* output.h: Formatting, whitespace.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
0b302171 5# Copyright (C) 1998-2012 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
283354d8
AC
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
3d9a5942
AC
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14 97
ae45cd16
AC
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
34620563 101 "" )
f7968451 102 if test -n "${predefault}"
34620563
AC
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 105 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
34620563
AC
112 fi
113 ;;
ae45cd16 114 * )
1e9f55d0 115 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
116 kill $$
117 exit 1
118 ;;
119 esac
34620563
AC
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
72e74a21 129 if [ -n "${postdefault}" ]
34620563
AC
130 then
131 fallbackdefault="${postdefault}"
72e74a21 132 elif [ -n "${predefault}" ]
34620563
AC
133 then
134 fallbackdefault="${predefault}"
135 else
73d3c16e 136 fallbackdefault="0"
34620563
AC
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
f0d4cc9e 143 fi
34620563 144 done
72e74a21 145 if [ -n "${class}" ]
34620563
AC
146 then
147 true
c0e8c252
AC
148 else
149 false
150 fi
151}
152
104c1213 153
f0d4cc9e
AC
154fallback_default_p ()
155{
72e74a21
JB
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
158}
159
160class_is_variable_p ()
161{
4a5c6a1d
AC
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
f0d4cc9e
AC
166}
167
168class_is_function_p ()
169{
4a5c6a1d
AC
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174}
175
176class_is_multiarch_p ()
177{
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
f0d4cc9e
AC
182}
183
184class_is_predicate_p ()
185{
4a5c6a1d
AC
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
f0d4cc9e
AC
190}
191
192class_is_info_p ()
193{
4a5c6a1d
AC
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
f0d4cc9e
AC
198}
199
200
cff3e48b
JM
201# dump out/verify the doco
202for field in ${read}
203do
204 case ${field} in
205
206 class ) : ;;
c4093a6a 207
c0e8c252
AC
208 # # -> line disable
209 # f -> function
210 # hiding a function
2ada493a
AC
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
c0e8c252
AC
213 # v -> variable
214 # hiding a variable
2ada493a
AC
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
c0e8c252
AC
217 # i -> set from info
218 # hiding something from the ``struct info'' object
4a5c6a1d
AC
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
cff3e48b 223
cff3e48b
JM
224 returntype ) : ;;
225
c0e8c252 226 # For functions, the return type; for variables, the data type
cff3e48b
JM
227
228 function ) : ;;
229
c0e8c252
AC
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
233
234 formal ) : ;;
235
c0e8c252
AC
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
cff3e48b
JM
240
241 actual ) : ;;
242
c0e8c252
AC
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
cff3e48b 246
0b8f9e4d 247 staticdefault ) : ;;
c0e8c252
AC
248
249 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
cff3e48b 253
0b8f9e4d 254 # If STATICDEFAULT is empty, zero is used.
c0e8c252 255
0b8f9e4d 256 predefault ) : ;;
cff3e48b 257
10312cc4
AC
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
cff3e48b 262
0b8f9e4d
AC
263 # If PREDEFAULT is empty, zero is used.
264
10312cc4
AC
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
f0d4cc9e
AC
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
0b8f9e4d
AC
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
10312cc4
AC
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
f0d4cc9e
AC
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
be7811ad 294 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
295 # will contain the current architecture. Care should be
296 # taken.
cff3e48b 297
c4093a6a 298 invalid_p ) : ;;
cff3e48b 299
0b8f9e4d 300 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 301 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
f0d4cc9e
AC
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
312
313 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 314
cff3e48b
JM
315 print ) : ;;
316
2f9b146e
AC
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
c0e8c252 319
0b1553bc
UW
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
cff3e48b 322
283354d8 323 garbage_at_eol ) : ;;
0b8f9e4d 324
283354d8 325 # Catches stray fields.
cff3e48b 326
50248794
AC
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
cff3e48b
JM
330 esac
331done
332
cff3e48b 333
104c1213
JM
334function_list ()
335{
cff3e48b 336 # See below (DOCO) for description of each field
34620563 337 cat <<EOF
be7811ad 338i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 339#
97030eea 340i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 341i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 342#
97030eea 343i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 344#
30737ed9 345i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
346
347# The bit byte-order has to do just with numbering of bits in debugging symbols
348# and such. Conceptually, it's quite separate from byte/word byte order.
349v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
66b43ecb
AC
351# Number of bits in a char or unsigned char for the target machine.
352# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 353# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
354#
355# Number of bits in a short or unsigned short for the target machine.
97030eea 356v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 357# Number of bits in an int or unsigned int for the target machine.
97030eea 358v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 359# Number of bits in a long or unsigned long for the target machine.
97030eea 360v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
361# Number of bits in a long long or unsigned long long for the target
362# machine.
be7811ad 363v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
364# Alignment of a long long or unsigned long long for the target
365# machine.
366v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 367
f9e9243a
UW
368# The ABI default bit-size and format for "half", "float", "double", and
369# "long double". These bit/format pairs should eventually be combined
370# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
371# Each format describes both the big and little endian layouts (if
372# useful).
456fcf94 373
f9e9243a
UW
374v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 376v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 378v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 379v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 380v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 381v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 382
52204a0b
DT
383# For most targets, a pointer on the target and its representation as an
384# address in GDB have the same size and "look the same". For such a
17a912b6 385# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
386# / addr_bit will be set from it.
387#
17a912b6 388# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
389# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390# gdbarch_address_to_pointer as well.
52204a0b
DT
391#
392# ptr_bit is the size of a pointer on the target
be7811ad 393v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 394# addr_bit is the size of a target address as represented in gdb
be7811ad 395v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 396#
8da614df
CV
397# dwarf2_addr_size is the target address size as used in the Dwarf debug
398# info. For .debug_frame FDEs, this is supposed to be the target address
399# size from the associated CU header, and which is equivalent to the
400# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401# Unfortunately there is no good way to determine this value. Therefore
402# dwarf2_addr_size simply defaults to the target pointer size.
403#
404# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405# defined using the target's pointer size so far.
406#
407# Note that dwarf2_addr_size only needs to be redefined by a target if the
408# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409# and if Dwarf versions < 4 need to be supported.
410v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411#
4e409299 412# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 413v:int:char_signed:::1:-1:1
4e409299 414#
97030eea
UW
415F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
417# Function for getting target's idea of a frame pointer. FIXME: GDB's
418# whole scheme for dealing with "frames" and "frame pointers" needs a
419# serious shakedown.
a54fba4c 420m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 421#
05d1431c 422M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
423# Read a register into a new struct value. If the register is wholly
424# or partly unavailable, this should call mark_value_bytes_unavailable
425# as appropriate. If this is defined, then pseudo_register_read will
426# never be called.
427M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 428M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 429#
97030eea 430v:int:num_regs:::0:-1
0aba1244
EZ
431# This macro gives the number of pseudo-registers that live in the
432# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
433# These pseudo-registers may be aliases for other registers,
434# combinations of other registers, or they may be computed by GDB.
97030eea 435v:int:num_pseudo_regs:::0:0::0
c2169756 436
175ff332
HZ
437# Assemble agent expression bytecode to collect pseudo-register REG.
438# Return -1 if something goes wrong, 0 otherwise.
439M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441# Assemble agent expression bytecode to push the value of pseudo-register
442# REG on the interpreter stack.
443# Return -1 if something goes wrong, 0 otherwise.
444M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
c2169756
AC
446# GDB's standard (or well known) register numbers. These can map onto
447# a real register or a pseudo (computed) register or not be defined at
1200cd6e 448# all (-1).
3e8c568d 449# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
450v:int:sp_regnum:::-1:-1::0
451v:int:pc_regnum:::-1:-1::0
452v:int:ps_regnum:::-1:-1::0
453v:int:fp0_regnum:::0:-1::0
88c72b7d 454# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 455m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 456# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 457m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 458# Convert from an sdb register number to an internal gdb register number.
d3f73121 459m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 460# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 461m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 462m:const char *:register_name:int regnr:regnr::0
9c04cab7 463
7b9ee6a8
DJ
464# Return the type of a register specified by the architecture. Only
465# the register cache should call this function directly; others should
466# use "register_type".
97030eea 467M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 468
f3be58bc 469# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
470M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 472# deprecated_fp_regnum.
97030eea 473v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 474
a86c5fc9 475# See gdbint.texinfo. See infcall.c.
97030eea
UW
476M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477v:int:call_dummy_location::::AT_ENTRY_POINT::0
478M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 479
97030eea
UW
480m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
483# MAP a GDB RAW register number onto a simulator register number. See
484# also include/...-sim.h.
e7faf938 485m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
486m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 488# setjmp/longjmp support.
97030eea 489F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 490#
97030eea 491v:int:believe_pcc_promotion:::::::
104c1213 492#
0abe36f5 493m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 494f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 495f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
496# Construct a value representing the contents of register REGNUM in
497# frame FRAME, interpreted as type TYPE. The routine needs to
498# allocate and return a struct value with all value attributes
499# (but not the value contents) filled in.
97030eea 500f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 501#
9898f801
UW
502m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 504M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 505
6a3a010b
MR
506# Return the return-value convention that will be used by FUNCTION
507# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
508# case the return convention is computed based only on VALTYPE.
509#
510# If READBUF is not NULL, extract the return value and save it in this buffer.
511#
512# If WRITEBUF is not NULL, it contains a return value which will be
513# stored into the appropriate register. This can be used when we want
514# to force the value returned by a function (see the "return" command
515# for instance).
6a3a010b 516M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 517
18648a37
YQ
518# Return true if the return value of function is stored in the first hidden
519# parameter. In theory, this feature should be language-dependent, specified
520# by language and its ABI, such as C++. Unfortunately, compiler may
521# implement it to a target-dependent feature. So that we need such hook here
522# to be aware of this in GDB.
523m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
524
6093d2eb 525m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 526M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 527f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 528m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
529# Return the adjusted address and kind to use for Z0/Z1 packets.
530# KIND is usually the memory length of the breakpoint, but may have a
531# different target-specific meaning.
0e05dfcb 532m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 533M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
534m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 536v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
537
538# A function can be addressed by either it's "pointer" (possibly a
539# descriptor address) or "entry point" (first executable instruction).
540# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 541# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
542# a simplified subset of that functionality - the function's address
543# corresponds to the "function pointer" and the function's start
544# corresponds to the "function entry point" - and hence is redundant.
545
97030eea 546v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 547
123dc839
DJ
548# Return the remote protocol register number associated with this
549# register. Normally the identity mapping.
97030eea 550m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 551
b2756930 552# Fetch the target specific address used to represent a load module.
97030eea 553F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 554#
97030eea
UW
555v:CORE_ADDR:frame_args_skip:::0:::0
556M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
558# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559# frame-base. Enable frame-base before frame-unwind.
97030eea 560F:int:frame_num_args:struct frame_info *frame:frame
104c1213 561#
97030eea
UW
562M:CORE_ADDR:frame_align:CORE_ADDR address:address
563m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564v:int:frame_red_zone_size
f0d4cc9e 565#
97030eea 566m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
567# On some machines there are bits in addresses which are not really
568# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 569# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
570# we get a "real" address such as one would find in a symbol table.
571# This is used only for addresses of instructions, and even then I'm
572# not sure it's used in all contexts. It exists to deal with there
573# being a few stray bits in the PC which would mislead us, not as some
574# sort of generic thing to handle alignment or segmentation (it's
575# possible it should be in TARGET_READ_PC instead).
24568a2c 576m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
577
578# FIXME/cagney/2001-01-18: This should be split in two. A target method that
579# indicates if the target needs software single step. An ISA method to
580# implement it.
581#
582# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
583# breakpoints using the breakpoint system instead of blatting memory directly
584# (as with rs6000).
64c4637f 585#
e6590a1b
UW
586# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
587# target can single step. If not, then implement single step using breakpoints.
64c4637f 588#
e6590a1b
UW
589# A return value of 1 means that the software_single_step breakpoints
590# were inserted; 0 means they were not.
97030eea 591F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 592
3352ef37
AC
593# Return non-zero if the processor is executing a delay slot and a
594# further single-step is needed before the instruction finishes.
97030eea 595M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 596# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 597# disassembler. Perhaps objdump can handle it?
97030eea
UW
598f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
599f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
600
601
cfd8ab24 602# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
603# evaluates non-zero, this is the address where the debugger will place
604# a step-resume breakpoint to get us past the dynamic linker.
97030eea 605m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 606# Some systems also have trampoline code for returning from shared libs.
2c02bd72 607m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 608
c12260ac
CV
609# A target might have problems with watchpoints as soon as the stack
610# frame of the current function has been destroyed. This mostly happens
611# as the first action in a funtion's epilogue. in_function_epilogue_p()
612# is defined to return a non-zero value if either the given addr is one
613# instruction after the stack destroying instruction up to the trailing
614# return instruction or if we can figure out that the stack frame has
615# already been invalidated regardless of the value of addr. Targets
616# which don't suffer from that problem could just let this functionality
617# untouched.
97030eea 618m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
619f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
620f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
621v:int:cannot_step_breakpoint:::0:0::0
622v:int:have_nonsteppable_watchpoint:::0:0::0
623F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
624M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
625M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 626# Is a register in a group
97030eea 627m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 628# Fetch the pointer to the ith function argument.
97030eea 629F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
630
631# Return the appropriate register set for a core file section with
632# name SECT_NAME and size SECT_SIZE.
97030eea 633M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 634
17ea7499
CES
635# Supported register notes in a core file.
636v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
637
6432734d
UW
638# Create core file notes
639M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
640
35c2fab7
UW
641# Find core file memory regions
642M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
643
de584861
PA
644# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
645# core file into buffer READBUF with length LEN.
97030eea 646M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 647
c0edd9ed 648# How the core target converts a PTID from a core file to a string.
28439f5e
PA
649M:char *:core_pid_to_str:ptid_t ptid:ptid
650
a78c2d62 651# BFD target to use when generating a core file.
86ba1042 652V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 653
0d5de010
DJ
654# If the elements of C++ vtables are in-place function descriptors rather
655# than normal function pointers (which may point to code or a descriptor),
656# set this to one.
97030eea 657v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
658
659# Set if the least significant bit of the delta is used instead of the least
660# significant bit of the pfn for pointers to virtual member functions.
97030eea 661v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
662
663# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 664F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 665
1668ae25 666# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
667V:ULONGEST:max_insn_length:::0:0
668
669# Copy the instruction at FROM to TO, and make any adjustments
670# necessary to single-step it at that address.
671#
672# REGS holds the state the thread's registers will have before
673# executing the copied instruction; the PC in REGS will refer to FROM,
674# not the copy at TO. The caller should update it to point at TO later.
675#
676# Return a pointer to data of the architecture's choice to be passed
677# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
678# the instruction's effects have been completely simulated, with the
679# resulting state written back to REGS.
680#
681# For a general explanation of displaced stepping and how GDB uses it,
682# see the comments in infrun.c.
683#
684# The TO area is only guaranteed to have space for
685# gdbarch_max_insn_length (arch) bytes, so this function must not
686# write more bytes than that to that area.
687#
688# If you do not provide this function, GDB assumes that the
689# architecture does not support displaced stepping.
690#
691# If your architecture doesn't need to adjust instructions before
692# single-stepping them, consider using simple_displaced_step_copy_insn
693# here.
694M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
695
99e40580
UW
696# Return true if GDB should use hardware single-stepping to execute
697# the displaced instruction identified by CLOSURE. If false,
698# GDB will simply restart execution at the displaced instruction
699# location, and it is up to the target to ensure GDB will receive
700# control again (e.g. by placing a software breakpoint instruction
701# into the displaced instruction buffer).
702#
703# The default implementation returns false on all targets that
704# provide a gdbarch_software_single_step routine, and true otherwise.
705m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
706
237fc4c9
PA
707# Fix up the state resulting from successfully single-stepping a
708# displaced instruction, to give the result we would have gotten from
709# stepping the instruction in its original location.
710#
711# REGS is the register state resulting from single-stepping the
712# displaced instruction.
713#
714# CLOSURE is the result from the matching call to
715# gdbarch_displaced_step_copy_insn.
716#
717# If you provide gdbarch_displaced_step_copy_insn.but not this
718# function, then GDB assumes that no fixup is needed after
719# single-stepping the instruction.
720#
721# For a general explanation of displaced stepping and how GDB uses it,
722# see the comments in infrun.c.
723M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
724
725# Free a closure returned by gdbarch_displaced_step_copy_insn.
726#
727# If you provide gdbarch_displaced_step_copy_insn, you must provide
728# this function as well.
729#
730# If your architecture uses closures that don't need to be freed, then
731# you can use simple_displaced_step_free_closure here.
732#
733# For a general explanation of displaced stepping and how GDB uses it,
734# see the comments in infrun.c.
735m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
736
737# Return the address of an appropriate place to put displaced
738# instructions while we step over them. There need only be one such
739# place, since we're only stepping one thread over a breakpoint at a
740# time.
741#
742# For a general explanation of displaced stepping and how GDB uses it,
743# see the comments in infrun.c.
744m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
745
dde08ee1
PA
746# Relocate an instruction to execute at a different address. OLDLOC
747# is the address in the inferior memory where the instruction to
748# relocate is currently at. On input, TO points to the destination
749# where we want the instruction to be copied (and possibly adjusted)
750# to. On output, it points to one past the end of the resulting
751# instruction(s). The effect of executing the instruction at TO shall
752# be the same as if executing it at FROM. For example, call
753# instructions that implicitly push the return address on the stack
754# should be adjusted to return to the instruction after OLDLOC;
755# relative branches, and other PC-relative instructions need the
756# offset adjusted; etc.
757M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
758
1c772458 759# Refresh overlay mapped state for section OSECT.
97030eea 760F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 761
97030eea 762M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
763
764# Handle special encoding of static variables in stabs debug info.
0d5cff50 765F:const char *:static_transform_name:const char *name:name
203c3895 766# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 767v:int:sofun_address_maybe_missing:::0:0::0
1cded358 768
0508c3ec
HZ
769# Parse the instruction at ADDR storing in the record execution log
770# the registers REGCACHE and memory ranges that will be affected when
771# the instruction executes, along with their current values.
772# Return -1 if something goes wrong, 0 otherwise.
773M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
774
3846b520
HZ
775# Save process state after a signal.
776# Return -1 if something goes wrong, 0 otherwise.
2ea28649 777M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 778
22203bbf 779# Signal translation: translate inferior's signal (target's) number
86b49880
PA
780# into GDB's representation. The implementation of this method must
781# be host independent. IOW, don't rely on symbols of the NAT_FILE
782# header (the nm-*.h files), the host <signal.h> header, or similar
783# headers. This is mainly used when cross-debugging core files ---
784# "Live" targets hide the translation behind the target interface
1f8cf220
PA
785# (target_wait, target_resume, etc.).
786M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 787
4aa995e1
PA
788# Extra signal info inspection.
789#
790# Return a type suitable to inspect extra signal information.
791M:struct type *:get_siginfo_type:void:
792
60c5725c
DJ
793# Record architecture-specific information from the symbol table.
794M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 795
a96d9b2e
SDJ
796# Function for the 'catch syscall' feature.
797
798# Get architecture-specific system calls information from registers.
799M:LONGEST:get_syscall_number:ptid_t ptid:ptid
800
55aa24fb
SDJ
801# SystemTap related fields and functions.
802
803# Prefix used to mark an integer constant on the architecture's assembly
804# For example, on x86 integer constants are written as:
805#
806# \$10 ;; integer constant 10
807#
808# in this case, this prefix would be the character \`\$\'.
08af7a40 809v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
55aa24fb
SDJ
810
811# Suffix used to mark an integer constant on the architecture's assembly.
08af7a40 812v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
55aa24fb
SDJ
813
814# Prefix used to mark a register name on the architecture's assembly.
815# For example, on x86 the register name is written as:
816#
817# \%eax ;; register eax
818#
819# in this case, this prefix would be the character \`\%\'.
08af7a40 820v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
55aa24fb
SDJ
821
822# Suffix used to mark a register name on the architecture's assembly
08af7a40 823v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
55aa24fb
SDJ
824
825# Prefix used to mark a register indirection on the architecture's assembly.
826# For example, on x86 the register indirection is written as:
827#
828# \(\%eax\) ;; indirecting eax
829#
830# in this case, this prefix would be the charater \`\(\'.
831#
832# Please note that we use the indirection prefix also for register
833# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 834v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
55aa24fb
SDJ
835
836# Suffix used to mark a register indirection on the architecture's assembly.
837# For example, on x86 the register indirection is written as:
838#
839# \(\%eax\) ;; indirecting eax
840#
841# in this case, this prefix would be the charater \`\)\'.
842#
843# Please note that we use the indirection suffix also for register
844# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 845v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
55aa24fb
SDJ
846
847# Prefix used to name a register using GDB's nomenclature.
848#
849# For example, on PPC a register is represented by a number in the assembly
850# language (e.g., \`10\' is the 10th general-purpose register). However,
851# inside GDB this same register has an \`r\' appended to its name, so the 10th
852# register would be represented as \`r10\' internally.
08af7a40 853v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
854
855# Suffix used to name a register using GDB's nomenclature.
08af7a40 856v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
857
858# Check if S is a single operand.
859#
860# Single operands can be:
861# \- Literal integers, e.g. \`\$10\' on x86
862# \- Register access, e.g. \`\%eax\' on x86
863# \- Register indirection, e.g. \`\(\%eax\)\' on x86
864# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
865#
866# This function should check for these patterns on the string
867# and return 1 if some were found, or zero otherwise. Please try to match
868# as much info as you can from the string, i.e., if you have to match
869# something like \`\(\%\', do not match just the \`\(\'.
870M:int:stap_is_single_operand:const char *s:s
871
872# Function used to handle a "special case" in the parser.
873#
874# A "special case" is considered to be an unknown token, i.e., a token
875# that the parser does not know how to parse. A good example of special
876# case would be ARM's register displacement syntax:
877#
878# [R0, #4] ;; displacing R0 by 4
879#
880# Since the parser assumes that a register displacement is of the form:
881#
882# <number> <indirection_prefix> <register_name> <indirection_suffix>
883#
884# it means that it will not be able to recognize and parse this odd syntax.
885# Therefore, we should add a special case function that will handle this token.
886#
887# This function should generate the proper expression form of the expression
888# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
889# and so on). It should also return 1 if the parsing was successful, or zero
890# if the token was not recognized as a special token (in this case, returning
891# zero means that the special parser is deferring the parsing to the generic
892# parser), and should advance the buffer pointer (p->arg).
893M:int:stap_parse_special_token:struct stap_parse_info *p:p
894
895
50c71eaf
PA
896# True if the list of shared libraries is one and only for all
897# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
898# This usually means that all processes, although may or may not share
899# an address space, will see the same set of symbols at the same
900# addresses.
50c71eaf 901v:int:has_global_solist:::0:0::0
2567c7d9
PA
902
903# On some targets, even though each inferior has its own private
904# address space, the debug interface takes care of making breakpoints
905# visible to all address spaces automatically. For such cases,
906# this property should be set to true.
907v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
908
909# True if inferiors share an address space (e.g., uClinux).
910m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
911
912# True if a fast tracepoint can be set at an address.
913m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 914
f870a310
TT
915# Return the "auto" target charset.
916f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
917# Return the "auto" target wide charset.
918f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
919
920# If non-empty, this is a file extension that will be opened in place
921# of the file extension reported by the shared library list.
922#
923# This is most useful for toolchains that use a post-linker tool,
924# where the names of the files run on the target differ in extension
925# compared to the names of the files GDB should load for debug info.
926v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
927
928# If true, the target OS has DOS-based file system semantics. That
929# is, absolute paths include a drive name, and the backslash is
930# considered a directory separator.
931v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
932
933# Generate bytecodes to collect the return address in a frame.
934# Since the bytecodes run on the target, possibly with GDB not even
935# connected, the full unwinding machinery is not available, and
936# typically this function will issue bytecodes for one or more likely
937# places that the return address may be found.
938m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
939
3030c96e
UW
940# Implement the "info proc" command.
941M:void:info_proc:char *args, enum info_proc_what what:args, what
942
19630284
JB
943# Iterate over all objfiles in the order that makes the most sense
944# for the architecture to make global symbol searches.
945#
946# CB is a callback function where OBJFILE is the objfile to be searched,
947# and CB_DATA a pointer to user-defined data (the same data that is passed
948# when calling this gdbarch method). The iteration stops if this function
949# returns nonzero.
950#
951# CB_DATA is a pointer to some user-defined data to be passed to
952# the callback.
953#
954# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
955# inspected when the symbol search was requested.
956m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
957
104c1213 958EOF
104c1213
JM
959}
960
0b8f9e4d
AC
961#
962# The .log file
963#
964exec > new-gdbarch.log
34620563 965function_list | while do_read
0b8f9e4d
AC
966do
967 cat <<EOF
2f9b146e 968${class} ${returntype} ${function} ($formal)
104c1213 969EOF
3d9a5942
AC
970 for r in ${read}
971 do
972 eval echo \"\ \ \ \ ${r}=\${${r}}\"
973 done
f0d4cc9e 974 if class_is_predicate_p && fallback_default_p
0b8f9e4d 975 then
66d659b1 976 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
977 kill $$
978 exit 1
979 fi
72e74a21 980 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
981 then
982 echo "Error: postdefault is useless when invalid_p=0" 1>&2
983 kill $$
984 exit 1
985 fi
a72293e2
AC
986 if class_is_multiarch_p
987 then
988 if class_is_predicate_p ; then :
989 elif test "x${predefault}" = "x"
990 then
2f9b146e 991 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
992 kill $$
993 exit 1
994 fi
995 fi
3d9a5942 996 echo ""
0b8f9e4d
AC
997done
998
999exec 1>&2
1000compare_new gdbarch.log
1001
104c1213
JM
1002
1003copyright ()
1004{
1005cat <<EOF
c4bfde41
JK
1006/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1007/* vi:set ro: */
59233f88 1008
104c1213 1009/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1010
f801e1e0
MS
1011 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1012 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
1013
1014 This file is part of GDB.
1015
1016 This program is free software; you can redistribute it and/or modify
1017 it under the terms of the GNU General Public License as published by
50efebf8 1018 the Free Software Foundation; either version 3 of the License, or
104c1213 1019 (at your option) any later version.
50efebf8 1020
104c1213
JM
1021 This program is distributed in the hope that it will be useful,
1022 but WITHOUT ANY WARRANTY; without even the implied warranty of
1023 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1024 GNU General Public License for more details.
50efebf8 1025
104c1213 1026 You should have received a copy of the GNU General Public License
50efebf8 1027 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1028
104c1213
JM
1029/* This file was created with the aid of \`\`gdbarch.sh''.
1030
52204a0b 1031 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1032 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1033 against the existing \`\`gdbarch.[hc]''. Any differences found
1034 being reported.
1035
1036 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1037 changes into that script. Conversely, when making sweeping changes
104c1213 1038 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1039 easier. */
104c1213
JM
1040
1041EOF
1042}
1043
1044#
1045# The .h file
1046#
1047
1048exec > new-gdbarch.h
1049copyright
1050cat <<EOF
1051#ifndef GDBARCH_H
1052#define GDBARCH_H
1053
da3331ec
AC
1054struct floatformat;
1055struct ui_file;
104c1213
JM
1056struct frame_info;
1057struct value;
b6af0555 1058struct objfile;
1c772458 1059struct obj_section;
a2cf933a 1060struct minimal_symbol;
049ee0e4 1061struct regcache;
b59ff9d5 1062struct reggroup;
6ce6d90f 1063struct regset;
a89aa300 1064struct disassemble_info;
e2d0e7eb 1065struct target_ops;
030f20e1 1066struct obstack;
8181d85f 1067struct bp_target_info;
424163ea 1068struct target_desc;
237fc4c9 1069struct displaced_step_closure;
17ea7499 1070struct core_regset_section;
a96d9b2e 1071struct syscall;
175ff332 1072struct agent_expr;
6710bf39 1073struct axs_value;
55aa24fb 1074struct stap_parse_info;
104c1213 1075
6ecd4729
PA
1076/* The architecture associated with the inferior through the
1077 connection to the target.
1078
1079 The architecture vector provides some information that is really a
1080 property of the inferior, accessed through a particular target:
1081 ptrace operations; the layout of certain RSP packets; the solib_ops
1082 vector; etc. To differentiate architecture accesses to
1083 per-inferior/target properties from
1084 per-thread/per-frame/per-objfile properties, accesses to
1085 per-inferior/target properties should be made through this
1086 gdbarch. */
1087
1088/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1089extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1090
1091/* The initial, default architecture. It uses host values (for want of a better
1092 choice). */
1093extern struct gdbarch startup_gdbarch;
1094
19630284
JB
1095
1096/* Callback type for the 'iterate_over_objfiles_in_search_order'
1097 gdbarch method. */
1098
1099typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1100 (struct objfile *objfile, void *cb_data);
104c1213
JM
1101EOF
1102
1103# function typedef's
3d9a5942
AC
1104printf "\n"
1105printf "\n"
0963b4bd 1106printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1107function_list | while do_read
104c1213 1108do
2ada493a
AC
1109 if class_is_info_p
1110 then
3d9a5942
AC
1111 printf "\n"
1112 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1113 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1114 fi
104c1213
JM
1115done
1116
1117# function typedef's
3d9a5942
AC
1118printf "\n"
1119printf "\n"
0963b4bd 1120printf "/* The following are initialized by the target dependent code. */\n"
34620563 1121function_list | while do_read
104c1213 1122do
72e74a21 1123 if [ -n "${comment}" ]
34620563
AC
1124 then
1125 echo "${comment}" | sed \
1126 -e '2 s,#,/*,' \
1127 -e '3,$ s,#, ,' \
1128 -e '$ s,$, */,'
1129 fi
412d5987
AC
1130
1131 if class_is_predicate_p
2ada493a 1132 then
412d5987
AC
1133 printf "\n"
1134 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1135 fi
2ada493a
AC
1136 if class_is_variable_p
1137 then
3d9a5942
AC
1138 printf "\n"
1139 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1140 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1141 fi
1142 if class_is_function_p
1143 then
3d9a5942 1144 printf "\n"
72e74a21 1145 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1146 then
1147 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1148 elif class_is_multiarch_p
1149 then
1150 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1151 else
1152 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1153 fi
72e74a21 1154 if [ "x${formal}" = "xvoid" ]
104c1213 1155 then
3d9a5942 1156 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1157 else
3d9a5942 1158 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1159 fi
3d9a5942 1160 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1161 fi
104c1213
JM
1162done
1163
1164# close it off
1165cat <<EOF
1166
a96d9b2e
SDJ
1167/* Definition for an unknown syscall, used basically in error-cases. */
1168#define UNKNOWN_SYSCALL (-1)
1169
104c1213
JM
1170extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1171
1172
1173/* Mechanism for co-ordinating the selection of a specific
1174 architecture.
1175
1176 GDB targets (*-tdep.c) can register an interest in a specific
1177 architecture. Other GDB components can register a need to maintain
1178 per-architecture data.
1179
1180 The mechanisms below ensures that there is only a loose connection
1181 between the set-architecture command and the various GDB
0fa6923a 1182 components. Each component can independently register their need
104c1213
JM
1183 to maintain architecture specific data with gdbarch.
1184
1185 Pragmatics:
1186
1187 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1188 didn't scale.
1189
1190 The more traditional mega-struct containing architecture specific
1191 data for all the various GDB components was also considered. Since
0fa6923a 1192 GDB is built from a variable number of (fairly independent)
104c1213 1193 components it was determined that the global aproach was not
0963b4bd 1194 applicable. */
104c1213
JM
1195
1196
1197/* Register a new architectural family with GDB.
1198
1199 Register support for the specified ARCHITECTURE with GDB. When
1200 gdbarch determines that the specified architecture has been
1201 selected, the corresponding INIT function is called.
1202
1203 --
1204
1205 The INIT function takes two parameters: INFO which contains the
1206 information available to gdbarch about the (possibly new)
1207 architecture; ARCHES which is a list of the previously created
1208 \`\`struct gdbarch'' for this architecture.
1209
0f79675b 1210 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1211 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1212
1213 The ARCHES parameter is a linked list (sorted most recently used)
1214 of all the previously created architures for this architecture
1215 family. The (possibly NULL) ARCHES->gdbarch can used to access
1216 values from the previously selected architecture for this
59837fe0 1217 architecture family.
104c1213
JM
1218
1219 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1220 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1221 gdbarch'' from the ARCHES list - indicating that the new
1222 architecture is just a synonym for an earlier architecture (see
1223 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1224 - that describes the selected architecture (see gdbarch_alloc()).
1225
1226 The DUMP_TDEP function shall print out all target specific values.
1227 Care should be taken to ensure that the function works in both the
0963b4bd 1228 multi-arch and non- multi-arch cases. */
104c1213
JM
1229
1230struct gdbarch_list
1231{
1232 struct gdbarch *gdbarch;
1233 struct gdbarch_list *next;
1234};
1235
1236struct gdbarch_info
1237{
0963b4bd 1238 /* Use default: NULL (ZERO). */
104c1213
JM
1239 const struct bfd_arch_info *bfd_arch_info;
1240
428721aa 1241 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1242 int byte_order;
1243
9d4fde75
SS
1244 int byte_order_for_code;
1245
0963b4bd 1246 /* Use default: NULL (ZERO). */
104c1213
JM
1247 bfd *abfd;
1248
0963b4bd 1249 /* Use default: NULL (ZERO). */
104c1213 1250 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1251
1252 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1253 enum gdb_osabi osabi;
424163ea
DJ
1254
1255 /* Use default: NULL (ZERO). */
1256 const struct target_desc *target_desc;
104c1213
JM
1257};
1258
1259typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1260typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1261
4b9b3959 1262/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1263extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1264
4b9b3959
AC
1265extern void gdbarch_register (enum bfd_architecture architecture,
1266 gdbarch_init_ftype *,
1267 gdbarch_dump_tdep_ftype *);
1268
104c1213 1269
b4a20239
AC
1270/* Return a freshly allocated, NULL terminated, array of the valid
1271 architecture names. Since architectures are registered during the
1272 _initialize phase this function only returns useful information
0963b4bd 1273 once initialization has been completed. */
b4a20239
AC
1274
1275extern const char **gdbarch_printable_names (void);
1276
1277
104c1213 1278/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1279 matches the information provided by INFO. */
104c1213 1280
424163ea 1281extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1282
1283
1284/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1285 basic initialization using values obtained from the INFO and TDEP
104c1213 1286 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1287 initialization of the object. */
104c1213
JM
1288
1289extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1290
1291
4b9b3959
AC
1292/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1293 It is assumed that the caller freeds the \`\`struct
0963b4bd 1294 gdbarch_tdep''. */
4b9b3959 1295
058f20d5
JB
1296extern void gdbarch_free (struct gdbarch *);
1297
1298
aebd7893
AC
1299/* Helper function. Allocate memory from the \`\`struct gdbarch''
1300 obstack. The memory is freed when the corresponding architecture
1301 is also freed. */
1302
1303extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1304#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1305#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1306
1307
0963b4bd 1308/* Helper function. Force an update of the current architecture.
104c1213 1309
b732d07d
AC
1310 The actual architecture selected is determined by INFO, \`\`(gdb) set
1311 architecture'' et.al., the existing architecture and BFD's default
1312 architecture. INFO should be initialized to zero and then selected
1313 fields should be updated.
104c1213 1314
0963b4bd 1315 Returns non-zero if the update succeeds. */
16f33e29
AC
1316
1317extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1318
1319
ebdba546
AC
1320/* Helper function. Find an architecture matching info.
1321
1322 INFO should be initialized using gdbarch_info_init, relevant fields
1323 set, and then finished using gdbarch_info_fill.
1324
1325 Returns the corresponding architecture, or NULL if no matching
59837fe0 1326 architecture was found. */
ebdba546
AC
1327
1328extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1329
1330
aff68abb 1331/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1332
aff68abb 1333extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1334
104c1213
JM
1335
1336/* Register per-architecture data-pointer.
1337
1338 Reserve space for a per-architecture data-pointer. An identifier
1339 for the reserved data-pointer is returned. That identifer should
95160752 1340 be saved in a local static variable.
104c1213 1341
fcc1c85c
AC
1342 Memory for the per-architecture data shall be allocated using
1343 gdbarch_obstack_zalloc. That memory will be deleted when the
1344 corresponding architecture object is deleted.
104c1213 1345
95160752
AC
1346 When a previously created architecture is re-selected, the
1347 per-architecture data-pointer for that previous architecture is
76860b5f 1348 restored. INIT() is not re-called.
104c1213
JM
1349
1350 Multiple registrarants for any architecture are allowed (and
1351 strongly encouraged). */
1352
95160752 1353struct gdbarch_data;
104c1213 1354
030f20e1
AC
1355typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1356extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1357typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1358extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1359extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1360 struct gdbarch_data *data,
1361 void *pointer);
104c1213 1362
451fbdda 1363extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1364
1365
0fa6923a 1366/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1367 byte-order, ...) using information found in the BFD. */
104c1213
JM
1368
1369extern void set_gdbarch_from_file (bfd *);
1370
1371
e514a9d6
JM
1372/* Initialize the current architecture to the "first" one we find on
1373 our list. */
1374
1375extern void initialize_current_architecture (void);
1376
104c1213 1377/* gdbarch trace variable */
ccce17b0 1378extern unsigned int gdbarch_debug;
104c1213 1379
4b9b3959 1380extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1381
1382#endif
1383EOF
1384exec 1>&2
1385#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1386compare_new gdbarch.h
104c1213
JM
1387
1388
1389#
1390# C file
1391#
1392
1393exec > new-gdbarch.c
1394copyright
1395cat <<EOF
1396
1397#include "defs.h"
7355ddba 1398#include "arch-utils.h"
104c1213 1399
104c1213 1400#include "gdbcmd.h"
faaf634c 1401#include "inferior.h"
104c1213
JM
1402#include "symcat.h"
1403
f0d4cc9e 1404#include "floatformat.h"
104c1213 1405
95160752 1406#include "gdb_assert.h"
b66d6d2e 1407#include "gdb_string.h"
b59ff9d5 1408#include "reggroups.h"
4be87837 1409#include "osabi.h"
aebd7893 1410#include "gdb_obstack.h"
383f836e 1411#include "observer.h"
a3ecef73 1412#include "regcache.h"
19630284 1413#include "objfiles.h"
95160752 1414
104c1213
JM
1415/* Static function declarations */
1416
b3cc3077 1417static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1418
104c1213
JM
1419/* Non-zero if we want to trace architecture code. */
1420
1421#ifndef GDBARCH_DEBUG
1422#define GDBARCH_DEBUG 0
1423#endif
ccce17b0 1424unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1425static void
1426show_gdbarch_debug (struct ui_file *file, int from_tty,
1427 struct cmd_list_element *c, const char *value)
1428{
1429 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1430}
104c1213 1431
456fcf94 1432static const char *
8da61cc4 1433pformat (const struct floatformat **format)
456fcf94
AC
1434{
1435 if (format == NULL)
1436 return "(null)";
1437 else
8da61cc4
DJ
1438 /* Just print out one of them - this is only for diagnostics. */
1439 return format[0]->name;
456fcf94
AC
1440}
1441
08105857
PA
1442static const char *
1443pstring (const char *string)
1444{
1445 if (string == NULL)
1446 return "(null)";
1447 return string;
1448}
1449
104c1213
JM
1450EOF
1451
1452# gdbarch open the gdbarch object
3d9a5942 1453printf "\n"
0963b4bd 1454printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1455printf "\n"
1456printf "struct gdbarch\n"
1457printf "{\n"
76860b5f
AC
1458printf " /* Has this architecture been fully initialized? */\n"
1459printf " int initialized_p;\n"
aebd7893
AC
1460printf "\n"
1461printf " /* An obstack bound to the lifetime of the architecture. */\n"
1462printf " struct obstack *obstack;\n"
1463printf "\n"
0963b4bd 1464printf " /* basic architectural information. */\n"
34620563 1465function_list | while do_read
104c1213 1466do
2ada493a
AC
1467 if class_is_info_p
1468 then
3d9a5942 1469 printf " ${returntype} ${function};\n"
2ada493a 1470 fi
104c1213 1471done
3d9a5942 1472printf "\n"
0963b4bd 1473printf " /* target specific vector. */\n"
3d9a5942
AC
1474printf " struct gdbarch_tdep *tdep;\n"
1475printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1476printf "\n"
0963b4bd 1477printf " /* per-architecture data-pointers. */\n"
95160752 1478printf " unsigned nr_data;\n"
3d9a5942
AC
1479printf " void **data;\n"
1480printf "\n"
104c1213
JM
1481cat <<EOF
1482 /* Multi-arch values.
1483
1484 When extending this structure you must:
1485
1486 Add the field below.
1487
1488 Declare set/get functions and define the corresponding
1489 macro in gdbarch.h.
1490
1491 gdbarch_alloc(): If zero/NULL is not a suitable default,
1492 initialize the new field.
1493
1494 verify_gdbarch(): Confirm that the target updated the field
1495 correctly.
1496
7e73cedf 1497 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1498 field is dumped out
1499
c0e8c252 1500 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1501 variable (base values on the host's c-type system).
1502
1503 get_gdbarch(): Implement the set/get functions (probably using
1504 the macro's as shortcuts).
1505
1506 */
1507
1508EOF
34620563 1509function_list | while do_read
104c1213 1510do
2ada493a
AC
1511 if class_is_variable_p
1512 then
3d9a5942 1513 printf " ${returntype} ${function};\n"
2ada493a
AC
1514 elif class_is_function_p
1515 then
2f9b146e 1516 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1517 fi
104c1213 1518done
3d9a5942 1519printf "};\n"
104c1213
JM
1520
1521# A pre-initialized vector
3d9a5942
AC
1522printf "\n"
1523printf "\n"
104c1213
JM
1524cat <<EOF
1525/* The default architecture uses host values (for want of a better
0963b4bd 1526 choice). */
104c1213 1527EOF
3d9a5942
AC
1528printf "\n"
1529printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1530printf "\n"
1531printf "struct gdbarch startup_gdbarch =\n"
1532printf "{\n"
76860b5f 1533printf " 1, /* Always initialized. */\n"
aebd7893 1534printf " NULL, /* The obstack. */\n"
0963b4bd 1535printf " /* basic architecture information. */\n"
4b9b3959 1536function_list | while do_read
104c1213 1537do
2ada493a
AC
1538 if class_is_info_p
1539 then
ec5cbaec 1540 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1541 fi
104c1213
JM
1542done
1543cat <<EOF
0963b4bd 1544 /* target specific vector and its dump routine. */
4b9b3959 1545 NULL, NULL,
c66fb220
TT
1546 /*per-architecture data-pointers. */
1547 0, NULL,
104c1213
JM
1548 /* Multi-arch values */
1549EOF
34620563 1550function_list | while do_read
104c1213 1551do
2ada493a
AC
1552 if class_is_function_p || class_is_variable_p
1553 then
ec5cbaec 1554 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1555 fi
104c1213
JM
1556done
1557cat <<EOF
c0e8c252 1558 /* startup_gdbarch() */
104c1213 1559};
4b9b3959 1560
104c1213
JM
1561EOF
1562
1563# Create a new gdbarch struct
104c1213 1564cat <<EOF
7de2341d 1565
66b43ecb 1566/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1567 \`\`struct gdbarch_info''. */
104c1213 1568EOF
3d9a5942 1569printf "\n"
104c1213
JM
1570cat <<EOF
1571struct gdbarch *
1572gdbarch_alloc (const struct gdbarch_info *info,
1573 struct gdbarch_tdep *tdep)
1574{
be7811ad 1575 struct gdbarch *gdbarch;
aebd7893
AC
1576
1577 /* Create an obstack for allocating all the per-architecture memory,
1578 then use that to allocate the architecture vector. */
1579 struct obstack *obstack = XMALLOC (struct obstack);
1580 obstack_init (obstack);
be7811ad
MD
1581 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1582 memset (gdbarch, 0, sizeof (*gdbarch));
1583 gdbarch->obstack = obstack;
85de9627 1584
be7811ad 1585 alloc_gdbarch_data (gdbarch);
85de9627 1586
be7811ad 1587 gdbarch->tdep = tdep;
104c1213 1588EOF
3d9a5942 1589printf "\n"
34620563 1590function_list | while do_read
104c1213 1591do
2ada493a
AC
1592 if class_is_info_p
1593 then
be7811ad 1594 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1595 fi
104c1213 1596done
3d9a5942 1597printf "\n"
0963b4bd 1598printf " /* Force the explicit initialization of these. */\n"
34620563 1599function_list | while do_read
104c1213 1600do
2ada493a
AC
1601 if class_is_function_p || class_is_variable_p
1602 then
72e74a21 1603 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1604 then
be7811ad 1605 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1606 fi
2ada493a 1607 fi
104c1213
JM
1608done
1609cat <<EOF
1610 /* gdbarch_alloc() */
1611
be7811ad 1612 return gdbarch;
104c1213
JM
1613}
1614EOF
1615
058f20d5 1616# Free a gdbarch struct.
3d9a5942
AC
1617printf "\n"
1618printf "\n"
058f20d5 1619cat <<EOF
aebd7893
AC
1620/* Allocate extra space using the per-architecture obstack. */
1621
1622void *
1623gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1624{
1625 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1626
aebd7893
AC
1627 memset (data, 0, size);
1628 return data;
1629}
1630
1631
058f20d5
JB
1632/* Free a gdbarch struct. This should never happen in normal
1633 operation --- once you've created a gdbarch, you keep it around.
1634 However, if an architecture's init function encounters an error
1635 building the structure, it may need to clean up a partially
1636 constructed gdbarch. */
4b9b3959 1637
058f20d5
JB
1638void
1639gdbarch_free (struct gdbarch *arch)
1640{
aebd7893 1641 struct obstack *obstack;
05c547f6 1642
95160752 1643 gdb_assert (arch != NULL);
aebd7893
AC
1644 gdb_assert (!arch->initialized_p);
1645 obstack = arch->obstack;
1646 obstack_free (obstack, 0); /* Includes the ARCH. */
1647 xfree (obstack);
058f20d5
JB
1648}
1649EOF
1650
104c1213 1651# verify a new architecture
104c1213 1652cat <<EOF
db446970
AC
1653
1654
1655/* Ensure that all values in a GDBARCH are reasonable. */
1656
104c1213 1657static void
be7811ad 1658verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1659{
f16a1923
AC
1660 struct ui_file *log;
1661 struct cleanup *cleanups;
759ef836 1662 long length;
f16a1923 1663 char *buf;
05c547f6 1664
f16a1923
AC
1665 log = mem_fileopen ();
1666 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1667 /* fundamental */
be7811ad 1668 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1669 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1670 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1671 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1672 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1673EOF
34620563 1674function_list | while do_read
104c1213 1675do
2ada493a
AC
1676 if class_is_function_p || class_is_variable_p
1677 then
72e74a21 1678 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1679 then
3d9a5942 1680 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1681 elif class_is_predicate_p
1682 then
0963b4bd 1683 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1684 # FIXME: See do_read for potential simplification
72e74a21 1685 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1686 then
3d9a5942 1687 printf " if (${invalid_p})\n"
be7811ad 1688 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1689 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1690 then
be7811ad
MD
1691 printf " if (gdbarch->${function} == ${predefault})\n"
1692 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1693 elif [ -n "${postdefault}" ]
f0d4cc9e 1694 then
be7811ad
MD
1695 printf " if (gdbarch->${function} == 0)\n"
1696 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1697 elif [ -n "${invalid_p}" ]
104c1213 1698 then
4d60522e 1699 printf " if (${invalid_p})\n"
f16a1923 1700 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1701 elif [ -n "${predefault}" ]
104c1213 1702 then
be7811ad 1703 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1704 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1705 fi
2ada493a 1706 fi
104c1213
JM
1707done
1708cat <<EOF
759ef836 1709 buf = ui_file_xstrdup (log, &length);
f16a1923 1710 make_cleanup (xfree, buf);
759ef836 1711 if (length > 0)
f16a1923 1712 internal_error (__FILE__, __LINE__,
85c07804 1713 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1714 buf);
1715 do_cleanups (cleanups);
104c1213
JM
1716}
1717EOF
1718
1719# dump the structure
3d9a5942
AC
1720printf "\n"
1721printf "\n"
104c1213 1722cat <<EOF
0963b4bd 1723/* Print out the details of the current architecture. */
4b9b3959 1724
104c1213 1725void
be7811ad 1726gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1727{
b78960be 1728 const char *gdb_nm_file = "<not-defined>";
05c547f6 1729
b78960be
AC
1730#if defined (GDB_NM_FILE)
1731 gdb_nm_file = GDB_NM_FILE;
1732#endif
1733 fprintf_unfiltered (file,
1734 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1735 gdb_nm_file);
104c1213 1736EOF
97030eea 1737function_list | sort -t: -k 3 | while do_read
104c1213 1738do
1e9f55d0
AC
1739 # First the predicate
1740 if class_is_predicate_p
1741 then
7996bcec 1742 printf " fprintf_unfiltered (file,\n"
48f7351b 1743 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1744 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1745 fi
48f7351b 1746 # Print the corresponding value.
283354d8 1747 if class_is_function_p
4b9b3959 1748 then
7996bcec 1749 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1750 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1751 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1752 else
48f7351b 1753 # It is a variable
2f9b146e
AC
1754 case "${print}:${returntype}" in
1755 :CORE_ADDR )
0b1553bc
UW
1756 fmt="%s"
1757 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1758 ;;
2f9b146e 1759 :* )
48f7351b 1760 fmt="%s"
623d3eb1 1761 print="plongest (gdbarch->${function})"
48f7351b
AC
1762 ;;
1763 * )
2f9b146e 1764 fmt="%s"
48f7351b
AC
1765 ;;
1766 esac
3d9a5942 1767 printf " fprintf_unfiltered (file,\n"
48f7351b 1768 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1769 printf " ${print});\n"
2ada493a 1770 fi
104c1213 1771done
381323f4 1772cat <<EOF
be7811ad
MD
1773 if (gdbarch->dump_tdep != NULL)
1774 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1775}
1776EOF
104c1213
JM
1777
1778
1779# GET/SET
3d9a5942 1780printf "\n"
104c1213
JM
1781cat <<EOF
1782struct gdbarch_tdep *
1783gdbarch_tdep (struct gdbarch *gdbarch)
1784{
1785 if (gdbarch_debug >= 2)
3d9a5942 1786 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1787 return gdbarch->tdep;
1788}
1789EOF
3d9a5942 1790printf "\n"
34620563 1791function_list | while do_read
104c1213 1792do
2ada493a
AC
1793 if class_is_predicate_p
1794 then
3d9a5942
AC
1795 printf "\n"
1796 printf "int\n"
1797 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1798 printf "{\n"
8de9bdc4 1799 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1800 printf " return ${predicate};\n"
3d9a5942 1801 printf "}\n"
2ada493a
AC
1802 fi
1803 if class_is_function_p
1804 then
3d9a5942
AC
1805 printf "\n"
1806 printf "${returntype}\n"
72e74a21 1807 if [ "x${formal}" = "xvoid" ]
104c1213 1808 then
3d9a5942 1809 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1810 else
3d9a5942 1811 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1812 fi
3d9a5942 1813 printf "{\n"
8de9bdc4 1814 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1815 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1816 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1817 then
1818 # Allow a call to a function with a predicate.
956ac328 1819 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1820 fi
3d9a5942
AC
1821 printf " if (gdbarch_debug >= 2)\n"
1822 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1823 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1824 then
1825 if class_is_multiarch_p
1826 then
1827 params="gdbarch"
1828 else
1829 params=""
1830 fi
1831 else
1832 if class_is_multiarch_p
1833 then
1834 params="gdbarch, ${actual}"
1835 else
1836 params="${actual}"
1837 fi
1838 fi
72e74a21 1839 if [ "x${returntype}" = "xvoid" ]
104c1213 1840 then
4a5c6a1d 1841 printf " gdbarch->${function} (${params});\n"
104c1213 1842 else
4a5c6a1d 1843 printf " return gdbarch->${function} (${params});\n"
104c1213 1844 fi
3d9a5942
AC
1845 printf "}\n"
1846 printf "\n"
1847 printf "void\n"
1848 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1849 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1850 printf "{\n"
1851 printf " gdbarch->${function} = ${function};\n"
1852 printf "}\n"
2ada493a
AC
1853 elif class_is_variable_p
1854 then
3d9a5942
AC
1855 printf "\n"
1856 printf "${returntype}\n"
1857 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1858 printf "{\n"
8de9bdc4 1859 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1860 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1861 then
3d9a5942 1862 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1863 elif [ -n "${invalid_p}" ]
104c1213 1864 then
956ac328
AC
1865 printf " /* Check variable is valid. */\n"
1866 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1867 elif [ -n "${predefault}" ]
104c1213 1868 then
956ac328
AC
1869 printf " /* Check variable changed from pre-default. */\n"
1870 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1871 fi
3d9a5942
AC
1872 printf " if (gdbarch_debug >= 2)\n"
1873 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1874 printf " return gdbarch->${function};\n"
1875 printf "}\n"
1876 printf "\n"
1877 printf "void\n"
1878 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1879 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1880 printf "{\n"
1881 printf " gdbarch->${function} = ${function};\n"
1882 printf "}\n"
2ada493a
AC
1883 elif class_is_info_p
1884 then
3d9a5942
AC
1885 printf "\n"
1886 printf "${returntype}\n"
1887 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1888 printf "{\n"
8de9bdc4 1889 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1890 printf " if (gdbarch_debug >= 2)\n"
1891 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1892 printf " return gdbarch->${function};\n"
1893 printf "}\n"
2ada493a 1894 fi
104c1213
JM
1895done
1896
1897# All the trailing guff
1898cat <<EOF
1899
1900
f44c642f 1901/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1902 modules. */
104c1213
JM
1903
1904struct gdbarch_data
1905{
95160752 1906 unsigned index;
76860b5f 1907 int init_p;
030f20e1
AC
1908 gdbarch_data_pre_init_ftype *pre_init;
1909 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1910};
1911
1912struct gdbarch_data_registration
1913{
104c1213
JM
1914 struct gdbarch_data *data;
1915 struct gdbarch_data_registration *next;
1916};
1917
f44c642f 1918struct gdbarch_data_registry
104c1213 1919{
95160752 1920 unsigned nr;
104c1213
JM
1921 struct gdbarch_data_registration *registrations;
1922};
1923
f44c642f 1924struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1925{
1926 0, NULL,
1927};
1928
030f20e1
AC
1929static struct gdbarch_data *
1930gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1931 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1932{
1933 struct gdbarch_data_registration **curr;
05c547f6
MS
1934
1935 /* Append the new registration. */
f44c642f 1936 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1937 (*curr) != NULL;
1938 curr = &(*curr)->next);
1939 (*curr) = XMALLOC (struct gdbarch_data_registration);
1940 (*curr)->next = NULL;
104c1213 1941 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1942 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1943 (*curr)->data->pre_init = pre_init;
1944 (*curr)->data->post_init = post_init;
76860b5f 1945 (*curr)->data->init_p = 1;
104c1213
JM
1946 return (*curr)->data;
1947}
1948
030f20e1
AC
1949struct gdbarch_data *
1950gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1951{
1952 return gdbarch_data_register (pre_init, NULL);
1953}
1954
1955struct gdbarch_data *
1956gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1957{
1958 return gdbarch_data_register (NULL, post_init);
1959}
104c1213 1960
0963b4bd 1961/* Create/delete the gdbarch data vector. */
95160752
AC
1962
1963static void
b3cc3077 1964alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1965{
b3cc3077
JB
1966 gdb_assert (gdbarch->data == NULL);
1967 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1968 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1969}
3c875b6f 1970
76860b5f 1971/* Initialize the current value of the specified per-architecture
0963b4bd 1972 data-pointer. */
b3cc3077 1973
95160752 1974void
030f20e1
AC
1975deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1976 struct gdbarch_data *data,
1977 void *pointer)
95160752
AC
1978{
1979 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1980 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1981 gdb_assert (data->pre_init == NULL);
95160752
AC
1982 gdbarch->data[data->index] = pointer;
1983}
1984
104c1213 1985/* Return the current value of the specified per-architecture
0963b4bd 1986 data-pointer. */
104c1213
JM
1987
1988void *
451fbdda 1989gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1990{
451fbdda 1991 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1992 if (gdbarch->data[data->index] == NULL)
76860b5f 1993 {
030f20e1
AC
1994 /* The data-pointer isn't initialized, call init() to get a
1995 value. */
1996 if (data->pre_init != NULL)
1997 /* Mid architecture creation: pass just the obstack, and not
1998 the entire architecture, as that way it isn't possible for
1999 pre-init code to refer to undefined architecture
2000 fields. */
2001 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2002 else if (gdbarch->initialized_p
2003 && data->post_init != NULL)
2004 /* Post architecture creation: pass the entire architecture
2005 (as all fields are valid), but be careful to also detect
2006 recursive references. */
2007 {
2008 gdb_assert (data->init_p);
2009 data->init_p = 0;
2010 gdbarch->data[data->index] = data->post_init (gdbarch);
2011 data->init_p = 1;
2012 }
2013 else
2014 /* The architecture initialization hasn't completed - punt -
2015 hope that the caller knows what they are doing. Once
2016 deprecated_set_gdbarch_data has been initialized, this can be
2017 changed to an internal error. */
2018 return NULL;
76860b5f
AC
2019 gdb_assert (gdbarch->data[data->index] != NULL);
2020 }
451fbdda 2021 return gdbarch->data[data->index];
104c1213
JM
2022}
2023
2024
0963b4bd 2025/* Keep a registry of the architectures known by GDB. */
104c1213 2026
4b9b3959 2027struct gdbarch_registration
104c1213
JM
2028{
2029 enum bfd_architecture bfd_architecture;
2030 gdbarch_init_ftype *init;
4b9b3959 2031 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2032 struct gdbarch_list *arches;
4b9b3959 2033 struct gdbarch_registration *next;
104c1213
JM
2034};
2035
f44c642f 2036static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2037
b4a20239
AC
2038static void
2039append_name (const char ***buf, int *nr, const char *name)
2040{
2041 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2042 (*buf)[*nr] = name;
2043 *nr += 1;
2044}
2045
2046const char **
2047gdbarch_printable_names (void)
2048{
7996bcec 2049 /* Accumulate a list of names based on the registed list of
0963b4bd 2050 architectures. */
7996bcec
AC
2051 int nr_arches = 0;
2052 const char **arches = NULL;
2053 struct gdbarch_registration *rego;
05c547f6 2054
7996bcec
AC
2055 for (rego = gdbarch_registry;
2056 rego != NULL;
2057 rego = rego->next)
b4a20239 2058 {
7996bcec
AC
2059 const struct bfd_arch_info *ap;
2060 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2061 if (ap == NULL)
2062 internal_error (__FILE__, __LINE__,
85c07804 2063 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2064 do
2065 {
2066 append_name (&arches, &nr_arches, ap->printable_name);
2067 ap = ap->next;
2068 }
2069 while (ap != NULL);
b4a20239 2070 }
7996bcec
AC
2071 append_name (&arches, &nr_arches, NULL);
2072 return arches;
b4a20239
AC
2073}
2074
2075
104c1213 2076void
4b9b3959
AC
2077gdbarch_register (enum bfd_architecture bfd_architecture,
2078 gdbarch_init_ftype *init,
2079 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2080{
4b9b3959 2081 struct gdbarch_registration **curr;
104c1213 2082 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2083
ec3d358c 2084 /* Check that BFD recognizes this architecture */
104c1213
JM
2085 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2086 if (bfd_arch_info == NULL)
2087 {
8e65ff28 2088 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2089 _("gdbarch: Attempt to register "
2090 "unknown architecture (%d)"),
8e65ff28 2091 bfd_architecture);
104c1213 2092 }
0963b4bd 2093 /* Check that we haven't seen this architecture before. */
f44c642f 2094 for (curr = &gdbarch_registry;
104c1213
JM
2095 (*curr) != NULL;
2096 curr = &(*curr)->next)
2097 {
2098 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2099 internal_error (__FILE__, __LINE__,
64b9b334 2100 _("gdbarch: Duplicate registration "
0963b4bd 2101 "of architecture (%s)"),
8e65ff28 2102 bfd_arch_info->printable_name);
104c1213
JM
2103 }
2104 /* log it */
2105 if (gdbarch_debug)
30737ed9 2106 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2107 bfd_arch_info->printable_name,
30737ed9 2108 host_address_to_string (init));
104c1213 2109 /* Append it */
4b9b3959 2110 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2111 (*curr)->bfd_architecture = bfd_architecture;
2112 (*curr)->init = init;
4b9b3959 2113 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2114 (*curr)->arches = NULL;
2115 (*curr)->next = NULL;
4b9b3959
AC
2116}
2117
2118void
2119register_gdbarch_init (enum bfd_architecture bfd_architecture,
2120 gdbarch_init_ftype *init)
2121{
2122 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2123}
104c1213
JM
2124
2125
424163ea 2126/* Look for an architecture using gdbarch_info. */
104c1213
JM
2127
2128struct gdbarch_list *
2129gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2130 const struct gdbarch_info *info)
2131{
2132 for (; arches != NULL; arches = arches->next)
2133 {
2134 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2135 continue;
2136 if (info->byte_order != arches->gdbarch->byte_order)
2137 continue;
4be87837
DJ
2138 if (info->osabi != arches->gdbarch->osabi)
2139 continue;
424163ea
DJ
2140 if (info->target_desc != arches->gdbarch->target_desc)
2141 continue;
104c1213
JM
2142 return arches;
2143 }
2144 return NULL;
2145}
2146
2147
ebdba546 2148/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2149 architecture if needed. Return that new architecture. */
104c1213 2150
59837fe0
UW
2151struct gdbarch *
2152gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2153{
2154 struct gdbarch *new_gdbarch;
4b9b3959 2155 struct gdbarch_registration *rego;
104c1213 2156
b732d07d 2157 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2158 sources: "set ..."; INFOabfd supplied; and the global
2159 defaults. */
2160 gdbarch_info_fill (&info);
4be87837 2161
0963b4bd 2162 /* Must have found some sort of architecture. */
b732d07d 2163 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2164
2165 if (gdbarch_debug)
2166 {
2167 fprintf_unfiltered (gdb_stdlog,
59837fe0 2168 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2169 (info.bfd_arch_info != NULL
2170 ? info.bfd_arch_info->printable_name
2171 : "(null)"));
2172 fprintf_unfiltered (gdb_stdlog,
59837fe0 2173 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2174 info.byte_order,
d7449b42 2175 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2176 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2177 : "default"));
4be87837 2178 fprintf_unfiltered (gdb_stdlog,
59837fe0 2179 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2180 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2181 fprintf_unfiltered (gdb_stdlog,
59837fe0 2182 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2183 host_address_to_string (info.abfd));
104c1213 2184 fprintf_unfiltered (gdb_stdlog,
59837fe0 2185 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2186 host_address_to_string (info.tdep_info));
104c1213
JM
2187 }
2188
ebdba546 2189 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2190 for (rego = gdbarch_registry;
2191 rego != NULL;
2192 rego = rego->next)
2193 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2194 break;
2195 if (rego == NULL)
2196 {
2197 if (gdbarch_debug)
59837fe0 2198 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2199 "No matching architecture\n");
b732d07d
AC
2200 return 0;
2201 }
2202
ebdba546 2203 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2204 new_gdbarch = rego->init (info, rego->arches);
2205
ebdba546
AC
2206 /* Did the tdep code like it? No. Reject the change and revert to
2207 the old architecture. */
104c1213
JM
2208 if (new_gdbarch == NULL)
2209 {
2210 if (gdbarch_debug)
59837fe0 2211 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2212 "Target rejected architecture\n");
2213 return NULL;
104c1213
JM
2214 }
2215
ebdba546
AC
2216 /* Is this a pre-existing architecture (as determined by already
2217 being initialized)? Move it to the front of the architecture
2218 list (keeping the list sorted Most Recently Used). */
2219 if (new_gdbarch->initialized_p)
104c1213 2220 {
ebdba546
AC
2221 struct gdbarch_list **list;
2222 struct gdbarch_list *this;
104c1213 2223 if (gdbarch_debug)
59837fe0 2224 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2225 "Previous architecture %s (%s) selected\n",
2226 host_address_to_string (new_gdbarch),
104c1213 2227 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2228 /* Find the existing arch in the list. */
2229 for (list = &rego->arches;
2230 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2231 list = &(*list)->next);
2232 /* It had better be in the list of architectures. */
2233 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2234 /* Unlink THIS. */
2235 this = (*list);
2236 (*list) = this->next;
2237 /* Insert THIS at the front. */
2238 this->next = rego->arches;
2239 rego->arches = this;
2240 /* Return it. */
2241 return new_gdbarch;
104c1213
JM
2242 }
2243
ebdba546
AC
2244 /* It's a new architecture. */
2245 if (gdbarch_debug)
59837fe0 2246 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2247 "New architecture %s (%s) selected\n",
2248 host_address_to_string (new_gdbarch),
ebdba546
AC
2249 new_gdbarch->bfd_arch_info->printable_name);
2250
2251 /* Insert the new architecture into the front of the architecture
2252 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2253 {
2254 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2255 this->next = rego->arches;
2256 this->gdbarch = new_gdbarch;
2257 rego->arches = this;
2258 }
104c1213 2259
4b9b3959
AC
2260 /* Check that the newly installed architecture is valid. Plug in
2261 any post init values. */
2262 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2263 verify_gdbarch (new_gdbarch);
ebdba546 2264 new_gdbarch->initialized_p = 1;
104c1213 2265
4b9b3959 2266 if (gdbarch_debug)
ebdba546
AC
2267 gdbarch_dump (new_gdbarch, gdb_stdlog);
2268
2269 return new_gdbarch;
2270}
2271
e487cc15 2272/* Make the specified architecture current. */
ebdba546
AC
2273
2274void
aff68abb 2275set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2276{
2277 gdb_assert (new_gdbarch != NULL);
ebdba546 2278 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2279 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2280 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2281 registers_changed ();
ebdba546 2282}
104c1213 2283
f5656ead 2284/* Return the current inferior's arch. */
6ecd4729
PA
2285
2286struct gdbarch *
f5656ead 2287target_gdbarch (void)
6ecd4729
PA
2288{
2289 return current_inferior ()->gdbarch;
2290}
2291
104c1213 2292extern void _initialize_gdbarch (void);
b4a20239 2293
104c1213 2294void
34620563 2295_initialize_gdbarch (void)
104c1213 2296{
ccce17b0 2297 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2298Set architecture debugging."), _("\\
2299Show architecture debugging."), _("\\
2300When non-zero, architecture debugging is enabled."),
2301 NULL,
920d2a44 2302 show_gdbarch_debug,
85c07804 2303 &setdebuglist, &showdebuglist);
104c1213
JM
2304}
2305EOF
2306
2307# close things off
2308exec 1>&2
2309#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2310compare_new gdbarch.c
This page took 1.616267 seconds and 4 git commands to generate.