Remove references to gdb64 in the testsuite
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
61baf725 5# Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
205c306f
DM
363# Alignment of a long long or unsigned long long for the target
364# machine.
ea480a30 365v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 366
f9e9243a
UW
367# The ABI default bit-size and format for "half", "float", "double", and
368# "long double". These bit/format pairs should eventually be combined
369# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
370# Each format describes both the big and little endian layouts (if
371# useful).
456fcf94 372
ea480a30
SM
373v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 381
53375380
PA
382# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383# starting with C++11.
ea480a30 384v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 385# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 386v;int;wchar_signed;;;1;-1;1
53375380 387
9b790ce7
UW
388# Returns the floating-point format to be used for values of length LENGTH.
389# NAME, if non-NULL, is the type name, which may be used to distinguish
390# different target formats of the same length.
ea480a30 391m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 392
52204a0b
DT
393# For most targets, a pointer on the target and its representation as an
394# address in GDB have the same size and "look the same". For such a
17a912b6 395# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
396# / addr_bit will be set from it.
397#
17a912b6 398# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
399# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400# gdbarch_address_to_pointer as well.
52204a0b
DT
401#
402# ptr_bit is the size of a pointer on the target
ea480a30 403v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 404# addr_bit is the size of a target address as represented in gdb
ea480a30 405v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 406#
8da614df
CV
407# dwarf2_addr_size is the target address size as used in the Dwarf debug
408# info. For .debug_frame FDEs, this is supposed to be the target address
409# size from the associated CU header, and which is equivalent to the
410# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411# Unfortunately there is no good way to determine this value. Therefore
412# dwarf2_addr_size simply defaults to the target pointer size.
413#
414# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415# defined using the target's pointer size so far.
416#
417# Note that dwarf2_addr_size only needs to be redefined by a target if the
418# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419# and if Dwarf versions < 4 need to be supported.
ea480a30 420v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 421#
4e409299 422# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 423v;int;char_signed;;;1;-1;1
4e409299 424#
ea480a30
SM
425F;CORE_ADDR;read_pc;struct regcache *regcache;regcache
426F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
427# Function for getting target's idea of a frame pointer. FIXME: GDB's
428# whole scheme for dealing with "frames" and "frame pointers" needs a
429# serious shakedown.
ea480a30 430m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 431#
ea480a30 432M;enum register_status;pseudo_register_read;struct regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
433# Read a register into a new struct value. If the register is wholly
434# or partly unavailable, this should call mark_value_bytes_unavailable
435# as appropriate. If this is defined, then pseudo_register_read will
436# never be called.
ea480a30
SM
437M;struct value *;pseudo_register_read_value;struct regcache *regcache, int cookednum;regcache, cookednum
438M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 439#
ea480a30 440v;int;num_regs;;;0;-1
0aba1244
EZ
441# This macro gives the number of pseudo-registers that live in the
442# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
443# These pseudo-registers may be aliases for other registers,
444# combinations of other registers, or they may be computed by GDB.
ea480a30 445v;int;num_pseudo_regs;;;0;0;;0
c2169756 446
175ff332
HZ
447# Assemble agent expression bytecode to collect pseudo-register REG.
448# Return -1 if something goes wrong, 0 otherwise.
ea480a30 449M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
450
451# Assemble agent expression bytecode to push the value of pseudo-register
452# REG on the interpreter stack.
453# Return -1 if something goes wrong, 0 otherwise.
ea480a30 454M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 455
012b3a21
WT
456# Some targets/architectures can do extra processing/display of
457# segmentation faults. E.g., Intel MPX boundary faults.
458# Call the architecture dependent function to handle the fault.
459# UIOUT is the output stream where the handler will place information.
ea480a30 460M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 461
c2169756
AC
462# GDB's standard (or well known) register numbers. These can map onto
463# a real register or a pseudo (computed) register or not be defined at
1200cd6e 464# all (-1).
3e8c568d 465# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
466v;int;sp_regnum;;;-1;-1;;0
467v;int;pc_regnum;;;-1;-1;;0
468v;int;ps_regnum;;;-1;-1;;0
469v;int;fp0_regnum;;;0;-1;;0
88c72b7d 470# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 471m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 472# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 473m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 474# Convert from an sdb register number to an internal gdb register number.
ea480a30 475m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 476# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 477# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
478m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479m;const char *;register_name;int regnr;regnr;;0
9c04cab7 480
7b9ee6a8
DJ
481# Return the type of a register specified by the architecture. Only
482# the register cache should call this function directly; others should
483# use "register_type".
ea480a30 484M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 485
ea480a30 486M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
669fac23 487# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 488# deprecated_fp_regnum.
ea480a30 489v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 490
ea480a30
SM
491M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 494
7eb89530 495# Return true if the code of FRAME is writable.
ea480a30 496m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 497
ea480a30
SM
498m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
501# MAP a GDB RAW register number onto a simulator register number. See
502# also include/...-sim.h.
ea480a30
SM
503m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
506
507# Determine the address where a longjmp will land and save this address
508# in PC. Return nonzero on success.
509#
510# FRAME corresponds to the longjmp frame.
ea480a30 511F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 512
104c1213 513#
ea480a30 514v;int;believe_pcc_promotion;;;;;;;
104c1213 515#
ea480a30
SM
516m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 519# Construct a value representing the contents of register REGNUM in
2ed3c037 520# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
521# allocate and return a struct value with all value attributes
522# (but not the value contents) filled in.
ea480a30 523m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 524#
ea480a30
SM
525m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 528
6a3a010b
MR
529# Return the return-value convention that will be used by FUNCTION
530# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
531# case the return convention is computed based only on VALTYPE.
532#
533# If READBUF is not NULL, extract the return value and save it in this buffer.
534#
535# If WRITEBUF is not NULL, it contains a return value which will be
536# stored into the appropriate register. This can be used when we want
537# to force the value returned by a function (see the "return" command
538# for instance).
ea480a30 539M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 540
18648a37
YQ
541# Return true if the return value of function is stored in the first hidden
542# parameter. In theory, this feature should be language-dependent, specified
543# by language and its ABI, such as C++. Unfortunately, compiler may
544# implement it to a target-dependent feature. So that we need such hook here
545# to be aware of this in GDB.
ea480a30 546m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 547
ea480a30
SM
548m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
550# On some platforms, a single function may provide multiple entry points,
551# e.g. one that is used for function-pointer calls and a different one
552# that is used for direct function calls.
553# In order to ensure that breakpoints set on the function will trigger
554# no matter via which entry point the function is entered, a platform
555# may provide the skip_entrypoint callback. It is called with IP set
556# to the main entry point of a function (as determined by the symbol table),
557# and should return the address of the innermost entry point, where the
558# actual breakpoint needs to be set. Note that skip_entrypoint is used
559# by GDB common code even when debugging optimized code, where skip_prologue
560# is not used.
ea480a30 561M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 562
ea480a30
SM
563f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
565
566# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 567m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
568
569# Return the software breakpoint from KIND. KIND can have target
570# specific meaning like the Z0 kind parameter.
571# SIZE is set to the software breakpoint's length in memory.
ea480a30 572m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 573
833b7ab5
YQ
574# Return the breakpoint kind for this target based on the current
575# processor state (e.g. the current instruction mode on ARM) and the
576# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 577m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 578
ea480a30
SM
579M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
583
584# A function can be addressed by either it's "pointer" (possibly a
585# descriptor address) or "entry point" (first executable instruction).
586# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 587# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
588# a simplified subset of that functionality - the function's address
589# corresponds to the "function pointer" and the function's start
590# corresponds to the "function entry point" - and hence is redundant.
591
ea480a30 592v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 593
123dc839
DJ
594# Return the remote protocol register number associated with this
595# register. Normally the identity mapping.
ea480a30 596m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 597
b2756930 598# Fetch the target specific address used to represent a load module.
ea480a30 599F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
104c1213 600#
ea480a30
SM
601v;CORE_ADDR;frame_args_skip;;;0;;;0
602M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
42efa47a
AC
604# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605# frame-base. Enable frame-base before frame-unwind.
ea480a30 606F;int;frame_num_args;struct frame_info *frame;frame
104c1213 607#
ea480a30
SM
608M;CORE_ADDR;frame_align;CORE_ADDR address;address
609m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610v;int;frame_red_zone_size
f0d4cc9e 611#
ea480a30 612m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
613# On some machines there are bits in addresses which are not really
614# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 615# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
616# we get a "real" address such as one would find in a symbol table.
617# This is used only for addresses of instructions, and even then I'm
618# not sure it's used in all contexts. It exists to deal with there
619# being a few stray bits in the PC which would mislead us, not as some
620# sort of generic thing to handle alignment or segmentation (it's
621# possible it should be in TARGET_READ_PC instead).
ea480a30 622m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b
UW
623
624# FIXME/cagney/2001-01-18: This should be split in two. A target method that
625# indicates if the target needs software single step. An ISA method to
626# implement it.
627#
e6590a1b
UW
628# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
629# target can single step. If not, then implement single step using breakpoints.
64c4637f 630#
93f9a11f
YQ
631# Return a vector of addresses on which the software single step
632# breakpoints should be inserted. NULL means software single step is
633# not used.
634# Multiple breakpoints may be inserted for some instructions such as
635# conditional branch. However, each implementation must always evaluate
636# the condition and only put the breakpoint at the branch destination if
637# the condition is true, so that we ensure forward progress when stepping
638# past a conditional branch to self.
a0ff9e1a 639F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 640
3352ef37
AC
641# Return non-zero if the processor is executing a delay slot and a
642# further single-step is needed before the instruction finishes.
ea480a30 643M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 644# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 645# disassembler. Perhaps objdump can handle it?
39503f82 646f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 647f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
648
649
cfd8ab24 650# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
651# evaluates non-zero, this is the address where the debugger will place
652# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 653m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 654# Some systems also have trampoline code for returning from shared libs.
ea480a30 655m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 656
c12260ac
CV
657# A target might have problems with watchpoints as soon as the stack
658# frame of the current function has been destroyed. This mostly happens
c9cf6e20 659# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
660# is defined to return a non-zero value if either the given addr is one
661# instruction after the stack destroying instruction up to the trailing
662# return instruction or if we can figure out that the stack frame has
663# already been invalidated regardless of the value of addr. Targets
664# which don't suffer from that problem could just let this functionality
665# untouched.
ea480a30 666m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
667# Process an ELF symbol in the minimal symbol table in a backend-specific
668# way. Normally this hook is supposed to do nothing, however if required,
669# then this hook can be used to apply tranformations to symbols that are
670# considered special in some way. For example the MIPS backend uses it
671# to interpret \`st_other' information to mark compressed code symbols so
672# that they can be treated in the appropriate manner in the processing of
673# the main symbol table and DWARF-2 records.
ea480a30
SM
674F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
675f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
676# Process a symbol in the main symbol table in a backend-specific way.
677# Normally this hook is supposed to do nothing, however if required,
678# then this hook can be used to apply tranformations to symbols that
679# are considered special in some way. This is currently used by the
680# MIPS backend to make sure compressed code symbols have the ISA bit
681# set. This in turn is needed for symbol values seen in GDB to match
682# the values used at the runtime by the program itself, for function
683# and label references.
ea480a30 684f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
685# Adjust the address retrieved from a DWARF-2 record other than a line
686# entry in a backend-specific way. Normally this hook is supposed to
687# return the address passed unchanged, however if that is incorrect for
688# any reason, then this hook can be used to fix the address up in the
689# required manner. This is currently used by the MIPS backend to make
690# sure addresses in FDE, range records, etc. referring to compressed
691# code have the ISA bit set, matching line information and the symbol
692# table.
ea480a30 693f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
694# Adjust the address updated by a line entry in a backend-specific way.
695# Normally this hook is supposed to return the address passed unchanged,
696# however in the case of inconsistencies in these records, this hook can
697# be used to fix them up in the required manner. This is currently used
698# by the MIPS backend to make sure all line addresses in compressed code
699# are presented with the ISA bit set, which is not always the case. This
700# in turn ensures breakpoint addresses are correctly matched against the
701# stop PC.
ea480a30
SM
702f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
703v;int;cannot_step_breakpoint;;;0;0;;0
704v;int;have_nonsteppable_watchpoint;;;0;0;;0
705F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
706M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
707# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
708# FS are passed from the generic execute_cfa_program function.
ea480a30 709m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
710
711# Return the appropriate type_flags for the supplied address class.
712# This function should return 1 if the address class was recognized and
713# type_flags was set, zero otherwise.
ea480a30 714M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 715# Is a register in a group
ea480a30 716m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 717# Fetch the pointer to the ith function argument.
ea480a30 718F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 719
5aa82d05
AA
720# Iterate over all supported register notes in a core file. For each
721# supported register note section, the iterator must call CB and pass
722# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
723# the supported register note sections based on the current register
724# values. Otherwise it should enumerate all supported register note
725# sections.
ea480a30 726M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 727
6432734d 728# Create core file notes
ea480a30 729M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 730
35c2fab7 731# Find core file memory regions
ea480a30 732M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 733
de584861 734# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
735# core file into buffer READBUF with length LEN. Return the number of bytes read
736# (zero indicates failure).
737# failed, otherwise, return the red length of READBUF.
ea480a30 738M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 739
356a5233
JB
740# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
741# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 742# Return the number of bytes read (zero indicates failure).
ea480a30 743M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 744
c0edd9ed 745# How the core target converts a PTID from a core file to a string.
ea480a30 746M;const char *;core_pid_to_str;ptid_t ptid;ptid
28439f5e 747
4dfc5dbc 748# How the core target extracts the name of a thread from a core file.
ea480a30 749M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 750
382b69bb
JB
751# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
752# from core file into buffer READBUF with length LEN. Return the number
753# of bytes read (zero indicates EOF, a negative value indicates failure).
754M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
755
a78c2d62 756# BFD target to use when generating a core file.
ea480a30 757V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 758
0d5de010
DJ
759# If the elements of C++ vtables are in-place function descriptors rather
760# than normal function pointers (which may point to code or a descriptor),
761# set this to one.
ea480a30 762v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
763
764# Set if the least significant bit of the delta is used instead of the least
765# significant bit of the pfn for pointers to virtual member functions.
ea480a30 766v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
767
768# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 769f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 770
1668ae25 771# The maximum length of an instruction on this architecture in bytes.
ea480a30 772V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
773
774# Copy the instruction at FROM to TO, and make any adjustments
775# necessary to single-step it at that address.
776#
777# REGS holds the state the thread's registers will have before
778# executing the copied instruction; the PC in REGS will refer to FROM,
779# not the copy at TO. The caller should update it to point at TO later.
780#
781# Return a pointer to data of the architecture's choice to be passed
782# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
783# the instruction's effects have been completely simulated, with the
784# resulting state written back to REGS.
785#
786# For a general explanation of displaced stepping and how GDB uses it,
787# see the comments in infrun.c.
788#
789# The TO area is only guaranteed to have space for
790# gdbarch_max_insn_length (arch) bytes, so this function must not
791# write more bytes than that to that area.
792#
793# If you do not provide this function, GDB assumes that the
794# architecture does not support displaced stepping.
795#
796# If your architecture doesn't need to adjust instructions before
797# single-stepping them, consider using simple_displaced_step_copy_insn
798# here.
7f03bd92
PA
799#
800# If the instruction cannot execute out of line, return NULL. The
801# core falls back to stepping past the instruction in-line instead in
802# that case.
ea480a30 803M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 804
99e40580
UW
805# Return true if GDB should use hardware single-stepping to execute
806# the displaced instruction identified by CLOSURE. If false,
807# GDB will simply restart execution at the displaced instruction
808# location, and it is up to the target to ensure GDB will receive
809# control again (e.g. by placing a software breakpoint instruction
810# into the displaced instruction buffer).
811#
812# The default implementation returns false on all targets that
813# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 814m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 815
237fc4c9
PA
816# Fix up the state resulting from successfully single-stepping a
817# displaced instruction, to give the result we would have gotten from
818# stepping the instruction in its original location.
819#
820# REGS is the register state resulting from single-stepping the
821# displaced instruction.
822#
823# CLOSURE is the result from the matching call to
824# gdbarch_displaced_step_copy_insn.
825#
826# If you provide gdbarch_displaced_step_copy_insn.but not this
827# function, then GDB assumes that no fixup is needed after
828# single-stepping the instruction.
829#
830# For a general explanation of displaced stepping and how GDB uses it,
831# see the comments in infrun.c.
ea480a30 832M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 833
237fc4c9
PA
834# Return the address of an appropriate place to put displaced
835# instructions while we step over them. There need only be one such
836# place, since we're only stepping one thread over a breakpoint at a
837# time.
838#
839# For a general explanation of displaced stepping and how GDB uses it,
840# see the comments in infrun.c.
ea480a30 841m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 842
dde08ee1
PA
843# Relocate an instruction to execute at a different address. OLDLOC
844# is the address in the inferior memory where the instruction to
845# relocate is currently at. On input, TO points to the destination
846# where we want the instruction to be copied (and possibly adjusted)
847# to. On output, it points to one past the end of the resulting
848# instruction(s). The effect of executing the instruction at TO shall
849# be the same as if executing it at FROM. For example, call
850# instructions that implicitly push the return address on the stack
851# should be adjusted to return to the instruction after OLDLOC;
852# relative branches, and other PC-relative instructions need the
853# offset adjusted; etc.
ea480a30 854M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 855
1c772458 856# Refresh overlay mapped state for section OSECT.
ea480a30 857F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 858
ea480a30 859M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
860
861# Handle special encoding of static variables in stabs debug info.
ea480a30 862F;const char *;static_transform_name;const char *name;name
203c3895 863# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 864v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 865
0508c3ec
HZ
866# Parse the instruction at ADDR storing in the record execution log
867# the registers REGCACHE and memory ranges that will be affected when
868# the instruction executes, along with their current values.
869# Return -1 if something goes wrong, 0 otherwise.
ea480a30 870M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 871
3846b520
HZ
872# Save process state after a signal.
873# Return -1 if something goes wrong, 0 otherwise.
ea480a30 874M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 875
22203bbf 876# Signal translation: translate inferior's signal (target's) number
86b49880
PA
877# into GDB's representation. The implementation of this method must
878# be host independent. IOW, don't rely on symbols of the NAT_FILE
879# header (the nm-*.h files), the host <signal.h> header, or similar
880# headers. This is mainly used when cross-debugging core files ---
881# "Live" targets hide the translation behind the target interface
1f8cf220 882# (target_wait, target_resume, etc.).
ea480a30 883M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 884
eb14d406
SDJ
885# Signal translation: translate the GDB's internal signal number into
886# the inferior's signal (target's) representation. The implementation
887# of this method must be host independent. IOW, don't rely on symbols
888# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
889# header, or similar headers.
890# Return the target signal number if found, or -1 if the GDB internal
891# signal number is invalid.
ea480a30 892M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 893
4aa995e1
PA
894# Extra signal info inspection.
895#
896# Return a type suitable to inspect extra signal information.
ea480a30 897M;struct type *;get_siginfo_type;void;
4aa995e1 898
60c5725c 899# Record architecture-specific information from the symbol table.
ea480a30 900M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 901
a96d9b2e
SDJ
902# Function for the 'catch syscall' feature.
903
904# Get architecture-specific system calls information from registers.
ea480a30 905M;LONGEST;get_syscall_number;ptid_t ptid;ptid
a96d9b2e 906
458c8db8 907# The filename of the XML syscall for this architecture.
ea480a30 908v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
909
910# Information about system calls from this architecture
ea480a30 911v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 912
55aa24fb
SDJ
913# SystemTap related fields and functions.
914
05c0465e
SDJ
915# A NULL-terminated array of prefixes used to mark an integer constant
916# on the architecture's assembly.
55aa24fb
SDJ
917# For example, on x86 integer constants are written as:
918#
919# \$10 ;; integer constant 10
920#
921# in this case, this prefix would be the character \`\$\'.
ea480a30 922v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 923
05c0465e
SDJ
924# A NULL-terminated array of suffixes used to mark an integer constant
925# on the architecture's assembly.
ea480a30 926v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 927
05c0465e
SDJ
928# A NULL-terminated array of prefixes used to mark a register name on
929# the architecture's assembly.
55aa24fb
SDJ
930# For example, on x86 the register name is written as:
931#
932# \%eax ;; register eax
933#
934# in this case, this prefix would be the character \`\%\'.
ea480a30 935v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 936
05c0465e
SDJ
937# A NULL-terminated array of suffixes used to mark a register name on
938# the architecture's assembly.
ea480a30 939v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 940
05c0465e
SDJ
941# A NULL-terminated array of prefixes used to mark a register
942# indirection on the architecture's assembly.
55aa24fb
SDJ
943# For example, on x86 the register indirection is written as:
944#
945# \(\%eax\) ;; indirecting eax
946#
947# in this case, this prefix would be the charater \`\(\'.
948#
949# Please note that we use the indirection prefix also for register
950# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 951v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 952
05c0465e
SDJ
953# A NULL-terminated array of suffixes used to mark a register
954# indirection on the architecture's assembly.
55aa24fb
SDJ
955# For example, on x86 the register indirection is written as:
956#
957# \(\%eax\) ;; indirecting eax
958#
959# in this case, this prefix would be the charater \`\)\'.
960#
961# Please note that we use the indirection suffix also for register
962# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 963v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 964
05c0465e 965# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
966#
967# For example, on PPC a register is represented by a number in the assembly
968# language (e.g., \`10\' is the 10th general-purpose register). However,
969# inside GDB this same register has an \`r\' appended to its name, so the 10th
970# register would be represented as \`r10\' internally.
ea480a30 971v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
972
973# Suffix used to name a register using GDB's nomenclature.
ea480a30 974v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
975
976# Check if S is a single operand.
977#
978# Single operands can be:
979# \- Literal integers, e.g. \`\$10\' on x86
980# \- Register access, e.g. \`\%eax\' on x86
981# \- Register indirection, e.g. \`\(\%eax\)\' on x86
982# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
983#
984# This function should check for these patterns on the string
985# and return 1 if some were found, or zero otherwise. Please try to match
986# as much info as you can from the string, i.e., if you have to match
987# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 988M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
989
990# Function used to handle a "special case" in the parser.
991#
992# A "special case" is considered to be an unknown token, i.e., a token
993# that the parser does not know how to parse. A good example of special
994# case would be ARM's register displacement syntax:
995#
996# [R0, #4] ;; displacing R0 by 4
997#
998# Since the parser assumes that a register displacement is of the form:
999#
1000# <number> <indirection_prefix> <register_name> <indirection_suffix>
1001#
1002# it means that it will not be able to recognize and parse this odd syntax.
1003# Therefore, we should add a special case function that will handle this token.
1004#
1005# This function should generate the proper expression form of the expression
1006# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1007# and so on). It should also return 1 if the parsing was successful, or zero
1008# if the token was not recognized as a special token (in this case, returning
1009# zero means that the special parser is deferring the parsing to the generic
1010# parser), and should advance the buffer pointer (p->arg).
ea480a30 1011M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1012
8b367e17
JM
1013# DTrace related functions.
1014
1015# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1016# NARG must be >= 0.
ea480a30 1017M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
8b367e17
JM
1018
1019# True if the given ADDR does not contain the instruction sequence
1020# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1021M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1022
1023# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1024M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1025
1026# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1027M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1028
50c71eaf
PA
1029# True if the list of shared libraries is one and only for all
1030# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1031# This usually means that all processes, although may or may not share
1032# an address space, will see the same set of symbols at the same
1033# addresses.
ea480a30 1034v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1035
1036# On some targets, even though each inferior has its own private
1037# address space, the debug interface takes care of making breakpoints
1038# visible to all address spaces automatically. For such cases,
1039# this property should be set to true.
ea480a30 1040v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1041
1042# True if inferiors share an address space (e.g., uClinux).
ea480a30 1043m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1044
1045# True if a fast tracepoint can be set at an address.
ea480a30 1046m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1047
5f034a78
MK
1048# Guess register state based on tracepoint location. Used for tracepoints
1049# where no registers have been collected, but there's only one location,
1050# allowing us to guess the PC value, and perhaps some other registers.
1051# On entry, regcache has all registers marked as unavailable.
ea480a30 1052m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1053
f870a310 1054# Return the "auto" target charset.
ea480a30 1055f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1056# Return the "auto" target wide charset.
ea480a30 1057f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1058
1059# If non-empty, this is a file extension that will be opened in place
1060# of the file extension reported by the shared library list.
1061#
1062# This is most useful for toolchains that use a post-linker tool,
1063# where the names of the files run on the target differ in extension
1064# compared to the names of the files GDB should load for debug info.
ea480a30 1065v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1066
1067# If true, the target OS has DOS-based file system semantics. That
1068# is, absolute paths include a drive name, and the backslash is
1069# considered a directory separator.
ea480a30 1070v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1071
1072# Generate bytecodes to collect the return address in a frame.
1073# Since the bytecodes run on the target, possibly with GDB not even
1074# connected, the full unwinding machinery is not available, and
1075# typically this function will issue bytecodes for one or more likely
1076# places that the return address may be found.
ea480a30 1077m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1078
3030c96e 1079# Implement the "info proc" command.
ea480a30 1080M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1081
451b7c33
TT
1082# Implement the "info proc" command for core files. Noe that there
1083# are two "info_proc"-like methods on gdbarch -- one for core files,
1084# one for live targets.
ea480a30 1085M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1086
19630284
JB
1087# Iterate over all objfiles in the order that makes the most sense
1088# for the architecture to make global symbol searches.
1089#
1090# CB is a callback function where OBJFILE is the objfile to be searched,
1091# and CB_DATA a pointer to user-defined data (the same data that is passed
1092# when calling this gdbarch method). The iteration stops if this function
1093# returns nonzero.
1094#
1095# CB_DATA is a pointer to some user-defined data to be passed to
1096# the callback.
1097#
1098# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1099# inspected when the symbol search was requested.
ea480a30 1100m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1101
7e35103a 1102# Ravenscar arch-dependent ops.
ea480a30 1103v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1104
1105# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1106m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1107
1108# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1109m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1110
1111# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1112m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1113
1114# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1115# Return 0 if *READPTR is already at the end of the buffer.
1116# Return -1 if there is insufficient buffer for a whole entry.
1117# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1118M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1119
2faa3447
JB
1120# Print the description of a single auxv entry described by TYPE and VAL
1121# to FILE.
ea480a30 1122m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1123
3437254d
PA
1124# Find the address range of the current inferior's vsyscall/vDSO, and
1125# write it to *RANGE. If the vsyscall's length can't be determined, a
1126# range with zero length is returned. Returns true if the vsyscall is
1127# found, false otherwise.
ea480a30 1128m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1129
1130# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1131# PROT has GDB_MMAP_PROT_* bitmask format.
1132# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1133f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1134
7f361056
JK
1135# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1136# Print a warning if it is not possible.
ea480a30 1137f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1138
f208eee0
JK
1139# Return string (caller has to use xfree for it) with options for GCC
1140# to produce code for this target, typically "-m64", "-m32" or "-m31".
1141# These options are put before CU's DW_AT_producer compilation options so that
1142# they can override it. Method may also return NULL.
ea480a30 1143m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1144
1145# Return a regular expression that matches names used by this
1146# architecture in GNU configury triplets. The result is statically
1147# allocated and must not be freed. The default implementation simply
1148# returns the BFD architecture name, which is correct in nearly every
1149# case.
ea480a30 1150m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1151
1152# Return the size in 8-bit bytes of an addressable memory unit on this
1153# architecture. This corresponds to the number of 8-bit bytes associated to
1154# each address in memory.
ea480a30 1155m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1156
65b48a81 1157# Functions for allowing a target to modify its disassembler options.
ea480a30
SM
1158v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1159v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1160
104c1213 1161EOF
104c1213
JM
1162}
1163
0b8f9e4d
AC
1164#
1165# The .log file
1166#
1167exec > new-gdbarch.log
34620563 1168function_list | while do_read
0b8f9e4d
AC
1169do
1170 cat <<EOF
2f9b146e 1171${class} ${returntype} ${function} ($formal)
104c1213 1172EOF
3d9a5942
AC
1173 for r in ${read}
1174 do
1175 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1176 done
f0d4cc9e 1177 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1178 then
66d659b1 1179 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1180 kill $$
1181 exit 1
1182 fi
72e74a21 1183 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1184 then
1185 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1186 kill $$
1187 exit 1
1188 fi
a72293e2
AC
1189 if class_is_multiarch_p
1190 then
1191 if class_is_predicate_p ; then :
1192 elif test "x${predefault}" = "x"
1193 then
2f9b146e 1194 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1195 kill $$
1196 exit 1
1197 fi
1198 fi
3d9a5942 1199 echo ""
0b8f9e4d
AC
1200done
1201
1202exec 1>&2
1203compare_new gdbarch.log
1204
104c1213
JM
1205
1206copyright ()
1207{
1208cat <<EOF
c4bfde41
JK
1209/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1210/* vi:set ro: */
59233f88 1211
104c1213 1212/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1213
61baf725 1214 Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
1215
1216 This file is part of GDB.
1217
1218 This program is free software; you can redistribute it and/or modify
1219 it under the terms of the GNU General Public License as published by
50efebf8 1220 the Free Software Foundation; either version 3 of the License, or
104c1213 1221 (at your option) any later version.
618f726f 1222
104c1213
JM
1223 This program is distributed in the hope that it will be useful,
1224 but WITHOUT ANY WARRANTY; without even the implied warranty of
1225 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1226 GNU General Public License for more details.
618f726f 1227
104c1213 1228 You should have received a copy of the GNU General Public License
50efebf8 1229 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1230
104c1213
JM
1231/* This file was created with the aid of \`\`gdbarch.sh''.
1232
52204a0b 1233 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1234 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1235 against the existing \`\`gdbarch.[hc]''. Any differences found
1236 being reported.
1237
1238 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1239 changes into that script. Conversely, when making sweeping changes
104c1213 1240 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1241 easier. */
104c1213
JM
1242
1243EOF
1244}
1245
1246#
1247# The .h file
1248#
1249
1250exec > new-gdbarch.h
1251copyright
1252cat <<EOF
1253#ifndef GDBARCH_H
1254#define GDBARCH_H
1255
a0ff9e1a 1256#include <vector>
eb7a547a 1257#include "frame.h"
65b48a81 1258#include "dis-asm.h"
eb7a547a 1259
da3331ec
AC
1260struct floatformat;
1261struct ui_file;
104c1213 1262struct value;
b6af0555 1263struct objfile;
1c772458 1264struct obj_section;
a2cf933a 1265struct minimal_symbol;
049ee0e4 1266struct regcache;
b59ff9d5 1267struct reggroup;
6ce6d90f 1268struct regset;
a89aa300 1269struct disassemble_info;
e2d0e7eb 1270struct target_ops;
030f20e1 1271struct obstack;
8181d85f 1272struct bp_target_info;
424163ea 1273struct target_desc;
3e29f34a 1274struct symbol;
237fc4c9 1275struct displaced_step_closure;
a96d9b2e 1276struct syscall;
175ff332 1277struct agent_expr;
6710bf39 1278struct axs_value;
55aa24fb 1279struct stap_parse_info;
8b367e17 1280struct parser_state;
7e35103a 1281struct ravenscar_arch_ops;
3437254d 1282struct mem_range;
458c8db8 1283struct syscalls_info;
4dfc5dbc 1284struct thread_info;
012b3a21 1285struct ui_out;
104c1213 1286
8a526fa6
PA
1287#include "regcache.h"
1288
6ecd4729
PA
1289/* The architecture associated with the inferior through the
1290 connection to the target.
1291
1292 The architecture vector provides some information that is really a
1293 property of the inferior, accessed through a particular target:
1294 ptrace operations; the layout of certain RSP packets; the solib_ops
1295 vector; etc. To differentiate architecture accesses to
1296 per-inferior/target properties from
1297 per-thread/per-frame/per-objfile properties, accesses to
1298 per-inferior/target properties should be made through this
1299 gdbarch. */
1300
1301/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1302extern struct gdbarch *target_gdbarch (void);
6ecd4729 1303
19630284
JB
1304/* Callback type for the 'iterate_over_objfiles_in_search_order'
1305 gdbarch method. */
1306
1307typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1308 (struct objfile *objfile, void *cb_data);
5aa82d05 1309
1528345d
AA
1310/* Callback type for regset section iterators. The callback usually
1311 invokes the REGSET's supply or collect method, to which it must
1312 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1313 section name, and HUMAN_NAME is used for diagnostic messages.
1314 CB_DATA should have been passed unchanged through the iterator. */
1315
5aa82d05 1316typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1317 (const char *sect_name, int size, const struct regset *regset,
1318 const char *human_name, void *cb_data);
104c1213
JM
1319EOF
1320
1321# function typedef's
3d9a5942
AC
1322printf "\n"
1323printf "\n"
0963b4bd 1324printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1325function_list | while do_read
104c1213 1326do
2ada493a
AC
1327 if class_is_info_p
1328 then
3d9a5942
AC
1329 printf "\n"
1330 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1331 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1332 fi
104c1213
JM
1333done
1334
1335# function typedef's
3d9a5942
AC
1336printf "\n"
1337printf "\n"
0963b4bd 1338printf "/* The following are initialized by the target dependent code. */\n"
34620563 1339function_list | while do_read
104c1213 1340do
72e74a21 1341 if [ -n "${comment}" ]
34620563
AC
1342 then
1343 echo "${comment}" | sed \
1344 -e '2 s,#,/*,' \
1345 -e '3,$ s,#, ,' \
1346 -e '$ s,$, */,'
1347 fi
412d5987
AC
1348
1349 if class_is_predicate_p
2ada493a 1350 then
412d5987
AC
1351 printf "\n"
1352 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1353 fi
2ada493a
AC
1354 if class_is_variable_p
1355 then
3d9a5942
AC
1356 printf "\n"
1357 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1358 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1359 fi
1360 if class_is_function_p
1361 then
3d9a5942 1362 printf "\n"
72e74a21 1363 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1364 then
1365 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1366 elif class_is_multiarch_p
1367 then
1368 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1369 else
1370 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1371 fi
72e74a21 1372 if [ "x${formal}" = "xvoid" ]
104c1213 1373 then
3d9a5942 1374 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1375 else
3d9a5942 1376 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1377 fi
3d9a5942 1378 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1379 fi
104c1213
JM
1380done
1381
1382# close it off
1383cat <<EOF
1384
a96d9b2e
SDJ
1385/* Definition for an unknown syscall, used basically in error-cases. */
1386#define UNKNOWN_SYSCALL (-1)
1387
104c1213
JM
1388extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1389
1390
1391/* Mechanism for co-ordinating the selection of a specific
1392 architecture.
1393
1394 GDB targets (*-tdep.c) can register an interest in a specific
1395 architecture. Other GDB components can register a need to maintain
1396 per-architecture data.
1397
1398 The mechanisms below ensures that there is only a loose connection
1399 between the set-architecture command and the various GDB
0fa6923a 1400 components. Each component can independently register their need
104c1213
JM
1401 to maintain architecture specific data with gdbarch.
1402
1403 Pragmatics:
1404
1405 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1406 didn't scale.
1407
1408 The more traditional mega-struct containing architecture specific
1409 data for all the various GDB components was also considered. Since
0fa6923a 1410 GDB is built from a variable number of (fairly independent)
104c1213 1411 components it was determined that the global aproach was not
0963b4bd 1412 applicable. */
104c1213
JM
1413
1414
1415/* Register a new architectural family with GDB.
1416
1417 Register support for the specified ARCHITECTURE with GDB. When
1418 gdbarch determines that the specified architecture has been
1419 selected, the corresponding INIT function is called.
1420
1421 --
1422
1423 The INIT function takes two parameters: INFO which contains the
1424 information available to gdbarch about the (possibly new)
1425 architecture; ARCHES which is a list of the previously created
1426 \`\`struct gdbarch'' for this architecture.
1427
0f79675b 1428 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1429 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1430
1431 The ARCHES parameter is a linked list (sorted most recently used)
1432 of all the previously created architures for this architecture
1433 family. The (possibly NULL) ARCHES->gdbarch can used to access
1434 values from the previously selected architecture for this
59837fe0 1435 architecture family.
104c1213
JM
1436
1437 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1438 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1439 gdbarch'' from the ARCHES list - indicating that the new
1440 architecture is just a synonym for an earlier architecture (see
1441 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1442 - that describes the selected architecture (see gdbarch_alloc()).
1443
1444 The DUMP_TDEP function shall print out all target specific values.
1445 Care should be taken to ensure that the function works in both the
0963b4bd 1446 multi-arch and non- multi-arch cases. */
104c1213
JM
1447
1448struct gdbarch_list
1449{
1450 struct gdbarch *gdbarch;
1451 struct gdbarch_list *next;
1452};
1453
1454struct gdbarch_info
1455{
0963b4bd 1456 /* Use default: NULL (ZERO). */
104c1213
JM
1457 const struct bfd_arch_info *bfd_arch_info;
1458
428721aa 1459 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1460 enum bfd_endian byte_order;
104c1213 1461
94123b4f 1462 enum bfd_endian byte_order_for_code;
9d4fde75 1463
0963b4bd 1464 /* Use default: NULL (ZERO). */
104c1213
JM
1465 bfd *abfd;
1466
0963b4bd 1467 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1468 union
1469 {
1470 /* Architecture-specific information. The generic form for targets
1471 that have extra requirements. */
1472 struct gdbarch_tdep_info *tdep_info;
1473
1474 /* Architecture-specific target description data. Numerous targets
1475 need only this, so give them an easy way to hold it. */
1476 struct tdesc_arch_data *tdesc_data;
1477
1478 /* SPU file system ID. This is a single integer, so using the
1479 generic form would only complicate code. Other targets may
1480 reuse this member if suitable. */
1481 int *id;
1482 };
4be87837
DJ
1483
1484 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1485 enum gdb_osabi osabi;
424163ea
DJ
1486
1487 /* Use default: NULL (ZERO). */
1488 const struct target_desc *target_desc;
104c1213
JM
1489};
1490
1491typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1492typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1493
4b9b3959 1494/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1495extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1496
4b9b3959
AC
1497extern void gdbarch_register (enum bfd_architecture architecture,
1498 gdbarch_init_ftype *,
1499 gdbarch_dump_tdep_ftype *);
1500
104c1213 1501
b4a20239
AC
1502/* Return a freshly allocated, NULL terminated, array of the valid
1503 architecture names. Since architectures are registered during the
1504 _initialize phase this function only returns useful information
0963b4bd 1505 once initialization has been completed. */
b4a20239
AC
1506
1507extern const char **gdbarch_printable_names (void);
1508
1509
104c1213 1510/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1511 matches the information provided by INFO. */
104c1213 1512
424163ea 1513extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1514
1515
1516/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1517 basic initialization using values obtained from the INFO and TDEP
104c1213 1518 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1519 initialization of the object. */
104c1213
JM
1520
1521extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1522
1523
4b9b3959
AC
1524/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1525 It is assumed that the caller freeds the \`\`struct
0963b4bd 1526 gdbarch_tdep''. */
4b9b3959 1527
058f20d5
JB
1528extern void gdbarch_free (struct gdbarch *);
1529
1530
aebd7893
AC
1531/* Helper function. Allocate memory from the \`\`struct gdbarch''
1532 obstack. The memory is freed when the corresponding architecture
1533 is also freed. */
1534
1535extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1536#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1537#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1538
6c214e7c
PP
1539/* Duplicate STRING, returning an equivalent string that's allocated on the
1540 obstack associated with GDBARCH. The string is freed when the corresponding
1541 architecture is also freed. */
1542
1543extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1544
0963b4bd 1545/* Helper function. Force an update of the current architecture.
104c1213 1546
b732d07d
AC
1547 The actual architecture selected is determined by INFO, \`\`(gdb) set
1548 architecture'' et.al., the existing architecture and BFD's default
1549 architecture. INFO should be initialized to zero and then selected
1550 fields should be updated.
104c1213 1551
0963b4bd 1552 Returns non-zero if the update succeeds. */
16f33e29
AC
1553
1554extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1555
1556
ebdba546
AC
1557/* Helper function. Find an architecture matching info.
1558
1559 INFO should be initialized using gdbarch_info_init, relevant fields
1560 set, and then finished using gdbarch_info_fill.
1561
1562 Returns the corresponding architecture, or NULL if no matching
59837fe0 1563 architecture was found. */
ebdba546
AC
1564
1565extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1566
1567
aff68abb 1568/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1569
aff68abb 1570extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1571
104c1213
JM
1572
1573/* Register per-architecture data-pointer.
1574
1575 Reserve space for a per-architecture data-pointer. An identifier
1576 for the reserved data-pointer is returned. That identifer should
95160752 1577 be saved in a local static variable.
104c1213 1578
fcc1c85c
AC
1579 Memory for the per-architecture data shall be allocated using
1580 gdbarch_obstack_zalloc. That memory will be deleted when the
1581 corresponding architecture object is deleted.
104c1213 1582
95160752
AC
1583 When a previously created architecture is re-selected, the
1584 per-architecture data-pointer for that previous architecture is
76860b5f 1585 restored. INIT() is not re-called.
104c1213
JM
1586
1587 Multiple registrarants for any architecture are allowed (and
1588 strongly encouraged). */
1589
95160752 1590struct gdbarch_data;
104c1213 1591
030f20e1
AC
1592typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1593extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1594typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1595extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1596extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1597 struct gdbarch_data *data,
1598 void *pointer);
104c1213 1599
451fbdda 1600extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1601
1602
0fa6923a 1603/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1604 byte-order, ...) using information found in the BFD. */
104c1213
JM
1605
1606extern void set_gdbarch_from_file (bfd *);
1607
1608
e514a9d6
JM
1609/* Initialize the current architecture to the "first" one we find on
1610 our list. */
1611
1612extern void initialize_current_architecture (void);
1613
104c1213 1614/* gdbarch trace variable */
ccce17b0 1615extern unsigned int gdbarch_debug;
104c1213 1616
4b9b3959 1617extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1618
1619#endif
1620EOF
1621exec 1>&2
1622#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1623compare_new gdbarch.h
104c1213
JM
1624
1625
1626#
1627# C file
1628#
1629
1630exec > new-gdbarch.c
1631copyright
1632cat <<EOF
1633
1634#include "defs.h"
7355ddba 1635#include "arch-utils.h"
104c1213 1636
104c1213 1637#include "gdbcmd.h"
faaf634c 1638#include "inferior.h"
104c1213
JM
1639#include "symcat.h"
1640
f0d4cc9e 1641#include "floatformat.h"
b59ff9d5 1642#include "reggroups.h"
4be87837 1643#include "osabi.h"
aebd7893 1644#include "gdb_obstack.h"
383f836e 1645#include "observer.h"
a3ecef73 1646#include "regcache.h"
19630284 1647#include "objfiles.h"
2faa3447 1648#include "auxv.h"
95160752 1649
104c1213
JM
1650/* Static function declarations */
1651
b3cc3077 1652static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1653
104c1213
JM
1654/* Non-zero if we want to trace architecture code. */
1655
1656#ifndef GDBARCH_DEBUG
1657#define GDBARCH_DEBUG 0
1658#endif
ccce17b0 1659unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1660static void
1661show_gdbarch_debug (struct ui_file *file, int from_tty,
1662 struct cmd_list_element *c, const char *value)
1663{
1664 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1665}
104c1213 1666
456fcf94 1667static const char *
8da61cc4 1668pformat (const struct floatformat **format)
456fcf94
AC
1669{
1670 if (format == NULL)
1671 return "(null)";
1672 else
8da61cc4
DJ
1673 /* Just print out one of them - this is only for diagnostics. */
1674 return format[0]->name;
456fcf94
AC
1675}
1676
08105857
PA
1677static const char *
1678pstring (const char *string)
1679{
1680 if (string == NULL)
1681 return "(null)";
1682 return string;
05c0465e
SDJ
1683}
1684
a121b7c1 1685static const char *
f7bb4e3a
PB
1686pstring_ptr (char **string)
1687{
1688 if (string == NULL || *string == NULL)
1689 return "(null)";
1690 return *string;
1691}
1692
05c0465e
SDJ
1693/* Helper function to print a list of strings, represented as "const
1694 char *const *". The list is printed comma-separated. */
1695
a121b7c1 1696static const char *
05c0465e
SDJ
1697pstring_list (const char *const *list)
1698{
1699 static char ret[100];
1700 const char *const *p;
1701 size_t offset = 0;
1702
1703 if (list == NULL)
1704 return "(null)";
1705
1706 ret[0] = '\0';
1707 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1708 {
1709 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1710 offset += 2 + s;
1711 }
1712
1713 if (offset > 0)
1714 {
1715 gdb_assert (offset - 2 < sizeof (ret));
1716 ret[offset - 2] = '\0';
1717 }
1718
1719 return ret;
08105857
PA
1720}
1721
104c1213
JM
1722EOF
1723
1724# gdbarch open the gdbarch object
3d9a5942 1725printf "\n"
0963b4bd 1726printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1727printf "\n"
1728printf "struct gdbarch\n"
1729printf "{\n"
76860b5f
AC
1730printf " /* Has this architecture been fully initialized? */\n"
1731printf " int initialized_p;\n"
aebd7893
AC
1732printf "\n"
1733printf " /* An obstack bound to the lifetime of the architecture. */\n"
1734printf " struct obstack *obstack;\n"
1735printf "\n"
0963b4bd 1736printf " /* basic architectural information. */\n"
34620563 1737function_list | while do_read
104c1213 1738do
2ada493a
AC
1739 if class_is_info_p
1740 then
3d9a5942 1741 printf " ${returntype} ${function};\n"
2ada493a 1742 fi
104c1213 1743done
3d9a5942 1744printf "\n"
0963b4bd 1745printf " /* target specific vector. */\n"
3d9a5942
AC
1746printf " struct gdbarch_tdep *tdep;\n"
1747printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1748printf "\n"
0963b4bd 1749printf " /* per-architecture data-pointers. */\n"
95160752 1750printf " unsigned nr_data;\n"
3d9a5942
AC
1751printf " void **data;\n"
1752printf "\n"
104c1213
JM
1753cat <<EOF
1754 /* Multi-arch values.
1755
1756 When extending this structure you must:
1757
1758 Add the field below.
1759
1760 Declare set/get functions and define the corresponding
1761 macro in gdbarch.h.
1762
1763 gdbarch_alloc(): If zero/NULL is not a suitable default,
1764 initialize the new field.
1765
1766 verify_gdbarch(): Confirm that the target updated the field
1767 correctly.
1768
7e73cedf 1769 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1770 field is dumped out
1771
104c1213
JM
1772 get_gdbarch(): Implement the set/get functions (probably using
1773 the macro's as shortcuts).
1774
1775 */
1776
1777EOF
34620563 1778function_list | while do_read
104c1213 1779do
2ada493a
AC
1780 if class_is_variable_p
1781 then
3d9a5942 1782 printf " ${returntype} ${function};\n"
2ada493a
AC
1783 elif class_is_function_p
1784 then
2f9b146e 1785 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1786 fi
104c1213 1787done
3d9a5942 1788printf "};\n"
104c1213 1789
104c1213 1790# Create a new gdbarch struct
104c1213 1791cat <<EOF
7de2341d 1792
66b43ecb 1793/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1794 \`\`struct gdbarch_info''. */
104c1213 1795EOF
3d9a5942 1796printf "\n"
104c1213
JM
1797cat <<EOF
1798struct gdbarch *
1799gdbarch_alloc (const struct gdbarch_info *info,
1800 struct gdbarch_tdep *tdep)
1801{
be7811ad 1802 struct gdbarch *gdbarch;
aebd7893
AC
1803
1804 /* Create an obstack for allocating all the per-architecture memory,
1805 then use that to allocate the architecture vector. */
70ba0933 1806 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1807 obstack_init (obstack);
8d749320 1808 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1809 memset (gdbarch, 0, sizeof (*gdbarch));
1810 gdbarch->obstack = obstack;
85de9627 1811
be7811ad 1812 alloc_gdbarch_data (gdbarch);
85de9627 1813
be7811ad 1814 gdbarch->tdep = tdep;
104c1213 1815EOF
3d9a5942 1816printf "\n"
34620563 1817function_list | while do_read
104c1213 1818do
2ada493a
AC
1819 if class_is_info_p
1820 then
be7811ad 1821 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1822 fi
104c1213 1823done
3d9a5942 1824printf "\n"
0963b4bd 1825printf " /* Force the explicit initialization of these. */\n"
34620563 1826function_list | while do_read
104c1213 1827do
2ada493a
AC
1828 if class_is_function_p || class_is_variable_p
1829 then
72e74a21 1830 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1831 then
be7811ad 1832 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1833 fi
2ada493a 1834 fi
104c1213
JM
1835done
1836cat <<EOF
1837 /* gdbarch_alloc() */
1838
be7811ad 1839 return gdbarch;
104c1213
JM
1840}
1841EOF
1842
058f20d5 1843# Free a gdbarch struct.
3d9a5942
AC
1844printf "\n"
1845printf "\n"
058f20d5 1846cat <<EOF
aebd7893
AC
1847/* Allocate extra space using the per-architecture obstack. */
1848
1849void *
1850gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1851{
1852 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1853
aebd7893
AC
1854 memset (data, 0, size);
1855 return data;
1856}
1857
6c214e7c
PP
1858/* See gdbarch.h. */
1859
1860char *
1861gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1862{
1863 return obstack_strdup (arch->obstack, string);
1864}
1865
aebd7893 1866
058f20d5
JB
1867/* Free a gdbarch struct. This should never happen in normal
1868 operation --- once you've created a gdbarch, you keep it around.
1869 However, if an architecture's init function encounters an error
1870 building the structure, it may need to clean up a partially
1871 constructed gdbarch. */
4b9b3959 1872
058f20d5
JB
1873void
1874gdbarch_free (struct gdbarch *arch)
1875{
aebd7893 1876 struct obstack *obstack;
05c547f6 1877
95160752 1878 gdb_assert (arch != NULL);
aebd7893
AC
1879 gdb_assert (!arch->initialized_p);
1880 obstack = arch->obstack;
1881 obstack_free (obstack, 0); /* Includes the ARCH. */
1882 xfree (obstack);
058f20d5
JB
1883}
1884EOF
1885
104c1213 1886# verify a new architecture
104c1213 1887cat <<EOF
db446970
AC
1888
1889
1890/* Ensure that all values in a GDBARCH are reasonable. */
1891
104c1213 1892static void
be7811ad 1893verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1894{
d7e74731 1895 string_file log;
05c547f6 1896
104c1213 1897 /* fundamental */
be7811ad 1898 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1899 log.puts ("\n\tbyte-order");
be7811ad 1900 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1901 log.puts ("\n\tbfd_arch_info");
0963b4bd 1902 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1903EOF
34620563 1904function_list | while do_read
104c1213 1905do
2ada493a
AC
1906 if class_is_function_p || class_is_variable_p
1907 then
72e74a21 1908 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1909 then
3d9a5942 1910 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1911 elif class_is_predicate_p
1912 then
0963b4bd 1913 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1914 # FIXME: See do_read for potential simplification
72e74a21 1915 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1916 then
3d9a5942 1917 printf " if (${invalid_p})\n"
be7811ad 1918 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1919 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1920 then
be7811ad
MD
1921 printf " if (gdbarch->${function} == ${predefault})\n"
1922 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1923 elif [ -n "${postdefault}" ]
f0d4cc9e 1924 then
be7811ad
MD
1925 printf " if (gdbarch->${function} == 0)\n"
1926 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1927 elif [ -n "${invalid_p}" ]
104c1213 1928 then
4d60522e 1929 printf " if (${invalid_p})\n"
d7e74731 1930 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1931 elif [ -n "${predefault}" ]
104c1213 1932 then
be7811ad 1933 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1934 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1935 fi
2ada493a 1936 fi
104c1213
JM
1937done
1938cat <<EOF
d7e74731 1939 if (!log.empty ())
f16a1923 1940 internal_error (__FILE__, __LINE__,
85c07804 1941 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1942 log.c_str ());
104c1213
JM
1943}
1944EOF
1945
1946# dump the structure
3d9a5942
AC
1947printf "\n"
1948printf "\n"
104c1213 1949cat <<EOF
0963b4bd 1950/* Print out the details of the current architecture. */
4b9b3959 1951
104c1213 1952void
be7811ad 1953gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1954{
b78960be 1955 const char *gdb_nm_file = "<not-defined>";
05c547f6 1956
b78960be
AC
1957#if defined (GDB_NM_FILE)
1958 gdb_nm_file = GDB_NM_FILE;
1959#endif
1960 fprintf_unfiltered (file,
1961 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1962 gdb_nm_file);
104c1213 1963EOF
ea480a30 1964function_list | sort '-t;' -k 3 | while do_read
104c1213 1965do
1e9f55d0
AC
1966 # First the predicate
1967 if class_is_predicate_p
1968 then
7996bcec 1969 printf " fprintf_unfiltered (file,\n"
48f7351b 1970 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1971 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1972 fi
48f7351b 1973 # Print the corresponding value.
283354d8 1974 if class_is_function_p
4b9b3959 1975 then
7996bcec 1976 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1977 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1978 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1979 else
48f7351b 1980 # It is a variable
2f9b146e
AC
1981 case "${print}:${returntype}" in
1982 :CORE_ADDR )
0b1553bc
UW
1983 fmt="%s"
1984 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1985 ;;
2f9b146e 1986 :* )
48f7351b 1987 fmt="%s"
623d3eb1 1988 print="plongest (gdbarch->${function})"
48f7351b
AC
1989 ;;
1990 * )
2f9b146e 1991 fmt="%s"
48f7351b
AC
1992 ;;
1993 esac
3d9a5942 1994 printf " fprintf_unfiltered (file,\n"
48f7351b 1995 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1996 printf " ${print});\n"
2ada493a 1997 fi
104c1213 1998done
381323f4 1999cat <<EOF
be7811ad
MD
2000 if (gdbarch->dump_tdep != NULL)
2001 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2002}
2003EOF
104c1213
JM
2004
2005
2006# GET/SET
3d9a5942 2007printf "\n"
104c1213
JM
2008cat <<EOF
2009struct gdbarch_tdep *
2010gdbarch_tdep (struct gdbarch *gdbarch)
2011{
2012 if (gdbarch_debug >= 2)
3d9a5942 2013 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2014 return gdbarch->tdep;
2015}
2016EOF
3d9a5942 2017printf "\n"
34620563 2018function_list | while do_read
104c1213 2019do
2ada493a
AC
2020 if class_is_predicate_p
2021 then
3d9a5942
AC
2022 printf "\n"
2023 printf "int\n"
2024 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2025 printf "{\n"
8de9bdc4 2026 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2027 printf " return ${predicate};\n"
3d9a5942 2028 printf "}\n"
2ada493a
AC
2029 fi
2030 if class_is_function_p
2031 then
3d9a5942
AC
2032 printf "\n"
2033 printf "${returntype}\n"
72e74a21 2034 if [ "x${formal}" = "xvoid" ]
104c1213 2035 then
3d9a5942 2036 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2037 else
3d9a5942 2038 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2039 fi
3d9a5942 2040 printf "{\n"
8de9bdc4 2041 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2042 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2043 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2044 then
2045 # Allow a call to a function with a predicate.
956ac328 2046 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2047 fi
3d9a5942
AC
2048 printf " if (gdbarch_debug >= 2)\n"
2049 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2050 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2051 then
2052 if class_is_multiarch_p
2053 then
2054 params="gdbarch"
2055 else
2056 params=""
2057 fi
2058 else
2059 if class_is_multiarch_p
2060 then
2061 params="gdbarch, ${actual}"
2062 else
2063 params="${actual}"
2064 fi
2065 fi
72e74a21 2066 if [ "x${returntype}" = "xvoid" ]
104c1213 2067 then
4a5c6a1d 2068 printf " gdbarch->${function} (${params});\n"
104c1213 2069 else
4a5c6a1d 2070 printf " return gdbarch->${function} (${params});\n"
104c1213 2071 fi
3d9a5942
AC
2072 printf "}\n"
2073 printf "\n"
2074 printf "void\n"
2075 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2076 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2077 printf "{\n"
2078 printf " gdbarch->${function} = ${function};\n"
2079 printf "}\n"
2ada493a
AC
2080 elif class_is_variable_p
2081 then
3d9a5942
AC
2082 printf "\n"
2083 printf "${returntype}\n"
2084 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2085 printf "{\n"
8de9bdc4 2086 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2087 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2088 then
3d9a5942 2089 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2090 elif [ -n "${invalid_p}" ]
104c1213 2091 then
956ac328
AC
2092 printf " /* Check variable is valid. */\n"
2093 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2094 elif [ -n "${predefault}" ]
104c1213 2095 then
956ac328
AC
2096 printf " /* Check variable changed from pre-default. */\n"
2097 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2098 fi
3d9a5942
AC
2099 printf " if (gdbarch_debug >= 2)\n"
2100 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2101 printf " return gdbarch->${function};\n"
2102 printf "}\n"
2103 printf "\n"
2104 printf "void\n"
2105 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2106 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2107 printf "{\n"
2108 printf " gdbarch->${function} = ${function};\n"
2109 printf "}\n"
2ada493a
AC
2110 elif class_is_info_p
2111 then
3d9a5942
AC
2112 printf "\n"
2113 printf "${returntype}\n"
2114 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2115 printf "{\n"
8de9bdc4 2116 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2117 printf " if (gdbarch_debug >= 2)\n"
2118 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2119 printf " return gdbarch->${function};\n"
2120 printf "}\n"
2ada493a 2121 fi
104c1213
JM
2122done
2123
2124# All the trailing guff
2125cat <<EOF
2126
2127
f44c642f 2128/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2129 modules. */
104c1213
JM
2130
2131struct gdbarch_data
2132{
95160752 2133 unsigned index;
76860b5f 2134 int init_p;
030f20e1
AC
2135 gdbarch_data_pre_init_ftype *pre_init;
2136 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2137};
2138
2139struct gdbarch_data_registration
2140{
104c1213
JM
2141 struct gdbarch_data *data;
2142 struct gdbarch_data_registration *next;
2143};
2144
f44c642f 2145struct gdbarch_data_registry
104c1213 2146{
95160752 2147 unsigned nr;
104c1213
JM
2148 struct gdbarch_data_registration *registrations;
2149};
2150
f44c642f 2151struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2152{
2153 0, NULL,
2154};
2155
030f20e1
AC
2156static struct gdbarch_data *
2157gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2158 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2159{
2160 struct gdbarch_data_registration **curr;
05c547f6
MS
2161
2162 /* Append the new registration. */
f44c642f 2163 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2164 (*curr) != NULL;
2165 curr = &(*curr)->next);
70ba0933 2166 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2167 (*curr)->next = NULL;
70ba0933 2168 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2169 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2170 (*curr)->data->pre_init = pre_init;
2171 (*curr)->data->post_init = post_init;
76860b5f 2172 (*curr)->data->init_p = 1;
104c1213
JM
2173 return (*curr)->data;
2174}
2175
030f20e1
AC
2176struct gdbarch_data *
2177gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2178{
2179 return gdbarch_data_register (pre_init, NULL);
2180}
2181
2182struct gdbarch_data *
2183gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2184{
2185 return gdbarch_data_register (NULL, post_init);
2186}
104c1213 2187
0963b4bd 2188/* Create/delete the gdbarch data vector. */
95160752
AC
2189
2190static void
b3cc3077 2191alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2192{
b3cc3077
JB
2193 gdb_assert (gdbarch->data == NULL);
2194 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2195 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2196}
3c875b6f 2197
76860b5f 2198/* Initialize the current value of the specified per-architecture
0963b4bd 2199 data-pointer. */
b3cc3077 2200
95160752 2201void
030f20e1
AC
2202deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2203 struct gdbarch_data *data,
2204 void *pointer)
95160752
AC
2205{
2206 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2207 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2208 gdb_assert (data->pre_init == NULL);
95160752
AC
2209 gdbarch->data[data->index] = pointer;
2210}
2211
104c1213 2212/* Return the current value of the specified per-architecture
0963b4bd 2213 data-pointer. */
104c1213
JM
2214
2215void *
451fbdda 2216gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2217{
451fbdda 2218 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2219 if (gdbarch->data[data->index] == NULL)
76860b5f 2220 {
030f20e1
AC
2221 /* The data-pointer isn't initialized, call init() to get a
2222 value. */
2223 if (data->pre_init != NULL)
2224 /* Mid architecture creation: pass just the obstack, and not
2225 the entire architecture, as that way it isn't possible for
2226 pre-init code to refer to undefined architecture
2227 fields. */
2228 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2229 else if (gdbarch->initialized_p
2230 && data->post_init != NULL)
2231 /* Post architecture creation: pass the entire architecture
2232 (as all fields are valid), but be careful to also detect
2233 recursive references. */
2234 {
2235 gdb_assert (data->init_p);
2236 data->init_p = 0;
2237 gdbarch->data[data->index] = data->post_init (gdbarch);
2238 data->init_p = 1;
2239 }
2240 else
2241 /* The architecture initialization hasn't completed - punt -
2242 hope that the caller knows what they are doing. Once
2243 deprecated_set_gdbarch_data has been initialized, this can be
2244 changed to an internal error. */
2245 return NULL;
76860b5f
AC
2246 gdb_assert (gdbarch->data[data->index] != NULL);
2247 }
451fbdda 2248 return gdbarch->data[data->index];
104c1213
JM
2249}
2250
2251
0963b4bd 2252/* Keep a registry of the architectures known by GDB. */
104c1213 2253
4b9b3959 2254struct gdbarch_registration
104c1213
JM
2255{
2256 enum bfd_architecture bfd_architecture;
2257 gdbarch_init_ftype *init;
4b9b3959 2258 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2259 struct gdbarch_list *arches;
4b9b3959 2260 struct gdbarch_registration *next;
104c1213
JM
2261};
2262
f44c642f 2263static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2264
b4a20239
AC
2265static void
2266append_name (const char ***buf, int *nr, const char *name)
2267{
1dc7a623 2268 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2269 (*buf)[*nr] = name;
2270 *nr += 1;
2271}
2272
2273const char **
2274gdbarch_printable_names (void)
2275{
7996bcec 2276 /* Accumulate a list of names based on the registed list of
0963b4bd 2277 architectures. */
7996bcec
AC
2278 int nr_arches = 0;
2279 const char **arches = NULL;
2280 struct gdbarch_registration *rego;
05c547f6 2281
7996bcec
AC
2282 for (rego = gdbarch_registry;
2283 rego != NULL;
2284 rego = rego->next)
b4a20239 2285 {
7996bcec
AC
2286 const struct bfd_arch_info *ap;
2287 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2288 if (ap == NULL)
2289 internal_error (__FILE__, __LINE__,
85c07804 2290 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2291 do
2292 {
2293 append_name (&arches, &nr_arches, ap->printable_name);
2294 ap = ap->next;
2295 }
2296 while (ap != NULL);
b4a20239 2297 }
7996bcec
AC
2298 append_name (&arches, &nr_arches, NULL);
2299 return arches;
b4a20239
AC
2300}
2301
2302
104c1213 2303void
4b9b3959
AC
2304gdbarch_register (enum bfd_architecture bfd_architecture,
2305 gdbarch_init_ftype *init,
2306 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2307{
4b9b3959 2308 struct gdbarch_registration **curr;
104c1213 2309 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2310
ec3d358c 2311 /* Check that BFD recognizes this architecture */
104c1213
JM
2312 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2313 if (bfd_arch_info == NULL)
2314 {
8e65ff28 2315 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2316 _("gdbarch: Attempt to register "
2317 "unknown architecture (%d)"),
8e65ff28 2318 bfd_architecture);
104c1213 2319 }
0963b4bd 2320 /* Check that we haven't seen this architecture before. */
f44c642f 2321 for (curr = &gdbarch_registry;
104c1213
JM
2322 (*curr) != NULL;
2323 curr = &(*curr)->next)
2324 {
2325 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2326 internal_error (__FILE__, __LINE__,
64b9b334 2327 _("gdbarch: Duplicate registration "
0963b4bd 2328 "of architecture (%s)"),
8e65ff28 2329 bfd_arch_info->printable_name);
104c1213
JM
2330 }
2331 /* log it */
2332 if (gdbarch_debug)
30737ed9 2333 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2334 bfd_arch_info->printable_name,
30737ed9 2335 host_address_to_string (init));
104c1213 2336 /* Append it */
70ba0933 2337 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2338 (*curr)->bfd_architecture = bfd_architecture;
2339 (*curr)->init = init;
4b9b3959 2340 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2341 (*curr)->arches = NULL;
2342 (*curr)->next = NULL;
4b9b3959
AC
2343}
2344
2345void
2346register_gdbarch_init (enum bfd_architecture bfd_architecture,
2347 gdbarch_init_ftype *init)
2348{
2349 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2350}
104c1213
JM
2351
2352
424163ea 2353/* Look for an architecture using gdbarch_info. */
104c1213
JM
2354
2355struct gdbarch_list *
2356gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2357 const struct gdbarch_info *info)
2358{
2359 for (; arches != NULL; arches = arches->next)
2360 {
2361 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2362 continue;
2363 if (info->byte_order != arches->gdbarch->byte_order)
2364 continue;
4be87837
DJ
2365 if (info->osabi != arches->gdbarch->osabi)
2366 continue;
424163ea
DJ
2367 if (info->target_desc != arches->gdbarch->target_desc)
2368 continue;
104c1213
JM
2369 return arches;
2370 }
2371 return NULL;
2372}
2373
2374
ebdba546 2375/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2376 architecture if needed. Return that new architecture. */
104c1213 2377
59837fe0
UW
2378struct gdbarch *
2379gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2380{
2381 struct gdbarch *new_gdbarch;
4b9b3959 2382 struct gdbarch_registration *rego;
104c1213 2383
b732d07d 2384 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2385 sources: "set ..."; INFOabfd supplied; and the global
2386 defaults. */
2387 gdbarch_info_fill (&info);
4be87837 2388
0963b4bd 2389 /* Must have found some sort of architecture. */
b732d07d 2390 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2391
2392 if (gdbarch_debug)
2393 {
2394 fprintf_unfiltered (gdb_stdlog,
59837fe0 2395 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2396 (info.bfd_arch_info != NULL
2397 ? info.bfd_arch_info->printable_name
2398 : "(null)"));
2399 fprintf_unfiltered (gdb_stdlog,
59837fe0 2400 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2401 info.byte_order,
d7449b42 2402 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2403 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2404 : "default"));
4be87837 2405 fprintf_unfiltered (gdb_stdlog,
59837fe0 2406 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2407 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2408 fprintf_unfiltered (gdb_stdlog,
59837fe0 2409 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2410 host_address_to_string (info.abfd));
104c1213 2411 fprintf_unfiltered (gdb_stdlog,
59837fe0 2412 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2413 host_address_to_string (info.tdep_info));
104c1213
JM
2414 }
2415
ebdba546 2416 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2417 for (rego = gdbarch_registry;
2418 rego != NULL;
2419 rego = rego->next)
2420 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2421 break;
2422 if (rego == NULL)
2423 {
2424 if (gdbarch_debug)
59837fe0 2425 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2426 "No matching architecture\n");
b732d07d
AC
2427 return 0;
2428 }
2429
ebdba546 2430 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2431 new_gdbarch = rego->init (info, rego->arches);
2432
ebdba546
AC
2433 /* Did the tdep code like it? No. Reject the change and revert to
2434 the old architecture. */
104c1213
JM
2435 if (new_gdbarch == NULL)
2436 {
2437 if (gdbarch_debug)
59837fe0 2438 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2439 "Target rejected architecture\n");
2440 return NULL;
104c1213
JM
2441 }
2442
ebdba546
AC
2443 /* Is this a pre-existing architecture (as determined by already
2444 being initialized)? Move it to the front of the architecture
2445 list (keeping the list sorted Most Recently Used). */
2446 if (new_gdbarch->initialized_p)
104c1213 2447 {
ebdba546 2448 struct gdbarch_list **list;
fe978cb0 2449 struct gdbarch_list *self;
104c1213 2450 if (gdbarch_debug)
59837fe0 2451 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2452 "Previous architecture %s (%s) selected\n",
2453 host_address_to_string (new_gdbarch),
104c1213 2454 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2455 /* Find the existing arch in the list. */
2456 for (list = &rego->arches;
2457 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2458 list = &(*list)->next);
2459 /* It had better be in the list of architectures. */
2460 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2461 /* Unlink SELF. */
2462 self = (*list);
2463 (*list) = self->next;
2464 /* Insert SELF at the front. */
2465 self->next = rego->arches;
2466 rego->arches = self;
ebdba546
AC
2467 /* Return it. */
2468 return new_gdbarch;
104c1213
JM
2469 }
2470
ebdba546
AC
2471 /* It's a new architecture. */
2472 if (gdbarch_debug)
59837fe0 2473 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2474 "New architecture %s (%s) selected\n",
2475 host_address_to_string (new_gdbarch),
ebdba546
AC
2476 new_gdbarch->bfd_arch_info->printable_name);
2477
2478 /* Insert the new architecture into the front of the architecture
2479 list (keep the list sorted Most Recently Used). */
0f79675b 2480 {
fe978cb0
PA
2481 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2482 self->next = rego->arches;
2483 self->gdbarch = new_gdbarch;
2484 rego->arches = self;
0f79675b 2485 }
104c1213 2486
4b9b3959
AC
2487 /* Check that the newly installed architecture is valid. Plug in
2488 any post init values. */
2489 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2490 verify_gdbarch (new_gdbarch);
ebdba546 2491 new_gdbarch->initialized_p = 1;
104c1213 2492
4b9b3959 2493 if (gdbarch_debug)
ebdba546
AC
2494 gdbarch_dump (new_gdbarch, gdb_stdlog);
2495
2496 return new_gdbarch;
2497}
2498
e487cc15 2499/* Make the specified architecture current. */
ebdba546
AC
2500
2501void
aff68abb 2502set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2503{
2504 gdb_assert (new_gdbarch != NULL);
ebdba546 2505 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2506 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2507 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2508 registers_changed ();
ebdba546 2509}
104c1213 2510
f5656ead 2511/* Return the current inferior's arch. */
6ecd4729
PA
2512
2513struct gdbarch *
f5656ead 2514target_gdbarch (void)
6ecd4729
PA
2515{
2516 return current_inferior ()->gdbarch;
2517}
2518
104c1213 2519void
34620563 2520_initialize_gdbarch (void)
104c1213 2521{
ccce17b0 2522 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2523Set architecture debugging."), _("\\
2524Show architecture debugging."), _("\\
2525When non-zero, architecture debugging is enabled."),
2526 NULL,
920d2a44 2527 show_gdbarch_debug,
85c07804 2528 &setdebuglist, &showdebuglist);
104c1213
JM
2529}
2530EOF
2531
2532# close things off
2533exec 1>&2
2534#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2535compare_new gdbarch.c
This page took 1.614632 seconds and 4 git commands to generate.