SCORE: Migrate from 'regset_from_core_section' to 'iterate_over_regset_sections'
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
653
654# Return the appropriate register set for a core file section with
655# name SECT_NAME and size SECT_SIZE.
97030eea 656M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 657
5aa82d05
AA
658# Iterate over all supported register notes in a core file. For each
659# supported register note section, the iterator must call CB and pass
660# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
661# the supported register note sections based on the current register
662# values. Otherwise it should enumerate all supported register note
663# sections.
664M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 665
6432734d
UW
666# Create core file notes
667M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
668
b3ac9c77
SDJ
669# The elfcore writer hook to use to write Linux prpsinfo notes to core
670# files. Most Linux architectures use the same prpsinfo32 or
671# prpsinfo64 layouts, and so won't need to provide this hook, as we
672# call the Linux generic routines in bfd to write prpsinfo notes by
673# default.
674F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
675
35c2fab7
UW
676# Find core file memory regions
677M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
678
de584861 679# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
680# core file into buffer READBUF with length LEN. Return the number of bytes read
681# (zero indicates failure).
682# failed, otherwise, return the red length of READBUF.
683M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 684
356a5233
JB
685# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
686# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
687# Return the number of bytes read (zero indicates failure).
688M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 689
c0edd9ed 690# How the core target converts a PTID from a core file to a string.
28439f5e
PA
691M:char *:core_pid_to_str:ptid_t ptid:ptid
692
a78c2d62 693# BFD target to use when generating a core file.
86ba1042 694V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 695
0d5de010
DJ
696# If the elements of C++ vtables are in-place function descriptors rather
697# than normal function pointers (which may point to code or a descriptor),
698# set this to one.
97030eea 699v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
700
701# Set if the least significant bit of the delta is used instead of the least
702# significant bit of the pfn for pointers to virtual member functions.
97030eea 703v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
704
705# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 706F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 707
1668ae25 708# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
709V:ULONGEST:max_insn_length:::0:0
710
711# Copy the instruction at FROM to TO, and make any adjustments
712# necessary to single-step it at that address.
713#
714# REGS holds the state the thread's registers will have before
715# executing the copied instruction; the PC in REGS will refer to FROM,
716# not the copy at TO. The caller should update it to point at TO later.
717#
718# Return a pointer to data of the architecture's choice to be passed
719# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
720# the instruction's effects have been completely simulated, with the
721# resulting state written back to REGS.
722#
723# For a general explanation of displaced stepping and how GDB uses it,
724# see the comments in infrun.c.
725#
726# The TO area is only guaranteed to have space for
727# gdbarch_max_insn_length (arch) bytes, so this function must not
728# write more bytes than that to that area.
729#
730# If you do not provide this function, GDB assumes that the
731# architecture does not support displaced stepping.
732#
733# If your architecture doesn't need to adjust instructions before
734# single-stepping them, consider using simple_displaced_step_copy_insn
735# here.
736M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
737
99e40580
UW
738# Return true if GDB should use hardware single-stepping to execute
739# the displaced instruction identified by CLOSURE. If false,
740# GDB will simply restart execution at the displaced instruction
741# location, and it is up to the target to ensure GDB will receive
742# control again (e.g. by placing a software breakpoint instruction
743# into the displaced instruction buffer).
744#
745# The default implementation returns false on all targets that
746# provide a gdbarch_software_single_step routine, and true otherwise.
747m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
748
237fc4c9
PA
749# Fix up the state resulting from successfully single-stepping a
750# displaced instruction, to give the result we would have gotten from
751# stepping the instruction in its original location.
752#
753# REGS is the register state resulting from single-stepping the
754# displaced instruction.
755#
756# CLOSURE is the result from the matching call to
757# gdbarch_displaced_step_copy_insn.
758#
759# If you provide gdbarch_displaced_step_copy_insn.but not this
760# function, then GDB assumes that no fixup is needed after
761# single-stepping the instruction.
762#
763# For a general explanation of displaced stepping and how GDB uses it,
764# see the comments in infrun.c.
765M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
766
767# Free a closure returned by gdbarch_displaced_step_copy_insn.
768#
769# If you provide gdbarch_displaced_step_copy_insn, you must provide
770# this function as well.
771#
772# If your architecture uses closures that don't need to be freed, then
773# you can use simple_displaced_step_free_closure here.
774#
775# For a general explanation of displaced stepping and how GDB uses it,
776# see the comments in infrun.c.
777m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
778
779# Return the address of an appropriate place to put displaced
780# instructions while we step over them. There need only be one such
781# place, since we're only stepping one thread over a breakpoint at a
782# time.
783#
784# For a general explanation of displaced stepping and how GDB uses it,
785# see the comments in infrun.c.
786m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
787
dde08ee1
PA
788# Relocate an instruction to execute at a different address. OLDLOC
789# is the address in the inferior memory where the instruction to
790# relocate is currently at. On input, TO points to the destination
791# where we want the instruction to be copied (and possibly adjusted)
792# to. On output, it points to one past the end of the resulting
793# instruction(s). The effect of executing the instruction at TO shall
794# be the same as if executing it at FROM. For example, call
795# instructions that implicitly push the return address on the stack
796# should be adjusted to return to the instruction after OLDLOC;
797# relative branches, and other PC-relative instructions need the
798# offset adjusted; etc.
799M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
800
1c772458 801# Refresh overlay mapped state for section OSECT.
97030eea 802F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 803
97030eea 804M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
805
806# Handle special encoding of static variables in stabs debug info.
0d5cff50 807F:const char *:static_transform_name:const char *name:name
203c3895 808# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 809v:int:sofun_address_maybe_missing:::0:0::0
1cded358 810
0508c3ec
HZ
811# Parse the instruction at ADDR storing in the record execution log
812# the registers REGCACHE and memory ranges that will be affected when
813# the instruction executes, along with their current values.
814# Return -1 if something goes wrong, 0 otherwise.
815M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
816
3846b520
HZ
817# Save process state after a signal.
818# Return -1 if something goes wrong, 0 otherwise.
2ea28649 819M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 820
22203bbf 821# Signal translation: translate inferior's signal (target's) number
86b49880
PA
822# into GDB's representation. The implementation of this method must
823# be host independent. IOW, don't rely on symbols of the NAT_FILE
824# header (the nm-*.h files), the host <signal.h> header, or similar
825# headers. This is mainly used when cross-debugging core files ---
826# "Live" targets hide the translation behind the target interface
1f8cf220
PA
827# (target_wait, target_resume, etc.).
828M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 829
eb14d406
SDJ
830# Signal translation: translate the GDB's internal signal number into
831# the inferior's signal (target's) representation. The implementation
832# of this method must be host independent. IOW, don't rely on symbols
833# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
834# header, or similar headers.
835# Return the target signal number if found, or -1 if the GDB internal
836# signal number is invalid.
837M:int:gdb_signal_to_target:enum gdb_signal signal:signal
838
4aa995e1
PA
839# Extra signal info inspection.
840#
841# Return a type suitable to inspect extra signal information.
842M:struct type *:get_siginfo_type:void:
843
60c5725c
DJ
844# Record architecture-specific information from the symbol table.
845M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 846
a96d9b2e
SDJ
847# Function for the 'catch syscall' feature.
848
849# Get architecture-specific system calls information from registers.
850M:LONGEST:get_syscall_number:ptid_t ptid:ptid
851
55aa24fb
SDJ
852# SystemTap related fields and functions.
853
05c0465e
SDJ
854# A NULL-terminated array of prefixes used to mark an integer constant
855# on the architecture's assembly.
55aa24fb
SDJ
856# For example, on x86 integer constants are written as:
857#
858# \$10 ;; integer constant 10
859#
860# in this case, this prefix would be the character \`\$\'.
05c0465e 861v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 862
05c0465e
SDJ
863# A NULL-terminated array of suffixes used to mark an integer constant
864# on the architecture's assembly.
865v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 866
05c0465e
SDJ
867# A NULL-terminated array of prefixes used to mark a register name on
868# the architecture's assembly.
55aa24fb
SDJ
869# For example, on x86 the register name is written as:
870#
871# \%eax ;; register eax
872#
873# in this case, this prefix would be the character \`\%\'.
05c0465e 874v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 875
05c0465e
SDJ
876# A NULL-terminated array of suffixes used to mark a register name on
877# the architecture's assembly.
878v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 879
05c0465e
SDJ
880# A NULL-terminated array of prefixes used to mark a register
881# indirection on the architecture's assembly.
55aa24fb
SDJ
882# For example, on x86 the register indirection is written as:
883#
884# \(\%eax\) ;; indirecting eax
885#
886# in this case, this prefix would be the charater \`\(\'.
887#
888# Please note that we use the indirection prefix also for register
889# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 890v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 891
05c0465e
SDJ
892# A NULL-terminated array of suffixes used to mark a register
893# indirection on the architecture's assembly.
55aa24fb
SDJ
894# For example, on x86 the register indirection is written as:
895#
896# \(\%eax\) ;; indirecting eax
897#
898# in this case, this prefix would be the charater \`\)\'.
899#
900# Please note that we use the indirection suffix also for register
901# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 902v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 903
05c0465e 904# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
905#
906# For example, on PPC a register is represented by a number in the assembly
907# language (e.g., \`10\' is the 10th general-purpose register). However,
908# inside GDB this same register has an \`r\' appended to its name, so the 10th
909# register would be represented as \`r10\' internally.
08af7a40 910v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
911
912# Suffix used to name a register using GDB's nomenclature.
08af7a40 913v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
914
915# Check if S is a single operand.
916#
917# Single operands can be:
918# \- Literal integers, e.g. \`\$10\' on x86
919# \- Register access, e.g. \`\%eax\' on x86
920# \- Register indirection, e.g. \`\(\%eax\)\' on x86
921# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
922#
923# This function should check for these patterns on the string
924# and return 1 if some were found, or zero otherwise. Please try to match
925# as much info as you can from the string, i.e., if you have to match
926# something like \`\(\%\', do not match just the \`\(\'.
927M:int:stap_is_single_operand:const char *s:s
928
929# Function used to handle a "special case" in the parser.
930#
931# A "special case" is considered to be an unknown token, i.e., a token
932# that the parser does not know how to parse. A good example of special
933# case would be ARM's register displacement syntax:
934#
935# [R0, #4] ;; displacing R0 by 4
936#
937# Since the parser assumes that a register displacement is of the form:
938#
939# <number> <indirection_prefix> <register_name> <indirection_suffix>
940#
941# it means that it will not be able to recognize and parse this odd syntax.
942# Therefore, we should add a special case function that will handle this token.
943#
944# This function should generate the proper expression form of the expression
945# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
946# and so on). It should also return 1 if the parsing was successful, or zero
947# if the token was not recognized as a special token (in this case, returning
948# zero means that the special parser is deferring the parsing to the generic
949# parser), and should advance the buffer pointer (p->arg).
950M:int:stap_parse_special_token:struct stap_parse_info *p:p
951
952
50c71eaf
PA
953# True if the list of shared libraries is one and only for all
954# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
955# This usually means that all processes, although may or may not share
956# an address space, will see the same set of symbols at the same
957# addresses.
50c71eaf 958v:int:has_global_solist:::0:0::0
2567c7d9
PA
959
960# On some targets, even though each inferior has its own private
961# address space, the debug interface takes care of making breakpoints
962# visible to all address spaces automatically. For such cases,
963# this property should be set to true.
964v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
965
966# True if inferiors share an address space (e.g., uClinux).
967m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
968
969# True if a fast tracepoint can be set at an address.
970m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 971
f870a310
TT
972# Return the "auto" target charset.
973f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
974# Return the "auto" target wide charset.
975f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
976
977# If non-empty, this is a file extension that will be opened in place
978# of the file extension reported by the shared library list.
979#
980# This is most useful for toolchains that use a post-linker tool,
981# where the names of the files run on the target differ in extension
982# compared to the names of the files GDB should load for debug info.
983v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
984
985# If true, the target OS has DOS-based file system semantics. That
986# is, absolute paths include a drive name, and the backslash is
987# considered a directory separator.
988v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
989
990# Generate bytecodes to collect the return address in a frame.
991# Since the bytecodes run on the target, possibly with GDB not even
992# connected, the full unwinding machinery is not available, and
993# typically this function will issue bytecodes for one or more likely
994# places that the return address may be found.
995m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
996
3030c96e 997# Implement the "info proc" command.
7bc112c1 998M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 999
451b7c33
TT
1000# Implement the "info proc" command for core files. Noe that there
1001# are two "info_proc"-like methods on gdbarch -- one for core files,
1002# one for live targets.
7bc112c1 1003M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1004
19630284
JB
1005# Iterate over all objfiles in the order that makes the most sense
1006# for the architecture to make global symbol searches.
1007#
1008# CB is a callback function where OBJFILE is the objfile to be searched,
1009# and CB_DATA a pointer to user-defined data (the same data that is passed
1010# when calling this gdbarch method). The iteration stops if this function
1011# returns nonzero.
1012#
1013# CB_DATA is a pointer to some user-defined data to be passed to
1014# the callback.
1015#
1016# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1017# inspected when the symbol search was requested.
1018m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1019
7e35103a
JB
1020# Ravenscar arch-dependent ops.
1021v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1022
1023# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1024m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1025
1026# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1027m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1028
1029# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1030m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1031
1032# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1033# Return 0 if *READPTR is already at the end of the buffer.
1034# Return -1 if there is insufficient buffer for a whole entry.
1035# Return 1 if an entry was read into *TYPEP and *VALP.
1036M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
104c1213 1037EOF
104c1213
JM
1038}
1039
0b8f9e4d
AC
1040#
1041# The .log file
1042#
1043exec > new-gdbarch.log
34620563 1044function_list | while do_read
0b8f9e4d
AC
1045do
1046 cat <<EOF
2f9b146e 1047${class} ${returntype} ${function} ($formal)
104c1213 1048EOF
3d9a5942
AC
1049 for r in ${read}
1050 do
1051 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1052 done
f0d4cc9e 1053 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1054 then
66d659b1 1055 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1056 kill $$
1057 exit 1
1058 fi
72e74a21 1059 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1060 then
1061 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1062 kill $$
1063 exit 1
1064 fi
a72293e2
AC
1065 if class_is_multiarch_p
1066 then
1067 if class_is_predicate_p ; then :
1068 elif test "x${predefault}" = "x"
1069 then
2f9b146e 1070 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1071 kill $$
1072 exit 1
1073 fi
1074 fi
3d9a5942 1075 echo ""
0b8f9e4d
AC
1076done
1077
1078exec 1>&2
1079compare_new gdbarch.log
1080
104c1213
JM
1081
1082copyright ()
1083{
1084cat <<EOF
c4bfde41
JK
1085/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1086/* vi:set ro: */
59233f88 1087
104c1213 1088/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1089
ecd75fc8 1090 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1091
1092 This file is part of GDB.
1093
1094 This program is free software; you can redistribute it and/or modify
1095 it under the terms of the GNU General Public License as published by
50efebf8 1096 the Free Software Foundation; either version 3 of the License, or
104c1213 1097 (at your option) any later version.
50efebf8 1098
104c1213
JM
1099 This program is distributed in the hope that it will be useful,
1100 but WITHOUT ANY WARRANTY; without even the implied warranty of
1101 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1102 GNU General Public License for more details.
50efebf8 1103
104c1213 1104 You should have received a copy of the GNU General Public License
50efebf8 1105 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1106
104c1213
JM
1107/* This file was created with the aid of \`\`gdbarch.sh''.
1108
52204a0b 1109 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1110 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1111 against the existing \`\`gdbarch.[hc]''. Any differences found
1112 being reported.
1113
1114 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1115 changes into that script. Conversely, when making sweeping changes
104c1213 1116 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1117 easier. */
104c1213
JM
1118
1119EOF
1120}
1121
1122#
1123# The .h file
1124#
1125
1126exec > new-gdbarch.h
1127copyright
1128cat <<EOF
1129#ifndef GDBARCH_H
1130#define GDBARCH_H
1131
eb7a547a
JB
1132#include "frame.h"
1133
da3331ec
AC
1134struct floatformat;
1135struct ui_file;
104c1213 1136struct value;
b6af0555 1137struct objfile;
1c772458 1138struct obj_section;
a2cf933a 1139struct minimal_symbol;
049ee0e4 1140struct regcache;
b59ff9d5 1141struct reggroup;
6ce6d90f 1142struct regset;
a89aa300 1143struct disassemble_info;
e2d0e7eb 1144struct target_ops;
030f20e1 1145struct obstack;
8181d85f 1146struct bp_target_info;
424163ea 1147struct target_desc;
237fc4c9 1148struct displaced_step_closure;
17ea7499 1149struct core_regset_section;
a96d9b2e 1150struct syscall;
175ff332 1151struct agent_expr;
6710bf39 1152struct axs_value;
55aa24fb 1153struct stap_parse_info;
7e35103a 1154struct ravenscar_arch_ops;
b3ac9c77 1155struct elf_internal_linux_prpsinfo;
104c1213 1156
6ecd4729
PA
1157/* The architecture associated with the inferior through the
1158 connection to the target.
1159
1160 The architecture vector provides some information that is really a
1161 property of the inferior, accessed through a particular target:
1162 ptrace operations; the layout of certain RSP packets; the solib_ops
1163 vector; etc. To differentiate architecture accesses to
1164 per-inferior/target properties from
1165 per-thread/per-frame/per-objfile properties, accesses to
1166 per-inferior/target properties should be made through this
1167 gdbarch. */
1168
1169/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1170extern struct gdbarch *target_gdbarch (void);
6ecd4729 1171
19630284
JB
1172/* Callback type for the 'iterate_over_objfiles_in_search_order'
1173 gdbarch method. */
1174
1175typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1176 (struct objfile *objfile, void *cb_data);
5aa82d05
AA
1177
1178typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1179 (const char *sect_name, int size, const struct regset *regset,
1180 const char *human_name, void *cb_data);
104c1213
JM
1181EOF
1182
1183# function typedef's
3d9a5942
AC
1184printf "\n"
1185printf "\n"
0963b4bd 1186printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1187function_list | while do_read
104c1213 1188do
2ada493a
AC
1189 if class_is_info_p
1190 then
3d9a5942
AC
1191 printf "\n"
1192 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1193 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1194 fi
104c1213
JM
1195done
1196
1197# function typedef's
3d9a5942
AC
1198printf "\n"
1199printf "\n"
0963b4bd 1200printf "/* The following are initialized by the target dependent code. */\n"
34620563 1201function_list | while do_read
104c1213 1202do
72e74a21 1203 if [ -n "${comment}" ]
34620563
AC
1204 then
1205 echo "${comment}" | sed \
1206 -e '2 s,#,/*,' \
1207 -e '3,$ s,#, ,' \
1208 -e '$ s,$, */,'
1209 fi
412d5987
AC
1210
1211 if class_is_predicate_p
2ada493a 1212 then
412d5987
AC
1213 printf "\n"
1214 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1215 fi
2ada493a
AC
1216 if class_is_variable_p
1217 then
3d9a5942
AC
1218 printf "\n"
1219 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1220 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1221 fi
1222 if class_is_function_p
1223 then
3d9a5942 1224 printf "\n"
72e74a21 1225 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1226 then
1227 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1228 elif class_is_multiarch_p
1229 then
1230 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1231 else
1232 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1233 fi
72e74a21 1234 if [ "x${formal}" = "xvoid" ]
104c1213 1235 then
3d9a5942 1236 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1237 else
3d9a5942 1238 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1239 fi
3d9a5942 1240 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1241 fi
104c1213
JM
1242done
1243
1244# close it off
1245cat <<EOF
1246
a96d9b2e
SDJ
1247/* Definition for an unknown syscall, used basically in error-cases. */
1248#define UNKNOWN_SYSCALL (-1)
1249
104c1213
JM
1250extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1251
1252
1253/* Mechanism for co-ordinating the selection of a specific
1254 architecture.
1255
1256 GDB targets (*-tdep.c) can register an interest in a specific
1257 architecture. Other GDB components can register a need to maintain
1258 per-architecture data.
1259
1260 The mechanisms below ensures that there is only a loose connection
1261 between the set-architecture command and the various GDB
0fa6923a 1262 components. Each component can independently register their need
104c1213
JM
1263 to maintain architecture specific data with gdbarch.
1264
1265 Pragmatics:
1266
1267 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1268 didn't scale.
1269
1270 The more traditional mega-struct containing architecture specific
1271 data for all the various GDB components was also considered. Since
0fa6923a 1272 GDB is built from a variable number of (fairly independent)
104c1213 1273 components it was determined that the global aproach was not
0963b4bd 1274 applicable. */
104c1213
JM
1275
1276
1277/* Register a new architectural family with GDB.
1278
1279 Register support for the specified ARCHITECTURE with GDB. When
1280 gdbarch determines that the specified architecture has been
1281 selected, the corresponding INIT function is called.
1282
1283 --
1284
1285 The INIT function takes two parameters: INFO which contains the
1286 information available to gdbarch about the (possibly new)
1287 architecture; ARCHES which is a list of the previously created
1288 \`\`struct gdbarch'' for this architecture.
1289
0f79675b 1290 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1291 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1292
1293 The ARCHES parameter is a linked list (sorted most recently used)
1294 of all the previously created architures for this architecture
1295 family. The (possibly NULL) ARCHES->gdbarch can used to access
1296 values from the previously selected architecture for this
59837fe0 1297 architecture family.
104c1213
JM
1298
1299 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1300 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1301 gdbarch'' from the ARCHES list - indicating that the new
1302 architecture is just a synonym for an earlier architecture (see
1303 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1304 - that describes the selected architecture (see gdbarch_alloc()).
1305
1306 The DUMP_TDEP function shall print out all target specific values.
1307 Care should be taken to ensure that the function works in both the
0963b4bd 1308 multi-arch and non- multi-arch cases. */
104c1213
JM
1309
1310struct gdbarch_list
1311{
1312 struct gdbarch *gdbarch;
1313 struct gdbarch_list *next;
1314};
1315
1316struct gdbarch_info
1317{
0963b4bd 1318 /* Use default: NULL (ZERO). */
104c1213
JM
1319 const struct bfd_arch_info *bfd_arch_info;
1320
428721aa 1321 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1322 enum bfd_endian byte_order;
104c1213 1323
94123b4f 1324 enum bfd_endian byte_order_for_code;
9d4fde75 1325
0963b4bd 1326 /* Use default: NULL (ZERO). */
104c1213
JM
1327 bfd *abfd;
1328
0963b4bd 1329 /* Use default: NULL (ZERO). */
104c1213 1330 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1331
1332 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1333 enum gdb_osabi osabi;
424163ea
DJ
1334
1335 /* Use default: NULL (ZERO). */
1336 const struct target_desc *target_desc;
104c1213
JM
1337};
1338
1339typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1340typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1341
4b9b3959 1342/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1343extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1344
4b9b3959
AC
1345extern void gdbarch_register (enum bfd_architecture architecture,
1346 gdbarch_init_ftype *,
1347 gdbarch_dump_tdep_ftype *);
1348
104c1213 1349
b4a20239
AC
1350/* Return a freshly allocated, NULL terminated, array of the valid
1351 architecture names. Since architectures are registered during the
1352 _initialize phase this function only returns useful information
0963b4bd 1353 once initialization has been completed. */
b4a20239
AC
1354
1355extern const char **gdbarch_printable_names (void);
1356
1357
104c1213 1358/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1359 matches the information provided by INFO. */
104c1213 1360
424163ea 1361extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1362
1363
1364/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1365 basic initialization using values obtained from the INFO and TDEP
104c1213 1366 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1367 initialization of the object. */
104c1213
JM
1368
1369extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1370
1371
4b9b3959
AC
1372/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1373 It is assumed that the caller freeds the \`\`struct
0963b4bd 1374 gdbarch_tdep''. */
4b9b3959 1375
058f20d5
JB
1376extern void gdbarch_free (struct gdbarch *);
1377
1378
aebd7893
AC
1379/* Helper function. Allocate memory from the \`\`struct gdbarch''
1380 obstack. The memory is freed when the corresponding architecture
1381 is also freed. */
1382
1383extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1384#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1385#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1386
1387
0963b4bd 1388/* Helper function. Force an update of the current architecture.
104c1213 1389
b732d07d
AC
1390 The actual architecture selected is determined by INFO, \`\`(gdb) set
1391 architecture'' et.al., the existing architecture and BFD's default
1392 architecture. INFO should be initialized to zero and then selected
1393 fields should be updated.
104c1213 1394
0963b4bd 1395 Returns non-zero if the update succeeds. */
16f33e29
AC
1396
1397extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1398
1399
ebdba546
AC
1400/* Helper function. Find an architecture matching info.
1401
1402 INFO should be initialized using gdbarch_info_init, relevant fields
1403 set, and then finished using gdbarch_info_fill.
1404
1405 Returns the corresponding architecture, or NULL if no matching
59837fe0 1406 architecture was found. */
ebdba546
AC
1407
1408extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1409
1410
aff68abb 1411/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1412
aff68abb 1413extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1414
104c1213
JM
1415
1416/* Register per-architecture data-pointer.
1417
1418 Reserve space for a per-architecture data-pointer. An identifier
1419 for the reserved data-pointer is returned. That identifer should
95160752 1420 be saved in a local static variable.
104c1213 1421
fcc1c85c
AC
1422 Memory for the per-architecture data shall be allocated using
1423 gdbarch_obstack_zalloc. That memory will be deleted when the
1424 corresponding architecture object is deleted.
104c1213 1425
95160752
AC
1426 When a previously created architecture is re-selected, the
1427 per-architecture data-pointer for that previous architecture is
76860b5f 1428 restored. INIT() is not re-called.
104c1213
JM
1429
1430 Multiple registrarants for any architecture are allowed (and
1431 strongly encouraged). */
1432
95160752 1433struct gdbarch_data;
104c1213 1434
030f20e1
AC
1435typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1436extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1437typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1438extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1439extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1440 struct gdbarch_data *data,
1441 void *pointer);
104c1213 1442
451fbdda 1443extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1444
1445
0fa6923a 1446/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1447 byte-order, ...) using information found in the BFD. */
104c1213
JM
1448
1449extern void set_gdbarch_from_file (bfd *);
1450
1451
e514a9d6
JM
1452/* Initialize the current architecture to the "first" one we find on
1453 our list. */
1454
1455extern void initialize_current_architecture (void);
1456
104c1213 1457/* gdbarch trace variable */
ccce17b0 1458extern unsigned int gdbarch_debug;
104c1213 1459
4b9b3959 1460extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1461
1462#endif
1463EOF
1464exec 1>&2
1465#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1466compare_new gdbarch.h
104c1213
JM
1467
1468
1469#
1470# C file
1471#
1472
1473exec > new-gdbarch.c
1474copyright
1475cat <<EOF
1476
1477#include "defs.h"
7355ddba 1478#include "arch-utils.h"
104c1213 1479
104c1213 1480#include "gdbcmd.h"
faaf634c 1481#include "inferior.h"
104c1213
JM
1482#include "symcat.h"
1483
f0d4cc9e 1484#include "floatformat.h"
b59ff9d5 1485#include "reggroups.h"
4be87837 1486#include "osabi.h"
aebd7893 1487#include "gdb_obstack.h"
383f836e 1488#include "observer.h"
a3ecef73 1489#include "regcache.h"
19630284 1490#include "objfiles.h"
95160752 1491
104c1213
JM
1492/* Static function declarations */
1493
b3cc3077 1494static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1495
104c1213
JM
1496/* Non-zero if we want to trace architecture code. */
1497
1498#ifndef GDBARCH_DEBUG
1499#define GDBARCH_DEBUG 0
1500#endif
ccce17b0 1501unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1502static void
1503show_gdbarch_debug (struct ui_file *file, int from_tty,
1504 struct cmd_list_element *c, const char *value)
1505{
1506 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1507}
104c1213 1508
456fcf94 1509static const char *
8da61cc4 1510pformat (const struct floatformat **format)
456fcf94
AC
1511{
1512 if (format == NULL)
1513 return "(null)";
1514 else
8da61cc4
DJ
1515 /* Just print out one of them - this is only for diagnostics. */
1516 return format[0]->name;
456fcf94
AC
1517}
1518
08105857
PA
1519static const char *
1520pstring (const char *string)
1521{
1522 if (string == NULL)
1523 return "(null)";
1524 return string;
05c0465e
SDJ
1525}
1526
1527/* Helper function to print a list of strings, represented as "const
1528 char *const *". The list is printed comma-separated. */
1529
1530static char *
1531pstring_list (const char *const *list)
1532{
1533 static char ret[100];
1534 const char *const *p;
1535 size_t offset = 0;
1536
1537 if (list == NULL)
1538 return "(null)";
1539
1540 ret[0] = '\0';
1541 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1542 {
1543 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1544 offset += 2 + s;
1545 }
1546
1547 if (offset > 0)
1548 {
1549 gdb_assert (offset - 2 < sizeof (ret));
1550 ret[offset - 2] = '\0';
1551 }
1552
1553 return ret;
08105857
PA
1554}
1555
104c1213
JM
1556EOF
1557
1558# gdbarch open the gdbarch object
3d9a5942 1559printf "\n"
0963b4bd 1560printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1561printf "\n"
1562printf "struct gdbarch\n"
1563printf "{\n"
76860b5f
AC
1564printf " /* Has this architecture been fully initialized? */\n"
1565printf " int initialized_p;\n"
aebd7893
AC
1566printf "\n"
1567printf " /* An obstack bound to the lifetime of the architecture. */\n"
1568printf " struct obstack *obstack;\n"
1569printf "\n"
0963b4bd 1570printf " /* basic architectural information. */\n"
34620563 1571function_list | while do_read
104c1213 1572do
2ada493a
AC
1573 if class_is_info_p
1574 then
3d9a5942 1575 printf " ${returntype} ${function};\n"
2ada493a 1576 fi
104c1213 1577done
3d9a5942 1578printf "\n"
0963b4bd 1579printf " /* target specific vector. */\n"
3d9a5942
AC
1580printf " struct gdbarch_tdep *tdep;\n"
1581printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1582printf "\n"
0963b4bd 1583printf " /* per-architecture data-pointers. */\n"
95160752 1584printf " unsigned nr_data;\n"
3d9a5942
AC
1585printf " void **data;\n"
1586printf "\n"
104c1213
JM
1587cat <<EOF
1588 /* Multi-arch values.
1589
1590 When extending this structure you must:
1591
1592 Add the field below.
1593
1594 Declare set/get functions and define the corresponding
1595 macro in gdbarch.h.
1596
1597 gdbarch_alloc(): If zero/NULL is not a suitable default,
1598 initialize the new field.
1599
1600 verify_gdbarch(): Confirm that the target updated the field
1601 correctly.
1602
7e73cedf 1603 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1604 field is dumped out
1605
104c1213
JM
1606 get_gdbarch(): Implement the set/get functions (probably using
1607 the macro's as shortcuts).
1608
1609 */
1610
1611EOF
34620563 1612function_list | while do_read
104c1213 1613do
2ada493a
AC
1614 if class_is_variable_p
1615 then
3d9a5942 1616 printf " ${returntype} ${function};\n"
2ada493a
AC
1617 elif class_is_function_p
1618 then
2f9b146e 1619 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1620 fi
104c1213 1621done
3d9a5942 1622printf "};\n"
104c1213 1623
104c1213 1624# Create a new gdbarch struct
104c1213 1625cat <<EOF
7de2341d 1626
66b43ecb 1627/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1628 \`\`struct gdbarch_info''. */
104c1213 1629EOF
3d9a5942 1630printf "\n"
104c1213
JM
1631cat <<EOF
1632struct gdbarch *
1633gdbarch_alloc (const struct gdbarch_info *info,
1634 struct gdbarch_tdep *tdep)
1635{
be7811ad 1636 struct gdbarch *gdbarch;
aebd7893
AC
1637
1638 /* Create an obstack for allocating all the per-architecture memory,
1639 then use that to allocate the architecture vector. */
70ba0933 1640 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1641 obstack_init (obstack);
be7811ad
MD
1642 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1643 memset (gdbarch, 0, sizeof (*gdbarch));
1644 gdbarch->obstack = obstack;
85de9627 1645
be7811ad 1646 alloc_gdbarch_data (gdbarch);
85de9627 1647
be7811ad 1648 gdbarch->tdep = tdep;
104c1213 1649EOF
3d9a5942 1650printf "\n"
34620563 1651function_list | while do_read
104c1213 1652do
2ada493a
AC
1653 if class_is_info_p
1654 then
be7811ad 1655 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1656 fi
104c1213 1657done
3d9a5942 1658printf "\n"
0963b4bd 1659printf " /* Force the explicit initialization of these. */\n"
34620563 1660function_list | while do_read
104c1213 1661do
2ada493a
AC
1662 if class_is_function_p || class_is_variable_p
1663 then
72e74a21 1664 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1665 then
be7811ad 1666 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1667 fi
2ada493a 1668 fi
104c1213
JM
1669done
1670cat <<EOF
1671 /* gdbarch_alloc() */
1672
be7811ad 1673 return gdbarch;
104c1213
JM
1674}
1675EOF
1676
058f20d5 1677# Free a gdbarch struct.
3d9a5942
AC
1678printf "\n"
1679printf "\n"
058f20d5 1680cat <<EOF
aebd7893
AC
1681/* Allocate extra space using the per-architecture obstack. */
1682
1683void *
1684gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1685{
1686 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1687
aebd7893
AC
1688 memset (data, 0, size);
1689 return data;
1690}
1691
1692
058f20d5
JB
1693/* Free a gdbarch struct. This should never happen in normal
1694 operation --- once you've created a gdbarch, you keep it around.
1695 However, if an architecture's init function encounters an error
1696 building the structure, it may need to clean up a partially
1697 constructed gdbarch. */
4b9b3959 1698
058f20d5
JB
1699void
1700gdbarch_free (struct gdbarch *arch)
1701{
aebd7893 1702 struct obstack *obstack;
05c547f6 1703
95160752 1704 gdb_assert (arch != NULL);
aebd7893
AC
1705 gdb_assert (!arch->initialized_p);
1706 obstack = arch->obstack;
1707 obstack_free (obstack, 0); /* Includes the ARCH. */
1708 xfree (obstack);
058f20d5
JB
1709}
1710EOF
1711
104c1213 1712# verify a new architecture
104c1213 1713cat <<EOF
db446970
AC
1714
1715
1716/* Ensure that all values in a GDBARCH are reasonable. */
1717
104c1213 1718static void
be7811ad 1719verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1720{
f16a1923
AC
1721 struct ui_file *log;
1722 struct cleanup *cleanups;
759ef836 1723 long length;
f16a1923 1724 char *buf;
05c547f6 1725
f16a1923
AC
1726 log = mem_fileopen ();
1727 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1728 /* fundamental */
be7811ad 1729 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1730 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1731 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1732 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1733 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1734EOF
34620563 1735function_list | while do_read
104c1213 1736do
2ada493a
AC
1737 if class_is_function_p || class_is_variable_p
1738 then
72e74a21 1739 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1740 then
3d9a5942 1741 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1742 elif class_is_predicate_p
1743 then
0963b4bd 1744 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1745 # FIXME: See do_read for potential simplification
72e74a21 1746 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1747 then
3d9a5942 1748 printf " if (${invalid_p})\n"
be7811ad 1749 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1750 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1751 then
be7811ad
MD
1752 printf " if (gdbarch->${function} == ${predefault})\n"
1753 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1754 elif [ -n "${postdefault}" ]
f0d4cc9e 1755 then
be7811ad
MD
1756 printf " if (gdbarch->${function} == 0)\n"
1757 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1758 elif [ -n "${invalid_p}" ]
104c1213 1759 then
4d60522e 1760 printf " if (${invalid_p})\n"
f16a1923 1761 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1762 elif [ -n "${predefault}" ]
104c1213 1763 then
be7811ad 1764 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1765 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1766 fi
2ada493a 1767 fi
104c1213
JM
1768done
1769cat <<EOF
759ef836 1770 buf = ui_file_xstrdup (log, &length);
f16a1923 1771 make_cleanup (xfree, buf);
759ef836 1772 if (length > 0)
f16a1923 1773 internal_error (__FILE__, __LINE__,
85c07804 1774 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1775 buf);
1776 do_cleanups (cleanups);
104c1213
JM
1777}
1778EOF
1779
1780# dump the structure
3d9a5942
AC
1781printf "\n"
1782printf "\n"
104c1213 1783cat <<EOF
0963b4bd 1784/* Print out the details of the current architecture. */
4b9b3959 1785
104c1213 1786void
be7811ad 1787gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1788{
b78960be 1789 const char *gdb_nm_file = "<not-defined>";
05c547f6 1790
b78960be
AC
1791#if defined (GDB_NM_FILE)
1792 gdb_nm_file = GDB_NM_FILE;
1793#endif
1794 fprintf_unfiltered (file,
1795 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1796 gdb_nm_file);
104c1213 1797EOF
97030eea 1798function_list | sort -t: -k 3 | while do_read
104c1213 1799do
1e9f55d0
AC
1800 # First the predicate
1801 if class_is_predicate_p
1802 then
7996bcec 1803 printf " fprintf_unfiltered (file,\n"
48f7351b 1804 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1805 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1806 fi
48f7351b 1807 # Print the corresponding value.
283354d8 1808 if class_is_function_p
4b9b3959 1809 then
7996bcec 1810 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1811 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1812 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1813 else
48f7351b 1814 # It is a variable
2f9b146e
AC
1815 case "${print}:${returntype}" in
1816 :CORE_ADDR )
0b1553bc
UW
1817 fmt="%s"
1818 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1819 ;;
2f9b146e 1820 :* )
48f7351b 1821 fmt="%s"
623d3eb1 1822 print="plongest (gdbarch->${function})"
48f7351b
AC
1823 ;;
1824 * )
2f9b146e 1825 fmt="%s"
48f7351b
AC
1826 ;;
1827 esac
3d9a5942 1828 printf " fprintf_unfiltered (file,\n"
48f7351b 1829 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1830 printf " ${print});\n"
2ada493a 1831 fi
104c1213 1832done
381323f4 1833cat <<EOF
be7811ad
MD
1834 if (gdbarch->dump_tdep != NULL)
1835 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1836}
1837EOF
104c1213
JM
1838
1839
1840# GET/SET
3d9a5942 1841printf "\n"
104c1213
JM
1842cat <<EOF
1843struct gdbarch_tdep *
1844gdbarch_tdep (struct gdbarch *gdbarch)
1845{
1846 if (gdbarch_debug >= 2)
3d9a5942 1847 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1848 return gdbarch->tdep;
1849}
1850EOF
3d9a5942 1851printf "\n"
34620563 1852function_list | while do_read
104c1213 1853do
2ada493a
AC
1854 if class_is_predicate_p
1855 then
3d9a5942
AC
1856 printf "\n"
1857 printf "int\n"
1858 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1859 printf "{\n"
8de9bdc4 1860 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1861 printf " return ${predicate};\n"
3d9a5942 1862 printf "}\n"
2ada493a
AC
1863 fi
1864 if class_is_function_p
1865 then
3d9a5942
AC
1866 printf "\n"
1867 printf "${returntype}\n"
72e74a21 1868 if [ "x${formal}" = "xvoid" ]
104c1213 1869 then
3d9a5942 1870 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1871 else
3d9a5942 1872 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1873 fi
3d9a5942 1874 printf "{\n"
8de9bdc4 1875 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1876 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1877 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1878 then
1879 # Allow a call to a function with a predicate.
956ac328 1880 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1881 fi
3d9a5942
AC
1882 printf " if (gdbarch_debug >= 2)\n"
1883 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1884 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1885 then
1886 if class_is_multiarch_p
1887 then
1888 params="gdbarch"
1889 else
1890 params=""
1891 fi
1892 else
1893 if class_is_multiarch_p
1894 then
1895 params="gdbarch, ${actual}"
1896 else
1897 params="${actual}"
1898 fi
1899 fi
72e74a21 1900 if [ "x${returntype}" = "xvoid" ]
104c1213 1901 then
4a5c6a1d 1902 printf " gdbarch->${function} (${params});\n"
104c1213 1903 else
4a5c6a1d 1904 printf " return gdbarch->${function} (${params});\n"
104c1213 1905 fi
3d9a5942
AC
1906 printf "}\n"
1907 printf "\n"
1908 printf "void\n"
1909 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1910 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1911 printf "{\n"
1912 printf " gdbarch->${function} = ${function};\n"
1913 printf "}\n"
2ada493a
AC
1914 elif class_is_variable_p
1915 then
3d9a5942
AC
1916 printf "\n"
1917 printf "${returntype}\n"
1918 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1919 printf "{\n"
8de9bdc4 1920 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1921 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1922 then
3d9a5942 1923 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1924 elif [ -n "${invalid_p}" ]
104c1213 1925 then
956ac328
AC
1926 printf " /* Check variable is valid. */\n"
1927 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1928 elif [ -n "${predefault}" ]
104c1213 1929 then
956ac328
AC
1930 printf " /* Check variable changed from pre-default. */\n"
1931 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1932 fi
3d9a5942
AC
1933 printf " if (gdbarch_debug >= 2)\n"
1934 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1935 printf " return gdbarch->${function};\n"
1936 printf "}\n"
1937 printf "\n"
1938 printf "void\n"
1939 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1940 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1941 printf "{\n"
1942 printf " gdbarch->${function} = ${function};\n"
1943 printf "}\n"
2ada493a
AC
1944 elif class_is_info_p
1945 then
3d9a5942
AC
1946 printf "\n"
1947 printf "${returntype}\n"
1948 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1949 printf "{\n"
8de9bdc4 1950 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1951 printf " if (gdbarch_debug >= 2)\n"
1952 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1953 printf " return gdbarch->${function};\n"
1954 printf "}\n"
2ada493a 1955 fi
104c1213
JM
1956done
1957
1958# All the trailing guff
1959cat <<EOF
1960
1961
f44c642f 1962/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1963 modules. */
104c1213
JM
1964
1965struct gdbarch_data
1966{
95160752 1967 unsigned index;
76860b5f 1968 int init_p;
030f20e1
AC
1969 gdbarch_data_pre_init_ftype *pre_init;
1970 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1971};
1972
1973struct gdbarch_data_registration
1974{
104c1213
JM
1975 struct gdbarch_data *data;
1976 struct gdbarch_data_registration *next;
1977};
1978
f44c642f 1979struct gdbarch_data_registry
104c1213 1980{
95160752 1981 unsigned nr;
104c1213
JM
1982 struct gdbarch_data_registration *registrations;
1983};
1984
f44c642f 1985struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1986{
1987 0, NULL,
1988};
1989
030f20e1
AC
1990static struct gdbarch_data *
1991gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1992 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1993{
1994 struct gdbarch_data_registration **curr;
05c547f6
MS
1995
1996 /* Append the new registration. */
f44c642f 1997 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1998 (*curr) != NULL;
1999 curr = &(*curr)->next);
70ba0933 2000 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2001 (*curr)->next = NULL;
70ba0933 2002 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2003 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2004 (*curr)->data->pre_init = pre_init;
2005 (*curr)->data->post_init = post_init;
76860b5f 2006 (*curr)->data->init_p = 1;
104c1213
JM
2007 return (*curr)->data;
2008}
2009
030f20e1
AC
2010struct gdbarch_data *
2011gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2012{
2013 return gdbarch_data_register (pre_init, NULL);
2014}
2015
2016struct gdbarch_data *
2017gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2018{
2019 return gdbarch_data_register (NULL, post_init);
2020}
104c1213 2021
0963b4bd 2022/* Create/delete the gdbarch data vector. */
95160752
AC
2023
2024static void
b3cc3077 2025alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2026{
b3cc3077
JB
2027 gdb_assert (gdbarch->data == NULL);
2028 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2029 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2030}
3c875b6f 2031
76860b5f 2032/* Initialize the current value of the specified per-architecture
0963b4bd 2033 data-pointer. */
b3cc3077 2034
95160752 2035void
030f20e1
AC
2036deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2037 struct gdbarch_data *data,
2038 void *pointer)
95160752
AC
2039{
2040 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2041 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2042 gdb_assert (data->pre_init == NULL);
95160752
AC
2043 gdbarch->data[data->index] = pointer;
2044}
2045
104c1213 2046/* Return the current value of the specified per-architecture
0963b4bd 2047 data-pointer. */
104c1213
JM
2048
2049void *
451fbdda 2050gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2051{
451fbdda 2052 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2053 if (gdbarch->data[data->index] == NULL)
76860b5f 2054 {
030f20e1
AC
2055 /* The data-pointer isn't initialized, call init() to get a
2056 value. */
2057 if (data->pre_init != NULL)
2058 /* Mid architecture creation: pass just the obstack, and not
2059 the entire architecture, as that way it isn't possible for
2060 pre-init code to refer to undefined architecture
2061 fields. */
2062 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2063 else if (gdbarch->initialized_p
2064 && data->post_init != NULL)
2065 /* Post architecture creation: pass the entire architecture
2066 (as all fields are valid), but be careful to also detect
2067 recursive references. */
2068 {
2069 gdb_assert (data->init_p);
2070 data->init_p = 0;
2071 gdbarch->data[data->index] = data->post_init (gdbarch);
2072 data->init_p = 1;
2073 }
2074 else
2075 /* The architecture initialization hasn't completed - punt -
2076 hope that the caller knows what they are doing. Once
2077 deprecated_set_gdbarch_data has been initialized, this can be
2078 changed to an internal error. */
2079 return NULL;
76860b5f
AC
2080 gdb_assert (gdbarch->data[data->index] != NULL);
2081 }
451fbdda 2082 return gdbarch->data[data->index];
104c1213
JM
2083}
2084
2085
0963b4bd 2086/* Keep a registry of the architectures known by GDB. */
104c1213 2087
4b9b3959 2088struct gdbarch_registration
104c1213
JM
2089{
2090 enum bfd_architecture bfd_architecture;
2091 gdbarch_init_ftype *init;
4b9b3959 2092 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2093 struct gdbarch_list *arches;
4b9b3959 2094 struct gdbarch_registration *next;
104c1213
JM
2095};
2096
f44c642f 2097static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2098
b4a20239
AC
2099static void
2100append_name (const char ***buf, int *nr, const char *name)
2101{
2102 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2103 (*buf)[*nr] = name;
2104 *nr += 1;
2105}
2106
2107const char **
2108gdbarch_printable_names (void)
2109{
7996bcec 2110 /* Accumulate a list of names based on the registed list of
0963b4bd 2111 architectures. */
7996bcec
AC
2112 int nr_arches = 0;
2113 const char **arches = NULL;
2114 struct gdbarch_registration *rego;
05c547f6 2115
7996bcec
AC
2116 for (rego = gdbarch_registry;
2117 rego != NULL;
2118 rego = rego->next)
b4a20239 2119 {
7996bcec
AC
2120 const struct bfd_arch_info *ap;
2121 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2122 if (ap == NULL)
2123 internal_error (__FILE__, __LINE__,
85c07804 2124 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2125 do
2126 {
2127 append_name (&arches, &nr_arches, ap->printable_name);
2128 ap = ap->next;
2129 }
2130 while (ap != NULL);
b4a20239 2131 }
7996bcec
AC
2132 append_name (&arches, &nr_arches, NULL);
2133 return arches;
b4a20239
AC
2134}
2135
2136
104c1213 2137void
4b9b3959
AC
2138gdbarch_register (enum bfd_architecture bfd_architecture,
2139 gdbarch_init_ftype *init,
2140 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2141{
4b9b3959 2142 struct gdbarch_registration **curr;
104c1213 2143 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2144
ec3d358c 2145 /* Check that BFD recognizes this architecture */
104c1213
JM
2146 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2147 if (bfd_arch_info == NULL)
2148 {
8e65ff28 2149 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2150 _("gdbarch: Attempt to register "
2151 "unknown architecture (%d)"),
8e65ff28 2152 bfd_architecture);
104c1213 2153 }
0963b4bd 2154 /* Check that we haven't seen this architecture before. */
f44c642f 2155 for (curr = &gdbarch_registry;
104c1213
JM
2156 (*curr) != NULL;
2157 curr = &(*curr)->next)
2158 {
2159 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2160 internal_error (__FILE__, __LINE__,
64b9b334 2161 _("gdbarch: Duplicate registration "
0963b4bd 2162 "of architecture (%s)"),
8e65ff28 2163 bfd_arch_info->printable_name);
104c1213
JM
2164 }
2165 /* log it */
2166 if (gdbarch_debug)
30737ed9 2167 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2168 bfd_arch_info->printable_name,
30737ed9 2169 host_address_to_string (init));
104c1213 2170 /* Append it */
70ba0933 2171 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2172 (*curr)->bfd_architecture = bfd_architecture;
2173 (*curr)->init = init;
4b9b3959 2174 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2175 (*curr)->arches = NULL;
2176 (*curr)->next = NULL;
4b9b3959
AC
2177}
2178
2179void
2180register_gdbarch_init (enum bfd_architecture bfd_architecture,
2181 gdbarch_init_ftype *init)
2182{
2183 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2184}
104c1213
JM
2185
2186
424163ea 2187/* Look for an architecture using gdbarch_info. */
104c1213
JM
2188
2189struct gdbarch_list *
2190gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2191 const struct gdbarch_info *info)
2192{
2193 for (; arches != NULL; arches = arches->next)
2194 {
2195 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2196 continue;
2197 if (info->byte_order != arches->gdbarch->byte_order)
2198 continue;
4be87837
DJ
2199 if (info->osabi != arches->gdbarch->osabi)
2200 continue;
424163ea
DJ
2201 if (info->target_desc != arches->gdbarch->target_desc)
2202 continue;
104c1213
JM
2203 return arches;
2204 }
2205 return NULL;
2206}
2207
2208
ebdba546 2209/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2210 architecture if needed. Return that new architecture. */
104c1213 2211
59837fe0
UW
2212struct gdbarch *
2213gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2214{
2215 struct gdbarch *new_gdbarch;
4b9b3959 2216 struct gdbarch_registration *rego;
104c1213 2217
b732d07d 2218 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2219 sources: "set ..."; INFOabfd supplied; and the global
2220 defaults. */
2221 gdbarch_info_fill (&info);
4be87837 2222
0963b4bd 2223 /* Must have found some sort of architecture. */
b732d07d 2224 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2225
2226 if (gdbarch_debug)
2227 {
2228 fprintf_unfiltered (gdb_stdlog,
59837fe0 2229 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2230 (info.bfd_arch_info != NULL
2231 ? info.bfd_arch_info->printable_name
2232 : "(null)"));
2233 fprintf_unfiltered (gdb_stdlog,
59837fe0 2234 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2235 info.byte_order,
d7449b42 2236 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2237 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2238 : "default"));
4be87837 2239 fprintf_unfiltered (gdb_stdlog,
59837fe0 2240 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2241 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2242 fprintf_unfiltered (gdb_stdlog,
59837fe0 2243 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2244 host_address_to_string (info.abfd));
104c1213 2245 fprintf_unfiltered (gdb_stdlog,
59837fe0 2246 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2247 host_address_to_string (info.tdep_info));
104c1213
JM
2248 }
2249
ebdba546 2250 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2251 for (rego = gdbarch_registry;
2252 rego != NULL;
2253 rego = rego->next)
2254 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2255 break;
2256 if (rego == NULL)
2257 {
2258 if (gdbarch_debug)
59837fe0 2259 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2260 "No matching architecture\n");
b732d07d
AC
2261 return 0;
2262 }
2263
ebdba546 2264 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2265 new_gdbarch = rego->init (info, rego->arches);
2266
ebdba546
AC
2267 /* Did the tdep code like it? No. Reject the change and revert to
2268 the old architecture. */
104c1213
JM
2269 if (new_gdbarch == NULL)
2270 {
2271 if (gdbarch_debug)
59837fe0 2272 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2273 "Target rejected architecture\n");
2274 return NULL;
104c1213
JM
2275 }
2276
ebdba546
AC
2277 /* Is this a pre-existing architecture (as determined by already
2278 being initialized)? Move it to the front of the architecture
2279 list (keeping the list sorted Most Recently Used). */
2280 if (new_gdbarch->initialized_p)
104c1213 2281 {
ebdba546
AC
2282 struct gdbarch_list **list;
2283 struct gdbarch_list *this;
104c1213 2284 if (gdbarch_debug)
59837fe0 2285 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2286 "Previous architecture %s (%s) selected\n",
2287 host_address_to_string (new_gdbarch),
104c1213 2288 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2289 /* Find the existing arch in the list. */
2290 for (list = &rego->arches;
2291 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2292 list = &(*list)->next);
2293 /* It had better be in the list of architectures. */
2294 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2295 /* Unlink THIS. */
2296 this = (*list);
2297 (*list) = this->next;
2298 /* Insert THIS at the front. */
2299 this->next = rego->arches;
2300 rego->arches = this;
2301 /* Return it. */
2302 return new_gdbarch;
104c1213
JM
2303 }
2304
ebdba546
AC
2305 /* It's a new architecture. */
2306 if (gdbarch_debug)
59837fe0 2307 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2308 "New architecture %s (%s) selected\n",
2309 host_address_to_string (new_gdbarch),
ebdba546
AC
2310 new_gdbarch->bfd_arch_info->printable_name);
2311
2312 /* Insert the new architecture into the front of the architecture
2313 list (keep the list sorted Most Recently Used). */
0f79675b 2314 {
70ba0933 2315 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2316 this->next = rego->arches;
2317 this->gdbarch = new_gdbarch;
2318 rego->arches = this;
2319 }
104c1213 2320
4b9b3959
AC
2321 /* Check that the newly installed architecture is valid. Plug in
2322 any post init values. */
2323 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2324 verify_gdbarch (new_gdbarch);
ebdba546 2325 new_gdbarch->initialized_p = 1;
104c1213 2326
4b9b3959 2327 if (gdbarch_debug)
ebdba546
AC
2328 gdbarch_dump (new_gdbarch, gdb_stdlog);
2329
2330 return new_gdbarch;
2331}
2332
e487cc15 2333/* Make the specified architecture current. */
ebdba546
AC
2334
2335void
aff68abb 2336set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2337{
2338 gdb_assert (new_gdbarch != NULL);
ebdba546 2339 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2340 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2341 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2342 registers_changed ();
ebdba546 2343}
104c1213 2344
f5656ead 2345/* Return the current inferior's arch. */
6ecd4729
PA
2346
2347struct gdbarch *
f5656ead 2348target_gdbarch (void)
6ecd4729
PA
2349{
2350 return current_inferior ()->gdbarch;
2351}
2352
104c1213 2353extern void _initialize_gdbarch (void);
b4a20239 2354
104c1213 2355void
34620563 2356_initialize_gdbarch (void)
104c1213 2357{
ccce17b0 2358 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2359Set architecture debugging."), _("\\
2360Show architecture debugging."), _("\\
2361When non-zero, architecture debugging is enabled."),
2362 NULL,
920d2a44 2363 show_gdbarch_debug,
85c07804 2364 &setdebuglist, &showdebuglist);
104c1213
JM
2365}
2366EOF
2367
2368# close things off
2369exec 1>&2
2370#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2371compare_new gdbarch.c
This page took 1.267739 seconds and 4 git commands to generate.