Avoid NULL dereference.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6# 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
97030eea
UW
469f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
97030eea 566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
552c04a7
TT
578# Given a vector of command-line arguments, return a newly allocated
579# string which, when passed to the create_inferior function, will be
580# parsed (on Unix systems, by the shell) to yield the same vector.
581# This function should call error() if the argument vector is not
582# representable for this target or if this target does not support
583# command-line arguments.
584# ARGC is the number of elements in the vector.
585# ARGV is an array of strings, one per argument.
97030eea
UW
586m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
589v:int:cannot_step_breakpoint:::0:0::0
590v:int:have_nonsteppable_watchpoint:::0:0::0
591F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 594# Is a register in a group
97030eea 595m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 596# Fetch the pointer to the ith function argument.
97030eea 597F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
598
599# Return the appropriate register set for a core file section with
600# name SECT_NAME and size SECT_SIZE.
97030eea 601M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 602
17ea7499
CES
603# Supported register notes in a core file.
604v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
605
de584861
PA
606# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
607# core file into buffer READBUF with length LEN.
97030eea 608M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 609
0d5de010
DJ
610# If the elements of C++ vtables are in-place function descriptors rather
611# than normal function pointers (which may point to code or a descriptor),
612# set this to one.
97030eea 613v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
614
615# Set if the least significant bit of the delta is used instead of the least
616# significant bit of the pfn for pointers to virtual member functions.
97030eea 617v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
618
619# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 620F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 621
237fc4c9
PA
622# The maximum length of an instruction on this architecture.
623V:ULONGEST:max_insn_length:::0:0
624
625# Copy the instruction at FROM to TO, and make any adjustments
626# necessary to single-step it at that address.
627#
628# REGS holds the state the thread's registers will have before
629# executing the copied instruction; the PC in REGS will refer to FROM,
630# not the copy at TO. The caller should update it to point at TO later.
631#
632# Return a pointer to data of the architecture's choice to be passed
633# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
634# the instruction's effects have been completely simulated, with the
635# resulting state written back to REGS.
636#
637# For a general explanation of displaced stepping and how GDB uses it,
638# see the comments in infrun.c.
639#
640# The TO area is only guaranteed to have space for
641# gdbarch_max_insn_length (arch) bytes, so this function must not
642# write more bytes than that to that area.
643#
644# If you do not provide this function, GDB assumes that the
645# architecture does not support displaced stepping.
646#
647# If your architecture doesn't need to adjust instructions before
648# single-stepping them, consider using simple_displaced_step_copy_insn
649# here.
650M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
651
652# Fix up the state resulting from successfully single-stepping a
653# displaced instruction, to give the result we would have gotten from
654# stepping the instruction in its original location.
655#
656# REGS is the register state resulting from single-stepping the
657# displaced instruction.
658#
659# CLOSURE is the result from the matching call to
660# gdbarch_displaced_step_copy_insn.
661#
662# If you provide gdbarch_displaced_step_copy_insn.but not this
663# function, then GDB assumes that no fixup is needed after
664# single-stepping the instruction.
665#
666# For a general explanation of displaced stepping and how GDB uses it,
667# see the comments in infrun.c.
668M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
669
670# Free a closure returned by gdbarch_displaced_step_copy_insn.
671#
672# If you provide gdbarch_displaced_step_copy_insn, you must provide
673# this function as well.
674#
675# If your architecture uses closures that don't need to be freed, then
676# you can use simple_displaced_step_free_closure here.
677#
678# For a general explanation of displaced stepping and how GDB uses it,
679# see the comments in infrun.c.
680m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
681
682# Return the address of an appropriate place to put displaced
683# instructions while we step over them. There need only be one such
684# place, since we're only stepping one thread over a breakpoint at a
685# time.
686#
687# For a general explanation of displaced stepping and how GDB uses it,
688# see the comments in infrun.c.
689m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
690
1c772458 691# Refresh overlay mapped state for section OSECT.
97030eea 692F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 693
97030eea 694M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
695
696# Handle special encoding of static variables in stabs debug info.
97030eea 697F:char *:static_transform_name:char *name:name
203c3895 698# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 699v:int:sofun_address_maybe_missing:::0:0::0
1cded358
AR
700
701# Signal translation: translate inferior's signal (host's) number into
702# GDB's representation.
703m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
704# Signal translation: translate GDB's signal number into inferior's host
705# signal number.
706m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 707
4aa995e1
PA
708# Extra signal info inspection.
709#
710# Return a type suitable to inspect extra signal information.
711M:struct type *:get_siginfo_type:void:
712
60c5725c
DJ
713# Record architecture-specific information from the symbol table.
714M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf
PA
715
716# True if the list of shared libraries is one and only for all
717# processes, as opposed to a list of shared libraries per inferior.
9bc9e927
PA
718# When this property is true, GDB assumes that since shared libraries
719# are shared across processes, so is all code. Hence, GDB further
720# assumes an inserted breakpoint location is visible to all processes.
50c71eaf 721v:int:has_global_solist:::0:0::0
104c1213 722EOF
104c1213
JM
723}
724
0b8f9e4d
AC
725#
726# The .log file
727#
728exec > new-gdbarch.log
34620563 729function_list | while do_read
0b8f9e4d
AC
730do
731 cat <<EOF
2f9b146e 732${class} ${returntype} ${function} ($formal)
104c1213 733EOF
3d9a5942
AC
734 for r in ${read}
735 do
736 eval echo \"\ \ \ \ ${r}=\${${r}}\"
737 done
f0d4cc9e 738 if class_is_predicate_p && fallback_default_p
0b8f9e4d 739 then
66d659b1 740 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
741 kill $$
742 exit 1
743 fi
72e74a21 744 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
745 then
746 echo "Error: postdefault is useless when invalid_p=0" 1>&2
747 kill $$
748 exit 1
749 fi
a72293e2
AC
750 if class_is_multiarch_p
751 then
752 if class_is_predicate_p ; then :
753 elif test "x${predefault}" = "x"
754 then
2f9b146e 755 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
756 kill $$
757 exit 1
758 fi
759 fi
3d9a5942 760 echo ""
0b8f9e4d
AC
761done
762
763exec 1>&2
764compare_new gdbarch.log
765
104c1213
JM
766
767copyright ()
768{
769cat <<EOF
59233f88
AC
770/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
771
104c1213 772/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 773
50efebf8 774 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 775 Free Software Foundation, Inc.
104c1213
JM
776
777 This file is part of GDB.
778
779 This program is free software; you can redistribute it and/or modify
780 it under the terms of the GNU General Public License as published by
50efebf8 781 the Free Software Foundation; either version 3 of the License, or
104c1213 782 (at your option) any later version.
50efebf8 783
104c1213
JM
784 This program is distributed in the hope that it will be useful,
785 but WITHOUT ANY WARRANTY; without even the implied warranty of
786 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
787 GNU General Public License for more details.
50efebf8 788
104c1213 789 You should have received a copy of the GNU General Public License
50efebf8 790 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 791
104c1213
JM
792/* This file was created with the aid of \`\`gdbarch.sh''.
793
52204a0b 794 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
795 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
796 against the existing \`\`gdbarch.[hc]''. Any differences found
797 being reported.
798
799 If editing this file, please also run gdbarch.sh and merge any
52204a0b 800 changes into that script. Conversely, when making sweeping changes
104c1213
JM
801 to this file, modifying gdbarch.sh and using its output may prove
802 easier. */
803
804EOF
805}
806
807#
808# The .h file
809#
810
811exec > new-gdbarch.h
812copyright
813cat <<EOF
814#ifndef GDBARCH_H
815#define GDBARCH_H
816
da3331ec
AC
817struct floatformat;
818struct ui_file;
104c1213
JM
819struct frame_info;
820struct value;
b6af0555 821struct objfile;
1c772458 822struct obj_section;
a2cf933a 823struct minimal_symbol;
049ee0e4 824struct regcache;
b59ff9d5 825struct reggroup;
6ce6d90f 826struct regset;
a89aa300 827struct disassemble_info;
e2d0e7eb 828struct target_ops;
030f20e1 829struct obstack;
8181d85f 830struct bp_target_info;
424163ea 831struct target_desc;
237fc4c9 832struct displaced_step_closure;
17ea7499 833struct core_regset_section;
104c1213 834
104c1213 835extern struct gdbarch *current_gdbarch;
1cf3db46 836extern struct gdbarch *target_gdbarch;
104c1213
JM
837EOF
838
839# function typedef's
3d9a5942
AC
840printf "\n"
841printf "\n"
842printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 843function_list | while do_read
104c1213 844do
2ada493a
AC
845 if class_is_info_p
846 then
3d9a5942
AC
847 printf "\n"
848 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
849 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 850 fi
104c1213
JM
851done
852
853# function typedef's
3d9a5942
AC
854printf "\n"
855printf "\n"
856printf "/* The following are initialized by the target dependent code. */\n"
34620563 857function_list | while do_read
104c1213 858do
72e74a21 859 if [ -n "${comment}" ]
34620563
AC
860 then
861 echo "${comment}" | sed \
862 -e '2 s,#,/*,' \
863 -e '3,$ s,#, ,' \
864 -e '$ s,$, */,'
865 fi
412d5987
AC
866
867 if class_is_predicate_p
2ada493a 868 then
412d5987
AC
869 printf "\n"
870 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 871 fi
2ada493a
AC
872 if class_is_variable_p
873 then
3d9a5942
AC
874 printf "\n"
875 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
876 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
877 fi
878 if class_is_function_p
879 then
3d9a5942 880 printf "\n"
72e74a21 881 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
882 then
883 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
884 elif class_is_multiarch_p
885 then
886 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
887 else
888 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
889 fi
72e74a21 890 if [ "x${formal}" = "xvoid" ]
104c1213 891 then
3d9a5942 892 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 893 else
3d9a5942 894 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 895 fi
3d9a5942 896 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 897 fi
104c1213
JM
898done
899
900# close it off
901cat <<EOF
902
903extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
904
905
906/* Mechanism for co-ordinating the selection of a specific
907 architecture.
908
909 GDB targets (*-tdep.c) can register an interest in a specific
910 architecture. Other GDB components can register a need to maintain
911 per-architecture data.
912
913 The mechanisms below ensures that there is only a loose connection
914 between the set-architecture command and the various GDB
0fa6923a 915 components. Each component can independently register their need
104c1213
JM
916 to maintain architecture specific data with gdbarch.
917
918 Pragmatics:
919
920 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
921 didn't scale.
922
923 The more traditional mega-struct containing architecture specific
924 data for all the various GDB components was also considered. Since
0fa6923a 925 GDB is built from a variable number of (fairly independent)
104c1213
JM
926 components it was determined that the global aproach was not
927 applicable. */
928
929
930/* Register a new architectural family with GDB.
931
932 Register support for the specified ARCHITECTURE with GDB. When
933 gdbarch determines that the specified architecture has been
934 selected, the corresponding INIT function is called.
935
936 --
937
938 The INIT function takes two parameters: INFO which contains the
939 information available to gdbarch about the (possibly new)
940 architecture; ARCHES which is a list of the previously created
941 \`\`struct gdbarch'' for this architecture.
942
0f79675b 943 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 944 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
945
946 The ARCHES parameter is a linked list (sorted most recently used)
947 of all the previously created architures for this architecture
948 family. The (possibly NULL) ARCHES->gdbarch can used to access
949 values from the previously selected architecture for this
950 architecture family. The global \`\`current_gdbarch'' shall not be
951 used.
104c1213
JM
952
953 The INIT function shall return any of: NULL - indicating that it
ec3d358c 954 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
955 gdbarch'' from the ARCHES list - indicating that the new
956 architecture is just a synonym for an earlier architecture (see
957 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
958 - that describes the selected architecture (see gdbarch_alloc()).
959
960 The DUMP_TDEP function shall print out all target specific values.
961 Care should be taken to ensure that the function works in both the
962 multi-arch and non- multi-arch cases. */
104c1213
JM
963
964struct gdbarch_list
965{
966 struct gdbarch *gdbarch;
967 struct gdbarch_list *next;
968};
969
970struct gdbarch_info
971{
104c1213
JM
972 /* Use default: NULL (ZERO). */
973 const struct bfd_arch_info *bfd_arch_info;
974
428721aa 975 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
976 int byte_order;
977
9d4fde75
SS
978 int byte_order_for_code;
979
104c1213
JM
980 /* Use default: NULL (ZERO). */
981 bfd *abfd;
982
983 /* Use default: NULL (ZERO). */
984 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
985
986 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
987 enum gdb_osabi osabi;
424163ea
DJ
988
989 /* Use default: NULL (ZERO). */
990 const struct target_desc *target_desc;
104c1213
JM
991};
992
993typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 994typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 995
4b9b3959 996/* DEPRECATED - use gdbarch_register() */
104c1213
JM
997extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
998
4b9b3959
AC
999extern void gdbarch_register (enum bfd_architecture architecture,
1000 gdbarch_init_ftype *,
1001 gdbarch_dump_tdep_ftype *);
1002
104c1213 1003
b4a20239
AC
1004/* Return a freshly allocated, NULL terminated, array of the valid
1005 architecture names. Since architectures are registered during the
1006 _initialize phase this function only returns useful information
1007 once initialization has been completed. */
1008
1009extern const char **gdbarch_printable_names (void);
1010
1011
104c1213
JM
1012/* Helper function. Search the list of ARCHES for a GDBARCH that
1013 matches the information provided by INFO. */
1014
424163ea 1015extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1016
1017
1018/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1019 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1020 parameters. set_gdbarch_*() functions are called to complete the
1021 initialization of the object. */
1022
1023extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1024
1025
4b9b3959
AC
1026/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1027 It is assumed that the caller freeds the \`\`struct
1028 gdbarch_tdep''. */
1029
058f20d5
JB
1030extern void gdbarch_free (struct gdbarch *);
1031
1032
aebd7893
AC
1033/* Helper function. Allocate memory from the \`\`struct gdbarch''
1034 obstack. The memory is freed when the corresponding architecture
1035 is also freed. */
1036
1037extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1038#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1039#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1040
1041
b732d07d 1042/* Helper function. Force an update of the current architecture.
104c1213 1043
b732d07d
AC
1044 The actual architecture selected is determined by INFO, \`\`(gdb) set
1045 architecture'' et.al., the existing architecture and BFD's default
1046 architecture. INFO should be initialized to zero and then selected
1047 fields should be updated.
104c1213 1048
16f33e29
AC
1049 Returns non-zero if the update succeeds */
1050
1051extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1052
1053
ebdba546
AC
1054/* Helper function. Find an architecture matching info.
1055
1056 INFO should be initialized using gdbarch_info_init, relevant fields
1057 set, and then finished using gdbarch_info_fill.
1058
1059 Returns the corresponding architecture, or NULL if no matching
1060 architecture was found. "current_gdbarch" is not updated. */
1061
1062extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1063
1064
1065/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1066
1067 FIXME: kettenis/20031124: Of the functions that follow, only
1068 gdbarch_from_bfd is supposed to survive. The others will
1069 dissappear since in the future GDB will (hopefully) be truly
1070 multi-arch. However, for now we're still stuck with the concept of
1071 a single active architecture. */
1072
1073extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1074
104c1213
JM
1075
1076/* Register per-architecture data-pointer.
1077
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
95160752 1080 be saved in a local static variable.
104c1213 1081
fcc1c85c
AC
1082 Memory for the per-architecture data shall be allocated using
1083 gdbarch_obstack_zalloc. That memory will be deleted when the
1084 corresponding architecture object is deleted.
104c1213 1085
95160752
AC
1086 When a previously created architecture is re-selected, the
1087 per-architecture data-pointer for that previous architecture is
76860b5f 1088 restored. INIT() is not re-called.
104c1213
JM
1089
1090 Multiple registrarants for any architecture are allowed (and
1091 strongly encouraged). */
1092
95160752 1093struct gdbarch_data;
104c1213 1094
030f20e1
AC
1095typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1096extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1097typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1098extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1099extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1100 struct gdbarch_data *data,
1101 void *pointer);
104c1213 1102
451fbdda 1103extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1104
1105
0fa6923a 1106/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1107 byte-order, ...) using information found in the BFD */
1108
1109extern void set_gdbarch_from_file (bfd *);
1110
1111
e514a9d6
JM
1112/* Initialize the current architecture to the "first" one we find on
1113 our list. */
1114
1115extern void initialize_current_architecture (void);
1116
104c1213
JM
1117/* gdbarch trace variable */
1118extern int gdbarch_debug;
1119
4b9b3959 1120extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1121
1122#endif
1123EOF
1124exec 1>&2
1125#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1126compare_new gdbarch.h
104c1213
JM
1127
1128
1129#
1130# C file
1131#
1132
1133exec > new-gdbarch.c
1134copyright
1135cat <<EOF
1136
1137#include "defs.h"
7355ddba 1138#include "arch-utils.h"
104c1213 1139
104c1213 1140#include "gdbcmd.h"
faaf634c 1141#include "inferior.h"
104c1213
JM
1142#include "symcat.h"
1143
f0d4cc9e 1144#include "floatformat.h"
104c1213 1145
95160752 1146#include "gdb_assert.h"
b66d6d2e 1147#include "gdb_string.h"
b59ff9d5 1148#include "reggroups.h"
4be87837 1149#include "osabi.h"
aebd7893 1150#include "gdb_obstack.h"
383f836e 1151#include "observer.h"
a3ecef73 1152#include "regcache.h"
95160752 1153
104c1213
JM
1154/* Static function declarations */
1155
b3cc3077 1156static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1157
104c1213
JM
1158/* Non-zero if we want to trace architecture code. */
1159
1160#ifndef GDBARCH_DEBUG
1161#define GDBARCH_DEBUG 0
1162#endif
1163int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1164static void
1165show_gdbarch_debug (struct ui_file *file, int from_tty,
1166 struct cmd_list_element *c, const char *value)
1167{
1168 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1169}
104c1213 1170
456fcf94 1171static const char *
8da61cc4 1172pformat (const struct floatformat **format)
456fcf94
AC
1173{
1174 if (format == NULL)
1175 return "(null)";
1176 else
8da61cc4
DJ
1177 /* Just print out one of them - this is only for diagnostics. */
1178 return format[0]->name;
456fcf94
AC
1179}
1180
104c1213
JM
1181EOF
1182
1183# gdbarch open the gdbarch object
3d9a5942
AC
1184printf "\n"
1185printf "/* Maintain the struct gdbarch object */\n"
1186printf "\n"
1187printf "struct gdbarch\n"
1188printf "{\n"
76860b5f
AC
1189printf " /* Has this architecture been fully initialized? */\n"
1190printf " int initialized_p;\n"
aebd7893
AC
1191printf "\n"
1192printf " /* An obstack bound to the lifetime of the architecture. */\n"
1193printf " struct obstack *obstack;\n"
1194printf "\n"
3d9a5942 1195printf " /* basic architectural information */\n"
34620563 1196function_list | while do_read
104c1213 1197do
2ada493a
AC
1198 if class_is_info_p
1199 then
3d9a5942 1200 printf " ${returntype} ${function};\n"
2ada493a 1201 fi
104c1213 1202done
3d9a5942
AC
1203printf "\n"
1204printf " /* target specific vector. */\n"
1205printf " struct gdbarch_tdep *tdep;\n"
1206printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1207printf "\n"
1208printf " /* per-architecture data-pointers */\n"
95160752 1209printf " unsigned nr_data;\n"
3d9a5942
AC
1210printf " void **data;\n"
1211printf "\n"
1212printf " /* per-architecture swap-regions */\n"
1213printf " struct gdbarch_swap *swap;\n"
1214printf "\n"
104c1213
JM
1215cat <<EOF
1216 /* Multi-arch values.
1217
1218 When extending this structure you must:
1219
1220 Add the field below.
1221
1222 Declare set/get functions and define the corresponding
1223 macro in gdbarch.h.
1224
1225 gdbarch_alloc(): If zero/NULL is not a suitable default,
1226 initialize the new field.
1227
1228 verify_gdbarch(): Confirm that the target updated the field
1229 correctly.
1230
7e73cedf 1231 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1232 field is dumped out
1233
c0e8c252 1234 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1235 variable (base values on the host's c-type system).
1236
1237 get_gdbarch(): Implement the set/get functions (probably using
1238 the macro's as shortcuts).
1239
1240 */
1241
1242EOF
34620563 1243function_list | while do_read
104c1213 1244do
2ada493a
AC
1245 if class_is_variable_p
1246 then
3d9a5942 1247 printf " ${returntype} ${function};\n"
2ada493a
AC
1248 elif class_is_function_p
1249 then
2f9b146e 1250 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1251 fi
104c1213 1252done
3d9a5942 1253printf "};\n"
104c1213
JM
1254
1255# A pre-initialized vector
3d9a5942
AC
1256printf "\n"
1257printf "\n"
104c1213
JM
1258cat <<EOF
1259/* The default architecture uses host values (for want of a better
1260 choice). */
1261EOF
3d9a5942
AC
1262printf "\n"
1263printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1264printf "\n"
1265printf "struct gdbarch startup_gdbarch =\n"
1266printf "{\n"
76860b5f 1267printf " 1, /* Always initialized. */\n"
aebd7893 1268printf " NULL, /* The obstack. */\n"
3d9a5942 1269printf " /* basic architecture information */\n"
4b9b3959 1270function_list | while do_read
104c1213 1271do
2ada493a
AC
1272 if class_is_info_p
1273 then
ec5cbaec 1274 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1275 fi
104c1213
JM
1276done
1277cat <<EOF
4b9b3959
AC
1278 /* target specific vector and its dump routine */
1279 NULL, NULL,
104c1213
JM
1280 /*per-architecture data-pointers and swap regions */
1281 0, NULL, NULL,
1282 /* Multi-arch values */
1283EOF
34620563 1284function_list | while do_read
104c1213 1285do
2ada493a
AC
1286 if class_is_function_p || class_is_variable_p
1287 then
ec5cbaec 1288 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1289 fi
104c1213
JM
1290done
1291cat <<EOF
c0e8c252 1292 /* startup_gdbarch() */
104c1213 1293};
4b9b3959 1294
c0e8c252 1295struct gdbarch *current_gdbarch = &startup_gdbarch;
1cf3db46 1296struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1297EOF
1298
1299# Create a new gdbarch struct
104c1213 1300cat <<EOF
7de2341d 1301
66b43ecb 1302/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1303 \`\`struct gdbarch_info''. */
1304EOF
3d9a5942 1305printf "\n"
104c1213
JM
1306cat <<EOF
1307struct gdbarch *
1308gdbarch_alloc (const struct gdbarch_info *info,
1309 struct gdbarch_tdep *tdep)
1310{
be7811ad 1311 struct gdbarch *gdbarch;
aebd7893
AC
1312
1313 /* Create an obstack for allocating all the per-architecture memory,
1314 then use that to allocate the architecture vector. */
1315 struct obstack *obstack = XMALLOC (struct obstack);
1316 obstack_init (obstack);
be7811ad
MD
1317 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1318 memset (gdbarch, 0, sizeof (*gdbarch));
1319 gdbarch->obstack = obstack;
85de9627 1320
be7811ad 1321 alloc_gdbarch_data (gdbarch);
85de9627 1322
be7811ad 1323 gdbarch->tdep = tdep;
104c1213 1324EOF
3d9a5942 1325printf "\n"
34620563 1326function_list | while do_read
104c1213 1327do
2ada493a
AC
1328 if class_is_info_p
1329 then
be7811ad 1330 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1331 fi
104c1213 1332done
3d9a5942
AC
1333printf "\n"
1334printf " /* Force the explicit initialization of these. */\n"
34620563 1335function_list | while do_read
104c1213 1336do
2ada493a
AC
1337 if class_is_function_p || class_is_variable_p
1338 then
72e74a21 1339 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1340 then
be7811ad 1341 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1342 fi
2ada493a 1343 fi
104c1213
JM
1344done
1345cat <<EOF
1346 /* gdbarch_alloc() */
1347
be7811ad 1348 return gdbarch;
104c1213
JM
1349}
1350EOF
1351
058f20d5 1352# Free a gdbarch struct.
3d9a5942
AC
1353printf "\n"
1354printf "\n"
058f20d5 1355cat <<EOF
aebd7893
AC
1356/* Allocate extra space using the per-architecture obstack. */
1357
1358void *
1359gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1360{
1361 void *data = obstack_alloc (arch->obstack, size);
1362 memset (data, 0, size);
1363 return data;
1364}
1365
1366
058f20d5
JB
1367/* Free a gdbarch struct. This should never happen in normal
1368 operation --- once you've created a gdbarch, you keep it around.
1369 However, if an architecture's init function encounters an error
1370 building the structure, it may need to clean up a partially
1371 constructed gdbarch. */
4b9b3959 1372
058f20d5
JB
1373void
1374gdbarch_free (struct gdbarch *arch)
1375{
aebd7893 1376 struct obstack *obstack;
95160752 1377 gdb_assert (arch != NULL);
aebd7893
AC
1378 gdb_assert (!arch->initialized_p);
1379 obstack = arch->obstack;
1380 obstack_free (obstack, 0); /* Includes the ARCH. */
1381 xfree (obstack);
058f20d5
JB
1382}
1383EOF
1384
104c1213 1385# verify a new architecture
104c1213 1386cat <<EOF
db446970
AC
1387
1388
1389/* Ensure that all values in a GDBARCH are reasonable. */
1390
104c1213 1391static void
be7811ad 1392verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1393{
f16a1923
AC
1394 struct ui_file *log;
1395 struct cleanup *cleanups;
1396 long dummy;
1397 char *buf;
f16a1923
AC
1398 log = mem_fileopen ();
1399 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1400 /* fundamental */
be7811ad 1401 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1402 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1403 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1404 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1405 /* Check those that need to be defined for the given multi-arch level. */
1406EOF
34620563 1407function_list | while do_read
104c1213 1408do
2ada493a
AC
1409 if class_is_function_p || class_is_variable_p
1410 then
72e74a21 1411 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1412 then
3d9a5942 1413 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1414 elif class_is_predicate_p
1415 then
3d9a5942 1416 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1417 # FIXME: See do_read for potential simplification
72e74a21 1418 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1419 then
3d9a5942 1420 printf " if (${invalid_p})\n"
be7811ad 1421 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1422 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1423 then
be7811ad
MD
1424 printf " if (gdbarch->${function} == ${predefault})\n"
1425 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1426 elif [ -n "${postdefault}" ]
f0d4cc9e 1427 then
be7811ad
MD
1428 printf " if (gdbarch->${function} == 0)\n"
1429 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1430 elif [ -n "${invalid_p}" ]
104c1213 1431 then
4d60522e 1432 printf " if (${invalid_p})\n"
f16a1923 1433 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1434 elif [ -n "${predefault}" ]
104c1213 1435 then
be7811ad 1436 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1437 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1438 fi
2ada493a 1439 fi
104c1213
JM
1440done
1441cat <<EOF
f16a1923
AC
1442 buf = ui_file_xstrdup (log, &dummy);
1443 make_cleanup (xfree, buf);
1444 if (strlen (buf) > 0)
1445 internal_error (__FILE__, __LINE__,
85c07804 1446 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1447 buf);
1448 do_cleanups (cleanups);
104c1213
JM
1449}
1450EOF
1451
1452# dump the structure
3d9a5942
AC
1453printf "\n"
1454printf "\n"
104c1213 1455cat <<EOF
4b9b3959
AC
1456/* Print out the details of the current architecture. */
1457
104c1213 1458void
be7811ad 1459gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1460{
b78960be 1461 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1462#if defined (GDB_NM_FILE)
1463 gdb_nm_file = GDB_NM_FILE;
1464#endif
1465 fprintf_unfiltered (file,
1466 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1467 gdb_nm_file);
104c1213 1468EOF
97030eea 1469function_list | sort -t: -k 3 | while do_read
104c1213 1470do
1e9f55d0
AC
1471 # First the predicate
1472 if class_is_predicate_p
1473 then
7996bcec 1474 printf " fprintf_unfiltered (file,\n"
48f7351b 1475 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1476 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1477 fi
48f7351b 1478 # Print the corresponding value.
283354d8 1479 if class_is_function_p
4b9b3959 1480 then
7996bcec 1481 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1482 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1483 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1484 else
48f7351b 1485 # It is a variable
2f9b146e
AC
1486 case "${print}:${returntype}" in
1487 :CORE_ADDR )
0b1553bc
UW
1488 fmt="%s"
1489 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1490 ;;
2f9b146e 1491 :* )
48f7351b 1492 fmt="%s"
623d3eb1 1493 print="plongest (gdbarch->${function})"
48f7351b
AC
1494 ;;
1495 * )
2f9b146e 1496 fmt="%s"
48f7351b
AC
1497 ;;
1498 esac
3d9a5942 1499 printf " fprintf_unfiltered (file,\n"
48f7351b 1500 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1501 printf " ${print});\n"
2ada493a 1502 fi
104c1213 1503done
381323f4 1504cat <<EOF
be7811ad
MD
1505 if (gdbarch->dump_tdep != NULL)
1506 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1507}
1508EOF
104c1213
JM
1509
1510
1511# GET/SET
3d9a5942 1512printf "\n"
104c1213
JM
1513cat <<EOF
1514struct gdbarch_tdep *
1515gdbarch_tdep (struct gdbarch *gdbarch)
1516{
1517 if (gdbarch_debug >= 2)
3d9a5942 1518 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1519 return gdbarch->tdep;
1520}
1521EOF
3d9a5942 1522printf "\n"
34620563 1523function_list | while do_read
104c1213 1524do
2ada493a
AC
1525 if class_is_predicate_p
1526 then
3d9a5942
AC
1527 printf "\n"
1528 printf "int\n"
1529 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1530 printf "{\n"
8de9bdc4 1531 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1532 printf " return ${predicate};\n"
3d9a5942 1533 printf "}\n"
2ada493a
AC
1534 fi
1535 if class_is_function_p
1536 then
3d9a5942
AC
1537 printf "\n"
1538 printf "${returntype}\n"
72e74a21 1539 if [ "x${formal}" = "xvoid" ]
104c1213 1540 then
3d9a5942 1541 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1542 else
3d9a5942 1543 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1544 fi
3d9a5942 1545 printf "{\n"
8de9bdc4 1546 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1547 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1548 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1549 then
1550 # Allow a call to a function with a predicate.
956ac328 1551 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1552 fi
3d9a5942
AC
1553 printf " if (gdbarch_debug >= 2)\n"
1554 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1555 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1556 then
1557 if class_is_multiarch_p
1558 then
1559 params="gdbarch"
1560 else
1561 params=""
1562 fi
1563 else
1564 if class_is_multiarch_p
1565 then
1566 params="gdbarch, ${actual}"
1567 else
1568 params="${actual}"
1569 fi
1570 fi
72e74a21 1571 if [ "x${returntype}" = "xvoid" ]
104c1213 1572 then
4a5c6a1d 1573 printf " gdbarch->${function} (${params});\n"
104c1213 1574 else
4a5c6a1d 1575 printf " return gdbarch->${function} (${params});\n"
104c1213 1576 fi
3d9a5942
AC
1577 printf "}\n"
1578 printf "\n"
1579 printf "void\n"
1580 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1581 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1582 printf "{\n"
1583 printf " gdbarch->${function} = ${function};\n"
1584 printf "}\n"
2ada493a
AC
1585 elif class_is_variable_p
1586 then
3d9a5942
AC
1587 printf "\n"
1588 printf "${returntype}\n"
1589 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1590 printf "{\n"
8de9bdc4 1591 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1592 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1593 then
3d9a5942 1594 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1595 elif [ -n "${invalid_p}" ]
104c1213 1596 then
956ac328
AC
1597 printf " /* Check variable is valid. */\n"
1598 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1599 elif [ -n "${predefault}" ]
104c1213 1600 then
956ac328
AC
1601 printf " /* Check variable changed from pre-default. */\n"
1602 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1603 fi
3d9a5942
AC
1604 printf " if (gdbarch_debug >= 2)\n"
1605 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1606 printf " return gdbarch->${function};\n"
1607 printf "}\n"
1608 printf "\n"
1609 printf "void\n"
1610 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1611 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1612 printf "{\n"
1613 printf " gdbarch->${function} = ${function};\n"
1614 printf "}\n"
2ada493a
AC
1615 elif class_is_info_p
1616 then
3d9a5942
AC
1617 printf "\n"
1618 printf "${returntype}\n"
1619 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1620 printf "{\n"
8de9bdc4 1621 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1622 printf " if (gdbarch_debug >= 2)\n"
1623 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1624 printf " return gdbarch->${function};\n"
1625 printf "}\n"
2ada493a 1626 fi
104c1213
JM
1627done
1628
1629# All the trailing guff
1630cat <<EOF
1631
1632
f44c642f 1633/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1634 modules. */
1635
1636struct gdbarch_data
1637{
95160752 1638 unsigned index;
76860b5f 1639 int init_p;
030f20e1
AC
1640 gdbarch_data_pre_init_ftype *pre_init;
1641 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1642};
1643
1644struct gdbarch_data_registration
1645{
104c1213
JM
1646 struct gdbarch_data *data;
1647 struct gdbarch_data_registration *next;
1648};
1649
f44c642f 1650struct gdbarch_data_registry
104c1213 1651{
95160752 1652 unsigned nr;
104c1213
JM
1653 struct gdbarch_data_registration *registrations;
1654};
1655
f44c642f 1656struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1657{
1658 0, NULL,
1659};
1660
030f20e1
AC
1661static struct gdbarch_data *
1662gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1663 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1664{
1665 struct gdbarch_data_registration **curr;
76860b5f 1666 /* Append the new registraration. */
f44c642f 1667 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1668 (*curr) != NULL;
1669 curr = &(*curr)->next);
1670 (*curr) = XMALLOC (struct gdbarch_data_registration);
1671 (*curr)->next = NULL;
104c1213 1672 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1673 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1674 (*curr)->data->pre_init = pre_init;
1675 (*curr)->data->post_init = post_init;
76860b5f 1676 (*curr)->data->init_p = 1;
104c1213
JM
1677 return (*curr)->data;
1678}
1679
030f20e1
AC
1680struct gdbarch_data *
1681gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1682{
1683 return gdbarch_data_register (pre_init, NULL);
1684}
1685
1686struct gdbarch_data *
1687gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1688{
1689 return gdbarch_data_register (NULL, post_init);
1690}
104c1213 1691
b3cc3077 1692/* Create/delete the gdbarch data vector. */
95160752
AC
1693
1694static void
b3cc3077 1695alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1696{
b3cc3077
JB
1697 gdb_assert (gdbarch->data == NULL);
1698 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1699 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1700}
3c875b6f 1701
76860b5f 1702/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1703 data-pointer. */
1704
95160752 1705void
030f20e1
AC
1706deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1707 struct gdbarch_data *data,
1708 void *pointer)
95160752
AC
1709{
1710 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1711 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1712 gdb_assert (data->pre_init == NULL);
95160752
AC
1713 gdbarch->data[data->index] = pointer;
1714}
1715
104c1213
JM
1716/* Return the current value of the specified per-architecture
1717 data-pointer. */
1718
1719void *
451fbdda 1720gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1721{
451fbdda 1722 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1723 if (gdbarch->data[data->index] == NULL)
76860b5f 1724 {
030f20e1
AC
1725 /* The data-pointer isn't initialized, call init() to get a
1726 value. */
1727 if (data->pre_init != NULL)
1728 /* Mid architecture creation: pass just the obstack, and not
1729 the entire architecture, as that way it isn't possible for
1730 pre-init code to refer to undefined architecture
1731 fields. */
1732 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1733 else if (gdbarch->initialized_p
1734 && data->post_init != NULL)
1735 /* Post architecture creation: pass the entire architecture
1736 (as all fields are valid), but be careful to also detect
1737 recursive references. */
1738 {
1739 gdb_assert (data->init_p);
1740 data->init_p = 0;
1741 gdbarch->data[data->index] = data->post_init (gdbarch);
1742 data->init_p = 1;
1743 }
1744 else
1745 /* The architecture initialization hasn't completed - punt -
1746 hope that the caller knows what they are doing. Once
1747 deprecated_set_gdbarch_data has been initialized, this can be
1748 changed to an internal error. */
1749 return NULL;
76860b5f
AC
1750 gdb_assert (gdbarch->data[data->index] != NULL);
1751 }
451fbdda 1752 return gdbarch->data[data->index];
104c1213
JM
1753}
1754
1755
f44c642f 1756/* Keep a registry of the architectures known by GDB. */
104c1213 1757
4b9b3959 1758struct gdbarch_registration
104c1213
JM
1759{
1760 enum bfd_architecture bfd_architecture;
1761 gdbarch_init_ftype *init;
4b9b3959 1762 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1763 struct gdbarch_list *arches;
4b9b3959 1764 struct gdbarch_registration *next;
104c1213
JM
1765};
1766
f44c642f 1767static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1768
b4a20239
AC
1769static void
1770append_name (const char ***buf, int *nr, const char *name)
1771{
1772 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1773 (*buf)[*nr] = name;
1774 *nr += 1;
1775}
1776
1777const char **
1778gdbarch_printable_names (void)
1779{
7996bcec
AC
1780 /* Accumulate a list of names based on the registed list of
1781 architectures. */
1782 enum bfd_architecture a;
1783 int nr_arches = 0;
1784 const char **arches = NULL;
1785 struct gdbarch_registration *rego;
1786 for (rego = gdbarch_registry;
1787 rego != NULL;
1788 rego = rego->next)
b4a20239 1789 {
7996bcec
AC
1790 const struct bfd_arch_info *ap;
1791 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1792 if (ap == NULL)
1793 internal_error (__FILE__, __LINE__,
85c07804 1794 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1795 do
1796 {
1797 append_name (&arches, &nr_arches, ap->printable_name);
1798 ap = ap->next;
1799 }
1800 while (ap != NULL);
b4a20239 1801 }
7996bcec
AC
1802 append_name (&arches, &nr_arches, NULL);
1803 return arches;
b4a20239
AC
1804}
1805
1806
104c1213 1807void
4b9b3959
AC
1808gdbarch_register (enum bfd_architecture bfd_architecture,
1809 gdbarch_init_ftype *init,
1810 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1811{
4b9b3959 1812 struct gdbarch_registration **curr;
104c1213 1813 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1814 /* Check that BFD recognizes this architecture */
104c1213
JM
1815 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1816 if (bfd_arch_info == NULL)
1817 {
8e65ff28 1818 internal_error (__FILE__, __LINE__,
85c07804 1819 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1820 bfd_architecture);
104c1213
JM
1821 }
1822 /* Check that we haven't seen this architecture before */
f44c642f 1823 for (curr = &gdbarch_registry;
104c1213
JM
1824 (*curr) != NULL;
1825 curr = &(*curr)->next)
1826 {
1827 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1828 internal_error (__FILE__, __LINE__,
85c07804 1829 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1830 bfd_arch_info->printable_name);
104c1213
JM
1831 }
1832 /* log it */
1833 if (gdbarch_debug)
30737ed9 1834 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1835 bfd_arch_info->printable_name,
30737ed9 1836 host_address_to_string (init));
104c1213 1837 /* Append it */
4b9b3959 1838 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1839 (*curr)->bfd_architecture = bfd_architecture;
1840 (*curr)->init = init;
4b9b3959 1841 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1842 (*curr)->arches = NULL;
1843 (*curr)->next = NULL;
4b9b3959
AC
1844}
1845
1846void
1847register_gdbarch_init (enum bfd_architecture bfd_architecture,
1848 gdbarch_init_ftype *init)
1849{
1850 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1851}
104c1213
JM
1852
1853
424163ea 1854/* Look for an architecture using gdbarch_info. */
104c1213
JM
1855
1856struct gdbarch_list *
1857gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1858 const struct gdbarch_info *info)
1859{
1860 for (; arches != NULL; arches = arches->next)
1861 {
1862 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1863 continue;
1864 if (info->byte_order != arches->gdbarch->byte_order)
1865 continue;
4be87837
DJ
1866 if (info->osabi != arches->gdbarch->osabi)
1867 continue;
424163ea
DJ
1868 if (info->target_desc != arches->gdbarch->target_desc)
1869 continue;
104c1213
JM
1870 return arches;
1871 }
1872 return NULL;
1873}
1874
1875
ebdba546
AC
1876/* Find an architecture that matches the specified INFO. Create a new
1877 architecture if needed. Return that new architecture. Assumes
1878 that there is no current architecture. */
104c1213 1879
ebdba546 1880static struct gdbarch *
7a107747 1881find_arch_by_info (struct gdbarch_info info)
104c1213
JM
1882{
1883 struct gdbarch *new_gdbarch;
4b9b3959 1884 struct gdbarch_registration *rego;
104c1213 1885
ebdba546
AC
1886 /* The existing architecture has been swapped out - all this code
1887 works from a clean slate. */
1888 gdb_assert (current_gdbarch == NULL);
1889
b732d07d 1890 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1891 sources: "set ..."; INFOabfd supplied; and the global
1892 defaults. */
1893 gdbarch_info_fill (&info);
4be87837 1894
b732d07d
AC
1895 /* Must have found some sort of architecture. */
1896 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1897
1898 if (gdbarch_debug)
1899 {
1900 fprintf_unfiltered (gdb_stdlog,
ebdba546 1901 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1902 (info.bfd_arch_info != NULL
1903 ? info.bfd_arch_info->printable_name
1904 : "(null)"));
1905 fprintf_unfiltered (gdb_stdlog,
ebdba546 1906 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 1907 info.byte_order,
d7449b42 1908 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1909 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1910 : "default"));
4be87837 1911 fprintf_unfiltered (gdb_stdlog,
ebdba546 1912 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 1913 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1914 fprintf_unfiltered (gdb_stdlog,
30737ed9
JB
1915 "find_arch_by_info: info.abfd %s\n",
1916 host_address_to_string (info.abfd));
104c1213 1917 fprintf_unfiltered (gdb_stdlog,
30737ed9
JB
1918 "find_arch_by_info: info.tdep_info %s\n",
1919 host_address_to_string (info.tdep_info));
104c1213
JM
1920 }
1921
ebdba546 1922 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1923 for (rego = gdbarch_registry;
1924 rego != NULL;
1925 rego = rego->next)
1926 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1927 break;
1928 if (rego == NULL)
1929 {
1930 if (gdbarch_debug)
ebdba546
AC
1931 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1932 "No matching architecture\n");
b732d07d
AC
1933 return 0;
1934 }
1935
ebdba546 1936 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1937 new_gdbarch = rego->init (info, rego->arches);
1938
ebdba546
AC
1939 /* Did the tdep code like it? No. Reject the change and revert to
1940 the old architecture. */
104c1213
JM
1941 if (new_gdbarch == NULL)
1942 {
1943 if (gdbarch_debug)
ebdba546
AC
1944 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1945 "Target rejected architecture\n");
1946 return NULL;
104c1213
JM
1947 }
1948
ebdba546
AC
1949 /* Is this a pre-existing architecture (as determined by already
1950 being initialized)? Move it to the front of the architecture
1951 list (keeping the list sorted Most Recently Used). */
1952 if (new_gdbarch->initialized_p)
104c1213 1953 {
ebdba546
AC
1954 struct gdbarch_list **list;
1955 struct gdbarch_list *this;
104c1213 1956 if (gdbarch_debug)
ebdba546 1957 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
30737ed9
JB
1958 "Previous architecture %s (%s) selected\n",
1959 host_address_to_string (new_gdbarch),
104c1213 1960 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1961 /* Find the existing arch in the list. */
1962 for (list = &rego->arches;
1963 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1964 list = &(*list)->next);
1965 /* It had better be in the list of architectures. */
1966 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1967 /* Unlink THIS. */
1968 this = (*list);
1969 (*list) = this->next;
1970 /* Insert THIS at the front. */
1971 this->next = rego->arches;
1972 rego->arches = this;
1973 /* Return it. */
1974 return new_gdbarch;
104c1213
JM
1975 }
1976
ebdba546
AC
1977 /* It's a new architecture. */
1978 if (gdbarch_debug)
1979 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
30737ed9
JB
1980 "New architecture %s (%s) selected\n",
1981 host_address_to_string (new_gdbarch),
ebdba546
AC
1982 new_gdbarch->bfd_arch_info->printable_name);
1983
1984 /* Insert the new architecture into the front of the architecture
1985 list (keep the list sorted Most Recently Used). */
0f79675b
AC
1986 {
1987 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1988 this->next = rego->arches;
1989 this->gdbarch = new_gdbarch;
1990 rego->arches = this;
1991 }
104c1213 1992
4b9b3959
AC
1993 /* Check that the newly installed architecture is valid. Plug in
1994 any post init values. */
1995 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 1996 verify_gdbarch (new_gdbarch);
ebdba546 1997 new_gdbarch->initialized_p = 1;
104c1213 1998
4b9b3959 1999 if (gdbarch_debug)
ebdba546
AC
2000 gdbarch_dump (new_gdbarch, gdb_stdlog);
2001
2002 return new_gdbarch;
2003}
2004
2005struct gdbarch *
2006gdbarch_find_by_info (struct gdbarch_info info)
2007{
e487cc15
UW
2008 struct gdbarch *new_gdbarch;
2009
ebdba546
AC
2010 /* Save the previously selected architecture, setting the global to
2011 NULL. This stops things like gdbarch->init() trying to use the
2012 previous architecture's configuration. The previous architecture
2013 may not even be of the same architecture family. The most recent
2014 architecture of the same family is found at the head of the
2015 rego->arches list. */
e487cc15
UW
2016 struct gdbarch *old_gdbarch = current_gdbarch;
2017 current_gdbarch = NULL;
ebdba546
AC
2018
2019 /* Find the specified architecture. */
e487cc15 2020 new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2021
2022 /* Restore the existing architecture. */
2023 gdb_assert (current_gdbarch == NULL);
e487cc15 2024 current_gdbarch = old_gdbarch;
4b9b3959 2025
ebdba546 2026 return new_gdbarch;
104c1213
JM
2027}
2028
e487cc15 2029/* Make the specified architecture current. */
ebdba546
AC
2030
2031void
2032deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2033{
2034 gdb_assert (new_gdbarch != NULL);
2035 gdb_assert (current_gdbarch != NULL);
2036 gdb_assert (new_gdbarch->initialized_p);
e487cc15 2037 current_gdbarch = new_gdbarch;
1cf3db46 2038 target_gdbarch = new_gdbarch;
383f836e 2039 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2040 registers_changed ();
ebdba546 2041}
104c1213 2042
104c1213 2043extern void _initialize_gdbarch (void);
b4a20239 2044
104c1213 2045void
34620563 2046_initialize_gdbarch (void)
104c1213 2047{
59233f88
AC
2048 struct cmd_list_element *c;
2049
85c07804
AC
2050 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2051Set architecture debugging."), _("\\
2052Show architecture debugging."), _("\\
2053When non-zero, architecture debugging is enabled."),
2054 NULL,
920d2a44 2055 show_gdbarch_debug,
85c07804 2056 &setdebuglist, &showdebuglist);
104c1213
JM
2057}
2058EOF
2059
2060# close things off
2061exec 1>&2
2062#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2063compare_new gdbarch.c
This page took 0.790137 seconds and 4 git commands to generate.