " return ${predicate};\n"
3d9a5942 1977 printf "}\n"
2ada493a
AC
1978 fi
1979 if class_is_function_p
1980 then
3d9a5942
AC
1981 printf "\n"
1982 printf "${returntype}\n"
72e74a21 1983 if [ "x${formal}" = "xvoid" ]
104c1213 1984 then
3d9a5942 1985 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1986 else
3d9a5942 1987 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1988 fi
3d9a5942 1989 printf "{\n"
8de9bdc4 1990 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1991 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1992 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1993 then
1994 # Allow a call to a function with a predicate.
956ac328 1995 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1996 fi
3d9a5942
AC
1997 printf " if (gdbarch_debug >= 2)\n"
1998 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1999 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2000 then
2001 if class_is_multiarch_p
2002 then
2003 params="gdbarch"
2004 else
2005 params=""
2006 fi
2007 else
2008 if class_is_multiarch_p
2009 then
2010 params="gdbarch, ${actual}"
2011 else
2012 params="${actual}"
2013 fi
2014 fi
72e74a21 2015 if [ "x${returntype}" = "xvoid" ]
104c1213 2016 then
4a5c6a1d 2017 printf " gdbarch->${function} (${params});\n"
104c1213 2018 else
4a5c6a1d 2019 printf " return gdbarch->${function} (${params});\n"
104c1213 2020 fi
3d9a5942
AC
2021 printf "}\n"
2022 printf "\n"
2023 printf "void\n"
2024 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2025 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2026 printf "{\n"
2027 printf " gdbarch->${function} = ${function};\n"
2028 printf "}\n"
2ada493a
AC
2029 elif class_is_variable_p
2030 then
3d9a5942
AC
2031 printf "\n"
2032 printf "${returntype}\n"
2033 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2034 printf "{\n"
8de9bdc4 2035 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2036 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2037 then
3d9a5942 2038 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2039 elif [ -n "${invalid_p}" ]
104c1213 2040 then
956ac328
AC
2041 printf " /* Check variable is valid. */\n"
2042 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2043 elif [ -n "${predefault}" ]
104c1213 2044 then
956ac328
AC
2045 printf " /* Check variable changed from pre-default. */\n"
2046 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2047 fi
3d9a5942
AC
2048 printf " if (gdbarch_debug >= 2)\n"
2049 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2050 printf " return gdbarch->${function};\n"
2051 printf "}\n"
2052 printf "\n"
2053 printf "void\n"
2054 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2055 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2056 printf "{\n"
2057 printf " gdbarch->${function} = ${function};\n"
2058 printf "}\n"
2ada493a
AC
2059 elif class_is_info_p
2060 then
3d9a5942
AC
2061 printf "\n"
2062 printf "${returntype}\n"
2063 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2064 printf "{\n"
8de9bdc4 2065 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2066 printf " if (gdbarch_debug >= 2)\n"
2067 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2068 printf " return gdbarch->${function};\n"
2069 printf "}\n"
2ada493a 2070 fi
104c1213
JM
2071done
2072
2073# All the trailing guff
2074cat <<EOF
2075
2076
f44c642f 2077/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2078 modules. */
104c1213
JM
2079
2080struct gdbarch_data
2081{
95160752 2082 unsigned index;
76860b5f 2083 int init_p;
030f20e1
AC
2084 gdbarch_data_pre_init_ftype *pre_init;
2085 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2086};
2087
2088struct gdbarch_data_registration
2089{
104c1213
JM
2090 struct gdbarch_data *data;
2091 struct gdbarch_data_registration *next;
2092};
2093
f44c642f 2094struct gdbarch_data_registry
104c1213 2095{
95160752 2096 unsigned nr;
104c1213
JM
2097 struct gdbarch_data_registration *registrations;
2098};
2099
f44c642f 2100struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2101{
2102 0, NULL,
2103};
2104
030f20e1
AC
2105static struct gdbarch_data *
2106gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2107 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2108{
2109 struct gdbarch_data_registration **curr;
05c547f6
MS
2110
2111 /* Append the new registration. */
f44c642f 2112 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2113 (*curr) != NULL;
2114 curr = &(*curr)->next);
70ba0933 2115 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2116 (*curr)->next = NULL;
70ba0933 2117 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2118 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2119 (*curr)->data->pre_init = pre_init;
2120 (*curr)->data->post_init = post_init;
76860b5f 2121 (*curr)->data->init_p = 1;
104c1213
JM
2122 return (*curr)->data;
2123}
2124
030f20e1
AC
2125struct gdbarch_data *
2126gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2127{
2128 return gdbarch_data_register (pre_init, NULL);
2129}
2130
2131struct gdbarch_data *
2132gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2133{
2134 return gdbarch_data_register (NULL, post_init);
2135}
104c1213 2136
0963b4bd 2137/* Create/delete the gdbarch data vector. */
95160752
AC
2138
2139static void
b3cc3077 2140alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2141{
b3cc3077
JB
2142 gdb_assert (gdbarch->data == NULL);
2143 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2144 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2145}
3c875b6f 2146
76860b5f 2147/* Initialize the current value of the specified per-architecture
0963b4bd 2148 data-pointer. */
b3cc3077 2149
95160752 2150void
030f20e1
AC
2151deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2152 struct gdbarch_data *data,
2153 void *pointer)
95160752
AC
2154{
2155 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2156 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2157 gdb_assert (data->pre_init == NULL);
95160752
AC
2158 gdbarch->data[data->index] = pointer;
2159}
2160
104c1213 2161/* Return the current value of the specified per-architecture
0963b4bd 2162 data-pointer. */
104c1213
JM
2163
2164void *
451fbdda 2165gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2166{
451fbdda 2167 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2168 if (gdbarch->data[data->index] == NULL)
76860b5f 2169 {
030f20e1
AC
2170 /* The data-pointer isn't initialized, call init() to get a
2171 value. */
2172 if (data->pre_init != NULL)
2173 /* Mid architecture creation: pass just the obstack, and not
2174 the entire architecture, as that way it isn't possible for
2175 pre-init code to refer to undefined architecture
2176 fields. */
2177 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2178 else if (gdbarch->initialized_p
2179 && data->post_init != NULL)
2180 /* Post architecture creation: pass the entire architecture
2181 (as all fields are valid), but be careful to also detect
2182 recursive references. */
2183 {
2184 gdb_assert (data->init_p);
2185 data->init_p = 0;
2186 gdbarch->data[data->index] = data->post_init (gdbarch);
2187 data->init_p = 1;
2188 }
2189 else
2190 /* The architecture initialization hasn't completed - punt -
2191 hope that the caller knows what they are doing. Once
2192 deprecated_set_gdbarch_data has been initialized, this can be
2193 changed to an internal error. */
2194 return NULL;
76860b5f
AC
2195 gdb_assert (gdbarch->data[data->index] != NULL);
2196 }
451fbdda 2197 return gdbarch->data[data->index];
104c1213
JM
2198}
2199
2200
0963b4bd 2201/* Keep a registry of the architectures known by GDB. */
104c1213 2202
4b9b3959 2203struct gdbarch_registration
104c1213
JM
2204{
2205 enum bfd_architecture bfd_architecture;
2206 gdbarch_init_ftype *init;
4b9b3959 2207 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2208 struct gdbarch_list *arches;
4b9b3959 2209 struct gdbarch_registration *next;
104c1213
JM
2210};
2211
f44c642f 2212static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2213
b4a20239
AC
2214static void
2215append_name (const char ***buf, int *nr, const char *name)
2216{
1dc7a623 2217 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2218 (*buf)[*nr] = name;
2219 *nr += 1;
2220}
2221
2222const char **
2223gdbarch_printable_names (void)
2224{
7996bcec 2225 /* Accumulate a list of names based on the registed list of
0963b4bd 2226 architectures. */
7996bcec
AC
2227 int nr_arches = 0;
2228 const char **arches = NULL;
2229 struct gdbarch_registration *rego;
05c547f6 2230
7996bcec
AC
2231 for (rego = gdbarch_registry;
2232 rego != NULL;
2233 rego = rego->next)
b4a20239 2234 {
7996bcec
AC
2235 const struct bfd_arch_info *ap;
2236 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2237 if (ap == NULL)
2238 internal_error (__FILE__, __LINE__,
85c07804 2239 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2240 do
2241 {
2242 append_name (&arches, &nr_arches, ap->printable_name);
2243 ap = ap->next;
2244 }
2245 while (ap != NULL);
b4a20239 2246 }
7996bcec
AC
2247 append_name (&arches, &nr_arches, NULL);
2248 return arches;
b4a20239
AC
2249}
2250
2251
104c1213 2252void
4b9b3959
AC
2253gdbarch_register (enum bfd_architecture bfd_architecture,
2254 gdbarch_init_ftype *init,
2255 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2256{
4b9b3959 2257 struct gdbarch_registration **curr;
104c1213 2258 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2259
ec3d358c 2260 /* Check that BFD recognizes this architecture */
104c1213
JM
2261 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2262 if (bfd_arch_info == NULL)
2263 {
8e65ff28 2264 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2265 _("gdbarch: Attempt to register "
2266 "unknown architecture (%d)"),
8e65ff28 2267 bfd_architecture);
104c1213 2268 }
0963b4bd 2269 /* Check that we haven't seen this architecture before. */
f44c642f 2270 for (curr = &gdbarch_registry;
104c1213
JM
2271 (*curr) != NULL;
2272 curr = &(*curr)->next)
2273 {
2274 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2275 internal_error (__FILE__, __LINE__,
64b9b334 2276 _("gdbarch: Duplicate registration "
0963b4bd 2277 "of architecture (%s)"),
8e65ff28 2278 bfd_arch_info->printable_name);
104c1213
JM
2279 }
2280 /* log it */
2281 if (gdbarch_debug)
30737ed9 2282 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2283 bfd_arch_info->printable_name,
30737ed9 2284 host_address_to_string (init));
104c1213 2285 /* Append it */
70ba0933 2286 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2287 (*curr)->bfd_architecture = bfd_architecture;
2288 (*curr)->init = init;
4b9b3959 2289 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2290 (*curr)->arches = NULL;
2291 (*curr)->next = NULL;
4b9b3959
AC
2292}
2293
2294void
2295register_gdbarch_init (enum bfd_architecture bfd_architecture,
2296 gdbarch_init_ftype *init)
2297{
2298 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2299}
104c1213
JM
2300
2301
424163ea 2302/* Look for an architecture using gdbarch_info. */
104c1213
JM
2303
2304struct gdbarch_list *
2305gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2306 const struct gdbarch_info *info)
2307{
2308 for (; arches != NULL; arches = arches->next)
2309 {
2310 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2311 continue;
2312 if (info->byte_order != arches->gdbarch->byte_order)
2313 continue;
4be87837
DJ
2314 if (info->osabi != arches->gdbarch->osabi)
2315 continue;
424163ea
DJ
2316 if (info->target_desc != arches->gdbarch->target_desc)
2317 continue;
104c1213
JM
2318 return arches;
2319 }
2320 return NULL;
2321}
2322
2323
ebdba546 2324/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2325 architecture if needed. Return that new architecture. */
104c1213 2326
59837fe0
UW
2327struct gdbarch *
2328gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2329{
2330 struct gdbarch *new_gdbarch;
4b9b3959 2331 struct gdbarch_registration *rego;
104c1213 2332
b732d07d 2333 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2334 sources: "set ..."; INFOabfd supplied; and the global
2335 defaults. */
2336 gdbarch_info_fill (&info);
4be87837 2337
0963b4bd 2338 /* Must have found some sort of architecture. */
b732d07d 2339 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2340
2341 if (gdbarch_debug)
2342 {
2343 fprintf_unfiltered (gdb_stdlog,
59837fe0 2344 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2345 (info.bfd_arch_info != NULL
2346 ? info.bfd_arch_info->printable_name
2347 : "(null)"));
2348 fprintf_unfiltered (gdb_stdlog,
59837fe0 2349 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2350 info.byte_order,
d7449b42 2351 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2352 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2353 : "default"));
4be87837 2354 fprintf_unfiltered (gdb_stdlog,
59837fe0 2355 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2356 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2357 fprintf_unfiltered (gdb_stdlog,
59837fe0 2358 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2359 host_address_to_string (info.abfd));
104c1213 2360 fprintf_unfiltered (gdb_stdlog,
59837fe0 2361 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2362 host_address_to_string (info.tdep_info));
104c1213
JM
2363 }
2364
ebdba546 2365 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2366 for (rego = gdbarch_registry;
2367 rego != NULL;
2368 rego = rego->next)
2369 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2370 break;
2371 if (rego == NULL)
2372 {
2373 if (gdbarch_debug)
59837fe0 2374 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2375 "No matching architecture\n");
b732d07d
AC
2376 return 0;
2377 }
2378
ebdba546 2379 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2380 new_gdbarch = rego->init (info, rego->arches);
2381
ebdba546
AC
2382 /* Did the tdep code like it? No. Reject the change and revert to
2383 the old architecture. */
104c1213
JM
2384 if (new_gdbarch == NULL)
2385 {
2386 if (gdbarch_debug)
59837fe0 2387 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2388 "Target rejected architecture\n");
2389 return NULL;
104c1213
JM
2390 }
2391
ebdba546
AC
2392 /* Is this a pre-existing architecture (as determined by already
2393 being initialized)? Move it to the front of the architecture
2394 list (keeping the list sorted Most Recently Used). */
2395 if (new_gdbarch->initialized_p)
104c1213 2396 {
ebdba546 2397 struct gdbarch_list **list;
fe978cb0 2398 struct gdbarch_list *self;
104c1213 2399 if (gdbarch_debug)
59837fe0 2400 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2401 "Previous architecture %s (%s) selected\n",
2402 host_address_to_string (new_gdbarch),
104c1213 2403 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2404 /* Find the existing arch in the list. */
2405 for (list = &rego->arches;
2406 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2407 list = &(*list)->next);
2408 /* It had better be in the list of architectures. */
2409 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2410 /* Unlink SELF. */
2411 self = (*list);
2412 (*list) = self->next;
2413 /* Insert SELF at the front. */
2414 self->next = rego->arches;
2415 rego->arches = self;
ebdba546
AC
2416 /* Return it. */
2417 return new_gdbarch;
104c1213
JM
2418 }
2419
ebdba546
AC
2420 /* It's a new architecture. */
2421 if (gdbarch_debug)
59837fe0 2422 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2423 "New architecture %s (%s) selected\n",
2424 host_address_to_string (new_gdbarch),
ebdba546
AC
2425 new_gdbarch->bfd_arch_info->printable_name);
2426
2427 /* Insert the new architecture into the front of the architecture
2428 list (keep the list sorted Most Recently Used). */
0f79675b 2429 {
fe978cb0
PA
2430 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2431 self->next = rego->arches;
2432 self->gdbarch = new_gdbarch;
2433 rego->arches = self;
0f79675b 2434 }
104c1213 2435
4b9b3959
AC
2436 /* Check that the newly installed architecture is valid. Plug in
2437 any post init values. */
2438 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2439 verify_gdbarch (new_gdbarch);
ebdba546 2440 new_gdbarch->initialized_p = 1;
104c1213 2441
4b9b3959 2442 if (gdbarch_debug)
ebdba546
AC
2443 gdbarch_dump (new_gdbarch, gdb_stdlog);
2444
2445 return new_gdbarch;
2446}
2447
e487cc15 2448/* Make the specified architecture current. */
ebdba546
AC
2449
2450void
aff68abb 2451set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2452{
2453 gdb_assert (new_gdbarch != NULL);
ebdba546 2454 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2455 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2456 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2457 registers_changed ();
ebdba546 2458}
104c1213 2459
f5656ead 2460/* Return the current inferior's arch. */
6ecd4729
PA
2461
2462struct gdbarch *
f5656ead 2463target_gdbarch (void)
6ecd4729
PA
2464{
2465 return current_inferior ()->gdbarch;
2466}
2467
104c1213 2468extern void _initialize_gdbarch (void);
b4a20239 2469
104c1213 2470void
34620563 2471_initialize_gdbarch (void)
104c1213 2472{
ccce17b0 2473 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2474Set architecture debugging."), _("\\
2475Show architecture debugging."), _("\\
2476When non-zero, architecture debugging is enabled."),
2477 NULL,
920d2a44 2478 show_gdbarch_debug,
85c07804 2479 &setdebuglist, &showdebuglist);
104c1213
JM
2480}
2481EOF
2482
2483# close things off
2484exec 1>&2
2485#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2486compare_new gdbarch.c
This page took 1.392462 seconds and 4 git commands to generate.