gdb: Add guess_tracepoint_registers hook to gdbarch.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 464# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 465m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 466m:const char *:register_name:int regnr:regnr::0
9c04cab7 467
7b9ee6a8
DJ
468# Return the type of a register specified by the architecture. Only
469# the register cache should call this function directly; others should
470# use "register_type".
97030eea 471M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 472
669fac23
DJ
473M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 475# deprecated_fp_regnum.
97030eea 476v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 477
97030eea
UW
478M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
479v:int:call_dummy_location::::AT_ENTRY_POINT::0
480M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 481
97030eea 482m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 483m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 484M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
485# MAP a GDB RAW register number onto a simulator register number. See
486# also include/...-sim.h.
e7faf938 487m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
488m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
489m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
490
491# Determine the address where a longjmp will land and save this address
492# in PC. Return nonzero on success.
493#
494# FRAME corresponds to the longjmp frame.
97030eea 495F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 496
104c1213 497#
97030eea 498v:int:believe_pcc_promotion:::::::
104c1213 499#
0abe36f5 500m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 501f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 502f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 503# Construct a value representing the contents of register REGNUM in
2ed3c037 504# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
505# allocate and return a struct value with all value attributes
506# (but not the value contents) filled in.
2ed3c037 507m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 508#
9898f801
UW
509m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
510m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 511M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 512
6a3a010b
MR
513# Return the return-value convention that will be used by FUNCTION
514# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
515# case the return convention is computed based only on VALTYPE.
516#
517# If READBUF is not NULL, extract the return value and save it in this buffer.
518#
519# If WRITEBUF is not NULL, it contains a return value which will be
520# stored into the appropriate register. This can be used when we want
521# to force the value returned by a function (see the "return" command
522# for instance).
6a3a010b 523M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 524
18648a37
YQ
525# Return true if the return value of function is stored in the first hidden
526# parameter. In theory, this feature should be language-dependent, specified
527# by language and its ABI, such as C++. Unfortunately, compiler may
528# implement it to a target-dependent feature. So that we need such hook here
529# to be aware of this in GDB.
530m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
531
6093d2eb 532m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 533M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
534# On some platforms, a single function may provide multiple entry points,
535# e.g. one that is used for function-pointer calls and a different one
536# that is used for direct function calls.
537# In order to ensure that breakpoints set on the function will trigger
538# no matter via which entry point the function is entered, a platform
539# may provide the skip_entrypoint callback. It is called with IP set
540# to the main entry point of a function (as determined by the symbol table),
541# and should return the address of the innermost entry point, where the
542# actual breakpoint needs to be set. Note that skip_entrypoint is used
543# by GDB common code even when debugging optimized code, where skip_prologue
544# is not used.
545M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
546
97030eea 547f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 548m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
549# Return the adjusted address and kind to use for Z0/Z1 packets.
550# KIND is usually the memory length of the breakpoint, but may have a
551# different target-specific meaning.
0e05dfcb 552m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 553M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
554m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
555m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 556v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
557
558# A function can be addressed by either it's "pointer" (possibly a
559# descriptor address) or "entry point" (first executable instruction).
560# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 561# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
562# a simplified subset of that functionality - the function's address
563# corresponds to the "function pointer" and the function's start
564# corresponds to the "function entry point" - and hence is redundant.
565
97030eea 566v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 567
123dc839
DJ
568# Return the remote protocol register number associated with this
569# register. Normally the identity mapping.
97030eea 570m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 571
b2756930 572# Fetch the target specific address used to represent a load module.
97030eea 573F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 574#
97030eea
UW
575v:CORE_ADDR:frame_args_skip:::0:::0
576M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
577M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
578# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
579# frame-base. Enable frame-base before frame-unwind.
97030eea 580F:int:frame_num_args:struct frame_info *frame:frame
104c1213 581#
97030eea
UW
582M:CORE_ADDR:frame_align:CORE_ADDR address:address
583m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
584v:int:frame_red_zone_size
f0d4cc9e 585#
97030eea 586m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
587# On some machines there are bits in addresses which are not really
588# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 589# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
590# we get a "real" address such as one would find in a symbol table.
591# This is used only for addresses of instructions, and even then I'm
592# not sure it's used in all contexts. It exists to deal with there
593# being a few stray bits in the PC which would mislead us, not as some
594# sort of generic thing to handle alignment or segmentation (it's
595# possible it should be in TARGET_READ_PC instead).
24568a2c 596m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
597
598# FIXME/cagney/2001-01-18: This should be split in two. A target method that
599# indicates if the target needs software single step. An ISA method to
600# implement it.
601#
602# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
603# breakpoints using the breakpoint system instead of blatting memory directly
604# (as with rs6000).
64c4637f 605#
e6590a1b
UW
606# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
607# target can single step. If not, then implement single step using breakpoints.
64c4637f 608#
6f112b18 609# A return value of 1 means that the software_single_step breakpoints
e6590a1b 610# were inserted; 0 means they were not.
97030eea 611F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 612
3352ef37
AC
613# Return non-zero if the processor is executing a delay slot and a
614# further single-step is needed before the instruction finishes.
97030eea 615M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 616# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 617# disassembler. Perhaps objdump can handle it?
97030eea
UW
618f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
620
621
cfd8ab24 622# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
623# evaluates non-zero, this is the address where the debugger will place
624# a step-resume breakpoint to get us past the dynamic linker.
97030eea 625m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 626# Some systems also have trampoline code for returning from shared libs.
2c02bd72 627m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 628
c12260ac
CV
629# A target might have problems with watchpoints as soon as the stack
630# frame of the current function has been destroyed. This mostly happens
c9cf6e20 631# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
632# is defined to return a non-zero value if either the given addr is one
633# instruction after the stack destroying instruction up to the trailing
634# return instruction or if we can figure out that the stack frame has
635# already been invalidated regardless of the value of addr. Targets
636# which don't suffer from that problem could just let this functionality
637# untouched.
c9cf6e20 638m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
639# Process an ELF symbol in the minimal symbol table in a backend-specific
640# way. Normally this hook is supposed to do nothing, however if required,
641# then this hook can be used to apply tranformations to symbols that are
642# considered special in some way. For example the MIPS backend uses it
643# to interpret \`st_other' information to mark compressed code symbols so
644# that they can be treated in the appropriate manner in the processing of
645# the main symbol table and DWARF-2 records.
646F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 647f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
648# Process a symbol in the main symbol table in a backend-specific way.
649# Normally this hook is supposed to do nothing, however if required,
650# then this hook can be used to apply tranformations to symbols that
651# are considered special in some way. This is currently used by the
652# MIPS backend to make sure compressed code symbols have the ISA bit
653# set. This in turn is needed for symbol values seen in GDB to match
654# the values used at the runtime by the program itself, for function
655# and label references.
656f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
657# Adjust the address retrieved from a DWARF-2 record other than a line
658# entry in a backend-specific way. Normally this hook is supposed to
659# return the address passed unchanged, however if that is incorrect for
660# any reason, then this hook can be used to fix the address up in the
661# required manner. This is currently used by the MIPS backend to make
662# sure addresses in FDE, range records, etc. referring to compressed
663# code have the ISA bit set, matching line information and the symbol
664# table.
665f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
666# Adjust the address updated by a line entry in a backend-specific way.
667# Normally this hook is supposed to return the address passed unchanged,
668# however in the case of inconsistencies in these records, this hook can
669# be used to fix them up in the required manner. This is currently used
670# by the MIPS backend to make sure all line addresses in compressed code
671# are presented with the ISA bit set, which is not always the case. This
672# in turn ensures breakpoint addresses are correctly matched against the
673# stop PC.
674f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
675v:int:cannot_step_breakpoint:::0:0::0
676v:int:have_nonsteppable_watchpoint:::0:0::0
677F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
678M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
679
680# Return the appropriate type_flags for the supplied address class.
681# This function should return 1 if the address class was recognized and
682# type_flags was set, zero otherwise.
97030eea 683M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 684# Is a register in a group
97030eea 685m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 686# Fetch the pointer to the ith function argument.
97030eea 687F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 688
5aa82d05
AA
689# Iterate over all supported register notes in a core file. For each
690# supported register note section, the iterator must call CB and pass
691# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
692# the supported register note sections based on the current register
693# values. Otherwise it should enumerate all supported register note
694# sections.
695M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 696
6432734d
UW
697# Create core file notes
698M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
699
b3ac9c77
SDJ
700# The elfcore writer hook to use to write Linux prpsinfo notes to core
701# files. Most Linux architectures use the same prpsinfo32 or
702# prpsinfo64 layouts, and so won't need to provide this hook, as we
703# call the Linux generic routines in bfd to write prpsinfo notes by
704# default.
705F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
706
35c2fab7
UW
707# Find core file memory regions
708M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
709
de584861 710# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
711# core file into buffer READBUF with length LEN. Return the number of bytes read
712# (zero indicates failure).
713# failed, otherwise, return the red length of READBUF.
714M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 715
356a5233
JB
716# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
717# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
718# Return the number of bytes read (zero indicates failure).
719M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 720
c0edd9ed 721# How the core target converts a PTID from a core file to a string.
28439f5e
PA
722M:char *:core_pid_to_str:ptid_t ptid:ptid
723
4dfc5dbc
JB
724# How the core target extracts the name of a thread from a core file.
725M:const char *:core_thread_name:struct thread_info *thr:thr
726
a78c2d62 727# BFD target to use when generating a core file.
86ba1042 728V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 729
0d5de010
DJ
730# If the elements of C++ vtables are in-place function descriptors rather
731# than normal function pointers (which may point to code or a descriptor),
732# set this to one.
97030eea 733v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
734
735# Set if the least significant bit of the delta is used instead of the least
736# significant bit of the pfn for pointers to virtual member functions.
97030eea 737v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
738
739# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 740f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 741
1668ae25 742# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
743V:ULONGEST:max_insn_length:::0:0
744
745# Copy the instruction at FROM to TO, and make any adjustments
746# necessary to single-step it at that address.
747#
748# REGS holds the state the thread's registers will have before
749# executing the copied instruction; the PC in REGS will refer to FROM,
750# not the copy at TO. The caller should update it to point at TO later.
751#
752# Return a pointer to data of the architecture's choice to be passed
753# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
754# the instruction's effects have been completely simulated, with the
755# resulting state written back to REGS.
756#
757# For a general explanation of displaced stepping and how GDB uses it,
758# see the comments in infrun.c.
759#
760# The TO area is only guaranteed to have space for
761# gdbarch_max_insn_length (arch) bytes, so this function must not
762# write more bytes than that to that area.
763#
764# If you do not provide this function, GDB assumes that the
765# architecture does not support displaced stepping.
766#
767# If your architecture doesn't need to adjust instructions before
768# single-stepping them, consider using simple_displaced_step_copy_insn
769# here.
7f03bd92
PA
770#
771# If the instruction cannot execute out of line, return NULL. The
772# core falls back to stepping past the instruction in-line instead in
773# that case.
237fc4c9
PA
774M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
775
99e40580
UW
776# Return true if GDB should use hardware single-stepping to execute
777# the displaced instruction identified by CLOSURE. If false,
778# GDB will simply restart execution at the displaced instruction
779# location, and it is up to the target to ensure GDB will receive
780# control again (e.g. by placing a software breakpoint instruction
781# into the displaced instruction buffer).
782#
783# The default implementation returns false on all targets that
784# provide a gdbarch_software_single_step routine, and true otherwise.
785m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
786
237fc4c9
PA
787# Fix up the state resulting from successfully single-stepping a
788# displaced instruction, to give the result we would have gotten from
789# stepping the instruction in its original location.
790#
791# REGS is the register state resulting from single-stepping the
792# displaced instruction.
793#
794# CLOSURE is the result from the matching call to
795# gdbarch_displaced_step_copy_insn.
796#
797# If you provide gdbarch_displaced_step_copy_insn.but not this
798# function, then GDB assumes that no fixup is needed after
799# single-stepping the instruction.
800#
801# For a general explanation of displaced stepping and how GDB uses it,
802# see the comments in infrun.c.
803M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
804
805# Free a closure returned by gdbarch_displaced_step_copy_insn.
806#
807# If you provide gdbarch_displaced_step_copy_insn, you must provide
808# this function as well.
809#
810# If your architecture uses closures that don't need to be freed, then
811# you can use simple_displaced_step_free_closure here.
812#
813# For a general explanation of displaced stepping and how GDB uses it,
814# see the comments in infrun.c.
815m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
816
817# Return the address of an appropriate place to put displaced
818# instructions while we step over them. There need only be one such
819# place, since we're only stepping one thread over a breakpoint at a
820# time.
821#
822# For a general explanation of displaced stepping and how GDB uses it,
823# see the comments in infrun.c.
824m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
825
dde08ee1
PA
826# Relocate an instruction to execute at a different address. OLDLOC
827# is the address in the inferior memory where the instruction to
828# relocate is currently at. On input, TO points to the destination
829# where we want the instruction to be copied (and possibly adjusted)
830# to. On output, it points to one past the end of the resulting
831# instruction(s). The effect of executing the instruction at TO shall
832# be the same as if executing it at FROM. For example, call
833# instructions that implicitly push the return address on the stack
834# should be adjusted to return to the instruction after OLDLOC;
835# relative branches, and other PC-relative instructions need the
836# offset adjusted; etc.
837M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
838
1c772458 839# Refresh overlay mapped state for section OSECT.
97030eea 840F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 841
97030eea 842M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
843
844# Handle special encoding of static variables in stabs debug info.
0d5cff50 845F:const char *:static_transform_name:const char *name:name
203c3895 846# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 847v:int:sofun_address_maybe_missing:::0:0::0
1cded358 848
0508c3ec
HZ
849# Parse the instruction at ADDR storing in the record execution log
850# the registers REGCACHE and memory ranges that will be affected when
851# the instruction executes, along with their current values.
852# Return -1 if something goes wrong, 0 otherwise.
853M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
854
3846b520
HZ
855# Save process state after a signal.
856# Return -1 if something goes wrong, 0 otherwise.
2ea28649 857M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 858
22203bbf 859# Signal translation: translate inferior's signal (target's) number
86b49880
PA
860# into GDB's representation. The implementation of this method must
861# be host independent. IOW, don't rely on symbols of the NAT_FILE
862# header (the nm-*.h files), the host <signal.h> header, or similar
863# headers. This is mainly used when cross-debugging core files ---
864# "Live" targets hide the translation behind the target interface
1f8cf220
PA
865# (target_wait, target_resume, etc.).
866M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 867
eb14d406
SDJ
868# Signal translation: translate the GDB's internal signal number into
869# the inferior's signal (target's) representation. The implementation
870# of this method must be host independent. IOW, don't rely on symbols
871# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
872# header, or similar headers.
873# Return the target signal number if found, or -1 if the GDB internal
874# signal number is invalid.
875M:int:gdb_signal_to_target:enum gdb_signal signal:signal
876
4aa995e1
PA
877# Extra signal info inspection.
878#
879# Return a type suitable to inspect extra signal information.
880M:struct type *:get_siginfo_type:void:
881
60c5725c
DJ
882# Record architecture-specific information from the symbol table.
883M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 884
a96d9b2e
SDJ
885# Function for the 'catch syscall' feature.
886
887# Get architecture-specific system calls information from registers.
888M:LONGEST:get_syscall_number:ptid_t ptid:ptid
889
458c8db8
SDJ
890# The filename of the XML syscall for this architecture.
891v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
892
893# Information about system calls from this architecture
894v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
895
55aa24fb
SDJ
896# SystemTap related fields and functions.
897
05c0465e
SDJ
898# A NULL-terminated array of prefixes used to mark an integer constant
899# on the architecture's assembly.
55aa24fb
SDJ
900# For example, on x86 integer constants are written as:
901#
902# \$10 ;; integer constant 10
903#
904# in this case, this prefix would be the character \`\$\'.
05c0465e 905v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 906
05c0465e
SDJ
907# A NULL-terminated array of suffixes used to mark an integer constant
908# on the architecture's assembly.
909v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 910
05c0465e
SDJ
911# A NULL-terminated array of prefixes used to mark a register name on
912# the architecture's assembly.
55aa24fb
SDJ
913# For example, on x86 the register name is written as:
914#
915# \%eax ;; register eax
916#
917# in this case, this prefix would be the character \`\%\'.
05c0465e 918v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 919
05c0465e
SDJ
920# A NULL-terminated array of suffixes used to mark a register name on
921# the architecture's assembly.
922v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 923
05c0465e
SDJ
924# A NULL-terminated array of prefixes used to mark a register
925# indirection on the architecture's assembly.
55aa24fb
SDJ
926# For example, on x86 the register indirection is written as:
927#
928# \(\%eax\) ;; indirecting eax
929#
930# in this case, this prefix would be the charater \`\(\'.
931#
932# Please note that we use the indirection prefix also for register
933# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 934v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 935
05c0465e
SDJ
936# A NULL-terminated array of suffixes used to mark a register
937# indirection on the architecture's assembly.
55aa24fb
SDJ
938# For example, on x86 the register indirection is written as:
939#
940# \(\%eax\) ;; indirecting eax
941#
942# in this case, this prefix would be the charater \`\)\'.
943#
944# Please note that we use the indirection suffix also for register
945# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 946v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 947
05c0465e 948# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
949#
950# For example, on PPC a register is represented by a number in the assembly
951# language (e.g., \`10\' is the 10th general-purpose register). However,
952# inside GDB this same register has an \`r\' appended to its name, so the 10th
953# register would be represented as \`r10\' internally.
08af7a40 954v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
955
956# Suffix used to name a register using GDB's nomenclature.
08af7a40 957v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
958
959# Check if S is a single operand.
960#
961# Single operands can be:
962# \- Literal integers, e.g. \`\$10\' on x86
963# \- Register access, e.g. \`\%eax\' on x86
964# \- Register indirection, e.g. \`\(\%eax\)\' on x86
965# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
966#
967# This function should check for these patterns on the string
968# and return 1 if some were found, or zero otherwise. Please try to match
969# as much info as you can from the string, i.e., if you have to match
970# something like \`\(\%\', do not match just the \`\(\'.
971M:int:stap_is_single_operand:const char *s:s
972
973# Function used to handle a "special case" in the parser.
974#
975# A "special case" is considered to be an unknown token, i.e., a token
976# that the parser does not know how to parse. A good example of special
977# case would be ARM's register displacement syntax:
978#
979# [R0, #4] ;; displacing R0 by 4
980#
981# Since the parser assumes that a register displacement is of the form:
982#
983# <number> <indirection_prefix> <register_name> <indirection_suffix>
984#
985# it means that it will not be able to recognize and parse this odd syntax.
986# Therefore, we should add a special case function that will handle this token.
987#
988# This function should generate the proper expression form of the expression
989# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
990# and so on). It should also return 1 if the parsing was successful, or zero
991# if the token was not recognized as a special token (in this case, returning
992# zero means that the special parser is deferring the parsing to the generic
993# parser), and should advance the buffer pointer (p->arg).
994M:int:stap_parse_special_token:struct stap_parse_info *p:p
995
8b367e17
JM
996# DTrace related functions.
997
998# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
999# NARG must be >= 0.
1000M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1001
1002# True if the given ADDR does not contain the instruction sequence
1003# corresponding to a disabled DTrace is-enabled probe.
1004M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1005
1006# Enable a DTrace is-enabled probe at ADDR.
1007M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1008
1009# Disable a DTrace is-enabled probe at ADDR.
1010M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1011
50c71eaf
PA
1012# True if the list of shared libraries is one and only for all
1013# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1014# This usually means that all processes, although may or may not share
1015# an address space, will see the same set of symbols at the same
1016# addresses.
50c71eaf 1017v:int:has_global_solist:::0:0::0
2567c7d9
PA
1018
1019# On some targets, even though each inferior has its own private
1020# address space, the debug interface takes care of making breakpoints
1021# visible to all address spaces automatically. For such cases,
1022# this property should be set to true.
1023v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1024
1025# True if inferiors share an address space (e.g., uClinux).
1026m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1027
1028# True if a fast tracepoint can be set at an address.
6b940e6a 1029m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1030
5f034a78
MK
1031# Guess register state based on tracepoint location. Used for tracepoints
1032# where no registers have been collected, but there's only one location,
1033# allowing us to guess the PC value, and perhaps some other registers.
1034# On entry, regcache has all registers marked as unavailable.
1035m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1036
f870a310
TT
1037# Return the "auto" target charset.
1038f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1039# Return the "auto" target wide charset.
1040f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1041
1042# If non-empty, this is a file extension that will be opened in place
1043# of the file extension reported by the shared library list.
1044#
1045# This is most useful for toolchains that use a post-linker tool,
1046# where the names of the files run on the target differ in extension
1047# compared to the names of the files GDB should load for debug info.
1048v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1049
1050# If true, the target OS has DOS-based file system semantics. That
1051# is, absolute paths include a drive name, and the backslash is
1052# considered a directory separator.
1053v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1054
1055# Generate bytecodes to collect the return address in a frame.
1056# Since the bytecodes run on the target, possibly with GDB not even
1057# connected, the full unwinding machinery is not available, and
1058# typically this function will issue bytecodes for one or more likely
1059# places that the return address may be found.
1060m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1061
3030c96e 1062# Implement the "info proc" command.
7bc112c1 1063M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1064
451b7c33
TT
1065# Implement the "info proc" command for core files. Noe that there
1066# are two "info_proc"-like methods on gdbarch -- one for core files,
1067# one for live targets.
7bc112c1 1068M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1069
19630284
JB
1070# Iterate over all objfiles in the order that makes the most sense
1071# for the architecture to make global symbol searches.
1072#
1073# CB is a callback function where OBJFILE is the objfile to be searched,
1074# and CB_DATA a pointer to user-defined data (the same data that is passed
1075# when calling this gdbarch method). The iteration stops if this function
1076# returns nonzero.
1077#
1078# CB_DATA is a pointer to some user-defined data to be passed to
1079# the callback.
1080#
1081# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1082# inspected when the symbol search was requested.
1083m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1084
7e35103a
JB
1085# Ravenscar arch-dependent ops.
1086v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1087
1088# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1089m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1090
1091# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1092m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1093
1094# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1095m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1096
1097# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1098# Return 0 if *READPTR is already at the end of the buffer.
1099# Return -1 if there is insufficient buffer for a whole entry.
1100# Return 1 if an entry was read into *TYPEP and *VALP.
1101M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1102
1103# Find the address range of the current inferior's vsyscall/vDSO, and
1104# write it to *RANGE. If the vsyscall's length can't be determined, a
1105# range with zero length is returned. Returns true if the vsyscall is
1106# found, false otherwise.
1107m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1108
1109# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1110# PROT has GDB_MMAP_PROT_* bitmask format.
1111# Throw an error if it is not possible. Returned address is always valid.
1112f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1113
7f361056
JK
1114# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1115# Print a warning if it is not possible.
1116f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1117
f208eee0
JK
1118# Return string (caller has to use xfree for it) with options for GCC
1119# to produce code for this target, typically "-m64", "-m32" or "-m31".
1120# These options are put before CU's DW_AT_producer compilation options so that
1121# they can override it. Method may also return NULL.
1122m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1123
1124# Return a regular expression that matches names used by this
1125# architecture in GNU configury triplets. The result is statically
1126# allocated and must not be freed. The default implementation simply
1127# returns the BFD architecture name, which is correct in nearly every
1128# case.
1129m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1130
1131# Return the size in 8-bit bytes of an addressable memory unit on this
1132# architecture. This corresponds to the number of 8-bit bytes associated to
1133# each address in memory.
1134m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1135
104c1213 1136EOF
104c1213
JM
1137}
1138
0b8f9e4d
AC
1139#
1140# The .log file
1141#
1142exec > new-gdbarch.log
34620563 1143function_list | while do_read
0b8f9e4d
AC
1144do
1145 cat <<EOF
2f9b146e 1146${class} ${returntype} ${function} ($formal)
104c1213 1147EOF
3d9a5942
AC
1148 for r in ${read}
1149 do
1150 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1151 done
f0d4cc9e 1152 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1153 then
66d659b1 1154 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1155 kill $$
1156 exit 1
1157 fi
72e74a21 1158 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1159 then
1160 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1161 kill $$
1162 exit 1
1163 fi
a72293e2
AC
1164 if class_is_multiarch_p
1165 then
1166 if class_is_predicate_p ; then :
1167 elif test "x${predefault}" = "x"
1168 then
2f9b146e 1169 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1170 kill $$
1171 exit 1
1172 fi
1173 fi
3d9a5942 1174 echo ""
0b8f9e4d
AC
1175done
1176
1177exec 1>&2
1178compare_new gdbarch.log
1179
104c1213
JM
1180
1181copyright ()
1182{
1183cat <<EOF
c4bfde41
JK
1184/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1185/* vi:set ro: */
59233f88 1186
104c1213 1187/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1188
618f726f 1189 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1190
1191 This file is part of GDB.
1192
1193 This program is free software; you can redistribute it and/or modify
1194 it under the terms of the GNU General Public License as published by
50efebf8 1195 the Free Software Foundation; either version 3 of the License, or
104c1213 1196 (at your option) any later version.
618f726f 1197
104c1213
JM
1198 This program is distributed in the hope that it will be useful,
1199 but WITHOUT ANY WARRANTY; without even the implied warranty of
1200 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1201 GNU General Public License for more details.
618f726f 1202
104c1213 1203 You should have received a copy of the GNU General Public License
50efebf8 1204 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1205
104c1213
JM
1206/* This file was created with the aid of \`\`gdbarch.sh''.
1207
52204a0b 1208 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1209 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1210 against the existing \`\`gdbarch.[hc]''. Any differences found
1211 being reported.
1212
1213 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1214 changes into that script. Conversely, when making sweeping changes
104c1213 1215 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1216 easier. */
104c1213
JM
1217
1218EOF
1219}
1220
1221#
1222# The .h file
1223#
1224
1225exec > new-gdbarch.h
1226copyright
1227cat <<EOF
1228#ifndef GDBARCH_H
1229#define GDBARCH_H
1230
eb7a547a
JB
1231#include "frame.h"
1232
da3331ec
AC
1233struct floatformat;
1234struct ui_file;
104c1213 1235struct value;
b6af0555 1236struct objfile;
1c772458 1237struct obj_section;
a2cf933a 1238struct minimal_symbol;
049ee0e4 1239struct regcache;
b59ff9d5 1240struct reggroup;
6ce6d90f 1241struct regset;
a89aa300 1242struct disassemble_info;
e2d0e7eb 1243struct target_ops;
030f20e1 1244struct obstack;
8181d85f 1245struct bp_target_info;
424163ea 1246struct target_desc;
3e29f34a
MR
1247struct objfile;
1248struct symbol;
237fc4c9 1249struct displaced_step_closure;
a96d9b2e 1250struct syscall;
175ff332 1251struct agent_expr;
6710bf39 1252struct axs_value;
55aa24fb 1253struct stap_parse_info;
8b367e17 1254struct parser_state;
7e35103a 1255struct ravenscar_arch_ops;
b3ac9c77 1256struct elf_internal_linux_prpsinfo;
3437254d 1257struct mem_range;
458c8db8 1258struct syscalls_info;
4dfc5dbc 1259struct thread_info;
104c1213 1260
8a526fa6
PA
1261#include "regcache.h"
1262
6ecd4729
PA
1263/* The architecture associated with the inferior through the
1264 connection to the target.
1265
1266 The architecture vector provides some information that is really a
1267 property of the inferior, accessed through a particular target:
1268 ptrace operations; the layout of certain RSP packets; the solib_ops
1269 vector; etc. To differentiate architecture accesses to
1270 per-inferior/target properties from
1271 per-thread/per-frame/per-objfile properties, accesses to
1272 per-inferior/target properties should be made through this
1273 gdbarch. */
1274
1275/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1276extern struct gdbarch *target_gdbarch (void);
6ecd4729 1277
19630284
JB
1278/* Callback type for the 'iterate_over_objfiles_in_search_order'
1279 gdbarch method. */
1280
1281typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1282 (struct objfile *objfile, void *cb_data);
5aa82d05 1283
1528345d
AA
1284/* Callback type for regset section iterators. The callback usually
1285 invokes the REGSET's supply or collect method, to which it must
1286 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1287 section name, and HUMAN_NAME is used for diagnostic messages.
1288 CB_DATA should have been passed unchanged through the iterator. */
1289
5aa82d05 1290typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1291 (const char *sect_name, int size, const struct regset *regset,
1292 const char *human_name, void *cb_data);
104c1213
JM
1293EOF
1294
1295# function typedef's
3d9a5942
AC
1296printf "\n"
1297printf "\n"
0963b4bd 1298printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1299function_list | while do_read
104c1213 1300do
2ada493a
AC
1301 if class_is_info_p
1302 then
3d9a5942
AC
1303 printf "\n"
1304 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1305 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1306 fi
104c1213
JM
1307done
1308
1309# function typedef's
3d9a5942
AC
1310printf "\n"
1311printf "\n"
0963b4bd 1312printf "/* The following are initialized by the target dependent code. */\n"
34620563 1313function_list | while do_read
104c1213 1314do
72e74a21 1315 if [ -n "${comment}" ]
34620563
AC
1316 then
1317 echo "${comment}" | sed \
1318 -e '2 s,#,/*,' \
1319 -e '3,$ s,#, ,' \
1320 -e '$ s,$, */,'
1321 fi
412d5987
AC
1322
1323 if class_is_predicate_p
2ada493a 1324 then
412d5987
AC
1325 printf "\n"
1326 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1327 fi
2ada493a
AC
1328 if class_is_variable_p
1329 then
3d9a5942
AC
1330 printf "\n"
1331 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1332 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1333 fi
1334 if class_is_function_p
1335 then
3d9a5942 1336 printf "\n"
72e74a21 1337 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1338 then
1339 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1340 elif class_is_multiarch_p
1341 then
1342 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1343 else
1344 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1345 fi
72e74a21 1346 if [ "x${formal}" = "xvoid" ]
104c1213 1347 then
3d9a5942 1348 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1349 else
3d9a5942 1350 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1351 fi
3d9a5942 1352 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1353 fi
104c1213
JM
1354done
1355
1356# close it off
1357cat <<EOF
1358
a96d9b2e
SDJ
1359/* Definition for an unknown syscall, used basically in error-cases. */
1360#define UNKNOWN_SYSCALL (-1)
1361
104c1213
JM
1362extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1363
1364
1365/* Mechanism for co-ordinating the selection of a specific
1366 architecture.
1367
1368 GDB targets (*-tdep.c) can register an interest in a specific
1369 architecture. Other GDB components can register a need to maintain
1370 per-architecture data.
1371
1372 The mechanisms below ensures that there is only a loose connection
1373 between the set-architecture command and the various GDB
0fa6923a 1374 components. Each component can independently register their need
104c1213
JM
1375 to maintain architecture specific data with gdbarch.
1376
1377 Pragmatics:
1378
1379 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1380 didn't scale.
1381
1382 The more traditional mega-struct containing architecture specific
1383 data for all the various GDB components was also considered. Since
0fa6923a 1384 GDB is built from a variable number of (fairly independent)
104c1213 1385 components it was determined that the global aproach was not
0963b4bd 1386 applicable. */
104c1213
JM
1387
1388
1389/* Register a new architectural family with GDB.
1390
1391 Register support for the specified ARCHITECTURE with GDB. When
1392 gdbarch determines that the specified architecture has been
1393 selected, the corresponding INIT function is called.
1394
1395 --
1396
1397 The INIT function takes two parameters: INFO which contains the
1398 information available to gdbarch about the (possibly new)
1399 architecture; ARCHES which is a list of the previously created
1400 \`\`struct gdbarch'' for this architecture.
1401
0f79675b 1402 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1403 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1404
1405 The ARCHES parameter is a linked list (sorted most recently used)
1406 of all the previously created architures for this architecture
1407 family. The (possibly NULL) ARCHES->gdbarch can used to access
1408 values from the previously selected architecture for this
59837fe0 1409 architecture family.
104c1213
JM
1410
1411 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1412 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1413 gdbarch'' from the ARCHES list - indicating that the new
1414 architecture is just a synonym for an earlier architecture (see
1415 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1416 - that describes the selected architecture (see gdbarch_alloc()).
1417
1418 The DUMP_TDEP function shall print out all target specific values.
1419 Care should be taken to ensure that the function works in both the
0963b4bd 1420 multi-arch and non- multi-arch cases. */
104c1213
JM
1421
1422struct gdbarch_list
1423{
1424 struct gdbarch *gdbarch;
1425 struct gdbarch_list *next;
1426};
1427
1428struct gdbarch_info
1429{
0963b4bd 1430 /* Use default: NULL (ZERO). */
104c1213
JM
1431 const struct bfd_arch_info *bfd_arch_info;
1432
428721aa 1433 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1434 enum bfd_endian byte_order;
104c1213 1435
94123b4f 1436 enum bfd_endian byte_order_for_code;
9d4fde75 1437
0963b4bd 1438 /* Use default: NULL (ZERO). */
104c1213
JM
1439 bfd *abfd;
1440
0963b4bd 1441 /* Use default: NULL (ZERO). */
ede5f151 1442 void *tdep_info;
4be87837
DJ
1443
1444 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1445 enum gdb_osabi osabi;
424163ea
DJ
1446
1447 /* Use default: NULL (ZERO). */
1448 const struct target_desc *target_desc;
104c1213
JM
1449};
1450
1451typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1452typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1453
4b9b3959 1454/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1455extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1456
4b9b3959
AC
1457extern void gdbarch_register (enum bfd_architecture architecture,
1458 gdbarch_init_ftype *,
1459 gdbarch_dump_tdep_ftype *);
1460
104c1213 1461
b4a20239
AC
1462/* Return a freshly allocated, NULL terminated, array of the valid
1463 architecture names. Since architectures are registered during the
1464 _initialize phase this function only returns useful information
0963b4bd 1465 once initialization has been completed. */
b4a20239
AC
1466
1467extern const char **gdbarch_printable_names (void);
1468
1469
104c1213 1470/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1471 matches the information provided by INFO. */
104c1213 1472
424163ea 1473extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1474
1475
1476/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1477 basic initialization using values obtained from the INFO and TDEP
104c1213 1478 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1479 initialization of the object. */
104c1213
JM
1480
1481extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1482
1483
4b9b3959
AC
1484/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1485 It is assumed that the caller freeds the \`\`struct
0963b4bd 1486 gdbarch_tdep''. */
4b9b3959 1487
058f20d5
JB
1488extern void gdbarch_free (struct gdbarch *);
1489
1490
aebd7893
AC
1491/* Helper function. Allocate memory from the \`\`struct gdbarch''
1492 obstack. The memory is freed when the corresponding architecture
1493 is also freed. */
1494
1495extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1496#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1497#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1498
6c214e7c
PP
1499/* Duplicate STRING, returning an equivalent string that's allocated on the
1500 obstack associated with GDBARCH. The string is freed when the corresponding
1501 architecture is also freed. */
1502
1503extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1504
0963b4bd 1505/* Helper function. Force an update of the current architecture.
104c1213 1506
b732d07d
AC
1507 The actual architecture selected is determined by INFO, \`\`(gdb) set
1508 architecture'' et.al., the existing architecture and BFD's default
1509 architecture. INFO should be initialized to zero and then selected
1510 fields should be updated.
104c1213 1511
0963b4bd 1512 Returns non-zero if the update succeeds. */
16f33e29
AC
1513
1514extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1515
1516
ebdba546
AC
1517/* Helper function. Find an architecture matching info.
1518
1519 INFO should be initialized using gdbarch_info_init, relevant fields
1520 set, and then finished using gdbarch_info_fill.
1521
1522 Returns the corresponding architecture, or NULL if no matching
59837fe0 1523 architecture was found. */
ebdba546
AC
1524
1525extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1526
1527
aff68abb 1528/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1529
aff68abb 1530extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1531
104c1213
JM
1532
1533/* Register per-architecture data-pointer.
1534
1535 Reserve space for a per-architecture data-pointer. An identifier
1536 for the reserved data-pointer is returned. That identifer should
95160752 1537 be saved in a local static variable.
104c1213 1538
fcc1c85c
AC
1539 Memory for the per-architecture data shall be allocated using
1540 gdbarch_obstack_zalloc. That memory will be deleted when the
1541 corresponding architecture object is deleted.
104c1213 1542
95160752
AC
1543 When a previously created architecture is re-selected, the
1544 per-architecture data-pointer for that previous architecture is
76860b5f 1545 restored. INIT() is not re-called.
104c1213
JM
1546
1547 Multiple registrarants for any architecture are allowed (and
1548 strongly encouraged). */
1549
95160752 1550struct gdbarch_data;
104c1213 1551
030f20e1
AC
1552typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1553extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1554typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1555extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1556extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1557 struct gdbarch_data *data,
1558 void *pointer);
104c1213 1559
451fbdda 1560extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1561
1562
0fa6923a 1563/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1564 byte-order, ...) using information found in the BFD. */
104c1213
JM
1565
1566extern void set_gdbarch_from_file (bfd *);
1567
1568
e514a9d6
JM
1569/* Initialize the current architecture to the "first" one we find on
1570 our list. */
1571
1572extern void initialize_current_architecture (void);
1573
104c1213 1574/* gdbarch trace variable */
ccce17b0 1575extern unsigned int gdbarch_debug;
104c1213 1576
4b9b3959 1577extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1578
1579#endif
1580EOF
1581exec 1>&2
1582#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1583compare_new gdbarch.h
104c1213
JM
1584
1585
1586#
1587# C file
1588#
1589
1590exec > new-gdbarch.c
1591copyright
1592cat <<EOF
1593
1594#include "defs.h"
7355ddba 1595#include "arch-utils.h"
104c1213 1596
104c1213 1597#include "gdbcmd.h"
faaf634c 1598#include "inferior.h"
104c1213
JM
1599#include "symcat.h"
1600
f0d4cc9e 1601#include "floatformat.h"
b59ff9d5 1602#include "reggroups.h"
4be87837 1603#include "osabi.h"
aebd7893 1604#include "gdb_obstack.h"
383f836e 1605#include "observer.h"
a3ecef73 1606#include "regcache.h"
19630284 1607#include "objfiles.h"
95160752 1608
104c1213
JM
1609/* Static function declarations */
1610
b3cc3077 1611static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1612
104c1213
JM
1613/* Non-zero if we want to trace architecture code. */
1614
1615#ifndef GDBARCH_DEBUG
1616#define GDBARCH_DEBUG 0
1617#endif
ccce17b0 1618unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1619static void
1620show_gdbarch_debug (struct ui_file *file, int from_tty,
1621 struct cmd_list_element *c, const char *value)
1622{
1623 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1624}
104c1213 1625
456fcf94 1626static const char *
8da61cc4 1627pformat (const struct floatformat **format)
456fcf94
AC
1628{
1629 if (format == NULL)
1630 return "(null)";
1631 else
8da61cc4
DJ
1632 /* Just print out one of them - this is only for diagnostics. */
1633 return format[0]->name;
456fcf94
AC
1634}
1635
08105857
PA
1636static const char *
1637pstring (const char *string)
1638{
1639 if (string == NULL)
1640 return "(null)";
1641 return string;
05c0465e
SDJ
1642}
1643
1644/* Helper function to print a list of strings, represented as "const
1645 char *const *". The list is printed comma-separated. */
1646
1647static char *
1648pstring_list (const char *const *list)
1649{
1650 static char ret[100];
1651 const char *const *p;
1652 size_t offset = 0;
1653
1654 if (list == NULL)
1655 return "(null)";
1656
1657 ret[0] = '\0';
1658 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1659 {
1660 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1661 offset += 2 + s;
1662 }
1663
1664 if (offset > 0)
1665 {
1666 gdb_assert (offset - 2 < sizeof (ret));
1667 ret[offset - 2] = '\0';
1668 }
1669
1670 return ret;
08105857
PA
1671}
1672
104c1213
JM
1673EOF
1674
1675# gdbarch open the gdbarch object
3d9a5942 1676printf "\n"
0963b4bd 1677printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1678printf "\n"
1679printf "struct gdbarch\n"
1680printf "{\n"
76860b5f
AC
1681printf " /* Has this architecture been fully initialized? */\n"
1682printf " int initialized_p;\n"
aebd7893
AC
1683printf "\n"
1684printf " /* An obstack bound to the lifetime of the architecture. */\n"
1685printf " struct obstack *obstack;\n"
1686printf "\n"
0963b4bd 1687printf " /* basic architectural information. */\n"
34620563 1688function_list | while do_read
104c1213 1689do
2ada493a
AC
1690 if class_is_info_p
1691 then
3d9a5942 1692 printf " ${returntype} ${function};\n"
2ada493a 1693 fi
104c1213 1694done
3d9a5942 1695printf "\n"
0963b4bd 1696printf " /* target specific vector. */\n"
3d9a5942
AC
1697printf " struct gdbarch_tdep *tdep;\n"
1698printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1699printf "\n"
0963b4bd 1700printf " /* per-architecture data-pointers. */\n"
95160752 1701printf " unsigned nr_data;\n"
3d9a5942
AC
1702printf " void **data;\n"
1703printf "\n"
104c1213
JM
1704cat <<EOF
1705 /* Multi-arch values.
1706
1707 When extending this structure you must:
1708
1709 Add the field below.
1710
1711 Declare set/get functions and define the corresponding
1712 macro in gdbarch.h.
1713
1714 gdbarch_alloc(): If zero/NULL is not a suitable default,
1715 initialize the new field.
1716
1717 verify_gdbarch(): Confirm that the target updated the field
1718 correctly.
1719
7e73cedf 1720 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1721 field is dumped out
1722
104c1213
JM
1723 get_gdbarch(): Implement the set/get functions (probably using
1724 the macro's as shortcuts).
1725
1726 */
1727
1728EOF
34620563 1729function_list | while do_read
104c1213 1730do
2ada493a
AC
1731 if class_is_variable_p
1732 then
3d9a5942 1733 printf " ${returntype} ${function};\n"
2ada493a
AC
1734 elif class_is_function_p
1735 then
2f9b146e 1736 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1737 fi
104c1213 1738done
3d9a5942 1739printf "};\n"
104c1213 1740
104c1213 1741# Create a new gdbarch struct
104c1213 1742cat <<EOF
7de2341d 1743
66b43ecb 1744/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1745 \`\`struct gdbarch_info''. */
104c1213 1746EOF
3d9a5942 1747printf "\n"
104c1213
JM
1748cat <<EOF
1749struct gdbarch *
1750gdbarch_alloc (const struct gdbarch_info *info,
1751 struct gdbarch_tdep *tdep)
1752{
be7811ad 1753 struct gdbarch *gdbarch;
aebd7893
AC
1754
1755 /* Create an obstack for allocating all the per-architecture memory,
1756 then use that to allocate the architecture vector. */
70ba0933 1757 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1758 obstack_init (obstack);
8d749320 1759 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1760 memset (gdbarch, 0, sizeof (*gdbarch));
1761 gdbarch->obstack = obstack;
85de9627 1762
be7811ad 1763 alloc_gdbarch_data (gdbarch);
85de9627 1764
be7811ad 1765 gdbarch->tdep = tdep;
104c1213 1766EOF
3d9a5942 1767printf "\n"
34620563 1768function_list | while do_read
104c1213 1769do
2ada493a
AC
1770 if class_is_info_p
1771 then
be7811ad 1772 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1773 fi
104c1213 1774done
3d9a5942 1775printf "\n"
0963b4bd 1776printf " /* Force the explicit initialization of these. */\n"
34620563 1777function_list | while do_read
104c1213 1778do
2ada493a
AC
1779 if class_is_function_p || class_is_variable_p
1780 then
72e74a21 1781 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1782 then
be7811ad 1783 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1784 fi
2ada493a 1785 fi
104c1213
JM
1786done
1787cat <<EOF
1788 /* gdbarch_alloc() */
1789
be7811ad 1790 return gdbarch;
104c1213
JM
1791}
1792EOF
1793
058f20d5 1794# Free a gdbarch struct.
3d9a5942
AC
1795printf "\n"
1796printf "\n"
058f20d5 1797cat <<EOF
aebd7893
AC
1798/* Allocate extra space using the per-architecture obstack. */
1799
1800void *
1801gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1802{
1803 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1804
aebd7893
AC
1805 memset (data, 0, size);
1806 return data;
1807}
1808
6c214e7c
PP
1809/* See gdbarch.h. */
1810
1811char *
1812gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1813{
1814 return obstack_strdup (arch->obstack, string);
1815}
1816
aebd7893 1817
058f20d5
JB
1818/* Free a gdbarch struct. This should never happen in normal
1819 operation --- once you've created a gdbarch, you keep it around.
1820 However, if an architecture's init function encounters an error
1821 building the structure, it may need to clean up a partially
1822 constructed gdbarch. */
4b9b3959 1823
058f20d5
JB
1824void
1825gdbarch_free (struct gdbarch *arch)
1826{
aebd7893 1827 struct obstack *obstack;
05c547f6 1828
95160752 1829 gdb_assert (arch != NULL);
aebd7893
AC
1830 gdb_assert (!arch->initialized_p);
1831 obstack = arch->obstack;
1832 obstack_free (obstack, 0); /* Includes the ARCH. */
1833 xfree (obstack);
058f20d5
JB
1834}
1835EOF
1836
104c1213 1837# verify a new architecture
104c1213 1838cat <<EOF
db446970
AC
1839
1840
1841/* Ensure that all values in a GDBARCH are reasonable. */
1842
104c1213 1843static void
be7811ad 1844verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1845{
f16a1923
AC
1846 struct ui_file *log;
1847 struct cleanup *cleanups;
759ef836 1848 long length;
f16a1923 1849 char *buf;
05c547f6 1850
f16a1923
AC
1851 log = mem_fileopen ();
1852 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1853 /* fundamental */
be7811ad 1854 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1855 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1856 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1857 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1858 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1859EOF
34620563 1860function_list | while do_read
104c1213 1861do
2ada493a
AC
1862 if class_is_function_p || class_is_variable_p
1863 then
72e74a21 1864 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1865 then
3d9a5942 1866 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1867 elif class_is_predicate_p
1868 then
0963b4bd 1869 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1870 # FIXME: See do_read for potential simplification
72e74a21 1871 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1872 then
3d9a5942 1873 printf " if (${invalid_p})\n"
be7811ad 1874 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1875 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1876 then
be7811ad
MD
1877 printf " if (gdbarch->${function} == ${predefault})\n"
1878 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1879 elif [ -n "${postdefault}" ]
f0d4cc9e 1880 then
be7811ad
MD
1881 printf " if (gdbarch->${function} == 0)\n"
1882 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1883 elif [ -n "${invalid_p}" ]
104c1213 1884 then
4d60522e 1885 printf " if (${invalid_p})\n"
f16a1923 1886 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1887 elif [ -n "${predefault}" ]
104c1213 1888 then
be7811ad 1889 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1890 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1891 fi
2ada493a 1892 fi
104c1213
JM
1893done
1894cat <<EOF
759ef836 1895 buf = ui_file_xstrdup (log, &length);
f16a1923 1896 make_cleanup (xfree, buf);
759ef836 1897 if (length > 0)
f16a1923 1898 internal_error (__FILE__, __LINE__,
85c07804 1899 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1900 buf);
1901 do_cleanups (cleanups);
104c1213
JM
1902}
1903EOF
1904
1905# dump the structure
3d9a5942
AC
1906printf "\n"
1907printf "\n"
104c1213 1908cat <<EOF
0963b4bd 1909/* Print out the details of the current architecture. */
4b9b3959 1910
104c1213 1911void
be7811ad 1912gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1913{
b78960be 1914 const char *gdb_nm_file = "<not-defined>";
05c547f6 1915
b78960be
AC
1916#if defined (GDB_NM_FILE)
1917 gdb_nm_file = GDB_NM_FILE;
1918#endif
1919 fprintf_unfiltered (file,
1920 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1921 gdb_nm_file);
104c1213 1922EOF
97030eea 1923function_list | sort -t: -k 3 | while do_read
104c1213 1924do
1e9f55d0
AC
1925 # First the predicate
1926 if class_is_predicate_p
1927 then
7996bcec 1928 printf " fprintf_unfiltered (file,\n"
48f7351b 1929 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1930 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1931 fi
48f7351b 1932 # Print the corresponding value.
283354d8 1933 if class_is_function_p
4b9b3959 1934 then
7996bcec 1935 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1936 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1937 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1938 else
48f7351b 1939 # It is a variable
2f9b146e
AC
1940 case "${print}:${returntype}" in
1941 :CORE_ADDR )
0b1553bc
UW
1942 fmt="%s"
1943 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1944 ;;
2f9b146e 1945 :* )
48f7351b 1946 fmt="%s"
623d3eb1 1947 print="plongest (gdbarch->${function})"
48f7351b
AC
1948 ;;
1949 * )
2f9b146e 1950 fmt="%s"
48f7351b
AC
1951 ;;
1952 esac
3d9a5942 1953 printf " fprintf_unfiltered (file,\n"
48f7351b 1954 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1955 printf " ${print});\n"
2ada493a 1956 fi
104c1213 1957done
381323f4 1958cat <<EOF
be7811ad
MD
1959 if (gdbarch->dump_tdep != NULL)
1960 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1961}
1962EOF
104c1213
JM
1963
1964
1965# GET/SET
3d9a5942 1966printf "\n"
104c1213
JM
1967cat <<EOF
1968struct gdbarch_tdep *
1969gdbarch_tdep (struct gdbarch *gdbarch)
1970{
1971 if (gdbarch_debug >= 2)
3d9a5942 1972 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1973 return gdbarch->tdep;
1974}
1975EOF
3d9a5942 1976printf "\n"
34620563 1977function_list | while do_read
104c1213 1978do
2ada493a
AC
1979 if class_is_predicate_p
1980 then
3d9a5942
AC
1981 printf "\n"
1982 printf "int\n"
1983 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1984 printf "{\n"
8de9bdc4 1985 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1986 printf " return ${predicate};\n"
3d9a5942 1987 printf "}\n"
2ada493a
AC
1988 fi
1989 if class_is_function_p
1990 then
3d9a5942
AC
1991 printf "\n"
1992 printf "${returntype}\n"
72e74a21 1993 if [ "x${formal}" = "xvoid" ]
104c1213 1994 then
3d9a5942 1995 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1996 else
3d9a5942 1997 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1998 fi
3d9a5942 1999 printf "{\n"
8de9bdc4 2000 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2001 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2002 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2003 then
2004 # Allow a call to a function with a predicate.
956ac328 2005 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2006 fi
3d9a5942
AC
2007 printf " if (gdbarch_debug >= 2)\n"
2008 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2009 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2010 then
2011 if class_is_multiarch_p
2012 then
2013 params="gdbarch"
2014 else
2015 params=""
2016 fi
2017 else
2018 if class_is_multiarch_p
2019 then
2020 params="gdbarch, ${actual}"
2021 else
2022 params="${actual}"
2023 fi
2024 fi
72e74a21 2025 if [ "x${returntype}" = "xvoid" ]
104c1213 2026 then
4a5c6a1d 2027 printf " gdbarch->${function} (${params});\n"
104c1213 2028 else
4a5c6a1d 2029 printf " return gdbarch->${function} (${params});\n"
104c1213 2030 fi
3d9a5942
AC
2031 printf "}\n"
2032 printf "\n"
2033 printf "void\n"
2034 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2035 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2036 printf "{\n"
2037 printf " gdbarch->${function} = ${function};\n"
2038 printf "}\n"
2ada493a
AC
2039 elif class_is_variable_p
2040 then
3d9a5942
AC
2041 printf "\n"
2042 printf "${returntype}\n"
2043 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2044 printf "{\n"
8de9bdc4 2045 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2046 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2047 then
3d9a5942 2048 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2049 elif [ -n "${invalid_p}" ]
104c1213 2050 then
956ac328
AC
2051 printf " /* Check variable is valid. */\n"
2052 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2053 elif [ -n "${predefault}" ]
104c1213 2054 then
956ac328
AC
2055 printf " /* Check variable changed from pre-default. */\n"
2056 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2057 fi
3d9a5942
AC
2058 printf " if (gdbarch_debug >= 2)\n"
2059 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2060 printf " return gdbarch->${function};\n"
2061 printf "}\n"
2062 printf "\n"
2063 printf "void\n"
2064 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2065 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2066 printf "{\n"
2067 printf " gdbarch->${function} = ${function};\n"
2068 printf "}\n"
2ada493a
AC
2069 elif class_is_info_p
2070 then
3d9a5942
AC
2071 printf "\n"
2072 printf "${returntype}\n"
2073 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2074 printf "{\n"
8de9bdc4 2075 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2076 printf " if (gdbarch_debug >= 2)\n"
2077 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2078 printf " return gdbarch->${function};\n"
2079 printf "}\n"
2ada493a 2080 fi
104c1213
JM
2081done
2082
2083# All the trailing guff
2084cat <<EOF
2085
2086
f44c642f 2087/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2088 modules. */
104c1213
JM
2089
2090struct gdbarch_data
2091{
95160752 2092 unsigned index;
76860b5f 2093 int init_p;
030f20e1
AC
2094 gdbarch_data_pre_init_ftype *pre_init;
2095 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2096};
2097
2098struct gdbarch_data_registration
2099{
104c1213
JM
2100 struct gdbarch_data *data;
2101 struct gdbarch_data_registration *next;
2102};
2103
f44c642f 2104struct gdbarch_data_registry
104c1213 2105{
95160752 2106 unsigned nr;
104c1213
JM
2107 struct gdbarch_data_registration *registrations;
2108};
2109
f44c642f 2110struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2111{
2112 0, NULL,
2113};
2114
030f20e1
AC
2115static struct gdbarch_data *
2116gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2117 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2118{
2119 struct gdbarch_data_registration **curr;
05c547f6
MS
2120
2121 /* Append the new registration. */
f44c642f 2122 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2123 (*curr) != NULL;
2124 curr = &(*curr)->next);
70ba0933 2125 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2126 (*curr)->next = NULL;
70ba0933 2127 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2128 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2129 (*curr)->data->pre_init = pre_init;
2130 (*curr)->data->post_init = post_init;
76860b5f 2131 (*curr)->data->init_p = 1;
104c1213
JM
2132 return (*curr)->data;
2133}
2134
030f20e1
AC
2135struct gdbarch_data *
2136gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2137{
2138 return gdbarch_data_register (pre_init, NULL);
2139}
2140
2141struct gdbarch_data *
2142gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2143{
2144 return gdbarch_data_register (NULL, post_init);
2145}
104c1213 2146
0963b4bd 2147/* Create/delete the gdbarch data vector. */
95160752
AC
2148
2149static void
b3cc3077 2150alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2151{
b3cc3077
JB
2152 gdb_assert (gdbarch->data == NULL);
2153 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2154 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2155}
3c875b6f 2156
76860b5f 2157/* Initialize the current value of the specified per-architecture
0963b4bd 2158 data-pointer. */
b3cc3077 2159
95160752 2160void
030f20e1
AC
2161deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2162 struct gdbarch_data *data,
2163 void *pointer)
95160752
AC
2164{
2165 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2166 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2167 gdb_assert (data->pre_init == NULL);
95160752
AC
2168 gdbarch->data[data->index] = pointer;
2169}
2170
104c1213 2171/* Return the current value of the specified per-architecture
0963b4bd 2172 data-pointer. */
104c1213
JM
2173
2174void *
451fbdda 2175gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2176{
451fbdda 2177 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2178 if (gdbarch->data[data->index] == NULL)
76860b5f 2179 {
030f20e1
AC
2180 /* The data-pointer isn't initialized, call init() to get a
2181 value. */
2182 if (data->pre_init != NULL)
2183 /* Mid architecture creation: pass just the obstack, and not
2184 the entire architecture, as that way it isn't possible for
2185 pre-init code to refer to undefined architecture
2186 fields. */
2187 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2188 else if (gdbarch->initialized_p
2189 && data->post_init != NULL)
2190 /* Post architecture creation: pass the entire architecture
2191 (as all fields are valid), but be careful to also detect
2192 recursive references. */
2193 {
2194 gdb_assert (data->init_p);
2195 data->init_p = 0;
2196 gdbarch->data[data->index] = data->post_init (gdbarch);
2197 data->init_p = 1;
2198 }
2199 else
2200 /* The architecture initialization hasn't completed - punt -
2201 hope that the caller knows what they are doing. Once
2202 deprecated_set_gdbarch_data has been initialized, this can be
2203 changed to an internal error. */
2204 return NULL;
76860b5f
AC
2205 gdb_assert (gdbarch->data[data->index] != NULL);
2206 }
451fbdda 2207 return gdbarch->data[data->index];
104c1213
JM
2208}
2209
2210
0963b4bd 2211/* Keep a registry of the architectures known by GDB. */
104c1213 2212
4b9b3959 2213struct gdbarch_registration
104c1213
JM
2214{
2215 enum bfd_architecture bfd_architecture;
2216 gdbarch_init_ftype *init;
4b9b3959 2217 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2218 struct gdbarch_list *arches;
4b9b3959 2219 struct gdbarch_registration *next;
104c1213
JM
2220};
2221
f44c642f 2222static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2223
b4a20239
AC
2224static void
2225append_name (const char ***buf, int *nr, const char *name)
2226{
1dc7a623 2227 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2228 (*buf)[*nr] = name;
2229 *nr += 1;
2230}
2231
2232const char **
2233gdbarch_printable_names (void)
2234{
7996bcec 2235 /* Accumulate a list of names based on the registed list of
0963b4bd 2236 architectures. */
7996bcec
AC
2237 int nr_arches = 0;
2238 const char **arches = NULL;
2239 struct gdbarch_registration *rego;
05c547f6 2240
7996bcec
AC
2241 for (rego = gdbarch_registry;
2242 rego != NULL;
2243 rego = rego->next)
b4a20239 2244 {
7996bcec
AC
2245 const struct bfd_arch_info *ap;
2246 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2247 if (ap == NULL)
2248 internal_error (__FILE__, __LINE__,
85c07804 2249 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2250 do
2251 {
2252 append_name (&arches, &nr_arches, ap->printable_name);
2253 ap = ap->next;
2254 }
2255 while (ap != NULL);
b4a20239 2256 }
7996bcec
AC
2257 append_name (&arches, &nr_arches, NULL);
2258 return arches;
b4a20239
AC
2259}
2260
2261
104c1213 2262void
4b9b3959
AC
2263gdbarch_register (enum bfd_architecture bfd_architecture,
2264 gdbarch_init_ftype *init,
2265 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2266{
4b9b3959 2267 struct gdbarch_registration **curr;
104c1213 2268 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2269
ec3d358c 2270 /* Check that BFD recognizes this architecture */
104c1213
JM
2271 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2272 if (bfd_arch_info == NULL)
2273 {
8e65ff28 2274 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2275 _("gdbarch: Attempt to register "
2276 "unknown architecture (%d)"),
8e65ff28 2277 bfd_architecture);
104c1213 2278 }
0963b4bd 2279 /* Check that we haven't seen this architecture before. */
f44c642f 2280 for (curr = &gdbarch_registry;
104c1213
JM
2281 (*curr) != NULL;
2282 curr = &(*curr)->next)
2283 {
2284 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2285 internal_error (__FILE__, __LINE__,
64b9b334 2286 _("gdbarch: Duplicate registration "
0963b4bd 2287 "of architecture (%s)"),
8e65ff28 2288 bfd_arch_info->printable_name);
104c1213
JM
2289 }
2290 /* log it */
2291 if (gdbarch_debug)
30737ed9 2292 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2293 bfd_arch_info->printable_name,
30737ed9 2294 host_address_to_string (init));
104c1213 2295 /* Append it */
70ba0933 2296 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2297 (*curr)->bfd_architecture = bfd_architecture;
2298 (*curr)->init = init;
4b9b3959 2299 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2300 (*curr)->arches = NULL;
2301 (*curr)->next = NULL;
4b9b3959
AC
2302}
2303
2304void
2305register_gdbarch_init (enum bfd_architecture bfd_architecture,
2306 gdbarch_init_ftype *init)
2307{
2308 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2309}
104c1213
JM
2310
2311
424163ea 2312/* Look for an architecture using gdbarch_info. */
104c1213
JM
2313
2314struct gdbarch_list *
2315gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2316 const struct gdbarch_info *info)
2317{
2318 for (; arches != NULL; arches = arches->next)
2319 {
2320 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2321 continue;
2322 if (info->byte_order != arches->gdbarch->byte_order)
2323 continue;
4be87837
DJ
2324 if (info->osabi != arches->gdbarch->osabi)
2325 continue;
424163ea
DJ
2326 if (info->target_desc != arches->gdbarch->target_desc)
2327 continue;
104c1213
JM
2328 return arches;
2329 }
2330 return NULL;
2331}
2332
2333
ebdba546 2334/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2335 architecture if needed. Return that new architecture. */
104c1213 2336
59837fe0
UW
2337struct gdbarch *
2338gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2339{
2340 struct gdbarch *new_gdbarch;
4b9b3959 2341 struct gdbarch_registration *rego;
104c1213 2342
b732d07d 2343 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2344 sources: "set ..."; INFOabfd supplied; and the global
2345 defaults. */
2346 gdbarch_info_fill (&info);
4be87837 2347
0963b4bd 2348 /* Must have found some sort of architecture. */
b732d07d 2349 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2350
2351 if (gdbarch_debug)
2352 {
2353 fprintf_unfiltered (gdb_stdlog,
59837fe0 2354 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2355 (info.bfd_arch_info != NULL
2356 ? info.bfd_arch_info->printable_name
2357 : "(null)"));
2358 fprintf_unfiltered (gdb_stdlog,
59837fe0 2359 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2360 info.byte_order,
d7449b42 2361 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2362 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2363 : "default"));
4be87837 2364 fprintf_unfiltered (gdb_stdlog,
59837fe0 2365 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2366 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2367 fprintf_unfiltered (gdb_stdlog,
59837fe0 2368 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2369 host_address_to_string (info.abfd));
104c1213 2370 fprintf_unfiltered (gdb_stdlog,
59837fe0 2371 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2372 host_address_to_string (info.tdep_info));
104c1213
JM
2373 }
2374
ebdba546 2375 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2376 for (rego = gdbarch_registry;
2377 rego != NULL;
2378 rego = rego->next)
2379 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2380 break;
2381 if (rego == NULL)
2382 {
2383 if (gdbarch_debug)
59837fe0 2384 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2385 "No matching architecture\n");
b732d07d
AC
2386 return 0;
2387 }
2388
ebdba546 2389 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2390 new_gdbarch = rego->init (info, rego->arches);
2391
ebdba546
AC
2392 /* Did the tdep code like it? No. Reject the change and revert to
2393 the old architecture. */
104c1213
JM
2394 if (new_gdbarch == NULL)
2395 {
2396 if (gdbarch_debug)
59837fe0 2397 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2398 "Target rejected architecture\n");
2399 return NULL;
104c1213
JM
2400 }
2401
ebdba546
AC
2402 /* Is this a pre-existing architecture (as determined by already
2403 being initialized)? Move it to the front of the architecture
2404 list (keeping the list sorted Most Recently Used). */
2405 if (new_gdbarch->initialized_p)
104c1213 2406 {
ebdba546 2407 struct gdbarch_list **list;
fe978cb0 2408 struct gdbarch_list *self;
104c1213 2409 if (gdbarch_debug)
59837fe0 2410 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2411 "Previous architecture %s (%s) selected\n",
2412 host_address_to_string (new_gdbarch),
104c1213 2413 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2414 /* Find the existing arch in the list. */
2415 for (list = &rego->arches;
2416 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2417 list = &(*list)->next);
2418 /* It had better be in the list of architectures. */
2419 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2420 /* Unlink SELF. */
2421 self = (*list);
2422 (*list) = self->next;
2423 /* Insert SELF at the front. */
2424 self->next = rego->arches;
2425 rego->arches = self;
ebdba546
AC
2426 /* Return it. */
2427 return new_gdbarch;
104c1213
JM
2428 }
2429
ebdba546
AC
2430 /* It's a new architecture. */
2431 if (gdbarch_debug)
59837fe0 2432 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2433 "New architecture %s (%s) selected\n",
2434 host_address_to_string (new_gdbarch),
ebdba546
AC
2435 new_gdbarch->bfd_arch_info->printable_name);
2436
2437 /* Insert the new architecture into the front of the architecture
2438 list (keep the list sorted Most Recently Used). */
0f79675b 2439 {
fe978cb0
PA
2440 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2441 self->next = rego->arches;
2442 self->gdbarch = new_gdbarch;
2443 rego->arches = self;
0f79675b 2444 }
104c1213 2445
4b9b3959
AC
2446 /* Check that the newly installed architecture is valid. Plug in
2447 any post init values. */
2448 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2449 verify_gdbarch (new_gdbarch);
ebdba546 2450 new_gdbarch->initialized_p = 1;
104c1213 2451
4b9b3959 2452 if (gdbarch_debug)
ebdba546
AC
2453 gdbarch_dump (new_gdbarch, gdb_stdlog);
2454
2455 return new_gdbarch;
2456}
2457
e487cc15 2458/* Make the specified architecture current. */
ebdba546
AC
2459
2460void
aff68abb 2461set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2462{
2463 gdb_assert (new_gdbarch != NULL);
ebdba546 2464 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2465 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2466 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2467 registers_changed ();
ebdba546 2468}
104c1213 2469
f5656ead 2470/* Return the current inferior's arch. */
6ecd4729
PA
2471
2472struct gdbarch *
f5656ead 2473target_gdbarch (void)
6ecd4729
PA
2474{
2475 return current_inferior ()->gdbarch;
2476}
2477
104c1213 2478extern void _initialize_gdbarch (void);
b4a20239 2479
104c1213 2480void
34620563 2481_initialize_gdbarch (void)
104c1213 2482{
ccce17b0 2483 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2484Set architecture debugging."), _("\\
2485Show architecture debugging."), _("\\
2486When non-zero, architecture debugging is enabled."),
2487 NULL,
920d2a44 2488 show_gdbarch_debug,
85c07804 2489 &setdebuglist, &showdebuglist);
104c1213
JM
2490}
2491EOF
2492
2493# close things off
2494exec 1>&2
2495#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2496compare_new gdbarch.c
This page took 1.424452 seconds and 4 git commands to generate.