Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
32d0add0 5# Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea 481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 482m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
3e29f34a
MR
638# Process an ELF symbol in the minimal symbol table in a backend-specific
639# way. Normally this hook is supposed to do nothing, however if required,
640# then this hook can be used to apply tranformations to symbols that are
641# considered special in some way. For example the MIPS backend uses it
642# to interpret \`st_other' information to mark compressed code symbols so
643# that they can be treated in the appropriate manner in the processing of
644# the main symbol table and DWARF-2 records.
645F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 646f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
647# Process a symbol in the main symbol table in a backend-specific way.
648# Normally this hook is supposed to do nothing, however if required,
649# then this hook can be used to apply tranformations to symbols that
650# are considered special in some way. This is currently used by the
651# MIPS backend to make sure compressed code symbols have the ISA bit
652# set. This in turn is needed for symbol values seen in GDB to match
653# the values used at the runtime by the program itself, for function
654# and label references.
655f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656# Adjust the address retrieved from a DWARF-2 record other than a line
657# entry in a backend-specific way. Normally this hook is supposed to
658# return the address passed unchanged, however if that is incorrect for
659# any reason, then this hook can be used to fix the address up in the
660# required manner. This is currently used by the MIPS backend to make
661# sure addresses in FDE, range records, etc. referring to compressed
662# code have the ISA bit set, matching line information and the symbol
663# table.
664f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665# Adjust the address updated by a line entry in a backend-specific way.
666# Normally this hook is supposed to return the address passed unchanged,
667# however in the case of inconsistencies in these records, this hook can
668# be used to fix them up in the required manner. This is currently used
669# by the MIPS backend to make sure all line addresses in compressed code
670# are presented with the ISA bit set, which is not always the case. This
671# in turn ensures breakpoint addresses are correctly matched against the
672# stop PC.
673f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
674v:int:cannot_step_breakpoint:::0:0::0
675v:int:have_nonsteppable_watchpoint:::0:0::0
676F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
678
679# Return the appropriate type_flags for the supplied address class.
680# This function should return 1 if the address class was recognized and
681# type_flags was set, zero otherwise.
97030eea 682M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 683# Is a register in a group
97030eea 684m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 685# Fetch the pointer to the ith function argument.
97030eea 686F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 687
5aa82d05
AA
688# Iterate over all supported register notes in a core file. For each
689# supported register note section, the iterator must call CB and pass
690# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691# the supported register note sections based on the current register
692# values. Otherwise it should enumerate all supported register note
693# sections.
694M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 695
6432734d
UW
696# Create core file notes
697M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
b3ac9c77
SDJ
699# The elfcore writer hook to use to write Linux prpsinfo notes to core
700# files. Most Linux architectures use the same prpsinfo32 or
701# prpsinfo64 layouts, and so won't need to provide this hook, as we
702# call the Linux generic routines in bfd to write prpsinfo notes by
703# default.
704F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
35c2fab7
UW
706# Find core file memory regions
707M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
de584861 709# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
710# core file into buffer READBUF with length LEN. Return the number of bytes read
711# (zero indicates failure).
712# failed, otherwise, return the red length of READBUF.
713M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 714
356a5233
JB
715# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
717# Return the number of bytes read (zero indicates failure).
718M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 719
c0edd9ed 720# How the core target converts a PTID from a core file to a string.
28439f5e
PA
721M:char *:core_pid_to_str:ptid_t ptid:ptid
722
a78c2d62 723# BFD target to use when generating a core file.
86ba1042 724V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 725
0d5de010
DJ
726# If the elements of C++ vtables are in-place function descriptors rather
727# than normal function pointers (which may point to code or a descriptor),
728# set this to one.
97030eea 729v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
730
731# Set if the least significant bit of the delta is used instead of the least
732# significant bit of the pfn for pointers to virtual member functions.
97030eea 733v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
734
735# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 736f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 737
1668ae25 738# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
739V:ULONGEST:max_insn_length:::0:0
740
741# Copy the instruction at FROM to TO, and make any adjustments
742# necessary to single-step it at that address.
743#
744# REGS holds the state the thread's registers will have before
745# executing the copied instruction; the PC in REGS will refer to FROM,
746# not the copy at TO. The caller should update it to point at TO later.
747#
748# Return a pointer to data of the architecture's choice to be passed
749# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750# the instruction's effects have been completely simulated, with the
751# resulting state written back to REGS.
752#
753# For a general explanation of displaced stepping and how GDB uses it,
754# see the comments in infrun.c.
755#
756# The TO area is only guaranteed to have space for
757# gdbarch_max_insn_length (arch) bytes, so this function must not
758# write more bytes than that to that area.
759#
760# If you do not provide this function, GDB assumes that the
761# architecture does not support displaced stepping.
762#
763# If your architecture doesn't need to adjust instructions before
764# single-stepping them, consider using simple_displaced_step_copy_insn
765# here.
766M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
99e40580
UW
768# Return true if GDB should use hardware single-stepping to execute
769# the displaced instruction identified by CLOSURE. If false,
770# GDB will simply restart execution at the displaced instruction
771# location, and it is up to the target to ensure GDB will receive
772# control again (e.g. by placing a software breakpoint instruction
773# into the displaced instruction buffer).
774#
775# The default implementation returns false on all targets that
776# provide a gdbarch_software_single_step routine, and true otherwise.
777m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
237fc4c9
PA
779# Fix up the state resulting from successfully single-stepping a
780# displaced instruction, to give the result we would have gotten from
781# stepping the instruction in its original location.
782#
783# REGS is the register state resulting from single-stepping the
784# displaced instruction.
785#
786# CLOSURE is the result from the matching call to
787# gdbarch_displaced_step_copy_insn.
788#
789# If you provide gdbarch_displaced_step_copy_insn.but not this
790# function, then GDB assumes that no fixup is needed after
791# single-stepping the instruction.
792#
793# For a general explanation of displaced stepping and how GDB uses it,
794# see the comments in infrun.c.
795M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797# Free a closure returned by gdbarch_displaced_step_copy_insn.
798#
799# If you provide gdbarch_displaced_step_copy_insn, you must provide
800# this function as well.
801#
802# If your architecture uses closures that don't need to be freed, then
803# you can use simple_displaced_step_free_closure here.
804#
805# For a general explanation of displaced stepping and how GDB uses it,
806# see the comments in infrun.c.
807m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809# Return the address of an appropriate place to put displaced
810# instructions while we step over them. There need only be one such
811# place, since we're only stepping one thread over a breakpoint at a
812# time.
813#
814# For a general explanation of displaced stepping and how GDB uses it,
815# see the comments in infrun.c.
816m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
dde08ee1
PA
818# Relocate an instruction to execute at a different address. OLDLOC
819# is the address in the inferior memory where the instruction to
820# relocate is currently at. On input, TO points to the destination
821# where we want the instruction to be copied (and possibly adjusted)
822# to. On output, it points to one past the end of the resulting
823# instruction(s). The effect of executing the instruction at TO shall
824# be the same as if executing it at FROM. For example, call
825# instructions that implicitly push the return address on the stack
826# should be adjusted to return to the instruction after OLDLOC;
827# relative branches, and other PC-relative instructions need the
828# offset adjusted; etc.
829M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
1c772458 831# Refresh overlay mapped state for section OSECT.
97030eea 832F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 833
97030eea 834M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
835
836# Handle special encoding of static variables in stabs debug info.
0d5cff50 837F:const char *:static_transform_name:const char *name:name
203c3895 838# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 839v:int:sofun_address_maybe_missing:::0:0::0
1cded358 840
0508c3ec
HZ
841# Parse the instruction at ADDR storing in the record execution log
842# the registers REGCACHE and memory ranges that will be affected when
843# the instruction executes, along with their current values.
844# Return -1 if something goes wrong, 0 otherwise.
845M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
3846b520
HZ
847# Save process state after a signal.
848# Return -1 if something goes wrong, 0 otherwise.
2ea28649 849M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 850
22203bbf 851# Signal translation: translate inferior's signal (target's) number
86b49880
PA
852# into GDB's representation. The implementation of this method must
853# be host independent. IOW, don't rely on symbols of the NAT_FILE
854# header (the nm-*.h files), the host <signal.h> header, or similar
855# headers. This is mainly used when cross-debugging core files ---
856# "Live" targets hide the translation behind the target interface
1f8cf220
PA
857# (target_wait, target_resume, etc.).
858M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 859
eb14d406
SDJ
860# Signal translation: translate the GDB's internal signal number into
861# the inferior's signal (target's) representation. The implementation
862# of this method must be host independent. IOW, don't rely on symbols
863# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864# header, or similar headers.
865# Return the target signal number if found, or -1 if the GDB internal
866# signal number is invalid.
867M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
4aa995e1
PA
869# Extra signal info inspection.
870#
871# Return a type suitable to inspect extra signal information.
872M:struct type *:get_siginfo_type:void:
873
60c5725c
DJ
874# Record architecture-specific information from the symbol table.
875M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 876
a96d9b2e
SDJ
877# Function for the 'catch syscall' feature.
878
879# Get architecture-specific system calls information from registers.
880M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
458c8db8
SDJ
882# The filename of the XML syscall for this architecture.
883v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885# Information about system calls from this architecture
886v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
55aa24fb
SDJ
888# SystemTap related fields and functions.
889
05c0465e
SDJ
890# A NULL-terminated array of prefixes used to mark an integer constant
891# on the architecture's assembly.
55aa24fb
SDJ
892# For example, on x86 integer constants are written as:
893#
894# \$10 ;; integer constant 10
895#
896# in this case, this prefix would be the character \`\$\'.
05c0465e 897v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 898
05c0465e
SDJ
899# A NULL-terminated array of suffixes used to mark an integer constant
900# on the architecture's assembly.
901v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 902
05c0465e
SDJ
903# A NULL-terminated array of prefixes used to mark a register name on
904# the architecture's assembly.
55aa24fb
SDJ
905# For example, on x86 the register name is written as:
906#
907# \%eax ;; register eax
908#
909# in this case, this prefix would be the character \`\%\'.
05c0465e 910v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 911
05c0465e
SDJ
912# A NULL-terminated array of suffixes used to mark a register name on
913# the architecture's assembly.
914v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 915
05c0465e
SDJ
916# A NULL-terminated array of prefixes used to mark a register
917# indirection on the architecture's assembly.
55aa24fb
SDJ
918# For example, on x86 the register indirection is written as:
919#
920# \(\%eax\) ;; indirecting eax
921#
922# in this case, this prefix would be the charater \`\(\'.
923#
924# Please note that we use the indirection prefix also for register
925# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 926v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 927
05c0465e
SDJ
928# A NULL-terminated array of suffixes used to mark a register
929# indirection on the architecture's assembly.
55aa24fb
SDJ
930# For example, on x86 the register indirection is written as:
931#
932# \(\%eax\) ;; indirecting eax
933#
934# in this case, this prefix would be the charater \`\)\'.
935#
936# Please note that we use the indirection suffix also for register
937# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 938v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 939
05c0465e 940# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
941#
942# For example, on PPC a register is represented by a number in the assembly
943# language (e.g., \`10\' is the 10th general-purpose register). However,
944# inside GDB this same register has an \`r\' appended to its name, so the 10th
945# register would be represented as \`r10\' internally.
08af7a40 946v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
947
948# Suffix used to name a register using GDB's nomenclature.
08af7a40 949v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
950
951# Check if S is a single operand.
952#
953# Single operands can be:
954# \- Literal integers, e.g. \`\$10\' on x86
955# \- Register access, e.g. \`\%eax\' on x86
956# \- Register indirection, e.g. \`\(\%eax\)\' on x86
957# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958#
959# This function should check for these patterns on the string
960# and return 1 if some were found, or zero otherwise. Please try to match
961# as much info as you can from the string, i.e., if you have to match
962# something like \`\(\%\', do not match just the \`\(\'.
963M:int:stap_is_single_operand:const char *s:s
964
965# Function used to handle a "special case" in the parser.
966#
967# A "special case" is considered to be an unknown token, i.e., a token
968# that the parser does not know how to parse. A good example of special
969# case would be ARM's register displacement syntax:
970#
971# [R0, #4] ;; displacing R0 by 4
972#
973# Since the parser assumes that a register displacement is of the form:
974#
975# <number> <indirection_prefix> <register_name> <indirection_suffix>
976#
977# it means that it will not be able to recognize and parse this odd syntax.
978# Therefore, we should add a special case function that will handle this token.
979#
980# This function should generate the proper expression form of the expression
981# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982# and so on). It should also return 1 if the parsing was successful, or zero
983# if the token was not recognized as a special token (in this case, returning
984# zero means that the special parser is deferring the parsing to the generic
985# parser), and should advance the buffer pointer (p->arg).
986M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988
50c71eaf
PA
989# True if the list of shared libraries is one and only for all
990# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
991# This usually means that all processes, although may or may not share
992# an address space, will see the same set of symbols at the same
993# addresses.
50c71eaf 994v:int:has_global_solist:::0:0::0
2567c7d9
PA
995
996# On some targets, even though each inferior has its own private
997# address space, the debug interface takes care of making breakpoints
998# visible to all address spaces automatically. For such cases,
999# this property should be set to true.
1000v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1001
1002# True if inferiors share an address space (e.g., uClinux).
1003m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1004
1005# True if a fast tracepoint can be set at an address.
1006m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 1007
f870a310
TT
1008# Return the "auto" target charset.
1009f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1010# Return the "auto" target wide charset.
1011f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1012
1013# If non-empty, this is a file extension that will be opened in place
1014# of the file extension reported by the shared library list.
1015#
1016# This is most useful for toolchains that use a post-linker tool,
1017# where the names of the files run on the target differ in extension
1018# compared to the names of the files GDB should load for debug info.
1019v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1020
1021# If true, the target OS has DOS-based file system semantics. That
1022# is, absolute paths include a drive name, and the backslash is
1023# considered a directory separator.
1024v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1025
1026# Generate bytecodes to collect the return address in a frame.
1027# Since the bytecodes run on the target, possibly with GDB not even
1028# connected, the full unwinding machinery is not available, and
1029# typically this function will issue bytecodes for one or more likely
1030# places that the return address may be found.
1031m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1032
3030c96e 1033# Implement the "info proc" command.
7bc112c1 1034M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1035
451b7c33
TT
1036# Implement the "info proc" command for core files. Noe that there
1037# are two "info_proc"-like methods on gdbarch -- one for core files,
1038# one for live targets.
7bc112c1 1039M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1040
19630284
JB
1041# Iterate over all objfiles in the order that makes the most sense
1042# for the architecture to make global symbol searches.
1043#
1044# CB is a callback function where OBJFILE is the objfile to be searched,
1045# and CB_DATA a pointer to user-defined data (the same data that is passed
1046# when calling this gdbarch method). The iteration stops if this function
1047# returns nonzero.
1048#
1049# CB_DATA is a pointer to some user-defined data to be passed to
1050# the callback.
1051#
1052# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1053# inspected when the symbol search was requested.
1054m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1055
7e35103a
JB
1056# Ravenscar arch-dependent ops.
1057v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1058
1059# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1060m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1061
1062# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1063m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1064
1065# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1066m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1067
1068# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1069# Return 0 if *READPTR is already at the end of the buffer.
1070# Return -1 if there is insufficient buffer for a whole entry.
1071# Return 1 if an entry was read into *TYPEP and *VALP.
1072M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1073
1074# Find the address range of the current inferior's vsyscall/vDSO, and
1075# write it to *RANGE. If the vsyscall's length can't be determined, a
1076# range with zero length is returned. Returns true if the vsyscall is
1077# found, false otherwise.
1078m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1079
1080# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1081# PROT has GDB_MMAP_PROT_* bitmask format.
1082# Throw an error if it is not possible. Returned address is always valid.
1083f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1084
1085# Return string (caller has to use xfree for it) with options for GCC
1086# to produce code for this target, typically "-m64", "-m32" or "-m31".
1087# These options are put before CU's DW_AT_producer compilation options so that
1088# they can override it. Method may also return NULL.
1089m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1090
1091# Return a regular expression that matches names used by this
1092# architecture in GNU configury triplets. The result is statically
1093# allocated and must not be freed. The default implementation simply
1094# returns the BFD architecture name, which is correct in nearly every
1095# case.
1096m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
104c1213 1097EOF
104c1213
JM
1098}
1099
0b8f9e4d
AC
1100#
1101# The .log file
1102#
1103exec > new-gdbarch.log
34620563 1104function_list | while do_read
0b8f9e4d
AC
1105do
1106 cat <<EOF
2f9b146e 1107${class} ${returntype} ${function} ($formal)
104c1213 1108EOF
3d9a5942
AC
1109 for r in ${read}
1110 do
1111 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1112 done
f0d4cc9e 1113 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1114 then
66d659b1 1115 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1116 kill $$
1117 exit 1
1118 fi
72e74a21 1119 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1120 then
1121 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1122 kill $$
1123 exit 1
1124 fi
a72293e2
AC
1125 if class_is_multiarch_p
1126 then
1127 if class_is_predicate_p ; then :
1128 elif test "x${predefault}" = "x"
1129 then
2f9b146e 1130 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1131 kill $$
1132 exit 1
1133 fi
1134 fi
3d9a5942 1135 echo ""
0b8f9e4d
AC
1136done
1137
1138exec 1>&2
1139compare_new gdbarch.log
1140
104c1213
JM
1141
1142copyright ()
1143{
1144cat <<EOF
c4bfde41
JK
1145/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1146/* vi:set ro: */
59233f88 1147
104c1213 1148/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1149
32d0add0 1150 Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
1151
1152 This file is part of GDB.
1153
1154 This program is free software; you can redistribute it and/or modify
1155 it under the terms of the GNU General Public License as published by
50efebf8 1156 the Free Software Foundation; either version 3 of the License, or
104c1213 1157 (at your option) any later version.
50efebf8 1158
104c1213
JM
1159 This program is distributed in the hope that it will be useful,
1160 but WITHOUT ANY WARRANTY; without even the implied warranty of
1161 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1162 GNU General Public License for more details.
50efebf8 1163
104c1213 1164 You should have received a copy of the GNU General Public License
50efebf8 1165 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1166
104c1213
JM
1167/* This file was created with the aid of \`\`gdbarch.sh''.
1168
52204a0b 1169 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1170 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1171 against the existing \`\`gdbarch.[hc]''. Any differences found
1172 being reported.
1173
1174 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1175 changes into that script. Conversely, when making sweeping changes
104c1213 1176 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1177 easier. */
104c1213
JM
1178
1179EOF
1180}
1181
1182#
1183# The .h file
1184#
1185
1186exec > new-gdbarch.h
1187copyright
1188cat <<EOF
1189#ifndef GDBARCH_H
1190#define GDBARCH_H
1191
eb7a547a
JB
1192#include "frame.h"
1193
da3331ec
AC
1194struct floatformat;
1195struct ui_file;
104c1213 1196struct value;
b6af0555 1197struct objfile;
1c772458 1198struct obj_section;
a2cf933a 1199struct minimal_symbol;
049ee0e4 1200struct regcache;
b59ff9d5 1201struct reggroup;
6ce6d90f 1202struct regset;
a89aa300 1203struct disassemble_info;
e2d0e7eb 1204struct target_ops;
030f20e1 1205struct obstack;
8181d85f 1206struct bp_target_info;
424163ea 1207struct target_desc;
3e29f34a
MR
1208struct objfile;
1209struct symbol;
237fc4c9 1210struct displaced_step_closure;
17ea7499 1211struct core_regset_section;
a96d9b2e 1212struct syscall;
175ff332 1213struct agent_expr;
6710bf39 1214struct axs_value;
55aa24fb 1215struct stap_parse_info;
7e35103a 1216struct ravenscar_arch_ops;
b3ac9c77 1217struct elf_internal_linux_prpsinfo;
3437254d 1218struct mem_range;
458c8db8 1219struct syscalls_info;
104c1213 1220
6ecd4729
PA
1221/* The architecture associated with the inferior through the
1222 connection to the target.
1223
1224 The architecture vector provides some information that is really a
1225 property of the inferior, accessed through a particular target:
1226 ptrace operations; the layout of certain RSP packets; the solib_ops
1227 vector; etc. To differentiate architecture accesses to
1228 per-inferior/target properties from
1229 per-thread/per-frame/per-objfile properties, accesses to
1230 per-inferior/target properties should be made through this
1231 gdbarch. */
1232
1233/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1234extern struct gdbarch *target_gdbarch (void);
6ecd4729 1235
19630284
JB
1236/* Callback type for the 'iterate_over_objfiles_in_search_order'
1237 gdbarch method. */
1238
1239typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1240 (struct objfile *objfile, void *cb_data);
5aa82d05
AA
1241
1242typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1243 (const char *sect_name, int size, const struct regset *regset,
1244 const char *human_name, void *cb_data);
104c1213
JM
1245EOF
1246
1247# function typedef's
3d9a5942
AC
1248printf "\n"
1249printf "\n"
0963b4bd 1250printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1251function_list | while do_read
104c1213 1252do
2ada493a
AC
1253 if class_is_info_p
1254 then
3d9a5942
AC
1255 printf "\n"
1256 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1257 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1258 fi
104c1213
JM
1259done
1260
1261# function typedef's
3d9a5942
AC
1262printf "\n"
1263printf "\n"
0963b4bd 1264printf "/* The following are initialized by the target dependent code. */\n"
34620563 1265function_list | while do_read
104c1213 1266do
72e74a21 1267 if [ -n "${comment}" ]
34620563
AC
1268 then
1269 echo "${comment}" | sed \
1270 -e '2 s,#,/*,' \
1271 -e '3,$ s,#, ,' \
1272 -e '$ s,$, */,'
1273 fi
412d5987
AC
1274
1275 if class_is_predicate_p
2ada493a 1276 then
412d5987
AC
1277 printf "\n"
1278 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1279 fi
2ada493a
AC
1280 if class_is_variable_p
1281 then
3d9a5942
AC
1282 printf "\n"
1283 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1284 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1285 fi
1286 if class_is_function_p
1287 then
3d9a5942 1288 printf "\n"
72e74a21 1289 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1290 then
1291 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1292 elif class_is_multiarch_p
1293 then
1294 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1295 else
1296 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1297 fi
72e74a21 1298 if [ "x${formal}" = "xvoid" ]
104c1213 1299 then
3d9a5942 1300 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1301 else
3d9a5942 1302 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1303 fi
3d9a5942 1304 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1305 fi
104c1213
JM
1306done
1307
1308# close it off
1309cat <<EOF
1310
a96d9b2e
SDJ
1311/* Definition for an unknown syscall, used basically in error-cases. */
1312#define UNKNOWN_SYSCALL (-1)
1313
104c1213
JM
1314extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1315
1316
1317/* Mechanism for co-ordinating the selection of a specific
1318 architecture.
1319
1320 GDB targets (*-tdep.c) can register an interest in a specific
1321 architecture. Other GDB components can register a need to maintain
1322 per-architecture data.
1323
1324 The mechanisms below ensures that there is only a loose connection
1325 between the set-architecture command and the various GDB
0fa6923a 1326 components. Each component can independently register their need
104c1213
JM
1327 to maintain architecture specific data with gdbarch.
1328
1329 Pragmatics:
1330
1331 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1332 didn't scale.
1333
1334 The more traditional mega-struct containing architecture specific
1335 data for all the various GDB components was also considered. Since
0fa6923a 1336 GDB is built from a variable number of (fairly independent)
104c1213 1337 components it was determined that the global aproach was not
0963b4bd 1338 applicable. */
104c1213
JM
1339
1340
1341/* Register a new architectural family with GDB.
1342
1343 Register support for the specified ARCHITECTURE with GDB. When
1344 gdbarch determines that the specified architecture has been
1345 selected, the corresponding INIT function is called.
1346
1347 --
1348
1349 The INIT function takes two parameters: INFO which contains the
1350 information available to gdbarch about the (possibly new)
1351 architecture; ARCHES which is a list of the previously created
1352 \`\`struct gdbarch'' for this architecture.
1353
0f79675b 1354 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1355 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1356
1357 The ARCHES parameter is a linked list (sorted most recently used)
1358 of all the previously created architures for this architecture
1359 family. The (possibly NULL) ARCHES->gdbarch can used to access
1360 values from the previously selected architecture for this
59837fe0 1361 architecture family.
104c1213
JM
1362
1363 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1364 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1365 gdbarch'' from the ARCHES list - indicating that the new
1366 architecture is just a synonym for an earlier architecture (see
1367 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1368 - that describes the selected architecture (see gdbarch_alloc()).
1369
1370 The DUMP_TDEP function shall print out all target specific values.
1371 Care should be taken to ensure that the function works in both the
0963b4bd 1372 multi-arch and non- multi-arch cases. */
104c1213
JM
1373
1374struct gdbarch_list
1375{
1376 struct gdbarch *gdbarch;
1377 struct gdbarch_list *next;
1378};
1379
1380struct gdbarch_info
1381{
0963b4bd 1382 /* Use default: NULL (ZERO). */
104c1213
JM
1383 const struct bfd_arch_info *bfd_arch_info;
1384
428721aa 1385 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1386 enum bfd_endian byte_order;
104c1213 1387
94123b4f 1388 enum bfd_endian byte_order_for_code;
9d4fde75 1389
0963b4bd 1390 /* Use default: NULL (ZERO). */
104c1213
JM
1391 bfd *abfd;
1392
0963b4bd 1393 /* Use default: NULL (ZERO). */
104c1213 1394 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1395
1396 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1397 enum gdb_osabi osabi;
424163ea
DJ
1398
1399 /* Use default: NULL (ZERO). */
1400 const struct target_desc *target_desc;
104c1213
JM
1401};
1402
1403typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1404typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1405
4b9b3959 1406/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1407extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1408
4b9b3959
AC
1409extern void gdbarch_register (enum bfd_architecture architecture,
1410 gdbarch_init_ftype *,
1411 gdbarch_dump_tdep_ftype *);
1412
104c1213 1413
b4a20239
AC
1414/* Return a freshly allocated, NULL terminated, array of the valid
1415 architecture names. Since architectures are registered during the
1416 _initialize phase this function only returns useful information
0963b4bd 1417 once initialization has been completed. */
b4a20239
AC
1418
1419extern const char **gdbarch_printable_names (void);
1420
1421
104c1213 1422/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1423 matches the information provided by INFO. */
104c1213 1424
424163ea 1425extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1426
1427
1428/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1429 basic initialization using values obtained from the INFO and TDEP
104c1213 1430 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1431 initialization of the object. */
104c1213
JM
1432
1433extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1434
1435
4b9b3959
AC
1436/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1437 It is assumed that the caller freeds the \`\`struct
0963b4bd 1438 gdbarch_tdep''. */
4b9b3959 1439
058f20d5
JB
1440extern void gdbarch_free (struct gdbarch *);
1441
1442
aebd7893
AC
1443/* Helper function. Allocate memory from the \`\`struct gdbarch''
1444 obstack. The memory is freed when the corresponding architecture
1445 is also freed. */
1446
1447extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1448#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1449#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1450
1451
0963b4bd 1452/* Helper function. Force an update of the current architecture.
104c1213 1453
b732d07d
AC
1454 The actual architecture selected is determined by INFO, \`\`(gdb) set
1455 architecture'' et.al., the existing architecture and BFD's default
1456 architecture. INFO should be initialized to zero and then selected
1457 fields should be updated.
104c1213 1458
0963b4bd 1459 Returns non-zero if the update succeeds. */
16f33e29
AC
1460
1461extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1462
1463
ebdba546
AC
1464/* Helper function. Find an architecture matching info.
1465
1466 INFO should be initialized using gdbarch_info_init, relevant fields
1467 set, and then finished using gdbarch_info_fill.
1468
1469 Returns the corresponding architecture, or NULL if no matching
59837fe0 1470 architecture was found. */
ebdba546
AC
1471
1472extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1473
1474
aff68abb 1475/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1476
aff68abb 1477extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1478
104c1213
JM
1479
1480/* Register per-architecture data-pointer.
1481
1482 Reserve space for a per-architecture data-pointer. An identifier
1483 for the reserved data-pointer is returned. That identifer should
95160752 1484 be saved in a local static variable.
104c1213 1485
fcc1c85c
AC
1486 Memory for the per-architecture data shall be allocated using
1487 gdbarch_obstack_zalloc. That memory will be deleted when the
1488 corresponding architecture object is deleted.
104c1213 1489
95160752
AC
1490 When a previously created architecture is re-selected, the
1491 per-architecture data-pointer for that previous architecture is
76860b5f 1492 restored. INIT() is not re-called.
104c1213
JM
1493
1494 Multiple registrarants for any architecture are allowed (and
1495 strongly encouraged). */
1496
95160752 1497struct gdbarch_data;
104c1213 1498
030f20e1
AC
1499typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1500extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1501typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1502extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1503extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1504 struct gdbarch_data *data,
1505 void *pointer);
104c1213 1506
451fbdda 1507extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1508
1509
0fa6923a 1510/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1511 byte-order, ...) using information found in the BFD. */
104c1213
JM
1512
1513extern void set_gdbarch_from_file (bfd *);
1514
1515
e514a9d6
JM
1516/* Initialize the current architecture to the "first" one we find on
1517 our list. */
1518
1519extern void initialize_current_architecture (void);
1520
104c1213 1521/* gdbarch trace variable */
ccce17b0 1522extern unsigned int gdbarch_debug;
104c1213 1523
4b9b3959 1524extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1525
1526#endif
1527EOF
1528exec 1>&2
1529#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1530compare_new gdbarch.h
104c1213
JM
1531
1532
1533#
1534# C file
1535#
1536
1537exec > new-gdbarch.c
1538copyright
1539cat <<EOF
1540
1541#include "defs.h"
7355ddba 1542#include "arch-utils.h"
104c1213 1543
104c1213 1544#include "gdbcmd.h"
faaf634c 1545#include "inferior.h"
104c1213
JM
1546#include "symcat.h"
1547
f0d4cc9e 1548#include "floatformat.h"
b59ff9d5 1549#include "reggroups.h"
4be87837 1550#include "osabi.h"
aebd7893 1551#include "gdb_obstack.h"
383f836e 1552#include "observer.h"
a3ecef73 1553#include "regcache.h"
19630284 1554#include "objfiles.h"
95160752 1555
104c1213
JM
1556/* Static function declarations */
1557
b3cc3077 1558static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1559
104c1213
JM
1560/* Non-zero if we want to trace architecture code. */
1561
1562#ifndef GDBARCH_DEBUG
1563#define GDBARCH_DEBUG 0
1564#endif
ccce17b0 1565unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1566static void
1567show_gdbarch_debug (struct ui_file *file, int from_tty,
1568 struct cmd_list_element *c, const char *value)
1569{
1570 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1571}
104c1213 1572
456fcf94 1573static const char *
8da61cc4 1574pformat (const struct floatformat **format)
456fcf94
AC
1575{
1576 if (format == NULL)
1577 return "(null)";
1578 else
8da61cc4
DJ
1579 /* Just print out one of them - this is only for diagnostics. */
1580 return format[0]->name;
456fcf94
AC
1581}
1582
08105857
PA
1583static const char *
1584pstring (const char *string)
1585{
1586 if (string == NULL)
1587 return "(null)";
1588 return string;
05c0465e
SDJ
1589}
1590
1591/* Helper function to print a list of strings, represented as "const
1592 char *const *". The list is printed comma-separated. */
1593
1594static char *
1595pstring_list (const char *const *list)
1596{
1597 static char ret[100];
1598 const char *const *p;
1599 size_t offset = 0;
1600
1601 if (list == NULL)
1602 return "(null)";
1603
1604 ret[0] = '\0';
1605 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1606 {
1607 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1608 offset += 2 + s;
1609 }
1610
1611 if (offset > 0)
1612 {
1613 gdb_assert (offset - 2 < sizeof (ret));
1614 ret[offset - 2] = '\0';
1615 }
1616
1617 return ret;
08105857
PA
1618}
1619
104c1213
JM
1620EOF
1621
1622# gdbarch open the gdbarch object
3d9a5942 1623printf "\n"
0963b4bd 1624printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1625printf "\n"
1626printf "struct gdbarch\n"
1627printf "{\n"
76860b5f
AC
1628printf " /* Has this architecture been fully initialized? */\n"
1629printf " int initialized_p;\n"
aebd7893
AC
1630printf "\n"
1631printf " /* An obstack bound to the lifetime of the architecture. */\n"
1632printf " struct obstack *obstack;\n"
1633printf "\n"
0963b4bd 1634printf " /* basic architectural information. */\n"
34620563 1635function_list | while do_read
104c1213 1636do
2ada493a
AC
1637 if class_is_info_p
1638 then
3d9a5942 1639 printf " ${returntype} ${function};\n"
2ada493a 1640 fi
104c1213 1641done
3d9a5942 1642printf "\n"
0963b4bd 1643printf " /* target specific vector. */\n"
3d9a5942
AC
1644printf " struct gdbarch_tdep *tdep;\n"
1645printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1646printf "\n"
0963b4bd 1647printf " /* per-architecture data-pointers. */\n"
95160752 1648printf " unsigned nr_data;\n"
3d9a5942
AC
1649printf " void **data;\n"
1650printf "\n"
104c1213
JM
1651cat <<EOF
1652 /* Multi-arch values.
1653
1654 When extending this structure you must:
1655
1656 Add the field below.
1657
1658 Declare set/get functions and define the corresponding
1659 macro in gdbarch.h.
1660
1661 gdbarch_alloc(): If zero/NULL is not a suitable default,
1662 initialize the new field.
1663
1664 verify_gdbarch(): Confirm that the target updated the field
1665 correctly.
1666
7e73cedf 1667 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1668 field is dumped out
1669
104c1213
JM
1670 get_gdbarch(): Implement the set/get functions (probably using
1671 the macro's as shortcuts).
1672
1673 */
1674
1675EOF
34620563 1676function_list | while do_read
104c1213 1677do
2ada493a
AC
1678 if class_is_variable_p
1679 then
3d9a5942 1680 printf " ${returntype} ${function};\n"
2ada493a
AC
1681 elif class_is_function_p
1682 then
2f9b146e 1683 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1684 fi
104c1213 1685done
3d9a5942 1686printf "};\n"
104c1213 1687
104c1213 1688# Create a new gdbarch struct
104c1213 1689cat <<EOF
7de2341d 1690
66b43ecb 1691/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1692 \`\`struct gdbarch_info''. */
104c1213 1693EOF
3d9a5942 1694printf "\n"
104c1213
JM
1695cat <<EOF
1696struct gdbarch *
1697gdbarch_alloc (const struct gdbarch_info *info,
1698 struct gdbarch_tdep *tdep)
1699{
be7811ad 1700 struct gdbarch *gdbarch;
aebd7893
AC
1701
1702 /* Create an obstack for allocating all the per-architecture memory,
1703 then use that to allocate the architecture vector. */
70ba0933 1704 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1705 obstack_init (obstack);
be7811ad
MD
1706 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1707 memset (gdbarch, 0, sizeof (*gdbarch));
1708 gdbarch->obstack = obstack;
85de9627 1709
be7811ad 1710 alloc_gdbarch_data (gdbarch);
85de9627 1711
be7811ad 1712 gdbarch->tdep = tdep;
104c1213 1713EOF
3d9a5942 1714printf "\n"
34620563 1715function_list | while do_read
104c1213 1716do
2ada493a
AC
1717 if class_is_info_p
1718 then
be7811ad 1719 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1720 fi
104c1213 1721done
3d9a5942 1722printf "\n"
0963b4bd 1723printf " /* Force the explicit initialization of these. */\n"
34620563 1724function_list | while do_read
104c1213 1725do
2ada493a
AC
1726 if class_is_function_p || class_is_variable_p
1727 then
72e74a21 1728 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1729 then
be7811ad 1730 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1731 fi
2ada493a 1732 fi
104c1213
JM
1733done
1734cat <<EOF
1735 /* gdbarch_alloc() */
1736
be7811ad 1737 return gdbarch;
104c1213
JM
1738}
1739EOF
1740
058f20d5 1741# Free a gdbarch struct.
3d9a5942
AC
1742printf "\n"
1743printf "\n"
058f20d5 1744cat <<EOF
aebd7893
AC
1745/* Allocate extra space using the per-architecture obstack. */
1746
1747void *
1748gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1749{
1750 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1751
aebd7893
AC
1752 memset (data, 0, size);
1753 return data;
1754}
1755
1756
058f20d5
JB
1757/* Free a gdbarch struct. This should never happen in normal
1758 operation --- once you've created a gdbarch, you keep it around.
1759 However, if an architecture's init function encounters an error
1760 building the structure, it may need to clean up a partially
1761 constructed gdbarch. */
4b9b3959 1762
058f20d5
JB
1763void
1764gdbarch_free (struct gdbarch *arch)
1765{
aebd7893 1766 struct obstack *obstack;
05c547f6 1767
95160752 1768 gdb_assert (arch != NULL);
aebd7893
AC
1769 gdb_assert (!arch->initialized_p);
1770 obstack = arch->obstack;
1771 obstack_free (obstack, 0); /* Includes the ARCH. */
1772 xfree (obstack);
058f20d5
JB
1773}
1774EOF
1775
104c1213 1776# verify a new architecture
104c1213 1777cat <<EOF
db446970
AC
1778
1779
1780/* Ensure that all values in a GDBARCH are reasonable. */
1781
104c1213 1782static void
be7811ad 1783verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1784{
f16a1923
AC
1785 struct ui_file *log;
1786 struct cleanup *cleanups;
759ef836 1787 long length;
f16a1923 1788 char *buf;
05c547f6 1789
f16a1923
AC
1790 log = mem_fileopen ();
1791 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1792 /* fundamental */
be7811ad 1793 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1794 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1795 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1796 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1797 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1798EOF
34620563 1799function_list | while do_read
104c1213 1800do
2ada493a
AC
1801 if class_is_function_p || class_is_variable_p
1802 then
72e74a21 1803 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1804 then
3d9a5942 1805 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1806 elif class_is_predicate_p
1807 then
0963b4bd 1808 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1809 # FIXME: See do_read for potential simplification
72e74a21 1810 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1811 then
3d9a5942 1812 printf " if (${invalid_p})\n"
be7811ad 1813 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1814 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1815 then
be7811ad
MD
1816 printf " if (gdbarch->${function} == ${predefault})\n"
1817 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1818 elif [ -n "${postdefault}" ]
f0d4cc9e 1819 then
be7811ad
MD
1820 printf " if (gdbarch->${function} == 0)\n"
1821 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1822 elif [ -n "${invalid_p}" ]
104c1213 1823 then
4d60522e 1824 printf " if (${invalid_p})\n"
f16a1923 1825 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1826 elif [ -n "${predefault}" ]
104c1213 1827 then
be7811ad 1828 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1829 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1830 fi
2ada493a 1831 fi
104c1213
JM
1832done
1833cat <<EOF
759ef836 1834 buf = ui_file_xstrdup (log, &length);
f16a1923 1835 make_cleanup (xfree, buf);
759ef836 1836 if (length > 0)
f16a1923 1837 internal_error (__FILE__, __LINE__,
85c07804 1838 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1839 buf);
1840 do_cleanups (cleanups);
104c1213
JM
1841}
1842EOF
1843
1844# dump the structure
3d9a5942
AC
1845printf "\n"
1846printf "\n"
104c1213 1847cat <<EOF
0963b4bd 1848/* Print out the details of the current architecture. */
4b9b3959 1849
104c1213 1850void
be7811ad 1851gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1852{
b78960be 1853 const char *gdb_nm_file = "<not-defined>";
05c547f6 1854
b78960be
AC
1855#if defined (GDB_NM_FILE)
1856 gdb_nm_file = GDB_NM_FILE;
1857#endif
1858 fprintf_unfiltered (file,
1859 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1860 gdb_nm_file);
104c1213 1861EOF
97030eea 1862function_list | sort -t: -k 3 | while do_read
104c1213 1863do
1e9f55d0
AC
1864 # First the predicate
1865 if class_is_predicate_p
1866 then
7996bcec 1867 printf " fprintf_unfiltered (file,\n"
48f7351b 1868 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1869 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1870 fi
48f7351b 1871 # Print the corresponding value.
283354d8 1872 if class_is_function_p
4b9b3959 1873 then
7996bcec 1874 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1875 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1876 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1877 else
48f7351b 1878 # It is a variable
2f9b146e
AC
1879 case "${print}:${returntype}" in
1880 :CORE_ADDR )
0b1553bc
UW
1881 fmt="%s"
1882 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1883 ;;
2f9b146e 1884 :* )
48f7351b 1885 fmt="%s"
623d3eb1 1886 print="plongest (gdbarch->${function})"
48f7351b
AC
1887 ;;
1888 * )
2f9b146e 1889 fmt="%s"
48f7351b
AC
1890 ;;
1891 esac
3d9a5942 1892 printf " fprintf_unfiltered (file,\n"
48f7351b 1893 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1894 printf " ${print});\n"
2ada493a 1895 fi
104c1213 1896done
381323f4 1897cat <<EOF
be7811ad
MD
1898 if (gdbarch->dump_tdep != NULL)
1899 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1900}
1901EOF
104c1213
JM
1902
1903
1904# GET/SET
3d9a5942 1905printf "\n"
104c1213
JM
1906cat <<EOF
1907struct gdbarch_tdep *
1908gdbarch_tdep (struct gdbarch *gdbarch)
1909{
1910 if (gdbarch_debug >= 2)
3d9a5942 1911 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1912 return gdbarch->tdep;
1913}
1914EOF
3d9a5942 1915printf "\n"
34620563 1916function_list | while do_read
104c1213 1917do
2ada493a
AC
1918 if class_is_predicate_p
1919 then
3d9a5942
AC
1920 printf "\n"
1921 printf "int\n"
1922 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1923 printf "{\n"
8de9bdc4 1924 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1925 printf " return ${predicate};\n"
3d9a5942 1926 printf "}\n"
2ada493a
AC
1927 fi
1928 if class_is_function_p
1929 then
3d9a5942
AC
1930 printf "\n"
1931 printf "${returntype}\n"
72e74a21 1932 if [ "x${formal}" = "xvoid" ]
104c1213 1933 then
3d9a5942 1934 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1935 else
3d9a5942 1936 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1937 fi
3d9a5942 1938 printf "{\n"
8de9bdc4 1939 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1940 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1941 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1942 then
1943 # Allow a call to a function with a predicate.
956ac328 1944 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1945 fi
3d9a5942
AC
1946 printf " if (gdbarch_debug >= 2)\n"
1947 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1948 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1949 then
1950 if class_is_multiarch_p
1951 then
1952 params="gdbarch"
1953 else
1954 params=""
1955 fi
1956 else
1957 if class_is_multiarch_p
1958 then
1959 params="gdbarch, ${actual}"
1960 else
1961 params="${actual}"
1962 fi
1963 fi
72e74a21 1964 if [ "x${returntype}" = "xvoid" ]
104c1213 1965 then
4a5c6a1d 1966 printf " gdbarch->${function} (${params});\n"
104c1213 1967 else
4a5c6a1d 1968 printf " return gdbarch->${function} (${params});\n"
104c1213 1969 fi
3d9a5942
AC
1970 printf "}\n"
1971 printf "\n"
1972 printf "void\n"
1973 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1974 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1975 printf "{\n"
1976 printf " gdbarch->${function} = ${function};\n"
1977 printf "}\n"
2ada493a
AC
1978 elif class_is_variable_p
1979 then
3d9a5942
AC
1980 printf "\n"
1981 printf "${returntype}\n"
1982 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1983 printf "{\n"
8de9bdc4 1984 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1985 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1986 then
3d9a5942 1987 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1988 elif [ -n "${invalid_p}" ]
104c1213 1989 then
956ac328
AC
1990 printf " /* Check variable is valid. */\n"
1991 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1992 elif [ -n "${predefault}" ]
104c1213 1993 then
956ac328
AC
1994 printf " /* Check variable changed from pre-default. */\n"
1995 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1996 fi
3d9a5942
AC
1997 printf " if (gdbarch_debug >= 2)\n"
1998 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1999 printf " return gdbarch->${function};\n"
2000 printf "}\n"
2001 printf "\n"
2002 printf "void\n"
2003 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2004 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2005 printf "{\n"
2006 printf " gdbarch->${function} = ${function};\n"
2007 printf "}\n"
2ada493a
AC
2008 elif class_is_info_p
2009 then
3d9a5942
AC
2010 printf "\n"
2011 printf "${returntype}\n"
2012 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2013 printf "{\n"
8de9bdc4 2014 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2015 printf " if (gdbarch_debug >= 2)\n"
2016 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2017 printf " return gdbarch->${function};\n"
2018 printf "}\n"
2ada493a 2019 fi
104c1213
JM
2020done
2021
2022# All the trailing guff
2023cat <<EOF
2024
2025
f44c642f 2026/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2027 modules. */
104c1213
JM
2028
2029struct gdbarch_data
2030{
95160752 2031 unsigned index;
76860b5f 2032 int init_p;
030f20e1
AC
2033 gdbarch_data_pre_init_ftype *pre_init;
2034 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2035};
2036
2037struct gdbarch_data_registration
2038{
104c1213
JM
2039 struct gdbarch_data *data;
2040 struct gdbarch_data_registration *next;
2041};
2042
f44c642f 2043struct gdbarch_data_registry
104c1213 2044{
95160752 2045 unsigned nr;
104c1213
JM
2046 struct gdbarch_data_registration *registrations;
2047};
2048
f44c642f 2049struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2050{
2051 0, NULL,
2052};
2053
030f20e1
AC
2054static struct gdbarch_data *
2055gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2056 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2057{
2058 struct gdbarch_data_registration **curr;
05c547f6
MS
2059
2060 /* Append the new registration. */
f44c642f 2061 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2062 (*curr) != NULL;
2063 curr = &(*curr)->next);
70ba0933 2064 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2065 (*curr)->next = NULL;
70ba0933 2066 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2067 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2068 (*curr)->data->pre_init = pre_init;
2069 (*curr)->data->post_init = post_init;
76860b5f 2070 (*curr)->data->init_p = 1;
104c1213
JM
2071 return (*curr)->data;
2072}
2073
030f20e1
AC
2074struct gdbarch_data *
2075gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2076{
2077 return gdbarch_data_register (pre_init, NULL);
2078}
2079
2080struct gdbarch_data *
2081gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2082{
2083 return gdbarch_data_register (NULL, post_init);
2084}
104c1213 2085
0963b4bd 2086/* Create/delete the gdbarch data vector. */
95160752
AC
2087
2088static void
b3cc3077 2089alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2090{
b3cc3077
JB
2091 gdb_assert (gdbarch->data == NULL);
2092 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2093 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2094}
3c875b6f 2095
76860b5f 2096/* Initialize the current value of the specified per-architecture
0963b4bd 2097 data-pointer. */
b3cc3077 2098
95160752 2099void
030f20e1
AC
2100deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2101 struct gdbarch_data *data,
2102 void *pointer)
95160752
AC
2103{
2104 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2105 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2106 gdb_assert (data->pre_init == NULL);
95160752
AC
2107 gdbarch->data[data->index] = pointer;
2108}
2109
104c1213 2110/* Return the current value of the specified per-architecture
0963b4bd 2111 data-pointer. */
104c1213
JM
2112
2113void *
451fbdda 2114gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2115{
451fbdda 2116 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2117 if (gdbarch->data[data->index] == NULL)
76860b5f 2118 {
030f20e1
AC
2119 /* The data-pointer isn't initialized, call init() to get a
2120 value. */
2121 if (data->pre_init != NULL)
2122 /* Mid architecture creation: pass just the obstack, and not
2123 the entire architecture, as that way it isn't possible for
2124 pre-init code to refer to undefined architecture
2125 fields. */
2126 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2127 else if (gdbarch->initialized_p
2128 && data->post_init != NULL)
2129 /* Post architecture creation: pass the entire architecture
2130 (as all fields are valid), but be careful to also detect
2131 recursive references. */
2132 {
2133 gdb_assert (data->init_p);
2134 data->init_p = 0;
2135 gdbarch->data[data->index] = data->post_init (gdbarch);
2136 data->init_p = 1;
2137 }
2138 else
2139 /* The architecture initialization hasn't completed - punt -
2140 hope that the caller knows what they are doing. Once
2141 deprecated_set_gdbarch_data has been initialized, this can be
2142 changed to an internal error. */
2143 return NULL;
76860b5f
AC
2144 gdb_assert (gdbarch->data[data->index] != NULL);
2145 }
451fbdda 2146 return gdbarch->data[data->index];
104c1213
JM
2147}
2148
2149
0963b4bd 2150/* Keep a registry of the architectures known by GDB. */
104c1213 2151
4b9b3959 2152struct gdbarch_registration
104c1213
JM
2153{
2154 enum bfd_architecture bfd_architecture;
2155 gdbarch_init_ftype *init;
4b9b3959 2156 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2157 struct gdbarch_list *arches;
4b9b3959 2158 struct gdbarch_registration *next;
104c1213
JM
2159};
2160
f44c642f 2161static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2162
b4a20239
AC
2163static void
2164append_name (const char ***buf, int *nr, const char *name)
2165{
2166 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2167 (*buf)[*nr] = name;
2168 *nr += 1;
2169}
2170
2171const char **
2172gdbarch_printable_names (void)
2173{
7996bcec 2174 /* Accumulate a list of names based on the registed list of
0963b4bd 2175 architectures. */
7996bcec
AC
2176 int nr_arches = 0;
2177 const char **arches = NULL;
2178 struct gdbarch_registration *rego;
05c547f6 2179
7996bcec
AC
2180 for (rego = gdbarch_registry;
2181 rego != NULL;
2182 rego = rego->next)
b4a20239 2183 {
7996bcec
AC
2184 const struct bfd_arch_info *ap;
2185 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2186 if (ap == NULL)
2187 internal_error (__FILE__, __LINE__,
85c07804 2188 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2189 do
2190 {
2191 append_name (&arches, &nr_arches, ap->printable_name);
2192 ap = ap->next;
2193 }
2194 while (ap != NULL);
b4a20239 2195 }
7996bcec
AC
2196 append_name (&arches, &nr_arches, NULL);
2197 return arches;
b4a20239
AC
2198}
2199
2200
104c1213 2201void
4b9b3959
AC
2202gdbarch_register (enum bfd_architecture bfd_architecture,
2203 gdbarch_init_ftype *init,
2204 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2205{
4b9b3959 2206 struct gdbarch_registration **curr;
104c1213 2207 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2208
ec3d358c 2209 /* Check that BFD recognizes this architecture */
104c1213
JM
2210 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2211 if (bfd_arch_info == NULL)
2212 {
8e65ff28 2213 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2214 _("gdbarch: Attempt to register "
2215 "unknown architecture (%d)"),
8e65ff28 2216 bfd_architecture);
104c1213 2217 }
0963b4bd 2218 /* Check that we haven't seen this architecture before. */
f44c642f 2219 for (curr = &gdbarch_registry;
104c1213
JM
2220 (*curr) != NULL;
2221 curr = &(*curr)->next)
2222 {
2223 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2224 internal_error (__FILE__, __LINE__,
64b9b334 2225 _("gdbarch: Duplicate registration "
0963b4bd 2226 "of architecture (%s)"),
8e65ff28 2227 bfd_arch_info->printable_name);
104c1213
JM
2228 }
2229 /* log it */
2230 if (gdbarch_debug)
30737ed9 2231 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2232 bfd_arch_info->printable_name,
30737ed9 2233 host_address_to_string (init));
104c1213 2234 /* Append it */
70ba0933 2235 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2236 (*curr)->bfd_architecture = bfd_architecture;
2237 (*curr)->init = init;
4b9b3959 2238 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2239 (*curr)->arches = NULL;
2240 (*curr)->next = NULL;
4b9b3959
AC
2241}
2242
2243void
2244register_gdbarch_init (enum bfd_architecture bfd_architecture,
2245 gdbarch_init_ftype *init)
2246{
2247 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2248}
104c1213
JM
2249
2250
424163ea 2251/* Look for an architecture using gdbarch_info. */
104c1213
JM
2252
2253struct gdbarch_list *
2254gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2255 const struct gdbarch_info *info)
2256{
2257 for (; arches != NULL; arches = arches->next)
2258 {
2259 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2260 continue;
2261 if (info->byte_order != arches->gdbarch->byte_order)
2262 continue;
4be87837
DJ
2263 if (info->osabi != arches->gdbarch->osabi)
2264 continue;
424163ea
DJ
2265 if (info->target_desc != arches->gdbarch->target_desc)
2266 continue;
104c1213
JM
2267 return arches;
2268 }
2269 return NULL;
2270}
2271
2272
ebdba546 2273/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2274 architecture if needed. Return that new architecture. */
104c1213 2275
59837fe0
UW
2276struct gdbarch *
2277gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2278{
2279 struct gdbarch *new_gdbarch;
4b9b3959 2280 struct gdbarch_registration *rego;
104c1213 2281
b732d07d 2282 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2283 sources: "set ..."; INFOabfd supplied; and the global
2284 defaults. */
2285 gdbarch_info_fill (&info);
4be87837 2286
0963b4bd 2287 /* Must have found some sort of architecture. */
b732d07d 2288 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2289
2290 if (gdbarch_debug)
2291 {
2292 fprintf_unfiltered (gdb_stdlog,
59837fe0 2293 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2294 (info.bfd_arch_info != NULL
2295 ? info.bfd_arch_info->printable_name
2296 : "(null)"));
2297 fprintf_unfiltered (gdb_stdlog,
59837fe0 2298 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2299 info.byte_order,
d7449b42 2300 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2301 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2302 : "default"));
4be87837 2303 fprintf_unfiltered (gdb_stdlog,
59837fe0 2304 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2305 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2306 fprintf_unfiltered (gdb_stdlog,
59837fe0 2307 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2308 host_address_to_string (info.abfd));
104c1213 2309 fprintf_unfiltered (gdb_stdlog,
59837fe0 2310 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2311 host_address_to_string (info.tdep_info));
104c1213
JM
2312 }
2313
ebdba546 2314 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2315 for (rego = gdbarch_registry;
2316 rego != NULL;
2317 rego = rego->next)
2318 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2319 break;
2320 if (rego == NULL)
2321 {
2322 if (gdbarch_debug)
59837fe0 2323 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2324 "No matching architecture\n");
b732d07d
AC
2325 return 0;
2326 }
2327
ebdba546 2328 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2329 new_gdbarch = rego->init (info, rego->arches);
2330
ebdba546
AC
2331 /* Did the tdep code like it? No. Reject the change and revert to
2332 the old architecture. */
104c1213
JM
2333 if (new_gdbarch == NULL)
2334 {
2335 if (gdbarch_debug)
59837fe0 2336 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2337 "Target rejected architecture\n");
2338 return NULL;
104c1213
JM
2339 }
2340
ebdba546
AC
2341 /* Is this a pre-existing architecture (as determined by already
2342 being initialized)? Move it to the front of the architecture
2343 list (keeping the list sorted Most Recently Used). */
2344 if (new_gdbarch->initialized_p)
104c1213 2345 {
ebdba546
AC
2346 struct gdbarch_list **list;
2347 struct gdbarch_list *this;
104c1213 2348 if (gdbarch_debug)
59837fe0 2349 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2350 "Previous architecture %s (%s) selected\n",
2351 host_address_to_string (new_gdbarch),
104c1213 2352 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2353 /* Find the existing arch in the list. */
2354 for (list = &rego->arches;
2355 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2356 list = &(*list)->next);
2357 /* It had better be in the list of architectures. */
2358 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2359 /* Unlink THIS. */
2360 this = (*list);
2361 (*list) = this->next;
2362 /* Insert THIS at the front. */
2363 this->next = rego->arches;
2364 rego->arches = this;
2365 /* Return it. */
2366 return new_gdbarch;
104c1213
JM
2367 }
2368
ebdba546
AC
2369 /* It's a new architecture. */
2370 if (gdbarch_debug)
59837fe0 2371 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2372 "New architecture %s (%s) selected\n",
2373 host_address_to_string (new_gdbarch),
ebdba546
AC
2374 new_gdbarch->bfd_arch_info->printable_name);
2375
2376 /* Insert the new architecture into the front of the architecture
2377 list (keep the list sorted Most Recently Used). */
0f79675b 2378 {
70ba0933 2379 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2380 this->next = rego->arches;
2381 this->gdbarch = new_gdbarch;
2382 rego->arches = this;
2383 }
104c1213 2384
4b9b3959
AC
2385 /* Check that the newly installed architecture is valid. Plug in
2386 any post init values. */
2387 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2388 verify_gdbarch (new_gdbarch);
ebdba546 2389 new_gdbarch->initialized_p = 1;
104c1213 2390
4b9b3959 2391 if (gdbarch_debug)
ebdba546
AC
2392 gdbarch_dump (new_gdbarch, gdb_stdlog);
2393
2394 return new_gdbarch;
2395}
2396
e487cc15 2397/* Make the specified architecture current. */
ebdba546
AC
2398
2399void
aff68abb 2400set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2401{
2402 gdb_assert (new_gdbarch != NULL);
ebdba546 2403 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2404 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2405 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2406 registers_changed ();
ebdba546 2407}
104c1213 2408
f5656ead 2409/* Return the current inferior's arch. */
6ecd4729
PA
2410
2411struct gdbarch *
f5656ead 2412target_gdbarch (void)
6ecd4729
PA
2413{
2414 return current_inferior ()->gdbarch;
2415}
2416
104c1213 2417extern void _initialize_gdbarch (void);
b4a20239 2418
104c1213 2419void
34620563 2420_initialize_gdbarch (void)
104c1213 2421{
ccce17b0 2422 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2423Set architecture debugging."), _("\\
2424Show architecture debugging."), _("\\
2425When non-zero, architecture debugging is enabled."),
2426 NULL,
920d2a44 2427 show_gdbarch_debug,
85c07804 2428 &setdebuglist, &showdebuglist);
104c1213
JM
2429}
2430EOF
2431
2432# close things off
2433exec 1>&2
2434#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2435compare_new gdbarch.c
This page took 1.288534 seconds and 4 git commands to generate.