Fix info-shared.exp testcase to expect the leading `.' found on ppc64's symbols.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
502# Construct a value representing the contents of register REGNUM in
503# frame FRAME, interpreted as type TYPE. The routine needs to
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
97030eea 506f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 533f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 534m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
535# Return the adjusted address and kind to use for Z0/Z1 packets.
536# KIND is usually the memory length of the breakpoint, but may have a
537# different target-specific meaning.
0e05dfcb 538m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 539M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
540m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
541m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 542v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
543
544# A function can be addressed by either it's "pointer" (possibly a
545# descriptor address) or "entry point" (first executable instruction).
546# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 547# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
548# a simplified subset of that functionality - the function's address
549# corresponds to the "function pointer" and the function's start
550# corresponds to the "function entry point" - and hence is redundant.
551
97030eea 552v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 553
123dc839
DJ
554# Return the remote protocol register number associated with this
555# register. Normally the identity mapping.
97030eea 556m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 557
b2756930 558# Fetch the target specific address used to represent a load module.
97030eea 559F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 560#
97030eea
UW
561v:CORE_ADDR:frame_args_skip:::0:::0
562M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
563M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
564# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
565# frame-base. Enable frame-base before frame-unwind.
97030eea 566F:int:frame_num_args:struct frame_info *frame:frame
104c1213 567#
97030eea
UW
568M:CORE_ADDR:frame_align:CORE_ADDR address:address
569m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
570v:int:frame_red_zone_size
f0d4cc9e 571#
97030eea 572m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
573# On some machines there are bits in addresses which are not really
574# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 575# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
576# we get a "real" address such as one would find in a symbol table.
577# This is used only for addresses of instructions, and even then I'm
578# not sure it's used in all contexts. It exists to deal with there
579# being a few stray bits in the PC which would mislead us, not as some
580# sort of generic thing to handle alignment or segmentation (it's
581# possible it should be in TARGET_READ_PC instead).
24568a2c 582m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
583
584# FIXME/cagney/2001-01-18: This should be split in two. A target method that
585# indicates if the target needs software single step. An ISA method to
586# implement it.
587#
588# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
589# breakpoints using the breakpoint system instead of blatting memory directly
590# (as with rs6000).
64c4637f 591#
e6590a1b
UW
592# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
593# target can single step. If not, then implement single step using breakpoints.
64c4637f 594#
6f112b18 595# A return value of 1 means that the software_single_step breakpoints
e6590a1b 596# were inserted; 0 means they were not.
97030eea 597F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 598
3352ef37
AC
599# Return non-zero if the processor is executing a delay slot and a
600# further single-step is needed before the instruction finishes.
97030eea 601M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 602# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 603# disassembler. Perhaps objdump can handle it?
97030eea
UW
604f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
605f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
606
607
cfd8ab24 608# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
609# evaluates non-zero, this is the address where the debugger will place
610# a step-resume breakpoint to get us past the dynamic linker.
97030eea 611m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 612# Some systems also have trampoline code for returning from shared libs.
2c02bd72 613m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 614
c12260ac
CV
615# A target might have problems with watchpoints as soon as the stack
616# frame of the current function has been destroyed. This mostly happens
617# as the first action in a funtion's epilogue. in_function_epilogue_p()
618# is defined to return a non-zero value if either the given addr is one
619# instruction after the stack destroying instruction up to the trailing
620# return instruction or if we can figure out that the stack frame has
621# already been invalidated regardless of the value of addr. Targets
622# which don't suffer from that problem could just let this functionality
623# untouched.
97030eea 624m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
625f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
626f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
627v:int:cannot_step_breakpoint:::0:0::0
628v:int:have_nonsteppable_watchpoint:::0:0::0
629F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
631
632# Return the appropriate type_flags for the supplied address class.
633# This function should return 1 if the address class was recognized and
634# type_flags was set, zero otherwise.
97030eea 635M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 636# Is a register in a group
97030eea 637m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 638# Fetch the pointer to the ith function argument.
97030eea 639F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
640
641# Return the appropriate register set for a core file section with
642# name SECT_NAME and size SECT_SIZE.
97030eea 643M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 644
17ea7499
CES
645# Supported register notes in a core file.
646v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
647
6432734d
UW
648# Create core file notes
649M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
650
b3ac9c77
SDJ
651# The elfcore writer hook to use to write Linux prpsinfo notes to core
652# files. Most Linux architectures use the same prpsinfo32 or
653# prpsinfo64 layouts, and so won't need to provide this hook, as we
654# call the Linux generic routines in bfd to write prpsinfo notes by
655# default.
656F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
657
35c2fab7
UW
658# Find core file memory regions
659M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
660
de584861
PA
661# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
662# core file into buffer READBUF with length LEN.
7ec1862d 663M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 664
356a5233
JB
665# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
666# libraries list from core file into buffer READBUF with length LEN.
7ec1862d 667M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 668
c0edd9ed 669# How the core target converts a PTID from a core file to a string.
28439f5e
PA
670M:char *:core_pid_to_str:ptid_t ptid:ptid
671
a78c2d62 672# BFD target to use when generating a core file.
86ba1042 673V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 674
0d5de010
DJ
675# If the elements of C++ vtables are in-place function descriptors rather
676# than normal function pointers (which may point to code or a descriptor),
677# set this to one.
97030eea 678v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
679
680# Set if the least significant bit of the delta is used instead of the least
681# significant bit of the pfn for pointers to virtual member functions.
97030eea 682v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
683
684# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 685F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 686
1668ae25 687# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
688V:ULONGEST:max_insn_length:::0:0
689
690# Copy the instruction at FROM to TO, and make any adjustments
691# necessary to single-step it at that address.
692#
693# REGS holds the state the thread's registers will have before
694# executing the copied instruction; the PC in REGS will refer to FROM,
695# not the copy at TO. The caller should update it to point at TO later.
696#
697# Return a pointer to data of the architecture's choice to be passed
698# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
699# the instruction's effects have been completely simulated, with the
700# resulting state written back to REGS.
701#
702# For a general explanation of displaced stepping and how GDB uses it,
703# see the comments in infrun.c.
704#
705# The TO area is only guaranteed to have space for
706# gdbarch_max_insn_length (arch) bytes, so this function must not
707# write more bytes than that to that area.
708#
709# If you do not provide this function, GDB assumes that the
710# architecture does not support displaced stepping.
711#
712# If your architecture doesn't need to adjust instructions before
713# single-stepping them, consider using simple_displaced_step_copy_insn
714# here.
715M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
716
99e40580
UW
717# Return true if GDB should use hardware single-stepping to execute
718# the displaced instruction identified by CLOSURE. If false,
719# GDB will simply restart execution at the displaced instruction
720# location, and it is up to the target to ensure GDB will receive
721# control again (e.g. by placing a software breakpoint instruction
722# into the displaced instruction buffer).
723#
724# The default implementation returns false on all targets that
725# provide a gdbarch_software_single_step routine, and true otherwise.
726m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
727
237fc4c9
PA
728# Fix up the state resulting from successfully single-stepping a
729# displaced instruction, to give the result we would have gotten from
730# stepping the instruction in its original location.
731#
732# REGS is the register state resulting from single-stepping the
733# displaced instruction.
734#
735# CLOSURE is the result from the matching call to
736# gdbarch_displaced_step_copy_insn.
737#
738# If you provide gdbarch_displaced_step_copy_insn.but not this
739# function, then GDB assumes that no fixup is needed after
740# single-stepping the instruction.
741#
742# For a general explanation of displaced stepping and how GDB uses it,
743# see the comments in infrun.c.
744M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
745
746# Free a closure returned by gdbarch_displaced_step_copy_insn.
747#
748# If you provide gdbarch_displaced_step_copy_insn, you must provide
749# this function as well.
750#
751# If your architecture uses closures that don't need to be freed, then
752# you can use simple_displaced_step_free_closure here.
753#
754# For a general explanation of displaced stepping and how GDB uses it,
755# see the comments in infrun.c.
756m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
757
758# Return the address of an appropriate place to put displaced
759# instructions while we step over them. There need only be one such
760# place, since we're only stepping one thread over a breakpoint at a
761# time.
762#
763# For a general explanation of displaced stepping and how GDB uses it,
764# see the comments in infrun.c.
765m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
766
dde08ee1
PA
767# Relocate an instruction to execute at a different address. OLDLOC
768# is the address in the inferior memory where the instruction to
769# relocate is currently at. On input, TO points to the destination
770# where we want the instruction to be copied (and possibly adjusted)
771# to. On output, it points to one past the end of the resulting
772# instruction(s). The effect of executing the instruction at TO shall
773# be the same as if executing it at FROM. For example, call
774# instructions that implicitly push the return address on the stack
775# should be adjusted to return to the instruction after OLDLOC;
776# relative branches, and other PC-relative instructions need the
777# offset adjusted; etc.
778M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
779
1c772458 780# Refresh overlay mapped state for section OSECT.
97030eea 781F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 782
97030eea 783M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
784
785# Handle special encoding of static variables in stabs debug info.
0d5cff50 786F:const char *:static_transform_name:const char *name:name
203c3895 787# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 788v:int:sofun_address_maybe_missing:::0:0::0
1cded358 789
0508c3ec
HZ
790# Parse the instruction at ADDR storing in the record execution log
791# the registers REGCACHE and memory ranges that will be affected when
792# the instruction executes, along with their current values.
793# Return -1 if something goes wrong, 0 otherwise.
794M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
795
3846b520
HZ
796# Save process state after a signal.
797# Return -1 if something goes wrong, 0 otherwise.
2ea28649 798M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 799
22203bbf 800# Signal translation: translate inferior's signal (target's) number
86b49880
PA
801# into GDB's representation. The implementation of this method must
802# be host independent. IOW, don't rely on symbols of the NAT_FILE
803# header (the nm-*.h files), the host <signal.h> header, or similar
804# headers. This is mainly used when cross-debugging core files ---
805# "Live" targets hide the translation behind the target interface
1f8cf220
PA
806# (target_wait, target_resume, etc.).
807M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 808
eb14d406
SDJ
809# Signal translation: translate the GDB's internal signal number into
810# the inferior's signal (target's) representation. The implementation
811# of this method must be host independent. IOW, don't rely on symbols
812# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
813# header, or similar headers.
814# Return the target signal number if found, or -1 if the GDB internal
815# signal number is invalid.
816M:int:gdb_signal_to_target:enum gdb_signal signal:signal
817
4aa995e1
PA
818# Extra signal info inspection.
819#
820# Return a type suitable to inspect extra signal information.
821M:struct type *:get_siginfo_type:void:
822
60c5725c
DJ
823# Record architecture-specific information from the symbol table.
824M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 825
a96d9b2e
SDJ
826# Function for the 'catch syscall' feature.
827
828# Get architecture-specific system calls information from registers.
829M:LONGEST:get_syscall_number:ptid_t ptid:ptid
830
55aa24fb
SDJ
831# SystemTap related fields and functions.
832
05c0465e
SDJ
833# A NULL-terminated array of prefixes used to mark an integer constant
834# on the architecture's assembly.
55aa24fb
SDJ
835# For example, on x86 integer constants are written as:
836#
837# \$10 ;; integer constant 10
838#
839# in this case, this prefix would be the character \`\$\'.
05c0465e 840v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 841
05c0465e
SDJ
842# A NULL-terminated array of suffixes used to mark an integer constant
843# on the architecture's assembly.
844v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 845
05c0465e
SDJ
846# A NULL-terminated array of prefixes used to mark a register name on
847# the architecture's assembly.
55aa24fb
SDJ
848# For example, on x86 the register name is written as:
849#
850# \%eax ;; register eax
851#
852# in this case, this prefix would be the character \`\%\'.
05c0465e 853v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 854
05c0465e
SDJ
855# A NULL-terminated array of suffixes used to mark a register name on
856# the architecture's assembly.
857v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 858
05c0465e
SDJ
859# A NULL-terminated array of prefixes used to mark a register
860# indirection on the architecture's assembly.
55aa24fb
SDJ
861# For example, on x86 the register indirection is written as:
862#
863# \(\%eax\) ;; indirecting eax
864#
865# in this case, this prefix would be the charater \`\(\'.
866#
867# Please note that we use the indirection prefix also for register
868# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 869v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 870
05c0465e
SDJ
871# A NULL-terminated array of suffixes used to mark a register
872# indirection on the architecture's assembly.
55aa24fb
SDJ
873# For example, on x86 the register indirection is written as:
874#
875# \(\%eax\) ;; indirecting eax
876#
877# in this case, this prefix would be the charater \`\)\'.
878#
879# Please note that we use the indirection suffix also for register
880# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 881v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 882
05c0465e 883# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
884#
885# For example, on PPC a register is represented by a number in the assembly
886# language (e.g., \`10\' is the 10th general-purpose register). However,
887# inside GDB this same register has an \`r\' appended to its name, so the 10th
888# register would be represented as \`r10\' internally.
08af7a40 889v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
890
891# Suffix used to name a register using GDB's nomenclature.
08af7a40 892v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
893
894# Check if S is a single operand.
895#
896# Single operands can be:
897# \- Literal integers, e.g. \`\$10\' on x86
898# \- Register access, e.g. \`\%eax\' on x86
899# \- Register indirection, e.g. \`\(\%eax\)\' on x86
900# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
901#
902# This function should check for these patterns on the string
903# and return 1 if some were found, or zero otherwise. Please try to match
904# as much info as you can from the string, i.e., if you have to match
905# something like \`\(\%\', do not match just the \`\(\'.
906M:int:stap_is_single_operand:const char *s:s
907
908# Function used to handle a "special case" in the parser.
909#
910# A "special case" is considered to be an unknown token, i.e., a token
911# that the parser does not know how to parse. A good example of special
912# case would be ARM's register displacement syntax:
913#
914# [R0, #4] ;; displacing R0 by 4
915#
916# Since the parser assumes that a register displacement is of the form:
917#
918# <number> <indirection_prefix> <register_name> <indirection_suffix>
919#
920# it means that it will not be able to recognize and parse this odd syntax.
921# Therefore, we should add a special case function that will handle this token.
922#
923# This function should generate the proper expression form of the expression
924# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
925# and so on). It should also return 1 if the parsing was successful, or zero
926# if the token was not recognized as a special token (in this case, returning
927# zero means that the special parser is deferring the parsing to the generic
928# parser), and should advance the buffer pointer (p->arg).
929M:int:stap_parse_special_token:struct stap_parse_info *p:p
930
931
50c71eaf
PA
932# True if the list of shared libraries is one and only for all
933# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
934# This usually means that all processes, although may or may not share
935# an address space, will see the same set of symbols at the same
936# addresses.
50c71eaf 937v:int:has_global_solist:::0:0::0
2567c7d9
PA
938
939# On some targets, even though each inferior has its own private
940# address space, the debug interface takes care of making breakpoints
941# visible to all address spaces automatically. For such cases,
942# this property should be set to true.
943v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
944
945# True if inferiors share an address space (e.g., uClinux).
946m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
947
948# True if a fast tracepoint can be set at an address.
949m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 950
f870a310
TT
951# Return the "auto" target charset.
952f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
953# Return the "auto" target wide charset.
954f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
955
956# If non-empty, this is a file extension that will be opened in place
957# of the file extension reported by the shared library list.
958#
959# This is most useful for toolchains that use a post-linker tool,
960# where the names of the files run on the target differ in extension
961# compared to the names of the files GDB should load for debug info.
962v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
963
964# If true, the target OS has DOS-based file system semantics. That
965# is, absolute paths include a drive name, and the backslash is
966# considered a directory separator.
967v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
968
969# Generate bytecodes to collect the return address in a frame.
970# Since the bytecodes run on the target, possibly with GDB not even
971# connected, the full unwinding machinery is not available, and
972# typically this function will issue bytecodes for one or more likely
973# places that the return address may be found.
974m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
975
3030c96e
UW
976# Implement the "info proc" command.
977M:void:info_proc:char *args, enum info_proc_what what:args, what
978
451b7c33
TT
979# Implement the "info proc" command for core files. Noe that there
980# are two "info_proc"-like methods on gdbarch -- one for core files,
981# one for live targets.
982M:void:core_info_proc:char *args, enum info_proc_what what:args, what
983
19630284
JB
984# Iterate over all objfiles in the order that makes the most sense
985# for the architecture to make global symbol searches.
986#
987# CB is a callback function where OBJFILE is the objfile to be searched,
988# and CB_DATA a pointer to user-defined data (the same data that is passed
989# when calling this gdbarch method). The iteration stops if this function
990# returns nonzero.
991#
992# CB_DATA is a pointer to some user-defined data to be passed to
993# the callback.
994#
995# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
996# inspected when the symbol search was requested.
997m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
998
7e35103a
JB
999# Ravenscar arch-dependent ops.
1000v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1001
1002# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1003m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1004
1005# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1006m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1007
1008# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1009m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
104c1213 1010EOF
104c1213
JM
1011}
1012
0b8f9e4d
AC
1013#
1014# The .log file
1015#
1016exec > new-gdbarch.log
34620563 1017function_list | while do_read
0b8f9e4d
AC
1018do
1019 cat <<EOF
2f9b146e 1020${class} ${returntype} ${function} ($formal)
104c1213 1021EOF
3d9a5942
AC
1022 for r in ${read}
1023 do
1024 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1025 done
f0d4cc9e 1026 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1027 then
66d659b1 1028 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1029 kill $$
1030 exit 1
1031 fi
72e74a21 1032 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1033 then
1034 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1035 kill $$
1036 exit 1
1037 fi
a72293e2
AC
1038 if class_is_multiarch_p
1039 then
1040 if class_is_predicate_p ; then :
1041 elif test "x${predefault}" = "x"
1042 then
2f9b146e 1043 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1044 kill $$
1045 exit 1
1046 fi
1047 fi
3d9a5942 1048 echo ""
0b8f9e4d
AC
1049done
1050
1051exec 1>&2
1052compare_new gdbarch.log
1053
104c1213
JM
1054
1055copyright ()
1056{
1057cat <<EOF
c4bfde41
JK
1058/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1059/* vi:set ro: */
59233f88 1060
104c1213 1061/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1062
ecd75fc8 1063 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1064
1065 This file is part of GDB.
1066
1067 This program is free software; you can redistribute it and/or modify
1068 it under the terms of the GNU General Public License as published by
50efebf8 1069 the Free Software Foundation; either version 3 of the License, or
104c1213 1070 (at your option) any later version.
50efebf8 1071
104c1213
JM
1072 This program is distributed in the hope that it will be useful,
1073 but WITHOUT ANY WARRANTY; without even the implied warranty of
1074 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1075 GNU General Public License for more details.
50efebf8 1076
104c1213 1077 You should have received a copy of the GNU General Public License
50efebf8 1078 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1079
104c1213
JM
1080/* This file was created with the aid of \`\`gdbarch.sh''.
1081
52204a0b 1082 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1083 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1084 against the existing \`\`gdbarch.[hc]''. Any differences found
1085 being reported.
1086
1087 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1088 changes into that script. Conversely, when making sweeping changes
104c1213 1089 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1090 easier. */
104c1213
JM
1091
1092EOF
1093}
1094
1095#
1096# The .h file
1097#
1098
1099exec > new-gdbarch.h
1100copyright
1101cat <<EOF
1102#ifndef GDBARCH_H
1103#define GDBARCH_H
1104
da3331ec
AC
1105struct floatformat;
1106struct ui_file;
104c1213
JM
1107struct frame_info;
1108struct value;
b6af0555 1109struct objfile;
1c772458 1110struct obj_section;
a2cf933a 1111struct minimal_symbol;
049ee0e4 1112struct regcache;
b59ff9d5 1113struct reggroup;
6ce6d90f 1114struct regset;
a89aa300 1115struct disassemble_info;
e2d0e7eb 1116struct target_ops;
030f20e1 1117struct obstack;
8181d85f 1118struct bp_target_info;
424163ea 1119struct target_desc;
237fc4c9 1120struct displaced_step_closure;
17ea7499 1121struct core_regset_section;
a96d9b2e 1122struct syscall;
175ff332 1123struct agent_expr;
6710bf39 1124struct axs_value;
55aa24fb 1125struct stap_parse_info;
7e35103a 1126struct ravenscar_arch_ops;
b3ac9c77 1127struct elf_internal_linux_prpsinfo;
104c1213 1128
6ecd4729
PA
1129/* The architecture associated with the inferior through the
1130 connection to the target.
1131
1132 The architecture vector provides some information that is really a
1133 property of the inferior, accessed through a particular target:
1134 ptrace operations; the layout of certain RSP packets; the solib_ops
1135 vector; etc. To differentiate architecture accesses to
1136 per-inferior/target properties from
1137 per-thread/per-frame/per-objfile properties, accesses to
1138 per-inferior/target properties should be made through this
1139 gdbarch. */
1140
1141/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1142extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1143
1144/* The initial, default architecture. It uses host values (for want of a better
1145 choice). */
1146extern struct gdbarch startup_gdbarch;
1147
19630284
JB
1148
1149/* Callback type for the 'iterate_over_objfiles_in_search_order'
1150 gdbarch method. */
1151
1152typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1153 (struct objfile *objfile, void *cb_data);
104c1213
JM
1154EOF
1155
1156# function typedef's
3d9a5942
AC
1157printf "\n"
1158printf "\n"
0963b4bd 1159printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1160function_list | while do_read
104c1213 1161do
2ada493a
AC
1162 if class_is_info_p
1163 then
3d9a5942
AC
1164 printf "\n"
1165 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1166 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1167 fi
104c1213
JM
1168done
1169
1170# function typedef's
3d9a5942
AC
1171printf "\n"
1172printf "\n"
0963b4bd 1173printf "/* The following are initialized by the target dependent code. */\n"
34620563 1174function_list | while do_read
104c1213 1175do
72e74a21 1176 if [ -n "${comment}" ]
34620563
AC
1177 then
1178 echo "${comment}" | sed \
1179 -e '2 s,#,/*,' \
1180 -e '3,$ s,#, ,' \
1181 -e '$ s,$, */,'
1182 fi
412d5987
AC
1183
1184 if class_is_predicate_p
2ada493a 1185 then
412d5987
AC
1186 printf "\n"
1187 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1188 fi
2ada493a
AC
1189 if class_is_variable_p
1190 then
3d9a5942
AC
1191 printf "\n"
1192 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1193 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1194 fi
1195 if class_is_function_p
1196 then
3d9a5942 1197 printf "\n"
72e74a21 1198 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1199 then
1200 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1201 elif class_is_multiarch_p
1202 then
1203 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1204 else
1205 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1206 fi
72e74a21 1207 if [ "x${formal}" = "xvoid" ]
104c1213 1208 then
3d9a5942 1209 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1210 else
3d9a5942 1211 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1212 fi
3d9a5942 1213 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1214 fi
104c1213
JM
1215done
1216
1217# close it off
1218cat <<EOF
1219
a96d9b2e
SDJ
1220/* Definition for an unknown syscall, used basically in error-cases. */
1221#define UNKNOWN_SYSCALL (-1)
1222
104c1213
JM
1223extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1224
1225
1226/* Mechanism for co-ordinating the selection of a specific
1227 architecture.
1228
1229 GDB targets (*-tdep.c) can register an interest in a specific
1230 architecture. Other GDB components can register a need to maintain
1231 per-architecture data.
1232
1233 The mechanisms below ensures that there is only a loose connection
1234 between the set-architecture command and the various GDB
0fa6923a 1235 components. Each component can independently register their need
104c1213
JM
1236 to maintain architecture specific data with gdbarch.
1237
1238 Pragmatics:
1239
1240 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1241 didn't scale.
1242
1243 The more traditional mega-struct containing architecture specific
1244 data for all the various GDB components was also considered. Since
0fa6923a 1245 GDB is built from a variable number of (fairly independent)
104c1213 1246 components it was determined that the global aproach was not
0963b4bd 1247 applicable. */
104c1213
JM
1248
1249
1250/* Register a new architectural family with GDB.
1251
1252 Register support for the specified ARCHITECTURE with GDB. When
1253 gdbarch determines that the specified architecture has been
1254 selected, the corresponding INIT function is called.
1255
1256 --
1257
1258 The INIT function takes two parameters: INFO which contains the
1259 information available to gdbarch about the (possibly new)
1260 architecture; ARCHES which is a list of the previously created
1261 \`\`struct gdbarch'' for this architecture.
1262
0f79675b 1263 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1264 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1265
1266 The ARCHES parameter is a linked list (sorted most recently used)
1267 of all the previously created architures for this architecture
1268 family. The (possibly NULL) ARCHES->gdbarch can used to access
1269 values from the previously selected architecture for this
59837fe0 1270 architecture family.
104c1213
JM
1271
1272 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1273 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1274 gdbarch'' from the ARCHES list - indicating that the new
1275 architecture is just a synonym for an earlier architecture (see
1276 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1277 - that describes the selected architecture (see gdbarch_alloc()).
1278
1279 The DUMP_TDEP function shall print out all target specific values.
1280 Care should be taken to ensure that the function works in both the
0963b4bd 1281 multi-arch and non- multi-arch cases. */
104c1213
JM
1282
1283struct gdbarch_list
1284{
1285 struct gdbarch *gdbarch;
1286 struct gdbarch_list *next;
1287};
1288
1289struct gdbarch_info
1290{
0963b4bd 1291 /* Use default: NULL (ZERO). */
104c1213
JM
1292 const struct bfd_arch_info *bfd_arch_info;
1293
428721aa 1294 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1295 enum bfd_endian byte_order;
104c1213 1296
94123b4f 1297 enum bfd_endian byte_order_for_code;
9d4fde75 1298
0963b4bd 1299 /* Use default: NULL (ZERO). */
104c1213
JM
1300 bfd *abfd;
1301
0963b4bd 1302 /* Use default: NULL (ZERO). */
104c1213 1303 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1304
1305 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1306 enum gdb_osabi osabi;
424163ea
DJ
1307
1308 /* Use default: NULL (ZERO). */
1309 const struct target_desc *target_desc;
104c1213
JM
1310};
1311
1312typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1313typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1314
4b9b3959 1315/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1316extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1317
4b9b3959
AC
1318extern void gdbarch_register (enum bfd_architecture architecture,
1319 gdbarch_init_ftype *,
1320 gdbarch_dump_tdep_ftype *);
1321
104c1213 1322
b4a20239
AC
1323/* Return a freshly allocated, NULL terminated, array of the valid
1324 architecture names. Since architectures are registered during the
1325 _initialize phase this function only returns useful information
0963b4bd 1326 once initialization has been completed. */
b4a20239
AC
1327
1328extern const char **gdbarch_printable_names (void);
1329
1330
104c1213 1331/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1332 matches the information provided by INFO. */
104c1213 1333
424163ea 1334extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1335
1336
1337/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1338 basic initialization using values obtained from the INFO and TDEP
104c1213 1339 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1340 initialization of the object. */
104c1213
JM
1341
1342extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1343
1344
4b9b3959
AC
1345/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1346 It is assumed that the caller freeds the \`\`struct
0963b4bd 1347 gdbarch_tdep''. */
4b9b3959 1348
058f20d5
JB
1349extern void gdbarch_free (struct gdbarch *);
1350
1351
aebd7893
AC
1352/* Helper function. Allocate memory from the \`\`struct gdbarch''
1353 obstack. The memory is freed when the corresponding architecture
1354 is also freed. */
1355
1356extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1357#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1358#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1359
1360
0963b4bd 1361/* Helper function. Force an update of the current architecture.
104c1213 1362
b732d07d
AC
1363 The actual architecture selected is determined by INFO, \`\`(gdb) set
1364 architecture'' et.al., the existing architecture and BFD's default
1365 architecture. INFO should be initialized to zero and then selected
1366 fields should be updated.
104c1213 1367
0963b4bd 1368 Returns non-zero if the update succeeds. */
16f33e29
AC
1369
1370extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1371
1372
ebdba546
AC
1373/* Helper function. Find an architecture matching info.
1374
1375 INFO should be initialized using gdbarch_info_init, relevant fields
1376 set, and then finished using gdbarch_info_fill.
1377
1378 Returns the corresponding architecture, or NULL if no matching
59837fe0 1379 architecture was found. */
ebdba546
AC
1380
1381extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1382
1383
aff68abb 1384/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1385
aff68abb 1386extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1387
104c1213
JM
1388
1389/* Register per-architecture data-pointer.
1390
1391 Reserve space for a per-architecture data-pointer. An identifier
1392 for the reserved data-pointer is returned. That identifer should
95160752 1393 be saved in a local static variable.
104c1213 1394
fcc1c85c
AC
1395 Memory for the per-architecture data shall be allocated using
1396 gdbarch_obstack_zalloc. That memory will be deleted when the
1397 corresponding architecture object is deleted.
104c1213 1398
95160752
AC
1399 When a previously created architecture is re-selected, the
1400 per-architecture data-pointer for that previous architecture is
76860b5f 1401 restored. INIT() is not re-called.
104c1213
JM
1402
1403 Multiple registrarants for any architecture are allowed (and
1404 strongly encouraged). */
1405
95160752 1406struct gdbarch_data;
104c1213 1407
030f20e1
AC
1408typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1409extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1410typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1411extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1412extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1413 struct gdbarch_data *data,
1414 void *pointer);
104c1213 1415
451fbdda 1416extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1417
1418
0fa6923a 1419/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1420 byte-order, ...) using information found in the BFD. */
104c1213
JM
1421
1422extern void set_gdbarch_from_file (bfd *);
1423
1424
e514a9d6
JM
1425/* Initialize the current architecture to the "first" one we find on
1426 our list. */
1427
1428extern void initialize_current_architecture (void);
1429
104c1213 1430/* gdbarch trace variable */
ccce17b0 1431extern unsigned int gdbarch_debug;
104c1213 1432
4b9b3959 1433extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1434
1435#endif
1436EOF
1437exec 1>&2
1438#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1439compare_new gdbarch.h
104c1213
JM
1440
1441
1442#
1443# C file
1444#
1445
1446exec > new-gdbarch.c
1447copyright
1448cat <<EOF
1449
1450#include "defs.h"
7355ddba 1451#include "arch-utils.h"
104c1213 1452
104c1213 1453#include "gdbcmd.h"
faaf634c 1454#include "inferior.h"
104c1213
JM
1455#include "symcat.h"
1456
f0d4cc9e 1457#include "floatformat.h"
104c1213 1458
95160752 1459#include "gdb_assert.h"
e7b12392 1460#include <string.h>
b59ff9d5 1461#include "reggroups.h"
4be87837 1462#include "osabi.h"
aebd7893 1463#include "gdb_obstack.h"
383f836e 1464#include "observer.h"
a3ecef73 1465#include "regcache.h"
19630284 1466#include "objfiles.h"
95160752 1467
104c1213
JM
1468/* Static function declarations */
1469
b3cc3077 1470static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1471
104c1213
JM
1472/* Non-zero if we want to trace architecture code. */
1473
1474#ifndef GDBARCH_DEBUG
1475#define GDBARCH_DEBUG 0
1476#endif
ccce17b0 1477unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1478static void
1479show_gdbarch_debug (struct ui_file *file, int from_tty,
1480 struct cmd_list_element *c, const char *value)
1481{
1482 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1483}
104c1213 1484
456fcf94 1485static const char *
8da61cc4 1486pformat (const struct floatformat **format)
456fcf94
AC
1487{
1488 if (format == NULL)
1489 return "(null)";
1490 else
8da61cc4
DJ
1491 /* Just print out one of them - this is only for diagnostics. */
1492 return format[0]->name;
456fcf94
AC
1493}
1494
08105857
PA
1495static const char *
1496pstring (const char *string)
1497{
1498 if (string == NULL)
1499 return "(null)";
1500 return string;
05c0465e
SDJ
1501}
1502
1503/* Helper function to print a list of strings, represented as "const
1504 char *const *". The list is printed comma-separated. */
1505
1506static char *
1507pstring_list (const char *const *list)
1508{
1509 static char ret[100];
1510 const char *const *p;
1511 size_t offset = 0;
1512
1513 if (list == NULL)
1514 return "(null)";
1515
1516 ret[0] = '\0';
1517 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1518 {
1519 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1520 offset += 2 + s;
1521 }
1522
1523 if (offset > 0)
1524 {
1525 gdb_assert (offset - 2 < sizeof (ret));
1526 ret[offset - 2] = '\0';
1527 }
1528
1529 return ret;
08105857
PA
1530}
1531
104c1213
JM
1532EOF
1533
1534# gdbarch open the gdbarch object
3d9a5942 1535printf "\n"
0963b4bd 1536printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1537printf "\n"
1538printf "struct gdbarch\n"
1539printf "{\n"
76860b5f
AC
1540printf " /* Has this architecture been fully initialized? */\n"
1541printf " int initialized_p;\n"
aebd7893
AC
1542printf "\n"
1543printf " /* An obstack bound to the lifetime of the architecture. */\n"
1544printf " struct obstack *obstack;\n"
1545printf "\n"
0963b4bd 1546printf " /* basic architectural information. */\n"
34620563 1547function_list | while do_read
104c1213 1548do
2ada493a
AC
1549 if class_is_info_p
1550 then
3d9a5942 1551 printf " ${returntype} ${function};\n"
2ada493a 1552 fi
104c1213 1553done
3d9a5942 1554printf "\n"
0963b4bd 1555printf " /* target specific vector. */\n"
3d9a5942
AC
1556printf " struct gdbarch_tdep *tdep;\n"
1557printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1558printf "\n"
0963b4bd 1559printf " /* per-architecture data-pointers. */\n"
95160752 1560printf " unsigned nr_data;\n"
3d9a5942
AC
1561printf " void **data;\n"
1562printf "\n"
104c1213
JM
1563cat <<EOF
1564 /* Multi-arch values.
1565
1566 When extending this structure you must:
1567
1568 Add the field below.
1569
1570 Declare set/get functions and define the corresponding
1571 macro in gdbarch.h.
1572
1573 gdbarch_alloc(): If zero/NULL is not a suitable default,
1574 initialize the new field.
1575
1576 verify_gdbarch(): Confirm that the target updated the field
1577 correctly.
1578
7e73cedf 1579 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1580 field is dumped out
1581
c0e8c252 1582 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1583 variable (base values on the host's c-type system).
1584
1585 get_gdbarch(): Implement the set/get functions (probably using
1586 the macro's as shortcuts).
1587
1588 */
1589
1590EOF
34620563 1591function_list | while do_read
104c1213 1592do
2ada493a
AC
1593 if class_is_variable_p
1594 then
3d9a5942 1595 printf " ${returntype} ${function};\n"
2ada493a
AC
1596 elif class_is_function_p
1597 then
2f9b146e 1598 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1599 fi
104c1213 1600done
3d9a5942 1601printf "};\n"
104c1213
JM
1602
1603# A pre-initialized vector
3d9a5942
AC
1604printf "\n"
1605printf "\n"
104c1213
JM
1606cat <<EOF
1607/* The default architecture uses host values (for want of a better
0963b4bd 1608 choice). */
104c1213 1609EOF
3d9a5942
AC
1610printf "\n"
1611printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1612printf "\n"
1613printf "struct gdbarch startup_gdbarch =\n"
1614printf "{\n"
76860b5f 1615printf " 1, /* Always initialized. */\n"
aebd7893 1616printf " NULL, /* The obstack. */\n"
0963b4bd 1617printf " /* basic architecture information. */\n"
4b9b3959 1618function_list | while do_read
104c1213 1619do
2ada493a
AC
1620 if class_is_info_p
1621 then
ec5cbaec 1622 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1623 fi
104c1213
JM
1624done
1625cat <<EOF
0963b4bd 1626 /* target specific vector and its dump routine. */
4b9b3959 1627 NULL, NULL,
c66fb220
TT
1628 /*per-architecture data-pointers. */
1629 0, NULL,
104c1213
JM
1630 /* Multi-arch values */
1631EOF
34620563 1632function_list | while do_read
104c1213 1633do
2ada493a
AC
1634 if class_is_function_p || class_is_variable_p
1635 then
ec5cbaec 1636 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1637 fi
104c1213
JM
1638done
1639cat <<EOF
c0e8c252 1640 /* startup_gdbarch() */
104c1213 1641};
4b9b3959 1642
104c1213
JM
1643EOF
1644
1645# Create a new gdbarch struct
104c1213 1646cat <<EOF
7de2341d 1647
66b43ecb 1648/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1649 \`\`struct gdbarch_info''. */
104c1213 1650EOF
3d9a5942 1651printf "\n"
104c1213
JM
1652cat <<EOF
1653struct gdbarch *
1654gdbarch_alloc (const struct gdbarch_info *info,
1655 struct gdbarch_tdep *tdep)
1656{
be7811ad 1657 struct gdbarch *gdbarch;
aebd7893
AC
1658
1659 /* Create an obstack for allocating all the per-architecture memory,
1660 then use that to allocate the architecture vector. */
70ba0933 1661 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1662 obstack_init (obstack);
be7811ad
MD
1663 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1664 memset (gdbarch, 0, sizeof (*gdbarch));
1665 gdbarch->obstack = obstack;
85de9627 1666
be7811ad 1667 alloc_gdbarch_data (gdbarch);
85de9627 1668
be7811ad 1669 gdbarch->tdep = tdep;
104c1213 1670EOF
3d9a5942 1671printf "\n"
34620563 1672function_list | while do_read
104c1213 1673do
2ada493a
AC
1674 if class_is_info_p
1675 then
be7811ad 1676 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1677 fi
104c1213 1678done
3d9a5942 1679printf "\n"
0963b4bd 1680printf " /* Force the explicit initialization of these. */\n"
34620563 1681function_list | while do_read
104c1213 1682do
2ada493a
AC
1683 if class_is_function_p || class_is_variable_p
1684 then
72e74a21 1685 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1686 then
be7811ad 1687 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1688 fi
2ada493a 1689 fi
104c1213
JM
1690done
1691cat <<EOF
1692 /* gdbarch_alloc() */
1693
be7811ad 1694 return gdbarch;
104c1213
JM
1695}
1696EOF
1697
058f20d5 1698# Free a gdbarch struct.
3d9a5942
AC
1699printf "\n"
1700printf "\n"
058f20d5 1701cat <<EOF
aebd7893
AC
1702/* Allocate extra space using the per-architecture obstack. */
1703
1704void *
1705gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1706{
1707 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1708
aebd7893
AC
1709 memset (data, 0, size);
1710 return data;
1711}
1712
1713
058f20d5
JB
1714/* Free a gdbarch struct. This should never happen in normal
1715 operation --- once you've created a gdbarch, you keep it around.
1716 However, if an architecture's init function encounters an error
1717 building the structure, it may need to clean up a partially
1718 constructed gdbarch. */
4b9b3959 1719
058f20d5
JB
1720void
1721gdbarch_free (struct gdbarch *arch)
1722{
aebd7893 1723 struct obstack *obstack;
05c547f6 1724
95160752 1725 gdb_assert (arch != NULL);
aebd7893
AC
1726 gdb_assert (!arch->initialized_p);
1727 obstack = arch->obstack;
1728 obstack_free (obstack, 0); /* Includes the ARCH. */
1729 xfree (obstack);
058f20d5
JB
1730}
1731EOF
1732
104c1213 1733# verify a new architecture
104c1213 1734cat <<EOF
db446970
AC
1735
1736
1737/* Ensure that all values in a GDBARCH are reasonable. */
1738
104c1213 1739static void
be7811ad 1740verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1741{
f16a1923
AC
1742 struct ui_file *log;
1743 struct cleanup *cleanups;
759ef836 1744 long length;
f16a1923 1745 char *buf;
05c547f6 1746
f16a1923
AC
1747 log = mem_fileopen ();
1748 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1749 /* fundamental */
be7811ad 1750 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1751 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1752 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1753 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1754 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1755EOF
34620563 1756function_list | while do_read
104c1213 1757do
2ada493a
AC
1758 if class_is_function_p || class_is_variable_p
1759 then
72e74a21 1760 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1761 then
3d9a5942 1762 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1763 elif class_is_predicate_p
1764 then
0963b4bd 1765 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1766 # FIXME: See do_read for potential simplification
72e74a21 1767 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1768 then
3d9a5942 1769 printf " if (${invalid_p})\n"
be7811ad 1770 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1771 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1772 then
be7811ad
MD
1773 printf " if (gdbarch->${function} == ${predefault})\n"
1774 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1775 elif [ -n "${postdefault}" ]
f0d4cc9e 1776 then
be7811ad
MD
1777 printf " if (gdbarch->${function} == 0)\n"
1778 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1779 elif [ -n "${invalid_p}" ]
104c1213 1780 then
4d60522e 1781 printf " if (${invalid_p})\n"
f16a1923 1782 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1783 elif [ -n "${predefault}" ]
104c1213 1784 then
be7811ad 1785 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1786 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1787 fi
2ada493a 1788 fi
104c1213
JM
1789done
1790cat <<EOF
759ef836 1791 buf = ui_file_xstrdup (log, &length);
f16a1923 1792 make_cleanup (xfree, buf);
759ef836 1793 if (length > 0)
f16a1923 1794 internal_error (__FILE__, __LINE__,
85c07804 1795 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1796 buf);
1797 do_cleanups (cleanups);
104c1213
JM
1798}
1799EOF
1800
1801# dump the structure
3d9a5942
AC
1802printf "\n"
1803printf "\n"
104c1213 1804cat <<EOF
0963b4bd 1805/* Print out the details of the current architecture. */
4b9b3959 1806
104c1213 1807void
be7811ad 1808gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1809{
b78960be 1810 const char *gdb_nm_file = "<not-defined>";
05c547f6 1811
b78960be
AC
1812#if defined (GDB_NM_FILE)
1813 gdb_nm_file = GDB_NM_FILE;
1814#endif
1815 fprintf_unfiltered (file,
1816 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1817 gdb_nm_file);
104c1213 1818EOF
97030eea 1819function_list | sort -t: -k 3 | while do_read
104c1213 1820do
1e9f55d0
AC
1821 # First the predicate
1822 if class_is_predicate_p
1823 then
7996bcec 1824 printf " fprintf_unfiltered (file,\n"
48f7351b 1825 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1826 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1827 fi
48f7351b 1828 # Print the corresponding value.
283354d8 1829 if class_is_function_p
4b9b3959 1830 then
7996bcec 1831 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1832 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1833 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1834 else
48f7351b 1835 # It is a variable
2f9b146e
AC
1836 case "${print}:${returntype}" in
1837 :CORE_ADDR )
0b1553bc
UW
1838 fmt="%s"
1839 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1840 ;;
2f9b146e 1841 :* )
48f7351b 1842 fmt="%s"
623d3eb1 1843 print="plongest (gdbarch->${function})"
48f7351b
AC
1844 ;;
1845 * )
2f9b146e 1846 fmt="%s"
48f7351b
AC
1847 ;;
1848 esac
3d9a5942 1849 printf " fprintf_unfiltered (file,\n"
48f7351b 1850 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1851 printf " ${print});\n"
2ada493a 1852 fi
104c1213 1853done
381323f4 1854cat <<EOF
be7811ad
MD
1855 if (gdbarch->dump_tdep != NULL)
1856 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1857}
1858EOF
104c1213
JM
1859
1860
1861# GET/SET
3d9a5942 1862printf "\n"
104c1213
JM
1863cat <<EOF
1864struct gdbarch_tdep *
1865gdbarch_tdep (struct gdbarch *gdbarch)
1866{
1867 if (gdbarch_debug >= 2)
3d9a5942 1868 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1869 return gdbarch->tdep;
1870}
1871EOF
3d9a5942 1872printf "\n"
34620563 1873function_list | while do_read
104c1213 1874do
2ada493a
AC
1875 if class_is_predicate_p
1876 then
3d9a5942
AC
1877 printf "\n"
1878 printf "int\n"
1879 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1880 printf "{\n"
8de9bdc4 1881 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1882 printf " return ${predicate};\n"
3d9a5942 1883 printf "}\n"
2ada493a
AC
1884 fi
1885 if class_is_function_p
1886 then
3d9a5942
AC
1887 printf "\n"
1888 printf "${returntype}\n"
72e74a21 1889 if [ "x${formal}" = "xvoid" ]
104c1213 1890 then
3d9a5942 1891 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1892 else
3d9a5942 1893 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1894 fi
3d9a5942 1895 printf "{\n"
8de9bdc4 1896 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1897 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1898 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1899 then
1900 # Allow a call to a function with a predicate.
956ac328 1901 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1902 fi
3d9a5942
AC
1903 printf " if (gdbarch_debug >= 2)\n"
1904 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1905 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1906 then
1907 if class_is_multiarch_p
1908 then
1909 params="gdbarch"
1910 else
1911 params=""
1912 fi
1913 else
1914 if class_is_multiarch_p
1915 then
1916 params="gdbarch, ${actual}"
1917 else
1918 params="${actual}"
1919 fi
1920 fi
72e74a21 1921 if [ "x${returntype}" = "xvoid" ]
104c1213 1922 then
4a5c6a1d 1923 printf " gdbarch->${function} (${params});\n"
104c1213 1924 else
4a5c6a1d 1925 printf " return gdbarch->${function} (${params});\n"
104c1213 1926 fi
3d9a5942
AC
1927 printf "}\n"
1928 printf "\n"
1929 printf "void\n"
1930 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1931 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1932 printf "{\n"
1933 printf " gdbarch->${function} = ${function};\n"
1934 printf "}\n"
2ada493a
AC
1935 elif class_is_variable_p
1936 then
3d9a5942
AC
1937 printf "\n"
1938 printf "${returntype}\n"
1939 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1940 printf "{\n"
8de9bdc4 1941 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1942 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1943 then
3d9a5942 1944 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1945 elif [ -n "${invalid_p}" ]
104c1213 1946 then
956ac328
AC
1947 printf " /* Check variable is valid. */\n"
1948 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1949 elif [ -n "${predefault}" ]
104c1213 1950 then
956ac328
AC
1951 printf " /* Check variable changed from pre-default. */\n"
1952 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1953 fi
3d9a5942
AC
1954 printf " if (gdbarch_debug >= 2)\n"
1955 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1956 printf " return gdbarch->${function};\n"
1957 printf "}\n"
1958 printf "\n"
1959 printf "void\n"
1960 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1961 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1962 printf "{\n"
1963 printf " gdbarch->${function} = ${function};\n"
1964 printf "}\n"
2ada493a
AC
1965 elif class_is_info_p
1966 then
3d9a5942
AC
1967 printf "\n"
1968 printf "${returntype}\n"
1969 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1970 printf "{\n"
8de9bdc4 1971 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1972 printf " if (gdbarch_debug >= 2)\n"
1973 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1974 printf " return gdbarch->${function};\n"
1975 printf "}\n"
2ada493a 1976 fi
104c1213
JM
1977done
1978
1979# All the trailing guff
1980cat <<EOF
1981
1982
f44c642f 1983/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1984 modules. */
104c1213
JM
1985
1986struct gdbarch_data
1987{
95160752 1988 unsigned index;
76860b5f 1989 int init_p;
030f20e1
AC
1990 gdbarch_data_pre_init_ftype *pre_init;
1991 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1992};
1993
1994struct gdbarch_data_registration
1995{
104c1213
JM
1996 struct gdbarch_data *data;
1997 struct gdbarch_data_registration *next;
1998};
1999
f44c642f 2000struct gdbarch_data_registry
104c1213 2001{
95160752 2002 unsigned nr;
104c1213
JM
2003 struct gdbarch_data_registration *registrations;
2004};
2005
f44c642f 2006struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2007{
2008 0, NULL,
2009};
2010
030f20e1
AC
2011static struct gdbarch_data *
2012gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2013 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2014{
2015 struct gdbarch_data_registration **curr;
05c547f6
MS
2016
2017 /* Append the new registration. */
f44c642f 2018 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2019 (*curr) != NULL;
2020 curr = &(*curr)->next);
70ba0933 2021 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2022 (*curr)->next = NULL;
70ba0933 2023 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2024 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2025 (*curr)->data->pre_init = pre_init;
2026 (*curr)->data->post_init = post_init;
76860b5f 2027 (*curr)->data->init_p = 1;
104c1213
JM
2028 return (*curr)->data;
2029}
2030
030f20e1
AC
2031struct gdbarch_data *
2032gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2033{
2034 return gdbarch_data_register (pre_init, NULL);
2035}
2036
2037struct gdbarch_data *
2038gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2039{
2040 return gdbarch_data_register (NULL, post_init);
2041}
104c1213 2042
0963b4bd 2043/* Create/delete the gdbarch data vector. */
95160752
AC
2044
2045static void
b3cc3077 2046alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2047{
b3cc3077
JB
2048 gdb_assert (gdbarch->data == NULL);
2049 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2050 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2051}
3c875b6f 2052
76860b5f 2053/* Initialize the current value of the specified per-architecture
0963b4bd 2054 data-pointer. */
b3cc3077 2055
95160752 2056void
030f20e1
AC
2057deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2058 struct gdbarch_data *data,
2059 void *pointer)
95160752
AC
2060{
2061 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2062 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2063 gdb_assert (data->pre_init == NULL);
95160752
AC
2064 gdbarch->data[data->index] = pointer;
2065}
2066
104c1213 2067/* Return the current value of the specified per-architecture
0963b4bd 2068 data-pointer. */
104c1213
JM
2069
2070void *
451fbdda 2071gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2072{
451fbdda 2073 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2074 if (gdbarch->data[data->index] == NULL)
76860b5f 2075 {
030f20e1
AC
2076 /* The data-pointer isn't initialized, call init() to get a
2077 value. */
2078 if (data->pre_init != NULL)
2079 /* Mid architecture creation: pass just the obstack, and not
2080 the entire architecture, as that way it isn't possible for
2081 pre-init code to refer to undefined architecture
2082 fields. */
2083 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2084 else if (gdbarch->initialized_p
2085 && data->post_init != NULL)
2086 /* Post architecture creation: pass the entire architecture
2087 (as all fields are valid), but be careful to also detect
2088 recursive references. */
2089 {
2090 gdb_assert (data->init_p);
2091 data->init_p = 0;
2092 gdbarch->data[data->index] = data->post_init (gdbarch);
2093 data->init_p = 1;
2094 }
2095 else
2096 /* The architecture initialization hasn't completed - punt -
2097 hope that the caller knows what they are doing. Once
2098 deprecated_set_gdbarch_data has been initialized, this can be
2099 changed to an internal error. */
2100 return NULL;
76860b5f
AC
2101 gdb_assert (gdbarch->data[data->index] != NULL);
2102 }
451fbdda 2103 return gdbarch->data[data->index];
104c1213
JM
2104}
2105
2106
0963b4bd 2107/* Keep a registry of the architectures known by GDB. */
104c1213 2108
4b9b3959 2109struct gdbarch_registration
104c1213
JM
2110{
2111 enum bfd_architecture bfd_architecture;
2112 gdbarch_init_ftype *init;
4b9b3959 2113 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2114 struct gdbarch_list *arches;
4b9b3959 2115 struct gdbarch_registration *next;
104c1213
JM
2116};
2117
f44c642f 2118static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2119
b4a20239
AC
2120static void
2121append_name (const char ***buf, int *nr, const char *name)
2122{
2123 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2124 (*buf)[*nr] = name;
2125 *nr += 1;
2126}
2127
2128const char **
2129gdbarch_printable_names (void)
2130{
7996bcec 2131 /* Accumulate a list of names based on the registed list of
0963b4bd 2132 architectures. */
7996bcec
AC
2133 int nr_arches = 0;
2134 const char **arches = NULL;
2135 struct gdbarch_registration *rego;
05c547f6 2136
7996bcec
AC
2137 for (rego = gdbarch_registry;
2138 rego != NULL;
2139 rego = rego->next)
b4a20239 2140 {
7996bcec
AC
2141 const struct bfd_arch_info *ap;
2142 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2143 if (ap == NULL)
2144 internal_error (__FILE__, __LINE__,
85c07804 2145 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2146 do
2147 {
2148 append_name (&arches, &nr_arches, ap->printable_name);
2149 ap = ap->next;
2150 }
2151 while (ap != NULL);
b4a20239 2152 }
7996bcec
AC
2153 append_name (&arches, &nr_arches, NULL);
2154 return arches;
b4a20239
AC
2155}
2156
2157
104c1213 2158void
4b9b3959
AC
2159gdbarch_register (enum bfd_architecture bfd_architecture,
2160 gdbarch_init_ftype *init,
2161 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2162{
4b9b3959 2163 struct gdbarch_registration **curr;
104c1213 2164 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2165
ec3d358c 2166 /* Check that BFD recognizes this architecture */
104c1213
JM
2167 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2168 if (bfd_arch_info == NULL)
2169 {
8e65ff28 2170 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2171 _("gdbarch: Attempt to register "
2172 "unknown architecture (%d)"),
8e65ff28 2173 bfd_architecture);
104c1213 2174 }
0963b4bd 2175 /* Check that we haven't seen this architecture before. */
f44c642f 2176 for (curr = &gdbarch_registry;
104c1213
JM
2177 (*curr) != NULL;
2178 curr = &(*curr)->next)
2179 {
2180 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2181 internal_error (__FILE__, __LINE__,
64b9b334 2182 _("gdbarch: Duplicate registration "
0963b4bd 2183 "of architecture (%s)"),
8e65ff28 2184 bfd_arch_info->printable_name);
104c1213
JM
2185 }
2186 /* log it */
2187 if (gdbarch_debug)
30737ed9 2188 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2189 bfd_arch_info->printable_name,
30737ed9 2190 host_address_to_string (init));
104c1213 2191 /* Append it */
70ba0933 2192 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2193 (*curr)->bfd_architecture = bfd_architecture;
2194 (*curr)->init = init;
4b9b3959 2195 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2196 (*curr)->arches = NULL;
2197 (*curr)->next = NULL;
4b9b3959
AC
2198}
2199
2200void
2201register_gdbarch_init (enum bfd_architecture bfd_architecture,
2202 gdbarch_init_ftype *init)
2203{
2204 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2205}
104c1213
JM
2206
2207
424163ea 2208/* Look for an architecture using gdbarch_info. */
104c1213
JM
2209
2210struct gdbarch_list *
2211gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2212 const struct gdbarch_info *info)
2213{
2214 for (; arches != NULL; arches = arches->next)
2215 {
2216 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2217 continue;
2218 if (info->byte_order != arches->gdbarch->byte_order)
2219 continue;
4be87837
DJ
2220 if (info->osabi != arches->gdbarch->osabi)
2221 continue;
424163ea
DJ
2222 if (info->target_desc != arches->gdbarch->target_desc)
2223 continue;
104c1213
JM
2224 return arches;
2225 }
2226 return NULL;
2227}
2228
2229
ebdba546 2230/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2231 architecture if needed. Return that new architecture. */
104c1213 2232
59837fe0
UW
2233struct gdbarch *
2234gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2235{
2236 struct gdbarch *new_gdbarch;
4b9b3959 2237 struct gdbarch_registration *rego;
104c1213 2238
b732d07d 2239 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2240 sources: "set ..."; INFOabfd supplied; and the global
2241 defaults. */
2242 gdbarch_info_fill (&info);
4be87837 2243
0963b4bd 2244 /* Must have found some sort of architecture. */
b732d07d 2245 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2246
2247 if (gdbarch_debug)
2248 {
2249 fprintf_unfiltered (gdb_stdlog,
59837fe0 2250 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2251 (info.bfd_arch_info != NULL
2252 ? info.bfd_arch_info->printable_name
2253 : "(null)"));
2254 fprintf_unfiltered (gdb_stdlog,
59837fe0 2255 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2256 info.byte_order,
d7449b42 2257 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2258 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2259 : "default"));
4be87837 2260 fprintf_unfiltered (gdb_stdlog,
59837fe0 2261 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2262 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2263 fprintf_unfiltered (gdb_stdlog,
59837fe0 2264 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2265 host_address_to_string (info.abfd));
104c1213 2266 fprintf_unfiltered (gdb_stdlog,
59837fe0 2267 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2268 host_address_to_string (info.tdep_info));
104c1213
JM
2269 }
2270
ebdba546 2271 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2272 for (rego = gdbarch_registry;
2273 rego != NULL;
2274 rego = rego->next)
2275 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2276 break;
2277 if (rego == NULL)
2278 {
2279 if (gdbarch_debug)
59837fe0 2280 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2281 "No matching architecture\n");
b732d07d
AC
2282 return 0;
2283 }
2284
ebdba546 2285 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2286 new_gdbarch = rego->init (info, rego->arches);
2287
ebdba546
AC
2288 /* Did the tdep code like it? No. Reject the change and revert to
2289 the old architecture. */
104c1213
JM
2290 if (new_gdbarch == NULL)
2291 {
2292 if (gdbarch_debug)
59837fe0 2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2294 "Target rejected architecture\n");
2295 return NULL;
104c1213
JM
2296 }
2297
ebdba546
AC
2298 /* Is this a pre-existing architecture (as determined by already
2299 being initialized)? Move it to the front of the architecture
2300 list (keeping the list sorted Most Recently Used). */
2301 if (new_gdbarch->initialized_p)
104c1213 2302 {
ebdba546
AC
2303 struct gdbarch_list **list;
2304 struct gdbarch_list *this;
104c1213 2305 if (gdbarch_debug)
59837fe0 2306 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2307 "Previous architecture %s (%s) selected\n",
2308 host_address_to_string (new_gdbarch),
104c1213 2309 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2310 /* Find the existing arch in the list. */
2311 for (list = &rego->arches;
2312 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2313 list = &(*list)->next);
2314 /* It had better be in the list of architectures. */
2315 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2316 /* Unlink THIS. */
2317 this = (*list);
2318 (*list) = this->next;
2319 /* Insert THIS at the front. */
2320 this->next = rego->arches;
2321 rego->arches = this;
2322 /* Return it. */
2323 return new_gdbarch;
104c1213
JM
2324 }
2325
ebdba546
AC
2326 /* It's a new architecture. */
2327 if (gdbarch_debug)
59837fe0 2328 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2329 "New architecture %s (%s) selected\n",
2330 host_address_to_string (new_gdbarch),
ebdba546
AC
2331 new_gdbarch->bfd_arch_info->printable_name);
2332
2333 /* Insert the new architecture into the front of the architecture
2334 list (keep the list sorted Most Recently Used). */
0f79675b 2335 {
70ba0933 2336 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2337 this->next = rego->arches;
2338 this->gdbarch = new_gdbarch;
2339 rego->arches = this;
2340 }
104c1213 2341
4b9b3959
AC
2342 /* Check that the newly installed architecture is valid. Plug in
2343 any post init values. */
2344 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2345 verify_gdbarch (new_gdbarch);
ebdba546 2346 new_gdbarch->initialized_p = 1;
104c1213 2347
4b9b3959 2348 if (gdbarch_debug)
ebdba546
AC
2349 gdbarch_dump (new_gdbarch, gdb_stdlog);
2350
2351 return new_gdbarch;
2352}
2353
e487cc15 2354/* Make the specified architecture current. */
ebdba546
AC
2355
2356void
aff68abb 2357set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2358{
2359 gdb_assert (new_gdbarch != NULL);
ebdba546 2360 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2361 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2362 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2363 registers_changed ();
ebdba546 2364}
104c1213 2365
f5656ead 2366/* Return the current inferior's arch. */
6ecd4729
PA
2367
2368struct gdbarch *
f5656ead 2369target_gdbarch (void)
6ecd4729
PA
2370{
2371 return current_inferior ()->gdbarch;
2372}
2373
104c1213 2374extern void _initialize_gdbarch (void);
b4a20239 2375
104c1213 2376void
34620563 2377_initialize_gdbarch (void)
104c1213 2378{
ccce17b0 2379 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2380Set architecture debugging."), _("\\
2381Show architecture debugging."), _("\\
2382When non-zero, architecture debugging is enabled."),
2383 NULL,
920d2a44 2384 show_gdbarch_debug,
85c07804 2385 &setdebuglist, &showdebuglist);
104c1213
JM
2386}
2387EOF
2388
2389# close things off
2390exec 1>&2
2391#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2392compare_new gdbarch.c
This page took 1.231617 seconds and 4 git commands to generate.