* config/nm-linux.h: Do not include <signal.h>.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
197e01b6 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
79dd2d24 6# Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
12# the Free Software Foundation; either version 2 of the License, or
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
21# along with this program; if not, write to the Free Software
197e01b6
EZ
22# Foundation, Inc., 51 Franklin Street, Fifth Floor,
23# Boston, MA 02110-1301, USA.
104c1213 24
6e2c7fa1 25# Make certain that the script is not running in an internationalized
d8864532
AC
26# environment.
27LANG=c ; export LANG
1bd316f0 28LC_ALL=c ; export LC_ALL
d8864532
AC
29
30
59233f88
AC
31compare_new ()
32{
33 file=$1
66b43ecb 34 if test ! -r ${file}
59233f88
AC
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 37 elif diff -u ${file} new-${file}
59233f88
AC
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43}
44
45
46# Format of the input table
2f9b146e 47read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
48
49do_read ()
50{
34620563
AC
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
412d5987
AC
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
68908a3e
AC
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
2f9b146e 112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
68908a3e
AC
113 kill $$
114 exit 1
115 fi
116 esac
412d5987 117
a72293e2
AC
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
06b25f14 123
ae45cd16
AC
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
34620563 127 "" )
f7968451 128 if test -n "${predefault}"
34620563
AC
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 131 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
34620563
AC
138 fi
139 ;;
ae45cd16 140 * )
1e9f55d0 141 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
142 kill $$
143 exit 1
144 ;;
145 esac
34620563
AC
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
72e74a21 155 if [ -n "${postdefault}" ]
34620563
AC
156 then
157 fallbackdefault="${postdefault}"
72e74a21 158 elif [ -n "${predefault}" ]
34620563
AC
159 then
160 fallbackdefault="${predefault}"
161 else
73d3c16e 162 fallbackdefault="0"
34620563
AC
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
f0d4cc9e 169 fi
34620563 170 done
72e74a21 171 if [ -n "${class}" ]
34620563
AC
172 then
173 true
c0e8c252
AC
174 else
175 false
176 fi
177}
178
104c1213 179
f0d4cc9e
AC
180fallback_default_p ()
181{
72e74a21
JB
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
184}
185
186class_is_variable_p ()
187{
4a5c6a1d
AC
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
f0d4cc9e
AC
192}
193
194class_is_function_p ()
195{
4a5c6a1d
AC
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200}
201
202class_is_multiarch_p ()
203{
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
f0d4cc9e
AC
208}
209
210class_is_predicate_p ()
211{
4a5c6a1d
AC
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
f0d4cc9e
AC
216}
217
218class_is_info_p ()
219{
4a5c6a1d
AC
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
f0d4cc9e
AC
224}
225
226
cff3e48b
JM
227# dump out/verify the doco
228for field in ${read}
229do
230 case ${field} in
231
232 class ) : ;;
c4093a6a 233
c0e8c252
AC
234 # # -> line disable
235 # f -> function
236 # hiding a function
2ada493a
AC
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
c0e8c252
AC
239 # v -> variable
240 # hiding a variable
2ada493a
AC
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
c0e8c252
AC
243 # i -> set from info
244 # hiding something from the ``struct info'' object
4a5c6a1d
AC
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
cff3e48b 249
cff3e48b
JM
250 macro ) : ;;
251
412d5987 252 # The name of the legacy C macro by which this method can be
226f5cf4 253 # accessed. If empty, no macro is defined. If "=", a macro
412d5987 254 # formed from the upper-case function name is used.
cff3e48b
JM
255
256 returntype ) : ;;
257
c0e8c252 258 # For functions, the return type; for variables, the data type
cff3e48b
JM
259
260 function ) : ;;
261
c0e8c252
AC
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
265
266 formal ) : ;;
267
c0e8c252
AC
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
cff3e48b
JM
272
273 actual ) : ;;
274
c0e8c252
AC
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
cff3e48b 278
0b8f9e4d 279 staticdefault ) : ;;
c0e8c252
AC
280
281 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
cff3e48b 285
0b8f9e4d 286 # If STATICDEFAULT is empty, zero is used.
c0e8c252 287
0b8f9e4d 288 predefault ) : ;;
cff3e48b 289
10312cc4
AC
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
cff3e48b 294
0b8f9e4d
AC
295 # If PREDEFAULT is empty, zero is used.
296
10312cc4
AC
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
f0d4cc9e
AC
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
0b8f9e4d
AC
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
10312cc4
AC
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
f0d4cc9e
AC
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
db446970
AC
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
cff3e48b 329
c4093a6a 330 invalid_p ) : ;;
cff3e48b 331
0b8f9e4d 332 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 333 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
f0d4cc9e
AC
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
344
345 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 346
cff3e48b
JM
347 print ) : ;;
348
2f9b146e
AC
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
c0e8c252 351
2f9b146e
AC
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
cff3e48b 354
283354d8 355 garbage_at_eol ) : ;;
0b8f9e4d 356
283354d8 357 # Catches stray fields.
cff3e48b 358
50248794
AC
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
cff3e48b
JM
362 esac
363done
364
cff3e48b 365
104c1213
JM
366function_list ()
367{
cff3e48b 368 # See below (DOCO) for description of each field
34620563 369 cat <<EOF
2f9b146e 370i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
104c1213 371#
2f9b146e 372i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
4be87837 373#
2f9b146e 374i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
66b43ecb
AC
375# Number of bits in a char or unsigned char for the target machine.
376# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 377# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
378#
379# Number of bits in a short or unsigned short for the target machine.
2f9b146e 380v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 381# Number of bits in an int or unsigned int for the target machine.
2f9b146e 382v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 383# Number of bits in a long or unsigned long for the target machine.
2f9b146e 384v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
385# Number of bits in a long long or unsigned long long for the target
386# machine.
2f9b146e 387v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
456fcf94
AC
388
389# The ABI default bit-size and format for "float", "double", and "long
390# double". These bit/format pairs should eventually be combined into
391# a single object. For the moment, just initialize them as a pair.
392
2f9b146e
AC
393v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
456fcf94 399
52204a0b
DT
400# For most targets, a pointer on the target and its representation as an
401# address in GDB have the same size and "look the same". For such a
402# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403# / addr_bit will be set from it.
404#
405# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407#
408# ptr_bit is the size of a pointer on the target
2f9b146e 409v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 410# addr_bit is the size of a target address as represented in gdb
2f9b146e 411v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 412# Number of bits in a BFD_VMA for the target object file format.
2f9b146e 413v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
2f9b146e 416v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
4e409299 417#
57010b1c 418F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
2f9b146e 419f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
a9e5fdc2 420# UNWIND_SP is a direct replacement for TARGET_READ_SP.
57010b1c 421F:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
422# Function for getting target's idea of a frame pointer. FIXME: GDB's
423# whole scheme for dealing with "frames" and "frame pointers" needs a
424# serious shakedown.
2f9b146e 425f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 426#
b60c417a
AC
427M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
428M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 429#
2f9b146e 430v:=:int:num_regs:::0:-1
0aba1244
EZ
431# This macro gives the number of pseudo-registers that live in the
432# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
433# These pseudo-registers may be aliases for other registers,
434# combinations of other registers, or they may be computed by GDB.
2f9b146e 435v:=:int:num_pseudo_regs:::0:0::0
c2169756
AC
436
437# GDB's standard (or well known) register numbers. These can map onto
438# a real register or a pseudo (computed) register or not be defined at
1200cd6e 439# all (-1).
a9e5fdc2 440# SP_REGNUM will hopefully be replaced by UNWIND_SP.
2f9b146e
AC
441v:=:int:sp_regnum:::-1:-1::0
442v:=:int:pc_regnum:::-1:-1::0
443v:=:int:ps_regnum:::-1:-1::0
444v:=:int:fp0_regnum:::0:-1::0
88c72b7d 445# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
2f9b146e 446f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 447# Provide a default mapping from a ecoff register number to a gdb REGNUM.
2f9b146e 448f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 449# Provide a default mapping from a DWARF register number to a gdb REGNUM.
2f9b146e 450f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
88c72b7d 451# Convert from an sdb register number to an internal gdb register number.
2f9b146e
AC
452f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
412d5987 454f:=:const char *:register_name:int regnr:regnr
9c04cab7 455
2e092625 456# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
68908a3e 457M::struct type *:register_type:int reg_nr:reg_nr
f3be58bc
AC
458# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459# register offsets computed using just REGISTER_TYPE, this can be
460# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461# function with predicate has a valid (callable) initial value. As a
462# consequence, even when the predicate is false, the corresponding
463# function works. This simplifies the migration process - old code,
464# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
2f9b146e 465F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
9c04cab7 466
f3be58bc 467# See gdbint.texinfo, and PUSH_DUMMY_CALL.
68908a3e 468M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
f3be58bc 469# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
f3be58bc 470# DEPRECATED_FP_REGNUM.
2f9b146e 471v:=:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 472
a86c5fc9 473# See gdbint.texinfo. See infcall.c.
68908a3e 474M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
b8de8283 475# DEPRECATED_REGISTER_SIZE can be deleted.
412d5987 476v:=:int:deprecated_register_size
2f9b146e 477v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
68908a3e 478M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
57010b1c 479
2f9b146e 480m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
68908a3e
AC
481M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
483# MAP a GDB RAW register number onto a simulator register number. See
484# also include/...-sim.h.
2f9b146e 485f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
412d5987 486F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
2f9b146e
AC
487f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 489# setjmp/longjmp support.
412d5987 490F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
104c1213 491#
412d5987 492v:=:int:believe_pcc_promotion:::::::
104c1213 493#
2f9b146e 494f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
b60c417a
AC
495f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
496f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
104c1213 497#
b60c417a
AC
498f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
499f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
fc1a4b47 500M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
4478b372 501#
a86c5fc9 502# NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
412d5987 503F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
92ad9cd9
AC
504
505# It has been suggested that this, well actually its predecessor,
506# should take the type/value of the function to be called and not the
507# return type. This is left as an exercise for the reader.
508
750eb019
AC
509# NOTE: cagney/2004-06-13: The function stack.c:return_command uses
510# the predicate with default hack to avoid calling STORE_RETURN_VALUE
511# (via legacy_return_value), when a small struct is involved.
512
b60c417a 513M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
92ad9cd9 514
b5622e8d
AC
515# The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
516# DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
517# DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
518# RETURN_VALUE.
92ad9cd9 519
b60c417a
AC
520f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
521f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
fc1a4b47
AC
522f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
523f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
2f9b146e 524f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
92ad9cd9 525
74055713
AC
526# As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
527# ABI suitable for the implementation of a robust extract
528# struct-convention return-value address method (the sparc saves the
529# address in the callers frame). All the other cases so far examined,
530# the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
531# erreneous - the code was incorrectly assuming that the return-value
532# address, stored in a register, was preserved across the entire
533# function call.
534
535# For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
536# the ABIs that are still to be analyzed - perhaps this should simply
537# be deleted. The commented out extract_returned_value_address method
538# is provided as a starting point for the 32-bit SPARC. It, or
539# something like it, along with changes to both infcmd.c and stack.c
540# will be needed for that case to work. NB: It is passed the callers
541# frame since it is only after the callee has returned that this
542# function is used.
543
57010b1c 544#M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
412d5987 545F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
74055713 546
104c1213 547#
2f9b146e
AC
548f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
549f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
fc1a4b47 550f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
68908a3e 551M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
8181d85f
DJ
552f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
553f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
2f9b146e 554v:=:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
555
556# A function can be addressed by either it's "pointer" (possibly a
557# descriptor address) or "entry point" (first executable instruction).
558# The method "convert_from_func_ptr_addr" converting the former to the
559# latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
560# a simplified subset of that functionality - the function's address
561# corresponds to the "function pointer" and the function's start
562# corresponds to the "function entry point" - and hence is redundant.
563
2f9b146e 564v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 565
2f9b146e 566m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
b2756930
KB
567
568# Fetch the target specific address used to represent a load module.
569F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 570#
2f9b146e 571v:=:CORE_ADDR:frame_args_skip:::0:::0
68908a3e
AC
572M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
574# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575# frame-base. Enable frame-base before frame-unwind.
412d5987 576F:=:int:frame_num_args:struct frame_info *frame:frame
104c1213 577#
f27dd7fd
AC
578# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
579# to frame_align and the requirement that methods such as
580# push_dummy_call and frame_red_zone_size maintain correct stack/frame
581# alignment.
412d5987 582F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
57010b1c 583M::CORE_ADDR:frame_align:CORE_ADDR address:address
192cb3d4
MK
584# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
585# stabs_argument_has_addr.
412d5987 586F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
2f9b146e 587m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
412d5987 588v:=:int:frame_red_zone_size
f0d4cc9e 589#
2f9b146e 590m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
591# On some machines there are bits in addresses which are not really
592# part of the address, but are used by the kernel, the hardware, etc.
593# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
594# we get a "real" address such as one would find in a symbol table.
595# This is used only for addresses of instructions, and even then I'm
596# not sure it's used in all contexts. It exists to deal with there
597# being a few stray bits in the PC which would mislead us, not as some
598# sort of generic thing to handle alignment or segmentation (it's
599# possible it should be in TARGET_READ_PC instead).
2f9b146e 600f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
f6214256 601# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
181c1381 602# ADDR_BITS_REMOVE.
2f9b146e 603f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
64c4637f
AC
604# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
605# the target needs software single step. An ISA method to implement it.
606#
607# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
608# using the breakpoint system instead of blatting memory directly (as with rs6000).
609#
610# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
611# single step. If not, then implement single step using breakpoints.
412d5987 612F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
3352ef37
AC
613# Return non-zero if the processor is executing a delay slot and a
614# further single-step is needed before the instruction finishes.
615M::int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 616# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 617# disassembler. Perhaps objdump can handle it?
2f9b146e
AC
618f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
d50355b6
MS
620
621
dea0c52f
MK
622# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
623# evaluates non-zero, this is the address where the debugger will place
624# a step-resume breakpoint to get us past the dynamic linker.
2f9b146e 625m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 626# Some systems also have trampoline code for returning from shared libs.
2f9b146e 627f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 628
c12260ac
CV
629# A target might have problems with watchpoints as soon as the stack
630# frame of the current function has been destroyed. This mostly happens
631# as the first action in a funtion's epilogue. in_function_epilogue_p()
632# is defined to return a non-zero value if either the given addr is one
633# instruction after the stack destroying instruction up to the trailing
634# return instruction or if we can figure out that the stack frame has
635# already been invalidated regardless of the value of addr. Targets
636# which don't suffer from that problem could just let this functionality
637# untouched.
2f9b146e 638m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
552c04a7
TT
639# Given a vector of command-line arguments, return a newly allocated
640# string which, when passed to the create_inferior function, will be
641# parsed (on Unix systems, by the shell) to yield the same vector.
642# This function should call error() if the argument vector is not
643# representable for this target or if this target does not support
644# command-line arguments.
645# ARGC is the number of elements in the vector.
646# ARGV is an array of strings, one per argument.
2f9b146e
AC
647m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
648f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
649f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
650v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
651v:=:int:cannot_step_breakpoint:::0:0::0
652v:=:int:have_nonsteppable_watchpoint:::0:0::0
412d5987 653F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
68908a3e
AC
654M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
655M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 656# Is a register in a group
2f9b146e 657m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 658# Fetch the pointer to the ith function argument.
412d5987 659F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
660
661# Return the appropriate register set for a core file section with
662# name SECT_NAME and size SECT_SIZE.
57010b1c 663M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
104c1213 664EOF
104c1213
JM
665}
666
0b8f9e4d
AC
667#
668# The .log file
669#
670exec > new-gdbarch.log
34620563 671function_list | while do_read
0b8f9e4d
AC
672do
673 cat <<EOF
2f9b146e 674${class} ${returntype} ${function} ($formal)
104c1213 675EOF
3d9a5942
AC
676 for r in ${read}
677 do
678 eval echo \"\ \ \ \ ${r}=\${${r}}\"
679 done
f0d4cc9e 680 if class_is_predicate_p && fallback_default_p
0b8f9e4d 681 then
66d659b1 682 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
683 kill $$
684 exit 1
685 fi
72e74a21 686 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
687 then
688 echo "Error: postdefault is useless when invalid_p=0" 1>&2
689 kill $$
690 exit 1
691 fi
a72293e2
AC
692 if class_is_multiarch_p
693 then
694 if class_is_predicate_p ; then :
695 elif test "x${predefault}" = "x"
696 then
2f9b146e 697 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
698 kill $$
699 exit 1
700 fi
701 fi
3d9a5942 702 echo ""
0b8f9e4d
AC
703done
704
705exec 1>&2
706compare_new gdbarch.log
707
104c1213
JM
708
709copyright ()
710{
711cat <<EOF
59233f88
AC
712/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
713
104c1213 714/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 715
197e01b6 716 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
79d45cd4 717 Software Foundation, Inc.
104c1213
JM
718
719 This file is part of GDB.
720
721 This program is free software; you can redistribute it and/or modify
722 it under the terms of the GNU General Public License as published by
723 the Free Software Foundation; either version 2 of the License, or
724 (at your option) any later version.
725
726 This program is distributed in the hope that it will be useful,
727 but WITHOUT ANY WARRANTY; without even the implied warranty of
728 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
729 GNU General Public License for more details.
730
731 You should have received a copy of the GNU General Public License
732 along with this program; if not, write to the Free Software
197e01b6
EZ
733 Foundation, Inc., 51 Franklin Street, Fifth Floor,
734 Boston, MA 02110-1301, USA. */
104c1213 735
104c1213
JM
736/* This file was created with the aid of \`\`gdbarch.sh''.
737
52204a0b 738 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
739 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
740 against the existing \`\`gdbarch.[hc]''. Any differences found
741 being reported.
742
743 If editing this file, please also run gdbarch.sh and merge any
52204a0b 744 changes into that script. Conversely, when making sweeping changes
104c1213
JM
745 to this file, modifying gdbarch.sh and using its output may prove
746 easier. */
747
748EOF
749}
750
751#
752# The .h file
753#
754
755exec > new-gdbarch.h
756copyright
757cat <<EOF
758#ifndef GDBARCH_H
759#define GDBARCH_H
760
da3331ec
AC
761struct floatformat;
762struct ui_file;
104c1213
JM
763struct frame_info;
764struct value;
b6af0555 765struct objfile;
a2cf933a 766struct minimal_symbol;
049ee0e4 767struct regcache;
b59ff9d5 768struct reggroup;
6ce6d90f 769struct regset;
a89aa300 770struct disassemble_info;
e2d0e7eb 771struct target_ops;
030f20e1 772struct obstack;
8181d85f 773struct bp_target_info;
104c1213 774
104c1213 775extern struct gdbarch *current_gdbarch;
104c1213
JM
776EOF
777
778# function typedef's
3d9a5942
AC
779printf "\n"
780printf "\n"
781printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 782function_list | while do_read
104c1213 783do
2ada493a
AC
784 if class_is_info_p
785 then
3d9a5942
AC
786 printf "\n"
787 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
788 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
412d5987
AC
789 if test -n "${macro}"
790 then
5010d38b 791 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
412d5987
AC
792 printf "#error \"Non multi-arch definition of ${macro}\"\n"
793 printf "#endif\n"
794 printf "#if !defined (${macro})\n"
795 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
796 printf "#endif\n"
797 fi
2ada493a 798 fi
104c1213
JM
799done
800
801# function typedef's
3d9a5942
AC
802printf "\n"
803printf "\n"
804printf "/* The following are initialized by the target dependent code. */\n"
34620563 805function_list | while do_read
104c1213 806do
72e74a21 807 if [ -n "${comment}" ]
34620563
AC
808 then
809 echo "${comment}" | sed \
810 -e '2 s,#,/*,' \
811 -e '3,$ s,#, ,' \
812 -e '$ s,$, */,'
813 fi
412d5987
AC
814
815 if class_is_predicate_p
2ada493a 816 then
412d5987 817 if test -n "${macro}"
b77be6cf
AC
818 then
819 printf "\n"
820 printf "#if defined (${macro})\n"
821 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
eee30e78 822 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
823 printf "#define ${macro}_P() (1)\n"
824 printf "#endif\n"
eee30e78 825 printf "#endif\n"
412d5987
AC
826 fi
827 printf "\n"
828 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
829 if test -n "${macro}"
830 then
5010d38b 831 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
83905903
AC
832 printf "#error \"Non multi-arch definition of ${macro}\"\n"
833 printf "#endif\n"
bceabdd8 834 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
835 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
836 printf "#endif\n"
837 fi
4a5c6a1d 838 fi
2ada493a
AC
839 if class_is_variable_p
840 then
3d9a5942
AC
841 printf "\n"
842 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
843 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
412d5987
AC
844 if test -n "${macro}"
845 then
5010d38b 846 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
412d5987
AC
847 printf "#error \"Non multi-arch definition of ${macro}\"\n"
848 printf "#endif\n"
849 printf "#if !defined (${macro})\n"
850 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
851 printf "#endif\n"
852 fi
2ada493a
AC
853 fi
854 if class_is_function_p
855 then
3d9a5942 856 printf "\n"
72e74a21 857 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
858 then
859 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
860 elif class_is_multiarch_p
861 then
862 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
863 else
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
865 fi
72e74a21 866 if [ "x${formal}" = "xvoid" ]
104c1213 867 then
3d9a5942 868 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 869 else
3d9a5942 870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 871 fi
3d9a5942 872 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
412d5987
AC
873 if test -n "${macro}"
874 then
5010d38b 875 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
83905903
AC
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
c25083af
AC
878 if [ "x${actual}" = "x" ]
879 then
880 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
881 elif [ "x${actual}" = "x-" ]
882 then
883 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
884 else
885 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
886 fi
887 printf "#if !defined (${macro})\n"
72e74a21 888 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
889 then
890 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 891 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
892 then
893 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
894 else
895 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
896 fi
897 printf "#endif\n"
104c1213 898 fi
2ada493a 899 fi
104c1213
JM
900done
901
902# close it off
903cat <<EOF
904
905extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
906
907
908/* Mechanism for co-ordinating the selection of a specific
909 architecture.
910
911 GDB targets (*-tdep.c) can register an interest in a specific
912 architecture. Other GDB components can register a need to maintain
913 per-architecture data.
914
915 The mechanisms below ensures that there is only a loose connection
916 between the set-architecture command and the various GDB
0fa6923a 917 components. Each component can independently register their need
104c1213
JM
918 to maintain architecture specific data with gdbarch.
919
920 Pragmatics:
921
922 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
923 didn't scale.
924
925 The more traditional mega-struct containing architecture specific
926 data for all the various GDB components was also considered. Since
0fa6923a 927 GDB is built from a variable number of (fairly independent)
104c1213
JM
928 components it was determined that the global aproach was not
929 applicable. */
930
931
932/* Register a new architectural family with GDB.
933
934 Register support for the specified ARCHITECTURE with GDB. When
935 gdbarch determines that the specified architecture has been
936 selected, the corresponding INIT function is called.
937
938 --
939
940 The INIT function takes two parameters: INFO which contains the
941 information available to gdbarch about the (possibly new)
942 architecture; ARCHES which is a list of the previously created
943 \`\`struct gdbarch'' for this architecture.
944
0f79675b 945 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 946 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
947
948 The ARCHES parameter is a linked list (sorted most recently used)
949 of all the previously created architures for this architecture
950 family. The (possibly NULL) ARCHES->gdbarch can used to access
951 values from the previously selected architecture for this
952 architecture family. The global \`\`current_gdbarch'' shall not be
953 used.
104c1213
JM
954
955 The INIT function shall return any of: NULL - indicating that it
ec3d358c 956 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
957 gdbarch'' from the ARCHES list - indicating that the new
958 architecture is just a synonym for an earlier architecture (see
959 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
960 - that describes the selected architecture (see gdbarch_alloc()).
961
962 The DUMP_TDEP function shall print out all target specific values.
963 Care should be taken to ensure that the function works in both the
964 multi-arch and non- multi-arch cases. */
104c1213
JM
965
966struct gdbarch_list
967{
968 struct gdbarch *gdbarch;
969 struct gdbarch_list *next;
970};
971
972struct gdbarch_info
973{
104c1213
JM
974 /* Use default: NULL (ZERO). */
975 const struct bfd_arch_info *bfd_arch_info;
976
428721aa 977 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
978 int byte_order;
979
980 /* Use default: NULL (ZERO). */
981 bfd *abfd;
982
983 /* Use default: NULL (ZERO). */
984 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
985
986 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
987 enum gdb_osabi osabi;
104c1213
JM
988};
989
990typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 991typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 992
4b9b3959 993/* DEPRECATED - use gdbarch_register() */
104c1213
JM
994extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
995
4b9b3959
AC
996extern void gdbarch_register (enum bfd_architecture architecture,
997 gdbarch_init_ftype *,
998 gdbarch_dump_tdep_ftype *);
999
104c1213 1000
b4a20239
AC
1001/* Return a freshly allocated, NULL terminated, array of the valid
1002 architecture names. Since architectures are registered during the
1003 _initialize phase this function only returns useful information
1004 once initialization has been completed. */
1005
1006extern const char **gdbarch_printable_names (void);
1007
1008
104c1213
JM
1009/* Helper function. Search the list of ARCHES for a GDBARCH that
1010 matches the information provided by INFO. */
1011
1012extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1013
1014
1015/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1016 basic initialization using values obtained from the INFO andTDEP
1017 parameters. set_gdbarch_*() functions are called to complete the
1018 initialization of the object. */
1019
1020extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1021
1022
4b9b3959
AC
1023/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1024 It is assumed that the caller freeds the \`\`struct
1025 gdbarch_tdep''. */
1026
058f20d5
JB
1027extern void gdbarch_free (struct gdbarch *);
1028
1029
aebd7893
AC
1030/* Helper function. Allocate memory from the \`\`struct gdbarch''
1031 obstack. The memory is freed when the corresponding architecture
1032 is also freed. */
1033
1034extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1035#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1036#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1037
1038
b732d07d 1039/* Helper function. Force an update of the current architecture.
104c1213 1040
b732d07d
AC
1041 The actual architecture selected is determined by INFO, \`\`(gdb) set
1042 architecture'' et.al., the existing architecture and BFD's default
1043 architecture. INFO should be initialized to zero and then selected
1044 fields should be updated.
104c1213 1045
16f33e29
AC
1046 Returns non-zero if the update succeeds */
1047
1048extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1049
1050
ebdba546
AC
1051/* Helper function. Find an architecture matching info.
1052
1053 INFO should be initialized using gdbarch_info_init, relevant fields
1054 set, and then finished using gdbarch_info_fill.
1055
1056 Returns the corresponding architecture, or NULL if no matching
1057 architecture was found. "current_gdbarch" is not updated. */
1058
1059extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1060
1061
1062/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1063
1064 FIXME: kettenis/20031124: Of the functions that follow, only
1065 gdbarch_from_bfd is supposed to survive. The others will
1066 dissappear since in the future GDB will (hopefully) be truly
1067 multi-arch. However, for now we're still stuck with the concept of
1068 a single active architecture. */
1069
1070extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1071
104c1213
JM
1072
1073/* Register per-architecture data-pointer.
1074
1075 Reserve space for a per-architecture data-pointer. An identifier
1076 for the reserved data-pointer is returned. That identifer should
95160752 1077 be saved in a local static variable.
104c1213 1078
fcc1c85c
AC
1079 Memory for the per-architecture data shall be allocated using
1080 gdbarch_obstack_zalloc. That memory will be deleted when the
1081 corresponding architecture object is deleted.
104c1213 1082
95160752
AC
1083 When a previously created architecture is re-selected, the
1084 per-architecture data-pointer for that previous architecture is
76860b5f 1085 restored. INIT() is not re-called.
104c1213
JM
1086
1087 Multiple registrarants for any architecture are allowed (and
1088 strongly encouraged). */
1089
95160752 1090struct gdbarch_data;
104c1213 1091
030f20e1
AC
1092typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1093extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1094typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1095extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1096extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1097 struct gdbarch_data *data,
1098 void *pointer);
104c1213 1099
451fbdda 1100extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1101
1102
a8cf2722 1103
104c1213
JM
1104/* Register per-architecture memory region.
1105
1106 Provide a memory-region swap mechanism. Per-architecture memory
1107 region are created. These memory regions are swapped whenever the
1108 architecture is changed. For a new architecture, the memory region
1109 is initialized with zero (0) and the INIT function is called.
1110
1111 Memory regions are swapped / initialized in the order that they are
1112 registered. NULL DATA and/or INIT values can be specified.
1113
030f20e1 1114 New code should use gdbarch_data_register_*(). */
104c1213
JM
1115
1116typedef void (gdbarch_swap_ftype) (void);
046a4708
AC
1117extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1118#define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1119
1120
1121
0fa6923a 1122/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1123 byte-order, ...) using information found in the BFD */
1124
1125extern void set_gdbarch_from_file (bfd *);
1126
1127
e514a9d6
JM
1128/* Initialize the current architecture to the "first" one we find on
1129 our list. */
1130
1131extern void initialize_current_architecture (void);
1132
104c1213
JM
1133/* gdbarch trace variable */
1134extern int gdbarch_debug;
1135
4b9b3959 1136extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1137
1138#endif
1139EOF
1140exec 1>&2
1141#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1142compare_new gdbarch.h
104c1213
JM
1143
1144
1145#
1146# C file
1147#
1148
1149exec > new-gdbarch.c
1150copyright
1151cat <<EOF
1152
1153#include "defs.h"
7355ddba 1154#include "arch-utils.h"
104c1213 1155
104c1213
JM
1156#include "gdbcmd.h"
1157#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
104c1213
JM
1158#include "symcat.h"
1159
f0d4cc9e 1160#include "floatformat.h"
104c1213 1161
95160752 1162#include "gdb_assert.h"
b66d6d2e 1163#include "gdb_string.h"
67c2c32c 1164#include "gdb-events.h"
b59ff9d5 1165#include "reggroups.h"
4be87837 1166#include "osabi.h"
aebd7893 1167#include "gdb_obstack.h"
95160752 1168
104c1213
JM
1169/* Static function declarations */
1170
b3cc3077 1171static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1172
104c1213
JM
1173/* Non-zero if we want to trace architecture code. */
1174
1175#ifndef GDBARCH_DEBUG
1176#define GDBARCH_DEBUG 0
1177#endif
1178int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1179static void
1180show_gdbarch_debug (struct ui_file *file, int from_tty,
1181 struct cmd_list_element *c, const char *value)
1182{
1183 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1184}
104c1213 1185
456fcf94
AC
1186static const char *
1187pformat (const struct floatformat *format)
1188{
1189 if (format == NULL)
1190 return "(null)";
1191 else
1192 return format->name;
1193}
1194
104c1213
JM
1195EOF
1196
1197# gdbarch open the gdbarch object
3d9a5942
AC
1198printf "\n"
1199printf "/* Maintain the struct gdbarch object */\n"
1200printf "\n"
1201printf "struct gdbarch\n"
1202printf "{\n"
76860b5f
AC
1203printf " /* Has this architecture been fully initialized? */\n"
1204printf " int initialized_p;\n"
aebd7893
AC
1205printf "\n"
1206printf " /* An obstack bound to the lifetime of the architecture. */\n"
1207printf " struct obstack *obstack;\n"
1208printf "\n"
3d9a5942 1209printf " /* basic architectural information */\n"
34620563 1210function_list | while do_read
104c1213 1211do
2ada493a
AC
1212 if class_is_info_p
1213 then
3d9a5942 1214 printf " ${returntype} ${function};\n"
2ada493a 1215 fi
104c1213 1216done
3d9a5942
AC
1217printf "\n"
1218printf " /* target specific vector. */\n"
1219printf " struct gdbarch_tdep *tdep;\n"
1220printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1221printf "\n"
1222printf " /* per-architecture data-pointers */\n"
95160752 1223printf " unsigned nr_data;\n"
3d9a5942
AC
1224printf " void **data;\n"
1225printf "\n"
1226printf " /* per-architecture swap-regions */\n"
1227printf " struct gdbarch_swap *swap;\n"
1228printf "\n"
104c1213
JM
1229cat <<EOF
1230 /* Multi-arch values.
1231
1232 When extending this structure you must:
1233
1234 Add the field below.
1235
1236 Declare set/get functions and define the corresponding
1237 macro in gdbarch.h.
1238
1239 gdbarch_alloc(): If zero/NULL is not a suitable default,
1240 initialize the new field.
1241
1242 verify_gdbarch(): Confirm that the target updated the field
1243 correctly.
1244
7e73cedf 1245 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1246 field is dumped out
1247
c0e8c252 1248 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1249 variable (base values on the host's c-type system).
1250
1251 get_gdbarch(): Implement the set/get functions (probably using
1252 the macro's as shortcuts).
1253
1254 */
1255
1256EOF
34620563 1257function_list | while do_read
104c1213 1258do
2ada493a
AC
1259 if class_is_variable_p
1260 then
3d9a5942 1261 printf " ${returntype} ${function};\n"
2ada493a
AC
1262 elif class_is_function_p
1263 then
2f9b146e 1264 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1265 fi
104c1213 1266done
3d9a5942 1267printf "};\n"
104c1213
JM
1268
1269# A pre-initialized vector
3d9a5942
AC
1270printf "\n"
1271printf "\n"
104c1213
JM
1272cat <<EOF
1273/* The default architecture uses host values (for want of a better
1274 choice). */
1275EOF
3d9a5942
AC
1276printf "\n"
1277printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1278printf "\n"
1279printf "struct gdbarch startup_gdbarch =\n"
1280printf "{\n"
76860b5f 1281printf " 1, /* Always initialized. */\n"
aebd7893 1282printf " NULL, /* The obstack. */\n"
3d9a5942 1283printf " /* basic architecture information */\n"
4b9b3959 1284function_list | while do_read
104c1213 1285do
2ada493a
AC
1286 if class_is_info_p
1287 then
ec5cbaec 1288 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1289 fi
104c1213
JM
1290done
1291cat <<EOF
4b9b3959
AC
1292 /* target specific vector and its dump routine */
1293 NULL, NULL,
104c1213
JM
1294 /*per-architecture data-pointers and swap regions */
1295 0, NULL, NULL,
1296 /* Multi-arch values */
1297EOF
34620563 1298function_list | while do_read
104c1213 1299do
2ada493a
AC
1300 if class_is_function_p || class_is_variable_p
1301 then
ec5cbaec 1302 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1303 fi
104c1213
JM
1304done
1305cat <<EOF
c0e8c252 1306 /* startup_gdbarch() */
104c1213 1307};
4b9b3959 1308
c0e8c252 1309struct gdbarch *current_gdbarch = &startup_gdbarch;
104c1213
JM
1310EOF
1311
1312# Create a new gdbarch struct
104c1213 1313cat <<EOF
7de2341d 1314
66b43ecb 1315/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1316 \`\`struct gdbarch_info''. */
1317EOF
3d9a5942 1318printf "\n"
104c1213
JM
1319cat <<EOF
1320struct gdbarch *
1321gdbarch_alloc (const struct gdbarch_info *info,
1322 struct gdbarch_tdep *tdep)
1323{
85de9627
AC
1324 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1325 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1326 the current local architecture and not the previous global
1327 architecture. This ensures that the new architectures initial
1328 values are not influenced by the previous architecture. Once
1329 everything is parameterised with gdbarch, this will go away. */
aebd7893
AC
1330 struct gdbarch *current_gdbarch;
1331
1332 /* Create an obstack for allocating all the per-architecture memory,
1333 then use that to allocate the architecture vector. */
1334 struct obstack *obstack = XMALLOC (struct obstack);
1335 obstack_init (obstack);
1336 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
85de9627 1337 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
aebd7893 1338 current_gdbarch->obstack = obstack;
85de9627
AC
1339
1340 alloc_gdbarch_data (current_gdbarch);
1341
1342 current_gdbarch->tdep = tdep;
104c1213 1343EOF
3d9a5942 1344printf "\n"
34620563 1345function_list | while do_read
104c1213 1346do
2ada493a
AC
1347 if class_is_info_p
1348 then
85de9627 1349 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1350 fi
104c1213 1351done
3d9a5942
AC
1352printf "\n"
1353printf " /* Force the explicit initialization of these. */\n"
34620563 1354function_list | while do_read
104c1213 1355do
2ada493a
AC
1356 if class_is_function_p || class_is_variable_p
1357 then
72e74a21 1358 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1359 then
85de9627 1360 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1361 fi
2ada493a 1362 fi
104c1213
JM
1363done
1364cat <<EOF
1365 /* gdbarch_alloc() */
1366
85de9627 1367 return current_gdbarch;
104c1213
JM
1368}
1369EOF
1370
058f20d5 1371# Free a gdbarch struct.
3d9a5942
AC
1372printf "\n"
1373printf "\n"
058f20d5 1374cat <<EOF
aebd7893
AC
1375/* Allocate extra space using the per-architecture obstack. */
1376
1377void *
1378gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1379{
1380 void *data = obstack_alloc (arch->obstack, size);
1381 memset (data, 0, size);
1382 return data;
1383}
1384
1385
058f20d5
JB
1386/* Free a gdbarch struct. This should never happen in normal
1387 operation --- once you've created a gdbarch, you keep it around.
1388 However, if an architecture's init function encounters an error
1389 building the structure, it may need to clean up a partially
1390 constructed gdbarch. */
4b9b3959 1391
058f20d5
JB
1392void
1393gdbarch_free (struct gdbarch *arch)
1394{
aebd7893 1395 struct obstack *obstack;
95160752 1396 gdb_assert (arch != NULL);
aebd7893
AC
1397 gdb_assert (!arch->initialized_p);
1398 obstack = arch->obstack;
1399 obstack_free (obstack, 0); /* Includes the ARCH. */
1400 xfree (obstack);
058f20d5
JB
1401}
1402EOF
1403
104c1213 1404# verify a new architecture
104c1213 1405cat <<EOF
db446970
AC
1406
1407
1408/* Ensure that all values in a GDBARCH are reasonable. */
1409
1410/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1411 just happens to match the global variable \`\`current_gdbarch''. That
1412 way macros refering to that variable get the local and not the global
1413 version - ulgh. Once everything is parameterised with gdbarch, this
1414 will go away. */
1415
104c1213 1416static void
db446970 1417verify_gdbarch (struct gdbarch *current_gdbarch)
104c1213 1418{
f16a1923
AC
1419 struct ui_file *log;
1420 struct cleanup *cleanups;
1421 long dummy;
1422 char *buf;
f16a1923
AC
1423 log = mem_fileopen ();
1424 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1425 /* fundamental */
db446970 1426 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1427 fprintf_unfiltered (log, "\n\tbyte-order");
db446970 1428 if (current_gdbarch->bfd_arch_info == NULL)
f16a1923 1429 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1430 /* Check those that need to be defined for the given multi-arch level. */
1431EOF
34620563 1432function_list | while do_read
104c1213 1433do
2ada493a
AC
1434 if class_is_function_p || class_is_variable_p
1435 then
72e74a21 1436 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1437 then
3d9a5942 1438 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1439 elif class_is_predicate_p
1440 then
3d9a5942 1441 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1442 # FIXME: See do_read for potential simplification
72e74a21 1443 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1444 then
3d9a5942 1445 printf " if (${invalid_p})\n"
db446970 1446 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1447 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1448 then
db446970
AC
1449 printf " if (current_gdbarch->${function} == ${predefault})\n"
1450 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1451 elif [ -n "${postdefault}" ]
f0d4cc9e 1452 then
db446970
AC
1453 printf " if (current_gdbarch->${function} == 0)\n"
1454 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1455 elif [ -n "${invalid_p}" ]
104c1213 1456 then
4d60522e 1457 printf " if (${invalid_p})\n"
f16a1923 1458 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1459 elif [ -n "${predefault}" ]
104c1213 1460 then
4d60522e 1461 printf " if (current_gdbarch->${function} == ${predefault})\n"
f16a1923 1462 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1463 fi
2ada493a 1464 fi
104c1213
JM
1465done
1466cat <<EOF
f16a1923
AC
1467 buf = ui_file_xstrdup (log, &dummy);
1468 make_cleanup (xfree, buf);
1469 if (strlen (buf) > 0)
1470 internal_error (__FILE__, __LINE__,
85c07804 1471 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1472 buf);
1473 do_cleanups (cleanups);
104c1213
JM
1474}
1475EOF
1476
1477# dump the structure
3d9a5942
AC
1478printf "\n"
1479printf "\n"
104c1213 1480cat <<EOF
4b9b3959
AC
1481/* Print out the details of the current architecture. */
1482
1483/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1484 just happens to match the global variable \`\`current_gdbarch''. That
1485 way macros refering to that variable get the local and not the global
1486 version - ulgh. Once everything is parameterised with gdbarch, this
1487 will go away. */
1488
104c1213 1489void
db446970 1490gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
104c1213 1491{
b78960be
AC
1492 const char *gdb_xm_file = "<not-defined>";
1493 const char *gdb_nm_file = "<not-defined>";
1494 const char *gdb_tm_file = "<not-defined>";
1495#if defined (GDB_XM_FILE)
1496 gdb_xm_file = GDB_XM_FILE;
1497#endif
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1500 gdb_xm_file);
1501#if defined (GDB_NM_FILE)
1502 gdb_nm_file = GDB_NM_FILE;
1503#endif
1504 fprintf_unfiltered (file,
1505 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1506 gdb_nm_file);
1507#if defined (GDB_TM_FILE)
1508 gdb_tm_file = GDB_TM_FILE;
1509#endif
4b9b3959 1510 fprintf_unfiltered (file,
b78960be
AC
1511 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1512 gdb_tm_file);
104c1213 1513EOF
a2428dbe 1514function_list | sort -t: -k 4 | while do_read
104c1213 1515do
1e9f55d0
AC
1516 # First the predicate
1517 if class_is_predicate_p
1518 then
48f7351b 1519 if test -n "${macro}"
1e9f55d0 1520 then
1e9f55d0
AC
1521 printf "#ifdef ${macro}_P\n"
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1524 printf " \"${macro}_P()\",\n"
1525 printf " XSTRING (${macro}_P ()));\n"
1e9f55d0
AC
1526 printf "#endif\n"
1527 fi
7996bcec 1528 printf " fprintf_unfiltered (file,\n"
48f7351b
AC
1529 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1530 printf " gdbarch_${function}_p (current_gdbarch));\n"
08e45a40 1531 fi
06b25f14 1532 # Print the macro definition.
48f7351b 1533 if test -n "${macro}"
2ada493a 1534 then
48f7351b
AC
1535 printf "#ifdef ${macro}\n"
1536 if class_is_function_p
1537 then
1538 printf " fprintf_unfiltered (file,\n"
1539 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1540 printf " \"${macro}(${actual})\",\n"
1541 printf " XSTRING (${macro} (${actual})));\n"
1542 else
1543 printf " fprintf_unfiltered (file,\n"
1544 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1545 printf " XSTRING (${macro}));\n"
1546 fi
1547 printf "#endif\n"
4b9b3959 1548 fi
48f7351b 1549 # Print the corresponding value.
283354d8 1550 if class_is_function_p
4b9b3959 1551 then
7996bcec 1552 printf " fprintf_unfiltered (file,\n"
48f7351b
AC
1553 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1554 printf " (long) current_gdbarch->${function});\n"
4b9b3959 1555 else
48f7351b 1556 # It is a variable
2f9b146e
AC
1557 case "${print}:${returntype}" in
1558 :CORE_ADDR )
48f7351b
AC
1559 fmt="0x%s"
1560 print="paddr_nz (current_gdbarch->${function})"
1561 ;;
2f9b146e 1562 :* )
48f7351b
AC
1563 fmt="%s"
1564 print="paddr_d (current_gdbarch->${function})"
1565 ;;
1566 * )
2f9b146e 1567 fmt="%s"
48f7351b
AC
1568 ;;
1569 esac
3d9a5942 1570 printf " fprintf_unfiltered (file,\n"
48f7351b 1571 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1572 printf " ${print});\n"
2ada493a 1573 fi
104c1213 1574done
381323f4 1575cat <<EOF
4b9b3959
AC
1576 if (current_gdbarch->dump_tdep != NULL)
1577 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1578}
1579EOF
104c1213
JM
1580
1581
1582# GET/SET
3d9a5942 1583printf "\n"
104c1213
JM
1584cat <<EOF
1585struct gdbarch_tdep *
1586gdbarch_tdep (struct gdbarch *gdbarch)
1587{
1588 if (gdbarch_debug >= 2)
3d9a5942 1589 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1590 return gdbarch->tdep;
1591}
1592EOF
3d9a5942 1593printf "\n"
34620563 1594function_list | while do_read
104c1213 1595do
2ada493a
AC
1596 if class_is_predicate_p
1597 then
3d9a5942
AC
1598 printf "\n"
1599 printf "int\n"
1600 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1601 printf "{\n"
8de9bdc4 1602 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1603 printf " return ${predicate};\n"
3d9a5942 1604 printf "}\n"
2ada493a
AC
1605 fi
1606 if class_is_function_p
1607 then
3d9a5942
AC
1608 printf "\n"
1609 printf "${returntype}\n"
72e74a21 1610 if [ "x${formal}" = "xvoid" ]
104c1213 1611 then
3d9a5942 1612 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1613 else
3d9a5942 1614 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1615 fi
3d9a5942 1616 printf "{\n"
8de9bdc4 1617 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1618 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1619 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1620 then
1621 # Allow a call to a function with a predicate.
956ac328 1622 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1623 fi
3d9a5942
AC
1624 printf " if (gdbarch_debug >= 2)\n"
1625 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1626 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1627 then
1628 if class_is_multiarch_p
1629 then
1630 params="gdbarch"
1631 else
1632 params=""
1633 fi
1634 else
1635 if class_is_multiarch_p
1636 then
1637 params="gdbarch, ${actual}"
1638 else
1639 params="${actual}"
1640 fi
1641 fi
72e74a21 1642 if [ "x${returntype}" = "xvoid" ]
104c1213 1643 then
4a5c6a1d 1644 printf " gdbarch->${function} (${params});\n"
104c1213 1645 else
4a5c6a1d 1646 printf " return gdbarch->${function} (${params});\n"
104c1213 1647 fi
3d9a5942
AC
1648 printf "}\n"
1649 printf "\n"
1650 printf "void\n"
1651 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1652 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1653 printf "{\n"
1654 printf " gdbarch->${function} = ${function};\n"
1655 printf "}\n"
2ada493a
AC
1656 elif class_is_variable_p
1657 then
3d9a5942
AC
1658 printf "\n"
1659 printf "${returntype}\n"
1660 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1661 printf "{\n"
8de9bdc4 1662 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1663 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1664 then
3d9a5942 1665 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1666 elif [ -n "${invalid_p}" ]
104c1213 1667 then
956ac328
AC
1668 printf " /* Check variable is valid. */\n"
1669 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1670 elif [ -n "${predefault}" ]
104c1213 1671 then
956ac328
AC
1672 printf " /* Check variable changed from pre-default. */\n"
1673 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1674 fi
3d9a5942
AC
1675 printf " if (gdbarch_debug >= 2)\n"
1676 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1677 printf " return gdbarch->${function};\n"
1678 printf "}\n"
1679 printf "\n"
1680 printf "void\n"
1681 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1682 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1683 printf "{\n"
1684 printf " gdbarch->${function} = ${function};\n"
1685 printf "}\n"
2ada493a
AC
1686 elif class_is_info_p
1687 then
3d9a5942
AC
1688 printf "\n"
1689 printf "${returntype}\n"
1690 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1691 printf "{\n"
8de9bdc4 1692 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1693 printf " if (gdbarch_debug >= 2)\n"
1694 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1695 printf " return gdbarch->${function};\n"
1696 printf "}\n"
2ada493a 1697 fi
104c1213
JM
1698done
1699
1700# All the trailing guff
1701cat <<EOF
1702
1703
f44c642f 1704/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1705 modules. */
1706
1707struct gdbarch_data
1708{
95160752 1709 unsigned index;
76860b5f 1710 int init_p;
030f20e1
AC
1711 gdbarch_data_pre_init_ftype *pre_init;
1712 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1713};
1714
1715struct gdbarch_data_registration
1716{
104c1213
JM
1717 struct gdbarch_data *data;
1718 struct gdbarch_data_registration *next;
1719};
1720
f44c642f 1721struct gdbarch_data_registry
104c1213 1722{
95160752 1723 unsigned nr;
104c1213
JM
1724 struct gdbarch_data_registration *registrations;
1725};
1726
f44c642f 1727struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1728{
1729 0, NULL,
1730};
1731
030f20e1
AC
1732static struct gdbarch_data *
1733gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1734 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1735{
1736 struct gdbarch_data_registration **curr;
76860b5f 1737 /* Append the new registraration. */
f44c642f 1738 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1739 (*curr) != NULL;
1740 curr = &(*curr)->next);
1741 (*curr) = XMALLOC (struct gdbarch_data_registration);
1742 (*curr)->next = NULL;
104c1213 1743 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1744 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1745 (*curr)->data->pre_init = pre_init;
1746 (*curr)->data->post_init = post_init;
76860b5f 1747 (*curr)->data->init_p = 1;
104c1213
JM
1748 return (*curr)->data;
1749}
1750
030f20e1
AC
1751struct gdbarch_data *
1752gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1753{
1754 return gdbarch_data_register (pre_init, NULL);
1755}
1756
1757struct gdbarch_data *
1758gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1759{
1760 return gdbarch_data_register (NULL, post_init);
1761}
104c1213 1762
b3cc3077 1763/* Create/delete the gdbarch data vector. */
95160752
AC
1764
1765static void
b3cc3077 1766alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1767{
b3cc3077
JB
1768 gdb_assert (gdbarch->data == NULL);
1769 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1770 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1771}
3c875b6f 1772
76860b5f 1773/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1774 data-pointer. */
1775
95160752 1776void
030f20e1
AC
1777deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1778 struct gdbarch_data *data,
1779 void *pointer)
95160752
AC
1780{
1781 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1782 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1783 gdb_assert (data->pre_init == NULL);
95160752
AC
1784 gdbarch->data[data->index] = pointer;
1785}
1786
104c1213
JM
1787/* Return the current value of the specified per-architecture
1788 data-pointer. */
1789
1790void *
451fbdda 1791gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1792{
451fbdda 1793 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1794 if (gdbarch->data[data->index] == NULL)
76860b5f 1795 {
030f20e1
AC
1796 /* The data-pointer isn't initialized, call init() to get a
1797 value. */
1798 if (data->pre_init != NULL)
1799 /* Mid architecture creation: pass just the obstack, and not
1800 the entire architecture, as that way it isn't possible for
1801 pre-init code to refer to undefined architecture
1802 fields. */
1803 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1804 else if (gdbarch->initialized_p
1805 && data->post_init != NULL)
1806 /* Post architecture creation: pass the entire architecture
1807 (as all fields are valid), but be careful to also detect
1808 recursive references. */
1809 {
1810 gdb_assert (data->init_p);
1811 data->init_p = 0;
1812 gdbarch->data[data->index] = data->post_init (gdbarch);
1813 data->init_p = 1;
1814 }
1815 else
1816 /* The architecture initialization hasn't completed - punt -
1817 hope that the caller knows what they are doing. Once
1818 deprecated_set_gdbarch_data has been initialized, this can be
1819 changed to an internal error. */
1820 return NULL;
76860b5f
AC
1821 gdb_assert (gdbarch->data[data->index] != NULL);
1822 }
451fbdda 1823 return gdbarch->data[data->index];
104c1213
JM
1824}
1825
1826
1827
f44c642f 1828/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1829
1830struct gdbarch_swap
1831{
1832 void *swap;
1833 struct gdbarch_swap_registration *source;
1834 struct gdbarch_swap *next;
1835};
1836
1837struct gdbarch_swap_registration
1838{
1839 void *data;
1840 unsigned long sizeof_data;
1841 gdbarch_swap_ftype *init;
1842 struct gdbarch_swap_registration *next;
1843};
1844
f44c642f 1845struct gdbarch_swap_registry
104c1213
JM
1846{
1847 int nr;
1848 struct gdbarch_swap_registration *registrations;
1849};
1850
f44c642f 1851struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1852{
1853 0, NULL,
1854};
1855
1856void
046a4708
AC
1857deprecated_register_gdbarch_swap (void *data,
1858 unsigned long sizeof_data,
1859 gdbarch_swap_ftype *init)
104c1213
JM
1860{
1861 struct gdbarch_swap_registration **rego;
f44c642f 1862 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1863 (*rego) != NULL;
1864 rego = &(*rego)->next);
1865 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1866 (*rego)->next = NULL;
1867 (*rego)->init = init;
1868 (*rego)->data = data;
1869 (*rego)->sizeof_data = sizeof_data;
1870}
1871
40af4b0c 1872static void
7de2341d 1873current_gdbarch_swap_init_hack (void)
104c1213
JM
1874{
1875 struct gdbarch_swap_registration *rego;
7de2341d 1876 struct gdbarch_swap **curr = &current_gdbarch->swap;
f44c642f 1877 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1878 rego != NULL;
1879 rego = rego->next)
1880 {
1881 if (rego->data != NULL)
1882 {
7de2341d
AC
1883 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1884 struct gdbarch_swap);
104c1213 1885 (*curr)->source = rego;
7de2341d
AC
1886 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1887 rego->sizeof_data);
104c1213 1888 (*curr)->next = NULL;
104c1213
JM
1889 curr = &(*curr)->next;
1890 }
1891 if (rego->init != NULL)
1892 rego->init ();
1893 }
1894}
1895
7de2341d
AC
1896static struct gdbarch *
1897current_gdbarch_swap_out_hack (void)
104c1213 1898{
7de2341d 1899 struct gdbarch *old_gdbarch = current_gdbarch;
104c1213 1900 struct gdbarch_swap *curr;
7de2341d
AC
1901
1902 gdb_assert (old_gdbarch != NULL);
1903 for (curr = old_gdbarch->swap;
104c1213
JM
1904 curr != NULL;
1905 curr = curr->next)
7de2341d
AC
1906 {
1907 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1908 memset (curr->source->data, 0, curr->source->sizeof_data);
1909 }
1910 current_gdbarch = NULL;
1911 return old_gdbarch;
104c1213
JM
1912}
1913
1914static void
7de2341d 1915current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
104c1213
JM
1916{
1917 struct gdbarch_swap *curr;
7de2341d
AC
1918
1919 gdb_assert (current_gdbarch == NULL);
1920 for (curr = new_gdbarch->swap;
104c1213
JM
1921 curr != NULL;
1922 curr = curr->next)
1923 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
7de2341d 1924 current_gdbarch = new_gdbarch;
104c1213
JM
1925}
1926
1927
f44c642f 1928/* Keep a registry of the architectures known by GDB. */
104c1213 1929
4b9b3959 1930struct gdbarch_registration
104c1213
JM
1931{
1932 enum bfd_architecture bfd_architecture;
1933 gdbarch_init_ftype *init;
4b9b3959 1934 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1935 struct gdbarch_list *arches;
4b9b3959 1936 struct gdbarch_registration *next;
104c1213
JM
1937};
1938
f44c642f 1939static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1940
b4a20239
AC
1941static void
1942append_name (const char ***buf, int *nr, const char *name)
1943{
1944 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1945 (*buf)[*nr] = name;
1946 *nr += 1;
1947}
1948
1949const char **
1950gdbarch_printable_names (void)
1951{
7996bcec
AC
1952 /* Accumulate a list of names based on the registed list of
1953 architectures. */
1954 enum bfd_architecture a;
1955 int nr_arches = 0;
1956 const char **arches = NULL;
1957 struct gdbarch_registration *rego;
1958 for (rego = gdbarch_registry;
1959 rego != NULL;
1960 rego = rego->next)
b4a20239 1961 {
7996bcec
AC
1962 const struct bfd_arch_info *ap;
1963 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1964 if (ap == NULL)
1965 internal_error (__FILE__, __LINE__,
85c07804 1966 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1967 do
1968 {
1969 append_name (&arches, &nr_arches, ap->printable_name);
1970 ap = ap->next;
1971 }
1972 while (ap != NULL);
b4a20239 1973 }
7996bcec
AC
1974 append_name (&arches, &nr_arches, NULL);
1975 return arches;
b4a20239
AC
1976}
1977
1978
104c1213 1979void
4b9b3959
AC
1980gdbarch_register (enum bfd_architecture bfd_architecture,
1981 gdbarch_init_ftype *init,
1982 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1983{
4b9b3959 1984 struct gdbarch_registration **curr;
104c1213 1985 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1986 /* Check that BFD recognizes this architecture */
104c1213
JM
1987 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1988 if (bfd_arch_info == NULL)
1989 {
8e65ff28 1990 internal_error (__FILE__, __LINE__,
85c07804 1991 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1992 bfd_architecture);
104c1213
JM
1993 }
1994 /* Check that we haven't seen this architecture before */
f44c642f 1995 for (curr = &gdbarch_registry;
104c1213
JM
1996 (*curr) != NULL;
1997 curr = &(*curr)->next)
1998 {
1999 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2000 internal_error (__FILE__, __LINE__,
85c07804 2001 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 2002 bfd_arch_info->printable_name);
104c1213
JM
2003 }
2004 /* log it */
2005 if (gdbarch_debug)
2006 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2007 bfd_arch_info->printable_name,
2008 (long) init);
2009 /* Append it */
4b9b3959 2010 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2011 (*curr)->bfd_architecture = bfd_architecture;
2012 (*curr)->init = init;
4b9b3959 2013 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2014 (*curr)->arches = NULL;
2015 (*curr)->next = NULL;
4b9b3959
AC
2016}
2017
2018void
2019register_gdbarch_init (enum bfd_architecture bfd_architecture,
2020 gdbarch_init_ftype *init)
2021{
2022 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2023}
104c1213
JM
2024
2025
2026/* Look for an architecture using gdbarch_info. Base search on only
2027 BFD_ARCH_INFO and BYTE_ORDER. */
2028
2029struct gdbarch_list *
2030gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2031 const struct gdbarch_info *info)
2032{
2033 for (; arches != NULL; arches = arches->next)
2034 {
2035 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2036 continue;
2037 if (info->byte_order != arches->gdbarch->byte_order)
2038 continue;
4be87837
DJ
2039 if (info->osabi != arches->gdbarch->osabi)
2040 continue;
104c1213
JM
2041 return arches;
2042 }
2043 return NULL;
2044}
2045
2046
ebdba546
AC
2047/* Find an architecture that matches the specified INFO. Create a new
2048 architecture if needed. Return that new architecture. Assumes
2049 that there is no current architecture. */
104c1213 2050
ebdba546 2051static struct gdbarch *
7a107747 2052find_arch_by_info (struct gdbarch_info info)
104c1213
JM
2053{
2054 struct gdbarch *new_gdbarch;
4b9b3959 2055 struct gdbarch_registration *rego;
104c1213 2056
ebdba546
AC
2057 /* The existing architecture has been swapped out - all this code
2058 works from a clean slate. */
2059 gdb_assert (current_gdbarch == NULL);
2060
b732d07d 2061 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2062 sources: "set ..."; INFOabfd supplied; and the global
2063 defaults. */
2064 gdbarch_info_fill (&info);
4be87837 2065
b732d07d
AC
2066 /* Must have found some sort of architecture. */
2067 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2068
2069 if (gdbarch_debug)
2070 {
2071 fprintf_unfiltered (gdb_stdlog,
ebdba546 2072 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2073 (info.bfd_arch_info != NULL
2074 ? info.bfd_arch_info->printable_name
2075 : "(null)"));
2076 fprintf_unfiltered (gdb_stdlog,
ebdba546 2077 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 2078 info.byte_order,
d7449b42 2079 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2080 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2081 : "default"));
4be87837 2082 fprintf_unfiltered (gdb_stdlog,
ebdba546 2083 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 2084 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2085 fprintf_unfiltered (gdb_stdlog,
ebdba546 2086 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
2087 (long) info.abfd);
2088 fprintf_unfiltered (gdb_stdlog,
ebdba546 2089 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
2090 (long) info.tdep_info);
2091 }
2092
ebdba546 2093 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2094 for (rego = gdbarch_registry;
2095 rego != NULL;
2096 rego = rego->next)
2097 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2098 break;
2099 if (rego == NULL)
2100 {
2101 if (gdbarch_debug)
ebdba546
AC
2102 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2103 "No matching architecture\n");
b732d07d
AC
2104 return 0;
2105 }
2106
ebdba546 2107 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2108 new_gdbarch = rego->init (info, rego->arches);
2109
ebdba546
AC
2110 /* Did the tdep code like it? No. Reject the change and revert to
2111 the old architecture. */
104c1213
JM
2112 if (new_gdbarch == NULL)
2113 {
2114 if (gdbarch_debug)
ebdba546
AC
2115 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2116 "Target rejected architecture\n");
2117 return NULL;
104c1213
JM
2118 }
2119
ebdba546
AC
2120 /* Is this a pre-existing architecture (as determined by already
2121 being initialized)? Move it to the front of the architecture
2122 list (keeping the list sorted Most Recently Used). */
2123 if (new_gdbarch->initialized_p)
104c1213 2124 {
ebdba546
AC
2125 struct gdbarch_list **list;
2126 struct gdbarch_list *this;
104c1213 2127 if (gdbarch_debug)
ebdba546
AC
2128 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2129 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
2130 (long) new_gdbarch,
2131 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2132 /* Find the existing arch in the list. */
2133 for (list = &rego->arches;
2134 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2135 list = &(*list)->next);
2136 /* It had better be in the list of architectures. */
2137 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2138 /* Unlink THIS. */
2139 this = (*list);
2140 (*list) = this->next;
2141 /* Insert THIS at the front. */
2142 this->next = rego->arches;
2143 rego->arches = this;
2144 /* Return it. */
2145 return new_gdbarch;
104c1213
JM
2146 }
2147
ebdba546
AC
2148 /* It's a new architecture. */
2149 if (gdbarch_debug)
2150 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2151 "New architecture 0x%08lx (%s) selected\n",
2152 (long) new_gdbarch,
2153 new_gdbarch->bfd_arch_info->printable_name);
2154
2155 /* Insert the new architecture into the front of the architecture
2156 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2157 {
2158 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2159 this->next = rego->arches;
2160 this->gdbarch = new_gdbarch;
2161 rego->arches = this;
2162 }
104c1213 2163
4b9b3959
AC
2164 /* Check that the newly installed architecture is valid. Plug in
2165 any post init values. */
2166 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2167 verify_gdbarch (new_gdbarch);
ebdba546 2168 new_gdbarch->initialized_p = 1;
104c1213 2169
ebdba546
AC
2170 /* Initialize any per-architecture swap areas. This phase requires
2171 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2172 swap the entire architecture out. */
2173 current_gdbarch = new_gdbarch;
7de2341d 2174 current_gdbarch_swap_init_hack ();
ebdba546 2175 current_gdbarch_swap_out_hack ();
67c2c32c 2176
4b9b3959 2177 if (gdbarch_debug)
ebdba546
AC
2178 gdbarch_dump (new_gdbarch, gdb_stdlog);
2179
2180 return new_gdbarch;
2181}
2182
2183struct gdbarch *
2184gdbarch_find_by_info (struct gdbarch_info info)
2185{
2186 /* Save the previously selected architecture, setting the global to
2187 NULL. This stops things like gdbarch->init() trying to use the
2188 previous architecture's configuration. The previous architecture
2189 may not even be of the same architecture family. The most recent
2190 architecture of the same family is found at the head of the
2191 rego->arches list. */
2192 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2193
2194 /* Find the specified architecture. */
7a107747 2195 struct gdbarch *new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2196
2197 /* Restore the existing architecture. */
2198 gdb_assert (current_gdbarch == NULL);
2199 current_gdbarch_swap_in_hack (old_gdbarch);
4b9b3959 2200
ebdba546 2201 return new_gdbarch;
104c1213
JM
2202}
2203
ebdba546
AC
2204/* Make the specified architecture current, swapping the existing one
2205 out. */
2206
2207void
2208deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2209{
2210 gdb_assert (new_gdbarch != NULL);
2211 gdb_assert (current_gdbarch != NULL);
2212 gdb_assert (new_gdbarch->initialized_p);
2213 current_gdbarch_swap_out_hack ();
2214 current_gdbarch_swap_in_hack (new_gdbarch);
2215 architecture_changed_event ();
5dbe23a3 2216 flush_cached_frames ();
ebdba546 2217}
104c1213 2218
104c1213 2219extern void _initialize_gdbarch (void);
b4a20239 2220
104c1213 2221void
34620563 2222_initialize_gdbarch (void)
104c1213 2223{
59233f88
AC
2224 struct cmd_list_element *c;
2225
85c07804
AC
2226 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2227Set architecture debugging."), _("\\
2228Show architecture debugging."), _("\\
2229When non-zero, architecture debugging is enabled."),
2230 NULL,
920d2a44 2231 show_gdbarch_debug,
85c07804 2232 &setdebuglist, &showdebuglist);
104c1213
JM
2233}
2234EOF
2235
2236# close things off
2237exec 1>&2
2238#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2239compare_new gdbarch.c
This page took 0.61113 seconds and 4 git commands to generate.