target, breakpoint: allow insert/remove breakpoint to be forwarded
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
502# Construct a value representing the contents of register REGNUM in
503# frame FRAME, interpreted as type TYPE. The routine needs to
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
97030eea 506f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 533f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 534m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
535# Return the adjusted address and kind to use for Z0/Z1 packets.
536# KIND is usually the memory length of the breakpoint, but may have a
537# different target-specific meaning.
0e05dfcb 538m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 539M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
540m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
541m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 542v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
543
544# A function can be addressed by either it's "pointer" (possibly a
545# descriptor address) or "entry point" (first executable instruction).
546# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 547# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
548# a simplified subset of that functionality - the function's address
549# corresponds to the "function pointer" and the function's start
550# corresponds to the "function entry point" - and hence is redundant.
551
97030eea 552v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 553
123dc839
DJ
554# Return the remote protocol register number associated with this
555# register. Normally the identity mapping.
97030eea 556m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 557
b2756930 558# Fetch the target specific address used to represent a load module.
97030eea 559F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 560#
97030eea
UW
561v:CORE_ADDR:frame_args_skip:::0:::0
562M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
563M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
564# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
565# frame-base. Enable frame-base before frame-unwind.
97030eea 566F:int:frame_num_args:struct frame_info *frame:frame
104c1213 567#
97030eea
UW
568M:CORE_ADDR:frame_align:CORE_ADDR address:address
569m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
570v:int:frame_red_zone_size
f0d4cc9e 571#
97030eea 572m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
573# On some machines there are bits in addresses which are not really
574# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 575# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
576# we get a "real" address such as one would find in a symbol table.
577# This is used only for addresses of instructions, and even then I'm
578# not sure it's used in all contexts. It exists to deal with there
579# being a few stray bits in the PC which would mislead us, not as some
580# sort of generic thing to handle alignment or segmentation (it's
581# possible it should be in TARGET_READ_PC instead).
24568a2c 582m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
583
584# FIXME/cagney/2001-01-18: This should be split in two. A target method that
585# indicates if the target needs software single step. An ISA method to
586# implement it.
587#
588# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
589# breakpoints using the breakpoint system instead of blatting memory directly
590# (as with rs6000).
64c4637f 591#
e6590a1b
UW
592# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
593# target can single step. If not, then implement single step using breakpoints.
64c4637f 594#
6f112b18 595# A return value of 1 means that the software_single_step breakpoints
e6590a1b 596# were inserted; 0 means they were not.
97030eea 597F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 598
3352ef37
AC
599# Return non-zero if the processor is executing a delay slot and a
600# further single-step is needed before the instruction finishes.
97030eea 601M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 602# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 603# disassembler. Perhaps objdump can handle it?
97030eea
UW
604f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
605f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
606
607
cfd8ab24 608# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
609# evaluates non-zero, this is the address where the debugger will place
610# a step-resume breakpoint to get us past the dynamic linker.
97030eea 611m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 612# Some systems also have trampoline code for returning from shared libs.
2c02bd72 613m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 614
c12260ac
CV
615# A target might have problems with watchpoints as soon as the stack
616# frame of the current function has been destroyed. This mostly happens
617# as the first action in a funtion's epilogue. in_function_epilogue_p()
618# is defined to return a non-zero value if either the given addr is one
619# instruction after the stack destroying instruction up to the trailing
620# return instruction or if we can figure out that the stack frame has
621# already been invalidated regardless of the value of addr. Targets
622# which don't suffer from that problem could just let this functionality
623# untouched.
97030eea 624m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
625f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
626f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
627v:int:cannot_step_breakpoint:::0:0::0
628v:int:have_nonsteppable_watchpoint:::0:0::0
629F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
631M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 632# Is a register in a group
97030eea 633m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 634# Fetch the pointer to the ith function argument.
97030eea 635F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
636
637# Return the appropriate register set for a core file section with
638# name SECT_NAME and size SECT_SIZE.
97030eea 639M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 640
17ea7499
CES
641# Supported register notes in a core file.
642v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
643
6432734d
UW
644# Create core file notes
645M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
646
b3ac9c77
SDJ
647# The elfcore writer hook to use to write Linux prpsinfo notes to core
648# files. Most Linux architectures use the same prpsinfo32 or
649# prpsinfo64 layouts, and so won't need to provide this hook, as we
650# call the Linux generic routines in bfd to write prpsinfo notes by
651# default.
652F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
653
35c2fab7
UW
654# Find core file memory regions
655M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
656
de584861
PA
657# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
658# core file into buffer READBUF with length LEN.
7ec1862d 659M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 660
356a5233
JB
661# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
662# libraries list from core file into buffer READBUF with length LEN.
7ec1862d 663M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 664
c0edd9ed 665# How the core target converts a PTID from a core file to a string.
28439f5e
PA
666M:char *:core_pid_to_str:ptid_t ptid:ptid
667
a78c2d62 668# BFD target to use when generating a core file.
86ba1042 669V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 670
0d5de010
DJ
671# If the elements of C++ vtables are in-place function descriptors rather
672# than normal function pointers (which may point to code or a descriptor),
673# set this to one.
97030eea 674v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
675
676# Set if the least significant bit of the delta is used instead of the least
677# significant bit of the pfn for pointers to virtual member functions.
97030eea 678v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
679
680# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 681F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 682
1668ae25 683# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
684V:ULONGEST:max_insn_length:::0:0
685
686# Copy the instruction at FROM to TO, and make any adjustments
687# necessary to single-step it at that address.
688#
689# REGS holds the state the thread's registers will have before
690# executing the copied instruction; the PC in REGS will refer to FROM,
691# not the copy at TO. The caller should update it to point at TO later.
692#
693# Return a pointer to data of the architecture's choice to be passed
694# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
695# the instruction's effects have been completely simulated, with the
696# resulting state written back to REGS.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700#
701# The TO area is only guaranteed to have space for
702# gdbarch_max_insn_length (arch) bytes, so this function must not
703# write more bytes than that to that area.
704#
705# If you do not provide this function, GDB assumes that the
706# architecture does not support displaced stepping.
707#
708# If your architecture doesn't need to adjust instructions before
709# single-stepping them, consider using simple_displaced_step_copy_insn
710# here.
711M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
712
99e40580
UW
713# Return true if GDB should use hardware single-stepping to execute
714# the displaced instruction identified by CLOSURE. If false,
715# GDB will simply restart execution at the displaced instruction
716# location, and it is up to the target to ensure GDB will receive
717# control again (e.g. by placing a software breakpoint instruction
718# into the displaced instruction buffer).
719#
720# The default implementation returns false on all targets that
721# provide a gdbarch_software_single_step routine, and true otherwise.
722m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
723
237fc4c9
PA
724# Fix up the state resulting from successfully single-stepping a
725# displaced instruction, to give the result we would have gotten from
726# stepping the instruction in its original location.
727#
728# REGS is the register state resulting from single-stepping the
729# displaced instruction.
730#
731# CLOSURE is the result from the matching call to
732# gdbarch_displaced_step_copy_insn.
733#
734# If you provide gdbarch_displaced_step_copy_insn.but not this
735# function, then GDB assumes that no fixup is needed after
736# single-stepping the instruction.
737#
738# For a general explanation of displaced stepping and how GDB uses it,
739# see the comments in infrun.c.
740M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
741
742# Free a closure returned by gdbarch_displaced_step_copy_insn.
743#
744# If you provide gdbarch_displaced_step_copy_insn, you must provide
745# this function as well.
746#
747# If your architecture uses closures that don't need to be freed, then
748# you can use simple_displaced_step_free_closure here.
749#
750# For a general explanation of displaced stepping and how GDB uses it,
751# see the comments in infrun.c.
752m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
753
754# Return the address of an appropriate place to put displaced
755# instructions while we step over them. There need only be one such
756# place, since we're only stepping one thread over a breakpoint at a
757# time.
758#
759# For a general explanation of displaced stepping and how GDB uses it,
760# see the comments in infrun.c.
761m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
762
dde08ee1
PA
763# Relocate an instruction to execute at a different address. OLDLOC
764# is the address in the inferior memory where the instruction to
765# relocate is currently at. On input, TO points to the destination
766# where we want the instruction to be copied (and possibly adjusted)
767# to. On output, it points to one past the end of the resulting
768# instruction(s). The effect of executing the instruction at TO shall
769# be the same as if executing it at FROM. For example, call
770# instructions that implicitly push the return address on the stack
771# should be adjusted to return to the instruction after OLDLOC;
772# relative branches, and other PC-relative instructions need the
773# offset adjusted; etc.
774M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
775
1c772458 776# Refresh overlay mapped state for section OSECT.
97030eea 777F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 778
97030eea 779M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
780
781# Handle special encoding of static variables in stabs debug info.
0d5cff50 782F:const char *:static_transform_name:const char *name:name
203c3895 783# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 784v:int:sofun_address_maybe_missing:::0:0::0
1cded358 785
0508c3ec
HZ
786# Parse the instruction at ADDR storing in the record execution log
787# the registers REGCACHE and memory ranges that will be affected when
788# the instruction executes, along with their current values.
789# Return -1 if something goes wrong, 0 otherwise.
790M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
791
3846b520
HZ
792# Save process state after a signal.
793# Return -1 if something goes wrong, 0 otherwise.
2ea28649 794M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 795
22203bbf 796# Signal translation: translate inferior's signal (target's) number
86b49880
PA
797# into GDB's representation. The implementation of this method must
798# be host independent. IOW, don't rely on symbols of the NAT_FILE
799# header (the nm-*.h files), the host <signal.h> header, or similar
800# headers. This is mainly used when cross-debugging core files ---
801# "Live" targets hide the translation behind the target interface
1f8cf220
PA
802# (target_wait, target_resume, etc.).
803M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 804
eb14d406
SDJ
805# Signal translation: translate the GDB's internal signal number into
806# the inferior's signal (target's) representation. The implementation
807# of this method must be host independent. IOW, don't rely on symbols
808# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
809# header, or similar headers.
810# Return the target signal number if found, or -1 if the GDB internal
811# signal number is invalid.
812M:int:gdb_signal_to_target:enum gdb_signal signal:signal
813
4aa995e1
PA
814# Extra signal info inspection.
815#
816# Return a type suitable to inspect extra signal information.
817M:struct type *:get_siginfo_type:void:
818
60c5725c
DJ
819# Record architecture-specific information from the symbol table.
820M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 821
a96d9b2e
SDJ
822# Function for the 'catch syscall' feature.
823
824# Get architecture-specific system calls information from registers.
825M:LONGEST:get_syscall_number:ptid_t ptid:ptid
826
55aa24fb
SDJ
827# SystemTap related fields and functions.
828
05c0465e
SDJ
829# A NULL-terminated array of prefixes used to mark an integer constant
830# on the architecture's assembly.
55aa24fb
SDJ
831# For example, on x86 integer constants are written as:
832#
833# \$10 ;; integer constant 10
834#
835# in this case, this prefix would be the character \`\$\'.
05c0465e 836v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 837
05c0465e
SDJ
838# A NULL-terminated array of suffixes used to mark an integer constant
839# on the architecture's assembly.
840v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 841
05c0465e
SDJ
842# A NULL-terminated array of prefixes used to mark a register name on
843# the architecture's assembly.
55aa24fb
SDJ
844# For example, on x86 the register name is written as:
845#
846# \%eax ;; register eax
847#
848# in this case, this prefix would be the character \`\%\'.
05c0465e 849v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 850
05c0465e
SDJ
851# A NULL-terminated array of suffixes used to mark a register name on
852# the architecture's assembly.
853v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 854
05c0465e
SDJ
855# A NULL-terminated array of prefixes used to mark a register
856# indirection on the architecture's assembly.
55aa24fb
SDJ
857# For example, on x86 the register indirection is written as:
858#
859# \(\%eax\) ;; indirecting eax
860#
861# in this case, this prefix would be the charater \`\(\'.
862#
863# Please note that we use the indirection prefix also for register
864# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 865v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 866
05c0465e
SDJ
867# A NULL-terminated array of suffixes used to mark a register
868# indirection on the architecture's assembly.
55aa24fb
SDJ
869# For example, on x86 the register indirection is written as:
870#
871# \(\%eax\) ;; indirecting eax
872#
873# in this case, this prefix would be the charater \`\)\'.
874#
875# Please note that we use the indirection suffix also for register
876# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 877v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 878
05c0465e 879# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
880#
881# For example, on PPC a register is represented by a number in the assembly
882# language (e.g., \`10\' is the 10th general-purpose register). However,
883# inside GDB this same register has an \`r\' appended to its name, so the 10th
884# register would be represented as \`r10\' internally.
08af7a40 885v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
886
887# Suffix used to name a register using GDB's nomenclature.
08af7a40 888v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
889
890# Check if S is a single operand.
891#
892# Single operands can be:
893# \- Literal integers, e.g. \`\$10\' on x86
894# \- Register access, e.g. \`\%eax\' on x86
895# \- Register indirection, e.g. \`\(\%eax\)\' on x86
896# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
897#
898# This function should check for these patterns on the string
899# and return 1 if some were found, or zero otherwise. Please try to match
900# as much info as you can from the string, i.e., if you have to match
901# something like \`\(\%\', do not match just the \`\(\'.
902M:int:stap_is_single_operand:const char *s:s
903
904# Function used to handle a "special case" in the parser.
905#
906# A "special case" is considered to be an unknown token, i.e., a token
907# that the parser does not know how to parse. A good example of special
908# case would be ARM's register displacement syntax:
909#
910# [R0, #4] ;; displacing R0 by 4
911#
912# Since the parser assumes that a register displacement is of the form:
913#
914# <number> <indirection_prefix> <register_name> <indirection_suffix>
915#
916# it means that it will not be able to recognize and parse this odd syntax.
917# Therefore, we should add a special case function that will handle this token.
918#
919# This function should generate the proper expression form of the expression
920# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
921# and so on). It should also return 1 if the parsing was successful, or zero
922# if the token was not recognized as a special token (in this case, returning
923# zero means that the special parser is deferring the parsing to the generic
924# parser), and should advance the buffer pointer (p->arg).
925M:int:stap_parse_special_token:struct stap_parse_info *p:p
926
927
50c71eaf
PA
928# True if the list of shared libraries is one and only for all
929# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
930# This usually means that all processes, although may or may not share
931# an address space, will see the same set of symbols at the same
932# addresses.
50c71eaf 933v:int:has_global_solist:::0:0::0
2567c7d9
PA
934
935# On some targets, even though each inferior has its own private
936# address space, the debug interface takes care of making breakpoints
937# visible to all address spaces automatically. For such cases,
938# this property should be set to true.
939v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
940
941# True if inferiors share an address space (e.g., uClinux).
942m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
943
944# True if a fast tracepoint can be set at an address.
945m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 946
f870a310
TT
947# Return the "auto" target charset.
948f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
949# Return the "auto" target wide charset.
950f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
951
952# If non-empty, this is a file extension that will be opened in place
953# of the file extension reported by the shared library list.
954#
955# This is most useful for toolchains that use a post-linker tool,
956# where the names of the files run on the target differ in extension
957# compared to the names of the files GDB should load for debug info.
958v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
959
960# If true, the target OS has DOS-based file system semantics. That
961# is, absolute paths include a drive name, and the backslash is
962# considered a directory separator.
963v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
964
965# Generate bytecodes to collect the return address in a frame.
966# Since the bytecodes run on the target, possibly with GDB not even
967# connected, the full unwinding machinery is not available, and
968# typically this function will issue bytecodes for one or more likely
969# places that the return address may be found.
970m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
971
3030c96e
UW
972# Implement the "info proc" command.
973M:void:info_proc:char *args, enum info_proc_what what:args, what
974
451b7c33
TT
975# Implement the "info proc" command for core files. Noe that there
976# are two "info_proc"-like methods on gdbarch -- one for core files,
977# one for live targets.
978M:void:core_info_proc:char *args, enum info_proc_what what:args, what
979
19630284
JB
980# Iterate over all objfiles in the order that makes the most sense
981# for the architecture to make global symbol searches.
982#
983# CB is a callback function where OBJFILE is the objfile to be searched,
984# and CB_DATA a pointer to user-defined data (the same data that is passed
985# when calling this gdbarch method). The iteration stops if this function
986# returns nonzero.
987#
988# CB_DATA is a pointer to some user-defined data to be passed to
989# the callback.
990#
991# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
992# inspected when the symbol search was requested.
993m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
994
7e35103a
JB
995# Ravenscar arch-dependent ops.
996v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
997
998# Return non-zero if the instruction at ADDR is a call; zero otherwise.
999m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1000
1001# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1002m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1003
1004# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1005m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
104c1213 1006EOF
104c1213
JM
1007}
1008
0b8f9e4d
AC
1009#
1010# The .log file
1011#
1012exec > new-gdbarch.log
34620563 1013function_list | while do_read
0b8f9e4d
AC
1014do
1015 cat <<EOF
2f9b146e 1016${class} ${returntype} ${function} ($formal)
104c1213 1017EOF
3d9a5942
AC
1018 for r in ${read}
1019 do
1020 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1021 done
f0d4cc9e 1022 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1023 then
66d659b1 1024 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1025 kill $$
1026 exit 1
1027 fi
72e74a21 1028 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1029 then
1030 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1031 kill $$
1032 exit 1
1033 fi
a72293e2
AC
1034 if class_is_multiarch_p
1035 then
1036 if class_is_predicate_p ; then :
1037 elif test "x${predefault}" = "x"
1038 then
2f9b146e 1039 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1040 kill $$
1041 exit 1
1042 fi
1043 fi
3d9a5942 1044 echo ""
0b8f9e4d
AC
1045done
1046
1047exec 1>&2
1048compare_new gdbarch.log
1049
104c1213
JM
1050
1051copyright ()
1052{
1053cat <<EOF
c4bfde41
JK
1054/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1055/* vi:set ro: */
59233f88 1056
104c1213 1057/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1058
ecd75fc8 1059 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1060
1061 This file is part of GDB.
1062
1063 This program is free software; you can redistribute it and/or modify
1064 it under the terms of the GNU General Public License as published by
50efebf8 1065 the Free Software Foundation; either version 3 of the License, or
104c1213 1066 (at your option) any later version.
50efebf8 1067
104c1213
JM
1068 This program is distributed in the hope that it will be useful,
1069 but WITHOUT ANY WARRANTY; without even the implied warranty of
1070 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1071 GNU General Public License for more details.
50efebf8 1072
104c1213 1073 You should have received a copy of the GNU General Public License
50efebf8 1074 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1075
104c1213
JM
1076/* This file was created with the aid of \`\`gdbarch.sh''.
1077
52204a0b 1078 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1079 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1080 against the existing \`\`gdbarch.[hc]''. Any differences found
1081 being reported.
1082
1083 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1084 changes into that script. Conversely, when making sweeping changes
104c1213 1085 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1086 easier. */
104c1213
JM
1087
1088EOF
1089}
1090
1091#
1092# The .h file
1093#
1094
1095exec > new-gdbarch.h
1096copyright
1097cat <<EOF
1098#ifndef GDBARCH_H
1099#define GDBARCH_H
1100
da3331ec
AC
1101struct floatformat;
1102struct ui_file;
104c1213
JM
1103struct frame_info;
1104struct value;
b6af0555 1105struct objfile;
1c772458 1106struct obj_section;
a2cf933a 1107struct minimal_symbol;
049ee0e4 1108struct regcache;
b59ff9d5 1109struct reggroup;
6ce6d90f 1110struct regset;
a89aa300 1111struct disassemble_info;
e2d0e7eb 1112struct target_ops;
030f20e1 1113struct obstack;
8181d85f 1114struct bp_target_info;
424163ea 1115struct target_desc;
237fc4c9 1116struct displaced_step_closure;
17ea7499 1117struct core_regset_section;
a96d9b2e 1118struct syscall;
175ff332 1119struct agent_expr;
6710bf39 1120struct axs_value;
55aa24fb 1121struct stap_parse_info;
7e35103a 1122struct ravenscar_arch_ops;
b3ac9c77 1123struct elf_internal_linux_prpsinfo;
104c1213 1124
6ecd4729
PA
1125/* The architecture associated with the inferior through the
1126 connection to the target.
1127
1128 The architecture vector provides some information that is really a
1129 property of the inferior, accessed through a particular target:
1130 ptrace operations; the layout of certain RSP packets; the solib_ops
1131 vector; etc. To differentiate architecture accesses to
1132 per-inferior/target properties from
1133 per-thread/per-frame/per-objfile properties, accesses to
1134 per-inferior/target properties should be made through this
1135 gdbarch. */
1136
1137/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1138extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1139
1140/* The initial, default architecture. It uses host values (for want of a better
1141 choice). */
1142extern struct gdbarch startup_gdbarch;
1143
19630284
JB
1144
1145/* Callback type for the 'iterate_over_objfiles_in_search_order'
1146 gdbarch method. */
1147
1148typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1149 (struct objfile *objfile, void *cb_data);
104c1213
JM
1150EOF
1151
1152# function typedef's
3d9a5942
AC
1153printf "\n"
1154printf "\n"
0963b4bd 1155printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1156function_list | while do_read
104c1213 1157do
2ada493a
AC
1158 if class_is_info_p
1159 then
3d9a5942
AC
1160 printf "\n"
1161 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1162 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1163 fi
104c1213
JM
1164done
1165
1166# function typedef's
3d9a5942
AC
1167printf "\n"
1168printf "\n"
0963b4bd 1169printf "/* The following are initialized by the target dependent code. */\n"
34620563 1170function_list | while do_read
104c1213 1171do
72e74a21 1172 if [ -n "${comment}" ]
34620563
AC
1173 then
1174 echo "${comment}" | sed \
1175 -e '2 s,#,/*,' \
1176 -e '3,$ s,#, ,' \
1177 -e '$ s,$, */,'
1178 fi
412d5987
AC
1179
1180 if class_is_predicate_p
2ada493a 1181 then
412d5987
AC
1182 printf "\n"
1183 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1184 fi
2ada493a
AC
1185 if class_is_variable_p
1186 then
3d9a5942
AC
1187 printf "\n"
1188 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1189 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1190 fi
1191 if class_is_function_p
1192 then
3d9a5942 1193 printf "\n"
72e74a21 1194 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1195 then
1196 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1197 elif class_is_multiarch_p
1198 then
1199 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1200 else
1201 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1202 fi
72e74a21 1203 if [ "x${formal}" = "xvoid" ]
104c1213 1204 then
3d9a5942 1205 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1206 else
3d9a5942 1207 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1208 fi
3d9a5942 1209 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1210 fi
104c1213
JM
1211done
1212
1213# close it off
1214cat <<EOF
1215
a96d9b2e
SDJ
1216/* Definition for an unknown syscall, used basically in error-cases. */
1217#define UNKNOWN_SYSCALL (-1)
1218
104c1213
JM
1219extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1220
1221
1222/* Mechanism for co-ordinating the selection of a specific
1223 architecture.
1224
1225 GDB targets (*-tdep.c) can register an interest in a specific
1226 architecture. Other GDB components can register a need to maintain
1227 per-architecture data.
1228
1229 The mechanisms below ensures that there is only a loose connection
1230 between the set-architecture command and the various GDB
0fa6923a 1231 components. Each component can independently register their need
104c1213
JM
1232 to maintain architecture specific data with gdbarch.
1233
1234 Pragmatics:
1235
1236 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1237 didn't scale.
1238
1239 The more traditional mega-struct containing architecture specific
1240 data for all the various GDB components was also considered. Since
0fa6923a 1241 GDB is built from a variable number of (fairly independent)
104c1213 1242 components it was determined that the global aproach was not
0963b4bd 1243 applicable. */
104c1213
JM
1244
1245
1246/* Register a new architectural family with GDB.
1247
1248 Register support for the specified ARCHITECTURE with GDB. When
1249 gdbarch determines that the specified architecture has been
1250 selected, the corresponding INIT function is called.
1251
1252 --
1253
1254 The INIT function takes two parameters: INFO which contains the
1255 information available to gdbarch about the (possibly new)
1256 architecture; ARCHES which is a list of the previously created
1257 \`\`struct gdbarch'' for this architecture.
1258
0f79675b 1259 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1260 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1261
1262 The ARCHES parameter is a linked list (sorted most recently used)
1263 of all the previously created architures for this architecture
1264 family. The (possibly NULL) ARCHES->gdbarch can used to access
1265 values from the previously selected architecture for this
59837fe0 1266 architecture family.
104c1213
JM
1267
1268 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1269 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1270 gdbarch'' from the ARCHES list - indicating that the new
1271 architecture is just a synonym for an earlier architecture (see
1272 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1273 - that describes the selected architecture (see gdbarch_alloc()).
1274
1275 The DUMP_TDEP function shall print out all target specific values.
1276 Care should be taken to ensure that the function works in both the
0963b4bd 1277 multi-arch and non- multi-arch cases. */
104c1213
JM
1278
1279struct gdbarch_list
1280{
1281 struct gdbarch *gdbarch;
1282 struct gdbarch_list *next;
1283};
1284
1285struct gdbarch_info
1286{
0963b4bd 1287 /* Use default: NULL (ZERO). */
104c1213
JM
1288 const struct bfd_arch_info *bfd_arch_info;
1289
428721aa 1290 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1291 enum bfd_endian byte_order;
104c1213 1292
94123b4f 1293 enum bfd_endian byte_order_for_code;
9d4fde75 1294
0963b4bd 1295 /* Use default: NULL (ZERO). */
104c1213
JM
1296 bfd *abfd;
1297
0963b4bd 1298 /* Use default: NULL (ZERO). */
104c1213 1299 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1300
1301 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1302 enum gdb_osabi osabi;
424163ea
DJ
1303
1304 /* Use default: NULL (ZERO). */
1305 const struct target_desc *target_desc;
104c1213
JM
1306};
1307
1308typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1309typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1310
4b9b3959 1311/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1312extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1313
4b9b3959
AC
1314extern void gdbarch_register (enum bfd_architecture architecture,
1315 gdbarch_init_ftype *,
1316 gdbarch_dump_tdep_ftype *);
1317
104c1213 1318
b4a20239
AC
1319/* Return a freshly allocated, NULL terminated, array of the valid
1320 architecture names. Since architectures are registered during the
1321 _initialize phase this function only returns useful information
0963b4bd 1322 once initialization has been completed. */
b4a20239
AC
1323
1324extern const char **gdbarch_printable_names (void);
1325
1326
104c1213 1327/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1328 matches the information provided by INFO. */
104c1213 1329
424163ea 1330extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1331
1332
1333/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1334 basic initialization using values obtained from the INFO and TDEP
104c1213 1335 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1336 initialization of the object. */
104c1213
JM
1337
1338extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1339
1340
4b9b3959
AC
1341/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1342 It is assumed that the caller freeds the \`\`struct
0963b4bd 1343 gdbarch_tdep''. */
4b9b3959 1344
058f20d5
JB
1345extern void gdbarch_free (struct gdbarch *);
1346
1347
aebd7893
AC
1348/* Helper function. Allocate memory from the \`\`struct gdbarch''
1349 obstack. The memory is freed when the corresponding architecture
1350 is also freed. */
1351
1352extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1353#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1354#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1355
1356
0963b4bd 1357/* Helper function. Force an update of the current architecture.
104c1213 1358
b732d07d
AC
1359 The actual architecture selected is determined by INFO, \`\`(gdb) set
1360 architecture'' et.al., the existing architecture and BFD's default
1361 architecture. INFO should be initialized to zero and then selected
1362 fields should be updated.
104c1213 1363
0963b4bd 1364 Returns non-zero if the update succeeds. */
16f33e29
AC
1365
1366extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1367
1368
ebdba546
AC
1369/* Helper function. Find an architecture matching info.
1370
1371 INFO should be initialized using gdbarch_info_init, relevant fields
1372 set, and then finished using gdbarch_info_fill.
1373
1374 Returns the corresponding architecture, or NULL if no matching
59837fe0 1375 architecture was found. */
ebdba546
AC
1376
1377extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1378
1379
aff68abb 1380/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1381
aff68abb 1382extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1383
104c1213
JM
1384
1385/* Register per-architecture data-pointer.
1386
1387 Reserve space for a per-architecture data-pointer. An identifier
1388 for the reserved data-pointer is returned. That identifer should
95160752 1389 be saved in a local static variable.
104c1213 1390
fcc1c85c
AC
1391 Memory for the per-architecture data shall be allocated using
1392 gdbarch_obstack_zalloc. That memory will be deleted when the
1393 corresponding architecture object is deleted.
104c1213 1394
95160752
AC
1395 When a previously created architecture is re-selected, the
1396 per-architecture data-pointer for that previous architecture is
76860b5f 1397 restored. INIT() is not re-called.
104c1213
JM
1398
1399 Multiple registrarants for any architecture are allowed (and
1400 strongly encouraged). */
1401
95160752 1402struct gdbarch_data;
104c1213 1403
030f20e1
AC
1404typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1405extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1406typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1407extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1408extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1409 struct gdbarch_data *data,
1410 void *pointer);
104c1213 1411
451fbdda 1412extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1413
1414
0fa6923a 1415/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1416 byte-order, ...) using information found in the BFD. */
104c1213
JM
1417
1418extern void set_gdbarch_from_file (bfd *);
1419
1420
e514a9d6
JM
1421/* Initialize the current architecture to the "first" one we find on
1422 our list. */
1423
1424extern void initialize_current_architecture (void);
1425
104c1213 1426/* gdbarch trace variable */
ccce17b0 1427extern unsigned int gdbarch_debug;
104c1213 1428
4b9b3959 1429extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1430
1431#endif
1432EOF
1433exec 1>&2
1434#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1435compare_new gdbarch.h
104c1213
JM
1436
1437
1438#
1439# C file
1440#
1441
1442exec > new-gdbarch.c
1443copyright
1444cat <<EOF
1445
1446#include "defs.h"
7355ddba 1447#include "arch-utils.h"
104c1213 1448
104c1213 1449#include "gdbcmd.h"
faaf634c 1450#include "inferior.h"
104c1213
JM
1451#include "symcat.h"
1452
f0d4cc9e 1453#include "floatformat.h"
104c1213 1454
95160752 1455#include "gdb_assert.h"
e7b12392 1456#include <string.h>
b59ff9d5 1457#include "reggroups.h"
4be87837 1458#include "osabi.h"
aebd7893 1459#include "gdb_obstack.h"
383f836e 1460#include "observer.h"
a3ecef73 1461#include "regcache.h"
19630284 1462#include "objfiles.h"
95160752 1463
104c1213
JM
1464/* Static function declarations */
1465
b3cc3077 1466static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1467
104c1213
JM
1468/* Non-zero if we want to trace architecture code. */
1469
1470#ifndef GDBARCH_DEBUG
1471#define GDBARCH_DEBUG 0
1472#endif
ccce17b0 1473unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1474static void
1475show_gdbarch_debug (struct ui_file *file, int from_tty,
1476 struct cmd_list_element *c, const char *value)
1477{
1478 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1479}
104c1213 1480
456fcf94 1481static const char *
8da61cc4 1482pformat (const struct floatformat **format)
456fcf94
AC
1483{
1484 if (format == NULL)
1485 return "(null)";
1486 else
8da61cc4
DJ
1487 /* Just print out one of them - this is only for diagnostics. */
1488 return format[0]->name;
456fcf94
AC
1489}
1490
08105857
PA
1491static const char *
1492pstring (const char *string)
1493{
1494 if (string == NULL)
1495 return "(null)";
1496 return string;
05c0465e
SDJ
1497}
1498
1499/* Helper function to print a list of strings, represented as "const
1500 char *const *". The list is printed comma-separated. */
1501
1502static char *
1503pstring_list (const char *const *list)
1504{
1505 static char ret[100];
1506 const char *const *p;
1507 size_t offset = 0;
1508
1509 if (list == NULL)
1510 return "(null)";
1511
1512 ret[0] = '\0';
1513 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1514 {
1515 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1516 offset += 2 + s;
1517 }
1518
1519 if (offset > 0)
1520 {
1521 gdb_assert (offset - 2 < sizeof (ret));
1522 ret[offset - 2] = '\0';
1523 }
1524
1525 return ret;
08105857
PA
1526}
1527
104c1213
JM
1528EOF
1529
1530# gdbarch open the gdbarch object
3d9a5942 1531printf "\n"
0963b4bd 1532printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1533printf "\n"
1534printf "struct gdbarch\n"
1535printf "{\n"
76860b5f
AC
1536printf " /* Has this architecture been fully initialized? */\n"
1537printf " int initialized_p;\n"
aebd7893
AC
1538printf "\n"
1539printf " /* An obstack bound to the lifetime of the architecture. */\n"
1540printf " struct obstack *obstack;\n"
1541printf "\n"
0963b4bd 1542printf " /* basic architectural information. */\n"
34620563 1543function_list | while do_read
104c1213 1544do
2ada493a
AC
1545 if class_is_info_p
1546 then
3d9a5942 1547 printf " ${returntype} ${function};\n"
2ada493a 1548 fi
104c1213 1549done
3d9a5942 1550printf "\n"
0963b4bd 1551printf " /* target specific vector. */\n"
3d9a5942
AC
1552printf " struct gdbarch_tdep *tdep;\n"
1553printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1554printf "\n"
0963b4bd 1555printf " /* per-architecture data-pointers. */\n"
95160752 1556printf " unsigned nr_data;\n"
3d9a5942
AC
1557printf " void **data;\n"
1558printf "\n"
104c1213
JM
1559cat <<EOF
1560 /* Multi-arch values.
1561
1562 When extending this structure you must:
1563
1564 Add the field below.
1565
1566 Declare set/get functions and define the corresponding
1567 macro in gdbarch.h.
1568
1569 gdbarch_alloc(): If zero/NULL is not a suitable default,
1570 initialize the new field.
1571
1572 verify_gdbarch(): Confirm that the target updated the field
1573 correctly.
1574
7e73cedf 1575 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1576 field is dumped out
1577
c0e8c252 1578 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1579 variable (base values on the host's c-type system).
1580
1581 get_gdbarch(): Implement the set/get functions (probably using
1582 the macro's as shortcuts).
1583
1584 */
1585
1586EOF
34620563 1587function_list | while do_read
104c1213 1588do
2ada493a
AC
1589 if class_is_variable_p
1590 then
3d9a5942 1591 printf " ${returntype} ${function};\n"
2ada493a
AC
1592 elif class_is_function_p
1593 then
2f9b146e 1594 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1595 fi
104c1213 1596done
3d9a5942 1597printf "};\n"
104c1213
JM
1598
1599# A pre-initialized vector
3d9a5942
AC
1600printf "\n"
1601printf "\n"
104c1213
JM
1602cat <<EOF
1603/* The default architecture uses host values (for want of a better
0963b4bd 1604 choice). */
104c1213 1605EOF
3d9a5942
AC
1606printf "\n"
1607printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1608printf "\n"
1609printf "struct gdbarch startup_gdbarch =\n"
1610printf "{\n"
76860b5f 1611printf " 1, /* Always initialized. */\n"
aebd7893 1612printf " NULL, /* The obstack. */\n"
0963b4bd 1613printf " /* basic architecture information. */\n"
4b9b3959 1614function_list | while do_read
104c1213 1615do
2ada493a
AC
1616 if class_is_info_p
1617 then
ec5cbaec 1618 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1619 fi
104c1213
JM
1620done
1621cat <<EOF
0963b4bd 1622 /* target specific vector and its dump routine. */
4b9b3959 1623 NULL, NULL,
c66fb220
TT
1624 /*per-architecture data-pointers. */
1625 0, NULL,
104c1213
JM
1626 /* Multi-arch values */
1627EOF
34620563 1628function_list | while do_read
104c1213 1629do
2ada493a
AC
1630 if class_is_function_p || class_is_variable_p
1631 then
ec5cbaec 1632 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1633 fi
104c1213
JM
1634done
1635cat <<EOF
c0e8c252 1636 /* startup_gdbarch() */
104c1213 1637};
4b9b3959 1638
104c1213
JM
1639EOF
1640
1641# Create a new gdbarch struct
104c1213 1642cat <<EOF
7de2341d 1643
66b43ecb 1644/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1645 \`\`struct gdbarch_info''. */
104c1213 1646EOF
3d9a5942 1647printf "\n"
104c1213
JM
1648cat <<EOF
1649struct gdbarch *
1650gdbarch_alloc (const struct gdbarch_info *info,
1651 struct gdbarch_tdep *tdep)
1652{
be7811ad 1653 struct gdbarch *gdbarch;
aebd7893
AC
1654
1655 /* Create an obstack for allocating all the per-architecture memory,
1656 then use that to allocate the architecture vector. */
70ba0933 1657 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1658 obstack_init (obstack);
be7811ad
MD
1659 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1660 memset (gdbarch, 0, sizeof (*gdbarch));
1661 gdbarch->obstack = obstack;
85de9627 1662
be7811ad 1663 alloc_gdbarch_data (gdbarch);
85de9627 1664
be7811ad 1665 gdbarch->tdep = tdep;
104c1213 1666EOF
3d9a5942 1667printf "\n"
34620563 1668function_list | while do_read
104c1213 1669do
2ada493a
AC
1670 if class_is_info_p
1671 then
be7811ad 1672 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1673 fi
104c1213 1674done
3d9a5942 1675printf "\n"
0963b4bd 1676printf " /* Force the explicit initialization of these. */\n"
34620563 1677function_list | while do_read
104c1213 1678do
2ada493a
AC
1679 if class_is_function_p || class_is_variable_p
1680 then
72e74a21 1681 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1682 then
be7811ad 1683 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1684 fi
2ada493a 1685 fi
104c1213
JM
1686done
1687cat <<EOF
1688 /* gdbarch_alloc() */
1689
be7811ad 1690 return gdbarch;
104c1213
JM
1691}
1692EOF
1693
058f20d5 1694# Free a gdbarch struct.
3d9a5942
AC
1695printf "\n"
1696printf "\n"
058f20d5 1697cat <<EOF
aebd7893
AC
1698/* Allocate extra space using the per-architecture obstack. */
1699
1700void *
1701gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1702{
1703 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1704
aebd7893
AC
1705 memset (data, 0, size);
1706 return data;
1707}
1708
1709
058f20d5
JB
1710/* Free a gdbarch struct. This should never happen in normal
1711 operation --- once you've created a gdbarch, you keep it around.
1712 However, if an architecture's init function encounters an error
1713 building the structure, it may need to clean up a partially
1714 constructed gdbarch. */
4b9b3959 1715
058f20d5
JB
1716void
1717gdbarch_free (struct gdbarch *arch)
1718{
aebd7893 1719 struct obstack *obstack;
05c547f6 1720
95160752 1721 gdb_assert (arch != NULL);
aebd7893
AC
1722 gdb_assert (!arch->initialized_p);
1723 obstack = arch->obstack;
1724 obstack_free (obstack, 0); /* Includes the ARCH. */
1725 xfree (obstack);
058f20d5
JB
1726}
1727EOF
1728
104c1213 1729# verify a new architecture
104c1213 1730cat <<EOF
db446970
AC
1731
1732
1733/* Ensure that all values in a GDBARCH are reasonable. */
1734
104c1213 1735static void
be7811ad 1736verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1737{
f16a1923
AC
1738 struct ui_file *log;
1739 struct cleanup *cleanups;
759ef836 1740 long length;
f16a1923 1741 char *buf;
05c547f6 1742
f16a1923
AC
1743 log = mem_fileopen ();
1744 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1745 /* fundamental */
be7811ad 1746 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1747 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1748 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1749 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1750 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1751EOF
34620563 1752function_list | while do_read
104c1213 1753do
2ada493a
AC
1754 if class_is_function_p || class_is_variable_p
1755 then
72e74a21 1756 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1757 then
3d9a5942 1758 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1759 elif class_is_predicate_p
1760 then
0963b4bd 1761 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1762 # FIXME: See do_read for potential simplification
72e74a21 1763 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1764 then
3d9a5942 1765 printf " if (${invalid_p})\n"
be7811ad 1766 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1767 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1768 then
be7811ad
MD
1769 printf " if (gdbarch->${function} == ${predefault})\n"
1770 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1771 elif [ -n "${postdefault}" ]
f0d4cc9e 1772 then
be7811ad
MD
1773 printf " if (gdbarch->${function} == 0)\n"
1774 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1775 elif [ -n "${invalid_p}" ]
104c1213 1776 then
4d60522e 1777 printf " if (${invalid_p})\n"
f16a1923 1778 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1779 elif [ -n "${predefault}" ]
104c1213 1780 then
be7811ad 1781 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1782 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1783 fi
2ada493a 1784 fi
104c1213
JM
1785done
1786cat <<EOF
759ef836 1787 buf = ui_file_xstrdup (log, &length);
f16a1923 1788 make_cleanup (xfree, buf);
759ef836 1789 if (length > 0)
f16a1923 1790 internal_error (__FILE__, __LINE__,
85c07804 1791 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1792 buf);
1793 do_cleanups (cleanups);
104c1213
JM
1794}
1795EOF
1796
1797# dump the structure
3d9a5942
AC
1798printf "\n"
1799printf "\n"
104c1213 1800cat <<EOF
0963b4bd 1801/* Print out the details of the current architecture. */
4b9b3959 1802
104c1213 1803void
be7811ad 1804gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1805{
b78960be 1806 const char *gdb_nm_file = "<not-defined>";
05c547f6 1807
b78960be
AC
1808#if defined (GDB_NM_FILE)
1809 gdb_nm_file = GDB_NM_FILE;
1810#endif
1811 fprintf_unfiltered (file,
1812 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1813 gdb_nm_file);
104c1213 1814EOF
97030eea 1815function_list | sort -t: -k 3 | while do_read
104c1213 1816do
1e9f55d0
AC
1817 # First the predicate
1818 if class_is_predicate_p
1819 then
7996bcec 1820 printf " fprintf_unfiltered (file,\n"
48f7351b 1821 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1822 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1823 fi
48f7351b 1824 # Print the corresponding value.
283354d8 1825 if class_is_function_p
4b9b3959 1826 then
7996bcec 1827 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1828 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1829 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1830 else
48f7351b 1831 # It is a variable
2f9b146e
AC
1832 case "${print}:${returntype}" in
1833 :CORE_ADDR )
0b1553bc
UW
1834 fmt="%s"
1835 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1836 ;;
2f9b146e 1837 :* )
48f7351b 1838 fmt="%s"
623d3eb1 1839 print="plongest (gdbarch->${function})"
48f7351b
AC
1840 ;;
1841 * )
2f9b146e 1842 fmt="%s"
48f7351b
AC
1843 ;;
1844 esac
3d9a5942 1845 printf " fprintf_unfiltered (file,\n"
48f7351b 1846 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1847 printf " ${print});\n"
2ada493a 1848 fi
104c1213 1849done
381323f4 1850cat <<EOF
be7811ad
MD
1851 if (gdbarch->dump_tdep != NULL)
1852 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1853}
1854EOF
104c1213
JM
1855
1856
1857# GET/SET
3d9a5942 1858printf "\n"
104c1213
JM
1859cat <<EOF
1860struct gdbarch_tdep *
1861gdbarch_tdep (struct gdbarch *gdbarch)
1862{
1863 if (gdbarch_debug >= 2)
3d9a5942 1864 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1865 return gdbarch->tdep;
1866}
1867EOF
3d9a5942 1868printf "\n"
34620563 1869function_list | while do_read
104c1213 1870do
2ada493a
AC
1871 if class_is_predicate_p
1872 then
3d9a5942
AC
1873 printf "\n"
1874 printf "int\n"
1875 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1876 printf "{\n"
8de9bdc4 1877 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1878 printf " return ${predicate};\n"
3d9a5942 1879 printf "}\n"
2ada493a
AC
1880 fi
1881 if class_is_function_p
1882 then
3d9a5942
AC
1883 printf "\n"
1884 printf "${returntype}\n"
72e74a21 1885 if [ "x${formal}" = "xvoid" ]
104c1213 1886 then
3d9a5942 1887 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1888 else
3d9a5942 1889 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1890 fi
3d9a5942 1891 printf "{\n"
8de9bdc4 1892 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1893 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1894 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1895 then
1896 # Allow a call to a function with a predicate.
956ac328 1897 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1898 fi
3d9a5942
AC
1899 printf " if (gdbarch_debug >= 2)\n"
1900 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1901 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1902 then
1903 if class_is_multiarch_p
1904 then
1905 params="gdbarch"
1906 else
1907 params=""
1908 fi
1909 else
1910 if class_is_multiarch_p
1911 then
1912 params="gdbarch, ${actual}"
1913 else
1914 params="${actual}"
1915 fi
1916 fi
72e74a21 1917 if [ "x${returntype}" = "xvoid" ]
104c1213 1918 then
4a5c6a1d 1919 printf " gdbarch->${function} (${params});\n"
104c1213 1920 else
4a5c6a1d 1921 printf " return gdbarch->${function} (${params});\n"
104c1213 1922 fi
3d9a5942
AC
1923 printf "}\n"
1924 printf "\n"
1925 printf "void\n"
1926 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1927 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1928 printf "{\n"
1929 printf " gdbarch->${function} = ${function};\n"
1930 printf "}\n"
2ada493a
AC
1931 elif class_is_variable_p
1932 then
3d9a5942
AC
1933 printf "\n"
1934 printf "${returntype}\n"
1935 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1936 printf "{\n"
8de9bdc4 1937 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1938 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1939 then
3d9a5942 1940 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1941 elif [ -n "${invalid_p}" ]
104c1213 1942 then
956ac328
AC
1943 printf " /* Check variable is valid. */\n"
1944 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1945 elif [ -n "${predefault}" ]
104c1213 1946 then
956ac328
AC
1947 printf " /* Check variable changed from pre-default. */\n"
1948 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1949 fi
3d9a5942
AC
1950 printf " if (gdbarch_debug >= 2)\n"
1951 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1952 printf " return gdbarch->${function};\n"
1953 printf "}\n"
1954 printf "\n"
1955 printf "void\n"
1956 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1957 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1958 printf "{\n"
1959 printf " gdbarch->${function} = ${function};\n"
1960 printf "}\n"
2ada493a
AC
1961 elif class_is_info_p
1962 then
3d9a5942
AC
1963 printf "\n"
1964 printf "${returntype}\n"
1965 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1966 printf "{\n"
8de9bdc4 1967 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1968 printf " if (gdbarch_debug >= 2)\n"
1969 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1970 printf " return gdbarch->${function};\n"
1971 printf "}\n"
2ada493a 1972 fi
104c1213
JM
1973done
1974
1975# All the trailing guff
1976cat <<EOF
1977
1978
f44c642f 1979/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1980 modules. */
104c1213
JM
1981
1982struct gdbarch_data
1983{
95160752 1984 unsigned index;
76860b5f 1985 int init_p;
030f20e1
AC
1986 gdbarch_data_pre_init_ftype *pre_init;
1987 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1988};
1989
1990struct gdbarch_data_registration
1991{
104c1213
JM
1992 struct gdbarch_data *data;
1993 struct gdbarch_data_registration *next;
1994};
1995
f44c642f 1996struct gdbarch_data_registry
104c1213 1997{
95160752 1998 unsigned nr;
104c1213
JM
1999 struct gdbarch_data_registration *registrations;
2000};
2001
f44c642f 2002struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2003{
2004 0, NULL,
2005};
2006
030f20e1
AC
2007static struct gdbarch_data *
2008gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2009 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2010{
2011 struct gdbarch_data_registration **curr;
05c547f6
MS
2012
2013 /* Append the new registration. */
f44c642f 2014 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2015 (*curr) != NULL;
2016 curr = &(*curr)->next);
70ba0933 2017 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2018 (*curr)->next = NULL;
70ba0933 2019 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2020 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2021 (*curr)->data->pre_init = pre_init;
2022 (*curr)->data->post_init = post_init;
76860b5f 2023 (*curr)->data->init_p = 1;
104c1213
JM
2024 return (*curr)->data;
2025}
2026
030f20e1
AC
2027struct gdbarch_data *
2028gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2029{
2030 return gdbarch_data_register (pre_init, NULL);
2031}
2032
2033struct gdbarch_data *
2034gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2035{
2036 return gdbarch_data_register (NULL, post_init);
2037}
104c1213 2038
0963b4bd 2039/* Create/delete the gdbarch data vector. */
95160752
AC
2040
2041static void
b3cc3077 2042alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2043{
b3cc3077
JB
2044 gdb_assert (gdbarch->data == NULL);
2045 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2046 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2047}
3c875b6f 2048
76860b5f 2049/* Initialize the current value of the specified per-architecture
0963b4bd 2050 data-pointer. */
b3cc3077 2051
95160752 2052void
030f20e1
AC
2053deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2054 struct gdbarch_data *data,
2055 void *pointer)
95160752
AC
2056{
2057 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2058 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2059 gdb_assert (data->pre_init == NULL);
95160752
AC
2060 gdbarch->data[data->index] = pointer;
2061}
2062
104c1213 2063/* Return the current value of the specified per-architecture
0963b4bd 2064 data-pointer. */
104c1213
JM
2065
2066void *
451fbdda 2067gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2068{
451fbdda 2069 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2070 if (gdbarch->data[data->index] == NULL)
76860b5f 2071 {
030f20e1
AC
2072 /* The data-pointer isn't initialized, call init() to get a
2073 value. */
2074 if (data->pre_init != NULL)
2075 /* Mid architecture creation: pass just the obstack, and not
2076 the entire architecture, as that way it isn't possible for
2077 pre-init code to refer to undefined architecture
2078 fields. */
2079 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2080 else if (gdbarch->initialized_p
2081 && data->post_init != NULL)
2082 /* Post architecture creation: pass the entire architecture
2083 (as all fields are valid), but be careful to also detect
2084 recursive references. */
2085 {
2086 gdb_assert (data->init_p);
2087 data->init_p = 0;
2088 gdbarch->data[data->index] = data->post_init (gdbarch);
2089 data->init_p = 1;
2090 }
2091 else
2092 /* The architecture initialization hasn't completed - punt -
2093 hope that the caller knows what they are doing. Once
2094 deprecated_set_gdbarch_data has been initialized, this can be
2095 changed to an internal error. */
2096 return NULL;
76860b5f
AC
2097 gdb_assert (gdbarch->data[data->index] != NULL);
2098 }
451fbdda 2099 return gdbarch->data[data->index];
104c1213
JM
2100}
2101
2102
0963b4bd 2103/* Keep a registry of the architectures known by GDB. */
104c1213 2104
4b9b3959 2105struct gdbarch_registration
104c1213
JM
2106{
2107 enum bfd_architecture bfd_architecture;
2108 gdbarch_init_ftype *init;
4b9b3959 2109 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2110 struct gdbarch_list *arches;
4b9b3959 2111 struct gdbarch_registration *next;
104c1213
JM
2112};
2113
f44c642f 2114static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2115
b4a20239
AC
2116static void
2117append_name (const char ***buf, int *nr, const char *name)
2118{
2119 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2120 (*buf)[*nr] = name;
2121 *nr += 1;
2122}
2123
2124const char **
2125gdbarch_printable_names (void)
2126{
7996bcec 2127 /* Accumulate a list of names based on the registed list of
0963b4bd 2128 architectures. */
7996bcec
AC
2129 int nr_arches = 0;
2130 const char **arches = NULL;
2131 struct gdbarch_registration *rego;
05c547f6 2132
7996bcec
AC
2133 for (rego = gdbarch_registry;
2134 rego != NULL;
2135 rego = rego->next)
b4a20239 2136 {
7996bcec
AC
2137 const struct bfd_arch_info *ap;
2138 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2139 if (ap == NULL)
2140 internal_error (__FILE__, __LINE__,
85c07804 2141 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2142 do
2143 {
2144 append_name (&arches, &nr_arches, ap->printable_name);
2145 ap = ap->next;
2146 }
2147 while (ap != NULL);
b4a20239 2148 }
7996bcec
AC
2149 append_name (&arches, &nr_arches, NULL);
2150 return arches;
b4a20239
AC
2151}
2152
2153
104c1213 2154void
4b9b3959
AC
2155gdbarch_register (enum bfd_architecture bfd_architecture,
2156 gdbarch_init_ftype *init,
2157 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2158{
4b9b3959 2159 struct gdbarch_registration **curr;
104c1213 2160 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2161
ec3d358c 2162 /* Check that BFD recognizes this architecture */
104c1213
JM
2163 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2164 if (bfd_arch_info == NULL)
2165 {
8e65ff28 2166 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2167 _("gdbarch: Attempt to register "
2168 "unknown architecture (%d)"),
8e65ff28 2169 bfd_architecture);
104c1213 2170 }
0963b4bd 2171 /* Check that we haven't seen this architecture before. */
f44c642f 2172 for (curr = &gdbarch_registry;
104c1213
JM
2173 (*curr) != NULL;
2174 curr = &(*curr)->next)
2175 {
2176 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2177 internal_error (__FILE__, __LINE__,
64b9b334 2178 _("gdbarch: Duplicate registration "
0963b4bd 2179 "of architecture (%s)"),
8e65ff28 2180 bfd_arch_info->printable_name);
104c1213
JM
2181 }
2182 /* log it */
2183 if (gdbarch_debug)
30737ed9 2184 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2185 bfd_arch_info->printable_name,
30737ed9 2186 host_address_to_string (init));
104c1213 2187 /* Append it */
70ba0933 2188 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2189 (*curr)->bfd_architecture = bfd_architecture;
2190 (*curr)->init = init;
4b9b3959 2191 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2192 (*curr)->arches = NULL;
2193 (*curr)->next = NULL;
4b9b3959
AC
2194}
2195
2196void
2197register_gdbarch_init (enum bfd_architecture bfd_architecture,
2198 gdbarch_init_ftype *init)
2199{
2200 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2201}
104c1213
JM
2202
2203
424163ea 2204/* Look for an architecture using gdbarch_info. */
104c1213
JM
2205
2206struct gdbarch_list *
2207gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2208 const struct gdbarch_info *info)
2209{
2210 for (; arches != NULL; arches = arches->next)
2211 {
2212 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2213 continue;
2214 if (info->byte_order != arches->gdbarch->byte_order)
2215 continue;
4be87837
DJ
2216 if (info->osabi != arches->gdbarch->osabi)
2217 continue;
424163ea
DJ
2218 if (info->target_desc != arches->gdbarch->target_desc)
2219 continue;
104c1213
JM
2220 return arches;
2221 }
2222 return NULL;
2223}
2224
2225
ebdba546 2226/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2227 architecture if needed. Return that new architecture. */
104c1213 2228
59837fe0
UW
2229struct gdbarch *
2230gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2231{
2232 struct gdbarch *new_gdbarch;
4b9b3959 2233 struct gdbarch_registration *rego;
104c1213 2234
b732d07d 2235 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2236 sources: "set ..."; INFOabfd supplied; and the global
2237 defaults. */
2238 gdbarch_info_fill (&info);
4be87837 2239
0963b4bd 2240 /* Must have found some sort of architecture. */
b732d07d 2241 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2242
2243 if (gdbarch_debug)
2244 {
2245 fprintf_unfiltered (gdb_stdlog,
59837fe0 2246 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2247 (info.bfd_arch_info != NULL
2248 ? info.bfd_arch_info->printable_name
2249 : "(null)"));
2250 fprintf_unfiltered (gdb_stdlog,
59837fe0 2251 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2252 info.byte_order,
d7449b42 2253 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2254 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2255 : "default"));
4be87837 2256 fprintf_unfiltered (gdb_stdlog,
59837fe0 2257 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2258 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2259 fprintf_unfiltered (gdb_stdlog,
59837fe0 2260 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2261 host_address_to_string (info.abfd));
104c1213 2262 fprintf_unfiltered (gdb_stdlog,
59837fe0 2263 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2264 host_address_to_string (info.tdep_info));
104c1213
JM
2265 }
2266
ebdba546 2267 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2268 for (rego = gdbarch_registry;
2269 rego != NULL;
2270 rego = rego->next)
2271 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2272 break;
2273 if (rego == NULL)
2274 {
2275 if (gdbarch_debug)
59837fe0 2276 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2277 "No matching architecture\n");
b732d07d
AC
2278 return 0;
2279 }
2280
ebdba546 2281 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2282 new_gdbarch = rego->init (info, rego->arches);
2283
ebdba546
AC
2284 /* Did the tdep code like it? No. Reject the change and revert to
2285 the old architecture. */
104c1213
JM
2286 if (new_gdbarch == NULL)
2287 {
2288 if (gdbarch_debug)
59837fe0 2289 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2290 "Target rejected architecture\n");
2291 return NULL;
104c1213
JM
2292 }
2293
ebdba546
AC
2294 /* Is this a pre-existing architecture (as determined by already
2295 being initialized)? Move it to the front of the architecture
2296 list (keeping the list sorted Most Recently Used). */
2297 if (new_gdbarch->initialized_p)
104c1213 2298 {
ebdba546
AC
2299 struct gdbarch_list **list;
2300 struct gdbarch_list *this;
104c1213 2301 if (gdbarch_debug)
59837fe0 2302 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2303 "Previous architecture %s (%s) selected\n",
2304 host_address_to_string (new_gdbarch),
104c1213 2305 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2306 /* Find the existing arch in the list. */
2307 for (list = &rego->arches;
2308 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2309 list = &(*list)->next);
2310 /* It had better be in the list of architectures. */
2311 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2312 /* Unlink THIS. */
2313 this = (*list);
2314 (*list) = this->next;
2315 /* Insert THIS at the front. */
2316 this->next = rego->arches;
2317 rego->arches = this;
2318 /* Return it. */
2319 return new_gdbarch;
104c1213
JM
2320 }
2321
ebdba546
AC
2322 /* It's a new architecture. */
2323 if (gdbarch_debug)
59837fe0 2324 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2325 "New architecture %s (%s) selected\n",
2326 host_address_to_string (new_gdbarch),
ebdba546
AC
2327 new_gdbarch->bfd_arch_info->printable_name);
2328
2329 /* Insert the new architecture into the front of the architecture
2330 list (keep the list sorted Most Recently Used). */
0f79675b 2331 {
70ba0933 2332 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2333 this->next = rego->arches;
2334 this->gdbarch = new_gdbarch;
2335 rego->arches = this;
2336 }
104c1213 2337
4b9b3959
AC
2338 /* Check that the newly installed architecture is valid. Plug in
2339 any post init values. */
2340 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2341 verify_gdbarch (new_gdbarch);
ebdba546 2342 new_gdbarch->initialized_p = 1;
104c1213 2343
4b9b3959 2344 if (gdbarch_debug)
ebdba546
AC
2345 gdbarch_dump (new_gdbarch, gdb_stdlog);
2346
2347 return new_gdbarch;
2348}
2349
e487cc15 2350/* Make the specified architecture current. */
ebdba546
AC
2351
2352void
aff68abb 2353set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2354{
2355 gdb_assert (new_gdbarch != NULL);
ebdba546 2356 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2357 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2358 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2359 registers_changed ();
ebdba546 2360}
104c1213 2361
f5656ead 2362/* Return the current inferior's arch. */
6ecd4729
PA
2363
2364struct gdbarch *
f5656ead 2365target_gdbarch (void)
6ecd4729
PA
2366{
2367 return current_inferior ()->gdbarch;
2368}
2369
104c1213 2370extern void _initialize_gdbarch (void);
b4a20239 2371
104c1213 2372void
34620563 2373_initialize_gdbarch (void)
104c1213 2374{
ccce17b0 2375 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2376Set architecture debugging."), _("\\
2377Show architecture debugging."), _("\\
2378When non-zero, architecture debugging is enabled."),
2379 NULL,
920d2a44 2380 show_gdbarch_debug,
85c07804 2381 &setdebuglist, &showdebuglist);
104c1213
JM
2382}
2383EOF
2384
2385# close things off
2386exec 1>&2
2387#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2388compare_new gdbarch.c
This page took 1.346487 seconds and 4 git commands to generate.