Implement Ada min and max operations
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
3666a048 5# Copyright (C) 1998-2021 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
dda83cd7 192 # M -> multi-arch function + predicate
4a5c6a1d 193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
2a67f09d 328# The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
f9e9243a
UW
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
2a67f09d
FW
334v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
ea480a30
SM
336v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 344
53375380
PA
345# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346# starting with C++11.
ea480a30 347v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 348# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 349v;int;wchar_signed;;;1;-1;1
53375380 350
9b790ce7
UW
351# Returns the floating-point format to be used for values of length LENGTH.
352# NAME, if non-NULL, is the type name, which may be used to distinguish
353# different target formats of the same length.
ea480a30 354m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 355
52204a0b
DT
356# For most targets, a pointer on the target and its representation as an
357# address in GDB have the same size and "look the same". For such a
17a912b6 358# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
359# / addr_bit will be set from it.
360#
17a912b6 361# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
362# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363# gdbarch_address_to_pointer as well.
52204a0b
DT
364#
365# ptr_bit is the size of a pointer on the target
ea480a30 366v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 367# addr_bit is the size of a target address as represented in gdb
ea480a30 368v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 369#
8da614df
CV
370# dwarf2_addr_size is the target address size as used in the Dwarf debug
371# info. For .debug_frame FDEs, this is supposed to be the target address
372# size from the associated CU header, and which is equivalent to the
373# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374# Unfortunately there is no good way to determine this value. Therefore
375# dwarf2_addr_size simply defaults to the target pointer size.
376#
377# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378# defined using the target's pointer size so far.
379#
380# Note that dwarf2_addr_size only needs to be redefined by a target if the
381# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382# and if Dwarf versions < 4 need to be supported.
ea480a30 383v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 384#
4e409299 385# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 386v;int;char_signed;;;1;-1;1
4e409299 387#
c113ed0c 388F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 389F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
390# Function for getting target's idea of a frame pointer. FIXME: GDB's
391# whole scheme for dealing with "frames" and "frame pointers" needs a
392# serious shakedown.
ea480a30 393m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 394#
849d0ba8 395M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
396# Read a register into a new struct value. If the register is wholly
397# or partly unavailable, this should call mark_value_bytes_unavailable
398# as appropriate. If this is defined, then pseudo_register_read will
399# never be called.
849d0ba8 400M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 401M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 402#
ea480a30 403v;int;num_regs;;;0;-1
0aba1244
EZ
404# This macro gives the number of pseudo-registers that live in the
405# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
406# These pseudo-registers may be aliases for other registers,
407# combinations of other registers, or they may be computed by GDB.
ea480a30 408v;int;num_pseudo_regs;;;0;0;;0
c2169756 409
175ff332
HZ
410# Assemble agent expression bytecode to collect pseudo-register REG.
411# Return -1 if something goes wrong, 0 otherwise.
ea480a30 412M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
413
414# Assemble agent expression bytecode to push the value of pseudo-register
415# REG on the interpreter stack.
416# Return -1 if something goes wrong, 0 otherwise.
ea480a30 417M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 418
272bb05c
JB
419# Some architectures can display additional information for specific
420# signals.
421# UIOUT is the output stream where the handler will place information.
422M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
c2169756
AC
424# GDB's standard (or well known) register numbers. These can map onto
425# a real register or a pseudo (computed) register or not be defined at
1200cd6e 426# all (-1).
3e8c568d 427# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
428v;int;sp_regnum;;;-1;-1;;0
429v;int;pc_regnum;;;-1;-1;;0
430v;int;ps_regnum;;;-1;-1;;0
431v;int;fp0_regnum;;;0;-1;;0
88c72b7d 432# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 433m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 434# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 435m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 436# Convert from an sdb register number to an internal gdb register number.
ea480a30 437m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 438# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 439# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
440m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441m;const char *;register_name;int regnr;regnr;;0
9c04cab7 442
7b9ee6a8
DJ
443# Return the type of a register specified by the architecture. Only
444# the register cache should call this function directly; others should
445# use "register_type".
ea480a30 446M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 447
8bcb5208
AB
448# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449# a dummy frame. A dummy frame is created before an inferior call,
450# the frame_id returned here must match the frame_id that was built
451# for the inferior call. Usually this means the returned frame_id's
452# stack address should match the address returned by
453# gdbarch_push_dummy_call, and the returned frame_id's code address
454# should match the address at which the breakpoint was set in the dummy
455# frame.
456m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 457# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 458# deprecated_fp_regnum.
ea480a30 459v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 460
cf84fa6b 461M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
462v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 464
7eb89530 465# Return true if the code of FRAME is writable.
ea480a30 466m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 467
ea480a30
SM
468m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
471# MAP a GDB RAW register number onto a simulator register number. See
472# also include/...-sim.h.
ea480a30
SM
473m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
476
477# Determine the address where a longjmp will land and save this address
478# in PC. Return nonzero on success.
479#
480# FRAME corresponds to the longjmp frame.
ea480a30 481F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 482
104c1213 483#
ea480a30 484v;int;believe_pcc_promotion;;;;;;;
104c1213 485#
ea480a30
SM
486m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 489# Construct a value representing the contents of register REGNUM in
2ed3c037 490# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
491# allocate and return a struct value with all value attributes
492# (but not the value contents) filled in.
ea480a30 493m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 494#
ea480a30
SM
495m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 498
6a3a010b
MR
499# Return the return-value convention that will be used by FUNCTION
500# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
501# case the return convention is computed based only on VALTYPE.
502#
503# If READBUF is not NULL, extract the return value and save it in this buffer.
504#
505# If WRITEBUF is not NULL, it contains a return value which will be
506# stored into the appropriate register. This can be used when we want
507# to force the value returned by a function (see the "return" command
508# for instance).
ea480a30 509M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 510
18648a37
YQ
511# Return true if the return value of function is stored in the first hidden
512# parameter. In theory, this feature should be language-dependent, specified
513# by language and its ABI, such as C++. Unfortunately, compiler may
514# implement it to a target-dependent feature. So that we need such hook here
515# to be aware of this in GDB.
ea480a30 516m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 517
ea480a30
SM
518m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
520# On some platforms, a single function may provide multiple entry points,
521# e.g. one that is used for function-pointer calls and a different one
522# that is used for direct function calls.
523# In order to ensure that breakpoints set on the function will trigger
524# no matter via which entry point the function is entered, a platform
525# may provide the skip_entrypoint callback. It is called with IP set
526# to the main entry point of a function (as determined by the symbol table),
527# and should return the address of the innermost entry point, where the
528# actual breakpoint needs to be set. Note that skip_entrypoint is used
529# by GDB common code even when debugging optimized code, where skip_prologue
530# is not used.
ea480a30 531M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 532
ea480a30
SM
533f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
535
536# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 537m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
538
539# Return the software breakpoint from KIND. KIND can have target
540# specific meaning like the Z0 kind parameter.
541# SIZE is set to the software breakpoint's length in memory.
ea480a30 542m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 543
833b7ab5
YQ
544# Return the breakpoint kind for this target based on the current
545# processor state (e.g. the current instruction mode on ARM) and the
546# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 547m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 548
ea480a30
SM
549M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
553
554# A function can be addressed by either it's "pointer" (possibly a
555# descriptor address) or "entry point" (first executable instruction).
556# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 557# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
558# a simplified subset of that functionality - the function's address
559# corresponds to the "function pointer" and the function's start
560# corresponds to the "function entry point" - and hence is redundant.
561
ea480a30 562v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 563
123dc839
DJ
564# Return the remote protocol register number associated with this
565# register. Normally the identity mapping.
ea480a30 566m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 567
b2756930 568# Fetch the target specific address used to represent a load module.
ea480a30 569F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
570
571# Return the thread-local address at OFFSET in the thread-local
572# storage for the thread PTID and the shared library or executable
573# file given by LM_ADDR. If that block of thread-local storage hasn't
574# been allocated yet, this function may throw an error. LM_ADDR may
575# be zero for statically linked multithreaded inferiors.
576
577M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 578#
ea480a30 579v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
580m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
582# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583# frame-base. Enable frame-base before frame-unwind.
ea480a30 584F;int;frame_num_args;struct frame_info *frame;frame
104c1213 585#
ea480a30
SM
586M;CORE_ADDR;frame_align;CORE_ADDR address;address
587m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588v;int;frame_red_zone_size
f0d4cc9e 589#
ea480a30 590m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
591# On some machines there are bits in addresses which are not really
592# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 593# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
594# we get a "real" address such as one would find in a symbol table.
595# This is used only for addresses of instructions, and even then I'm
596# not sure it's used in all contexts. It exists to deal with there
597# being a few stray bits in the PC which would mislead us, not as some
598# sort of generic thing to handle alignment or segmentation (it's
599# possible it should be in TARGET_READ_PC instead).
ea480a30 600m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 601
a738ea1d
YQ
602# On some machines, not all bits of an address word are significant.
603# For example, on AArch64, the top bits of an address known as the "tag"
604# are ignored by the kernel, the hardware, etc. and can be regarded as
605# additional data associated with the address.
5969f0db 606v;int;significant_addr_bit;;;;;;0
a738ea1d 607
e6590a1b
UW
608# FIXME/cagney/2001-01-18: This should be split in two. A target method that
609# indicates if the target needs software single step. An ISA method to
610# implement it.
611#
e6590a1b
UW
612# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
613# target can single step. If not, then implement single step using breakpoints.
64c4637f 614#
93f9a11f
YQ
615# Return a vector of addresses on which the software single step
616# breakpoints should be inserted. NULL means software single step is
617# not used.
618# Multiple breakpoints may be inserted for some instructions such as
619# conditional branch. However, each implementation must always evaluate
620# the condition and only put the breakpoint at the branch destination if
621# the condition is true, so that we ensure forward progress when stepping
622# past a conditional branch to self.
a0ff9e1a 623F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 624
3352ef37
AC
625# Return non-zero if the processor is executing a delay slot and a
626# further single-step is needed before the instruction finishes.
ea480a30 627M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 628# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 629# disassembler. Perhaps objdump can handle it?
39503f82 630f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 631f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
632
633
cfd8ab24 634# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
635# evaluates non-zero, this is the address where the debugger will place
636# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 637m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 638# Some systems also have trampoline code for returning from shared libs.
ea480a30 639m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 640
1d509aa6
MM
641# Return true if PC lies inside an indirect branch thunk.
642m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
643
c12260ac
CV
644# A target might have problems with watchpoints as soon as the stack
645# frame of the current function has been destroyed. This mostly happens
c9cf6e20 646# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
647# is defined to return a non-zero value if either the given addr is one
648# instruction after the stack destroying instruction up to the trailing
649# return instruction or if we can figure out that the stack frame has
650# already been invalidated regardless of the value of addr. Targets
651# which don't suffer from that problem could just let this functionality
652# untouched.
ea480a30 653m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
654# Process an ELF symbol in the minimal symbol table in a backend-specific
655# way. Normally this hook is supposed to do nothing, however if required,
656# then this hook can be used to apply tranformations to symbols that are
657# considered special in some way. For example the MIPS backend uses it
658# to interpret \`st_other' information to mark compressed code symbols so
659# that they can be treated in the appropriate manner in the processing of
660# the main symbol table and DWARF-2 records.
ea480a30
SM
661F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
662f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
663# Process a symbol in the main symbol table in a backend-specific way.
664# Normally this hook is supposed to do nothing, however if required,
665# then this hook can be used to apply tranformations to symbols that
666# are considered special in some way. This is currently used by the
667# MIPS backend to make sure compressed code symbols have the ISA bit
668# set. This in turn is needed for symbol values seen in GDB to match
669# the values used at the runtime by the program itself, for function
670# and label references.
ea480a30 671f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
672# Adjust the address retrieved from a DWARF-2 record other than a line
673# entry in a backend-specific way. Normally this hook is supposed to
674# return the address passed unchanged, however if that is incorrect for
675# any reason, then this hook can be used to fix the address up in the
676# required manner. This is currently used by the MIPS backend to make
677# sure addresses in FDE, range records, etc. referring to compressed
678# code have the ISA bit set, matching line information and the symbol
679# table.
ea480a30 680f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
681# Adjust the address updated by a line entry in a backend-specific way.
682# Normally this hook is supposed to return the address passed unchanged,
683# however in the case of inconsistencies in these records, this hook can
684# be used to fix them up in the required manner. This is currently used
685# by the MIPS backend to make sure all line addresses in compressed code
686# are presented with the ISA bit set, which is not always the case. This
687# in turn ensures breakpoint addresses are correctly matched against the
688# stop PC.
ea480a30
SM
689f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
690v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
691# See comment in target.h about continuable, steppable and
692# non-steppable watchpoints.
ea480a30 693v;int;have_nonsteppable_watchpoint;;;0;0;;0
314ad88d
PA
694F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
695M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
b41c5a85
JW
696# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
697# FS are passed from the generic execute_cfa_program function.
ea480a30 698m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
699
700# Return the appropriate type_flags for the supplied address class.
314ad88d
PA
701# This function should return true if the address class was recognized and
702# type_flags was set, false otherwise.
703M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
b59ff9d5 704# Is a register in a group
ea480a30 705m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 706# Fetch the pointer to the ith function argument.
ea480a30 707F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 708
5aa82d05
AA
709# Iterate over all supported register notes in a core file. For each
710# supported register note section, the iterator must call CB and pass
711# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
712# the supported register note sections based on the current register
713# values. Otherwise it should enumerate all supported register note
714# sections.
ea480a30 715M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 716
6432734d 717# Create core file notes
c21f37a8 718M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 719
35c2fab7 720# Find core file memory regions
ea480a30 721M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 722
de584861 723# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
724# core file into buffer READBUF with length LEN. Return the number of bytes read
725# (zero indicates failure).
726# failed, otherwise, return the red length of READBUF.
ea480a30 727M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 728
356a5233
JB
729# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
730# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 731# Return the number of bytes read (zero indicates failure).
ea480a30 732M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 733
c0edd9ed 734# How the core target converts a PTID from a core file to a string.
a068643d 735M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 736
4dfc5dbc 737# How the core target extracts the name of a thread from a core file.
ea480a30 738M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 739
382b69bb
JB
740# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
741# from core file into buffer READBUF with length LEN. Return the number
742# of bytes read (zero indicates EOF, a negative value indicates failure).
743M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
744
a78c2d62 745# BFD target to use when generating a core file.
ea480a30 746V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 747
0d5de010
DJ
748# If the elements of C++ vtables are in-place function descriptors rather
749# than normal function pointers (which may point to code or a descriptor),
750# set this to one.
ea480a30 751v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
752
753# Set if the least significant bit of the delta is used instead of the least
754# significant bit of the pfn for pointers to virtual member functions.
ea480a30 755v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
756
757# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 758f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 759
1668ae25 760# The maximum length of an instruction on this architecture in bytes.
ea480a30 761V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
762
763# Copy the instruction at FROM to TO, and make any adjustments
764# necessary to single-step it at that address.
765#
766# REGS holds the state the thread's registers will have before
767# executing the copied instruction; the PC in REGS will refer to FROM,
768# not the copy at TO. The caller should update it to point at TO later.
769#
770# Return a pointer to data of the architecture's choice to be passed
19b187a9 771# to gdbarch_displaced_step_fixup.
237fc4c9
PA
772#
773# For a general explanation of displaced stepping and how GDB uses it,
774# see the comments in infrun.c.
775#
776# The TO area is only guaranteed to have space for
777# gdbarch_max_insn_length (arch) bytes, so this function must not
778# write more bytes than that to that area.
779#
780# If you do not provide this function, GDB assumes that the
781# architecture does not support displaced stepping.
782#
7f03bd92
PA
783# If the instruction cannot execute out of line, return NULL. The
784# core falls back to stepping past the instruction in-line instead in
785# that case.
1152d984 786M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 787
58103c33
SM
788# Return true if GDB should use hardware single-stepping to execute a displaced
789# step instruction. If false, GDB will simply restart execution at the
790# displaced instruction location, and it is up to the target to ensure GDB will
791# receive control again (e.g. by placing a software breakpoint instruction into
792# the displaced instruction buffer).
793#
794# The default implementation returns false on all targets that provide a
795# gdbarch_software_single_step routine, and true otherwise.
40a53766 796m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
99e40580 797
237fc4c9
PA
798# Fix up the state resulting from successfully single-stepping a
799# displaced instruction, to give the result we would have gotten from
800# stepping the instruction in its original location.
801#
802# REGS is the register state resulting from single-stepping the
803# displaced instruction.
804#
805# CLOSURE is the result from the matching call to
806# gdbarch_displaced_step_copy_insn.
807#
808# If you provide gdbarch_displaced_step_copy_insn.but not this
809# function, then GDB assumes that no fixup is needed after
810# single-stepping the instruction.
811#
812# For a general explanation of displaced stepping and how GDB uses it,
813# see the comments in infrun.c.
1152d984 814M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 815
187b041e 816# Prepare THREAD for it to displaced step the instruction at its current PC.
237fc4c9 817#
187b041e
SM
818# Throw an exception if any unexpected error happens.
819M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread, CORE_ADDR &displaced_pc;thread, displaced_pc
820
821# Clean up after a displaced step of THREAD.
822m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
823
824# Return the closure associated to the displaced step buffer that is at ADDR.
825F;const displaced_step_copy_insn_closure *;displaced_step_copy_insn_closure_by_addr;inferior *inf, CORE_ADDR addr;inf, addr
826
827# PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
828# contents of all displaced step buffers in the child's address space.
829f;void;displaced_step_restore_all_in_ptid;inferior *parent_inf, ptid_t child_ptid;parent_inf, child_ptid
237fc4c9 830
dde08ee1
PA
831# Relocate an instruction to execute at a different address. OLDLOC
832# is the address in the inferior memory where the instruction to
833# relocate is currently at. On input, TO points to the destination
834# where we want the instruction to be copied (and possibly adjusted)
835# to. On output, it points to one past the end of the resulting
836# instruction(s). The effect of executing the instruction at TO shall
837# be the same as if executing it at FROM. For example, call
838# instructions that implicitly push the return address on the stack
839# should be adjusted to return to the instruction after OLDLOC;
840# relative branches, and other PC-relative instructions need the
841# offset adjusted; etc.
ea480a30 842M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 843
1c772458 844# Refresh overlay mapped state for section OSECT.
ea480a30 845F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 846
ea480a30 847M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 848
203c3895 849# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 850v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 851
0508c3ec
HZ
852# Parse the instruction at ADDR storing in the record execution log
853# the registers REGCACHE and memory ranges that will be affected when
854# the instruction executes, along with their current values.
855# Return -1 if something goes wrong, 0 otherwise.
ea480a30 856M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 857
3846b520
HZ
858# Save process state after a signal.
859# Return -1 if something goes wrong, 0 otherwise.
ea480a30 860M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 861
22203bbf 862# Signal translation: translate inferior's signal (target's) number
86b49880
PA
863# into GDB's representation. The implementation of this method must
864# be host independent. IOW, don't rely on symbols of the NAT_FILE
865# header (the nm-*.h files), the host <signal.h> header, or similar
866# headers. This is mainly used when cross-debugging core files ---
867# "Live" targets hide the translation behind the target interface
1f8cf220 868# (target_wait, target_resume, etc.).
ea480a30 869M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 870
eb14d406
SDJ
871# Signal translation: translate the GDB's internal signal number into
872# the inferior's signal (target's) representation. The implementation
873# of this method must be host independent. IOW, don't rely on symbols
874# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
875# header, or similar headers.
876# Return the target signal number if found, or -1 if the GDB internal
877# signal number is invalid.
ea480a30 878M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 879
4aa995e1
PA
880# Extra signal info inspection.
881#
882# Return a type suitable to inspect extra signal information.
ea480a30 883M;struct type *;get_siginfo_type;void;
4aa995e1 884
60c5725c 885# Record architecture-specific information from the symbol table.
ea480a30 886M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 887
a96d9b2e
SDJ
888# Function for the 'catch syscall' feature.
889
890# Get architecture-specific system calls information from registers.
00431a78 891M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 892
458c8db8 893# The filename of the XML syscall for this architecture.
ea480a30 894v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
895
896# Information about system calls from this architecture
ea480a30 897v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 898
55aa24fb
SDJ
899# SystemTap related fields and functions.
900
05c0465e
SDJ
901# A NULL-terminated array of prefixes used to mark an integer constant
902# on the architecture's assembly.
55aa24fb
SDJ
903# For example, on x86 integer constants are written as:
904#
905# \$10 ;; integer constant 10
906#
907# in this case, this prefix would be the character \`\$\'.
ea480a30 908v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 909
05c0465e
SDJ
910# A NULL-terminated array of suffixes used to mark an integer constant
911# on the architecture's assembly.
ea480a30 912v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 913
05c0465e
SDJ
914# A NULL-terminated array of prefixes used to mark a register name on
915# the architecture's assembly.
55aa24fb
SDJ
916# For example, on x86 the register name is written as:
917#
918# \%eax ;; register eax
919#
920# in this case, this prefix would be the character \`\%\'.
ea480a30 921v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 922
05c0465e
SDJ
923# A NULL-terminated array of suffixes used to mark a register name on
924# the architecture's assembly.
ea480a30 925v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 926
05c0465e
SDJ
927# A NULL-terminated array of prefixes used to mark a register
928# indirection on the architecture's assembly.
55aa24fb
SDJ
929# For example, on x86 the register indirection is written as:
930#
931# \(\%eax\) ;; indirecting eax
932#
933# in this case, this prefix would be the charater \`\(\'.
934#
935# Please note that we use the indirection prefix also for register
936# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 937v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 938
05c0465e
SDJ
939# A NULL-terminated array of suffixes used to mark a register
940# indirection on the architecture's assembly.
55aa24fb
SDJ
941# For example, on x86 the register indirection is written as:
942#
943# \(\%eax\) ;; indirecting eax
944#
945# in this case, this prefix would be the charater \`\)\'.
946#
947# Please note that we use the indirection suffix also for register
948# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 949v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 950
05c0465e 951# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
952#
953# For example, on PPC a register is represented by a number in the assembly
954# language (e.g., \`10\' is the 10th general-purpose register). However,
955# inside GDB this same register has an \`r\' appended to its name, so the 10th
956# register would be represented as \`r10\' internally.
ea480a30 957v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
958
959# Suffix used to name a register using GDB's nomenclature.
ea480a30 960v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
961
962# Check if S is a single operand.
963#
964# Single operands can be:
965# \- Literal integers, e.g. \`\$10\' on x86
966# \- Register access, e.g. \`\%eax\' on x86
967# \- Register indirection, e.g. \`\(\%eax\)\' on x86
968# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
969#
970# This function should check for these patterns on the string
971# and return 1 if some were found, or zero otherwise. Please try to match
972# as much info as you can from the string, i.e., if you have to match
973# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 974M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
975
976# Function used to handle a "special case" in the parser.
977#
978# A "special case" is considered to be an unknown token, i.e., a token
979# that the parser does not know how to parse. A good example of special
980# case would be ARM's register displacement syntax:
981#
982# [R0, #4] ;; displacing R0 by 4
983#
984# Since the parser assumes that a register displacement is of the form:
985#
986# <number> <indirection_prefix> <register_name> <indirection_suffix>
987#
988# it means that it will not be able to recognize and parse this odd syntax.
989# Therefore, we should add a special case function that will handle this token.
990#
991# This function should generate the proper expression form of the expression
992# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
993# and so on). It should also return 1 if the parsing was successful, or zero
994# if the token was not recognized as a special token (in this case, returning
995# zero means that the special parser is deferring the parsing to the generic
996# parser), and should advance the buffer pointer (p->arg).
ea480a30 997M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 998
7d7571f0
SDJ
999# Perform arch-dependent adjustments to a register name.
1000#
1001# In very specific situations, it may be necessary for the register
1002# name present in a SystemTap probe's argument to be handled in a
1003# special way. For example, on i386, GCC may over-optimize the
1004# register allocation and use smaller registers than necessary. In
1005# such cases, the client that is reading and evaluating the SystemTap
1006# probe (ourselves) will need to actually fetch values from the wider
1007# version of the register in question.
1008#
1009# To illustrate the example, consider the following probe argument
1010# (i386):
1011#
1012# 4@%ax
1013#
1014# This argument says that its value can be found at the %ax register,
1015# which is a 16-bit register. However, the argument's prefix says
1016# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1017# this case, GDB should actually fetch the probe's value from register
1018# %eax, not %ax. In this scenario, this function would actually
1019# replace the register name from %ax to %eax.
1020#
1021# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1022M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1023
8b367e17
JM
1024# DTrace related functions.
1025
1026# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1027# NARG must be >= 0.
37eedb39 1028M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1029
1030# True if the given ADDR does not contain the instruction sequence
1031# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1032M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1033
1034# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1035M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1036
1037# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1038M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1039
50c71eaf
PA
1040# True if the list of shared libraries is one and only for all
1041# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1042# This usually means that all processes, although may or may not share
1043# an address space, will see the same set of symbols at the same
1044# addresses.
ea480a30 1045v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1046
1047# On some targets, even though each inferior has its own private
1048# address space, the debug interface takes care of making breakpoints
1049# visible to all address spaces automatically. For such cases,
1050# this property should be set to true.
ea480a30 1051v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1052
1053# True if inferiors share an address space (e.g., uClinux).
ea480a30 1054m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1055
1056# True if a fast tracepoint can be set at an address.
281d762b 1057m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1058
5f034a78
MK
1059# Guess register state based on tracepoint location. Used for tracepoints
1060# where no registers have been collected, but there's only one location,
1061# allowing us to guess the PC value, and perhaps some other registers.
1062# On entry, regcache has all registers marked as unavailable.
ea480a30 1063m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1064
f870a310 1065# Return the "auto" target charset.
ea480a30 1066f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1067# Return the "auto" target wide charset.
ea480a30 1068f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1069
1070# If non-empty, this is a file extension that will be opened in place
1071# of the file extension reported by the shared library list.
1072#
1073# This is most useful for toolchains that use a post-linker tool,
1074# where the names of the files run on the target differ in extension
1075# compared to the names of the files GDB should load for debug info.
ea480a30 1076v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1077
1078# If true, the target OS has DOS-based file system semantics. That
1079# is, absolute paths include a drive name, and the backslash is
1080# considered a directory separator.
ea480a30 1081v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1082
1083# Generate bytecodes to collect the return address in a frame.
1084# Since the bytecodes run on the target, possibly with GDB not even
1085# connected, the full unwinding machinery is not available, and
1086# typically this function will issue bytecodes for one or more likely
1087# places that the return address may be found.
ea480a30 1088m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1089
3030c96e 1090# Implement the "info proc" command.
ea480a30 1091M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1092
451b7c33
TT
1093# Implement the "info proc" command for core files. Noe that there
1094# are two "info_proc"-like methods on gdbarch -- one for core files,
1095# one for live targets.
ea480a30 1096M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1097
19630284
JB
1098# Iterate over all objfiles in the order that makes the most sense
1099# for the architecture to make global symbol searches.
1100#
1101# CB is a callback function where OBJFILE is the objfile to be searched,
1102# and CB_DATA a pointer to user-defined data (the same data that is passed
1103# when calling this gdbarch method). The iteration stops if this function
1104# returns nonzero.
1105#
1106# CB_DATA is a pointer to some user-defined data to be passed to
1107# the callback.
1108#
1109# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1110# inspected when the symbol search was requested.
ea480a30 1111m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1112
7e35103a 1113# Ravenscar arch-dependent ops.
ea480a30 1114v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1115
1116# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1117m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1118
1119# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1120m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1121
1122# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1123m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1124
5133a315
LM
1125# Return true if there's a program/permanent breakpoint planted in
1126# memory at ADDRESS, return false otherwise.
1127m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1128
27a48a92
MK
1129# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1130# Return 0 if *READPTR is already at the end of the buffer.
1131# Return -1 if there is insufficient buffer for a whole entry.
1132# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1133M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1134
2faa3447
JB
1135# Print the description of a single auxv entry described by TYPE and VAL
1136# to FILE.
ea480a30 1137m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1138
3437254d
PA
1139# Find the address range of the current inferior's vsyscall/vDSO, and
1140# write it to *RANGE. If the vsyscall's length can't be determined, a
1141# range with zero length is returned. Returns true if the vsyscall is
1142# found, false otherwise.
ea480a30 1143m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1144
1145# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1146# PROT has GDB_MMAP_PROT_* bitmask format.
1147# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1148f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1149
7f361056
JK
1150# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1151# Print a warning if it is not possible.
ea480a30 1152f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1153
f208eee0
JK
1154# Return string (caller has to use xfree for it) with options for GCC
1155# to produce code for this target, typically "-m64", "-m32" or "-m31".
1156# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1157# they can override it.
1158m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1159
1160# Return a regular expression that matches names used by this
1161# architecture in GNU configury triplets. The result is statically
1162# allocated and must not be freed. The default implementation simply
1163# returns the BFD architecture name, which is correct in nearly every
1164# case.
ea480a30 1165m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1166
1167# Return the size in 8-bit bytes of an addressable memory unit on this
1168# architecture. This corresponds to the number of 8-bit bytes associated to
1169# each address in memory.
ea480a30 1170m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1171
65b48a81 1172# Functions for allowing a target to modify its disassembler options.
471b9d15 1173v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1174v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1175v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1176
5561fc30
AB
1177# Type alignment override method. Return the architecture specific
1178# alignment required for TYPE. If there is no special handling
1179# required for TYPE then return the value 0, GDB will then apply the
1180# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1181m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1182
aa7ca1bb
AH
1183# Return a string containing any flags for the given PC in the given FRAME.
1184f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1185
7e183d27 1186# Read core file mappings
70125a45 1187m;void;read_core_file_mappings;struct bfd *cbfd, gdb::function_view<void (ULONGEST count)> pre_loop_cb, gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
7e183d27 1188
104c1213 1189EOF
104c1213
JM
1190}
1191
0b8f9e4d
AC
1192#
1193# The .log file
1194#
41a77cba 1195exec > gdbarch.log
34620563 1196function_list | while do_read
0b8f9e4d
AC
1197do
1198 cat <<EOF
1207375d 1199${class} ${returntype:-} ${function} (${formal:-})
104c1213 1200EOF
3d9a5942
AC
1201 for r in ${read}
1202 do
a6fc5ffc 1203 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1204 done
f0d4cc9e 1205 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1206 then
66d659b1 1207 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1208 kill $$
1209 exit 1
1210 fi
759cea5e 1211 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1212 then
1213 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1214 kill $$
1215 exit 1
1216 fi
a72293e2
AC
1217 if class_is_multiarch_p
1218 then
1219 if class_is_predicate_p ; then :
1220 elif test "x${predefault}" = "x"
1221 then
2f9b146e 1222 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1223 kill $$
1224 exit 1
1225 fi
1226 fi
3d9a5942 1227 echo ""
0b8f9e4d
AC
1228done
1229
1230exec 1>&2
0b8f9e4d 1231
104c1213
JM
1232
1233copyright ()
1234{
1235cat <<EOF
c4bfde41
JK
1236/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1237/* vi:set ro: */
59233f88 1238
104c1213 1239/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1240
b5b5650a 1241 Copyright (C) 1998-2021 Free Software Foundation, Inc.
104c1213
JM
1242
1243 This file is part of GDB.
1244
1245 This program is free software; you can redistribute it and/or modify
1246 it under the terms of the GNU General Public License as published by
50efebf8 1247 the Free Software Foundation; either version 3 of the License, or
104c1213 1248 (at your option) any later version.
618f726f 1249
104c1213
JM
1250 This program is distributed in the hope that it will be useful,
1251 but WITHOUT ANY WARRANTY; without even the implied warranty of
1252 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1253 GNU General Public License for more details.
618f726f 1254
104c1213 1255 You should have received a copy of the GNU General Public License
50efebf8 1256 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1257
41a77cba 1258/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1259
1260EOF
1261}
1262
1263#
1264# The .h file
1265#
1266
1267exec > new-gdbarch.h
1268copyright
1269cat <<EOF
1270#ifndef GDBARCH_H
1271#define GDBARCH_H
1272
a0ff9e1a 1273#include <vector>
eb7a547a 1274#include "frame.h"
65b48a81 1275#include "dis-asm.h"
284a0e3c 1276#include "gdb_obstack.h"
fdb61c6c 1277#include "infrun.h"
fe4b2ee6 1278#include "osabi.h"
c7acb87b 1279#include "displaced-stepping.h"
eb7a547a 1280
da3331ec
AC
1281struct floatformat;
1282struct ui_file;
104c1213 1283struct value;
b6af0555 1284struct objfile;
1c772458 1285struct obj_section;
a2cf933a 1286struct minimal_symbol;
049ee0e4 1287struct regcache;
b59ff9d5 1288struct reggroup;
6ce6d90f 1289struct regset;
a89aa300 1290struct disassemble_info;
e2d0e7eb 1291struct target_ops;
030f20e1 1292struct obstack;
8181d85f 1293struct bp_target_info;
424163ea 1294struct target_desc;
3e29f34a 1295struct symbol;
a96d9b2e 1296struct syscall;
175ff332 1297struct agent_expr;
6710bf39 1298struct axs_value;
55aa24fb 1299struct stap_parse_info;
37eedb39 1300struct expr_builder;
7e35103a 1301struct ravenscar_arch_ops;
3437254d 1302struct mem_range;
458c8db8 1303struct syscalls_info;
4dfc5dbc 1304struct thread_info;
012b3a21 1305struct ui_out;
187b041e 1306struct inferior;
104c1213 1307
8a526fa6
PA
1308#include "regcache.h"
1309
6ecd4729
PA
1310/* The architecture associated with the inferior through the
1311 connection to the target.
1312
1313 The architecture vector provides some information that is really a
1314 property of the inferior, accessed through a particular target:
1315 ptrace operations; the layout of certain RSP packets; the solib_ops
1316 vector; etc. To differentiate architecture accesses to
1317 per-inferior/target properties from
1318 per-thread/per-frame/per-objfile properties, accesses to
1319 per-inferior/target properties should be made through this
1320 gdbarch. */
1321
1322/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1323extern struct gdbarch *target_gdbarch (void);
6ecd4729 1324
19630284
JB
1325/* Callback type for the 'iterate_over_objfiles_in_search_order'
1326 gdbarch method. */
1327
1328typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1329 (struct objfile *objfile, void *cb_data);
5aa82d05 1330
1528345d
AA
1331/* Callback type for regset section iterators. The callback usually
1332 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1333 pass a buffer - for collects this buffer will need to be created using
1334 COLLECT_SIZE, for supply the existing buffer being read from should
1335 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1336 is used for diagnostic messages. CB_DATA should have been passed
1337 unchanged through the iterator. */
1528345d 1338
5aa82d05 1339typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1340 (const char *sect_name, int supply_size, int collect_size,
1341 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1342
1343/* For a function call, does the function return a value using a
1344 normal value return or a structure return - passing a hidden
1345 argument pointing to storage. For the latter, there are two
1346 cases: language-mandated structure return and target ABI
1347 structure return. */
1348
1349enum function_call_return_method
1350{
1351 /* Standard value return. */
1352 return_method_normal = 0,
1353
1354 /* Language ABI structure return. This is handled
1355 by passing the return location as the first parameter to
1356 the function, even preceding "this". */
1357 return_method_hidden_param,
1358
1359 /* Target ABI struct return. This is target-specific; for instance,
1360 on ia64 the first argument is passed in out0 but the hidden
1361 structure return pointer would normally be passed in r8. */
1362 return_method_struct,
1363};
1364
104c1213
JM
1365EOF
1366
1367# function typedef's
3d9a5942
AC
1368printf "\n"
1369printf "\n"
0963b4bd 1370printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1371function_list | while do_read
104c1213 1372do
2ada493a
AC
1373 if class_is_info_p
1374 then
3d9a5942 1375 printf "\n"
8d113d13
SM
1376 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1377 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1378 fi
104c1213
JM
1379done
1380
1381# function typedef's
3d9a5942
AC
1382printf "\n"
1383printf "\n"
0963b4bd 1384printf "/* The following are initialized by the target dependent code. */\n"
34620563 1385function_list | while do_read
104c1213 1386do
72e74a21 1387 if [ -n "${comment}" ]
34620563
AC
1388 then
1389 echo "${comment}" | sed \
1390 -e '2 s,#,/*,' \
1391 -e '3,$ s,#, ,' \
1392 -e '$ s,$, */,'
1393 fi
412d5987
AC
1394
1395 if class_is_predicate_p
2ada493a 1396 then
412d5987 1397 printf "\n"
39535193 1398 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1399 fi
2ada493a
AC
1400 if class_is_variable_p
1401 then
3d9a5942 1402 printf "\n"
8d113d13
SM
1403 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1404 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1405 fi
1406 if class_is_function_p
1407 then
3d9a5942 1408 printf "\n"
72e74a21 1409 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1410 then
8d113d13 1411 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1412 elif class_is_multiarch_p
1413 then
8d113d13 1414 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1415 else
8d113d13 1416 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1417 fi
72e74a21 1418 if [ "x${formal}" = "xvoid" ]
104c1213 1419 then
8d113d13 1420 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1421 else
8d113d13 1422 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1423 fi
8d113d13 1424 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1425 fi
104c1213
JM
1426done
1427
1428# close it off
1429cat <<EOF
1430
1431extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1432
1433
1434/* Mechanism for co-ordinating the selection of a specific
1435 architecture.
1436
1437 GDB targets (*-tdep.c) can register an interest in a specific
1438 architecture. Other GDB components can register a need to maintain
1439 per-architecture data.
1440
1441 The mechanisms below ensures that there is only a loose connection
1442 between the set-architecture command and the various GDB
0fa6923a 1443 components. Each component can independently register their need
104c1213
JM
1444 to maintain architecture specific data with gdbarch.
1445
1446 Pragmatics:
1447
1448 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1449 didn't scale.
1450
1451 The more traditional mega-struct containing architecture specific
1452 data for all the various GDB components was also considered. Since
0fa6923a 1453 GDB is built from a variable number of (fairly independent)
104c1213 1454 components it was determined that the global aproach was not
0963b4bd 1455 applicable. */
104c1213
JM
1456
1457
1458/* Register a new architectural family with GDB.
1459
1460 Register support for the specified ARCHITECTURE with GDB. When
1461 gdbarch determines that the specified architecture has been
1462 selected, the corresponding INIT function is called.
1463
1464 --
1465
1466 The INIT function takes two parameters: INFO which contains the
1467 information available to gdbarch about the (possibly new)
1468 architecture; ARCHES which is a list of the previously created
1469 \`\`struct gdbarch'' for this architecture.
1470
0f79675b 1471 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1472 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1473
1474 The ARCHES parameter is a linked list (sorted most recently used)
1475 of all the previously created architures for this architecture
1476 family. The (possibly NULL) ARCHES->gdbarch can used to access
1477 values from the previously selected architecture for this
59837fe0 1478 architecture family.
104c1213
JM
1479
1480 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1481 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1482 gdbarch'' from the ARCHES list - indicating that the new
1483 architecture is just a synonym for an earlier architecture (see
1484 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1485 - that describes the selected architecture (see gdbarch_alloc()).
1486
1487 The DUMP_TDEP function shall print out all target specific values.
1488 Care should be taken to ensure that the function works in both the
0963b4bd 1489 multi-arch and non- multi-arch cases. */
104c1213
JM
1490
1491struct gdbarch_list
1492{
1493 struct gdbarch *gdbarch;
1494 struct gdbarch_list *next;
1495};
1496
1497struct gdbarch_info
1498{
0963b4bd 1499 /* Use default: NULL (ZERO). */
104c1213
JM
1500 const struct bfd_arch_info *bfd_arch_info;
1501
428721aa 1502 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1503 enum bfd_endian byte_order;
104c1213 1504
94123b4f 1505 enum bfd_endian byte_order_for_code;
9d4fde75 1506
0963b4bd 1507 /* Use default: NULL (ZERO). */
104c1213
JM
1508 bfd *abfd;
1509
0963b4bd 1510 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1511 union
1512 {
1513 /* Architecture-specific information. The generic form for targets
1514 that have extra requirements. */
1515 struct gdbarch_tdep_info *tdep_info;
1516
1517 /* Architecture-specific target description data. Numerous targets
1518 need only this, so give them an easy way to hold it. */
1519 struct tdesc_arch_data *tdesc_data;
1520
1521 /* SPU file system ID. This is a single integer, so using the
1522 generic form would only complicate code. Other targets may
1523 reuse this member if suitable. */
1524 int *id;
1525 };
4be87837
DJ
1526
1527 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1528 enum gdb_osabi osabi;
424163ea
DJ
1529
1530 /* Use default: NULL (ZERO). */
1531 const struct target_desc *target_desc;
104c1213
JM
1532};
1533
1534typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1535typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1536
4b9b3959 1537/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1538extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1539
4b9b3959 1540extern void gdbarch_register (enum bfd_architecture architecture,
dda83cd7
SM
1541 gdbarch_init_ftype *,
1542 gdbarch_dump_tdep_ftype *);
4b9b3959 1543
104c1213 1544
b4a20239
AC
1545/* Return a freshly allocated, NULL terminated, array of the valid
1546 architecture names. Since architectures are registered during the
1547 _initialize phase this function only returns useful information
0963b4bd 1548 once initialization has been completed. */
b4a20239
AC
1549
1550extern const char **gdbarch_printable_names (void);
1551
1552
104c1213 1553/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1554 matches the information provided by INFO. */
104c1213 1555
424163ea 1556extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1557
1558
1559/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1560 basic initialization using values obtained from the INFO and TDEP
104c1213 1561 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1562 initialization of the object. */
104c1213
JM
1563
1564extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1565
1566
4b9b3959
AC
1567/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1568 It is assumed that the caller freeds the \`\`struct
0963b4bd 1569 gdbarch_tdep''. */
4b9b3959 1570
058f20d5
JB
1571extern void gdbarch_free (struct gdbarch *);
1572
284a0e3c
SM
1573/* Get the obstack owned by ARCH. */
1574
1575extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1576
aebd7893
AC
1577/* Helper function. Allocate memory from the \`\`struct gdbarch''
1578 obstack. The memory is freed when the corresponding architecture
1579 is also freed. */
1580
284a0e3c
SM
1581#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1582 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1583
1584#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1585 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1586
6c214e7c
PP
1587/* Duplicate STRING, returning an equivalent string that's allocated on the
1588 obstack associated with GDBARCH. The string is freed when the corresponding
1589 architecture is also freed. */
1590
1591extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1592
0963b4bd 1593/* Helper function. Force an update of the current architecture.
104c1213 1594
b732d07d
AC
1595 The actual architecture selected is determined by INFO, \`\`(gdb) set
1596 architecture'' et.al., the existing architecture and BFD's default
1597 architecture. INFO should be initialized to zero and then selected
1598 fields should be updated.
104c1213 1599
0963b4bd 1600 Returns non-zero if the update succeeds. */
16f33e29
AC
1601
1602extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1603
1604
ebdba546
AC
1605/* Helper function. Find an architecture matching info.
1606
1607 INFO should be initialized using gdbarch_info_init, relevant fields
1608 set, and then finished using gdbarch_info_fill.
1609
1610 Returns the corresponding architecture, or NULL if no matching
59837fe0 1611 architecture was found. */
ebdba546
AC
1612
1613extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1614
1615
aff68abb 1616/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1617
aff68abb 1618extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1619
104c1213
JM
1620
1621/* Register per-architecture data-pointer.
1622
1623 Reserve space for a per-architecture data-pointer. An identifier
1624 for the reserved data-pointer is returned. That identifer should
95160752 1625 be saved in a local static variable.
104c1213 1626
fcc1c85c
AC
1627 Memory for the per-architecture data shall be allocated using
1628 gdbarch_obstack_zalloc. That memory will be deleted when the
1629 corresponding architecture object is deleted.
104c1213 1630
95160752
AC
1631 When a previously created architecture is re-selected, the
1632 per-architecture data-pointer for that previous architecture is
76860b5f 1633 restored. INIT() is not re-called.
104c1213
JM
1634
1635 Multiple registrarants for any architecture are allowed (and
1636 strongly encouraged). */
1637
95160752 1638struct gdbarch_data;
104c1213 1639
030f20e1
AC
1640typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1641extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1642typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1643extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
104c1213 1644
451fbdda 1645extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1646
1647
0fa6923a 1648/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1649 byte-order, ...) using information found in the BFD. */
104c1213
JM
1650
1651extern void set_gdbarch_from_file (bfd *);
1652
1653
e514a9d6
JM
1654/* Initialize the current architecture to the "first" one we find on
1655 our list. */
1656
1657extern void initialize_current_architecture (void);
1658
104c1213 1659/* gdbarch trace variable */
ccce17b0 1660extern unsigned int gdbarch_debug;
104c1213 1661
4b9b3959 1662extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1663
f6efe3f8
SM
1664/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1665
1666static inline int
1667gdbarch_num_cooked_regs (gdbarch *arch)
1668{
1669 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1670}
1671
104c1213
JM
1672#endif
1673EOF
1674exec 1>&2
41a77cba
SM
1675../move-if-change new-gdbarch.h gdbarch.h
1676rm -f new-gdbarch.h
104c1213
JM
1677
1678
1679#
1680# C file
1681#
1682
1683exec > new-gdbarch.c
1684copyright
1685cat <<EOF
1686
1687#include "defs.h"
7355ddba 1688#include "arch-utils.h"
104c1213 1689
104c1213 1690#include "gdbcmd.h"
faaf634c 1691#include "inferior.h"
104c1213
JM
1692#include "symcat.h"
1693
f0d4cc9e 1694#include "floatformat.h"
b59ff9d5 1695#include "reggroups.h"
4be87837 1696#include "osabi.h"
aebd7893 1697#include "gdb_obstack.h"
0bee6dd4 1698#include "observable.h"
a3ecef73 1699#include "regcache.h"
19630284 1700#include "objfiles.h"
2faa3447 1701#include "auxv.h"
8bcb5208
AB
1702#include "frame-unwind.h"
1703#include "dummy-frame.h"
95160752 1704
104c1213
JM
1705/* Static function declarations */
1706
b3cc3077 1707static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1708
104c1213
JM
1709/* Non-zero if we want to trace architecture code. */
1710
1711#ifndef GDBARCH_DEBUG
1712#define GDBARCH_DEBUG 0
1713#endif
ccce17b0 1714unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1715static void
1716show_gdbarch_debug (struct ui_file *file, int from_tty,
dda83cd7 1717 struct cmd_list_element *c, const char *value)
920d2a44
AC
1718{
1719 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1720}
104c1213 1721
456fcf94 1722static const char *
8da61cc4 1723pformat (const struct floatformat **format)
456fcf94
AC
1724{
1725 if (format == NULL)
1726 return "(null)";
1727 else
8da61cc4
DJ
1728 /* Just print out one of them - this is only for diagnostics. */
1729 return format[0]->name;
456fcf94
AC
1730}
1731
08105857
PA
1732static const char *
1733pstring (const char *string)
1734{
1735 if (string == NULL)
1736 return "(null)";
1737 return string;
05c0465e
SDJ
1738}
1739
a121b7c1 1740static const char *
f7bb4e3a
PB
1741pstring_ptr (char **string)
1742{
1743 if (string == NULL || *string == NULL)
1744 return "(null)";
1745 return *string;
1746}
1747
05c0465e
SDJ
1748/* Helper function to print a list of strings, represented as "const
1749 char *const *". The list is printed comma-separated. */
1750
a121b7c1 1751static const char *
05c0465e
SDJ
1752pstring_list (const char *const *list)
1753{
1754 static char ret[100];
1755 const char *const *p;
1756 size_t offset = 0;
1757
1758 if (list == NULL)
1759 return "(null)";
1760
1761 ret[0] = '\0';
1762 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1763 {
1764 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1765 offset += 2 + s;
1766 }
1767
1768 if (offset > 0)
1769 {
1770 gdb_assert (offset - 2 < sizeof (ret));
1771 ret[offset - 2] = '\0';
1772 }
1773
1774 return ret;
08105857
PA
1775}
1776
104c1213
JM
1777EOF
1778
1779# gdbarch open the gdbarch object
3d9a5942 1780printf "\n"
0963b4bd 1781printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1782printf "\n"
1783printf "struct gdbarch\n"
1784printf "{\n"
76860b5f
AC
1785printf " /* Has this architecture been fully initialized? */\n"
1786printf " int initialized_p;\n"
aebd7893
AC
1787printf "\n"
1788printf " /* An obstack bound to the lifetime of the architecture. */\n"
1789printf " struct obstack *obstack;\n"
1790printf "\n"
0963b4bd 1791printf " /* basic architectural information. */\n"
34620563 1792function_list | while do_read
104c1213 1793do
2ada493a
AC
1794 if class_is_info_p
1795 then
8d113d13 1796 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1797 fi
104c1213 1798done
3d9a5942 1799printf "\n"
0963b4bd 1800printf " /* target specific vector. */\n"
3d9a5942
AC
1801printf " struct gdbarch_tdep *tdep;\n"
1802printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1803printf "\n"
0963b4bd 1804printf " /* per-architecture data-pointers. */\n"
95160752 1805printf " unsigned nr_data;\n"
3d9a5942
AC
1806printf " void **data;\n"
1807printf "\n"
104c1213
JM
1808cat <<EOF
1809 /* Multi-arch values.
1810
1811 When extending this structure you must:
1812
1813 Add the field below.
1814
1815 Declare set/get functions and define the corresponding
1816 macro in gdbarch.h.
1817
1818 gdbarch_alloc(): If zero/NULL is not a suitable default,
1819 initialize the new field.
1820
1821 verify_gdbarch(): Confirm that the target updated the field
1822 correctly.
1823
7e73cedf 1824 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1825 field is dumped out
1826
104c1213
JM
1827 get_gdbarch(): Implement the set/get functions (probably using
1828 the macro's as shortcuts).
1829
1830 */
1831
1832EOF
34620563 1833function_list | while do_read
104c1213 1834do
2ada493a
AC
1835 if class_is_variable_p
1836 then
8d113d13 1837 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1838 elif class_is_function_p
1839 then
8d113d13 1840 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1841 fi
104c1213 1842done
3d9a5942 1843printf "};\n"
104c1213 1844
104c1213 1845# Create a new gdbarch struct
104c1213 1846cat <<EOF
7de2341d 1847
66b43ecb 1848/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1849 \`\`struct gdbarch_info''. */
104c1213 1850EOF
3d9a5942 1851printf "\n"
104c1213
JM
1852cat <<EOF
1853struct gdbarch *
1854gdbarch_alloc (const struct gdbarch_info *info,
dda83cd7 1855 struct gdbarch_tdep *tdep)
104c1213 1856{
be7811ad 1857 struct gdbarch *gdbarch;
aebd7893
AC
1858
1859 /* Create an obstack for allocating all the per-architecture memory,
1860 then use that to allocate the architecture vector. */
70ba0933 1861 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1862 obstack_init (obstack);
8d749320 1863 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1864 memset (gdbarch, 0, sizeof (*gdbarch));
1865 gdbarch->obstack = obstack;
85de9627 1866
be7811ad 1867 alloc_gdbarch_data (gdbarch);
85de9627 1868
be7811ad 1869 gdbarch->tdep = tdep;
104c1213 1870EOF
3d9a5942 1871printf "\n"
34620563 1872function_list | while do_read
104c1213 1873do
2ada493a
AC
1874 if class_is_info_p
1875 then
8d113d13 1876 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1877 fi
104c1213 1878done
3d9a5942 1879printf "\n"
0963b4bd 1880printf " /* Force the explicit initialization of these. */\n"
34620563 1881function_list | while do_read
104c1213 1882do
2ada493a
AC
1883 if class_is_function_p || class_is_variable_p
1884 then
759cea5e 1885 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1886 then
8d113d13 1887 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1888 fi
2ada493a 1889 fi
104c1213
JM
1890done
1891cat <<EOF
1892 /* gdbarch_alloc() */
1893
be7811ad 1894 return gdbarch;
104c1213
JM
1895}
1896EOF
1897
058f20d5 1898# Free a gdbarch struct.
3d9a5942
AC
1899printf "\n"
1900printf "\n"
058f20d5 1901cat <<EOF
aebd7893 1902
284a0e3c 1903obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1904{
284a0e3c 1905 return arch->obstack;
aebd7893
AC
1906}
1907
6c214e7c
PP
1908/* See gdbarch.h. */
1909
1910char *
1911gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1912{
1913 return obstack_strdup (arch->obstack, string);
1914}
1915
aebd7893 1916
058f20d5
JB
1917/* Free a gdbarch struct. This should never happen in normal
1918 operation --- once you've created a gdbarch, you keep it around.
1919 However, if an architecture's init function encounters an error
1920 building the structure, it may need to clean up a partially
1921 constructed gdbarch. */
4b9b3959 1922
058f20d5
JB
1923void
1924gdbarch_free (struct gdbarch *arch)
1925{
aebd7893 1926 struct obstack *obstack;
05c547f6 1927
95160752 1928 gdb_assert (arch != NULL);
aebd7893
AC
1929 gdb_assert (!arch->initialized_p);
1930 obstack = arch->obstack;
1931 obstack_free (obstack, 0); /* Includes the ARCH. */
1932 xfree (obstack);
058f20d5
JB
1933}
1934EOF
1935
104c1213 1936# verify a new architecture
104c1213 1937cat <<EOF
db446970
AC
1938
1939
1940/* Ensure that all values in a GDBARCH are reasonable. */
1941
104c1213 1942static void
be7811ad 1943verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1944{
d7e74731 1945 string_file log;
05c547f6 1946
104c1213 1947 /* fundamental */
be7811ad 1948 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1949 log.puts ("\n\tbyte-order");
be7811ad 1950 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1951 log.puts ("\n\tbfd_arch_info");
0963b4bd 1952 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1953EOF
34620563 1954function_list | while do_read
104c1213 1955do
2ada493a
AC
1956 if class_is_function_p || class_is_variable_p
1957 then
72e74a21 1958 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1959 then
8d113d13 1960 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1961 elif class_is_predicate_p
1962 then
8d113d13 1963 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1964 # FIXME: See do_read for potential simplification
759cea5e 1965 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1966 then
8d113d13
SM
1967 printf " if (%s)\n" "$invalid_p"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1969 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1970 then
8d113d13
SM
1971 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1972 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1973 elif [ -n "${postdefault}" ]
f0d4cc9e 1974 then
8d113d13
SM
1975 printf " if (gdbarch->%s == 0)\n" "$function"
1976 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1977 elif [ -n "${invalid_p}" ]
104c1213 1978 then
8d113d13
SM
1979 printf " if (%s)\n" "$invalid_p"
1980 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 1981 elif [ -n "${predefault}" ]
104c1213 1982 then
8d113d13
SM
1983 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1984 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 1985 fi
2ada493a 1986 fi
104c1213
JM
1987done
1988cat <<EOF
d7e74731 1989 if (!log.empty ())
f16a1923 1990 internal_error (__FILE__, __LINE__,
dda83cd7
SM
1991 _("verify_gdbarch: the following are invalid ...%s"),
1992 log.c_str ());
104c1213
JM
1993}
1994EOF
1995
1996# dump the structure
3d9a5942
AC
1997printf "\n"
1998printf "\n"
104c1213 1999cat <<EOF
0963b4bd 2000/* Print out the details of the current architecture. */
4b9b3959 2001
104c1213 2002void
be7811ad 2003gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2004{
b78960be 2005 const char *gdb_nm_file = "<not-defined>";
05c547f6 2006
b78960be
AC
2007#if defined (GDB_NM_FILE)
2008 gdb_nm_file = GDB_NM_FILE;
2009#endif
2010 fprintf_unfiltered (file,
dda83cd7
SM
2011 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2012 gdb_nm_file);
104c1213 2013EOF
ea480a30 2014function_list | sort '-t;' -k 3 | while do_read
104c1213 2015do
1e9f55d0
AC
2016 # First the predicate
2017 if class_is_predicate_p
2018 then
7996bcec 2019 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2020 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2021 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2022 fi
48f7351b 2023 # Print the corresponding value.
283354d8 2024 if class_is_function_p
4b9b3959 2025 then
7996bcec 2026 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2027 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2028 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2029 else
48f7351b 2030 # It is a variable
2f9b146e
AC
2031 case "${print}:${returntype}" in
2032 :CORE_ADDR )
0b1553bc
UW
2033 fmt="%s"
2034 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2035 ;;
2f9b146e 2036 :* )
dda83cd7 2037 fmt="%s"
623d3eb1 2038 print="plongest (gdbarch->${function})"
48f7351b
AC
2039 ;;
2040 * )
dda83cd7 2041 fmt="%s"
48f7351b 2042 ;;
dda83cd7 2043 esac
3d9a5942 2044 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2045 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2046 printf " %s);\n" "$print"
2ada493a 2047 fi
104c1213 2048done
381323f4 2049cat <<EOF
be7811ad
MD
2050 if (gdbarch->dump_tdep != NULL)
2051 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2052}
2053EOF
104c1213
JM
2054
2055
2056# GET/SET
3d9a5942 2057printf "\n"
104c1213
JM
2058cat <<EOF
2059struct gdbarch_tdep *
2060gdbarch_tdep (struct gdbarch *gdbarch)
2061{
2062 if (gdbarch_debug >= 2)
3d9a5942 2063 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2064 return gdbarch->tdep;
2065}
2066EOF
3d9a5942 2067printf "\n"
34620563 2068function_list | while do_read
104c1213 2069do
2ada493a
AC
2070 if class_is_predicate_p
2071 then
3d9a5942 2072 printf "\n"
39535193 2073 printf "bool\n"
8d113d13 2074 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2075 printf "{\n"
dda83cd7 2076 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2077 printf " return %s;\n" "$predicate"
3d9a5942 2078 printf "}\n"
2ada493a
AC
2079 fi
2080 if class_is_function_p
2081 then
3d9a5942 2082 printf "\n"
8d113d13 2083 printf "%s\n" "$returntype"
72e74a21 2084 if [ "x${formal}" = "xvoid" ]
104c1213 2085 then
8d113d13 2086 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2087 else
8d113d13 2088 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2089 fi
3d9a5942 2090 printf "{\n"
dda83cd7 2091 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2092 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2093 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2094 then
2095 # Allow a call to a function with a predicate.
8d113d13 2096 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2097 fi
3d9a5942 2098 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2099 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2100 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2101 then
2102 if class_is_multiarch_p
2103 then
2104 params="gdbarch"
2105 else
2106 params=""
2107 fi
2108 else
2109 if class_is_multiarch_p
2110 then
2111 params="gdbarch, ${actual}"
2112 else
2113 params="${actual}"
2114 fi
dda83cd7 2115 fi
72e74a21 2116 if [ "x${returntype}" = "xvoid" ]
104c1213 2117 then
8d113d13 2118 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2119 else
8d113d13 2120 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2121 fi
3d9a5942
AC
2122 printf "}\n"
2123 printf "\n"
2124 printf "void\n"
8d113d13 2125 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2126 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2127 printf "{\n"
8d113d13 2128 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2129 printf "}\n"
2ada493a
AC
2130 elif class_is_variable_p
2131 then
3d9a5942 2132 printf "\n"
8d113d13
SM
2133 printf "%s\n" "$returntype"
2134 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2135 printf "{\n"
dda83cd7 2136 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2137 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2138 then
8d113d13 2139 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2140 elif [ -n "${invalid_p}" ]
104c1213 2141 then
956ac328 2142 printf " /* Check variable is valid. */\n"
8d113d13 2143 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2144 elif [ -n "${predefault}" ]
104c1213 2145 then
956ac328 2146 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2147 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2148 fi
3d9a5942 2149 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2150 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2151 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2152 printf "}\n"
2153 printf "\n"
2154 printf "void\n"
8d113d13 2155 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2156 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2157 printf "{\n"
8d113d13 2158 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2159 printf "}\n"
2ada493a
AC
2160 elif class_is_info_p
2161 then
3d9a5942 2162 printf "\n"
8d113d13
SM
2163 printf "%s\n" "$returntype"
2164 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2165 printf "{\n"
dda83cd7 2166 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2167 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2168 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2169 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2170 printf "}\n"
2ada493a 2171 fi
104c1213
JM
2172done
2173
2174# All the trailing guff
2175cat <<EOF
2176
2177
f44c642f 2178/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2179 modules. */
104c1213
JM
2180
2181struct gdbarch_data
2182{
95160752 2183 unsigned index;
76860b5f 2184 int init_p;
030f20e1
AC
2185 gdbarch_data_pre_init_ftype *pre_init;
2186 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2187};
2188
2189struct gdbarch_data_registration
2190{
104c1213
JM
2191 struct gdbarch_data *data;
2192 struct gdbarch_data_registration *next;
2193};
2194
f44c642f 2195struct gdbarch_data_registry
104c1213 2196{
95160752 2197 unsigned nr;
104c1213
JM
2198 struct gdbarch_data_registration *registrations;
2199};
2200
f44c642f 2201struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2202{
2203 0, NULL,
2204};
2205
030f20e1
AC
2206static struct gdbarch_data *
2207gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2208 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2209{
2210 struct gdbarch_data_registration **curr;
05c547f6
MS
2211
2212 /* Append the new registration. */
f44c642f 2213 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2214 (*curr) != NULL;
2215 curr = &(*curr)->next);
70ba0933 2216 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2217 (*curr)->next = NULL;
70ba0933 2218 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2219 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2220 (*curr)->data->pre_init = pre_init;
2221 (*curr)->data->post_init = post_init;
76860b5f 2222 (*curr)->data->init_p = 1;
104c1213
JM
2223 return (*curr)->data;
2224}
2225
030f20e1
AC
2226struct gdbarch_data *
2227gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2228{
2229 return gdbarch_data_register (pre_init, NULL);
2230}
2231
2232struct gdbarch_data *
2233gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2234{
2235 return gdbarch_data_register (NULL, post_init);
2236}
104c1213 2237
0963b4bd 2238/* Create/delete the gdbarch data vector. */
95160752
AC
2239
2240static void
b3cc3077 2241alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2242{
b3cc3077
JB
2243 gdb_assert (gdbarch->data == NULL);
2244 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2245 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2246}
3c875b6f 2247
104c1213 2248/* Return the current value of the specified per-architecture
0963b4bd 2249 data-pointer. */
104c1213
JM
2250
2251void *
451fbdda 2252gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2253{
451fbdda 2254 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2255 if (gdbarch->data[data->index] == NULL)
76860b5f 2256 {
030f20e1
AC
2257 /* The data-pointer isn't initialized, call init() to get a
2258 value. */
2259 if (data->pre_init != NULL)
2260 /* Mid architecture creation: pass just the obstack, and not
2261 the entire architecture, as that way it isn't possible for
2262 pre-init code to refer to undefined architecture
2263 fields. */
2264 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2265 else if (gdbarch->initialized_p
2266 && data->post_init != NULL)
2267 /* Post architecture creation: pass the entire architecture
2268 (as all fields are valid), but be careful to also detect
2269 recursive references. */
2270 {
2271 gdb_assert (data->init_p);
2272 data->init_p = 0;
2273 gdbarch->data[data->index] = data->post_init (gdbarch);
2274 data->init_p = 1;
2275 }
2276 else
3bc98c0c
AB
2277 internal_error (__FILE__, __LINE__,
2278 _("gdbarch post-init data field can only be used "
2279 "after gdbarch is fully initialised"));
76860b5f
AC
2280 gdb_assert (gdbarch->data[data->index] != NULL);
2281 }
451fbdda 2282 return gdbarch->data[data->index];
104c1213
JM
2283}
2284
2285
0963b4bd 2286/* Keep a registry of the architectures known by GDB. */
104c1213 2287
4b9b3959 2288struct gdbarch_registration
104c1213
JM
2289{
2290 enum bfd_architecture bfd_architecture;
2291 gdbarch_init_ftype *init;
4b9b3959 2292 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2293 struct gdbarch_list *arches;
4b9b3959 2294 struct gdbarch_registration *next;
104c1213
JM
2295};
2296
f44c642f 2297static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2298
b4a20239
AC
2299static void
2300append_name (const char ***buf, int *nr, const char *name)
2301{
1dc7a623 2302 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2303 (*buf)[*nr] = name;
2304 *nr += 1;
2305}
2306
2307const char **
2308gdbarch_printable_names (void)
2309{
7996bcec 2310 /* Accumulate a list of names based on the registed list of
0963b4bd 2311 architectures. */
7996bcec
AC
2312 int nr_arches = 0;
2313 const char **arches = NULL;
2314 struct gdbarch_registration *rego;
05c547f6 2315
7996bcec
AC
2316 for (rego = gdbarch_registry;
2317 rego != NULL;
2318 rego = rego->next)
b4a20239 2319 {
7996bcec
AC
2320 const struct bfd_arch_info *ap;
2321 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2322 if (ap == NULL)
dda83cd7
SM
2323 internal_error (__FILE__, __LINE__,
2324 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec 2325 do
dda83cd7
SM
2326 {
2327 append_name (&arches, &nr_arches, ap->printable_name);
2328 ap = ap->next;
2329 }
7996bcec 2330 while (ap != NULL);
b4a20239 2331 }
7996bcec
AC
2332 append_name (&arches, &nr_arches, NULL);
2333 return arches;
b4a20239
AC
2334}
2335
2336
104c1213 2337void
4b9b3959 2338gdbarch_register (enum bfd_architecture bfd_architecture,
dda83cd7 2339 gdbarch_init_ftype *init,
4b9b3959 2340 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2341{
4b9b3959 2342 struct gdbarch_registration **curr;
104c1213 2343 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2344
ec3d358c 2345 /* Check that BFD recognizes this architecture */
104c1213
JM
2346 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2347 if (bfd_arch_info == NULL)
2348 {
8e65ff28 2349 internal_error (__FILE__, __LINE__,
dda83cd7 2350 _("gdbarch: Attempt to register "
0963b4bd 2351 "unknown architecture (%d)"),
dda83cd7 2352 bfd_architecture);
104c1213 2353 }
0963b4bd 2354 /* Check that we haven't seen this architecture before. */
f44c642f 2355 for (curr = &gdbarch_registry;
104c1213
JM
2356 (*curr) != NULL;
2357 curr = &(*curr)->next)
2358 {
2359 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2360 internal_error (__FILE__, __LINE__,
dda83cd7 2361 _("gdbarch: Duplicate registration "
0963b4bd 2362 "of architecture (%s)"),
dda83cd7 2363 bfd_arch_info->printable_name);
104c1213
JM
2364 }
2365 /* log it */
2366 if (gdbarch_debug)
30737ed9 2367 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2368 bfd_arch_info->printable_name,
30737ed9 2369 host_address_to_string (init));
104c1213 2370 /* Append it */
70ba0933 2371 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2372 (*curr)->bfd_architecture = bfd_architecture;
2373 (*curr)->init = init;
4b9b3959 2374 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2375 (*curr)->arches = NULL;
2376 (*curr)->next = NULL;
4b9b3959
AC
2377}
2378
2379void
2380register_gdbarch_init (enum bfd_architecture bfd_architecture,
2381 gdbarch_init_ftype *init)
2382{
2383 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2384}
104c1213
JM
2385
2386
424163ea 2387/* Look for an architecture using gdbarch_info. */
104c1213
JM
2388
2389struct gdbarch_list *
2390gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
dda83cd7 2391 const struct gdbarch_info *info)
104c1213
JM
2392{
2393 for (; arches != NULL; arches = arches->next)
2394 {
2395 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2396 continue;
2397 if (info->byte_order != arches->gdbarch->byte_order)
2398 continue;
4be87837
DJ
2399 if (info->osabi != arches->gdbarch->osabi)
2400 continue;
424163ea
DJ
2401 if (info->target_desc != arches->gdbarch->target_desc)
2402 continue;
104c1213
JM
2403 return arches;
2404 }
2405 return NULL;
2406}
2407
2408
ebdba546 2409/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2410 architecture if needed. Return that new architecture. */
104c1213 2411
59837fe0
UW
2412struct gdbarch *
2413gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2414{
2415 struct gdbarch *new_gdbarch;
4b9b3959 2416 struct gdbarch_registration *rego;
104c1213 2417
b732d07d 2418 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2419 sources: "set ..."; INFOabfd supplied; and the global
2420 defaults. */
2421 gdbarch_info_fill (&info);
4be87837 2422
0963b4bd 2423 /* Must have found some sort of architecture. */
b732d07d 2424 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2425
2426 if (gdbarch_debug)
2427 {
2428 fprintf_unfiltered (gdb_stdlog,
59837fe0 2429 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2430 (info.bfd_arch_info != NULL
2431 ? info.bfd_arch_info->printable_name
2432 : "(null)"));
2433 fprintf_unfiltered (gdb_stdlog,
59837fe0 2434 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2435 info.byte_order,
d7449b42 2436 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2437 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2438 : "default"));
4be87837 2439 fprintf_unfiltered (gdb_stdlog,
59837fe0 2440 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2441 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2442 fprintf_unfiltered (gdb_stdlog,
59837fe0 2443 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2444 host_address_to_string (info.abfd));
104c1213 2445 fprintf_unfiltered (gdb_stdlog,
59837fe0 2446 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2447 host_address_to_string (info.tdep_info));
104c1213
JM
2448 }
2449
ebdba546 2450 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2451 for (rego = gdbarch_registry;
2452 rego != NULL;
2453 rego = rego->next)
2454 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2455 break;
2456 if (rego == NULL)
2457 {
2458 if (gdbarch_debug)
59837fe0 2459 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2460 "No matching architecture\n");
b732d07d
AC
2461 return 0;
2462 }
2463
ebdba546 2464 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2465 new_gdbarch = rego->init (info, rego->arches);
2466
ebdba546
AC
2467 /* Did the tdep code like it? No. Reject the change and revert to
2468 the old architecture. */
104c1213
JM
2469 if (new_gdbarch == NULL)
2470 {
2471 if (gdbarch_debug)
59837fe0 2472 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2473 "Target rejected architecture\n");
2474 return NULL;
104c1213
JM
2475 }
2476
ebdba546
AC
2477 /* Is this a pre-existing architecture (as determined by already
2478 being initialized)? Move it to the front of the architecture
2479 list (keeping the list sorted Most Recently Used). */
2480 if (new_gdbarch->initialized_p)
104c1213 2481 {
ebdba546 2482 struct gdbarch_list **list;
fe978cb0 2483 struct gdbarch_list *self;
104c1213 2484 if (gdbarch_debug)
59837fe0 2485 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2486 "Previous architecture %s (%s) selected\n",
2487 host_address_to_string (new_gdbarch),
104c1213 2488 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2489 /* Find the existing arch in the list. */
2490 for (list = &rego->arches;
2491 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2492 list = &(*list)->next);
2493 /* It had better be in the list of architectures. */
2494 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2495 /* Unlink SELF. */
2496 self = (*list);
2497 (*list) = self->next;
2498 /* Insert SELF at the front. */
2499 self->next = rego->arches;
2500 rego->arches = self;
ebdba546
AC
2501 /* Return it. */
2502 return new_gdbarch;
104c1213
JM
2503 }
2504
ebdba546
AC
2505 /* It's a new architecture. */
2506 if (gdbarch_debug)
59837fe0 2507 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2508 "New architecture %s (%s) selected\n",
2509 host_address_to_string (new_gdbarch),
ebdba546
AC
2510 new_gdbarch->bfd_arch_info->printable_name);
2511
2512 /* Insert the new architecture into the front of the architecture
2513 list (keep the list sorted Most Recently Used). */
0f79675b 2514 {
fe978cb0
PA
2515 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2516 self->next = rego->arches;
2517 self->gdbarch = new_gdbarch;
2518 rego->arches = self;
0f79675b 2519 }
104c1213 2520
4b9b3959
AC
2521 /* Check that the newly installed architecture is valid. Plug in
2522 any post init values. */
2523 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2524 verify_gdbarch (new_gdbarch);
ebdba546 2525 new_gdbarch->initialized_p = 1;
104c1213 2526
4b9b3959 2527 if (gdbarch_debug)
ebdba546
AC
2528 gdbarch_dump (new_gdbarch, gdb_stdlog);
2529
2530 return new_gdbarch;
2531}
2532
e487cc15 2533/* Make the specified architecture current. */
ebdba546
AC
2534
2535void
aff68abb 2536set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2537{
2538 gdb_assert (new_gdbarch != NULL);
ebdba546 2539 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2540 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2541 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2542 registers_changed ();
ebdba546 2543}
104c1213 2544
f5656ead 2545/* Return the current inferior's arch. */
6ecd4729
PA
2546
2547struct gdbarch *
f5656ead 2548target_gdbarch (void)
6ecd4729
PA
2549{
2550 return current_inferior ()->gdbarch;
2551}
2552
a1237872 2553void _initialize_gdbarch ();
104c1213 2554void
a1237872 2555_initialize_gdbarch ()
104c1213 2556{
ccce17b0 2557 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2558Set architecture debugging."), _("\\
2559Show architecture debugging."), _("\\
2560When non-zero, architecture debugging is enabled."),
dda83cd7
SM
2561 NULL,
2562 show_gdbarch_debug,
2563 &setdebuglist, &showdebuglist);
104c1213
JM
2564}
2565EOF
2566
2567# close things off
2568exec 1>&2
41a77cba
SM
2569../move-if-change new-gdbarch.c gdbarch.c
2570rm -f new-gdbarch.c
This page took 2.150802 seconds and 4 git commands to generate.