PR ld/16021
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
28e7fd62 5# Copyright (C) 1998-2013 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
97030eea 343i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 344i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 489# setjmp/longjmp support.
97030eea 490F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 491#
97030eea 492v:int:believe_pcc_promotion:::::::
104c1213 493#
0abe36f5 494m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 495f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 496f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
497# Construct a value representing the contents of register REGNUM in
498# frame FRAME, interpreted as type TYPE. The routine needs to
499# allocate and return a struct value with all value attributes
500# (but not the value contents) filled in.
97030eea 501f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 502#
9898f801
UW
503m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
504m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 505M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 506
6a3a010b
MR
507# Return the return-value convention that will be used by FUNCTION
508# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
509# case the return convention is computed based only on VALTYPE.
510#
511# If READBUF is not NULL, extract the return value and save it in this buffer.
512#
513# If WRITEBUF is not NULL, it contains a return value which will be
514# stored into the appropriate register. This can be used when we want
515# to force the value returned by a function (see the "return" command
516# for instance).
6a3a010b 517M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 518
18648a37
YQ
519# Return true if the return value of function is stored in the first hidden
520# parameter. In theory, this feature should be language-dependent, specified
521# by language and its ABI, such as C++. Unfortunately, compiler may
522# implement it to a target-dependent feature. So that we need such hook here
523# to be aware of this in GDB.
524m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
525
6093d2eb 526m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 527M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 528f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 529m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
530# Return the adjusted address and kind to use for Z0/Z1 packets.
531# KIND is usually the memory length of the breakpoint, but may have a
532# different target-specific meaning.
0e05dfcb 533m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 534M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
535m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
536m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 537v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
538
539# A function can be addressed by either it's "pointer" (possibly a
540# descriptor address) or "entry point" (first executable instruction).
541# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 542# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
543# a simplified subset of that functionality - the function's address
544# corresponds to the "function pointer" and the function's start
545# corresponds to the "function entry point" - and hence is redundant.
546
97030eea 547v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 548
123dc839
DJ
549# Return the remote protocol register number associated with this
550# register. Normally the identity mapping.
97030eea 551m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 552
b2756930 553# Fetch the target specific address used to represent a load module.
97030eea 554F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 555#
97030eea
UW
556v:CORE_ADDR:frame_args_skip:::0:::0
557M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
558M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
559# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
560# frame-base. Enable frame-base before frame-unwind.
97030eea 561F:int:frame_num_args:struct frame_info *frame:frame
104c1213 562#
97030eea
UW
563M:CORE_ADDR:frame_align:CORE_ADDR address:address
564m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
565v:int:frame_red_zone_size
f0d4cc9e 566#
97030eea 567m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
568# On some machines there are bits in addresses which are not really
569# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 570# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
571# we get a "real" address such as one would find in a symbol table.
572# This is used only for addresses of instructions, and even then I'm
573# not sure it's used in all contexts. It exists to deal with there
574# being a few stray bits in the PC which would mislead us, not as some
575# sort of generic thing to handle alignment or segmentation (it's
576# possible it should be in TARGET_READ_PC instead).
24568a2c 577m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
578
579# FIXME/cagney/2001-01-18: This should be split in two. A target method that
580# indicates if the target needs software single step. An ISA method to
581# implement it.
582#
583# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
584# breakpoints using the breakpoint system instead of blatting memory directly
585# (as with rs6000).
64c4637f 586#
e6590a1b
UW
587# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
588# target can single step. If not, then implement single step using breakpoints.
64c4637f 589#
6f112b18 590# A return value of 1 means that the software_single_step breakpoints
e6590a1b 591# were inserted; 0 means they were not.
97030eea 592F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 593
3352ef37
AC
594# Return non-zero if the processor is executing a delay slot and a
595# further single-step is needed before the instruction finishes.
97030eea 596M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 597# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 598# disassembler. Perhaps objdump can handle it?
97030eea
UW
599f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
600f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
601
602
cfd8ab24 603# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
604# evaluates non-zero, this is the address where the debugger will place
605# a step-resume breakpoint to get us past the dynamic linker.
97030eea 606m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 607# Some systems also have trampoline code for returning from shared libs.
2c02bd72 608m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 609
c12260ac
CV
610# A target might have problems with watchpoints as soon as the stack
611# frame of the current function has been destroyed. This mostly happens
612# as the first action in a funtion's epilogue. in_function_epilogue_p()
613# is defined to return a non-zero value if either the given addr is one
614# instruction after the stack destroying instruction up to the trailing
615# return instruction or if we can figure out that the stack frame has
616# already been invalidated regardless of the value of addr. Targets
617# which don't suffer from that problem could just let this functionality
618# untouched.
97030eea 619m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
620f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
621f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
622v:int:cannot_step_breakpoint:::0:0::0
623v:int:have_nonsteppable_watchpoint:::0:0::0
624F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
625M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
626M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 627# Is a register in a group
97030eea 628m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 629# Fetch the pointer to the ith function argument.
97030eea 630F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
631
632# Return the appropriate register set for a core file section with
633# name SECT_NAME and size SECT_SIZE.
97030eea 634M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 635
17ea7499
CES
636# Supported register notes in a core file.
637v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
638
6432734d
UW
639# Create core file notes
640M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
641
b3ac9c77
SDJ
642# The elfcore writer hook to use to write Linux prpsinfo notes to core
643# files. Most Linux architectures use the same prpsinfo32 or
644# prpsinfo64 layouts, and so won't need to provide this hook, as we
645# call the Linux generic routines in bfd to write prpsinfo notes by
646# default.
647F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
648
35c2fab7
UW
649# Find core file memory regions
650M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
651
de584861
PA
652# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
653# core file into buffer READBUF with length LEN.
97030eea 654M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 655
356a5233
JB
656# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
657# libraries list from core file into buffer READBUF with length LEN.
658M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
659
c0edd9ed 660# How the core target converts a PTID from a core file to a string.
28439f5e
PA
661M:char *:core_pid_to_str:ptid_t ptid:ptid
662
a78c2d62 663# BFD target to use when generating a core file.
86ba1042 664V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 665
0d5de010
DJ
666# If the elements of C++ vtables are in-place function descriptors rather
667# than normal function pointers (which may point to code or a descriptor),
668# set this to one.
97030eea 669v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
670
671# Set if the least significant bit of the delta is used instead of the least
672# significant bit of the pfn for pointers to virtual member functions.
97030eea 673v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
674
675# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 676F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 677
1668ae25 678# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
679V:ULONGEST:max_insn_length:::0:0
680
681# Copy the instruction at FROM to TO, and make any adjustments
682# necessary to single-step it at that address.
683#
684# REGS holds the state the thread's registers will have before
685# executing the copied instruction; the PC in REGS will refer to FROM,
686# not the copy at TO. The caller should update it to point at TO later.
687#
688# Return a pointer to data of the architecture's choice to be passed
689# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
690# the instruction's effects have been completely simulated, with the
691# resulting state written back to REGS.
692#
693# For a general explanation of displaced stepping and how GDB uses it,
694# see the comments in infrun.c.
695#
696# The TO area is only guaranteed to have space for
697# gdbarch_max_insn_length (arch) bytes, so this function must not
698# write more bytes than that to that area.
699#
700# If you do not provide this function, GDB assumes that the
701# architecture does not support displaced stepping.
702#
703# If your architecture doesn't need to adjust instructions before
704# single-stepping them, consider using simple_displaced_step_copy_insn
705# here.
706M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
707
99e40580
UW
708# Return true if GDB should use hardware single-stepping to execute
709# the displaced instruction identified by CLOSURE. If false,
710# GDB will simply restart execution at the displaced instruction
711# location, and it is up to the target to ensure GDB will receive
712# control again (e.g. by placing a software breakpoint instruction
713# into the displaced instruction buffer).
714#
715# The default implementation returns false on all targets that
716# provide a gdbarch_software_single_step routine, and true otherwise.
717m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
718
237fc4c9
PA
719# Fix up the state resulting from successfully single-stepping a
720# displaced instruction, to give the result we would have gotten from
721# stepping the instruction in its original location.
722#
723# REGS is the register state resulting from single-stepping the
724# displaced instruction.
725#
726# CLOSURE is the result from the matching call to
727# gdbarch_displaced_step_copy_insn.
728#
729# If you provide gdbarch_displaced_step_copy_insn.but not this
730# function, then GDB assumes that no fixup is needed after
731# single-stepping the instruction.
732#
733# For a general explanation of displaced stepping and how GDB uses it,
734# see the comments in infrun.c.
735M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
736
737# Free a closure returned by gdbarch_displaced_step_copy_insn.
738#
739# If you provide gdbarch_displaced_step_copy_insn, you must provide
740# this function as well.
741#
742# If your architecture uses closures that don't need to be freed, then
743# you can use simple_displaced_step_free_closure here.
744#
745# For a general explanation of displaced stepping and how GDB uses it,
746# see the comments in infrun.c.
747m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
748
749# Return the address of an appropriate place to put displaced
750# instructions while we step over them. There need only be one such
751# place, since we're only stepping one thread over a breakpoint at a
752# time.
753#
754# For a general explanation of displaced stepping and how GDB uses it,
755# see the comments in infrun.c.
756m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
757
dde08ee1
PA
758# Relocate an instruction to execute at a different address. OLDLOC
759# is the address in the inferior memory where the instruction to
760# relocate is currently at. On input, TO points to the destination
761# where we want the instruction to be copied (and possibly adjusted)
762# to. On output, it points to one past the end of the resulting
763# instruction(s). The effect of executing the instruction at TO shall
764# be the same as if executing it at FROM. For example, call
765# instructions that implicitly push the return address on the stack
766# should be adjusted to return to the instruction after OLDLOC;
767# relative branches, and other PC-relative instructions need the
768# offset adjusted; etc.
769M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
770
1c772458 771# Refresh overlay mapped state for section OSECT.
97030eea 772F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 773
97030eea 774M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
775
776# Handle special encoding of static variables in stabs debug info.
0d5cff50 777F:const char *:static_transform_name:const char *name:name
203c3895 778# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 779v:int:sofun_address_maybe_missing:::0:0::0
1cded358 780
0508c3ec
HZ
781# Parse the instruction at ADDR storing in the record execution log
782# the registers REGCACHE and memory ranges that will be affected when
783# the instruction executes, along with their current values.
784# Return -1 if something goes wrong, 0 otherwise.
785M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
786
3846b520
HZ
787# Save process state after a signal.
788# Return -1 if something goes wrong, 0 otherwise.
2ea28649 789M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 790
22203bbf 791# Signal translation: translate inferior's signal (target's) number
86b49880
PA
792# into GDB's representation. The implementation of this method must
793# be host independent. IOW, don't rely on symbols of the NAT_FILE
794# header (the nm-*.h files), the host <signal.h> header, or similar
795# headers. This is mainly used when cross-debugging core files ---
796# "Live" targets hide the translation behind the target interface
1f8cf220
PA
797# (target_wait, target_resume, etc.).
798M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 799
eb14d406
SDJ
800# Signal translation: translate the GDB's internal signal number into
801# the inferior's signal (target's) representation. The implementation
802# of this method must be host independent. IOW, don't rely on symbols
803# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
804# header, or similar headers.
805# Return the target signal number if found, or -1 if the GDB internal
806# signal number is invalid.
807M:int:gdb_signal_to_target:enum gdb_signal signal:signal
808
4aa995e1
PA
809# Extra signal info inspection.
810#
811# Return a type suitable to inspect extra signal information.
812M:struct type *:get_siginfo_type:void:
813
60c5725c
DJ
814# Record architecture-specific information from the symbol table.
815M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 816
a96d9b2e
SDJ
817# Function for the 'catch syscall' feature.
818
819# Get architecture-specific system calls information from registers.
820M:LONGEST:get_syscall_number:ptid_t ptid:ptid
821
55aa24fb
SDJ
822# SystemTap related fields and functions.
823
824# Prefix used to mark an integer constant on the architecture's assembly
825# For example, on x86 integer constants are written as:
826#
827# \$10 ;; integer constant 10
828#
829# in this case, this prefix would be the character \`\$\'.
08af7a40 830v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
55aa24fb
SDJ
831
832# Suffix used to mark an integer constant on the architecture's assembly.
08af7a40 833v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
55aa24fb
SDJ
834
835# Prefix used to mark a register name on the architecture's assembly.
836# For example, on x86 the register name is written as:
837#
838# \%eax ;; register eax
839#
840# in this case, this prefix would be the character \`\%\'.
08af7a40 841v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
55aa24fb
SDJ
842
843# Suffix used to mark a register name on the architecture's assembly
08af7a40 844v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
55aa24fb
SDJ
845
846# Prefix used to mark a register indirection on the architecture's assembly.
847# For example, on x86 the register indirection is written as:
848#
849# \(\%eax\) ;; indirecting eax
850#
851# in this case, this prefix would be the charater \`\(\'.
852#
853# Please note that we use the indirection prefix also for register
854# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 855v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
55aa24fb
SDJ
856
857# Suffix used to mark a register indirection on the architecture's assembly.
858# For example, on x86 the register indirection is written as:
859#
860# \(\%eax\) ;; indirecting eax
861#
862# in this case, this prefix would be the charater \`\)\'.
863#
864# Please note that we use the indirection suffix also for register
865# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 866v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
55aa24fb
SDJ
867
868# Prefix used to name a register using GDB's nomenclature.
869#
870# For example, on PPC a register is represented by a number in the assembly
871# language (e.g., \`10\' is the 10th general-purpose register). However,
872# inside GDB this same register has an \`r\' appended to its name, so the 10th
873# register would be represented as \`r10\' internally.
08af7a40 874v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
875
876# Suffix used to name a register using GDB's nomenclature.
08af7a40 877v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
878
879# Check if S is a single operand.
880#
881# Single operands can be:
882# \- Literal integers, e.g. \`\$10\' on x86
883# \- Register access, e.g. \`\%eax\' on x86
884# \- Register indirection, e.g. \`\(\%eax\)\' on x86
885# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
886#
887# This function should check for these patterns on the string
888# and return 1 if some were found, or zero otherwise. Please try to match
889# as much info as you can from the string, i.e., if you have to match
890# something like \`\(\%\', do not match just the \`\(\'.
891M:int:stap_is_single_operand:const char *s:s
892
893# Function used to handle a "special case" in the parser.
894#
895# A "special case" is considered to be an unknown token, i.e., a token
896# that the parser does not know how to parse. A good example of special
897# case would be ARM's register displacement syntax:
898#
899# [R0, #4] ;; displacing R0 by 4
900#
901# Since the parser assumes that a register displacement is of the form:
902#
903# <number> <indirection_prefix> <register_name> <indirection_suffix>
904#
905# it means that it will not be able to recognize and parse this odd syntax.
906# Therefore, we should add a special case function that will handle this token.
907#
908# This function should generate the proper expression form of the expression
909# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
910# and so on). It should also return 1 if the parsing was successful, or zero
911# if the token was not recognized as a special token (in this case, returning
912# zero means that the special parser is deferring the parsing to the generic
913# parser), and should advance the buffer pointer (p->arg).
914M:int:stap_parse_special_token:struct stap_parse_info *p:p
915
916
50c71eaf
PA
917# True if the list of shared libraries is one and only for all
918# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
919# This usually means that all processes, although may or may not share
920# an address space, will see the same set of symbols at the same
921# addresses.
50c71eaf 922v:int:has_global_solist:::0:0::0
2567c7d9
PA
923
924# On some targets, even though each inferior has its own private
925# address space, the debug interface takes care of making breakpoints
926# visible to all address spaces automatically. For such cases,
927# this property should be set to true.
928v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
929
930# True if inferiors share an address space (e.g., uClinux).
931m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
932
933# True if a fast tracepoint can be set at an address.
934m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 935
f870a310
TT
936# Return the "auto" target charset.
937f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
938# Return the "auto" target wide charset.
939f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
940
941# If non-empty, this is a file extension that will be opened in place
942# of the file extension reported by the shared library list.
943#
944# This is most useful for toolchains that use a post-linker tool,
945# where the names of the files run on the target differ in extension
946# compared to the names of the files GDB should load for debug info.
947v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
948
949# If true, the target OS has DOS-based file system semantics. That
950# is, absolute paths include a drive name, and the backslash is
951# considered a directory separator.
952v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
953
954# Generate bytecodes to collect the return address in a frame.
955# Since the bytecodes run on the target, possibly with GDB not even
956# connected, the full unwinding machinery is not available, and
957# typically this function will issue bytecodes for one or more likely
958# places that the return address may be found.
959m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
960
3030c96e
UW
961# Implement the "info proc" command.
962M:void:info_proc:char *args, enum info_proc_what what:args, what
963
451b7c33
TT
964# Implement the "info proc" command for core files. Noe that there
965# are two "info_proc"-like methods on gdbarch -- one for core files,
966# one for live targets.
967M:void:core_info_proc:char *args, enum info_proc_what what:args, what
968
19630284
JB
969# Iterate over all objfiles in the order that makes the most sense
970# for the architecture to make global symbol searches.
971#
972# CB is a callback function where OBJFILE is the objfile to be searched,
973# and CB_DATA a pointer to user-defined data (the same data that is passed
974# when calling this gdbarch method). The iteration stops if this function
975# returns nonzero.
976#
977# CB_DATA is a pointer to some user-defined data to be passed to
978# the callback.
979#
980# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
981# inspected when the symbol search was requested.
982m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
983
7e35103a
JB
984# Ravenscar arch-dependent ops.
985v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
104c1213 986EOF
104c1213
JM
987}
988
0b8f9e4d
AC
989#
990# The .log file
991#
992exec > new-gdbarch.log
34620563 993function_list | while do_read
0b8f9e4d
AC
994do
995 cat <<EOF
2f9b146e 996${class} ${returntype} ${function} ($formal)
104c1213 997EOF
3d9a5942
AC
998 for r in ${read}
999 do
1000 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1001 done
f0d4cc9e 1002 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1003 then
66d659b1 1004 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1005 kill $$
1006 exit 1
1007 fi
72e74a21 1008 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1009 then
1010 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1011 kill $$
1012 exit 1
1013 fi
a72293e2
AC
1014 if class_is_multiarch_p
1015 then
1016 if class_is_predicate_p ; then :
1017 elif test "x${predefault}" = "x"
1018 then
2f9b146e 1019 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1020 kill $$
1021 exit 1
1022 fi
1023 fi
3d9a5942 1024 echo ""
0b8f9e4d
AC
1025done
1026
1027exec 1>&2
1028compare_new gdbarch.log
1029
104c1213
JM
1030
1031copyright ()
1032{
1033cat <<EOF
c4bfde41
JK
1034/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1035/* vi:set ro: */
59233f88 1036
104c1213 1037/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1038
28e7fd62 1039 Copyright (C) 1998-2013 Free Software Foundation, Inc.
104c1213
JM
1040
1041 This file is part of GDB.
1042
1043 This program is free software; you can redistribute it and/or modify
1044 it under the terms of the GNU General Public License as published by
50efebf8 1045 the Free Software Foundation; either version 3 of the License, or
104c1213 1046 (at your option) any later version.
50efebf8 1047
104c1213
JM
1048 This program is distributed in the hope that it will be useful,
1049 but WITHOUT ANY WARRANTY; without even the implied warranty of
1050 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1051 GNU General Public License for more details.
50efebf8 1052
104c1213 1053 You should have received a copy of the GNU General Public License
50efebf8 1054 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1055
104c1213
JM
1056/* This file was created with the aid of \`\`gdbarch.sh''.
1057
52204a0b 1058 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1059 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1060 against the existing \`\`gdbarch.[hc]''. Any differences found
1061 being reported.
1062
1063 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1064 changes into that script. Conversely, when making sweeping changes
104c1213 1065 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1066 easier. */
104c1213
JM
1067
1068EOF
1069}
1070
1071#
1072# The .h file
1073#
1074
1075exec > new-gdbarch.h
1076copyright
1077cat <<EOF
1078#ifndef GDBARCH_H
1079#define GDBARCH_H
1080
da3331ec
AC
1081struct floatformat;
1082struct ui_file;
104c1213
JM
1083struct frame_info;
1084struct value;
b6af0555 1085struct objfile;
1c772458 1086struct obj_section;
a2cf933a 1087struct minimal_symbol;
049ee0e4 1088struct regcache;
b59ff9d5 1089struct reggroup;
6ce6d90f 1090struct regset;
a89aa300 1091struct disassemble_info;
e2d0e7eb 1092struct target_ops;
030f20e1 1093struct obstack;
8181d85f 1094struct bp_target_info;
424163ea 1095struct target_desc;
237fc4c9 1096struct displaced_step_closure;
17ea7499 1097struct core_regset_section;
a96d9b2e 1098struct syscall;
175ff332 1099struct agent_expr;
6710bf39 1100struct axs_value;
55aa24fb 1101struct stap_parse_info;
7e35103a 1102struct ravenscar_arch_ops;
b3ac9c77 1103struct elf_internal_linux_prpsinfo;
104c1213 1104
6ecd4729
PA
1105/* The architecture associated with the inferior through the
1106 connection to the target.
1107
1108 The architecture vector provides some information that is really a
1109 property of the inferior, accessed through a particular target:
1110 ptrace operations; the layout of certain RSP packets; the solib_ops
1111 vector; etc. To differentiate architecture accesses to
1112 per-inferior/target properties from
1113 per-thread/per-frame/per-objfile properties, accesses to
1114 per-inferior/target properties should be made through this
1115 gdbarch. */
1116
1117/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1118extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1119
1120/* The initial, default architecture. It uses host values (for want of a better
1121 choice). */
1122extern struct gdbarch startup_gdbarch;
1123
19630284
JB
1124
1125/* Callback type for the 'iterate_over_objfiles_in_search_order'
1126 gdbarch method. */
1127
1128typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1129 (struct objfile *objfile, void *cb_data);
104c1213
JM
1130EOF
1131
1132# function typedef's
3d9a5942
AC
1133printf "\n"
1134printf "\n"
0963b4bd 1135printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1136function_list | while do_read
104c1213 1137do
2ada493a
AC
1138 if class_is_info_p
1139 then
3d9a5942
AC
1140 printf "\n"
1141 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1142 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1143 fi
104c1213
JM
1144done
1145
1146# function typedef's
3d9a5942
AC
1147printf "\n"
1148printf "\n"
0963b4bd 1149printf "/* The following are initialized by the target dependent code. */\n"
34620563 1150function_list | while do_read
104c1213 1151do
72e74a21 1152 if [ -n "${comment}" ]
34620563
AC
1153 then
1154 echo "${comment}" | sed \
1155 -e '2 s,#,/*,' \
1156 -e '3,$ s,#, ,' \
1157 -e '$ s,$, */,'
1158 fi
412d5987
AC
1159
1160 if class_is_predicate_p
2ada493a 1161 then
412d5987
AC
1162 printf "\n"
1163 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1164 fi
2ada493a
AC
1165 if class_is_variable_p
1166 then
3d9a5942
AC
1167 printf "\n"
1168 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1169 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1170 fi
1171 if class_is_function_p
1172 then
3d9a5942 1173 printf "\n"
72e74a21 1174 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1175 then
1176 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1177 elif class_is_multiarch_p
1178 then
1179 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1180 else
1181 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1182 fi
72e74a21 1183 if [ "x${formal}" = "xvoid" ]
104c1213 1184 then
3d9a5942 1185 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1186 else
3d9a5942 1187 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1188 fi
3d9a5942 1189 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1190 fi
104c1213
JM
1191done
1192
1193# close it off
1194cat <<EOF
1195
a96d9b2e
SDJ
1196/* Definition for an unknown syscall, used basically in error-cases. */
1197#define UNKNOWN_SYSCALL (-1)
1198
104c1213
JM
1199extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1200
1201
1202/* Mechanism for co-ordinating the selection of a specific
1203 architecture.
1204
1205 GDB targets (*-tdep.c) can register an interest in a specific
1206 architecture. Other GDB components can register a need to maintain
1207 per-architecture data.
1208
1209 The mechanisms below ensures that there is only a loose connection
1210 between the set-architecture command and the various GDB
0fa6923a 1211 components. Each component can independently register their need
104c1213
JM
1212 to maintain architecture specific data with gdbarch.
1213
1214 Pragmatics:
1215
1216 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1217 didn't scale.
1218
1219 The more traditional mega-struct containing architecture specific
1220 data for all the various GDB components was also considered. Since
0fa6923a 1221 GDB is built from a variable number of (fairly independent)
104c1213 1222 components it was determined that the global aproach was not
0963b4bd 1223 applicable. */
104c1213
JM
1224
1225
1226/* Register a new architectural family with GDB.
1227
1228 Register support for the specified ARCHITECTURE with GDB. When
1229 gdbarch determines that the specified architecture has been
1230 selected, the corresponding INIT function is called.
1231
1232 --
1233
1234 The INIT function takes two parameters: INFO which contains the
1235 information available to gdbarch about the (possibly new)
1236 architecture; ARCHES which is a list of the previously created
1237 \`\`struct gdbarch'' for this architecture.
1238
0f79675b 1239 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1240 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1241
1242 The ARCHES parameter is a linked list (sorted most recently used)
1243 of all the previously created architures for this architecture
1244 family. The (possibly NULL) ARCHES->gdbarch can used to access
1245 values from the previously selected architecture for this
59837fe0 1246 architecture family.
104c1213
JM
1247
1248 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1249 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1250 gdbarch'' from the ARCHES list - indicating that the new
1251 architecture is just a synonym for an earlier architecture (see
1252 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1253 - that describes the selected architecture (see gdbarch_alloc()).
1254
1255 The DUMP_TDEP function shall print out all target specific values.
1256 Care should be taken to ensure that the function works in both the
0963b4bd 1257 multi-arch and non- multi-arch cases. */
104c1213
JM
1258
1259struct gdbarch_list
1260{
1261 struct gdbarch *gdbarch;
1262 struct gdbarch_list *next;
1263};
1264
1265struct gdbarch_info
1266{
0963b4bd 1267 /* Use default: NULL (ZERO). */
104c1213
JM
1268 const struct bfd_arch_info *bfd_arch_info;
1269
428721aa 1270 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1271 int byte_order;
1272
9d4fde75
SS
1273 int byte_order_for_code;
1274
0963b4bd 1275 /* Use default: NULL (ZERO). */
104c1213
JM
1276 bfd *abfd;
1277
0963b4bd 1278 /* Use default: NULL (ZERO). */
104c1213 1279 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1280
1281 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1282 enum gdb_osabi osabi;
424163ea
DJ
1283
1284 /* Use default: NULL (ZERO). */
1285 const struct target_desc *target_desc;
104c1213
JM
1286};
1287
1288typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1289typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1290
4b9b3959 1291/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1292extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1293
4b9b3959
AC
1294extern void gdbarch_register (enum bfd_architecture architecture,
1295 gdbarch_init_ftype *,
1296 gdbarch_dump_tdep_ftype *);
1297
104c1213 1298
b4a20239
AC
1299/* Return a freshly allocated, NULL terminated, array of the valid
1300 architecture names. Since architectures are registered during the
1301 _initialize phase this function only returns useful information
0963b4bd 1302 once initialization has been completed. */
b4a20239
AC
1303
1304extern const char **gdbarch_printable_names (void);
1305
1306
104c1213 1307/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1308 matches the information provided by INFO. */
104c1213 1309
424163ea 1310extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1311
1312
1313/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1314 basic initialization using values obtained from the INFO and TDEP
104c1213 1315 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1316 initialization of the object. */
104c1213
JM
1317
1318extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1319
1320
4b9b3959
AC
1321/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1322 It is assumed that the caller freeds the \`\`struct
0963b4bd 1323 gdbarch_tdep''. */
4b9b3959 1324
058f20d5
JB
1325extern void gdbarch_free (struct gdbarch *);
1326
1327
aebd7893
AC
1328/* Helper function. Allocate memory from the \`\`struct gdbarch''
1329 obstack. The memory is freed when the corresponding architecture
1330 is also freed. */
1331
1332extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1333#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1334#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1335
1336
0963b4bd 1337/* Helper function. Force an update of the current architecture.
104c1213 1338
b732d07d
AC
1339 The actual architecture selected is determined by INFO, \`\`(gdb) set
1340 architecture'' et.al., the existing architecture and BFD's default
1341 architecture. INFO should be initialized to zero and then selected
1342 fields should be updated.
104c1213 1343
0963b4bd 1344 Returns non-zero if the update succeeds. */
16f33e29
AC
1345
1346extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1347
1348
ebdba546
AC
1349/* Helper function. Find an architecture matching info.
1350
1351 INFO should be initialized using gdbarch_info_init, relevant fields
1352 set, and then finished using gdbarch_info_fill.
1353
1354 Returns the corresponding architecture, or NULL if no matching
59837fe0 1355 architecture was found. */
ebdba546
AC
1356
1357extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1358
1359
aff68abb 1360/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1361
aff68abb 1362extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1363
104c1213
JM
1364
1365/* Register per-architecture data-pointer.
1366
1367 Reserve space for a per-architecture data-pointer. An identifier
1368 for the reserved data-pointer is returned. That identifer should
95160752 1369 be saved in a local static variable.
104c1213 1370
fcc1c85c
AC
1371 Memory for the per-architecture data shall be allocated using
1372 gdbarch_obstack_zalloc. That memory will be deleted when the
1373 corresponding architecture object is deleted.
104c1213 1374
95160752
AC
1375 When a previously created architecture is re-selected, the
1376 per-architecture data-pointer for that previous architecture is
76860b5f 1377 restored. INIT() is not re-called.
104c1213
JM
1378
1379 Multiple registrarants for any architecture are allowed (and
1380 strongly encouraged). */
1381
95160752 1382struct gdbarch_data;
104c1213 1383
030f20e1
AC
1384typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1385extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1386typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1387extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1388extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1389 struct gdbarch_data *data,
1390 void *pointer);
104c1213 1391
451fbdda 1392extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1393
1394
0fa6923a 1395/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1396 byte-order, ...) using information found in the BFD. */
104c1213
JM
1397
1398extern void set_gdbarch_from_file (bfd *);
1399
1400
e514a9d6
JM
1401/* Initialize the current architecture to the "first" one we find on
1402 our list. */
1403
1404extern void initialize_current_architecture (void);
1405
104c1213 1406/* gdbarch trace variable */
ccce17b0 1407extern unsigned int gdbarch_debug;
104c1213 1408
4b9b3959 1409extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1410
1411#endif
1412EOF
1413exec 1>&2
1414#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1415compare_new gdbarch.h
104c1213
JM
1416
1417
1418#
1419# C file
1420#
1421
1422exec > new-gdbarch.c
1423copyright
1424cat <<EOF
1425
1426#include "defs.h"
7355ddba 1427#include "arch-utils.h"
104c1213 1428
104c1213 1429#include "gdbcmd.h"
faaf634c 1430#include "inferior.h"
104c1213
JM
1431#include "symcat.h"
1432
f0d4cc9e 1433#include "floatformat.h"
104c1213 1434
95160752 1435#include "gdb_assert.h"
b66d6d2e 1436#include "gdb_string.h"
b59ff9d5 1437#include "reggroups.h"
4be87837 1438#include "osabi.h"
aebd7893 1439#include "gdb_obstack.h"
383f836e 1440#include "observer.h"
a3ecef73 1441#include "regcache.h"
19630284 1442#include "objfiles.h"
95160752 1443
104c1213
JM
1444/* Static function declarations */
1445
b3cc3077 1446static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1447
104c1213
JM
1448/* Non-zero if we want to trace architecture code. */
1449
1450#ifndef GDBARCH_DEBUG
1451#define GDBARCH_DEBUG 0
1452#endif
ccce17b0 1453unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1454static void
1455show_gdbarch_debug (struct ui_file *file, int from_tty,
1456 struct cmd_list_element *c, const char *value)
1457{
1458 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1459}
104c1213 1460
456fcf94 1461static const char *
8da61cc4 1462pformat (const struct floatformat **format)
456fcf94
AC
1463{
1464 if (format == NULL)
1465 return "(null)";
1466 else
8da61cc4
DJ
1467 /* Just print out one of them - this is only for diagnostics. */
1468 return format[0]->name;
456fcf94
AC
1469}
1470
08105857
PA
1471static const char *
1472pstring (const char *string)
1473{
1474 if (string == NULL)
1475 return "(null)";
1476 return string;
1477}
1478
104c1213
JM
1479EOF
1480
1481# gdbarch open the gdbarch object
3d9a5942 1482printf "\n"
0963b4bd 1483printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1484printf "\n"
1485printf "struct gdbarch\n"
1486printf "{\n"
76860b5f
AC
1487printf " /* Has this architecture been fully initialized? */\n"
1488printf " int initialized_p;\n"
aebd7893
AC
1489printf "\n"
1490printf " /* An obstack bound to the lifetime of the architecture. */\n"
1491printf " struct obstack *obstack;\n"
1492printf "\n"
0963b4bd 1493printf " /* basic architectural information. */\n"
34620563 1494function_list | while do_read
104c1213 1495do
2ada493a
AC
1496 if class_is_info_p
1497 then
3d9a5942 1498 printf " ${returntype} ${function};\n"
2ada493a 1499 fi
104c1213 1500done
3d9a5942 1501printf "\n"
0963b4bd 1502printf " /* target specific vector. */\n"
3d9a5942
AC
1503printf " struct gdbarch_tdep *tdep;\n"
1504printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1505printf "\n"
0963b4bd 1506printf " /* per-architecture data-pointers. */\n"
95160752 1507printf " unsigned nr_data;\n"
3d9a5942
AC
1508printf " void **data;\n"
1509printf "\n"
104c1213
JM
1510cat <<EOF
1511 /* Multi-arch values.
1512
1513 When extending this structure you must:
1514
1515 Add the field below.
1516
1517 Declare set/get functions and define the corresponding
1518 macro in gdbarch.h.
1519
1520 gdbarch_alloc(): If zero/NULL is not a suitable default,
1521 initialize the new field.
1522
1523 verify_gdbarch(): Confirm that the target updated the field
1524 correctly.
1525
7e73cedf 1526 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1527 field is dumped out
1528
c0e8c252 1529 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1530 variable (base values on the host's c-type system).
1531
1532 get_gdbarch(): Implement the set/get functions (probably using
1533 the macro's as shortcuts).
1534
1535 */
1536
1537EOF
34620563 1538function_list | while do_read
104c1213 1539do
2ada493a
AC
1540 if class_is_variable_p
1541 then
3d9a5942 1542 printf " ${returntype} ${function};\n"
2ada493a
AC
1543 elif class_is_function_p
1544 then
2f9b146e 1545 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1546 fi
104c1213 1547done
3d9a5942 1548printf "};\n"
104c1213
JM
1549
1550# A pre-initialized vector
3d9a5942
AC
1551printf "\n"
1552printf "\n"
104c1213
JM
1553cat <<EOF
1554/* The default architecture uses host values (for want of a better
0963b4bd 1555 choice). */
104c1213 1556EOF
3d9a5942
AC
1557printf "\n"
1558printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1559printf "\n"
1560printf "struct gdbarch startup_gdbarch =\n"
1561printf "{\n"
76860b5f 1562printf " 1, /* Always initialized. */\n"
aebd7893 1563printf " NULL, /* The obstack. */\n"
0963b4bd 1564printf " /* basic architecture information. */\n"
4b9b3959 1565function_list | while do_read
104c1213 1566do
2ada493a
AC
1567 if class_is_info_p
1568 then
ec5cbaec 1569 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1570 fi
104c1213
JM
1571done
1572cat <<EOF
0963b4bd 1573 /* target specific vector and its dump routine. */
4b9b3959 1574 NULL, NULL,
c66fb220
TT
1575 /*per-architecture data-pointers. */
1576 0, NULL,
104c1213
JM
1577 /* Multi-arch values */
1578EOF
34620563 1579function_list | while do_read
104c1213 1580do
2ada493a
AC
1581 if class_is_function_p || class_is_variable_p
1582 then
ec5cbaec 1583 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1584 fi
104c1213
JM
1585done
1586cat <<EOF
c0e8c252 1587 /* startup_gdbarch() */
104c1213 1588};
4b9b3959 1589
104c1213
JM
1590EOF
1591
1592# Create a new gdbarch struct
104c1213 1593cat <<EOF
7de2341d 1594
66b43ecb 1595/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1596 \`\`struct gdbarch_info''. */
104c1213 1597EOF
3d9a5942 1598printf "\n"
104c1213
JM
1599cat <<EOF
1600struct gdbarch *
1601gdbarch_alloc (const struct gdbarch_info *info,
1602 struct gdbarch_tdep *tdep)
1603{
be7811ad 1604 struct gdbarch *gdbarch;
aebd7893
AC
1605
1606 /* Create an obstack for allocating all the per-architecture memory,
1607 then use that to allocate the architecture vector. */
1608 struct obstack *obstack = XMALLOC (struct obstack);
1609 obstack_init (obstack);
be7811ad
MD
1610 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1611 memset (gdbarch, 0, sizeof (*gdbarch));
1612 gdbarch->obstack = obstack;
85de9627 1613
be7811ad 1614 alloc_gdbarch_data (gdbarch);
85de9627 1615
be7811ad 1616 gdbarch->tdep = tdep;
104c1213 1617EOF
3d9a5942 1618printf "\n"
34620563 1619function_list | while do_read
104c1213 1620do
2ada493a
AC
1621 if class_is_info_p
1622 then
be7811ad 1623 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1624 fi
104c1213 1625done
3d9a5942 1626printf "\n"
0963b4bd 1627printf " /* Force the explicit initialization of these. */\n"
34620563 1628function_list | while do_read
104c1213 1629do
2ada493a
AC
1630 if class_is_function_p || class_is_variable_p
1631 then
72e74a21 1632 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1633 then
be7811ad 1634 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1635 fi
2ada493a 1636 fi
104c1213
JM
1637done
1638cat <<EOF
1639 /* gdbarch_alloc() */
1640
be7811ad 1641 return gdbarch;
104c1213
JM
1642}
1643EOF
1644
058f20d5 1645# Free a gdbarch struct.
3d9a5942
AC
1646printf "\n"
1647printf "\n"
058f20d5 1648cat <<EOF
aebd7893
AC
1649/* Allocate extra space using the per-architecture obstack. */
1650
1651void *
1652gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1653{
1654 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1655
aebd7893
AC
1656 memset (data, 0, size);
1657 return data;
1658}
1659
1660
058f20d5
JB
1661/* Free a gdbarch struct. This should never happen in normal
1662 operation --- once you've created a gdbarch, you keep it around.
1663 However, if an architecture's init function encounters an error
1664 building the structure, it may need to clean up a partially
1665 constructed gdbarch. */
4b9b3959 1666
058f20d5
JB
1667void
1668gdbarch_free (struct gdbarch *arch)
1669{
aebd7893 1670 struct obstack *obstack;
05c547f6 1671
95160752 1672 gdb_assert (arch != NULL);
aebd7893
AC
1673 gdb_assert (!arch->initialized_p);
1674 obstack = arch->obstack;
1675 obstack_free (obstack, 0); /* Includes the ARCH. */
1676 xfree (obstack);
058f20d5
JB
1677}
1678EOF
1679
104c1213 1680# verify a new architecture
104c1213 1681cat <<EOF
db446970
AC
1682
1683
1684/* Ensure that all values in a GDBARCH are reasonable. */
1685
104c1213 1686static void
be7811ad 1687verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1688{
f16a1923
AC
1689 struct ui_file *log;
1690 struct cleanup *cleanups;
759ef836 1691 long length;
f16a1923 1692 char *buf;
05c547f6 1693
f16a1923
AC
1694 log = mem_fileopen ();
1695 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1696 /* fundamental */
be7811ad 1697 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1698 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1699 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1700 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1701 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1702EOF
34620563 1703function_list | while do_read
104c1213 1704do
2ada493a
AC
1705 if class_is_function_p || class_is_variable_p
1706 then
72e74a21 1707 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1708 then
3d9a5942 1709 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1710 elif class_is_predicate_p
1711 then
0963b4bd 1712 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1713 # FIXME: See do_read for potential simplification
72e74a21 1714 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1715 then
3d9a5942 1716 printf " if (${invalid_p})\n"
be7811ad 1717 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1718 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1719 then
be7811ad
MD
1720 printf " if (gdbarch->${function} == ${predefault})\n"
1721 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1722 elif [ -n "${postdefault}" ]
f0d4cc9e 1723 then
be7811ad
MD
1724 printf " if (gdbarch->${function} == 0)\n"
1725 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1726 elif [ -n "${invalid_p}" ]
104c1213 1727 then
4d60522e 1728 printf " if (${invalid_p})\n"
f16a1923 1729 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1730 elif [ -n "${predefault}" ]
104c1213 1731 then
be7811ad 1732 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1733 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1734 fi
2ada493a 1735 fi
104c1213
JM
1736done
1737cat <<EOF
759ef836 1738 buf = ui_file_xstrdup (log, &length);
f16a1923 1739 make_cleanup (xfree, buf);
759ef836 1740 if (length > 0)
f16a1923 1741 internal_error (__FILE__, __LINE__,
85c07804 1742 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1743 buf);
1744 do_cleanups (cleanups);
104c1213
JM
1745}
1746EOF
1747
1748# dump the structure
3d9a5942
AC
1749printf "\n"
1750printf "\n"
104c1213 1751cat <<EOF
0963b4bd 1752/* Print out the details of the current architecture. */
4b9b3959 1753
104c1213 1754void
be7811ad 1755gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1756{
b78960be 1757 const char *gdb_nm_file = "<not-defined>";
05c547f6 1758
b78960be
AC
1759#if defined (GDB_NM_FILE)
1760 gdb_nm_file = GDB_NM_FILE;
1761#endif
1762 fprintf_unfiltered (file,
1763 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1764 gdb_nm_file);
104c1213 1765EOF
97030eea 1766function_list | sort -t: -k 3 | while do_read
104c1213 1767do
1e9f55d0
AC
1768 # First the predicate
1769 if class_is_predicate_p
1770 then
7996bcec 1771 printf " fprintf_unfiltered (file,\n"
48f7351b 1772 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1773 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1774 fi
48f7351b 1775 # Print the corresponding value.
283354d8 1776 if class_is_function_p
4b9b3959 1777 then
7996bcec 1778 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1779 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1780 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1781 else
48f7351b 1782 # It is a variable
2f9b146e
AC
1783 case "${print}:${returntype}" in
1784 :CORE_ADDR )
0b1553bc
UW
1785 fmt="%s"
1786 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1787 ;;
2f9b146e 1788 :* )
48f7351b 1789 fmt="%s"
623d3eb1 1790 print="plongest (gdbarch->${function})"
48f7351b
AC
1791 ;;
1792 * )
2f9b146e 1793 fmt="%s"
48f7351b
AC
1794 ;;
1795 esac
3d9a5942 1796 printf " fprintf_unfiltered (file,\n"
48f7351b 1797 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1798 printf " ${print});\n"
2ada493a 1799 fi
104c1213 1800done
381323f4 1801cat <<EOF
be7811ad
MD
1802 if (gdbarch->dump_tdep != NULL)
1803 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1804}
1805EOF
104c1213
JM
1806
1807
1808# GET/SET
3d9a5942 1809printf "\n"
104c1213
JM
1810cat <<EOF
1811struct gdbarch_tdep *
1812gdbarch_tdep (struct gdbarch *gdbarch)
1813{
1814 if (gdbarch_debug >= 2)
3d9a5942 1815 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1816 return gdbarch->tdep;
1817}
1818EOF
3d9a5942 1819printf "\n"
34620563 1820function_list | while do_read
104c1213 1821do
2ada493a
AC
1822 if class_is_predicate_p
1823 then
3d9a5942
AC
1824 printf "\n"
1825 printf "int\n"
1826 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1827 printf "{\n"
8de9bdc4 1828 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1829 printf " return ${predicate};\n"
3d9a5942 1830 printf "}\n"
2ada493a
AC
1831 fi
1832 if class_is_function_p
1833 then
3d9a5942
AC
1834 printf "\n"
1835 printf "${returntype}\n"
72e74a21 1836 if [ "x${formal}" = "xvoid" ]
104c1213 1837 then
3d9a5942 1838 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1839 else
3d9a5942 1840 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1841 fi
3d9a5942 1842 printf "{\n"
8de9bdc4 1843 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1844 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1845 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1846 then
1847 # Allow a call to a function with a predicate.
956ac328 1848 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1849 fi
3d9a5942
AC
1850 printf " if (gdbarch_debug >= 2)\n"
1851 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1852 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1853 then
1854 if class_is_multiarch_p
1855 then
1856 params="gdbarch"
1857 else
1858 params=""
1859 fi
1860 else
1861 if class_is_multiarch_p
1862 then
1863 params="gdbarch, ${actual}"
1864 else
1865 params="${actual}"
1866 fi
1867 fi
72e74a21 1868 if [ "x${returntype}" = "xvoid" ]
104c1213 1869 then
4a5c6a1d 1870 printf " gdbarch->${function} (${params});\n"
104c1213 1871 else
4a5c6a1d 1872 printf " return gdbarch->${function} (${params});\n"
104c1213 1873 fi
3d9a5942
AC
1874 printf "}\n"
1875 printf "\n"
1876 printf "void\n"
1877 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1878 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1879 printf "{\n"
1880 printf " gdbarch->${function} = ${function};\n"
1881 printf "}\n"
2ada493a
AC
1882 elif class_is_variable_p
1883 then
3d9a5942
AC
1884 printf "\n"
1885 printf "${returntype}\n"
1886 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1887 printf "{\n"
8de9bdc4 1888 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1889 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1890 then
3d9a5942 1891 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1892 elif [ -n "${invalid_p}" ]
104c1213 1893 then
956ac328
AC
1894 printf " /* Check variable is valid. */\n"
1895 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1896 elif [ -n "${predefault}" ]
104c1213 1897 then
956ac328
AC
1898 printf " /* Check variable changed from pre-default. */\n"
1899 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1900 fi
3d9a5942
AC
1901 printf " if (gdbarch_debug >= 2)\n"
1902 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1903 printf " return gdbarch->${function};\n"
1904 printf "}\n"
1905 printf "\n"
1906 printf "void\n"
1907 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1908 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1909 printf "{\n"
1910 printf " gdbarch->${function} = ${function};\n"
1911 printf "}\n"
2ada493a
AC
1912 elif class_is_info_p
1913 then
3d9a5942
AC
1914 printf "\n"
1915 printf "${returntype}\n"
1916 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1917 printf "{\n"
8de9bdc4 1918 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1919 printf " if (gdbarch_debug >= 2)\n"
1920 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1921 printf " return gdbarch->${function};\n"
1922 printf "}\n"
2ada493a 1923 fi
104c1213
JM
1924done
1925
1926# All the trailing guff
1927cat <<EOF
1928
1929
f44c642f 1930/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1931 modules. */
104c1213
JM
1932
1933struct gdbarch_data
1934{
95160752 1935 unsigned index;
76860b5f 1936 int init_p;
030f20e1
AC
1937 gdbarch_data_pre_init_ftype *pre_init;
1938 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1939};
1940
1941struct gdbarch_data_registration
1942{
104c1213
JM
1943 struct gdbarch_data *data;
1944 struct gdbarch_data_registration *next;
1945};
1946
f44c642f 1947struct gdbarch_data_registry
104c1213 1948{
95160752 1949 unsigned nr;
104c1213
JM
1950 struct gdbarch_data_registration *registrations;
1951};
1952
f44c642f 1953struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1954{
1955 0, NULL,
1956};
1957
030f20e1
AC
1958static struct gdbarch_data *
1959gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1960 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1961{
1962 struct gdbarch_data_registration **curr;
05c547f6
MS
1963
1964 /* Append the new registration. */
f44c642f 1965 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1966 (*curr) != NULL;
1967 curr = &(*curr)->next);
1968 (*curr) = XMALLOC (struct gdbarch_data_registration);
1969 (*curr)->next = NULL;
104c1213 1970 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1971 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1972 (*curr)->data->pre_init = pre_init;
1973 (*curr)->data->post_init = post_init;
76860b5f 1974 (*curr)->data->init_p = 1;
104c1213
JM
1975 return (*curr)->data;
1976}
1977
030f20e1
AC
1978struct gdbarch_data *
1979gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1980{
1981 return gdbarch_data_register (pre_init, NULL);
1982}
1983
1984struct gdbarch_data *
1985gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1986{
1987 return gdbarch_data_register (NULL, post_init);
1988}
104c1213 1989
0963b4bd 1990/* Create/delete the gdbarch data vector. */
95160752
AC
1991
1992static void
b3cc3077 1993alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1994{
b3cc3077
JB
1995 gdb_assert (gdbarch->data == NULL);
1996 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1997 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1998}
3c875b6f 1999
76860b5f 2000/* Initialize the current value of the specified per-architecture
0963b4bd 2001 data-pointer. */
b3cc3077 2002
95160752 2003void
030f20e1
AC
2004deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2005 struct gdbarch_data *data,
2006 void *pointer)
95160752
AC
2007{
2008 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2009 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2010 gdb_assert (data->pre_init == NULL);
95160752
AC
2011 gdbarch->data[data->index] = pointer;
2012}
2013
104c1213 2014/* Return the current value of the specified per-architecture
0963b4bd 2015 data-pointer. */
104c1213
JM
2016
2017void *
451fbdda 2018gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2019{
451fbdda 2020 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2021 if (gdbarch->data[data->index] == NULL)
76860b5f 2022 {
030f20e1
AC
2023 /* The data-pointer isn't initialized, call init() to get a
2024 value. */
2025 if (data->pre_init != NULL)
2026 /* Mid architecture creation: pass just the obstack, and not
2027 the entire architecture, as that way it isn't possible for
2028 pre-init code to refer to undefined architecture
2029 fields. */
2030 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2031 else if (gdbarch->initialized_p
2032 && data->post_init != NULL)
2033 /* Post architecture creation: pass the entire architecture
2034 (as all fields are valid), but be careful to also detect
2035 recursive references. */
2036 {
2037 gdb_assert (data->init_p);
2038 data->init_p = 0;
2039 gdbarch->data[data->index] = data->post_init (gdbarch);
2040 data->init_p = 1;
2041 }
2042 else
2043 /* The architecture initialization hasn't completed - punt -
2044 hope that the caller knows what they are doing. Once
2045 deprecated_set_gdbarch_data has been initialized, this can be
2046 changed to an internal error. */
2047 return NULL;
76860b5f
AC
2048 gdb_assert (gdbarch->data[data->index] != NULL);
2049 }
451fbdda 2050 return gdbarch->data[data->index];
104c1213
JM
2051}
2052
2053
0963b4bd 2054/* Keep a registry of the architectures known by GDB. */
104c1213 2055
4b9b3959 2056struct gdbarch_registration
104c1213
JM
2057{
2058 enum bfd_architecture bfd_architecture;
2059 gdbarch_init_ftype *init;
4b9b3959 2060 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2061 struct gdbarch_list *arches;
4b9b3959 2062 struct gdbarch_registration *next;
104c1213
JM
2063};
2064
f44c642f 2065static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2066
b4a20239
AC
2067static void
2068append_name (const char ***buf, int *nr, const char *name)
2069{
2070 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2071 (*buf)[*nr] = name;
2072 *nr += 1;
2073}
2074
2075const char **
2076gdbarch_printable_names (void)
2077{
7996bcec 2078 /* Accumulate a list of names based on the registed list of
0963b4bd 2079 architectures. */
7996bcec
AC
2080 int nr_arches = 0;
2081 const char **arches = NULL;
2082 struct gdbarch_registration *rego;
05c547f6 2083
7996bcec
AC
2084 for (rego = gdbarch_registry;
2085 rego != NULL;
2086 rego = rego->next)
b4a20239 2087 {
7996bcec
AC
2088 const struct bfd_arch_info *ap;
2089 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2090 if (ap == NULL)
2091 internal_error (__FILE__, __LINE__,
85c07804 2092 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2093 do
2094 {
2095 append_name (&arches, &nr_arches, ap->printable_name);
2096 ap = ap->next;
2097 }
2098 while (ap != NULL);
b4a20239 2099 }
7996bcec
AC
2100 append_name (&arches, &nr_arches, NULL);
2101 return arches;
b4a20239
AC
2102}
2103
2104
104c1213 2105void
4b9b3959
AC
2106gdbarch_register (enum bfd_architecture bfd_architecture,
2107 gdbarch_init_ftype *init,
2108 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2109{
4b9b3959 2110 struct gdbarch_registration **curr;
104c1213 2111 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2112
ec3d358c 2113 /* Check that BFD recognizes this architecture */
104c1213
JM
2114 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2115 if (bfd_arch_info == NULL)
2116 {
8e65ff28 2117 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2118 _("gdbarch: Attempt to register "
2119 "unknown architecture (%d)"),
8e65ff28 2120 bfd_architecture);
104c1213 2121 }
0963b4bd 2122 /* Check that we haven't seen this architecture before. */
f44c642f 2123 for (curr = &gdbarch_registry;
104c1213
JM
2124 (*curr) != NULL;
2125 curr = &(*curr)->next)
2126 {
2127 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2128 internal_error (__FILE__, __LINE__,
64b9b334 2129 _("gdbarch: Duplicate registration "
0963b4bd 2130 "of architecture (%s)"),
8e65ff28 2131 bfd_arch_info->printable_name);
104c1213
JM
2132 }
2133 /* log it */
2134 if (gdbarch_debug)
30737ed9 2135 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2136 bfd_arch_info->printable_name,
30737ed9 2137 host_address_to_string (init));
104c1213 2138 /* Append it */
4b9b3959 2139 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2140 (*curr)->bfd_architecture = bfd_architecture;
2141 (*curr)->init = init;
4b9b3959 2142 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2143 (*curr)->arches = NULL;
2144 (*curr)->next = NULL;
4b9b3959
AC
2145}
2146
2147void
2148register_gdbarch_init (enum bfd_architecture bfd_architecture,
2149 gdbarch_init_ftype *init)
2150{
2151 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2152}
104c1213
JM
2153
2154
424163ea 2155/* Look for an architecture using gdbarch_info. */
104c1213
JM
2156
2157struct gdbarch_list *
2158gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2159 const struct gdbarch_info *info)
2160{
2161 for (; arches != NULL; arches = arches->next)
2162 {
2163 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2164 continue;
2165 if (info->byte_order != arches->gdbarch->byte_order)
2166 continue;
4be87837
DJ
2167 if (info->osabi != arches->gdbarch->osabi)
2168 continue;
424163ea
DJ
2169 if (info->target_desc != arches->gdbarch->target_desc)
2170 continue;
104c1213
JM
2171 return arches;
2172 }
2173 return NULL;
2174}
2175
2176
ebdba546 2177/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2178 architecture if needed. Return that new architecture. */
104c1213 2179
59837fe0
UW
2180struct gdbarch *
2181gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2182{
2183 struct gdbarch *new_gdbarch;
4b9b3959 2184 struct gdbarch_registration *rego;
104c1213 2185
b732d07d 2186 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2187 sources: "set ..."; INFOabfd supplied; and the global
2188 defaults. */
2189 gdbarch_info_fill (&info);
4be87837 2190
0963b4bd 2191 /* Must have found some sort of architecture. */
b732d07d 2192 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2193
2194 if (gdbarch_debug)
2195 {
2196 fprintf_unfiltered (gdb_stdlog,
59837fe0 2197 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2198 (info.bfd_arch_info != NULL
2199 ? info.bfd_arch_info->printable_name
2200 : "(null)"));
2201 fprintf_unfiltered (gdb_stdlog,
59837fe0 2202 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2203 info.byte_order,
d7449b42 2204 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2205 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2206 : "default"));
4be87837 2207 fprintf_unfiltered (gdb_stdlog,
59837fe0 2208 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2209 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2210 fprintf_unfiltered (gdb_stdlog,
59837fe0 2211 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2212 host_address_to_string (info.abfd));
104c1213 2213 fprintf_unfiltered (gdb_stdlog,
59837fe0 2214 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2215 host_address_to_string (info.tdep_info));
104c1213
JM
2216 }
2217
ebdba546 2218 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2219 for (rego = gdbarch_registry;
2220 rego != NULL;
2221 rego = rego->next)
2222 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2223 break;
2224 if (rego == NULL)
2225 {
2226 if (gdbarch_debug)
59837fe0 2227 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2228 "No matching architecture\n");
b732d07d
AC
2229 return 0;
2230 }
2231
ebdba546 2232 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2233 new_gdbarch = rego->init (info, rego->arches);
2234
ebdba546
AC
2235 /* Did the tdep code like it? No. Reject the change and revert to
2236 the old architecture. */
104c1213
JM
2237 if (new_gdbarch == NULL)
2238 {
2239 if (gdbarch_debug)
59837fe0 2240 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2241 "Target rejected architecture\n");
2242 return NULL;
104c1213
JM
2243 }
2244
ebdba546
AC
2245 /* Is this a pre-existing architecture (as determined by already
2246 being initialized)? Move it to the front of the architecture
2247 list (keeping the list sorted Most Recently Used). */
2248 if (new_gdbarch->initialized_p)
104c1213 2249 {
ebdba546
AC
2250 struct gdbarch_list **list;
2251 struct gdbarch_list *this;
104c1213 2252 if (gdbarch_debug)
59837fe0 2253 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2254 "Previous architecture %s (%s) selected\n",
2255 host_address_to_string (new_gdbarch),
104c1213 2256 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2257 /* Find the existing arch in the list. */
2258 for (list = &rego->arches;
2259 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2260 list = &(*list)->next);
2261 /* It had better be in the list of architectures. */
2262 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2263 /* Unlink THIS. */
2264 this = (*list);
2265 (*list) = this->next;
2266 /* Insert THIS at the front. */
2267 this->next = rego->arches;
2268 rego->arches = this;
2269 /* Return it. */
2270 return new_gdbarch;
104c1213
JM
2271 }
2272
ebdba546
AC
2273 /* It's a new architecture. */
2274 if (gdbarch_debug)
59837fe0 2275 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2276 "New architecture %s (%s) selected\n",
2277 host_address_to_string (new_gdbarch),
ebdba546
AC
2278 new_gdbarch->bfd_arch_info->printable_name);
2279
2280 /* Insert the new architecture into the front of the architecture
2281 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2282 {
2283 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2284 this->next = rego->arches;
2285 this->gdbarch = new_gdbarch;
2286 rego->arches = this;
2287 }
104c1213 2288
4b9b3959
AC
2289 /* Check that the newly installed architecture is valid. Plug in
2290 any post init values. */
2291 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2292 verify_gdbarch (new_gdbarch);
ebdba546 2293 new_gdbarch->initialized_p = 1;
104c1213 2294
4b9b3959 2295 if (gdbarch_debug)
ebdba546
AC
2296 gdbarch_dump (new_gdbarch, gdb_stdlog);
2297
2298 return new_gdbarch;
2299}
2300
e487cc15 2301/* Make the specified architecture current. */
ebdba546
AC
2302
2303void
aff68abb 2304set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2305{
2306 gdb_assert (new_gdbarch != NULL);
ebdba546 2307 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2308 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2309 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2310 registers_changed ();
ebdba546 2311}
104c1213 2312
f5656ead 2313/* Return the current inferior's arch. */
6ecd4729
PA
2314
2315struct gdbarch *
f5656ead 2316target_gdbarch (void)
6ecd4729
PA
2317{
2318 return current_inferior ()->gdbarch;
2319}
2320
104c1213 2321extern void _initialize_gdbarch (void);
b4a20239 2322
104c1213 2323void
34620563 2324_initialize_gdbarch (void)
104c1213 2325{
ccce17b0 2326 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2327Set architecture debugging."), _("\\
2328Show architecture debugging."), _("\\
2329When non-zero, architecture debugging is enabled."),
2330 NULL,
920d2a44 2331 show_gdbarch_debug,
85c07804 2332 &setdebuglist, &showdebuglist);
104c1213
JM
2333}
2334EOF
2335
2336# close things off
2337exec 1>&2
2338#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2339compare_new gdbarch.c
This page took 1.181294 seconds and 4 git commands to generate.