* gdb.texinfo (Remote Protocol): Don't mention vCont;T.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6# 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
e17a4113 566m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
578f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
580v:int:cannot_step_breakpoint:::0:0::0
581v:int:have_nonsteppable_watchpoint:::0:0::0
582F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 585# Is a register in a group
97030eea 586m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 587# Fetch the pointer to the ith function argument.
97030eea 588F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
589
590# Return the appropriate register set for a core file section with
591# name SECT_NAME and size SECT_SIZE.
97030eea 592M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 593
959b8724
PA
594# When creating core dumps, some systems encode the PID in addition
595# to the LWP id in core file register section names. In those cases, the
596# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597# is set to true for such architectures; false if "XXX" represents an LWP
598# or thread id with no special encoding.
599v:int:core_reg_section_encodes_pid:::0:0::0
600
17ea7499
CES
601# Supported register notes in a core file.
602v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
de584861
PA
604# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605# core file into buffer READBUF with length LEN.
97030eea 606M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 607
28439f5e
PA
608# How the core_stratum layer converts a PTID from a core file to a
609# string.
610M:char *:core_pid_to_str:ptid_t ptid:ptid
611
a78c2d62
UW
612# BFD target to use when generating a core file.
613V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
0d5de010
DJ
615# If the elements of C++ vtables are in-place function descriptors rather
616# than normal function pointers (which may point to code or a descriptor),
617# set this to one.
97030eea 618v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
619
620# Set if the least significant bit of the delta is used instead of the least
621# significant bit of the pfn for pointers to virtual member functions.
97030eea 622v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
623
624# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 625F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 626
237fc4c9
PA
627# The maximum length of an instruction on this architecture.
628V:ULONGEST:max_insn_length:::0:0
629
630# Copy the instruction at FROM to TO, and make any adjustments
631# necessary to single-step it at that address.
632#
633# REGS holds the state the thread's registers will have before
634# executing the copied instruction; the PC in REGS will refer to FROM,
635# not the copy at TO. The caller should update it to point at TO later.
636#
637# Return a pointer to data of the architecture's choice to be passed
638# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639# the instruction's effects have been completely simulated, with the
640# resulting state written back to REGS.
641#
642# For a general explanation of displaced stepping and how GDB uses it,
643# see the comments in infrun.c.
644#
645# The TO area is only guaranteed to have space for
646# gdbarch_max_insn_length (arch) bytes, so this function must not
647# write more bytes than that to that area.
648#
649# If you do not provide this function, GDB assumes that the
650# architecture does not support displaced stepping.
651#
652# If your architecture doesn't need to adjust instructions before
653# single-stepping them, consider using simple_displaced_step_copy_insn
654# here.
655M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
99e40580
UW
657# Return true if GDB should use hardware single-stepping to execute
658# the displaced instruction identified by CLOSURE. If false,
659# GDB will simply restart execution at the displaced instruction
660# location, and it is up to the target to ensure GDB will receive
661# control again (e.g. by placing a software breakpoint instruction
662# into the displaced instruction buffer).
663#
664# The default implementation returns false on all targets that
665# provide a gdbarch_software_single_step routine, and true otherwise.
666m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
667
237fc4c9
PA
668# Fix up the state resulting from successfully single-stepping a
669# displaced instruction, to give the result we would have gotten from
670# stepping the instruction in its original location.
671#
672# REGS is the register state resulting from single-stepping the
673# displaced instruction.
674#
675# CLOSURE is the result from the matching call to
676# gdbarch_displaced_step_copy_insn.
677#
678# If you provide gdbarch_displaced_step_copy_insn.but not this
679# function, then GDB assumes that no fixup is needed after
680# single-stepping the instruction.
681#
682# For a general explanation of displaced stepping and how GDB uses it,
683# see the comments in infrun.c.
684M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
685
686# Free a closure returned by gdbarch_displaced_step_copy_insn.
687#
688# If you provide gdbarch_displaced_step_copy_insn, you must provide
689# this function as well.
690#
691# If your architecture uses closures that don't need to be freed, then
692# you can use simple_displaced_step_free_closure here.
693#
694# For a general explanation of displaced stepping and how GDB uses it,
695# see the comments in infrun.c.
696m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
697
698# Return the address of an appropriate place to put displaced
699# instructions while we step over them. There need only be one such
700# place, since we're only stepping one thread over a breakpoint at a
701# time.
702#
703# For a general explanation of displaced stepping and how GDB uses it,
704# see the comments in infrun.c.
705m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
706
1c772458 707# Refresh overlay mapped state for section OSECT.
97030eea 708F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 709
97030eea 710M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
711
712# Handle special encoding of static variables in stabs debug info.
97030eea 713F:char *:static_transform_name:char *name:name
203c3895 714# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 715v:int:sofun_address_maybe_missing:::0:0::0
1cded358 716
0508c3ec
HZ
717# Parse the instruction at ADDR storing in the record execution log
718# the registers REGCACHE and memory ranges that will be affected when
719# the instruction executes, along with their current values.
720# Return -1 if something goes wrong, 0 otherwise.
721M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
722
3846b520
HZ
723# Save process state after a signal.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
726
1cded358
AR
727# Signal translation: translate inferior's signal (host's) number into
728# GDB's representation.
729m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
730# Signal translation: translate GDB's signal number into inferior's host
731# signal number.
732m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 733
4aa995e1
PA
734# Extra signal info inspection.
735#
736# Return a type suitable to inspect extra signal information.
737M:struct type *:get_siginfo_type:void:
738
60c5725c
DJ
739# Record architecture-specific information from the symbol table.
740M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 741
a96d9b2e
SDJ
742# Function for the 'catch syscall' feature.
743
744# Get architecture-specific system calls information from registers.
745M:LONGEST:get_syscall_number:ptid_t ptid:ptid
746
50c71eaf
PA
747# True if the list of shared libraries is one and only for all
748# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
749# This usually means that all processes, although may or may not share
750# an address space, will see the same set of symbols at the same
751# addresses.
50c71eaf 752v:int:has_global_solist:::0:0::0
2567c7d9
PA
753
754# On some targets, even though each inferior has its own private
755# address space, the debug interface takes care of making breakpoints
756# visible to all address spaces automatically. For such cases,
757# this property should be set to true.
758v:int:has_global_breakpoints:::0:0::0
104c1213 759EOF
104c1213
JM
760}
761
0b8f9e4d
AC
762#
763# The .log file
764#
765exec > new-gdbarch.log
34620563 766function_list | while do_read
0b8f9e4d
AC
767do
768 cat <<EOF
2f9b146e 769${class} ${returntype} ${function} ($formal)
104c1213 770EOF
3d9a5942
AC
771 for r in ${read}
772 do
773 eval echo \"\ \ \ \ ${r}=\${${r}}\"
774 done
f0d4cc9e 775 if class_is_predicate_p && fallback_default_p
0b8f9e4d 776 then
66d659b1 777 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
778 kill $$
779 exit 1
780 fi
72e74a21 781 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
782 then
783 echo "Error: postdefault is useless when invalid_p=0" 1>&2
784 kill $$
785 exit 1
786 fi
a72293e2
AC
787 if class_is_multiarch_p
788 then
789 if class_is_predicate_p ; then :
790 elif test "x${predefault}" = "x"
791 then
2f9b146e 792 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
793 kill $$
794 exit 1
795 fi
796 fi
3d9a5942 797 echo ""
0b8f9e4d
AC
798done
799
800exec 1>&2
801compare_new gdbarch.log
802
104c1213
JM
803
804copyright ()
805{
806cat <<EOF
59233f88
AC
807/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
808
104c1213 809/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 810
50efebf8 811 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 812 Free Software Foundation, Inc.
104c1213
JM
813
814 This file is part of GDB.
815
816 This program is free software; you can redistribute it and/or modify
817 it under the terms of the GNU General Public License as published by
50efebf8 818 the Free Software Foundation; either version 3 of the License, or
104c1213 819 (at your option) any later version.
50efebf8 820
104c1213
JM
821 This program is distributed in the hope that it will be useful,
822 but WITHOUT ANY WARRANTY; without even the implied warranty of
823 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
824 GNU General Public License for more details.
50efebf8 825
104c1213 826 You should have received a copy of the GNU General Public License
50efebf8 827 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 828
104c1213
JM
829/* This file was created with the aid of \`\`gdbarch.sh''.
830
52204a0b 831 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
832 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
833 against the existing \`\`gdbarch.[hc]''. Any differences found
834 being reported.
835
836 If editing this file, please also run gdbarch.sh and merge any
52204a0b 837 changes into that script. Conversely, when making sweeping changes
104c1213
JM
838 to this file, modifying gdbarch.sh and using its output may prove
839 easier. */
840
841EOF
842}
843
844#
845# The .h file
846#
847
848exec > new-gdbarch.h
849copyright
850cat <<EOF
851#ifndef GDBARCH_H
852#define GDBARCH_H
853
da3331ec
AC
854struct floatformat;
855struct ui_file;
104c1213
JM
856struct frame_info;
857struct value;
b6af0555 858struct objfile;
1c772458 859struct obj_section;
a2cf933a 860struct minimal_symbol;
049ee0e4 861struct regcache;
b59ff9d5 862struct reggroup;
6ce6d90f 863struct regset;
a89aa300 864struct disassemble_info;
e2d0e7eb 865struct target_ops;
030f20e1 866struct obstack;
8181d85f 867struct bp_target_info;
424163ea 868struct target_desc;
237fc4c9 869struct displaced_step_closure;
17ea7499 870struct core_regset_section;
a96d9b2e 871struct syscall;
104c1213 872
9e2ace22
JB
873/* The architecture associated with the connection to the target.
874
875 The architecture vector provides some information that is really
876 a property of the target: The layout of certain packets, for instance;
877 or the solib_ops vector. Etc. To differentiate architecture accesses
878 to per-target properties from per-thread/per-frame/per-objfile properties,
879 accesses to per-target properties should be made through target_gdbarch.
880
881 Eventually, when support for multiple targets is implemented in
882 GDB, this global should be made target-specific. */
1cf3db46 883extern struct gdbarch *target_gdbarch;
104c1213
JM
884EOF
885
886# function typedef's
3d9a5942
AC
887printf "\n"
888printf "\n"
889printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 890function_list | while do_read
104c1213 891do
2ada493a
AC
892 if class_is_info_p
893 then
3d9a5942
AC
894 printf "\n"
895 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
896 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 897 fi
104c1213
JM
898done
899
900# function typedef's
3d9a5942
AC
901printf "\n"
902printf "\n"
903printf "/* The following are initialized by the target dependent code. */\n"
34620563 904function_list | while do_read
104c1213 905do
72e74a21 906 if [ -n "${comment}" ]
34620563
AC
907 then
908 echo "${comment}" | sed \
909 -e '2 s,#,/*,' \
910 -e '3,$ s,#, ,' \
911 -e '$ s,$, */,'
912 fi
412d5987
AC
913
914 if class_is_predicate_p
2ada493a 915 then
412d5987
AC
916 printf "\n"
917 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 918 fi
2ada493a
AC
919 if class_is_variable_p
920 then
3d9a5942
AC
921 printf "\n"
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
923 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
924 fi
925 if class_is_function_p
926 then
3d9a5942 927 printf "\n"
72e74a21 928 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
929 then
930 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
931 elif class_is_multiarch_p
932 then
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
934 else
935 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
936 fi
72e74a21 937 if [ "x${formal}" = "xvoid" ]
104c1213 938 then
3d9a5942 939 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 940 else
3d9a5942 941 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 942 fi
3d9a5942 943 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 944 fi
104c1213
JM
945done
946
947# close it off
948cat <<EOF
949
a96d9b2e
SDJ
950/* Definition for an unknown syscall, used basically in error-cases. */
951#define UNKNOWN_SYSCALL (-1)
952
104c1213
JM
953extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
954
955
956/* Mechanism for co-ordinating the selection of a specific
957 architecture.
958
959 GDB targets (*-tdep.c) can register an interest in a specific
960 architecture. Other GDB components can register a need to maintain
961 per-architecture data.
962
963 The mechanisms below ensures that there is only a loose connection
964 between the set-architecture command and the various GDB
0fa6923a 965 components. Each component can independently register their need
104c1213
JM
966 to maintain architecture specific data with gdbarch.
967
968 Pragmatics:
969
970 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
971 didn't scale.
972
973 The more traditional mega-struct containing architecture specific
974 data for all the various GDB components was also considered. Since
0fa6923a 975 GDB is built from a variable number of (fairly independent)
104c1213
JM
976 components it was determined that the global aproach was not
977 applicable. */
978
979
980/* Register a new architectural family with GDB.
981
982 Register support for the specified ARCHITECTURE with GDB. When
983 gdbarch determines that the specified architecture has been
984 selected, the corresponding INIT function is called.
985
986 --
987
988 The INIT function takes two parameters: INFO which contains the
989 information available to gdbarch about the (possibly new)
990 architecture; ARCHES which is a list of the previously created
991 \`\`struct gdbarch'' for this architecture.
992
0f79675b 993 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 994 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
995
996 The ARCHES parameter is a linked list (sorted most recently used)
997 of all the previously created architures for this architecture
998 family. The (possibly NULL) ARCHES->gdbarch can used to access
999 values from the previously selected architecture for this
59837fe0 1000 architecture family.
104c1213
JM
1001
1002 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1003 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1004 gdbarch'' from the ARCHES list - indicating that the new
1005 architecture is just a synonym for an earlier architecture (see
1006 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1007 - that describes the selected architecture (see gdbarch_alloc()).
1008
1009 The DUMP_TDEP function shall print out all target specific values.
1010 Care should be taken to ensure that the function works in both the
1011 multi-arch and non- multi-arch cases. */
104c1213
JM
1012
1013struct gdbarch_list
1014{
1015 struct gdbarch *gdbarch;
1016 struct gdbarch_list *next;
1017};
1018
1019struct gdbarch_info
1020{
104c1213
JM
1021 /* Use default: NULL (ZERO). */
1022 const struct bfd_arch_info *bfd_arch_info;
1023
428721aa 1024 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1025 int byte_order;
1026
9d4fde75
SS
1027 int byte_order_for_code;
1028
104c1213
JM
1029 /* Use default: NULL (ZERO). */
1030 bfd *abfd;
1031
1032 /* Use default: NULL (ZERO). */
1033 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1034
1035 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1036 enum gdb_osabi osabi;
424163ea
DJ
1037
1038 /* Use default: NULL (ZERO). */
1039 const struct target_desc *target_desc;
104c1213
JM
1040};
1041
1042typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1043typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1044
4b9b3959 1045/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1046extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1047
4b9b3959
AC
1048extern void gdbarch_register (enum bfd_architecture architecture,
1049 gdbarch_init_ftype *,
1050 gdbarch_dump_tdep_ftype *);
1051
104c1213 1052
b4a20239
AC
1053/* Return a freshly allocated, NULL terminated, array of the valid
1054 architecture names. Since architectures are registered during the
1055 _initialize phase this function only returns useful information
1056 once initialization has been completed. */
1057
1058extern const char **gdbarch_printable_names (void);
1059
1060
104c1213
JM
1061/* Helper function. Search the list of ARCHES for a GDBARCH that
1062 matches the information provided by INFO. */
1063
424163ea 1064extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1065
1066
1067/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1068 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1069 parameters. set_gdbarch_*() functions are called to complete the
1070 initialization of the object. */
1071
1072extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1073
1074
4b9b3959
AC
1075/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1076 It is assumed that the caller freeds the \`\`struct
1077 gdbarch_tdep''. */
1078
058f20d5
JB
1079extern void gdbarch_free (struct gdbarch *);
1080
1081
aebd7893
AC
1082/* Helper function. Allocate memory from the \`\`struct gdbarch''
1083 obstack. The memory is freed when the corresponding architecture
1084 is also freed. */
1085
1086extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1087#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1088#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1089
1090
b732d07d 1091/* Helper function. Force an update of the current architecture.
104c1213 1092
b732d07d
AC
1093 The actual architecture selected is determined by INFO, \`\`(gdb) set
1094 architecture'' et.al., the existing architecture and BFD's default
1095 architecture. INFO should be initialized to zero and then selected
1096 fields should be updated.
104c1213 1097
16f33e29
AC
1098 Returns non-zero if the update succeeds */
1099
1100extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1101
1102
ebdba546
AC
1103/* Helper function. Find an architecture matching info.
1104
1105 INFO should be initialized using gdbarch_info_init, relevant fields
1106 set, and then finished using gdbarch_info_fill.
1107
1108 Returns the corresponding architecture, or NULL if no matching
59837fe0 1109 architecture was found. */
ebdba546
AC
1110
1111extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1112
1113
59837fe0 1114/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1115
1116 FIXME: kettenis/20031124: Of the functions that follow, only
1117 gdbarch_from_bfd is supposed to survive. The others will
1118 dissappear since in the future GDB will (hopefully) be truly
1119 multi-arch. However, for now we're still stuck with the concept of
1120 a single active architecture. */
1121
59837fe0 1122extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1123
104c1213
JM
1124
1125/* Register per-architecture data-pointer.
1126
1127 Reserve space for a per-architecture data-pointer. An identifier
1128 for the reserved data-pointer is returned. That identifer should
95160752 1129 be saved in a local static variable.
104c1213 1130
fcc1c85c
AC
1131 Memory for the per-architecture data shall be allocated using
1132 gdbarch_obstack_zalloc. That memory will be deleted when the
1133 corresponding architecture object is deleted.
104c1213 1134
95160752
AC
1135 When a previously created architecture is re-selected, the
1136 per-architecture data-pointer for that previous architecture is
76860b5f 1137 restored. INIT() is not re-called.
104c1213
JM
1138
1139 Multiple registrarants for any architecture are allowed (and
1140 strongly encouraged). */
1141
95160752 1142struct gdbarch_data;
104c1213 1143
030f20e1
AC
1144typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1145extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1146typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1147extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1148extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1149 struct gdbarch_data *data,
1150 void *pointer);
104c1213 1151
451fbdda 1152extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1153
1154
0fa6923a 1155/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1156 byte-order, ...) using information found in the BFD */
1157
1158extern void set_gdbarch_from_file (bfd *);
1159
1160
e514a9d6
JM
1161/* Initialize the current architecture to the "first" one we find on
1162 our list. */
1163
1164extern void initialize_current_architecture (void);
1165
104c1213
JM
1166/* gdbarch trace variable */
1167extern int gdbarch_debug;
1168
4b9b3959 1169extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1170
1171#endif
1172EOF
1173exec 1>&2
1174#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1175compare_new gdbarch.h
104c1213
JM
1176
1177
1178#
1179# C file
1180#
1181
1182exec > new-gdbarch.c
1183copyright
1184cat <<EOF
1185
1186#include "defs.h"
7355ddba 1187#include "arch-utils.h"
104c1213 1188
104c1213 1189#include "gdbcmd.h"
faaf634c 1190#include "inferior.h"
104c1213
JM
1191#include "symcat.h"
1192
f0d4cc9e 1193#include "floatformat.h"
104c1213 1194
95160752 1195#include "gdb_assert.h"
b66d6d2e 1196#include "gdb_string.h"
b59ff9d5 1197#include "reggroups.h"
4be87837 1198#include "osabi.h"
aebd7893 1199#include "gdb_obstack.h"
383f836e 1200#include "observer.h"
a3ecef73 1201#include "regcache.h"
95160752 1202
104c1213
JM
1203/* Static function declarations */
1204
b3cc3077 1205static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1206
104c1213
JM
1207/* Non-zero if we want to trace architecture code. */
1208
1209#ifndef GDBARCH_DEBUG
1210#define GDBARCH_DEBUG 0
1211#endif
1212int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1213static void
1214show_gdbarch_debug (struct ui_file *file, int from_tty,
1215 struct cmd_list_element *c, const char *value)
1216{
1217 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1218}
104c1213 1219
456fcf94 1220static const char *
8da61cc4 1221pformat (const struct floatformat **format)
456fcf94
AC
1222{
1223 if (format == NULL)
1224 return "(null)";
1225 else
8da61cc4
DJ
1226 /* Just print out one of them - this is only for diagnostics. */
1227 return format[0]->name;
456fcf94
AC
1228}
1229
104c1213
JM
1230EOF
1231
1232# gdbarch open the gdbarch object
3d9a5942
AC
1233printf "\n"
1234printf "/* Maintain the struct gdbarch object */\n"
1235printf "\n"
1236printf "struct gdbarch\n"
1237printf "{\n"
76860b5f
AC
1238printf " /* Has this architecture been fully initialized? */\n"
1239printf " int initialized_p;\n"
aebd7893
AC
1240printf "\n"
1241printf " /* An obstack bound to the lifetime of the architecture. */\n"
1242printf " struct obstack *obstack;\n"
1243printf "\n"
3d9a5942 1244printf " /* basic architectural information */\n"
34620563 1245function_list | while do_read
104c1213 1246do
2ada493a
AC
1247 if class_is_info_p
1248 then
3d9a5942 1249 printf " ${returntype} ${function};\n"
2ada493a 1250 fi
104c1213 1251done
3d9a5942
AC
1252printf "\n"
1253printf " /* target specific vector. */\n"
1254printf " struct gdbarch_tdep *tdep;\n"
1255printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1256printf "\n"
1257printf " /* per-architecture data-pointers */\n"
95160752 1258printf " unsigned nr_data;\n"
3d9a5942
AC
1259printf " void **data;\n"
1260printf "\n"
1261printf " /* per-architecture swap-regions */\n"
1262printf " struct gdbarch_swap *swap;\n"
1263printf "\n"
104c1213
JM
1264cat <<EOF
1265 /* Multi-arch values.
1266
1267 When extending this structure you must:
1268
1269 Add the field below.
1270
1271 Declare set/get functions and define the corresponding
1272 macro in gdbarch.h.
1273
1274 gdbarch_alloc(): If zero/NULL is not a suitable default,
1275 initialize the new field.
1276
1277 verify_gdbarch(): Confirm that the target updated the field
1278 correctly.
1279
7e73cedf 1280 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1281 field is dumped out
1282
c0e8c252 1283 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1284 variable (base values on the host's c-type system).
1285
1286 get_gdbarch(): Implement the set/get functions (probably using
1287 the macro's as shortcuts).
1288
1289 */
1290
1291EOF
34620563 1292function_list | while do_read
104c1213 1293do
2ada493a
AC
1294 if class_is_variable_p
1295 then
3d9a5942 1296 printf " ${returntype} ${function};\n"
2ada493a
AC
1297 elif class_is_function_p
1298 then
2f9b146e 1299 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1300 fi
104c1213 1301done
3d9a5942 1302printf "};\n"
104c1213
JM
1303
1304# A pre-initialized vector
3d9a5942
AC
1305printf "\n"
1306printf "\n"
104c1213
JM
1307cat <<EOF
1308/* The default architecture uses host values (for want of a better
1309 choice). */
1310EOF
3d9a5942
AC
1311printf "\n"
1312printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1313printf "\n"
1314printf "struct gdbarch startup_gdbarch =\n"
1315printf "{\n"
76860b5f 1316printf " 1, /* Always initialized. */\n"
aebd7893 1317printf " NULL, /* The obstack. */\n"
3d9a5942 1318printf " /* basic architecture information */\n"
4b9b3959 1319function_list | while do_read
104c1213 1320do
2ada493a
AC
1321 if class_is_info_p
1322 then
ec5cbaec 1323 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1324 fi
104c1213
JM
1325done
1326cat <<EOF
4b9b3959
AC
1327 /* target specific vector and its dump routine */
1328 NULL, NULL,
104c1213
JM
1329 /*per-architecture data-pointers and swap regions */
1330 0, NULL, NULL,
1331 /* Multi-arch values */
1332EOF
34620563 1333function_list | while do_read
104c1213 1334do
2ada493a
AC
1335 if class_is_function_p || class_is_variable_p
1336 then
ec5cbaec 1337 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1338 fi
104c1213
JM
1339done
1340cat <<EOF
c0e8c252 1341 /* startup_gdbarch() */
104c1213 1342};
4b9b3959 1343
1cf3db46 1344struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1345EOF
1346
1347# Create a new gdbarch struct
104c1213 1348cat <<EOF
7de2341d 1349
66b43ecb 1350/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1351 \`\`struct gdbarch_info''. */
1352EOF
3d9a5942 1353printf "\n"
104c1213
JM
1354cat <<EOF
1355struct gdbarch *
1356gdbarch_alloc (const struct gdbarch_info *info,
1357 struct gdbarch_tdep *tdep)
1358{
be7811ad 1359 struct gdbarch *gdbarch;
aebd7893
AC
1360
1361 /* Create an obstack for allocating all the per-architecture memory,
1362 then use that to allocate the architecture vector. */
1363 struct obstack *obstack = XMALLOC (struct obstack);
1364 obstack_init (obstack);
be7811ad
MD
1365 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1366 memset (gdbarch, 0, sizeof (*gdbarch));
1367 gdbarch->obstack = obstack;
85de9627 1368
be7811ad 1369 alloc_gdbarch_data (gdbarch);
85de9627 1370
be7811ad 1371 gdbarch->tdep = tdep;
104c1213 1372EOF
3d9a5942 1373printf "\n"
34620563 1374function_list | while do_read
104c1213 1375do
2ada493a
AC
1376 if class_is_info_p
1377 then
be7811ad 1378 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1379 fi
104c1213 1380done
3d9a5942
AC
1381printf "\n"
1382printf " /* Force the explicit initialization of these. */\n"
34620563 1383function_list | while do_read
104c1213 1384do
2ada493a
AC
1385 if class_is_function_p || class_is_variable_p
1386 then
72e74a21 1387 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1388 then
be7811ad 1389 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1390 fi
2ada493a 1391 fi
104c1213
JM
1392done
1393cat <<EOF
1394 /* gdbarch_alloc() */
1395
be7811ad 1396 return gdbarch;
104c1213
JM
1397}
1398EOF
1399
058f20d5 1400# Free a gdbarch struct.
3d9a5942
AC
1401printf "\n"
1402printf "\n"
058f20d5 1403cat <<EOF
aebd7893
AC
1404/* Allocate extra space using the per-architecture obstack. */
1405
1406void *
1407gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1408{
1409 void *data = obstack_alloc (arch->obstack, size);
1410 memset (data, 0, size);
1411 return data;
1412}
1413
1414
058f20d5
JB
1415/* Free a gdbarch struct. This should never happen in normal
1416 operation --- once you've created a gdbarch, you keep it around.
1417 However, if an architecture's init function encounters an error
1418 building the structure, it may need to clean up a partially
1419 constructed gdbarch. */
4b9b3959 1420
058f20d5
JB
1421void
1422gdbarch_free (struct gdbarch *arch)
1423{
aebd7893 1424 struct obstack *obstack;
95160752 1425 gdb_assert (arch != NULL);
aebd7893
AC
1426 gdb_assert (!arch->initialized_p);
1427 obstack = arch->obstack;
1428 obstack_free (obstack, 0); /* Includes the ARCH. */
1429 xfree (obstack);
058f20d5
JB
1430}
1431EOF
1432
104c1213 1433# verify a new architecture
104c1213 1434cat <<EOF
db446970
AC
1435
1436
1437/* Ensure that all values in a GDBARCH are reasonable. */
1438
104c1213 1439static void
be7811ad 1440verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1441{
f16a1923
AC
1442 struct ui_file *log;
1443 struct cleanup *cleanups;
759ef836 1444 long length;
f16a1923 1445 char *buf;
f16a1923
AC
1446 log = mem_fileopen ();
1447 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1448 /* fundamental */
be7811ad 1449 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1450 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1451 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1452 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1453 /* Check those that need to be defined for the given multi-arch level. */
1454EOF
34620563 1455function_list | while do_read
104c1213 1456do
2ada493a
AC
1457 if class_is_function_p || class_is_variable_p
1458 then
72e74a21 1459 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1460 then
3d9a5942 1461 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1462 elif class_is_predicate_p
1463 then
3d9a5942 1464 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1465 # FIXME: See do_read for potential simplification
72e74a21 1466 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1467 then
3d9a5942 1468 printf " if (${invalid_p})\n"
be7811ad 1469 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1470 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1471 then
be7811ad
MD
1472 printf " if (gdbarch->${function} == ${predefault})\n"
1473 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1474 elif [ -n "${postdefault}" ]
f0d4cc9e 1475 then
be7811ad
MD
1476 printf " if (gdbarch->${function} == 0)\n"
1477 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1478 elif [ -n "${invalid_p}" ]
104c1213 1479 then
4d60522e 1480 printf " if (${invalid_p})\n"
f16a1923 1481 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1482 elif [ -n "${predefault}" ]
104c1213 1483 then
be7811ad 1484 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1485 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1486 fi
2ada493a 1487 fi
104c1213
JM
1488done
1489cat <<EOF
759ef836 1490 buf = ui_file_xstrdup (log, &length);
f16a1923 1491 make_cleanup (xfree, buf);
759ef836 1492 if (length > 0)
f16a1923 1493 internal_error (__FILE__, __LINE__,
85c07804 1494 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1495 buf);
1496 do_cleanups (cleanups);
104c1213
JM
1497}
1498EOF
1499
1500# dump the structure
3d9a5942
AC
1501printf "\n"
1502printf "\n"
104c1213 1503cat <<EOF
4b9b3959
AC
1504/* Print out the details of the current architecture. */
1505
104c1213 1506void
be7811ad 1507gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1508{
b78960be 1509 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1510#if defined (GDB_NM_FILE)
1511 gdb_nm_file = GDB_NM_FILE;
1512#endif
1513 fprintf_unfiltered (file,
1514 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1515 gdb_nm_file);
104c1213 1516EOF
97030eea 1517function_list | sort -t: -k 3 | while do_read
104c1213 1518do
1e9f55d0
AC
1519 # First the predicate
1520 if class_is_predicate_p
1521 then
7996bcec 1522 printf " fprintf_unfiltered (file,\n"
48f7351b 1523 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1524 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1525 fi
48f7351b 1526 # Print the corresponding value.
283354d8 1527 if class_is_function_p
4b9b3959 1528 then
7996bcec 1529 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1530 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1531 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1532 else
48f7351b 1533 # It is a variable
2f9b146e
AC
1534 case "${print}:${returntype}" in
1535 :CORE_ADDR )
0b1553bc
UW
1536 fmt="%s"
1537 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1538 ;;
2f9b146e 1539 :* )
48f7351b 1540 fmt="%s"
623d3eb1 1541 print="plongest (gdbarch->${function})"
48f7351b
AC
1542 ;;
1543 * )
2f9b146e 1544 fmt="%s"
48f7351b
AC
1545 ;;
1546 esac
3d9a5942 1547 printf " fprintf_unfiltered (file,\n"
48f7351b 1548 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1549 printf " ${print});\n"
2ada493a 1550 fi
104c1213 1551done
381323f4 1552cat <<EOF
be7811ad
MD
1553 if (gdbarch->dump_tdep != NULL)
1554 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1555}
1556EOF
104c1213
JM
1557
1558
1559# GET/SET
3d9a5942 1560printf "\n"
104c1213
JM
1561cat <<EOF
1562struct gdbarch_tdep *
1563gdbarch_tdep (struct gdbarch *gdbarch)
1564{
1565 if (gdbarch_debug >= 2)
3d9a5942 1566 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1567 return gdbarch->tdep;
1568}
1569EOF
3d9a5942 1570printf "\n"
34620563 1571function_list | while do_read
104c1213 1572do
2ada493a
AC
1573 if class_is_predicate_p
1574 then
3d9a5942
AC
1575 printf "\n"
1576 printf "int\n"
1577 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1578 printf "{\n"
8de9bdc4 1579 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1580 printf " return ${predicate};\n"
3d9a5942 1581 printf "}\n"
2ada493a
AC
1582 fi
1583 if class_is_function_p
1584 then
3d9a5942
AC
1585 printf "\n"
1586 printf "${returntype}\n"
72e74a21 1587 if [ "x${formal}" = "xvoid" ]
104c1213 1588 then
3d9a5942 1589 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1590 else
3d9a5942 1591 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1592 fi
3d9a5942 1593 printf "{\n"
8de9bdc4 1594 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1595 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1596 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1597 then
1598 # Allow a call to a function with a predicate.
956ac328 1599 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1600 fi
3d9a5942
AC
1601 printf " if (gdbarch_debug >= 2)\n"
1602 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1603 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1604 then
1605 if class_is_multiarch_p
1606 then
1607 params="gdbarch"
1608 else
1609 params=""
1610 fi
1611 else
1612 if class_is_multiarch_p
1613 then
1614 params="gdbarch, ${actual}"
1615 else
1616 params="${actual}"
1617 fi
1618 fi
72e74a21 1619 if [ "x${returntype}" = "xvoid" ]
104c1213 1620 then
4a5c6a1d 1621 printf " gdbarch->${function} (${params});\n"
104c1213 1622 else
4a5c6a1d 1623 printf " return gdbarch->${function} (${params});\n"
104c1213 1624 fi
3d9a5942
AC
1625 printf "}\n"
1626 printf "\n"
1627 printf "void\n"
1628 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1629 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1630 printf "{\n"
1631 printf " gdbarch->${function} = ${function};\n"
1632 printf "}\n"
2ada493a
AC
1633 elif class_is_variable_p
1634 then
3d9a5942
AC
1635 printf "\n"
1636 printf "${returntype}\n"
1637 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1638 printf "{\n"
8de9bdc4 1639 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1640 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1641 then
3d9a5942 1642 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1643 elif [ -n "${invalid_p}" ]
104c1213 1644 then
956ac328
AC
1645 printf " /* Check variable is valid. */\n"
1646 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1647 elif [ -n "${predefault}" ]
104c1213 1648 then
956ac328
AC
1649 printf " /* Check variable changed from pre-default. */\n"
1650 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1651 fi
3d9a5942
AC
1652 printf " if (gdbarch_debug >= 2)\n"
1653 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1654 printf " return gdbarch->${function};\n"
1655 printf "}\n"
1656 printf "\n"
1657 printf "void\n"
1658 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1659 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1660 printf "{\n"
1661 printf " gdbarch->${function} = ${function};\n"
1662 printf "}\n"
2ada493a
AC
1663 elif class_is_info_p
1664 then
3d9a5942
AC
1665 printf "\n"
1666 printf "${returntype}\n"
1667 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1668 printf "{\n"
8de9bdc4 1669 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1670 printf " if (gdbarch_debug >= 2)\n"
1671 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1672 printf " return gdbarch->${function};\n"
1673 printf "}\n"
2ada493a 1674 fi
104c1213
JM
1675done
1676
1677# All the trailing guff
1678cat <<EOF
1679
1680
f44c642f 1681/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1682 modules. */
1683
1684struct gdbarch_data
1685{
95160752 1686 unsigned index;
76860b5f 1687 int init_p;
030f20e1
AC
1688 gdbarch_data_pre_init_ftype *pre_init;
1689 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1690};
1691
1692struct gdbarch_data_registration
1693{
104c1213
JM
1694 struct gdbarch_data *data;
1695 struct gdbarch_data_registration *next;
1696};
1697
f44c642f 1698struct gdbarch_data_registry
104c1213 1699{
95160752 1700 unsigned nr;
104c1213
JM
1701 struct gdbarch_data_registration *registrations;
1702};
1703
f44c642f 1704struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1705{
1706 0, NULL,
1707};
1708
030f20e1
AC
1709static struct gdbarch_data *
1710gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1711 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1712{
1713 struct gdbarch_data_registration **curr;
76860b5f 1714 /* Append the new registraration. */
f44c642f 1715 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1716 (*curr) != NULL;
1717 curr = &(*curr)->next);
1718 (*curr) = XMALLOC (struct gdbarch_data_registration);
1719 (*curr)->next = NULL;
104c1213 1720 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1721 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1722 (*curr)->data->pre_init = pre_init;
1723 (*curr)->data->post_init = post_init;
76860b5f 1724 (*curr)->data->init_p = 1;
104c1213
JM
1725 return (*curr)->data;
1726}
1727
030f20e1
AC
1728struct gdbarch_data *
1729gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1730{
1731 return gdbarch_data_register (pre_init, NULL);
1732}
1733
1734struct gdbarch_data *
1735gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1736{
1737 return gdbarch_data_register (NULL, post_init);
1738}
104c1213 1739
b3cc3077 1740/* Create/delete the gdbarch data vector. */
95160752
AC
1741
1742static void
b3cc3077 1743alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1744{
b3cc3077
JB
1745 gdb_assert (gdbarch->data == NULL);
1746 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1747 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1748}
3c875b6f 1749
76860b5f 1750/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1751 data-pointer. */
1752
95160752 1753void
030f20e1
AC
1754deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1755 struct gdbarch_data *data,
1756 void *pointer)
95160752
AC
1757{
1758 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1759 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1760 gdb_assert (data->pre_init == NULL);
95160752
AC
1761 gdbarch->data[data->index] = pointer;
1762}
1763
104c1213
JM
1764/* Return the current value of the specified per-architecture
1765 data-pointer. */
1766
1767void *
451fbdda 1768gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1769{
451fbdda 1770 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1771 if (gdbarch->data[data->index] == NULL)
76860b5f 1772 {
030f20e1
AC
1773 /* The data-pointer isn't initialized, call init() to get a
1774 value. */
1775 if (data->pre_init != NULL)
1776 /* Mid architecture creation: pass just the obstack, and not
1777 the entire architecture, as that way it isn't possible for
1778 pre-init code to refer to undefined architecture
1779 fields. */
1780 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1781 else if (gdbarch->initialized_p
1782 && data->post_init != NULL)
1783 /* Post architecture creation: pass the entire architecture
1784 (as all fields are valid), but be careful to also detect
1785 recursive references. */
1786 {
1787 gdb_assert (data->init_p);
1788 data->init_p = 0;
1789 gdbarch->data[data->index] = data->post_init (gdbarch);
1790 data->init_p = 1;
1791 }
1792 else
1793 /* The architecture initialization hasn't completed - punt -
1794 hope that the caller knows what they are doing. Once
1795 deprecated_set_gdbarch_data has been initialized, this can be
1796 changed to an internal error. */
1797 return NULL;
76860b5f
AC
1798 gdb_assert (gdbarch->data[data->index] != NULL);
1799 }
451fbdda 1800 return gdbarch->data[data->index];
104c1213
JM
1801}
1802
1803
f44c642f 1804/* Keep a registry of the architectures known by GDB. */
104c1213 1805
4b9b3959 1806struct gdbarch_registration
104c1213
JM
1807{
1808 enum bfd_architecture bfd_architecture;
1809 gdbarch_init_ftype *init;
4b9b3959 1810 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1811 struct gdbarch_list *arches;
4b9b3959 1812 struct gdbarch_registration *next;
104c1213
JM
1813};
1814
f44c642f 1815static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1816
b4a20239
AC
1817static void
1818append_name (const char ***buf, int *nr, const char *name)
1819{
1820 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1821 (*buf)[*nr] = name;
1822 *nr += 1;
1823}
1824
1825const char **
1826gdbarch_printable_names (void)
1827{
7996bcec
AC
1828 /* Accumulate a list of names based on the registed list of
1829 architectures. */
1830 enum bfd_architecture a;
1831 int nr_arches = 0;
1832 const char **arches = NULL;
1833 struct gdbarch_registration *rego;
1834 for (rego = gdbarch_registry;
1835 rego != NULL;
1836 rego = rego->next)
b4a20239 1837 {
7996bcec
AC
1838 const struct bfd_arch_info *ap;
1839 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1840 if (ap == NULL)
1841 internal_error (__FILE__, __LINE__,
85c07804 1842 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1843 do
1844 {
1845 append_name (&arches, &nr_arches, ap->printable_name);
1846 ap = ap->next;
1847 }
1848 while (ap != NULL);
b4a20239 1849 }
7996bcec
AC
1850 append_name (&arches, &nr_arches, NULL);
1851 return arches;
b4a20239
AC
1852}
1853
1854
104c1213 1855void
4b9b3959
AC
1856gdbarch_register (enum bfd_architecture bfd_architecture,
1857 gdbarch_init_ftype *init,
1858 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1859{
4b9b3959 1860 struct gdbarch_registration **curr;
104c1213 1861 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1862 /* Check that BFD recognizes this architecture */
104c1213
JM
1863 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1864 if (bfd_arch_info == NULL)
1865 {
8e65ff28 1866 internal_error (__FILE__, __LINE__,
85c07804 1867 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1868 bfd_architecture);
104c1213
JM
1869 }
1870 /* Check that we haven't seen this architecture before */
f44c642f 1871 for (curr = &gdbarch_registry;
104c1213
JM
1872 (*curr) != NULL;
1873 curr = &(*curr)->next)
1874 {
1875 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1876 internal_error (__FILE__, __LINE__,
85c07804 1877 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1878 bfd_arch_info->printable_name);
104c1213
JM
1879 }
1880 /* log it */
1881 if (gdbarch_debug)
30737ed9 1882 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1883 bfd_arch_info->printable_name,
30737ed9 1884 host_address_to_string (init));
104c1213 1885 /* Append it */
4b9b3959 1886 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1887 (*curr)->bfd_architecture = bfd_architecture;
1888 (*curr)->init = init;
4b9b3959 1889 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1890 (*curr)->arches = NULL;
1891 (*curr)->next = NULL;
4b9b3959
AC
1892}
1893
1894void
1895register_gdbarch_init (enum bfd_architecture bfd_architecture,
1896 gdbarch_init_ftype *init)
1897{
1898 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1899}
104c1213
JM
1900
1901
424163ea 1902/* Look for an architecture using gdbarch_info. */
104c1213
JM
1903
1904struct gdbarch_list *
1905gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1906 const struct gdbarch_info *info)
1907{
1908 for (; arches != NULL; arches = arches->next)
1909 {
1910 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1911 continue;
1912 if (info->byte_order != arches->gdbarch->byte_order)
1913 continue;
4be87837
DJ
1914 if (info->osabi != arches->gdbarch->osabi)
1915 continue;
424163ea
DJ
1916 if (info->target_desc != arches->gdbarch->target_desc)
1917 continue;
104c1213
JM
1918 return arches;
1919 }
1920 return NULL;
1921}
1922
1923
ebdba546 1924/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1925 architecture if needed. Return that new architecture. */
104c1213 1926
59837fe0
UW
1927struct gdbarch *
1928gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1929{
1930 struct gdbarch *new_gdbarch;
4b9b3959 1931 struct gdbarch_registration *rego;
104c1213 1932
b732d07d 1933 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1934 sources: "set ..."; INFOabfd supplied; and the global
1935 defaults. */
1936 gdbarch_info_fill (&info);
4be87837 1937
b732d07d
AC
1938 /* Must have found some sort of architecture. */
1939 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1940
1941 if (gdbarch_debug)
1942 {
1943 fprintf_unfiltered (gdb_stdlog,
59837fe0 1944 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1945 (info.bfd_arch_info != NULL
1946 ? info.bfd_arch_info->printable_name
1947 : "(null)"));
1948 fprintf_unfiltered (gdb_stdlog,
59837fe0 1949 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1950 info.byte_order,
d7449b42 1951 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1952 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1953 : "default"));
4be87837 1954 fprintf_unfiltered (gdb_stdlog,
59837fe0 1955 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1956 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1957 fprintf_unfiltered (gdb_stdlog,
59837fe0 1958 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1959 host_address_to_string (info.abfd));
104c1213 1960 fprintf_unfiltered (gdb_stdlog,
59837fe0 1961 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1962 host_address_to_string (info.tdep_info));
104c1213
JM
1963 }
1964
ebdba546 1965 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1966 for (rego = gdbarch_registry;
1967 rego != NULL;
1968 rego = rego->next)
1969 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1970 break;
1971 if (rego == NULL)
1972 {
1973 if (gdbarch_debug)
59837fe0 1974 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 1975 "No matching architecture\n");
b732d07d
AC
1976 return 0;
1977 }
1978
ebdba546 1979 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1980 new_gdbarch = rego->init (info, rego->arches);
1981
ebdba546
AC
1982 /* Did the tdep code like it? No. Reject the change and revert to
1983 the old architecture. */
104c1213
JM
1984 if (new_gdbarch == NULL)
1985 {
1986 if (gdbarch_debug)
59837fe0 1987 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
1988 "Target rejected architecture\n");
1989 return NULL;
104c1213
JM
1990 }
1991
ebdba546
AC
1992 /* Is this a pre-existing architecture (as determined by already
1993 being initialized)? Move it to the front of the architecture
1994 list (keeping the list sorted Most Recently Used). */
1995 if (new_gdbarch->initialized_p)
104c1213 1996 {
ebdba546
AC
1997 struct gdbarch_list **list;
1998 struct gdbarch_list *this;
104c1213 1999 if (gdbarch_debug)
59837fe0 2000 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2001 "Previous architecture %s (%s) selected\n",
2002 host_address_to_string (new_gdbarch),
104c1213 2003 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2004 /* Find the existing arch in the list. */
2005 for (list = &rego->arches;
2006 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2007 list = &(*list)->next);
2008 /* It had better be in the list of architectures. */
2009 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2010 /* Unlink THIS. */
2011 this = (*list);
2012 (*list) = this->next;
2013 /* Insert THIS at the front. */
2014 this->next = rego->arches;
2015 rego->arches = this;
2016 /* Return it. */
2017 return new_gdbarch;
104c1213
JM
2018 }
2019
ebdba546
AC
2020 /* It's a new architecture. */
2021 if (gdbarch_debug)
59837fe0 2022 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2023 "New architecture %s (%s) selected\n",
2024 host_address_to_string (new_gdbarch),
ebdba546
AC
2025 new_gdbarch->bfd_arch_info->printable_name);
2026
2027 /* Insert the new architecture into the front of the architecture
2028 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2029 {
2030 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2031 this->next = rego->arches;
2032 this->gdbarch = new_gdbarch;
2033 rego->arches = this;
2034 }
104c1213 2035
4b9b3959
AC
2036 /* Check that the newly installed architecture is valid. Plug in
2037 any post init values. */
2038 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2039 verify_gdbarch (new_gdbarch);
ebdba546 2040 new_gdbarch->initialized_p = 1;
104c1213 2041
4b9b3959 2042 if (gdbarch_debug)
ebdba546
AC
2043 gdbarch_dump (new_gdbarch, gdb_stdlog);
2044
2045 return new_gdbarch;
2046}
2047
e487cc15 2048/* Make the specified architecture current. */
ebdba546
AC
2049
2050void
59837fe0 2051deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2052{
2053 gdb_assert (new_gdbarch != NULL);
ebdba546 2054 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2055 target_gdbarch = new_gdbarch;
383f836e 2056 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2057 registers_changed ();
ebdba546 2058}
104c1213 2059
104c1213 2060extern void _initialize_gdbarch (void);
b4a20239 2061
104c1213 2062void
34620563 2063_initialize_gdbarch (void)
104c1213 2064{
59233f88
AC
2065 struct cmd_list_element *c;
2066
85c07804
AC
2067 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2068Set architecture debugging."), _("\\
2069Show architecture debugging."), _("\\
2070When non-zero, architecture debugging is enabled."),
2071 NULL,
920d2a44 2072 show_gdbarch_debug,
85c07804 2073 &setdebuglist, &showdebuglist);
104c1213
JM
2074}
2075EOF
2076
2077# close things off
2078exec 1>&2
2079#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2080compare_new gdbarch.c
This page took 0.834278 seconds and 4 git commands to generate.