linux-record: Squash cases with identical handling
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
012b3a21
WT
449# Some targets/architectures can do extra processing/display of
450# segmentation faults. E.g., Intel MPX boundary faults.
451# Call the architecture dependent function to handle the fault.
452# UIOUT is the output stream where the handler will place information.
453M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
c2169756
AC
455# GDB's standard (or well known) register numbers. These can map onto
456# a real register or a pseudo (computed) register or not be defined at
1200cd6e 457# all (-1).
3e8c568d 458# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
459v:int:sp_regnum:::-1:-1::0
460v:int:pc_regnum:::-1:-1::0
461v:int:ps_regnum:::-1:-1::0
462v:int:fp0_regnum:::0:-1::0
88c72b7d 463# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 464m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 465# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 466m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 467# Convert from an sdb register number to an internal gdb register number.
d3f73121 468m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 469# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 470# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 471m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 472m:const char *:register_name:int regnr:regnr::0
9c04cab7 473
7b9ee6a8
DJ
474# Return the type of a register specified by the architecture. Only
475# the register cache should call this function directly; others should
476# use "register_type".
97030eea 477M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 478
669fac23
DJ
479M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 481# deprecated_fp_regnum.
97030eea 482v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 483
97030eea
UW
484M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485v:int:call_dummy_location::::AT_ENTRY_POINT::0
486M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 487
97030eea 488m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 489m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 490M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
491# MAP a GDB RAW register number onto a simulator register number. See
492# also include/...-sim.h.
e7faf938 493m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
494m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
495m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
496
497# Determine the address where a longjmp will land and save this address
498# in PC. Return nonzero on success.
499#
500# FRAME corresponds to the longjmp frame.
97030eea 501F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 502
104c1213 503#
97030eea 504v:int:believe_pcc_promotion:::::::
104c1213 505#
0abe36f5 506m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 507f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 508f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 509# Construct a value representing the contents of register REGNUM in
2ed3c037 510# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
511# allocate and return a struct value with all value attributes
512# (but not the value contents) filled in.
2ed3c037 513m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 514#
9898f801
UW
515m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
516m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 517M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 518
6a3a010b
MR
519# Return the return-value convention that will be used by FUNCTION
520# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
521# case the return convention is computed based only on VALTYPE.
522#
523# If READBUF is not NULL, extract the return value and save it in this buffer.
524#
525# If WRITEBUF is not NULL, it contains a return value which will be
526# stored into the appropriate register. This can be used when we want
527# to force the value returned by a function (see the "return" command
528# for instance).
6a3a010b 529M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 530
18648a37
YQ
531# Return true if the return value of function is stored in the first hidden
532# parameter. In theory, this feature should be language-dependent, specified
533# by language and its ABI, such as C++. Unfortunately, compiler may
534# implement it to a target-dependent feature. So that we need such hook here
535# to be aware of this in GDB.
536m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
537
6093d2eb 538m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 539M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
540# On some platforms, a single function may provide multiple entry points,
541# e.g. one that is used for function-pointer calls and a different one
542# that is used for direct function calls.
543# In order to ensure that breakpoints set on the function will trigger
544# no matter via which entry point the function is entered, a platform
545# may provide the skip_entrypoint callback. It is called with IP set
546# to the main entry point of a function (as determined by the symbol table),
547# and should return the address of the innermost entry point, where the
548# actual breakpoint needs to be set. Note that skip_entrypoint is used
549# by GDB common code even when debugging optimized code, where skip_prologue
550# is not used.
551M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
552
97030eea 553f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 554m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
555# Return the adjusted address and kind to use for Z0/Z1 packets.
556# KIND is usually the memory length of the breakpoint, but may have a
557# different target-specific meaning.
0e05dfcb 558m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 559M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
560m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
561m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 562v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
563
564# A function can be addressed by either it's "pointer" (possibly a
565# descriptor address) or "entry point" (first executable instruction).
566# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 567# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
568# a simplified subset of that functionality - the function's address
569# corresponds to the "function pointer" and the function's start
570# corresponds to the "function entry point" - and hence is redundant.
571
97030eea 572v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 573
123dc839
DJ
574# Return the remote protocol register number associated with this
575# register. Normally the identity mapping.
97030eea 576m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 577
b2756930 578# Fetch the target specific address used to represent a load module.
97030eea 579F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 580#
97030eea
UW
581v:CORE_ADDR:frame_args_skip:::0:::0
582M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
583M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
584# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
585# frame-base. Enable frame-base before frame-unwind.
97030eea 586F:int:frame_num_args:struct frame_info *frame:frame
104c1213 587#
97030eea
UW
588M:CORE_ADDR:frame_align:CORE_ADDR address:address
589m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
590v:int:frame_red_zone_size
f0d4cc9e 591#
97030eea 592m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
593# On some machines there are bits in addresses which are not really
594# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 595# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
596# we get a "real" address such as one would find in a symbol table.
597# This is used only for addresses of instructions, and even then I'm
598# not sure it's used in all contexts. It exists to deal with there
599# being a few stray bits in the PC which would mislead us, not as some
600# sort of generic thing to handle alignment or segmentation (it's
601# possible it should be in TARGET_READ_PC instead).
24568a2c 602m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
603
604# FIXME/cagney/2001-01-18: This should be split in two. A target method that
605# indicates if the target needs software single step. An ISA method to
606# implement it.
607#
e6590a1b
UW
608# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
609# target can single step. If not, then implement single step using breakpoints.
64c4637f 610#
6f112b18 611# A return value of 1 means that the software_single_step breakpoints
e6590a1b 612# were inserted; 0 means they were not.
97030eea 613F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 614
3352ef37
AC
615# Return non-zero if the processor is executing a delay slot and a
616# further single-step is needed before the instruction finishes.
97030eea 617M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 618# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 619# disassembler. Perhaps objdump can handle it?
97030eea
UW
620f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
621f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
622
623
cfd8ab24 624# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
625# evaluates non-zero, this is the address where the debugger will place
626# a step-resume breakpoint to get us past the dynamic linker.
97030eea 627m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 628# Some systems also have trampoline code for returning from shared libs.
2c02bd72 629m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 630
c12260ac
CV
631# A target might have problems with watchpoints as soon as the stack
632# frame of the current function has been destroyed. This mostly happens
c9cf6e20 633# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
634# is defined to return a non-zero value if either the given addr is one
635# instruction after the stack destroying instruction up to the trailing
636# return instruction or if we can figure out that the stack frame has
637# already been invalidated regardless of the value of addr. Targets
638# which don't suffer from that problem could just let this functionality
639# untouched.
c9cf6e20 640m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
641# Process an ELF symbol in the minimal symbol table in a backend-specific
642# way. Normally this hook is supposed to do nothing, however if required,
643# then this hook can be used to apply tranformations to symbols that are
644# considered special in some way. For example the MIPS backend uses it
645# to interpret \`st_other' information to mark compressed code symbols so
646# that they can be treated in the appropriate manner in the processing of
647# the main symbol table and DWARF-2 records.
648F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 649f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
650# Process a symbol in the main symbol table in a backend-specific way.
651# Normally this hook is supposed to do nothing, however if required,
652# then this hook can be used to apply tranformations to symbols that
653# are considered special in some way. This is currently used by the
654# MIPS backend to make sure compressed code symbols have the ISA bit
655# set. This in turn is needed for symbol values seen in GDB to match
656# the values used at the runtime by the program itself, for function
657# and label references.
658f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
659# Adjust the address retrieved from a DWARF-2 record other than a line
660# entry in a backend-specific way. Normally this hook is supposed to
661# return the address passed unchanged, however if that is incorrect for
662# any reason, then this hook can be used to fix the address up in the
663# required manner. This is currently used by the MIPS backend to make
664# sure addresses in FDE, range records, etc. referring to compressed
665# code have the ISA bit set, matching line information and the symbol
666# table.
667f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
668# Adjust the address updated by a line entry in a backend-specific way.
669# Normally this hook is supposed to return the address passed unchanged,
670# however in the case of inconsistencies in these records, this hook can
671# be used to fix them up in the required manner. This is currently used
672# by the MIPS backend to make sure all line addresses in compressed code
673# are presented with the ISA bit set, which is not always the case. This
674# in turn ensures breakpoint addresses are correctly matched against the
675# stop PC.
676f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
677v:int:cannot_step_breakpoint:::0:0::0
678v:int:have_nonsteppable_watchpoint:::0:0::0
679F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
680M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
681
682# Return the appropriate type_flags for the supplied address class.
683# This function should return 1 if the address class was recognized and
684# type_flags was set, zero otherwise.
97030eea 685M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 686# Is a register in a group
97030eea 687m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 688# Fetch the pointer to the ith function argument.
97030eea 689F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 690
5aa82d05
AA
691# Iterate over all supported register notes in a core file. For each
692# supported register note section, the iterator must call CB and pass
693# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
694# the supported register note sections based on the current register
695# values. Otherwise it should enumerate all supported register note
696# sections.
697M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 698
6432734d
UW
699# Create core file notes
700M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
701
b3ac9c77
SDJ
702# The elfcore writer hook to use to write Linux prpsinfo notes to core
703# files. Most Linux architectures use the same prpsinfo32 or
704# prpsinfo64 layouts, and so won't need to provide this hook, as we
705# call the Linux generic routines in bfd to write prpsinfo notes by
706# default.
707F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
708
35c2fab7
UW
709# Find core file memory regions
710M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
711
de584861 712# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
713# core file into buffer READBUF with length LEN. Return the number of bytes read
714# (zero indicates failure).
715# failed, otherwise, return the red length of READBUF.
716M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 717
356a5233
JB
718# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
719# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
720# Return the number of bytes read (zero indicates failure).
721M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 722
c0edd9ed 723# How the core target converts a PTID from a core file to a string.
28439f5e
PA
724M:char *:core_pid_to_str:ptid_t ptid:ptid
725
4dfc5dbc
JB
726# How the core target extracts the name of a thread from a core file.
727M:const char *:core_thread_name:struct thread_info *thr:thr
728
a78c2d62 729# BFD target to use when generating a core file.
86ba1042 730V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 731
0d5de010
DJ
732# If the elements of C++ vtables are in-place function descriptors rather
733# than normal function pointers (which may point to code or a descriptor),
734# set this to one.
97030eea 735v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
736
737# Set if the least significant bit of the delta is used instead of the least
738# significant bit of the pfn for pointers to virtual member functions.
97030eea 739v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
740
741# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 742f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 743
1668ae25 744# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
745V:ULONGEST:max_insn_length:::0:0
746
747# Copy the instruction at FROM to TO, and make any adjustments
748# necessary to single-step it at that address.
749#
750# REGS holds the state the thread's registers will have before
751# executing the copied instruction; the PC in REGS will refer to FROM,
752# not the copy at TO. The caller should update it to point at TO later.
753#
754# Return a pointer to data of the architecture's choice to be passed
755# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
756# the instruction's effects have been completely simulated, with the
757# resulting state written back to REGS.
758#
759# For a general explanation of displaced stepping and how GDB uses it,
760# see the comments in infrun.c.
761#
762# The TO area is only guaranteed to have space for
763# gdbarch_max_insn_length (arch) bytes, so this function must not
764# write more bytes than that to that area.
765#
766# If you do not provide this function, GDB assumes that the
767# architecture does not support displaced stepping.
768#
769# If your architecture doesn't need to adjust instructions before
770# single-stepping them, consider using simple_displaced_step_copy_insn
771# here.
7f03bd92
PA
772#
773# If the instruction cannot execute out of line, return NULL. The
774# core falls back to stepping past the instruction in-line instead in
775# that case.
237fc4c9
PA
776M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
777
99e40580
UW
778# Return true if GDB should use hardware single-stepping to execute
779# the displaced instruction identified by CLOSURE. If false,
780# GDB will simply restart execution at the displaced instruction
781# location, and it is up to the target to ensure GDB will receive
782# control again (e.g. by placing a software breakpoint instruction
783# into the displaced instruction buffer).
784#
785# The default implementation returns false on all targets that
786# provide a gdbarch_software_single_step routine, and true otherwise.
787m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
788
237fc4c9
PA
789# Fix up the state resulting from successfully single-stepping a
790# displaced instruction, to give the result we would have gotten from
791# stepping the instruction in its original location.
792#
793# REGS is the register state resulting from single-stepping the
794# displaced instruction.
795#
796# CLOSURE is the result from the matching call to
797# gdbarch_displaced_step_copy_insn.
798#
799# If you provide gdbarch_displaced_step_copy_insn.but not this
800# function, then GDB assumes that no fixup is needed after
801# single-stepping the instruction.
802#
803# For a general explanation of displaced stepping and how GDB uses it,
804# see the comments in infrun.c.
805M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
806
807# Free a closure returned by gdbarch_displaced_step_copy_insn.
808#
809# If you provide gdbarch_displaced_step_copy_insn, you must provide
810# this function as well.
811#
812# If your architecture uses closures that don't need to be freed, then
813# you can use simple_displaced_step_free_closure here.
814#
815# For a general explanation of displaced stepping and how GDB uses it,
816# see the comments in infrun.c.
817m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
818
819# Return the address of an appropriate place to put displaced
820# instructions while we step over them. There need only be one such
821# place, since we're only stepping one thread over a breakpoint at a
822# time.
823#
824# For a general explanation of displaced stepping and how GDB uses it,
825# see the comments in infrun.c.
826m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
827
dde08ee1
PA
828# Relocate an instruction to execute at a different address. OLDLOC
829# is the address in the inferior memory where the instruction to
830# relocate is currently at. On input, TO points to the destination
831# where we want the instruction to be copied (and possibly adjusted)
832# to. On output, it points to one past the end of the resulting
833# instruction(s). The effect of executing the instruction at TO shall
834# be the same as if executing it at FROM. For example, call
835# instructions that implicitly push the return address on the stack
836# should be adjusted to return to the instruction after OLDLOC;
837# relative branches, and other PC-relative instructions need the
838# offset adjusted; etc.
839M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
840
1c772458 841# Refresh overlay mapped state for section OSECT.
97030eea 842F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 843
97030eea 844M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
845
846# Handle special encoding of static variables in stabs debug info.
0d5cff50 847F:const char *:static_transform_name:const char *name:name
203c3895 848# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 849v:int:sofun_address_maybe_missing:::0:0::0
1cded358 850
0508c3ec
HZ
851# Parse the instruction at ADDR storing in the record execution log
852# the registers REGCACHE and memory ranges that will be affected when
853# the instruction executes, along with their current values.
854# Return -1 if something goes wrong, 0 otherwise.
855M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
856
3846b520
HZ
857# Save process state after a signal.
858# Return -1 if something goes wrong, 0 otherwise.
2ea28649 859M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 860
22203bbf 861# Signal translation: translate inferior's signal (target's) number
86b49880
PA
862# into GDB's representation. The implementation of this method must
863# be host independent. IOW, don't rely on symbols of the NAT_FILE
864# header (the nm-*.h files), the host <signal.h> header, or similar
865# headers. This is mainly used when cross-debugging core files ---
866# "Live" targets hide the translation behind the target interface
1f8cf220
PA
867# (target_wait, target_resume, etc.).
868M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 869
eb14d406
SDJ
870# Signal translation: translate the GDB's internal signal number into
871# the inferior's signal (target's) representation. The implementation
872# of this method must be host independent. IOW, don't rely on symbols
873# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
874# header, or similar headers.
875# Return the target signal number if found, or -1 if the GDB internal
876# signal number is invalid.
877M:int:gdb_signal_to_target:enum gdb_signal signal:signal
878
4aa995e1
PA
879# Extra signal info inspection.
880#
881# Return a type suitable to inspect extra signal information.
882M:struct type *:get_siginfo_type:void:
883
60c5725c
DJ
884# Record architecture-specific information from the symbol table.
885M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 886
a96d9b2e
SDJ
887# Function for the 'catch syscall' feature.
888
889# Get architecture-specific system calls information from registers.
890M:LONGEST:get_syscall_number:ptid_t ptid:ptid
891
458c8db8
SDJ
892# The filename of the XML syscall for this architecture.
893v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
894
895# Information about system calls from this architecture
896v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
897
55aa24fb
SDJ
898# SystemTap related fields and functions.
899
05c0465e
SDJ
900# A NULL-terminated array of prefixes used to mark an integer constant
901# on the architecture's assembly.
55aa24fb
SDJ
902# For example, on x86 integer constants are written as:
903#
904# \$10 ;; integer constant 10
905#
906# in this case, this prefix would be the character \`\$\'.
05c0465e 907v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 908
05c0465e
SDJ
909# A NULL-terminated array of suffixes used to mark an integer constant
910# on the architecture's assembly.
911v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 912
05c0465e
SDJ
913# A NULL-terminated array of prefixes used to mark a register name on
914# the architecture's assembly.
55aa24fb
SDJ
915# For example, on x86 the register name is written as:
916#
917# \%eax ;; register eax
918#
919# in this case, this prefix would be the character \`\%\'.
05c0465e 920v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 921
05c0465e
SDJ
922# A NULL-terminated array of suffixes used to mark a register name on
923# the architecture's assembly.
924v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 925
05c0465e
SDJ
926# A NULL-terminated array of prefixes used to mark a register
927# indirection on the architecture's assembly.
55aa24fb
SDJ
928# For example, on x86 the register indirection is written as:
929#
930# \(\%eax\) ;; indirecting eax
931#
932# in this case, this prefix would be the charater \`\(\'.
933#
934# Please note that we use the indirection prefix also for register
935# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 936v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 937
05c0465e
SDJ
938# A NULL-terminated array of suffixes used to mark a register
939# indirection on the architecture's assembly.
55aa24fb
SDJ
940# For example, on x86 the register indirection is written as:
941#
942# \(\%eax\) ;; indirecting eax
943#
944# in this case, this prefix would be the charater \`\)\'.
945#
946# Please note that we use the indirection suffix also for register
947# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 948v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 949
05c0465e 950# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
951#
952# For example, on PPC a register is represented by a number in the assembly
953# language (e.g., \`10\' is the 10th general-purpose register). However,
954# inside GDB this same register has an \`r\' appended to its name, so the 10th
955# register would be represented as \`r10\' internally.
08af7a40 956v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
957
958# Suffix used to name a register using GDB's nomenclature.
08af7a40 959v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
960
961# Check if S is a single operand.
962#
963# Single operands can be:
964# \- Literal integers, e.g. \`\$10\' on x86
965# \- Register access, e.g. \`\%eax\' on x86
966# \- Register indirection, e.g. \`\(\%eax\)\' on x86
967# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
968#
969# This function should check for these patterns on the string
970# and return 1 if some were found, or zero otherwise. Please try to match
971# as much info as you can from the string, i.e., if you have to match
972# something like \`\(\%\', do not match just the \`\(\'.
973M:int:stap_is_single_operand:const char *s:s
974
975# Function used to handle a "special case" in the parser.
976#
977# A "special case" is considered to be an unknown token, i.e., a token
978# that the parser does not know how to parse. A good example of special
979# case would be ARM's register displacement syntax:
980#
981# [R0, #4] ;; displacing R0 by 4
982#
983# Since the parser assumes that a register displacement is of the form:
984#
985# <number> <indirection_prefix> <register_name> <indirection_suffix>
986#
987# it means that it will not be able to recognize and parse this odd syntax.
988# Therefore, we should add a special case function that will handle this token.
989#
990# This function should generate the proper expression form of the expression
991# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
992# and so on). It should also return 1 if the parsing was successful, or zero
993# if the token was not recognized as a special token (in this case, returning
994# zero means that the special parser is deferring the parsing to the generic
995# parser), and should advance the buffer pointer (p->arg).
996M:int:stap_parse_special_token:struct stap_parse_info *p:p
997
8b367e17
JM
998# DTrace related functions.
999
1000# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1001# NARG must be >= 0.
1002M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1003
1004# True if the given ADDR does not contain the instruction sequence
1005# corresponding to a disabled DTrace is-enabled probe.
1006M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1007
1008# Enable a DTrace is-enabled probe at ADDR.
1009M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1010
1011# Disable a DTrace is-enabled probe at ADDR.
1012M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1013
50c71eaf
PA
1014# True if the list of shared libraries is one and only for all
1015# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1016# This usually means that all processes, although may or may not share
1017# an address space, will see the same set of symbols at the same
1018# addresses.
50c71eaf 1019v:int:has_global_solist:::0:0::0
2567c7d9
PA
1020
1021# On some targets, even though each inferior has its own private
1022# address space, the debug interface takes care of making breakpoints
1023# visible to all address spaces automatically. For such cases,
1024# this property should be set to true.
1025v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1026
1027# True if inferiors share an address space (e.g., uClinux).
1028m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1029
1030# True if a fast tracepoint can be set at an address.
6b940e6a 1031m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1032
5f034a78
MK
1033# Guess register state based on tracepoint location. Used for tracepoints
1034# where no registers have been collected, but there's only one location,
1035# allowing us to guess the PC value, and perhaps some other registers.
1036# On entry, regcache has all registers marked as unavailable.
1037m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1038
f870a310
TT
1039# Return the "auto" target charset.
1040f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1041# Return the "auto" target wide charset.
1042f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1043
1044# If non-empty, this is a file extension that will be opened in place
1045# of the file extension reported by the shared library list.
1046#
1047# This is most useful for toolchains that use a post-linker tool,
1048# where the names of the files run on the target differ in extension
1049# compared to the names of the files GDB should load for debug info.
1050v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1051
1052# If true, the target OS has DOS-based file system semantics. That
1053# is, absolute paths include a drive name, and the backslash is
1054# considered a directory separator.
1055v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1056
1057# Generate bytecodes to collect the return address in a frame.
1058# Since the bytecodes run on the target, possibly with GDB not even
1059# connected, the full unwinding machinery is not available, and
1060# typically this function will issue bytecodes for one or more likely
1061# places that the return address may be found.
1062m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1063
3030c96e 1064# Implement the "info proc" command.
7bc112c1 1065M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1066
451b7c33
TT
1067# Implement the "info proc" command for core files. Noe that there
1068# are two "info_proc"-like methods on gdbarch -- one for core files,
1069# one for live targets.
7bc112c1 1070M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1071
19630284
JB
1072# Iterate over all objfiles in the order that makes the most sense
1073# for the architecture to make global symbol searches.
1074#
1075# CB is a callback function where OBJFILE is the objfile to be searched,
1076# and CB_DATA a pointer to user-defined data (the same data that is passed
1077# when calling this gdbarch method). The iteration stops if this function
1078# returns nonzero.
1079#
1080# CB_DATA is a pointer to some user-defined data to be passed to
1081# the callback.
1082#
1083# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1084# inspected when the symbol search was requested.
1085m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1086
7e35103a
JB
1087# Ravenscar arch-dependent ops.
1088v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1089
1090# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1091m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1092
1093# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1094m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1095
1096# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1097m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1098
1099# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1100# Return 0 if *READPTR is already at the end of the buffer.
1101# Return -1 if there is insufficient buffer for a whole entry.
1102# Return 1 if an entry was read into *TYPEP and *VALP.
1103M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1104
1105# Find the address range of the current inferior's vsyscall/vDSO, and
1106# write it to *RANGE. If the vsyscall's length can't be determined, a
1107# range with zero length is returned. Returns true if the vsyscall is
1108# found, false otherwise.
1109m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1110
1111# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1112# PROT has GDB_MMAP_PROT_* bitmask format.
1113# Throw an error if it is not possible. Returned address is always valid.
1114f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1115
7f361056
JK
1116# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1117# Print a warning if it is not possible.
1118f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1119
f208eee0
JK
1120# Return string (caller has to use xfree for it) with options for GCC
1121# to produce code for this target, typically "-m64", "-m32" or "-m31".
1122# These options are put before CU's DW_AT_producer compilation options so that
1123# they can override it. Method may also return NULL.
1124m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1125
1126# Return a regular expression that matches names used by this
1127# architecture in GNU configury triplets. The result is statically
1128# allocated and must not be freed. The default implementation simply
1129# returns the BFD architecture name, which is correct in nearly every
1130# case.
1131m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1132
1133# Return the size in 8-bit bytes of an addressable memory unit on this
1134# architecture. This corresponds to the number of 8-bit bytes associated to
1135# each address in memory.
1136m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1137
104c1213 1138EOF
104c1213
JM
1139}
1140
0b8f9e4d
AC
1141#
1142# The .log file
1143#
1144exec > new-gdbarch.log
34620563 1145function_list | while do_read
0b8f9e4d
AC
1146do
1147 cat <<EOF
2f9b146e 1148${class} ${returntype} ${function} ($formal)
104c1213 1149EOF
3d9a5942
AC
1150 for r in ${read}
1151 do
1152 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1153 done
f0d4cc9e 1154 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1155 then
66d659b1 1156 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1157 kill $$
1158 exit 1
1159 fi
72e74a21 1160 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1161 then
1162 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1163 kill $$
1164 exit 1
1165 fi
a72293e2
AC
1166 if class_is_multiarch_p
1167 then
1168 if class_is_predicate_p ; then :
1169 elif test "x${predefault}" = "x"
1170 then
2f9b146e 1171 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1172 kill $$
1173 exit 1
1174 fi
1175 fi
3d9a5942 1176 echo ""
0b8f9e4d
AC
1177done
1178
1179exec 1>&2
1180compare_new gdbarch.log
1181
104c1213
JM
1182
1183copyright ()
1184{
1185cat <<EOF
c4bfde41
JK
1186/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1187/* vi:set ro: */
59233f88 1188
104c1213 1189/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1190
618f726f 1191 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1192
1193 This file is part of GDB.
1194
1195 This program is free software; you can redistribute it and/or modify
1196 it under the terms of the GNU General Public License as published by
50efebf8 1197 the Free Software Foundation; either version 3 of the License, or
104c1213 1198 (at your option) any later version.
618f726f 1199
104c1213
JM
1200 This program is distributed in the hope that it will be useful,
1201 but WITHOUT ANY WARRANTY; without even the implied warranty of
1202 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1203 GNU General Public License for more details.
618f726f 1204
104c1213 1205 You should have received a copy of the GNU General Public License
50efebf8 1206 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1207
104c1213
JM
1208/* This file was created with the aid of \`\`gdbarch.sh''.
1209
52204a0b 1210 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1211 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1212 against the existing \`\`gdbarch.[hc]''. Any differences found
1213 being reported.
1214
1215 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1216 changes into that script. Conversely, when making sweeping changes
104c1213 1217 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1218 easier. */
104c1213
JM
1219
1220EOF
1221}
1222
1223#
1224# The .h file
1225#
1226
1227exec > new-gdbarch.h
1228copyright
1229cat <<EOF
1230#ifndef GDBARCH_H
1231#define GDBARCH_H
1232
eb7a547a
JB
1233#include "frame.h"
1234
da3331ec
AC
1235struct floatformat;
1236struct ui_file;
104c1213 1237struct value;
b6af0555 1238struct objfile;
1c772458 1239struct obj_section;
a2cf933a 1240struct minimal_symbol;
049ee0e4 1241struct regcache;
b59ff9d5 1242struct reggroup;
6ce6d90f 1243struct regset;
a89aa300 1244struct disassemble_info;
e2d0e7eb 1245struct target_ops;
030f20e1 1246struct obstack;
8181d85f 1247struct bp_target_info;
424163ea 1248struct target_desc;
3e29f34a
MR
1249struct objfile;
1250struct symbol;
237fc4c9 1251struct displaced_step_closure;
a96d9b2e 1252struct syscall;
175ff332 1253struct agent_expr;
6710bf39 1254struct axs_value;
55aa24fb 1255struct stap_parse_info;
8b367e17 1256struct parser_state;
7e35103a 1257struct ravenscar_arch_ops;
b3ac9c77 1258struct elf_internal_linux_prpsinfo;
3437254d 1259struct mem_range;
458c8db8 1260struct syscalls_info;
4dfc5dbc 1261struct thread_info;
012b3a21 1262struct ui_out;
104c1213 1263
8a526fa6
PA
1264#include "regcache.h"
1265
6ecd4729
PA
1266/* The architecture associated with the inferior through the
1267 connection to the target.
1268
1269 The architecture vector provides some information that is really a
1270 property of the inferior, accessed through a particular target:
1271 ptrace operations; the layout of certain RSP packets; the solib_ops
1272 vector; etc. To differentiate architecture accesses to
1273 per-inferior/target properties from
1274 per-thread/per-frame/per-objfile properties, accesses to
1275 per-inferior/target properties should be made through this
1276 gdbarch. */
1277
1278/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1279extern struct gdbarch *target_gdbarch (void);
6ecd4729 1280
19630284
JB
1281/* Callback type for the 'iterate_over_objfiles_in_search_order'
1282 gdbarch method. */
1283
1284typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1285 (struct objfile *objfile, void *cb_data);
5aa82d05 1286
1528345d
AA
1287/* Callback type for regset section iterators. The callback usually
1288 invokes the REGSET's supply or collect method, to which it must
1289 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1290 section name, and HUMAN_NAME is used for diagnostic messages.
1291 CB_DATA should have been passed unchanged through the iterator. */
1292
5aa82d05 1293typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1294 (const char *sect_name, int size, const struct regset *regset,
1295 const char *human_name, void *cb_data);
104c1213
JM
1296EOF
1297
1298# function typedef's
3d9a5942
AC
1299printf "\n"
1300printf "\n"
0963b4bd 1301printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1302function_list | while do_read
104c1213 1303do
2ada493a
AC
1304 if class_is_info_p
1305 then
3d9a5942
AC
1306 printf "\n"
1307 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1308 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1309 fi
104c1213
JM
1310done
1311
1312# function typedef's
3d9a5942
AC
1313printf "\n"
1314printf "\n"
0963b4bd 1315printf "/* The following are initialized by the target dependent code. */\n"
34620563 1316function_list | while do_read
104c1213 1317do
72e74a21 1318 if [ -n "${comment}" ]
34620563
AC
1319 then
1320 echo "${comment}" | sed \
1321 -e '2 s,#,/*,' \
1322 -e '3,$ s,#, ,' \
1323 -e '$ s,$, */,'
1324 fi
412d5987
AC
1325
1326 if class_is_predicate_p
2ada493a 1327 then
412d5987
AC
1328 printf "\n"
1329 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1330 fi
2ada493a
AC
1331 if class_is_variable_p
1332 then
3d9a5942
AC
1333 printf "\n"
1334 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1335 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1336 fi
1337 if class_is_function_p
1338 then
3d9a5942 1339 printf "\n"
72e74a21 1340 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1341 then
1342 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1343 elif class_is_multiarch_p
1344 then
1345 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1346 else
1347 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1348 fi
72e74a21 1349 if [ "x${formal}" = "xvoid" ]
104c1213 1350 then
3d9a5942 1351 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1352 else
3d9a5942 1353 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1354 fi
3d9a5942 1355 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1356 fi
104c1213
JM
1357done
1358
1359# close it off
1360cat <<EOF
1361
a96d9b2e
SDJ
1362/* Definition for an unknown syscall, used basically in error-cases. */
1363#define UNKNOWN_SYSCALL (-1)
1364
104c1213
JM
1365extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1366
1367
1368/* Mechanism for co-ordinating the selection of a specific
1369 architecture.
1370
1371 GDB targets (*-tdep.c) can register an interest in a specific
1372 architecture. Other GDB components can register a need to maintain
1373 per-architecture data.
1374
1375 The mechanisms below ensures that there is only a loose connection
1376 between the set-architecture command and the various GDB
0fa6923a 1377 components. Each component can independently register their need
104c1213
JM
1378 to maintain architecture specific data with gdbarch.
1379
1380 Pragmatics:
1381
1382 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1383 didn't scale.
1384
1385 The more traditional mega-struct containing architecture specific
1386 data for all the various GDB components was also considered. Since
0fa6923a 1387 GDB is built from a variable number of (fairly independent)
104c1213 1388 components it was determined that the global aproach was not
0963b4bd 1389 applicable. */
104c1213
JM
1390
1391
1392/* Register a new architectural family with GDB.
1393
1394 Register support for the specified ARCHITECTURE with GDB. When
1395 gdbarch determines that the specified architecture has been
1396 selected, the corresponding INIT function is called.
1397
1398 --
1399
1400 The INIT function takes two parameters: INFO which contains the
1401 information available to gdbarch about the (possibly new)
1402 architecture; ARCHES which is a list of the previously created
1403 \`\`struct gdbarch'' for this architecture.
1404
0f79675b 1405 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1406 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1407
1408 The ARCHES parameter is a linked list (sorted most recently used)
1409 of all the previously created architures for this architecture
1410 family. The (possibly NULL) ARCHES->gdbarch can used to access
1411 values from the previously selected architecture for this
59837fe0 1412 architecture family.
104c1213
JM
1413
1414 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1415 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1416 gdbarch'' from the ARCHES list - indicating that the new
1417 architecture is just a synonym for an earlier architecture (see
1418 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1419 - that describes the selected architecture (see gdbarch_alloc()).
1420
1421 The DUMP_TDEP function shall print out all target specific values.
1422 Care should be taken to ensure that the function works in both the
0963b4bd 1423 multi-arch and non- multi-arch cases. */
104c1213
JM
1424
1425struct gdbarch_list
1426{
1427 struct gdbarch *gdbarch;
1428 struct gdbarch_list *next;
1429};
1430
1431struct gdbarch_info
1432{
0963b4bd 1433 /* Use default: NULL (ZERO). */
104c1213
JM
1434 const struct bfd_arch_info *bfd_arch_info;
1435
428721aa 1436 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1437 enum bfd_endian byte_order;
104c1213 1438
94123b4f 1439 enum bfd_endian byte_order_for_code;
9d4fde75 1440
0963b4bd 1441 /* Use default: NULL (ZERO). */
104c1213
JM
1442 bfd *abfd;
1443
0963b4bd 1444 /* Use default: NULL (ZERO). */
ede5f151 1445 void *tdep_info;
4be87837
DJ
1446
1447 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1448 enum gdb_osabi osabi;
424163ea
DJ
1449
1450 /* Use default: NULL (ZERO). */
1451 const struct target_desc *target_desc;
104c1213
JM
1452};
1453
1454typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1455typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1456
4b9b3959 1457/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1458extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1459
4b9b3959
AC
1460extern void gdbarch_register (enum bfd_architecture architecture,
1461 gdbarch_init_ftype *,
1462 gdbarch_dump_tdep_ftype *);
1463
104c1213 1464
b4a20239
AC
1465/* Return a freshly allocated, NULL terminated, array of the valid
1466 architecture names. Since architectures are registered during the
1467 _initialize phase this function only returns useful information
0963b4bd 1468 once initialization has been completed. */
b4a20239
AC
1469
1470extern const char **gdbarch_printable_names (void);
1471
1472
104c1213 1473/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1474 matches the information provided by INFO. */
104c1213 1475
424163ea 1476extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1477
1478
1479/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1480 basic initialization using values obtained from the INFO and TDEP
104c1213 1481 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1482 initialization of the object. */
104c1213
JM
1483
1484extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1485
1486
4b9b3959
AC
1487/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1488 It is assumed that the caller freeds the \`\`struct
0963b4bd 1489 gdbarch_tdep''. */
4b9b3959 1490
058f20d5
JB
1491extern void gdbarch_free (struct gdbarch *);
1492
1493
aebd7893
AC
1494/* Helper function. Allocate memory from the \`\`struct gdbarch''
1495 obstack. The memory is freed when the corresponding architecture
1496 is also freed. */
1497
1498extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1499#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1500#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1501
6c214e7c
PP
1502/* Duplicate STRING, returning an equivalent string that's allocated on the
1503 obstack associated with GDBARCH. The string is freed when the corresponding
1504 architecture is also freed. */
1505
1506extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1507
0963b4bd 1508/* Helper function. Force an update of the current architecture.
104c1213 1509
b732d07d
AC
1510 The actual architecture selected is determined by INFO, \`\`(gdb) set
1511 architecture'' et.al., the existing architecture and BFD's default
1512 architecture. INFO should be initialized to zero and then selected
1513 fields should be updated.
104c1213 1514
0963b4bd 1515 Returns non-zero if the update succeeds. */
16f33e29
AC
1516
1517extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1518
1519
ebdba546
AC
1520/* Helper function. Find an architecture matching info.
1521
1522 INFO should be initialized using gdbarch_info_init, relevant fields
1523 set, and then finished using gdbarch_info_fill.
1524
1525 Returns the corresponding architecture, or NULL if no matching
59837fe0 1526 architecture was found. */
ebdba546
AC
1527
1528extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1529
1530
aff68abb 1531/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1532
aff68abb 1533extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1534
104c1213
JM
1535
1536/* Register per-architecture data-pointer.
1537
1538 Reserve space for a per-architecture data-pointer. An identifier
1539 for the reserved data-pointer is returned. That identifer should
95160752 1540 be saved in a local static variable.
104c1213 1541
fcc1c85c
AC
1542 Memory for the per-architecture data shall be allocated using
1543 gdbarch_obstack_zalloc. That memory will be deleted when the
1544 corresponding architecture object is deleted.
104c1213 1545
95160752
AC
1546 When a previously created architecture is re-selected, the
1547 per-architecture data-pointer for that previous architecture is
76860b5f 1548 restored. INIT() is not re-called.
104c1213
JM
1549
1550 Multiple registrarants for any architecture are allowed (and
1551 strongly encouraged). */
1552
95160752 1553struct gdbarch_data;
104c1213 1554
030f20e1
AC
1555typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1556extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1557typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1558extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1559extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1560 struct gdbarch_data *data,
1561 void *pointer);
104c1213 1562
451fbdda 1563extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1564
1565
0fa6923a 1566/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1567 byte-order, ...) using information found in the BFD. */
104c1213
JM
1568
1569extern void set_gdbarch_from_file (bfd *);
1570
1571
e514a9d6
JM
1572/* Initialize the current architecture to the "first" one we find on
1573 our list. */
1574
1575extern void initialize_current_architecture (void);
1576
104c1213 1577/* gdbarch trace variable */
ccce17b0 1578extern unsigned int gdbarch_debug;
104c1213 1579
4b9b3959 1580extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1581
1582#endif
1583EOF
1584exec 1>&2
1585#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1586compare_new gdbarch.h
104c1213
JM
1587
1588
1589#
1590# C file
1591#
1592
1593exec > new-gdbarch.c
1594copyright
1595cat <<EOF
1596
1597#include "defs.h"
7355ddba 1598#include "arch-utils.h"
104c1213 1599
104c1213 1600#include "gdbcmd.h"
faaf634c 1601#include "inferior.h"
104c1213
JM
1602#include "symcat.h"
1603
f0d4cc9e 1604#include "floatformat.h"
b59ff9d5 1605#include "reggroups.h"
4be87837 1606#include "osabi.h"
aebd7893 1607#include "gdb_obstack.h"
383f836e 1608#include "observer.h"
a3ecef73 1609#include "regcache.h"
19630284 1610#include "objfiles.h"
95160752 1611
104c1213
JM
1612/* Static function declarations */
1613
b3cc3077 1614static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1615
104c1213
JM
1616/* Non-zero if we want to trace architecture code. */
1617
1618#ifndef GDBARCH_DEBUG
1619#define GDBARCH_DEBUG 0
1620#endif
ccce17b0 1621unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1622static void
1623show_gdbarch_debug (struct ui_file *file, int from_tty,
1624 struct cmd_list_element *c, const char *value)
1625{
1626 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1627}
104c1213 1628
456fcf94 1629static const char *
8da61cc4 1630pformat (const struct floatformat **format)
456fcf94
AC
1631{
1632 if (format == NULL)
1633 return "(null)";
1634 else
8da61cc4
DJ
1635 /* Just print out one of them - this is only for diagnostics. */
1636 return format[0]->name;
456fcf94
AC
1637}
1638
08105857
PA
1639static const char *
1640pstring (const char *string)
1641{
1642 if (string == NULL)
1643 return "(null)";
1644 return string;
05c0465e
SDJ
1645}
1646
1647/* Helper function to print a list of strings, represented as "const
1648 char *const *". The list is printed comma-separated. */
1649
1650static char *
1651pstring_list (const char *const *list)
1652{
1653 static char ret[100];
1654 const char *const *p;
1655 size_t offset = 0;
1656
1657 if (list == NULL)
1658 return "(null)";
1659
1660 ret[0] = '\0';
1661 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1662 {
1663 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1664 offset += 2 + s;
1665 }
1666
1667 if (offset > 0)
1668 {
1669 gdb_assert (offset - 2 < sizeof (ret));
1670 ret[offset - 2] = '\0';
1671 }
1672
1673 return ret;
08105857
PA
1674}
1675
104c1213
JM
1676EOF
1677
1678# gdbarch open the gdbarch object
3d9a5942 1679printf "\n"
0963b4bd 1680printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1681printf "\n"
1682printf "struct gdbarch\n"
1683printf "{\n"
76860b5f
AC
1684printf " /* Has this architecture been fully initialized? */\n"
1685printf " int initialized_p;\n"
aebd7893
AC
1686printf "\n"
1687printf " /* An obstack bound to the lifetime of the architecture. */\n"
1688printf " struct obstack *obstack;\n"
1689printf "\n"
0963b4bd 1690printf " /* basic architectural information. */\n"
34620563 1691function_list | while do_read
104c1213 1692do
2ada493a
AC
1693 if class_is_info_p
1694 then
3d9a5942 1695 printf " ${returntype} ${function};\n"
2ada493a 1696 fi
104c1213 1697done
3d9a5942 1698printf "\n"
0963b4bd 1699printf " /* target specific vector. */\n"
3d9a5942
AC
1700printf " struct gdbarch_tdep *tdep;\n"
1701printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1702printf "\n"
0963b4bd 1703printf " /* per-architecture data-pointers. */\n"
95160752 1704printf " unsigned nr_data;\n"
3d9a5942
AC
1705printf " void **data;\n"
1706printf "\n"
104c1213
JM
1707cat <<EOF
1708 /* Multi-arch values.
1709
1710 When extending this structure you must:
1711
1712 Add the field below.
1713
1714 Declare set/get functions and define the corresponding
1715 macro in gdbarch.h.
1716
1717 gdbarch_alloc(): If zero/NULL is not a suitable default,
1718 initialize the new field.
1719
1720 verify_gdbarch(): Confirm that the target updated the field
1721 correctly.
1722
7e73cedf 1723 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1724 field is dumped out
1725
104c1213
JM
1726 get_gdbarch(): Implement the set/get functions (probably using
1727 the macro's as shortcuts).
1728
1729 */
1730
1731EOF
34620563 1732function_list | while do_read
104c1213 1733do
2ada493a
AC
1734 if class_is_variable_p
1735 then
3d9a5942 1736 printf " ${returntype} ${function};\n"
2ada493a
AC
1737 elif class_is_function_p
1738 then
2f9b146e 1739 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1740 fi
104c1213 1741done
3d9a5942 1742printf "};\n"
104c1213 1743
104c1213 1744# Create a new gdbarch struct
104c1213 1745cat <<EOF
7de2341d 1746
66b43ecb 1747/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1748 \`\`struct gdbarch_info''. */
104c1213 1749EOF
3d9a5942 1750printf "\n"
104c1213
JM
1751cat <<EOF
1752struct gdbarch *
1753gdbarch_alloc (const struct gdbarch_info *info,
1754 struct gdbarch_tdep *tdep)
1755{
be7811ad 1756 struct gdbarch *gdbarch;
aebd7893
AC
1757
1758 /* Create an obstack for allocating all the per-architecture memory,
1759 then use that to allocate the architecture vector. */
70ba0933 1760 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1761 obstack_init (obstack);
8d749320 1762 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1763 memset (gdbarch, 0, sizeof (*gdbarch));
1764 gdbarch->obstack = obstack;
85de9627 1765
be7811ad 1766 alloc_gdbarch_data (gdbarch);
85de9627 1767
be7811ad 1768 gdbarch->tdep = tdep;
104c1213 1769EOF
3d9a5942 1770printf "\n"
34620563 1771function_list | while do_read
104c1213 1772do
2ada493a
AC
1773 if class_is_info_p
1774 then
be7811ad 1775 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1776 fi
104c1213 1777done
3d9a5942 1778printf "\n"
0963b4bd 1779printf " /* Force the explicit initialization of these. */\n"
34620563 1780function_list | while do_read
104c1213 1781do
2ada493a
AC
1782 if class_is_function_p || class_is_variable_p
1783 then
72e74a21 1784 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1785 then
be7811ad 1786 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1787 fi
2ada493a 1788 fi
104c1213
JM
1789done
1790cat <<EOF
1791 /* gdbarch_alloc() */
1792
be7811ad 1793 return gdbarch;
104c1213
JM
1794}
1795EOF
1796
058f20d5 1797# Free a gdbarch struct.
3d9a5942
AC
1798printf "\n"
1799printf "\n"
058f20d5 1800cat <<EOF
aebd7893
AC
1801/* Allocate extra space using the per-architecture obstack. */
1802
1803void *
1804gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1805{
1806 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1807
aebd7893
AC
1808 memset (data, 0, size);
1809 return data;
1810}
1811
6c214e7c
PP
1812/* See gdbarch.h. */
1813
1814char *
1815gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1816{
1817 return obstack_strdup (arch->obstack, string);
1818}
1819
aebd7893 1820
058f20d5
JB
1821/* Free a gdbarch struct. This should never happen in normal
1822 operation --- once you've created a gdbarch, you keep it around.
1823 However, if an architecture's init function encounters an error
1824 building the structure, it may need to clean up a partially
1825 constructed gdbarch. */
4b9b3959 1826
058f20d5
JB
1827void
1828gdbarch_free (struct gdbarch *arch)
1829{
aebd7893 1830 struct obstack *obstack;
05c547f6 1831
95160752 1832 gdb_assert (arch != NULL);
aebd7893
AC
1833 gdb_assert (!arch->initialized_p);
1834 obstack = arch->obstack;
1835 obstack_free (obstack, 0); /* Includes the ARCH. */
1836 xfree (obstack);
058f20d5
JB
1837}
1838EOF
1839
104c1213 1840# verify a new architecture
104c1213 1841cat <<EOF
db446970
AC
1842
1843
1844/* Ensure that all values in a GDBARCH are reasonable. */
1845
104c1213 1846static void
be7811ad 1847verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1848{
f16a1923
AC
1849 struct ui_file *log;
1850 struct cleanup *cleanups;
759ef836 1851 long length;
f16a1923 1852 char *buf;
05c547f6 1853
f16a1923
AC
1854 log = mem_fileopen ();
1855 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1856 /* fundamental */
be7811ad 1857 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1858 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1859 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1860 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1861 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1862EOF
34620563 1863function_list | while do_read
104c1213 1864do
2ada493a
AC
1865 if class_is_function_p || class_is_variable_p
1866 then
72e74a21 1867 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1868 then
3d9a5942 1869 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1870 elif class_is_predicate_p
1871 then
0963b4bd 1872 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1873 # FIXME: See do_read for potential simplification
72e74a21 1874 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1875 then
3d9a5942 1876 printf " if (${invalid_p})\n"
be7811ad 1877 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1878 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1879 then
be7811ad
MD
1880 printf " if (gdbarch->${function} == ${predefault})\n"
1881 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1882 elif [ -n "${postdefault}" ]
f0d4cc9e 1883 then
be7811ad
MD
1884 printf " if (gdbarch->${function} == 0)\n"
1885 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1886 elif [ -n "${invalid_p}" ]
104c1213 1887 then
4d60522e 1888 printf " if (${invalid_p})\n"
f16a1923 1889 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1890 elif [ -n "${predefault}" ]
104c1213 1891 then
be7811ad 1892 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1893 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1894 fi
2ada493a 1895 fi
104c1213
JM
1896done
1897cat <<EOF
759ef836 1898 buf = ui_file_xstrdup (log, &length);
f16a1923 1899 make_cleanup (xfree, buf);
759ef836 1900 if (length > 0)
f16a1923 1901 internal_error (__FILE__, __LINE__,
85c07804 1902 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1903 buf);
1904 do_cleanups (cleanups);
104c1213
JM
1905}
1906EOF
1907
1908# dump the structure
3d9a5942
AC
1909printf "\n"
1910printf "\n"
104c1213 1911cat <<EOF
0963b4bd 1912/* Print out the details of the current architecture. */
4b9b3959 1913
104c1213 1914void
be7811ad 1915gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1916{
b78960be 1917 const char *gdb_nm_file = "<not-defined>";
05c547f6 1918
b78960be
AC
1919#if defined (GDB_NM_FILE)
1920 gdb_nm_file = GDB_NM_FILE;
1921#endif
1922 fprintf_unfiltered (file,
1923 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1924 gdb_nm_file);
104c1213 1925EOF
97030eea 1926function_list | sort -t: -k 3 | while do_read
104c1213 1927do
1e9f55d0
AC
1928 # First the predicate
1929 if class_is_predicate_p
1930 then
7996bcec 1931 printf " fprintf_unfiltered (file,\n"
48f7351b 1932 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1933 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1934 fi
48f7351b 1935 # Print the corresponding value.
283354d8 1936 if class_is_function_p
4b9b3959 1937 then
7996bcec 1938 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1939 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1940 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1941 else
48f7351b 1942 # It is a variable
2f9b146e
AC
1943 case "${print}:${returntype}" in
1944 :CORE_ADDR )
0b1553bc
UW
1945 fmt="%s"
1946 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1947 ;;
2f9b146e 1948 :* )
48f7351b 1949 fmt="%s"
623d3eb1 1950 print="plongest (gdbarch->${function})"
48f7351b
AC
1951 ;;
1952 * )
2f9b146e 1953 fmt="%s"
48f7351b
AC
1954 ;;
1955 esac
3d9a5942 1956 printf " fprintf_unfiltered (file,\n"
48f7351b 1957 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1958 printf " ${print});\n"
2ada493a 1959 fi
104c1213 1960done
381323f4 1961cat <<EOF
be7811ad
MD
1962 if (gdbarch->dump_tdep != NULL)
1963 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1964}
1965EOF
104c1213
JM
1966
1967
1968# GET/SET
3d9a5942 1969printf "\n"
104c1213
JM
1970cat <<EOF
1971struct gdbarch_tdep *
1972gdbarch_tdep (struct gdbarch *gdbarch)
1973{
1974 if (gdbarch_debug >= 2)
3d9a5942 1975 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1976 return gdbarch->tdep;
1977}
1978EOF
3d9a5942 1979printf "\n"
34620563 1980function_list | while do_read
104c1213 1981do
2ada493a
AC
1982 if class_is_predicate_p
1983 then
3d9a5942
AC
1984 printf "\n"
1985 printf "int\n"
1986 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1987 printf "{\n"
8de9bdc4 1988 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1989 printf " return ${predicate};\n"
3d9a5942 1990 printf "}\n"
2ada493a
AC
1991 fi
1992 if class_is_function_p
1993 then
3d9a5942
AC
1994 printf "\n"
1995 printf "${returntype}\n"
72e74a21 1996 if [ "x${formal}" = "xvoid" ]
104c1213 1997 then
3d9a5942 1998 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1999 else
3d9a5942 2000 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2001 fi
3d9a5942 2002 printf "{\n"
8de9bdc4 2003 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2004 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2005 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2006 then
2007 # Allow a call to a function with a predicate.
956ac328 2008 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2009 fi
3d9a5942
AC
2010 printf " if (gdbarch_debug >= 2)\n"
2011 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2012 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2013 then
2014 if class_is_multiarch_p
2015 then
2016 params="gdbarch"
2017 else
2018 params=""
2019 fi
2020 else
2021 if class_is_multiarch_p
2022 then
2023 params="gdbarch, ${actual}"
2024 else
2025 params="${actual}"
2026 fi
2027 fi
72e74a21 2028 if [ "x${returntype}" = "xvoid" ]
104c1213 2029 then
4a5c6a1d 2030 printf " gdbarch->${function} (${params});\n"
104c1213 2031 else
4a5c6a1d 2032 printf " return gdbarch->${function} (${params});\n"
104c1213 2033 fi
3d9a5942
AC
2034 printf "}\n"
2035 printf "\n"
2036 printf "void\n"
2037 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2038 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2039 printf "{\n"
2040 printf " gdbarch->${function} = ${function};\n"
2041 printf "}\n"
2ada493a
AC
2042 elif class_is_variable_p
2043 then
3d9a5942
AC
2044 printf "\n"
2045 printf "${returntype}\n"
2046 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2047 printf "{\n"
8de9bdc4 2048 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2049 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2050 then
3d9a5942 2051 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2052 elif [ -n "${invalid_p}" ]
104c1213 2053 then
956ac328
AC
2054 printf " /* Check variable is valid. */\n"
2055 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2056 elif [ -n "${predefault}" ]
104c1213 2057 then
956ac328
AC
2058 printf " /* Check variable changed from pre-default. */\n"
2059 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2060 fi
3d9a5942
AC
2061 printf " if (gdbarch_debug >= 2)\n"
2062 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2063 printf " return gdbarch->${function};\n"
2064 printf "}\n"
2065 printf "\n"
2066 printf "void\n"
2067 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2068 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2069 printf "{\n"
2070 printf " gdbarch->${function} = ${function};\n"
2071 printf "}\n"
2ada493a
AC
2072 elif class_is_info_p
2073 then
3d9a5942
AC
2074 printf "\n"
2075 printf "${returntype}\n"
2076 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2077 printf "{\n"
8de9bdc4 2078 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2079 printf " if (gdbarch_debug >= 2)\n"
2080 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2081 printf " return gdbarch->${function};\n"
2082 printf "}\n"
2ada493a 2083 fi
104c1213
JM
2084done
2085
2086# All the trailing guff
2087cat <<EOF
2088
2089
f44c642f 2090/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2091 modules. */
104c1213
JM
2092
2093struct gdbarch_data
2094{
95160752 2095 unsigned index;
76860b5f 2096 int init_p;
030f20e1
AC
2097 gdbarch_data_pre_init_ftype *pre_init;
2098 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2099};
2100
2101struct gdbarch_data_registration
2102{
104c1213
JM
2103 struct gdbarch_data *data;
2104 struct gdbarch_data_registration *next;
2105};
2106
f44c642f 2107struct gdbarch_data_registry
104c1213 2108{
95160752 2109 unsigned nr;
104c1213
JM
2110 struct gdbarch_data_registration *registrations;
2111};
2112
f44c642f 2113struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2114{
2115 0, NULL,
2116};
2117
030f20e1
AC
2118static struct gdbarch_data *
2119gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2120 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2121{
2122 struct gdbarch_data_registration **curr;
05c547f6
MS
2123
2124 /* Append the new registration. */
f44c642f 2125 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2126 (*curr) != NULL;
2127 curr = &(*curr)->next);
70ba0933 2128 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2129 (*curr)->next = NULL;
70ba0933 2130 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2131 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2132 (*curr)->data->pre_init = pre_init;
2133 (*curr)->data->post_init = post_init;
76860b5f 2134 (*curr)->data->init_p = 1;
104c1213
JM
2135 return (*curr)->data;
2136}
2137
030f20e1
AC
2138struct gdbarch_data *
2139gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2140{
2141 return gdbarch_data_register (pre_init, NULL);
2142}
2143
2144struct gdbarch_data *
2145gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2146{
2147 return gdbarch_data_register (NULL, post_init);
2148}
104c1213 2149
0963b4bd 2150/* Create/delete the gdbarch data vector. */
95160752
AC
2151
2152static void
b3cc3077 2153alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2154{
b3cc3077
JB
2155 gdb_assert (gdbarch->data == NULL);
2156 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2157 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2158}
3c875b6f 2159
76860b5f 2160/* Initialize the current value of the specified per-architecture
0963b4bd 2161 data-pointer. */
b3cc3077 2162
95160752 2163void
030f20e1
AC
2164deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2165 struct gdbarch_data *data,
2166 void *pointer)
95160752
AC
2167{
2168 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2169 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2170 gdb_assert (data->pre_init == NULL);
95160752
AC
2171 gdbarch->data[data->index] = pointer;
2172}
2173
104c1213 2174/* Return the current value of the specified per-architecture
0963b4bd 2175 data-pointer. */
104c1213
JM
2176
2177void *
451fbdda 2178gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2179{
451fbdda 2180 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2181 if (gdbarch->data[data->index] == NULL)
76860b5f 2182 {
030f20e1
AC
2183 /* The data-pointer isn't initialized, call init() to get a
2184 value. */
2185 if (data->pre_init != NULL)
2186 /* Mid architecture creation: pass just the obstack, and not
2187 the entire architecture, as that way it isn't possible for
2188 pre-init code to refer to undefined architecture
2189 fields. */
2190 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2191 else if (gdbarch->initialized_p
2192 && data->post_init != NULL)
2193 /* Post architecture creation: pass the entire architecture
2194 (as all fields are valid), but be careful to also detect
2195 recursive references. */
2196 {
2197 gdb_assert (data->init_p);
2198 data->init_p = 0;
2199 gdbarch->data[data->index] = data->post_init (gdbarch);
2200 data->init_p = 1;
2201 }
2202 else
2203 /* The architecture initialization hasn't completed - punt -
2204 hope that the caller knows what they are doing. Once
2205 deprecated_set_gdbarch_data has been initialized, this can be
2206 changed to an internal error. */
2207 return NULL;
76860b5f
AC
2208 gdb_assert (gdbarch->data[data->index] != NULL);
2209 }
451fbdda 2210 return gdbarch->data[data->index];
104c1213
JM
2211}
2212
2213
0963b4bd 2214/* Keep a registry of the architectures known by GDB. */
104c1213 2215
4b9b3959 2216struct gdbarch_registration
104c1213
JM
2217{
2218 enum bfd_architecture bfd_architecture;
2219 gdbarch_init_ftype *init;
4b9b3959 2220 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2221 struct gdbarch_list *arches;
4b9b3959 2222 struct gdbarch_registration *next;
104c1213
JM
2223};
2224
f44c642f 2225static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2226
b4a20239
AC
2227static void
2228append_name (const char ***buf, int *nr, const char *name)
2229{
1dc7a623 2230 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2231 (*buf)[*nr] = name;
2232 *nr += 1;
2233}
2234
2235const char **
2236gdbarch_printable_names (void)
2237{
7996bcec 2238 /* Accumulate a list of names based on the registed list of
0963b4bd 2239 architectures. */
7996bcec
AC
2240 int nr_arches = 0;
2241 const char **arches = NULL;
2242 struct gdbarch_registration *rego;
05c547f6 2243
7996bcec
AC
2244 for (rego = gdbarch_registry;
2245 rego != NULL;
2246 rego = rego->next)
b4a20239 2247 {
7996bcec
AC
2248 const struct bfd_arch_info *ap;
2249 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2250 if (ap == NULL)
2251 internal_error (__FILE__, __LINE__,
85c07804 2252 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2253 do
2254 {
2255 append_name (&arches, &nr_arches, ap->printable_name);
2256 ap = ap->next;
2257 }
2258 while (ap != NULL);
b4a20239 2259 }
7996bcec
AC
2260 append_name (&arches, &nr_arches, NULL);
2261 return arches;
b4a20239
AC
2262}
2263
2264
104c1213 2265void
4b9b3959
AC
2266gdbarch_register (enum bfd_architecture bfd_architecture,
2267 gdbarch_init_ftype *init,
2268 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2269{
4b9b3959 2270 struct gdbarch_registration **curr;
104c1213 2271 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2272
ec3d358c 2273 /* Check that BFD recognizes this architecture */
104c1213
JM
2274 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2275 if (bfd_arch_info == NULL)
2276 {
8e65ff28 2277 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2278 _("gdbarch: Attempt to register "
2279 "unknown architecture (%d)"),
8e65ff28 2280 bfd_architecture);
104c1213 2281 }
0963b4bd 2282 /* Check that we haven't seen this architecture before. */
f44c642f 2283 for (curr = &gdbarch_registry;
104c1213
JM
2284 (*curr) != NULL;
2285 curr = &(*curr)->next)
2286 {
2287 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2288 internal_error (__FILE__, __LINE__,
64b9b334 2289 _("gdbarch: Duplicate registration "
0963b4bd 2290 "of architecture (%s)"),
8e65ff28 2291 bfd_arch_info->printable_name);
104c1213
JM
2292 }
2293 /* log it */
2294 if (gdbarch_debug)
30737ed9 2295 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2296 bfd_arch_info->printable_name,
30737ed9 2297 host_address_to_string (init));
104c1213 2298 /* Append it */
70ba0933 2299 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2300 (*curr)->bfd_architecture = bfd_architecture;
2301 (*curr)->init = init;
4b9b3959 2302 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2303 (*curr)->arches = NULL;
2304 (*curr)->next = NULL;
4b9b3959
AC
2305}
2306
2307void
2308register_gdbarch_init (enum bfd_architecture bfd_architecture,
2309 gdbarch_init_ftype *init)
2310{
2311 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2312}
104c1213
JM
2313
2314
424163ea 2315/* Look for an architecture using gdbarch_info. */
104c1213
JM
2316
2317struct gdbarch_list *
2318gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2319 const struct gdbarch_info *info)
2320{
2321 for (; arches != NULL; arches = arches->next)
2322 {
2323 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2324 continue;
2325 if (info->byte_order != arches->gdbarch->byte_order)
2326 continue;
4be87837
DJ
2327 if (info->osabi != arches->gdbarch->osabi)
2328 continue;
424163ea
DJ
2329 if (info->target_desc != arches->gdbarch->target_desc)
2330 continue;
104c1213
JM
2331 return arches;
2332 }
2333 return NULL;
2334}
2335
2336
ebdba546 2337/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2338 architecture if needed. Return that new architecture. */
104c1213 2339
59837fe0
UW
2340struct gdbarch *
2341gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2342{
2343 struct gdbarch *new_gdbarch;
4b9b3959 2344 struct gdbarch_registration *rego;
104c1213 2345
b732d07d 2346 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2347 sources: "set ..."; INFOabfd supplied; and the global
2348 defaults. */
2349 gdbarch_info_fill (&info);
4be87837 2350
0963b4bd 2351 /* Must have found some sort of architecture. */
b732d07d 2352 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2353
2354 if (gdbarch_debug)
2355 {
2356 fprintf_unfiltered (gdb_stdlog,
59837fe0 2357 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2358 (info.bfd_arch_info != NULL
2359 ? info.bfd_arch_info->printable_name
2360 : "(null)"));
2361 fprintf_unfiltered (gdb_stdlog,
59837fe0 2362 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2363 info.byte_order,
d7449b42 2364 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2365 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2366 : "default"));
4be87837 2367 fprintf_unfiltered (gdb_stdlog,
59837fe0 2368 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2369 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2370 fprintf_unfiltered (gdb_stdlog,
59837fe0 2371 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2372 host_address_to_string (info.abfd));
104c1213 2373 fprintf_unfiltered (gdb_stdlog,
59837fe0 2374 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2375 host_address_to_string (info.tdep_info));
104c1213
JM
2376 }
2377
ebdba546 2378 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2379 for (rego = gdbarch_registry;
2380 rego != NULL;
2381 rego = rego->next)
2382 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2383 break;
2384 if (rego == NULL)
2385 {
2386 if (gdbarch_debug)
59837fe0 2387 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2388 "No matching architecture\n");
b732d07d
AC
2389 return 0;
2390 }
2391
ebdba546 2392 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2393 new_gdbarch = rego->init (info, rego->arches);
2394
ebdba546
AC
2395 /* Did the tdep code like it? No. Reject the change and revert to
2396 the old architecture. */
104c1213
JM
2397 if (new_gdbarch == NULL)
2398 {
2399 if (gdbarch_debug)
59837fe0 2400 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2401 "Target rejected architecture\n");
2402 return NULL;
104c1213
JM
2403 }
2404
ebdba546
AC
2405 /* Is this a pre-existing architecture (as determined by already
2406 being initialized)? Move it to the front of the architecture
2407 list (keeping the list sorted Most Recently Used). */
2408 if (new_gdbarch->initialized_p)
104c1213 2409 {
ebdba546 2410 struct gdbarch_list **list;
fe978cb0 2411 struct gdbarch_list *self;
104c1213 2412 if (gdbarch_debug)
59837fe0 2413 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2414 "Previous architecture %s (%s) selected\n",
2415 host_address_to_string (new_gdbarch),
104c1213 2416 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2417 /* Find the existing arch in the list. */
2418 for (list = &rego->arches;
2419 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2420 list = &(*list)->next);
2421 /* It had better be in the list of architectures. */
2422 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2423 /* Unlink SELF. */
2424 self = (*list);
2425 (*list) = self->next;
2426 /* Insert SELF at the front. */
2427 self->next = rego->arches;
2428 rego->arches = self;
ebdba546
AC
2429 /* Return it. */
2430 return new_gdbarch;
104c1213
JM
2431 }
2432
ebdba546
AC
2433 /* It's a new architecture. */
2434 if (gdbarch_debug)
59837fe0 2435 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2436 "New architecture %s (%s) selected\n",
2437 host_address_to_string (new_gdbarch),
ebdba546
AC
2438 new_gdbarch->bfd_arch_info->printable_name);
2439
2440 /* Insert the new architecture into the front of the architecture
2441 list (keep the list sorted Most Recently Used). */
0f79675b 2442 {
fe978cb0
PA
2443 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2444 self->next = rego->arches;
2445 self->gdbarch = new_gdbarch;
2446 rego->arches = self;
0f79675b 2447 }
104c1213 2448
4b9b3959
AC
2449 /* Check that the newly installed architecture is valid. Plug in
2450 any post init values. */
2451 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2452 verify_gdbarch (new_gdbarch);
ebdba546 2453 new_gdbarch->initialized_p = 1;
104c1213 2454
4b9b3959 2455 if (gdbarch_debug)
ebdba546
AC
2456 gdbarch_dump (new_gdbarch, gdb_stdlog);
2457
2458 return new_gdbarch;
2459}
2460
e487cc15 2461/* Make the specified architecture current. */
ebdba546
AC
2462
2463void
aff68abb 2464set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2465{
2466 gdb_assert (new_gdbarch != NULL);
ebdba546 2467 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2468 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2469 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2470 registers_changed ();
ebdba546 2471}
104c1213 2472
f5656ead 2473/* Return the current inferior's arch. */
6ecd4729
PA
2474
2475struct gdbarch *
f5656ead 2476target_gdbarch (void)
6ecd4729
PA
2477{
2478 return current_inferior ()->gdbarch;
2479}
2480
104c1213 2481extern void _initialize_gdbarch (void);
b4a20239 2482
104c1213 2483void
34620563 2484_initialize_gdbarch (void)
104c1213 2485{
ccce17b0 2486 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2487Set architecture debugging."), _("\\
2488Show architecture debugging."), _("\\
2489When non-zero, architecture debugging is enabled."),
2490 NULL,
920d2a44 2491 show_gdbarch_debug,
85c07804 2492 &setdebuglist, &showdebuglist);
104c1213
JM
2493}
2494EOF
2495
2496# close things off
2497exec 1>&2
2498#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2499compare_new gdbarch.c
This page took 1.771164 seconds and 4 git commands to generate.