Move __SIGRTMIN.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
32d0add0 5# Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea 481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 482m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
c9cf6e20 630# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
c9cf6e20 637m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
638# Process an ELF symbol in the minimal symbol table in a backend-specific
639# way. Normally this hook is supposed to do nothing, however if required,
640# then this hook can be used to apply tranformations to symbols that are
641# considered special in some way. For example the MIPS backend uses it
642# to interpret \`st_other' information to mark compressed code symbols so
643# that they can be treated in the appropriate manner in the processing of
644# the main symbol table and DWARF-2 records.
645F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 646f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
647# Process a symbol in the main symbol table in a backend-specific way.
648# Normally this hook is supposed to do nothing, however if required,
649# then this hook can be used to apply tranformations to symbols that
650# are considered special in some way. This is currently used by the
651# MIPS backend to make sure compressed code symbols have the ISA bit
652# set. This in turn is needed for symbol values seen in GDB to match
653# the values used at the runtime by the program itself, for function
654# and label references.
655f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656# Adjust the address retrieved from a DWARF-2 record other than a line
657# entry in a backend-specific way. Normally this hook is supposed to
658# return the address passed unchanged, however if that is incorrect for
659# any reason, then this hook can be used to fix the address up in the
660# required manner. This is currently used by the MIPS backend to make
661# sure addresses in FDE, range records, etc. referring to compressed
662# code have the ISA bit set, matching line information and the symbol
663# table.
664f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665# Adjust the address updated by a line entry in a backend-specific way.
666# Normally this hook is supposed to return the address passed unchanged,
667# however in the case of inconsistencies in these records, this hook can
668# be used to fix them up in the required manner. This is currently used
669# by the MIPS backend to make sure all line addresses in compressed code
670# are presented with the ISA bit set, which is not always the case. This
671# in turn ensures breakpoint addresses are correctly matched against the
672# stop PC.
673f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
674v:int:cannot_step_breakpoint:::0:0::0
675v:int:have_nonsteppable_watchpoint:::0:0::0
676F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
678
679# Return the appropriate type_flags for the supplied address class.
680# This function should return 1 if the address class was recognized and
681# type_flags was set, zero otherwise.
97030eea 682M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 683# Is a register in a group
97030eea 684m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 685# Fetch the pointer to the ith function argument.
97030eea 686F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 687
5aa82d05
AA
688# Iterate over all supported register notes in a core file. For each
689# supported register note section, the iterator must call CB and pass
690# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691# the supported register note sections based on the current register
692# values. Otherwise it should enumerate all supported register note
693# sections.
694M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 695
6432734d
UW
696# Create core file notes
697M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
b3ac9c77
SDJ
699# The elfcore writer hook to use to write Linux prpsinfo notes to core
700# files. Most Linux architectures use the same prpsinfo32 or
701# prpsinfo64 layouts, and so won't need to provide this hook, as we
702# call the Linux generic routines in bfd to write prpsinfo notes by
703# default.
704F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
35c2fab7
UW
706# Find core file memory regions
707M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
de584861 709# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
710# core file into buffer READBUF with length LEN. Return the number of bytes read
711# (zero indicates failure).
712# failed, otherwise, return the red length of READBUF.
713M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 714
356a5233
JB
715# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
717# Return the number of bytes read (zero indicates failure).
718M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 719
c0edd9ed 720# How the core target converts a PTID from a core file to a string.
28439f5e
PA
721M:char *:core_pid_to_str:ptid_t ptid:ptid
722
a78c2d62 723# BFD target to use when generating a core file.
86ba1042 724V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 725
0d5de010
DJ
726# If the elements of C++ vtables are in-place function descriptors rather
727# than normal function pointers (which may point to code or a descriptor),
728# set this to one.
97030eea 729v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
730
731# Set if the least significant bit of the delta is used instead of the least
732# significant bit of the pfn for pointers to virtual member functions.
97030eea 733v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
734
735# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 736f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 737
1668ae25 738# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
739V:ULONGEST:max_insn_length:::0:0
740
741# Copy the instruction at FROM to TO, and make any adjustments
742# necessary to single-step it at that address.
743#
744# REGS holds the state the thread's registers will have before
745# executing the copied instruction; the PC in REGS will refer to FROM,
746# not the copy at TO. The caller should update it to point at TO later.
747#
748# Return a pointer to data of the architecture's choice to be passed
749# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750# the instruction's effects have been completely simulated, with the
751# resulting state written back to REGS.
752#
753# For a general explanation of displaced stepping and how GDB uses it,
754# see the comments in infrun.c.
755#
756# The TO area is only guaranteed to have space for
757# gdbarch_max_insn_length (arch) bytes, so this function must not
758# write more bytes than that to that area.
759#
760# If you do not provide this function, GDB assumes that the
761# architecture does not support displaced stepping.
762#
763# If your architecture doesn't need to adjust instructions before
764# single-stepping them, consider using simple_displaced_step_copy_insn
765# here.
7f03bd92
PA
766#
767# If the instruction cannot execute out of line, return NULL. The
768# core falls back to stepping past the instruction in-line instead in
769# that case.
237fc4c9
PA
770M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
771
99e40580
UW
772# Return true if GDB should use hardware single-stepping to execute
773# the displaced instruction identified by CLOSURE. If false,
774# GDB will simply restart execution at the displaced instruction
775# location, and it is up to the target to ensure GDB will receive
776# control again (e.g. by placing a software breakpoint instruction
777# into the displaced instruction buffer).
778#
779# The default implementation returns false on all targets that
780# provide a gdbarch_software_single_step routine, and true otherwise.
781m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
782
237fc4c9
PA
783# Fix up the state resulting from successfully single-stepping a
784# displaced instruction, to give the result we would have gotten from
785# stepping the instruction in its original location.
786#
787# REGS is the register state resulting from single-stepping the
788# displaced instruction.
789#
790# CLOSURE is the result from the matching call to
791# gdbarch_displaced_step_copy_insn.
792#
793# If you provide gdbarch_displaced_step_copy_insn.but not this
794# function, then GDB assumes that no fixup is needed after
795# single-stepping the instruction.
796#
797# For a general explanation of displaced stepping and how GDB uses it,
798# see the comments in infrun.c.
799M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
800
801# Free a closure returned by gdbarch_displaced_step_copy_insn.
802#
803# If you provide gdbarch_displaced_step_copy_insn, you must provide
804# this function as well.
805#
806# If your architecture uses closures that don't need to be freed, then
807# you can use simple_displaced_step_free_closure here.
808#
809# For a general explanation of displaced stepping and how GDB uses it,
810# see the comments in infrun.c.
811m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
812
813# Return the address of an appropriate place to put displaced
814# instructions while we step over them. There need only be one such
815# place, since we're only stepping one thread over a breakpoint at a
816# time.
817#
818# For a general explanation of displaced stepping and how GDB uses it,
819# see the comments in infrun.c.
820m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
821
dde08ee1
PA
822# Relocate an instruction to execute at a different address. OLDLOC
823# is the address in the inferior memory where the instruction to
824# relocate is currently at. On input, TO points to the destination
825# where we want the instruction to be copied (and possibly adjusted)
826# to. On output, it points to one past the end of the resulting
827# instruction(s). The effect of executing the instruction at TO shall
828# be the same as if executing it at FROM. For example, call
829# instructions that implicitly push the return address on the stack
830# should be adjusted to return to the instruction after OLDLOC;
831# relative branches, and other PC-relative instructions need the
832# offset adjusted; etc.
833M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
834
1c772458 835# Refresh overlay mapped state for section OSECT.
97030eea 836F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 837
97030eea 838M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
839
840# Handle special encoding of static variables in stabs debug info.
0d5cff50 841F:const char *:static_transform_name:const char *name:name
203c3895 842# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 843v:int:sofun_address_maybe_missing:::0:0::0
1cded358 844
0508c3ec
HZ
845# Parse the instruction at ADDR storing in the record execution log
846# the registers REGCACHE and memory ranges that will be affected when
847# the instruction executes, along with their current values.
848# Return -1 if something goes wrong, 0 otherwise.
849M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
850
3846b520
HZ
851# Save process state after a signal.
852# Return -1 if something goes wrong, 0 otherwise.
2ea28649 853M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 854
22203bbf 855# Signal translation: translate inferior's signal (target's) number
86b49880
PA
856# into GDB's representation. The implementation of this method must
857# be host independent. IOW, don't rely on symbols of the NAT_FILE
858# header (the nm-*.h files), the host <signal.h> header, or similar
859# headers. This is mainly used when cross-debugging core files ---
860# "Live" targets hide the translation behind the target interface
1f8cf220
PA
861# (target_wait, target_resume, etc.).
862M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 863
eb14d406
SDJ
864# Signal translation: translate the GDB's internal signal number into
865# the inferior's signal (target's) representation. The implementation
866# of this method must be host independent. IOW, don't rely on symbols
867# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
868# header, or similar headers.
869# Return the target signal number if found, or -1 if the GDB internal
870# signal number is invalid.
871M:int:gdb_signal_to_target:enum gdb_signal signal:signal
872
4aa995e1
PA
873# Extra signal info inspection.
874#
875# Return a type suitable to inspect extra signal information.
876M:struct type *:get_siginfo_type:void:
877
60c5725c
DJ
878# Record architecture-specific information from the symbol table.
879M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 880
a96d9b2e
SDJ
881# Function for the 'catch syscall' feature.
882
883# Get architecture-specific system calls information from registers.
884M:LONGEST:get_syscall_number:ptid_t ptid:ptid
885
458c8db8
SDJ
886# The filename of the XML syscall for this architecture.
887v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
888
889# Information about system calls from this architecture
890v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
891
55aa24fb
SDJ
892# SystemTap related fields and functions.
893
05c0465e
SDJ
894# A NULL-terminated array of prefixes used to mark an integer constant
895# on the architecture's assembly.
55aa24fb
SDJ
896# For example, on x86 integer constants are written as:
897#
898# \$10 ;; integer constant 10
899#
900# in this case, this prefix would be the character \`\$\'.
05c0465e 901v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 902
05c0465e
SDJ
903# A NULL-terminated array of suffixes used to mark an integer constant
904# on the architecture's assembly.
905v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 906
05c0465e
SDJ
907# A NULL-terminated array of prefixes used to mark a register name on
908# the architecture's assembly.
55aa24fb
SDJ
909# For example, on x86 the register name is written as:
910#
911# \%eax ;; register eax
912#
913# in this case, this prefix would be the character \`\%\'.
05c0465e 914v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 915
05c0465e
SDJ
916# A NULL-terminated array of suffixes used to mark a register name on
917# the architecture's assembly.
918v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 919
05c0465e
SDJ
920# A NULL-terminated array of prefixes used to mark a register
921# indirection on the architecture's assembly.
55aa24fb
SDJ
922# For example, on x86 the register indirection is written as:
923#
924# \(\%eax\) ;; indirecting eax
925#
926# in this case, this prefix would be the charater \`\(\'.
927#
928# Please note that we use the indirection prefix also for register
929# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 930v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 931
05c0465e
SDJ
932# A NULL-terminated array of suffixes used to mark a register
933# indirection on the architecture's assembly.
55aa24fb
SDJ
934# For example, on x86 the register indirection is written as:
935#
936# \(\%eax\) ;; indirecting eax
937#
938# in this case, this prefix would be the charater \`\)\'.
939#
940# Please note that we use the indirection suffix also for register
941# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 942v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 943
05c0465e 944# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
945#
946# For example, on PPC a register is represented by a number in the assembly
947# language (e.g., \`10\' is the 10th general-purpose register). However,
948# inside GDB this same register has an \`r\' appended to its name, so the 10th
949# register would be represented as \`r10\' internally.
08af7a40 950v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
951
952# Suffix used to name a register using GDB's nomenclature.
08af7a40 953v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
954
955# Check if S is a single operand.
956#
957# Single operands can be:
958# \- Literal integers, e.g. \`\$10\' on x86
959# \- Register access, e.g. \`\%eax\' on x86
960# \- Register indirection, e.g. \`\(\%eax\)\' on x86
961# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
962#
963# This function should check for these patterns on the string
964# and return 1 if some were found, or zero otherwise. Please try to match
965# as much info as you can from the string, i.e., if you have to match
966# something like \`\(\%\', do not match just the \`\(\'.
967M:int:stap_is_single_operand:const char *s:s
968
969# Function used to handle a "special case" in the parser.
970#
971# A "special case" is considered to be an unknown token, i.e., a token
972# that the parser does not know how to parse. A good example of special
973# case would be ARM's register displacement syntax:
974#
975# [R0, #4] ;; displacing R0 by 4
976#
977# Since the parser assumes that a register displacement is of the form:
978#
979# <number> <indirection_prefix> <register_name> <indirection_suffix>
980#
981# it means that it will not be able to recognize and parse this odd syntax.
982# Therefore, we should add a special case function that will handle this token.
983#
984# This function should generate the proper expression form of the expression
985# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
986# and so on). It should also return 1 if the parsing was successful, or zero
987# if the token was not recognized as a special token (in this case, returning
988# zero means that the special parser is deferring the parsing to the generic
989# parser), and should advance the buffer pointer (p->arg).
990M:int:stap_parse_special_token:struct stap_parse_info *p:p
991
8b367e17
JM
992# DTrace related functions.
993
994# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
995# NARG must be >= 0.
996M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
997
998# True if the given ADDR does not contain the instruction sequence
999# corresponding to a disabled DTrace is-enabled probe.
1000M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1001
1002# Enable a DTrace is-enabled probe at ADDR.
1003M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1004
1005# Disable a DTrace is-enabled probe at ADDR.
1006M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1007
50c71eaf
PA
1008# True if the list of shared libraries is one and only for all
1009# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1010# This usually means that all processes, although may or may not share
1011# an address space, will see the same set of symbols at the same
1012# addresses.
50c71eaf 1013v:int:has_global_solist:::0:0::0
2567c7d9
PA
1014
1015# On some targets, even though each inferior has its own private
1016# address space, the debug interface takes care of making breakpoints
1017# visible to all address spaces automatically. For such cases,
1018# this property should be set to true.
1019v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1020
1021# True if inferiors share an address space (e.g., uClinux).
1022m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1023
1024# True if a fast tracepoint can be set at an address.
6b940e6a 1025m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1026
f870a310
TT
1027# Return the "auto" target charset.
1028f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1029# Return the "auto" target wide charset.
1030f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1031
1032# If non-empty, this is a file extension that will be opened in place
1033# of the file extension reported by the shared library list.
1034#
1035# This is most useful for toolchains that use a post-linker tool,
1036# where the names of the files run on the target differ in extension
1037# compared to the names of the files GDB should load for debug info.
1038v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1039
1040# If true, the target OS has DOS-based file system semantics. That
1041# is, absolute paths include a drive name, and the backslash is
1042# considered a directory separator.
1043v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1044
1045# Generate bytecodes to collect the return address in a frame.
1046# Since the bytecodes run on the target, possibly with GDB not even
1047# connected, the full unwinding machinery is not available, and
1048# typically this function will issue bytecodes for one or more likely
1049# places that the return address may be found.
1050m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1051
3030c96e 1052# Implement the "info proc" command.
7bc112c1 1053M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1054
451b7c33
TT
1055# Implement the "info proc" command for core files. Noe that there
1056# are two "info_proc"-like methods on gdbarch -- one for core files,
1057# one for live targets.
7bc112c1 1058M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1059
19630284
JB
1060# Iterate over all objfiles in the order that makes the most sense
1061# for the architecture to make global symbol searches.
1062#
1063# CB is a callback function where OBJFILE is the objfile to be searched,
1064# and CB_DATA a pointer to user-defined data (the same data that is passed
1065# when calling this gdbarch method). The iteration stops if this function
1066# returns nonzero.
1067#
1068# CB_DATA is a pointer to some user-defined data to be passed to
1069# the callback.
1070#
1071# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1072# inspected when the symbol search was requested.
1073m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1074
7e35103a
JB
1075# Ravenscar arch-dependent ops.
1076v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1077
1078# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1079m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1080
1081# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1082m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1083
1084# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1085m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1086
1087# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1088# Return 0 if *READPTR is already at the end of the buffer.
1089# Return -1 if there is insufficient buffer for a whole entry.
1090# Return 1 if an entry was read into *TYPEP and *VALP.
1091M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1092
1093# Find the address range of the current inferior's vsyscall/vDSO, and
1094# write it to *RANGE. If the vsyscall's length can't be determined, a
1095# range with zero length is returned. Returns true if the vsyscall is
1096# found, false otherwise.
1097m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1098
1099# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1100# PROT has GDB_MMAP_PROT_* bitmask format.
1101# Throw an error if it is not possible. Returned address is always valid.
1102f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1103
7f361056
JK
1104# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1105# Print a warning if it is not possible.
1106f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1107
f208eee0
JK
1108# Return string (caller has to use xfree for it) with options for GCC
1109# to produce code for this target, typically "-m64", "-m32" or "-m31".
1110# These options are put before CU's DW_AT_producer compilation options so that
1111# they can override it. Method may also return NULL.
1112m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1113
1114# Return a regular expression that matches names used by this
1115# architecture in GNU configury triplets. The result is statically
1116# allocated and must not be freed. The default implementation simply
1117# returns the BFD architecture name, which is correct in nearly every
1118# case.
1119m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1120
1121# Return the size in 8-bit bytes of an addressable memory unit on this
1122# architecture. This corresponds to the number of 8-bit bytes associated to
1123# each address in memory.
1124m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1125
104c1213 1126EOF
104c1213
JM
1127}
1128
0b8f9e4d
AC
1129#
1130# The .log file
1131#
1132exec > new-gdbarch.log
34620563 1133function_list | while do_read
0b8f9e4d
AC
1134do
1135 cat <<EOF
2f9b146e 1136${class} ${returntype} ${function} ($formal)
104c1213 1137EOF
3d9a5942
AC
1138 for r in ${read}
1139 do
1140 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1141 done
f0d4cc9e 1142 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1143 then
66d659b1 1144 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1145 kill $$
1146 exit 1
1147 fi
72e74a21 1148 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1149 then
1150 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1151 kill $$
1152 exit 1
1153 fi
a72293e2
AC
1154 if class_is_multiarch_p
1155 then
1156 if class_is_predicate_p ; then :
1157 elif test "x${predefault}" = "x"
1158 then
2f9b146e 1159 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1160 kill $$
1161 exit 1
1162 fi
1163 fi
3d9a5942 1164 echo ""
0b8f9e4d
AC
1165done
1166
1167exec 1>&2
1168compare_new gdbarch.log
1169
104c1213
JM
1170
1171copyright ()
1172{
1173cat <<EOF
c4bfde41
JK
1174/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1175/* vi:set ro: */
59233f88 1176
104c1213 1177/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1178
32d0add0 1179 Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
1180
1181 This file is part of GDB.
1182
1183 This program is free software; you can redistribute it and/or modify
1184 it under the terms of the GNU General Public License as published by
50efebf8 1185 the Free Software Foundation; either version 3 of the License, or
104c1213 1186 (at your option) any later version.
50efebf8 1187
104c1213
JM
1188 This program is distributed in the hope that it will be useful,
1189 but WITHOUT ANY WARRANTY; without even the implied warranty of
1190 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1191 GNU General Public License for more details.
50efebf8 1192
104c1213 1193 You should have received a copy of the GNU General Public License
50efebf8 1194 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1195
104c1213
JM
1196/* This file was created with the aid of \`\`gdbarch.sh''.
1197
52204a0b 1198 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1199 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1200 against the existing \`\`gdbarch.[hc]''. Any differences found
1201 being reported.
1202
1203 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1204 changes into that script. Conversely, when making sweeping changes
104c1213 1205 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1206 easier. */
104c1213
JM
1207
1208EOF
1209}
1210
1211#
1212# The .h file
1213#
1214
1215exec > new-gdbarch.h
1216copyright
1217cat <<EOF
1218#ifndef GDBARCH_H
1219#define GDBARCH_H
1220
eb7a547a
JB
1221#include "frame.h"
1222
da3331ec
AC
1223struct floatformat;
1224struct ui_file;
104c1213 1225struct value;
b6af0555 1226struct objfile;
1c772458 1227struct obj_section;
a2cf933a 1228struct minimal_symbol;
049ee0e4 1229struct regcache;
b59ff9d5 1230struct reggroup;
6ce6d90f 1231struct regset;
a89aa300 1232struct disassemble_info;
e2d0e7eb 1233struct target_ops;
030f20e1 1234struct obstack;
8181d85f 1235struct bp_target_info;
424163ea 1236struct target_desc;
3e29f34a
MR
1237struct objfile;
1238struct symbol;
237fc4c9 1239struct displaced_step_closure;
a96d9b2e 1240struct syscall;
175ff332 1241struct agent_expr;
6710bf39 1242struct axs_value;
55aa24fb 1243struct stap_parse_info;
8b367e17 1244struct parser_state;
7e35103a 1245struct ravenscar_arch_ops;
b3ac9c77 1246struct elf_internal_linux_prpsinfo;
3437254d 1247struct mem_range;
458c8db8 1248struct syscalls_info;
104c1213 1249
8a526fa6
PA
1250#include "regcache.h"
1251
6ecd4729
PA
1252/* The architecture associated with the inferior through the
1253 connection to the target.
1254
1255 The architecture vector provides some information that is really a
1256 property of the inferior, accessed through a particular target:
1257 ptrace operations; the layout of certain RSP packets; the solib_ops
1258 vector; etc. To differentiate architecture accesses to
1259 per-inferior/target properties from
1260 per-thread/per-frame/per-objfile properties, accesses to
1261 per-inferior/target properties should be made through this
1262 gdbarch. */
1263
1264/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1265extern struct gdbarch *target_gdbarch (void);
6ecd4729 1266
19630284
JB
1267/* Callback type for the 'iterate_over_objfiles_in_search_order'
1268 gdbarch method. */
1269
1270typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1271 (struct objfile *objfile, void *cb_data);
5aa82d05 1272
1528345d
AA
1273/* Callback type for regset section iterators. The callback usually
1274 invokes the REGSET's supply or collect method, to which it must
1275 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1276 section name, and HUMAN_NAME is used for diagnostic messages.
1277 CB_DATA should have been passed unchanged through the iterator. */
1278
5aa82d05 1279typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1280 (const char *sect_name, int size, const struct regset *regset,
1281 const char *human_name, void *cb_data);
104c1213
JM
1282EOF
1283
1284# function typedef's
3d9a5942
AC
1285printf "\n"
1286printf "\n"
0963b4bd 1287printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1288function_list | while do_read
104c1213 1289do
2ada493a
AC
1290 if class_is_info_p
1291 then
3d9a5942
AC
1292 printf "\n"
1293 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1294 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1295 fi
104c1213
JM
1296done
1297
1298# function typedef's
3d9a5942
AC
1299printf "\n"
1300printf "\n"
0963b4bd 1301printf "/* The following are initialized by the target dependent code. */\n"
34620563 1302function_list | while do_read
104c1213 1303do
72e74a21 1304 if [ -n "${comment}" ]
34620563
AC
1305 then
1306 echo "${comment}" | sed \
1307 -e '2 s,#,/*,' \
1308 -e '3,$ s,#, ,' \
1309 -e '$ s,$, */,'
1310 fi
412d5987
AC
1311
1312 if class_is_predicate_p
2ada493a 1313 then
412d5987
AC
1314 printf "\n"
1315 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1316 fi
2ada493a
AC
1317 if class_is_variable_p
1318 then
3d9a5942
AC
1319 printf "\n"
1320 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1321 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1322 fi
1323 if class_is_function_p
1324 then
3d9a5942 1325 printf "\n"
72e74a21 1326 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1327 then
1328 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1329 elif class_is_multiarch_p
1330 then
1331 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1332 else
1333 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1334 fi
72e74a21 1335 if [ "x${formal}" = "xvoid" ]
104c1213 1336 then
3d9a5942 1337 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1338 else
3d9a5942 1339 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1340 fi
3d9a5942 1341 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1342 fi
104c1213
JM
1343done
1344
1345# close it off
1346cat <<EOF
1347
a96d9b2e
SDJ
1348/* Definition for an unknown syscall, used basically in error-cases. */
1349#define UNKNOWN_SYSCALL (-1)
1350
104c1213
JM
1351extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1352
1353
1354/* Mechanism for co-ordinating the selection of a specific
1355 architecture.
1356
1357 GDB targets (*-tdep.c) can register an interest in a specific
1358 architecture. Other GDB components can register a need to maintain
1359 per-architecture data.
1360
1361 The mechanisms below ensures that there is only a loose connection
1362 between the set-architecture command and the various GDB
0fa6923a 1363 components. Each component can independently register their need
104c1213
JM
1364 to maintain architecture specific data with gdbarch.
1365
1366 Pragmatics:
1367
1368 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1369 didn't scale.
1370
1371 The more traditional mega-struct containing architecture specific
1372 data for all the various GDB components was also considered. Since
0fa6923a 1373 GDB is built from a variable number of (fairly independent)
104c1213 1374 components it was determined that the global aproach was not
0963b4bd 1375 applicable. */
104c1213
JM
1376
1377
1378/* Register a new architectural family with GDB.
1379
1380 Register support for the specified ARCHITECTURE with GDB. When
1381 gdbarch determines that the specified architecture has been
1382 selected, the corresponding INIT function is called.
1383
1384 --
1385
1386 The INIT function takes two parameters: INFO which contains the
1387 information available to gdbarch about the (possibly new)
1388 architecture; ARCHES which is a list of the previously created
1389 \`\`struct gdbarch'' for this architecture.
1390
0f79675b 1391 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1392 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1393
1394 The ARCHES parameter is a linked list (sorted most recently used)
1395 of all the previously created architures for this architecture
1396 family. The (possibly NULL) ARCHES->gdbarch can used to access
1397 values from the previously selected architecture for this
59837fe0 1398 architecture family.
104c1213
JM
1399
1400 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1401 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1402 gdbarch'' from the ARCHES list - indicating that the new
1403 architecture is just a synonym for an earlier architecture (see
1404 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1405 - that describes the selected architecture (see gdbarch_alloc()).
1406
1407 The DUMP_TDEP function shall print out all target specific values.
1408 Care should be taken to ensure that the function works in both the
0963b4bd 1409 multi-arch and non- multi-arch cases. */
104c1213
JM
1410
1411struct gdbarch_list
1412{
1413 struct gdbarch *gdbarch;
1414 struct gdbarch_list *next;
1415};
1416
1417struct gdbarch_info
1418{
0963b4bd 1419 /* Use default: NULL (ZERO). */
104c1213
JM
1420 const struct bfd_arch_info *bfd_arch_info;
1421
428721aa 1422 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1423 enum bfd_endian byte_order;
104c1213 1424
94123b4f 1425 enum bfd_endian byte_order_for_code;
9d4fde75 1426
0963b4bd 1427 /* Use default: NULL (ZERO). */
104c1213
JM
1428 bfd *abfd;
1429
0963b4bd 1430 /* Use default: NULL (ZERO). */
ede5f151 1431 void *tdep_info;
4be87837
DJ
1432
1433 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1434 enum gdb_osabi osabi;
424163ea
DJ
1435
1436 /* Use default: NULL (ZERO). */
1437 const struct target_desc *target_desc;
104c1213
JM
1438};
1439
1440typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1441typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1442
4b9b3959 1443/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1444extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1445
4b9b3959
AC
1446extern void gdbarch_register (enum bfd_architecture architecture,
1447 gdbarch_init_ftype *,
1448 gdbarch_dump_tdep_ftype *);
1449
104c1213 1450
b4a20239
AC
1451/* Return a freshly allocated, NULL terminated, array of the valid
1452 architecture names. Since architectures are registered during the
1453 _initialize phase this function only returns useful information
0963b4bd 1454 once initialization has been completed. */
b4a20239
AC
1455
1456extern const char **gdbarch_printable_names (void);
1457
1458
104c1213 1459/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1460 matches the information provided by INFO. */
104c1213 1461
424163ea 1462extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1463
1464
1465/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1466 basic initialization using values obtained from the INFO and TDEP
104c1213 1467 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1468 initialization of the object. */
104c1213
JM
1469
1470extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1471
1472
4b9b3959
AC
1473/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1474 It is assumed that the caller freeds the \`\`struct
0963b4bd 1475 gdbarch_tdep''. */
4b9b3959 1476
058f20d5
JB
1477extern void gdbarch_free (struct gdbarch *);
1478
1479
aebd7893
AC
1480/* Helper function. Allocate memory from the \`\`struct gdbarch''
1481 obstack. The memory is freed when the corresponding architecture
1482 is also freed. */
1483
1484extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1485#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1486#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1487
6c214e7c
PP
1488/* Duplicate STRING, returning an equivalent string that's allocated on the
1489 obstack associated with GDBARCH. The string is freed when the corresponding
1490 architecture is also freed. */
1491
1492extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1493
0963b4bd 1494/* Helper function. Force an update of the current architecture.
104c1213 1495
b732d07d
AC
1496 The actual architecture selected is determined by INFO, \`\`(gdb) set
1497 architecture'' et.al., the existing architecture and BFD's default
1498 architecture. INFO should be initialized to zero and then selected
1499 fields should be updated.
104c1213 1500
0963b4bd 1501 Returns non-zero if the update succeeds. */
16f33e29
AC
1502
1503extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1504
1505
ebdba546
AC
1506/* Helper function. Find an architecture matching info.
1507
1508 INFO should be initialized using gdbarch_info_init, relevant fields
1509 set, and then finished using gdbarch_info_fill.
1510
1511 Returns the corresponding architecture, or NULL if no matching
59837fe0 1512 architecture was found. */
ebdba546
AC
1513
1514extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1515
1516
aff68abb 1517/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1518
aff68abb 1519extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1520
104c1213
JM
1521
1522/* Register per-architecture data-pointer.
1523
1524 Reserve space for a per-architecture data-pointer. An identifier
1525 for the reserved data-pointer is returned. That identifer should
95160752 1526 be saved in a local static variable.
104c1213 1527
fcc1c85c
AC
1528 Memory for the per-architecture data shall be allocated using
1529 gdbarch_obstack_zalloc. That memory will be deleted when the
1530 corresponding architecture object is deleted.
104c1213 1531
95160752
AC
1532 When a previously created architecture is re-selected, the
1533 per-architecture data-pointer for that previous architecture is
76860b5f 1534 restored. INIT() is not re-called.
104c1213
JM
1535
1536 Multiple registrarants for any architecture are allowed (and
1537 strongly encouraged). */
1538
95160752 1539struct gdbarch_data;
104c1213 1540
030f20e1
AC
1541typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1542extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1543typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1544extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1545extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1546 struct gdbarch_data *data,
1547 void *pointer);
104c1213 1548
451fbdda 1549extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1550
1551
0fa6923a 1552/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1553 byte-order, ...) using information found in the BFD. */
104c1213
JM
1554
1555extern void set_gdbarch_from_file (bfd *);
1556
1557
e514a9d6
JM
1558/* Initialize the current architecture to the "first" one we find on
1559 our list. */
1560
1561extern void initialize_current_architecture (void);
1562
104c1213 1563/* gdbarch trace variable */
ccce17b0 1564extern unsigned int gdbarch_debug;
104c1213 1565
4b9b3959 1566extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1567
1568#endif
1569EOF
1570exec 1>&2
1571#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1572compare_new gdbarch.h
104c1213
JM
1573
1574
1575#
1576# C file
1577#
1578
1579exec > new-gdbarch.c
1580copyright
1581cat <<EOF
1582
1583#include "defs.h"
7355ddba 1584#include "arch-utils.h"
104c1213 1585
104c1213 1586#include "gdbcmd.h"
faaf634c 1587#include "inferior.h"
104c1213
JM
1588#include "symcat.h"
1589
f0d4cc9e 1590#include "floatformat.h"
b59ff9d5 1591#include "reggroups.h"
4be87837 1592#include "osabi.h"
aebd7893 1593#include "gdb_obstack.h"
383f836e 1594#include "observer.h"
a3ecef73 1595#include "regcache.h"
19630284 1596#include "objfiles.h"
95160752 1597
104c1213
JM
1598/* Static function declarations */
1599
b3cc3077 1600static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1601
104c1213
JM
1602/* Non-zero if we want to trace architecture code. */
1603
1604#ifndef GDBARCH_DEBUG
1605#define GDBARCH_DEBUG 0
1606#endif
ccce17b0 1607unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1608static void
1609show_gdbarch_debug (struct ui_file *file, int from_tty,
1610 struct cmd_list_element *c, const char *value)
1611{
1612 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1613}
104c1213 1614
456fcf94 1615static const char *
8da61cc4 1616pformat (const struct floatformat **format)
456fcf94
AC
1617{
1618 if (format == NULL)
1619 return "(null)";
1620 else
8da61cc4
DJ
1621 /* Just print out one of them - this is only for diagnostics. */
1622 return format[0]->name;
456fcf94
AC
1623}
1624
08105857
PA
1625static const char *
1626pstring (const char *string)
1627{
1628 if (string == NULL)
1629 return "(null)";
1630 return string;
05c0465e
SDJ
1631}
1632
1633/* Helper function to print a list of strings, represented as "const
1634 char *const *". The list is printed comma-separated. */
1635
1636static char *
1637pstring_list (const char *const *list)
1638{
1639 static char ret[100];
1640 const char *const *p;
1641 size_t offset = 0;
1642
1643 if (list == NULL)
1644 return "(null)";
1645
1646 ret[0] = '\0';
1647 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1648 {
1649 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1650 offset += 2 + s;
1651 }
1652
1653 if (offset > 0)
1654 {
1655 gdb_assert (offset - 2 < sizeof (ret));
1656 ret[offset - 2] = '\0';
1657 }
1658
1659 return ret;
08105857
PA
1660}
1661
104c1213
JM
1662EOF
1663
1664# gdbarch open the gdbarch object
3d9a5942 1665printf "\n"
0963b4bd 1666printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1667printf "\n"
1668printf "struct gdbarch\n"
1669printf "{\n"
76860b5f
AC
1670printf " /* Has this architecture been fully initialized? */\n"
1671printf " int initialized_p;\n"
aebd7893
AC
1672printf "\n"
1673printf " /* An obstack bound to the lifetime of the architecture. */\n"
1674printf " struct obstack *obstack;\n"
1675printf "\n"
0963b4bd 1676printf " /* basic architectural information. */\n"
34620563 1677function_list | while do_read
104c1213 1678do
2ada493a
AC
1679 if class_is_info_p
1680 then
3d9a5942 1681 printf " ${returntype} ${function};\n"
2ada493a 1682 fi
104c1213 1683done
3d9a5942 1684printf "\n"
0963b4bd 1685printf " /* target specific vector. */\n"
3d9a5942
AC
1686printf " struct gdbarch_tdep *tdep;\n"
1687printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1688printf "\n"
0963b4bd 1689printf " /* per-architecture data-pointers. */\n"
95160752 1690printf " unsigned nr_data;\n"
3d9a5942
AC
1691printf " void **data;\n"
1692printf "\n"
104c1213
JM
1693cat <<EOF
1694 /* Multi-arch values.
1695
1696 When extending this structure you must:
1697
1698 Add the field below.
1699
1700 Declare set/get functions and define the corresponding
1701 macro in gdbarch.h.
1702
1703 gdbarch_alloc(): If zero/NULL is not a suitable default,
1704 initialize the new field.
1705
1706 verify_gdbarch(): Confirm that the target updated the field
1707 correctly.
1708
7e73cedf 1709 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1710 field is dumped out
1711
104c1213
JM
1712 get_gdbarch(): Implement the set/get functions (probably using
1713 the macro's as shortcuts).
1714
1715 */
1716
1717EOF
34620563 1718function_list | while do_read
104c1213 1719do
2ada493a
AC
1720 if class_is_variable_p
1721 then
3d9a5942 1722 printf " ${returntype} ${function};\n"
2ada493a
AC
1723 elif class_is_function_p
1724 then
2f9b146e 1725 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1726 fi
104c1213 1727done
3d9a5942 1728printf "};\n"
104c1213 1729
104c1213 1730# Create a new gdbarch struct
104c1213 1731cat <<EOF
7de2341d 1732
66b43ecb 1733/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1734 \`\`struct gdbarch_info''. */
104c1213 1735EOF
3d9a5942 1736printf "\n"
104c1213
JM
1737cat <<EOF
1738struct gdbarch *
1739gdbarch_alloc (const struct gdbarch_info *info,
1740 struct gdbarch_tdep *tdep)
1741{
be7811ad 1742 struct gdbarch *gdbarch;
aebd7893
AC
1743
1744 /* Create an obstack for allocating all the per-architecture memory,
1745 then use that to allocate the architecture vector. */
70ba0933 1746 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1747 obstack_init (obstack);
8d749320 1748 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1749 memset (gdbarch, 0, sizeof (*gdbarch));
1750 gdbarch->obstack = obstack;
85de9627 1751
be7811ad 1752 alloc_gdbarch_data (gdbarch);
85de9627 1753
be7811ad 1754 gdbarch->tdep = tdep;
104c1213 1755EOF
3d9a5942 1756printf "\n"
34620563 1757function_list | while do_read
104c1213 1758do
2ada493a
AC
1759 if class_is_info_p
1760 then
be7811ad 1761 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1762 fi
104c1213 1763done
3d9a5942 1764printf "\n"
0963b4bd 1765printf " /* Force the explicit initialization of these. */\n"
34620563 1766function_list | while do_read
104c1213 1767do
2ada493a
AC
1768 if class_is_function_p || class_is_variable_p
1769 then
72e74a21 1770 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1771 then
be7811ad 1772 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1773 fi
2ada493a 1774 fi
104c1213
JM
1775done
1776cat <<EOF
1777 /* gdbarch_alloc() */
1778
be7811ad 1779 return gdbarch;
104c1213
JM
1780}
1781EOF
1782
058f20d5 1783# Free a gdbarch struct.
3d9a5942
AC
1784printf "\n"
1785printf "\n"
058f20d5 1786cat <<EOF
aebd7893
AC
1787/* Allocate extra space using the per-architecture obstack. */
1788
1789void *
1790gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1791{
1792 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1793
aebd7893
AC
1794 memset (data, 0, size);
1795 return data;
1796}
1797
6c214e7c
PP
1798/* See gdbarch.h. */
1799
1800char *
1801gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1802{
1803 return obstack_strdup (arch->obstack, string);
1804}
1805
aebd7893 1806
058f20d5
JB
1807/* Free a gdbarch struct. This should never happen in normal
1808 operation --- once you've created a gdbarch, you keep it around.
1809 However, if an architecture's init function encounters an error
1810 building the structure, it may need to clean up a partially
1811 constructed gdbarch. */
4b9b3959 1812
058f20d5
JB
1813void
1814gdbarch_free (struct gdbarch *arch)
1815{
aebd7893 1816 struct obstack *obstack;
05c547f6 1817
95160752 1818 gdb_assert (arch != NULL);
aebd7893
AC
1819 gdb_assert (!arch->initialized_p);
1820 obstack = arch->obstack;
1821 obstack_free (obstack, 0); /* Includes the ARCH. */
1822 xfree (obstack);
058f20d5
JB
1823}
1824EOF
1825
104c1213 1826# verify a new architecture
104c1213 1827cat <<EOF
db446970
AC
1828
1829
1830/* Ensure that all values in a GDBARCH are reasonable. */
1831
104c1213 1832static void
be7811ad 1833verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1834{
f16a1923
AC
1835 struct ui_file *log;
1836 struct cleanup *cleanups;
759ef836 1837 long length;
f16a1923 1838 char *buf;
05c547f6 1839
f16a1923
AC
1840 log = mem_fileopen ();
1841 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1842 /* fundamental */
be7811ad 1843 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1844 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1845 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1846 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1847 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1848EOF
34620563 1849function_list | while do_read
104c1213 1850do
2ada493a
AC
1851 if class_is_function_p || class_is_variable_p
1852 then
72e74a21 1853 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1854 then
3d9a5942 1855 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1856 elif class_is_predicate_p
1857 then
0963b4bd 1858 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1859 # FIXME: See do_read for potential simplification
72e74a21 1860 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1861 then
3d9a5942 1862 printf " if (${invalid_p})\n"
be7811ad 1863 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1864 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1865 then
be7811ad
MD
1866 printf " if (gdbarch->${function} == ${predefault})\n"
1867 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1868 elif [ -n "${postdefault}" ]
f0d4cc9e 1869 then
be7811ad
MD
1870 printf " if (gdbarch->${function} == 0)\n"
1871 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1872 elif [ -n "${invalid_p}" ]
104c1213 1873 then
4d60522e 1874 printf " if (${invalid_p})\n"
f16a1923 1875 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1876 elif [ -n "${predefault}" ]
104c1213 1877 then
be7811ad 1878 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1879 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1880 fi
2ada493a 1881 fi
104c1213
JM
1882done
1883cat <<EOF
759ef836 1884 buf = ui_file_xstrdup (log, &length);
f16a1923 1885 make_cleanup (xfree, buf);
759ef836 1886 if (length > 0)
f16a1923 1887 internal_error (__FILE__, __LINE__,
85c07804 1888 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1889 buf);
1890 do_cleanups (cleanups);
104c1213
JM
1891}
1892EOF
1893
1894# dump the structure
3d9a5942
AC
1895printf "\n"
1896printf "\n"
104c1213 1897cat <<EOF
0963b4bd 1898/* Print out the details of the current architecture. */
4b9b3959 1899
104c1213 1900void
be7811ad 1901gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1902{
b78960be 1903 const char *gdb_nm_file = "<not-defined>";
05c547f6 1904
b78960be
AC
1905#if defined (GDB_NM_FILE)
1906 gdb_nm_file = GDB_NM_FILE;
1907#endif
1908 fprintf_unfiltered (file,
1909 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1910 gdb_nm_file);
104c1213 1911EOF
97030eea 1912function_list | sort -t: -k 3 | while do_read
104c1213 1913do
1e9f55d0
AC
1914 # First the predicate
1915 if class_is_predicate_p
1916 then
7996bcec 1917 printf " fprintf_unfiltered (file,\n"
48f7351b 1918 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1919 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1920 fi
48f7351b 1921 # Print the corresponding value.
283354d8 1922 if class_is_function_p
4b9b3959 1923 then
7996bcec 1924 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1925 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1926 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1927 else
48f7351b 1928 # It is a variable
2f9b146e
AC
1929 case "${print}:${returntype}" in
1930 :CORE_ADDR )
0b1553bc
UW
1931 fmt="%s"
1932 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1933 ;;
2f9b146e 1934 :* )
48f7351b 1935 fmt="%s"
623d3eb1 1936 print="plongest (gdbarch->${function})"
48f7351b
AC
1937 ;;
1938 * )
2f9b146e 1939 fmt="%s"
48f7351b
AC
1940 ;;
1941 esac
3d9a5942 1942 printf " fprintf_unfiltered (file,\n"
48f7351b 1943 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1944 printf " ${print});\n"
2ada493a 1945 fi
104c1213 1946done
381323f4 1947cat <<EOF
be7811ad
MD
1948 if (gdbarch->dump_tdep != NULL)
1949 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1950}
1951EOF
104c1213
JM
1952
1953
1954# GET/SET
3d9a5942 1955printf "\n"
104c1213
JM
1956cat <<EOF
1957struct gdbarch_tdep *
1958gdbarch_tdep (struct gdbarch *gdbarch)
1959{
1960 if (gdbarch_debug >= 2)
3d9a5942 1961 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1962 return gdbarch->tdep;
1963}
1964EOF
3d9a5942 1965printf "\n"
34620563 1966function_list | while do_read
104c1213 1967do
2ada493a
AC
1968 if class_is_predicate_p
1969 then
3d9a5942
AC
1970 printf "\n"
1971 printf "int\n"
1972 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1973 printf "{\n"
8de9bdc4 1974 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1975 printf " return ${predicate};\n"
3d9a5942 1976 printf "}\n"
2ada493a
AC
1977 fi
1978 if class_is_function_p
1979 then
3d9a5942
AC
1980 printf "\n"
1981 printf "${returntype}\n"
72e74a21 1982 if [ "x${formal}" = "xvoid" ]
104c1213 1983 then
3d9a5942 1984 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1985 else
3d9a5942 1986 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1987 fi
3d9a5942 1988 printf "{\n"
8de9bdc4 1989 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1990 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1991 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1992 then
1993 # Allow a call to a function with a predicate.
956ac328 1994 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1995 fi
3d9a5942
AC
1996 printf " if (gdbarch_debug >= 2)\n"
1997 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1998 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1999 then
2000 if class_is_multiarch_p
2001 then
2002 params="gdbarch"
2003 else
2004 params=""
2005 fi
2006 else
2007 if class_is_multiarch_p
2008 then
2009 params="gdbarch, ${actual}"
2010 else
2011 params="${actual}"
2012 fi
2013 fi
72e74a21 2014 if [ "x${returntype}" = "xvoid" ]
104c1213 2015 then
4a5c6a1d 2016 printf " gdbarch->${function} (${params});\n"
104c1213 2017 else
4a5c6a1d 2018 printf " return gdbarch->${function} (${params});\n"
104c1213 2019 fi
3d9a5942
AC
2020 printf "}\n"
2021 printf "\n"
2022 printf "void\n"
2023 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2024 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2025 printf "{\n"
2026 printf " gdbarch->${function} = ${function};\n"
2027 printf "}\n"
2ada493a
AC
2028 elif class_is_variable_p
2029 then
3d9a5942
AC
2030 printf "\n"
2031 printf "${returntype}\n"
2032 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2033 printf "{\n"
8de9bdc4 2034 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2035 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2036 then
3d9a5942 2037 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2038 elif [ -n "${invalid_p}" ]
104c1213 2039 then
956ac328
AC
2040 printf " /* Check variable is valid. */\n"
2041 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2042 elif [ -n "${predefault}" ]
104c1213 2043 then
956ac328
AC
2044 printf " /* Check variable changed from pre-default. */\n"
2045 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2046 fi
3d9a5942
AC
2047 printf " if (gdbarch_debug >= 2)\n"
2048 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2049 printf " return gdbarch->${function};\n"
2050 printf "}\n"
2051 printf "\n"
2052 printf "void\n"
2053 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2054 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2055 printf "{\n"
2056 printf " gdbarch->${function} = ${function};\n"
2057 printf "}\n"
2ada493a
AC
2058 elif class_is_info_p
2059 then
3d9a5942
AC
2060 printf "\n"
2061 printf "${returntype}\n"
2062 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2063 printf "{\n"
8de9bdc4 2064 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2065 printf " if (gdbarch_debug >= 2)\n"
2066 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2067 printf " return gdbarch->${function};\n"
2068 printf "}\n"
2ada493a 2069 fi
104c1213
JM
2070done
2071
2072# All the trailing guff
2073cat <<EOF
2074
2075
f44c642f 2076/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2077 modules. */
104c1213
JM
2078
2079struct gdbarch_data
2080{
95160752 2081 unsigned index;
76860b5f 2082 int init_p;
030f20e1
AC
2083 gdbarch_data_pre_init_ftype *pre_init;
2084 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2085};
2086
2087struct gdbarch_data_registration
2088{
104c1213
JM
2089 struct gdbarch_data *data;
2090 struct gdbarch_data_registration *next;
2091};
2092
f44c642f 2093struct gdbarch_data_registry
104c1213 2094{
95160752 2095 unsigned nr;
104c1213
JM
2096 struct gdbarch_data_registration *registrations;
2097};
2098
f44c642f 2099struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2100{
2101 0, NULL,
2102};
2103
030f20e1
AC
2104static struct gdbarch_data *
2105gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2106 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2107{
2108 struct gdbarch_data_registration **curr;
05c547f6
MS
2109
2110 /* Append the new registration. */
f44c642f 2111 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2112 (*curr) != NULL;
2113 curr = &(*curr)->next);
70ba0933 2114 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2115 (*curr)->next = NULL;
70ba0933 2116 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2117 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2118 (*curr)->data->pre_init = pre_init;
2119 (*curr)->data->post_init = post_init;
76860b5f 2120 (*curr)->data->init_p = 1;
104c1213
JM
2121 return (*curr)->data;
2122}
2123
030f20e1
AC
2124struct gdbarch_data *
2125gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2126{
2127 return gdbarch_data_register (pre_init, NULL);
2128}
2129
2130struct gdbarch_data *
2131gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2132{
2133 return gdbarch_data_register (NULL, post_init);
2134}
104c1213 2135
0963b4bd 2136/* Create/delete the gdbarch data vector. */
95160752
AC
2137
2138static void
b3cc3077 2139alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2140{
b3cc3077
JB
2141 gdb_assert (gdbarch->data == NULL);
2142 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2143 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2144}
3c875b6f 2145
76860b5f 2146/* Initialize the current value of the specified per-architecture
0963b4bd 2147 data-pointer. */
b3cc3077 2148
95160752 2149void
030f20e1
AC
2150deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2151 struct gdbarch_data *data,
2152 void *pointer)
95160752
AC
2153{
2154 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2155 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2156 gdb_assert (data->pre_init == NULL);
95160752
AC
2157 gdbarch->data[data->index] = pointer;
2158}
2159
104c1213 2160/* Return the current value of the specified per-architecture
0963b4bd 2161 data-pointer. */
104c1213
JM
2162
2163void *
451fbdda 2164gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2165{
451fbdda 2166 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2167 if (gdbarch->data[data->index] == NULL)
76860b5f 2168 {
030f20e1
AC
2169 /* The data-pointer isn't initialized, call init() to get a
2170 value. */
2171 if (data->pre_init != NULL)
2172 /* Mid architecture creation: pass just the obstack, and not
2173 the entire architecture, as that way it isn't possible for
2174 pre-init code to refer to undefined architecture
2175 fields. */
2176 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2177 else if (gdbarch->initialized_p
2178 && data->post_init != NULL)
2179 /* Post architecture creation: pass the entire architecture
2180 (as all fields are valid), but be careful to also detect
2181 recursive references. */
2182 {
2183 gdb_assert (data->init_p);
2184 data->init_p = 0;
2185 gdbarch->data[data->index] = data->post_init (gdbarch);
2186 data->init_p = 1;
2187 }
2188 else
2189 /* The architecture initialization hasn't completed - punt -
2190 hope that the caller knows what they are doing. Once
2191 deprecated_set_gdbarch_data has been initialized, this can be
2192 changed to an internal error. */
2193 return NULL;
76860b5f
AC
2194 gdb_assert (gdbarch->data[data->index] != NULL);
2195 }
451fbdda 2196 return gdbarch->data[data->index];
104c1213
JM
2197}
2198
2199
0963b4bd 2200/* Keep a registry of the architectures known by GDB. */
104c1213 2201
4b9b3959 2202struct gdbarch_registration
104c1213
JM
2203{
2204 enum bfd_architecture bfd_architecture;
2205 gdbarch_init_ftype *init;
4b9b3959 2206 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2207 struct gdbarch_list *arches;
4b9b3959 2208 struct gdbarch_registration *next;
104c1213
JM
2209};
2210
f44c642f 2211static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2212
b4a20239
AC
2213static void
2214append_name (const char ***buf, int *nr, const char *name)
2215{
1dc7a623 2216 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2217 (*buf)[*nr] = name;
2218 *nr += 1;
2219}
2220
2221const char **
2222gdbarch_printable_names (void)
2223{
7996bcec 2224 /* Accumulate a list of names based on the registed list of
0963b4bd 2225 architectures. */
7996bcec
AC
2226 int nr_arches = 0;
2227 const char **arches = NULL;
2228 struct gdbarch_registration *rego;
05c547f6 2229
7996bcec
AC
2230 for (rego = gdbarch_registry;
2231 rego != NULL;
2232 rego = rego->next)
b4a20239 2233 {
7996bcec
AC
2234 const struct bfd_arch_info *ap;
2235 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2236 if (ap == NULL)
2237 internal_error (__FILE__, __LINE__,
85c07804 2238 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2239 do
2240 {
2241 append_name (&arches, &nr_arches, ap->printable_name);
2242 ap = ap->next;
2243 }
2244 while (ap != NULL);
b4a20239 2245 }
7996bcec
AC
2246 append_name (&arches, &nr_arches, NULL);
2247 return arches;
b4a20239
AC
2248}
2249
2250
104c1213 2251void
4b9b3959
AC
2252gdbarch_register (enum bfd_architecture bfd_architecture,
2253 gdbarch_init_ftype *init,
2254 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2255{
4b9b3959 2256 struct gdbarch_registration **curr;
104c1213 2257 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2258
ec3d358c 2259 /* Check that BFD recognizes this architecture */
104c1213
JM
2260 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2261 if (bfd_arch_info == NULL)
2262 {
8e65ff28 2263 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2264 _("gdbarch: Attempt to register "
2265 "unknown architecture (%d)"),
8e65ff28 2266 bfd_architecture);
104c1213 2267 }
0963b4bd 2268 /* Check that we haven't seen this architecture before. */
f44c642f 2269 for (curr = &gdbarch_registry;
104c1213
JM
2270 (*curr) != NULL;
2271 curr = &(*curr)->next)
2272 {
2273 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2274 internal_error (__FILE__, __LINE__,
64b9b334 2275 _("gdbarch: Duplicate registration "
0963b4bd 2276 "of architecture (%s)"),
8e65ff28 2277 bfd_arch_info->printable_name);
104c1213
JM
2278 }
2279 /* log it */
2280 if (gdbarch_debug)
30737ed9 2281 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2282 bfd_arch_info->printable_name,
30737ed9 2283 host_address_to_string (init));
104c1213 2284 /* Append it */
70ba0933 2285 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2286 (*curr)->bfd_architecture = bfd_architecture;
2287 (*curr)->init = init;
4b9b3959 2288 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2289 (*curr)->arches = NULL;
2290 (*curr)->next = NULL;
4b9b3959
AC
2291}
2292
2293void
2294register_gdbarch_init (enum bfd_architecture bfd_architecture,
2295 gdbarch_init_ftype *init)
2296{
2297 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2298}
104c1213
JM
2299
2300
424163ea 2301/* Look for an architecture using gdbarch_info. */
104c1213
JM
2302
2303struct gdbarch_list *
2304gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2305 const struct gdbarch_info *info)
2306{
2307 for (; arches != NULL; arches = arches->next)
2308 {
2309 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2310 continue;
2311 if (info->byte_order != arches->gdbarch->byte_order)
2312 continue;
4be87837
DJ
2313 if (info->osabi != arches->gdbarch->osabi)
2314 continue;
424163ea
DJ
2315 if (info->target_desc != arches->gdbarch->target_desc)
2316 continue;
104c1213
JM
2317 return arches;
2318 }
2319 return NULL;
2320}
2321
2322
ebdba546 2323/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2324 architecture if needed. Return that new architecture. */
104c1213 2325
59837fe0
UW
2326struct gdbarch *
2327gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2328{
2329 struct gdbarch *new_gdbarch;
4b9b3959 2330 struct gdbarch_registration *rego;
104c1213 2331
b732d07d 2332 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2333 sources: "set ..."; INFOabfd supplied; and the global
2334 defaults. */
2335 gdbarch_info_fill (&info);
4be87837 2336
0963b4bd 2337 /* Must have found some sort of architecture. */
b732d07d 2338 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2339
2340 if (gdbarch_debug)
2341 {
2342 fprintf_unfiltered (gdb_stdlog,
59837fe0 2343 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2344 (info.bfd_arch_info != NULL
2345 ? info.bfd_arch_info->printable_name
2346 : "(null)"));
2347 fprintf_unfiltered (gdb_stdlog,
59837fe0 2348 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2349 info.byte_order,
d7449b42 2350 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2351 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2352 : "default"));
4be87837 2353 fprintf_unfiltered (gdb_stdlog,
59837fe0 2354 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2355 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2356 fprintf_unfiltered (gdb_stdlog,
59837fe0 2357 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2358 host_address_to_string (info.abfd));
104c1213 2359 fprintf_unfiltered (gdb_stdlog,
59837fe0 2360 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2361 host_address_to_string (info.tdep_info));
104c1213
JM
2362 }
2363
ebdba546 2364 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2365 for (rego = gdbarch_registry;
2366 rego != NULL;
2367 rego = rego->next)
2368 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2369 break;
2370 if (rego == NULL)
2371 {
2372 if (gdbarch_debug)
59837fe0 2373 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2374 "No matching architecture\n");
b732d07d
AC
2375 return 0;
2376 }
2377
ebdba546 2378 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2379 new_gdbarch = rego->init (info, rego->arches);
2380
ebdba546
AC
2381 /* Did the tdep code like it? No. Reject the change and revert to
2382 the old architecture. */
104c1213
JM
2383 if (new_gdbarch == NULL)
2384 {
2385 if (gdbarch_debug)
59837fe0 2386 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2387 "Target rejected architecture\n");
2388 return NULL;
104c1213
JM
2389 }
2390
ebdba546
AC
2391 /* Is this a pre-existing architecture (as determined by already
2392 being initialized)? Move it to the front of the architecture
2393 list (keeping the list sorted Most Recently Used). */
2394 if (new_gdbarch->initialized_p)
104c1213 2395 {
ebdba546 2396 struct gdbarch_list **list;
fe978cb0 2397 struct gdbarch_list *self;
104c1213 2398 if (gdbarch_debug)
59837fe0 2399 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2400 "Previous architecture %s (%s) selected\n",
2401 host_address_to_string (new_gdbarch),
104c1213 2402 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2403 /* Find the existing arch in the list. */
2404 for (list = &rego->arches;
2405 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2406 list = &(*list)->next);
2407 /* It had better be in the list of architectures. */
2408 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2409 /* Unlink SELF. */
2410 self = (*list);
2411 (*list) = self->next;
2412 /* Insert SELF at the front. */
2413 self->next = rego->arches;
2414 rego->arches = self;
ebdba546
AC
2415 /* Return it. */
2416 return new_gdbarch;
104c1213
JM
2417 }
2418
ebdba546
AC
2419 /* It's a new architecture. */
2420 if (gdbarch_debug)
59837fe0 2421 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2422 "New architecture %s (%s) selected\n",
2423 host_address_to_string (new_gdbarch),
ebdba546
AC
2424 new_gdbarch->bfd_arch_info->printable_name);
2425
2426 /* Insert the new architecture into the front of the architecture
2427 list (keep the list sorted Most Recently Used). */
0f79675b 2428 {
fe978cb0
PA
2429 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2430 self->next = rego->arches;
2431 self->gdbarch = new_gdbarch;
2432 rego->arches = self;
0f79675b 2433 }
104c1213 2434
4b9b3959
AC
2435 /* Check that the newly installed architecture is valid. Plug in
2436 any post init values. */
2437 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2438 verify_gdbarch (new_gdbarch);
ebdba546 2439 new_gdbarch->initialized_p = 1;
104c1213 2440
4b9b3959 2441 if (gdbarch_debug)
ebdba546
AC
2442 gdbarch_dump (new_gdbarch, gdb_stdlog);
2443
2444 return new_gdbarch;
2445}
2446
e487cc15 2447/* Make the specified architecture current. */
ebdba546
AC
2448
2449void
aff68abb 2450set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2451{
2452 gdb_assert (new_gdbarch != NULL);
ebdba546 2453 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2454 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2455 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2456 registers_changed ();
ebdba546 2457}
104c1213 2458
f5656ead 2459/* Return the current inferior's arch. */
6ecd4729
PA
2460
2461struct gdbarch *
f5656ead 2462target_gdbarch (void)
6ecd4729
PA
2463{
2464 return current_inferior ()->gdbarch;
2465}
2466
104c1213 2467extern void _initialize_gdbarch (void);
b4a20239 2468
104c1213 2469void
34620563 2470_initialize_gdbarch (void)
104c1213 2471{
ccce17b0 2472 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2473Set architecture debugging."), _("\\
2474Show architecture debugging."), _("\\
2475When non-zero, architecture debugging is enabled."),
2476 NULL,
920d2a44 2477 show_gdbarch_debug,
85c07804 2478 &setdebuglist, &showdebuglist);
104c1213
JM
2479}
2480EOF
2481
2482# close things off
2483exec 1>&2
2484#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2485compare_new gdbarch.c
This page took 1.6549 seconds and 4 git commands to generate.