2004-05-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4
AC
4#
5# Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6# Foundation, Inc.
7#
104c1213
JM
8#
9# This file is part of GDB.
10#
11# This program is free software; you can redistribute it and/or modify
12# it under the terms of the GNU General Public License as published by
13# the Free Software Foundation; either version 2 of the License, or
14# (at your option) any later version.
15#
16# This program is distributed in the hope that it will be useful,
17# but WITHOUT ANY WARRANTY; without even the implied warranty of
18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19# GNU General Public License for more details.
20#
21# You should have received a copy of the GNU General Public License
22# along with this program; if not, write to the Free Software
23# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
d8864532
AC
25# Make certain that the script is running in an internationalized
26# environment.
27LANG=c ; export LANG
1bd316f0 28LC_ALL=c ; export LC_ALL
d8864532
AC
29
30
59233f88
AC
31compare_new ()
32{
33 file=$1
66b43ecb 34 if test ! -r ${file}
59233f88
AC
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 37 elif diff -u ${file} new-${file}
59233f88
AC
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43}
44
45
46# Format of the input table
0b8f9e4d 47read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
48
49do_read ()
50{
34620563
AC
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
3d9a5942
AC
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
50248794
AC
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
e669114a 91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
50248794
AC
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14
AC
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
34620563
AC
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
06b25f14 117
ae45cd16
AC
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
34620563 121 "" )
f7968451 122 if test -n "${predefault}"
34620563
AC
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 125 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
34620563
AC
132 fi
133 ;;
ae45cd16 134 * )
1e9f55d0 135 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
136 kill $$
137 exit 1
138 ;;
139 esac
34620563
AC
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
72e74a21 149 if [ -n "${postdefault}" ]
34620563
AC
150 then
151 fallbackdefault="${postdefault}"
72e74a21 152 elif [ -n "${predefault}" ]
34620563
AC
153 then
154 fallbackdefault="${predefault}"
155 else
73d3c16e 156 fallbackdefault="0"
34620563
AC
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
f0d4cc9e 163 fi
34620563 164 done
72e74a21 165 if [ -n "${class}" ]
34620563
AC
166 then
167 true
c0e8c252
AC
168 else
169 false
170 fi
171}
172
104c1213 173
f0d4cc9e
AC
174fallback_default_p ()
175{
72e74a21
JB
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
178}
179
180class_is_variable_p ()
181{
4a5c6a1d
AC
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
f0d4cc9e
AC
186}
187
188class_is_function_p ()
189{
4a5c6a1d
AC
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194}
195
196class_is_multiarch_p ()
197{
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
f0d4cc9e
AC
202}
203
204class_is_predicate_p ()
205{
4a5c6a1d
AC
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
f0d4cc9e
AC
210}
211
212class_is_info_p ()
213{
4a5c6a1d
AC
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
f0d4cc9e
AC
218}
219
220
cff3e48b
JM
221# dump out/verify the doco
222for field in ${read}
223do
224 case ${field} in
225
226 class ) : ;;
c4093a6a 227
c0e8c252
AC
228 # # -> line disable
229 # f -> function
230 # hiding a function
2ada493a
AC
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
c0e8c252
AC
233 # v -> variable
234 # hiding a variable
2ada493a
AC
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
c0e8c252
AC
237 # i -> set from info
238 # hiding something from the ``struct info'' object
4a5c6a1d
AC
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
243
244 level ) : ;;
245
c0e8c252
AC
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
cff3e48b
JM
249
250 macro ) : ;;
251
c0e8c252 252 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
253
254 returntype ) : ;;
255
c0e8c252 256 # For functions, the return type; for variables, the data type
cff3e48b
JM
257
258 function ) : ;;
259
c0e8c252
AC
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
263
264 formal ) : ;;
265
c0e8c252
AC
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
cff3e48b
JM
270
271 actual ) : ;;
272
c0e8c252
AC
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
cff3e48b
JM
276
277 attrib ) : ;;
278
c0e8c252
AC
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
cff3e48b 281
0b8f9e4d 282 staticdefault ) : ;;
c0e8c252
AC
283
284 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
cff3e48b 288
0b8f9e4d 289 # If STATICDEFAULT is empty, zero is used.
c0e8c252 290
0b8f9e4d 291 predefault ) : ;;
cff3e48b 292
10312cc4
AC
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
cff3e48b 297
0b8f9e4d
AC
298 # If PREDEFAULT is empty, zero is used.
299
10312cc4
AC
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
f0d4cc9e
AC
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
0b8f9e4d
AC
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
10312cc4
AC
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
f0d4cc9e
AC
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
db446970
AC
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
cff3e48b 332
c4093a6a 333 invalid_p ) : ;;
cff3e48b 334
0b8f9e4d 335 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 336 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
f0d4cc9e
AC
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
347
348 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
349
350 fmt ) : ;;
351
c0e8c252
AC
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
0b8f9e4d 356 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
357
358 print ) : ;;
359
c0e8c252
AC
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
0b8f9e4d 363 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
364
365 print_p ) : ;;
366
c0e8c252
AC
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
4b9b3959 370 # () -> Call a custom function to do the dump.
c0e8c252
AC
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
cff3e48b 373
0b8f9e4d
AC
374 # If PRINT_P is empty, ``1'' is always used.
375
cff3e48b
JM
376 description ) : ;;
377
0b8f9e4d 378 # Currently unused.
cff3e48b 379
50248794
AC
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
cff3e48b
JM
383 esac
384done
385
cff3e48b 386
104c1213
JM
387function_list ()
388{
cff3e48b 389 # See below (DOCO) for description of each field
34620563 390 cat <<EOF
0b8f9e4d 391i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 392#
d7449b42 393i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837
DJ
394#
395i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
396# Number of bits in a char or unsigned char for the target machine.
397# Just like CHAR_BIT in <limits.h> but describes the target machine.
e669114a 398# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
399#
400# Number of bits in a short or unsigned short for the target machine.
e669114a 401v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 402# Number of bits in an int or unsigned int for the target machine.
e669114a 403v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 404# Number of bits in a long or unsigned long for the target machine.
e669114a 405v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
406# Number of bits in a long long or unsigned long long for the target
407# machine.
e669114a 408v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 409# Number of bits in a float for the target machine.
e669114a 410v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 411# Number of bits in a double for the target machine.
e669114a 412v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 413# Number of bits in a long double for the target machine.
e669114a 414v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
415# For most targets, a pointer on the target and its representation as an
416# address in GDB have the same size and "look the same". For such a
417# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418# / addr_bit will be set from it.
419#
420# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422#
423# ptr_bit is the size of a pointer on the target
e669114a 424v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 425# addr_bit is the size of a target address as represented in gdb
e669114a 426v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 427# Number of bits in a BFD_VMA for the target object file format.
e669114a 428v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 429#
4e409299 430# One if \`char' acts like \`signed char', zero if \`unsigned char'.
e669114a 431v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 432#
cde9ea48 433F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
e669114a 434f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
a9e5fdc2 435# UNWIND_SP is a direct replacement for TARGET_READ_SP.
bd1ce8ba 436F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
437# Function for getting target's idea of a frame pointer. FIXME: GDB's
438# whole scheme for dealing with "frames" and "frame pointers" needs a
439# serious shakedown.
e669114a 440f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 441#
f7968451
AC
442M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
61a0eb5b 444#
104c1213 445v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
446# This macro gives the number of pseudo-registers that live in the
447# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
448# These pseudo-registers may be aliases for other registers,
449# combinations of other registers, or they may be computed by GDB.
0aba1244 450v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
451
452# GDB's standard (or well known) register numbers. These can map onto
453# a real register or a pseudo (computed) register or not be defined at
1200cd6e 454# all (-1).
a9e5fdc2 455# SP_REGNUM will hopefully be replaced by UNWIND_SP.
1200cd6e 456v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
1200cd6e 457v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 458v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d 459v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
88c72b7d
AC
460# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462# Provide a default mapping from a ecoff register number to a gdb REGNUM.
463f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464# Provide a default mapping from a DWARF register number to a gdb REGNUM.
465f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466# Convert from an sdb register number to an internal gdb register number.
88c72b7d
AC
467f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
e23457df 469f::REGISTER_NAME:const char *:register_name:int regnr:regnr
9c04cab7 470
2e092625 471# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
f7968451 472M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
2e092625
AC
473# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
9c04cab7
AC
475# DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476# from REGISTER_TYPE.
b8b527c5 477v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
f3be58bc
AC
478# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479# register offsets computed using just REGISTER_TYPE, this can be
480# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481# function with predicate has a valid (callable) initial value. As a
482# consequence, even when the predicate is false, the corresponding
483# function works. This simplifies the migration process - old code,
484# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
62700349 485F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
f3be58bc
AC
486# If all registers have identical raw and virtual sizes and those
487# sizes agree with the value computed from REGISTER_TYPE,
488# DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489# registers.
12c266ea 490F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
f3be58bc
AC
491# If all registers have identical raw and virtual sizes and those
492# sizes agree with the value computed from REGISTER_TYPE,
493# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494# registers.
f30992d4 495F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
9c04cab7
AC
496# DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 498V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
9c04cab7
AC
499# DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 501V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
9c04cab7 502
f3be58bc 503# See gdbint.texinfo, and PUSH_DUMMY_CALL.
f7968451 504M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
f3be58bc
AC
505# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506# SAVE_DUMMY_FRAME_TOS.
a59fe496 507F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
f3be58bc
AC
508# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509# DEPRECATED_FP_REGNUM.
510v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512# DEPRECATED_TARGET_READ_FP.
513F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
b8de8283
AC
515# See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516# replacement for DEPRECATED_PUSH_ARGUMENTS.
517M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520# DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522# Implement PUSH_RETURN_ADDRESS, and then merge in
523# DEPRECATED_PUSH_RETURN_ADDRESS.
f7968451 524F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
b8de8283
AC
525# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527# DEPRECATED_REGISTER_SIZE can be deleted.
528v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
b8de8283
AC
530# DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532# DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
b8de8283
AC
534# DEPRECATED_CALL_DUMMY_WORDS can be deleted.
535v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
536# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
537v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
b8de8283
AC
538# DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
539# PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
540F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
541# This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
f7968451 542M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
b8de8283 543# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
f7968451 544F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
b8de8283 545
903ad3a6 546F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 547m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 548M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 549M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
550# MAP a GDB RAW register number onto a simulator register number. See
551# also include/...-sim.h.
8238d0bf 552f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
f7968451 553F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
01fb7433
AC
554f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
555f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0 556# setjmp/longjmp support.
f7968451 557F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
ae45cd16
AC
558# NOTE: cagney/2002-11-24: This function with predicate has a valid
559# (callable) initial value. As a consequence, even when the predicate
560# is false, the corresponding function works. This simplifies the
561# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
562# doesn't need to be modified.
90ba813f 563F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::deprecated_pc_in_call_dummy:deprecated_pc_in_call_dummy
e669114a 564F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 565#
f0d4cc9e 566v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
129c1cd6 567F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 568#
781a750d
AC
569# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
570# For raw <-> cooked register conversions, replaced by pseudo registers.
cd0bfa36 571F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
781a750d
AC
572# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
573# For raw <-> cooked register conversions, replaced by pseudo registers.
574f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
575# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
576# For raw <-> cooked register conversions, replaced by pseudo registers.
577f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
13d01224 578#
ff2e87ac
AC
579f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
580f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
581f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
104c1213 582#
66140c26 583f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
ac2e2ef7 584f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 585F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 586#
f7968451 587F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
4183d812 588# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
f7968451 589F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
92ad9cd9
AC
590
591# It has been suggested that this, well actually its predecessor,
592# should take the type/value of the function to be called and not the
593# return type. This is left as an exercise for the reader.
594
963e2bb7 595M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
92ad9cd9
AC
596
597# The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
598# STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
74055713 599# into RETURN_VALUE.
92ad9cd9
AC
600
601f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
e669114a
AC
602f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
603f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
604f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
605f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
92ad9cd9
AC
606f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
607
74055713
AC
608# As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
609# ABI suitable for the implementation of a robust extract
610# struct-convention return-value address method (the sparc saves the
611# address in the callers frame). All the other cases so far examined,
612# the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
613# erreneous - the code was incorrectly assuming that the return-value
614# address, stored in a register, was preserved across the entire
615# function call.
616
617# For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
618# the ABIs that are still to be analyzed - perhaps this should simply
619# be deleted. The commented out extract_returned_value_address method
620# is provided as a starting point for the 32-bit SPARC. It, or
621# something like it, along with changes to both infcmd.c and stack.c
622# will be needed for that case to work. NB: It is passed the callers
623# frame since it is only after the callee has returned that this
624# function is used.
625
626#M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
627F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
628
f7968451
AC
629F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
630F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
104c1213
JM
631#
632f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
633f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
aaab4dba 634f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
a1131521 635M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
0b8f9e4d
AC
636f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
637f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
71bd6bd4 638v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
6503b91e 639v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
104c1213 640#
f6684c31 641m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213 642#
5867a2fb 643v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
19772a2c
AC
644# DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
645# frame code works regardless of the type of frame - frameless,
646# stackless, or normal.
647F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
f7968451
AC
648F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
649F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
8bedc050
AC
650# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
651# note, per UNWIND_PC's doco, that while the two have similar
652# interfaces they have very different underlying implementations.
f7968451
AC
653F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
654M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
655M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
656# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
657# frame-base. Enable frame-base before frame-unwind.
658F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
659# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
660# frame-base. Enable frame-base before frame-unwind.
661F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
6913c89a 662F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
983a287a 663F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
104c1213 664#
f27dd7fd
AC
665# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
666# to frame_align and the requirement that methods such as
667# push_dummy_call and frame_red_zone_size maintain correct stack/frame
668# alignment.
669F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
dc604539 670M:::CORE_ADDR:frame_align:CORE_ADDR address:address
192cb3d4
MK
671# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
672# stabs_argument_has_addr.
8e823e25 673F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
192cb3d4 674m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
8b148df9 675v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
58d5518e 676v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 677#
db446970
AC
678v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
679v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
680v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
e2d0e7eb 681m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
875e1767
AC
682# On some machines there are bits in addresses which are not really
683# part of the address, but are used by the kernel, the hardware, etc.
684# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
685# we get a "real" address such as one would find in a symbol table.
686# This is used only for addresses of instructions, and even then I'm
687# not sure it's used in all contexts. It exists to deal with there
688# being a few stray bits in the PC which would mislead us, not as some
689# sort of generic thing to handle alignment or segmentation (it's
690# possible it should be in TARGET_READ_PC instead).
691f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
f6214256 692# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
181c1381
RE
693# ADDR_BITS_REMOVE.
694f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
695# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
696# the target needs software single step. An ISA method to implement it.
697#
698# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
699# using the breakpoint system instead of blatting memory directly (as with rs6000).
700#
701# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
702# single step. If not, then implement single step using breakpoints.
f7968451 703F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
f6c40618
AC
704# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
705# disassembler. Perhaphs objdump can handle it?
a89aa300 706f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
bdcd319a 707f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
708
709
dea0c52f
MK
710# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
711# evaluates non-zero, this is the address where the debugger will place
712# a step-resume breakpoint to get us past the dynamic linker.
4c8c40e6 713m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
68e9cc94
CV
714# For SVR4 shared libraries, each call goes through a small piece of
715# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 716# to nonzero if we are currently stopped in one of these.
68e9cc94 717f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
718
719# Some systems also have trampoline code for returning from shared libs.
720f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
721
c12260ac
CV
722# A target might have problems with watchpoints as soon as the stack
723# frame of the current function has been destroyed. This mostly happens
724# as the first action in a funtion's epilogue. in_function_epilogue_p()
725# is defined to return a non-zero value if either the given addr is one
726# instruction after the stack destroying instruction up to the trailing
727# return instruction or if we can figure out that the stack frame has
728# already been invalidated regardless of the value of addr. Targets
729# which don't suffer from that problem could just let this functionality
730# untouched.
731m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
732# Given a vector of command-line arguments, return a newly allocated
733# string which, when passed to the create_inferior function, will be
734# parsed (on Unix systems, by the shell) to yield the same vector.
735# This function should call error() if the argument vector is not
736# representable for this target or if this target does not support
737# command-line arguments.
738# ARGC is the number of elements in the vector.
739# ARGV is an array of strings, one per argument.
740m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
a2cf933a
EZ
741f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
742f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
e669114a
AC
743v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
744v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
745v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 746F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
f7968451 747M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
321432c0 748M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 749# Is a register in a group
7e20f3fb 750m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
f6214256 751# Fetch the pointer to the ith function argument.
f7968451 752F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
753
754# Return the appropriate register set for a core file section with
755# name SECT_NAME and size SECT_SIZE.
756M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
104c1213 757EOF
104c1213
JM
758}
759
0b8f9e4d
AC
760#
761# The .log file
762#
763exec > new-gdbarch.log
34620563 764function_list | while do_read
0b8f9e4d
AC
765do
766 cat <<EOF
104c1213
JM
767${class} ${macro}(${actual})
768 ${returntype} ${function} ($formal)${attrib}
104c1213 769EOF
3d9a5942
AC
770 for r in ${read}
771 do
772 eval echo \"\ \ \ \ ${r}=\${${r}}\"
773 done
f0d4cc9e 774 if class_is_predicate_p && fallback_default_p
0b8f9e4d 775 then
66b43ecb 776 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
777 kill $$
778 exit 1
779 fi
72e74a21 780 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
781 then
782 echo "Error: postdefault is useless when invalid_p=0" 1>&2
783 kill $$
784 exit 1
785 fi
a72293e2
AC
786 if class_is_multiarch_p
787 then
788 if class_is_predicate_p ; then :
789 elif test "x${predefault}" = "x"
790 then
791 echo "Error: pure multi-arch function must have a predefault" 1>&2
792 kill $$
793 exit 1
794 fi
795 fi
3d9a5942 796 echo ""
0b8f9e4d
AC
797done
798
799exec 1>&2
800compare_new gdbarch.log
801
104c1213
JM
802
803copyright ()
804{
805cat <<EOF
59233f88
AC
806/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
807
104c1213 808/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4
AC
809
810 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
811 Software Foundation, Inc.
104c1213
JM
812
813 This file is part of GDB.
814
815 This program is free software; you can redistribute it and/or modify
816 it under the terms of the GNU General Public License as published by
817 the Free Software Foundation; either version 2 of the License, or
818 (at your option) any later version.
819
820 This program is distributed in the hope that it will be useful,
821 but WITHOUT ANY WARRANTY; without even the implied warranty of
822 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
823 GNU General Public License for more details.
824
825 You should have received a copy of the GNU General Public License
826 along with this program; if not, write to the Free Software
827 Foundation, Inc., 59 Temple Place - Suite 330,
828 Boston, MA 02111-1307, USA. */
829
104c1213
JM
830/* This file was created with the aid of \`\`gdbarch.sh''.
831
52204a0b 832 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
833 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
834 against the existing \`\`gdbarch.[hc]''. Any differences found
835 being reported.
836
837 If editing this file, please also run gdbarch.sh and merge any
52204a0b 838 changes into that script. Conversely, when making sweeping changes
104c1213
JM
839 to this file, modifying gdbarch.sh and using its output may prove
840 easier. */
841
842EOF
843}
844
845#
846# The .h file
847#
848
849exec > new-gdbarch.h
850copyright
851cat <<EOF
852#ifndef GDBARCH_H
853#define GDBARCH_H
854
da3331ec
AC
855struct floatformat;
856struct ui_file;
104c1213
JM
857struct frame_info;
858struct value;
b6af0555 859struct objfile;
a2cf933a 860struct minimal_symbol;
049ee0e4 861struct regcache;
b59ff9d5 862struct reggroup;
6ce6d90f 863struct regset;
a89aa300 864struct disassemble_info;
e2d0e7eb 865struct target_ops;
030f20e1 866struct obstack;
104c1213 867
104c1213
JM
868extern struct gdbarch *current_gdbarch;
869
870
104c1213
JM
871/* If any of the following are defined, the target wasn't correctly
872 converted. */
873
83905903
AC
874#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
875#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
876#endif
104c1213
JM
877EOF
878
879# function typedef's
3d9a5942
AC
880printf "\n"
881printf "\n"
882printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 883function_list | while do_read
104c1213 884do
2ada493a
AC
885 if class_is_info_p
886 then
3d9a5942
AC
887 printf "\n"
888 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
889 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 890 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
892 printf "#endif\n"
c25083af 893 printf "#if !defined (${macro})\n"
3d9a5942
AC
894 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
895 printf "#endif\n"
2ada493a 896 fi
104c1213
JM
897done
898
899# function typedef's
3d9a5942
AC
900printf "\n"
901printf "\n"
902printf "/* The following are initialized by the target dependent code. */\n"
34620563 903function_list | while do_read
104c1213 904do
72e74a21 905 if [ -n "${comment}" ]
34620563
AC
906 then
907 echo "${comment}" | sed \
908 -e '2 s,#,/*,' \
909 -e '3,$ s,#, ,' \
910 -e '$ s,$, */,'
911 fi
b77be6cf 912 if class_is_multiarch_p
2ada493a 913 then
b77be6cf
AC
914 if class_is_predicate_p
915 then
916 printf "\n"
917 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
918 fi
919 else
920 if class_is_predicate_p
921 then
922 printf "\n"
923 printf "#if defined (${macro})\n"
924 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
925 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 926 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
927 printf "#define ${macro}_P() (1)\n"
928 printf "#endif\n"
eee30e78 929 printf "#endif\n"
b77be6cf 930 printf "\n"
b77be6cf 931 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 932 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
933 printf "#error \"Non multi-arch definition of ${macro}\"\n"
934 printf "#endif\n"
028c194b 935 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
936 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
937 printf "#endif\n"
938 fi
4a5c6a1d 939 fi
2ada493a
AC
940 if class_is_variable_p
941 then
3d9a5942
AC
942 printf "\n"
943 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
944 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 945 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
946 printf "#error \"Non multi-arch definition of ${macro}\"\n"
947 printf "#endif\n"
c25083af
AC
948 printf "#if !defined (${macro})\n"
949 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
950 printf "#endif\n"
2ada493a
AC
951 fi
952 if class_is_function_p
953 then
3d9a5942 954 printf "\n"
72e74a21 955 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
956 then
957 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
958 elif class_is_multiarch_p
959 then
960 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
961 else
962 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
963 fi
72e74a21 964 if [ "x${formal}" = "xvoid" ]
104c1213 965 then
3d9a5942 966 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 967 else
3d9a5942 968 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 969 fi
3d9a5942 970 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
971 if class_is_multiarch_p ; then :
972 else
028c194b 973 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
974 printf "#error \"Non multi-arch definition of ${macro}\"\n"
975 printf "#endif\n"
c25083af
AC
976 if [ "x${actual}" = "x" ]
977 then
978 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
979 elif [ "x${actual}" = "x-" ]
980 then
981 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
982 else
983 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
984 fi
985 printf "#if !defined (${macro})\n"
72e74a21 986 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
987 then
988 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 989 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
990 then
991 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
992 else
993 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
994 fi
995 printf "#endif\n"
104c1213 996 fi
2ada493a 997 fi
104c1213
JM
998done
999
1000# close it off
1001cat <<EOF
1002
1003extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1004
1005
1006/* Mechanism for co-ordinating the selection of a specific
1007 architecture.
1008
1009 GDB targets (*-tdep.c) can register an interest in a specific
1010 architecture. Other GDB components can register a need to maintain
1011 per-architecture data.
1012
1013 The mechanisms below ensures that there is only a loose connection
1014 between the set-architecture command and the various GDB
0fa6923a 1015 components. Each component can independently register their need
104c1213
JM
1016 to maintain architecture specific data with gdbarch.
1017
1018 Pragmatics:
1019
1020 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1021 didn't scale.
1022
1023 The more traditional mega-struct containing architecture specific
1024 data for all the various GDB components was also considered. Since
0fa6923a 1025 GDB is built from a variable number of (fairly independent)
104c1213
JM
1026 components it was determined that the global aproach was not
1027 applicable. */
1028
1029
1030/* Register a new architectural family with GDB.
1031
1032 Register support for the specified ARCHITECTURE with GDB. When
1033 gdbarch determines that the specified architecture has been
1034 selected, the corresponding INIT function is called.
1035
1036 --
1037
1038 The INIT function takes two parameters: INFO which contains the
1039 information available to gdbarch about the (possibly new)
1040 architecture; ARCHES which is a list of the previously created
1041 \`\`struct gdbarch'' for this architecture.
1042
0f79675b
AC
1043 The INFO parameter is, as far as possible, be pre-initialized with
1044 information obtained from INFO.ABFD or the previously selected
1045 architecture.
1046
1047 The ARCHES parameter is a linked list (sorted most recently used)
1048 of all the previously created architures for this architecture
1049 family. The (possibly NULL) ARCHES->gdbarch can used to access
1050 values from the previously selected architecture for this
1051 architecture family. The global \`\`current_gdbarch'' shall not be
1052 used.
104c1213
JM
1053
1054 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1055 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1056 gdbarch'' from the ARCHES list - indicating that the new
1057 architecture is just a synonym for an earlier architecture (see
1058 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1059 - that describes the selected architecture (see gdbarch_alloc()).
1060
1061 The DUMP_TDEP function shall print out all target specific values.
1062 Care should be taken to ensure that the function works in both the
1063 multi-arch and non- multi-arch cases. */
104c1213
JM
1064
1065struct gdbarch_list
1066{
1067 struct gdbarch *gdbarch;
1068 struct gdbarch_list *next;
1069};
1070
1071struct gdbarch_info
1072{
104c1213
JM
1073 /* Use default: NULL (ZERO). */
1074 const struct bfd_arch_info *bfd_arch_info;
1075
428721aa 1076 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1077 int byte_order;
1078
1079 /* Use default: NULL (ZERO). */
1080 bfd *abfd;
1081
1082 /* Use default: NULL (ZERO). */
1083 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1084
1085 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1086 enum gdb_osabi osabi;
104c1213
JM
1087};
1088
1089typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1090typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1091
4b9b3959 1092/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1093extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1094
4b9b3959
AC
1095extern void gdbarch_register (enum bfd_architecture architecture,
1096 gdbarch_init_ftype *,
1097 gdbarch_dump_tdep_ftype *);
1098
104c1213 1099
b4a20239
AC
1100/* Return a freshly allocated, NULL terminated, array of the valid
1101 architecture names. Since architectures are registered during the
1102 _initialize phase this function only returns useful information
1103 once initialization has been completed. */
1104
1105extern const char **gdbarch_printable_names (void);
1106
1107
104c1213
JM
1108/* Helper function. Search the list of ARCHES for a GDBARCH that
1109 matches the information provided by INFO. */
1110
1111extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1112
1113
1114/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1115 basic initialization using values obtained from the INFO andTDEP
1116 parameters. set_gdbarch_*() functions are called to complete the
1117 initialization of the object. */
1118
1119extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1120
1121
4b9b3959
AC
1122/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1123 It is assumed that the caller freeds the \`\`struct
1124 gdbarch_tdep''. */
1125
058f20d5
JB
1126extern void gdbarch_free (struct gdbarch *);
1127
1128
aebd7893
AC
1129/* Helper function. Allocate memory from the \`\`struct gdbarch''
1130 obstack. The memory is freed when the corresponding architecture
1131 is also freed. */
1132
1133extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1134#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1135#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1136
1137
b732d07d 1138/* Helper function. Force an update of the current architecture.
104c1213 1139
b732d07d
AC
1140 The actual architecture selected is determined by INFO, \`\`(gdb) set
1141 architecture'' et.al., the existing architecture and BFD's default
1142 architecture. INFO should be initialized to zero and then selected
1143 fields should be updated.
104c1213 1144
16f33e29
AC
1145 Returns non-zero if the update succeeds */
1146
1147extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1148
1149
ebdba546
AC
1150/* Helper function. Find an architecture matching info.
1151
1152 INFO should be initialized using gdbarch_info_init, relevant fields
1153 set, and then finished using gdbarch_info_fill.
1154
1155 Returns the corresponding architecture, or NULL if no matching
1156 architecture was found. "current_gdbarch" is not updated. */
1157
1158extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1159
1160
1161/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1162
1163 FIXME: kettenis/20031124: Of the functions that follow, only
1164 gdbarch_from_bfd is supposed to survive. The others will
1165 dissappear since in the future GDB will (hopefully) be truly
1166 multi-arch. However, for now we're still stuck with the concept of
1167 a single active architecture. */
1168
1169extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1170
104c1213
JM
1171
1172/* Register per-architecture data-pointer.
1173
1174 Reserve space for a per-architecture data-pointer. An identifier
1175 for the reserved data-pointer is returned. That identifer should
95160752 1176 be saved in a local static variable.
104c1213 1177
fcc1c85c
AC
1178 Memory for the per-architecture data shall be allocated using
1179 gdbarch_obstack_zalloc. That memory will be deleted when the
1180 corresponding architecture object is deleted.
104c1213 1181
95160752
AC
1182 When a previously created architecture is re-selected, the
1183 per-architecture data-pointer for that previous architecture is
76860b5f 1184 restored. INIT() is not re-called.
104c1213
JM
1185
1186 Multiple registrarants for any architecture are allowed (and
1187 strongly encouraged). */
1188
95160752 1189struct gdbarch_data;
104c1213 1190
030f20e1
AC
1191typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1192extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1193typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1194extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1195extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1196 struct gdbarch_data *data,
1197 void *pointer);
104c1213 1198
451fbdda 1199extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1200
1201
a8cf2722 1202
104c1213
JM
1203/* Register per-architecture memory region.
1204
1205 Provide a memory-region swap mechanism. Per-architecture memory
1206 region are created. These memory regions are swapped whenever the
1207 architecture is changed. For a new architecture, the memory region
1208 is initialized with zero (0) and the INIT function is called.
1209
1210 Memory regions are swapped / initialized in the order that they are
1211 registered. NULL DATA and/or INIT values can be specified.
1212
030f20e1 1213 New code should use gdbarch_data_register_*(). */
104c1213
JM
1214
1215typedef void (gdbarch_swap_ftype) (void);
046a4708
AC
1216extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1217#define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1218
1219
1220
0fa6923a 1221/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1222 byte-order, ...) using information found in the BFD */
1223
1224extern void set_gdbarch_from_file (bfd *);
1225
1226
e514a9d6
JM
1227/* Initialize the current architecture to the "first" one we find on
1228 our list. */
1229
1230extern void initialize_current_architecture (void);
1231
104c1213
JM
1232/* gdbarch trace variable */
1233extern int gdbarch_debug;
1234
4b9b3959 1235extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1236
1237#endif
1238EOF
1239exec 1>&2
1240#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1241compare_new gdbarch.h
104c1213
JM
1242
1243
1244#
1245# C file
1246#
1247
1248exec > new-gdbarch.c
1249copyright
1250cat <<EOF
1251
1252#include "defs.h"
7355ddba 1253#include "arch-utils.h"
104c1213 1254
104c1213
JM
1255#include "gdbcmd.h"
1256#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
104c1213
JM
1257#include "symcat.h"
1258
f0d4cc9e 1259#include "floatformat.h"
104c1213 1260
95160752 1261#include "gdb_assert.h"
b66d6d2e 1262#include "gdb_string.h"
67c2c32c 1263#include "gdb-events.h"
b59ff9d5 1264#include "reggroups.h"
4be87837 1265#include "osabi.h"
aebd7893 1266#include "gdb_obstack.h"
95160752 1267
104c1213
JM
1268/* Static function declarations */
1269
b3cc3077 1270static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1271
104c1213
JM
1272/* Non-zero if we want to trace architecture code. */
1273
1274#ifndef GDBARCH_DEBUG
1275#define GDBARCH_DEBUG 0
1276#endif
1277int gdbarch_debug = GDBARCH_DEBUG;
1278
1279EOF
1280
1281# gdbarch open the gdbarch object
3d9a5942
AC
1282printf "\n"
1283printf "/* Maintain the struct gdbarch object */\n"
1284printf "\n"
1285printf "struct gdbarch\n"
1286printf "{\n"
76860b5f
AC
1287printf " /* Has this architecture been fully initialized? */\n"
1288printf " int initialized_p;\n"
aebd7893
AC
1289printf "\n"
1290printf " /* An obstack bound to the lifetime of the architecture. */\n"
1291printf " struct obstack *obstack;\n"
1292printf "\n"
3d9a5942 1293printf " /* basic architectural information */\n"
34620563 1294function_list | while do_read
104c1213 1295do
2ada493a
AC
1296 if class_is_info_p
1297 then
3d9a5942 1298 printf " ${returntype} ${function};\n"
2ada493a 1299 fi
104c1213 1300done
3d9a5942
AC
1301printf "\n"
1302printf " /* target specific vector. */\n"
1303printf " struct gdbarch_tdep *tdep;\n"
1304printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1305printf "\n"
1306printf " /* per-architecture data-pointers */\n"
95160752 1307printf " unsigned nr_data;\n"
3d9a5942
AC
1308printf " void **data;\n"
1309printf "\n"
1310printf " /* per-architecture swap-regions */\n"
1311printf " struct gdbarch_swap *swap;\n"
1312printf "\n"
104c1213
JM
1313cat <<EOF
1314 /* Multi-arch values.
1315
1316 When extending this structure you must:
1317
1318 Add the field below.
1319
1320 Declare set/get functions and define the corresponding
1321 macro in gdbarch.h.
1322
1323 gdbarch_alloc(): If zero/NULL is not a suitable default,
1324 initialize the new field.
1325
1326 verify_gdbarch(): Confirm that the target updated the field
1327 correctly.
1328
7e73cedf 1329 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1330 field is dumped out
1331
c0e8c252 1332 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1333 variable (base values on the host's c-type system).
1334
1335 get_gdbarch(): Implement the set/get functions (probably using
1336 the macro's as shortcuts).
1337
1338 */
1339
1340EOF
34620563 1341function_list | while do_read
104c1213 1342do
2ada493a
AC
1343 if class_is_variable_p
1344 then
3d9a5942 1345 printf " ${returntype} ${function};\n"
2ada493a
AC
1346 elif class_is_function_p
1347 then
3d9a5942 1348 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1349 fi
104c1213 1350done
3d9a5942 1351printf "};\n"
104c1213
JM
1352
1353# A pre-initialized vector
3d9a5942
AC
1354printf "\n"
1355printf "\n"
104c1213
JM
1356cat <<EOF
1357/* The default architecture uses host values (for want of a better
1358 choice). */
1359EOF
3d9a5942
AC
1360printf "\n"
1361printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1362printf "\n"
1363printf "struct gdbarch startup_gdbarch =\n"
1364printf "{\n"
76860b5f 1365printf " 1, /* Always initialized. */\n"
aebd7893 1366printf " NULL, /* The obstack. */\n"
3d9a5942 1367printf " /* basic architecture information */\n"
4b9b3959 1368function_list | while do_read
104c1213 1369do
2ada493a
AC
1370 if class_is_info_p
1371 then
ec5cbaec 1372 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1373 fi
104c1213
JM
1374done
1375cat <<EOF
4b9b3959
AC
1376 /* target specific vector and its dump routine */
1377 NULL, NULL,
104c1213
JM
1378 /*per-architecture data-pointers and swap regions */
1379 0, NULL, NULL,
1380 /* Multi-arch values */
1381EOF
34620563 1382function_list | while do_read
104c1213 1383do
2ada493a
AC
1384 if class_is_function_p || class_is_variable_p
1385 then
ec5cbaec 1386 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1387 fi
104c1213
JM
1388done
1389cat <<EOF
c0e8c252 1390 /* startup_gdbarch() */
104c1213 1391};
4b9b3959 1392
c0e8c252 1393struct gdbarch *current_gdbarch = &startup_gdbarch;
104c1213
JM
1394EOF
1395
1396# Create a new gdbarch struct
104c1213 1397cat <<EOF
7de2341d 1398
66b43ecb 1399/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1400 \`\`struct gdbarch_info''. */
1401EOF
3d9a5942 1402printf "\n"
104c1213
JM
1403cat <<EOF
1404struct gdbarch *
1405gdbarch_alloc (const struct gdbarch_info *info,
1406 struct gdbarch_tdep *tdep)
1407{
85de9627
AC
1408 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1409 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1410 the current local architecture and not the previous global
1411 architecture. This ensures that the new architectures initial
1412 values are not influenced by the previous architecture. Once
1413 everything is parameterised with gdbarch, this will go away. */
aebd7893
AC
1414 struct gdbarch *current_gdbarch;
1415
1416 /* Create an obstack for allocating all the per-architecture memory,
1417 then use that to allocate the architecture vector. */
1418 struct obstack *obstack = XMALLOC (struct obstack);
1419 obstack_init (obstack);
1420 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
85de9627 1421 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
aebd7893 1422 current_gdbarch->obstack = obstack;
85de9627
AC
1423
1424 alloc_gdbarch_data (current_gdbarch);
1425
1426 current_gdbarch->tdep = tdep;
104c1213 1427EOF
3d9a5942 1428printf "\n"
34620563 1429function_list | while do_read
104c1213 1430do
2ada493a
AC
1431 if class_is_info_p
1432 then
85de9627 1433 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1434 fi
104c1213 1435done
3d9a5942
AC
1436printf "\n"
1437printf " /* Force the explicit initialization of these. */\n"
34620563 1438function_list | while do_read
104c1213 1439do
2ada493a
AC
1440 if class_is_function_p || class_is_variable_p
1441 then
72e74a21 1442 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1443 then
85de9627 1444 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1445 fi
2ada493a 1446 fi
104c1213
JM
1447done
1448cat <<EOF
1449 /* gdbarch_alloc() */
1450
85de9627 1451 return current_gdbarch;
104c1213
JM
1452}
1453EOF
1454
058f20d5 1455# Free a gdbarch struct.
3d9a5942
AC
1456printf "\n"
1457printf "\n"
058f20d5 1458cat <<EOF
aebd7893
AC
1459/* Allocate extra space using the per-architecture obstack. */
1460
1461void *
1462gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1463{
1464 void *data = obstack_alloc (arch->obstack, size);
1465 memset (data, 0, size);
1466 return data;
1467}
1468
1469
058f20d5
JB
1470/* Free a gdbarch struct. This should never happen in normal
1471 operation --- once you've created a gdbarch, you keep it around.
1472 However, if an architecture's init function encounters an error
1473 building the structure, it may need to clean up a partially
1474 constructed gdbarch. */
4b9b3959 1475
058f20d5
JB
1476void
1477gdbarch_free (struct gdbarch *arch)
1478{
aebd7893 1479 struct obstack *obstack;
95160752 1480 gdb_assert (arch != NULL);
aebd7893
AC
1481 gdb_assert (!arch->initialized_p);
1482 obstack = arch->obstack;
1483 obstack_free (obstack, 0); /* Includes the ARCH. */
1484 xfree (obstack);
058f20d5
JB
1485}
1486EOF
1487
104c1213 1488# verify a new architecture
104c1213 1489cat <<EOF
db446970
AC
1490
1491
1492/* Ensure that all values in a GDBARCH are reasonable. */
1493
1494/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1495 just happens to match the global variable \`\`current_gdbarch''. That
1496 way macros refering to that variable get the local and not the global
1497 version - ulgh. Once everything is parameterised with gdbarch, this
1498 will go away. */
1499
104c1213 1500static void
db446970 1501verify_gdbarch (struct gdbarch *current_gdbarch)
104c1213 1502{
f16a1923
AC
1503 struct ui_file *log;
1504 struct cleanup *cleanups;
1505 long dummy;
1506 char *buf;
f16a1923
AC
1507 log = mem_fileopen ();
1508 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1509 /* fundamental */
db446970 1510 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1511 fprintf_unfiltered (log, "\n\tbyte-order");
db446970 1512 if (current_gdbarch->bfd_arch_info == NULL)
f16a1923 1513 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1514 /* Check those that need to be defined for the given multi-arch level. */
1515EOF
34620563 1516function_list | while do_read
104c1213 1517do
2ada493a
AC
1518 if class_is_function_p || class_is_variable_p
1519 then
72e74a21 1520 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1521 then
3d9a5942 1522 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1523 elif class_is_predicate_p
1524 then
3d9a5942 1525 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1526 # FIXME: See do_read for potential simplification
72e74a21 1527 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1528 then
3d9a5942 1529 printf " if (${invalid_p})\n"
db446970 1530 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1531 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1532 then
db446970
AC
1533 printf " if (current_gdbarch->${function} == ${predefault})\n"
1534 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1535 elif [ -n "${postdefault}" ]
f0d4cc9e 1536 then
db446970
AC
1537 printf " if (current_gdbarch->${function} == 0)\n"
1538 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1539 elif [ -n "${invalid_p}" ]
104c1213 1540 then
50248794 1541 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1542 printf " && (${invalid_p}))\n"
f16a1923 1543 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1544 elif [ -n "${predefault}" ]
104c1213 1545 then
50248794 1546 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
db446970 1547 printf " && (current_gdbarch->${function} == ${predefault}))\n"
f16a1923 1548 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1549 fi
2ada493a 1550 fi
104c1213
JM
1551done
1552cat <<EOF
f16a1923
AC
1553 buf = ui_file_xstrdup (log, &dummy);
1554 make_cleanup (xfree, buf);
1555 if (strlen (buf) > 0)
1556 internal_error (__FILE__, __LINE__,
1557 "verify_gdbarch: the following are invalid ...%s",
1558 buf);
1559 do_cleanups (cleanups);
104c1213
JM
1560}
1561EOF
1562
1563# dump the structure
3d9a5942
AC
1564printf "\n"
1565printf "\n"
104c1213 1566cat <<EOF
4b9b3959
AC
1567/* Print out the details of the current architecture. */
1568
1569/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1570 just happens to match the global variable \`\`current_gdbarch''. That
1571 way macros refering to that variable get the local and not the global
1572 version - ulgh. Once everything is parameterised with gdbarch, this
1573 will go away. */
1574
104c1213 1575void
db446970 1576gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
104c1213 1577{
4b9b3959
AC
1578 fprintf_unfiltered (file,
1579 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1580 GDB_MULTI_ARCH);
104c1213 1581EOF
9ba8d803 1582function_list | sort -t: -k 3 | while do_read
104c1213 1583do
1e9f55d0
AC
1584 # First the predicate
1585 if class_is_predicate_p
1586 then
1587 if class_is_multiarch_p
1588 then
7996bcec
AC
1589 printf " fprintf_unfiltered (file,\n"
1590 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1591 printf " gdbarch_${function}_p (current_gdbarch));\n"
1e9f55d0
AC
1592 else
1593 printf "#ifdef ${macro}_P\n"
1594 printf " fprintf_unfiltered (file,\n"
1595 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1596 printf " \"${macro}_P()\",\n"
1597 printf " XSTRING (${macro}_P ()));\n"
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1600 printf " ${macro}_P ());\n"
1601 printf "#endif\n"
1602 fi
1603 fi
4a5c6a1d 1604 # multiarch functions don't have macros.
08e45a40
AC
1605 if class_is_multiarch_p
1606 then
7996bcec
AC
1607 printf " fprintf_unfiltered (file,\n"
1608 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1609 printf " (long) current_gdbarch->${function});\n"
08e45a40
AC
1610 continue
1611 fi
06b25f14 1612 # Print the macro definition.
08e45a40 1613 printf "#ifdef ${macro}\n"
2ada493a
AC
1614 if class_is_function_p
1615 then
3d9a5942
AC
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1618 printf " \"${macro}(${actual})\",\n"
1619 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1620 else
3d9a5942
AC
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1623 printf " XSTRING (${macro}));\n"
4b9b3959 1624 fi
72e74a21 1625 if [ "x${print_p}" = "x()" ]
4b9b3959 1626 then
4a5c6a1d 1627 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1628 elif [ "x${print_p}" = "x0" ]
4b9b3959 1629 then
4a5c6a1d 1630 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1631 elif [ -n "${print_p}" ]
4b9b3959 1632 then
4a5c6a1d 1633 printf " if (${print_p})\n"
3d9a5942
AC
1634 printf " fprintf_unfiltered (file,\n"
1635 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1636 printf " ${print});\n"
4b9b3959
AC
1637 elif class_is_function_p
1638 then
7996bcec
AC
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1641 printf " (long) current_gdbarch->${function}\n"
1642 printf " /*${macro} ()*/);\n"
4b9b3959 1643 else
3d9a5942
AC
1644 printf " fprintf_unfiltered (file,\n"
1645 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1646 printf " ${print});\n"
2ada493a 1647 fi
3d9a5942 1648 printf "#endif\n"
104c1213 1649done
381323f4 1650cat <<EOF
4b9b3959
AC
1651 if (current_gdbarch->dump_tdep != NULL)
1652 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1653}
1654EOF
104c1213
JM
1655
1656
1657# GET/SET
3d9a5942 1658printf "\n"
104c1213
JM
1659cat <<EOF
1660struct gdbarch_tdep *
1661gdbarch_tdep (struct gdbarch *gdbarch)
1662{
1663 if (gdbarch_debug >= 2)
3d9a5942 1664 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1665 return gdbarch->tdep;
1666}
1667EOF
3d9a5942 1668printf "\n"
34620563 1669function_list | while do_read
104c1213 1670do
2ada493a
AC
1671 if class_is_predicate_p
1672 then
3d9a5942
AC
1673 printf "\n"
1674 printf "int\n"
1675 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1676 printf "{\n"
8de9bdc4 1677 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1678 printf " return ${predicate};\n"
3d9a5942 1679 printf "}\n"
2ada493a
AC
1680 fi
1681 if class_is_function_p
1682 then
3d9a5942
AC
1683 printf "\n"
1684 printf "${returntype}\n"
72e74a21 1685 if [ "x${formal}" = "xvoid" ]
104c1213 1686 then
3d9a5942 1687 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1688 else
3d9a5942 1689 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1690 fi
3d9a5942 1691 printf "{\n"
8de9bdc4 1692 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1693 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1694 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1695 then
1696 # Allow a call to a function with a predicate.
956ac328 1697 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1698 fi
3d9a5942
AC
1699 printf " if (gdbarch_debug >= 2)\n"
1700 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1701 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1702 then
1703 if class_is_multiarch_p
1704 then
1705 params="gdbarch"
1706 else
1707 params=""
1708 fi
1709 else
1710 if class_is_multiarch_p
1711 then
1712 params="gdbarch, ${actual}"
1713 else
1714 params="${actual}"
1715 fi
1716 fi
72e74a21 1717 if [ "x${returntype}" = "xvoid" ]
104c1213 1718 then
4a5c6a1d 1719 printf " gdbarch->${function} (${params});\n"
104c1213 1720 else
4a5c6a1d 1721 printf " return gdbarch->${function} (${params});\n"
104c1213 1722 fi
3d9a5942
AC
1723 printf "}\n"
1724 printf "\n"
1725 printf "void\n"
1726 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1727 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1728 printf "{\n"
1729 printf " gdbarch->${function} = ${function};\n"
1730 printf "}\n"
2ada493a
AC
1731 elif class_is_variable_p
1732 then
3d9a5942
AC
1733 printf "\n"
1734 printf "${returntype}\n"
1735 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1736 printf "{\n"
8de9bdc4 1737 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1738 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1739 then
3d9a5942 1740 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1741 elif [ -n "${invalid_p}" ]
104c1213 1742 then
956ac328
AC
1743 printf " /* Check variable is valid. */\n"
1744 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1745 elif [ -n "${predefault}" ]
104c1213 1746 then
956ac328
AC
1747 printf " /* Check variable changed from pre-default. */\n"
1748 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1749 fi
3d9a5942
AC
1750 printf " if (gdbarch_debug >= 2)\n"
1751 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1752 printf " return gdbarch->${function};\n"
1753 printf "}\n"
1754 printf "\n"
1755 printf "void\n"
1756 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1757 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1758 printf "{\n"
1759 printf " gdbarch->${function} = ${function};\n"
1760 printf "}\n"
2ada493a
AC
1761 elif class_is_info_p
1762 then
3d9a5942
AC
1763 printf "\n"
1764 printf "${returntype}\n"
1765 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1766 printf "{\n"
8de9bdc4 1767 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1768 printf " if (gdbarch_debug >= 2)\n"
1769 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1770 printf " return gdbarch->${function};\n"
1771 printf "}\n"
2ada493a 1772 fi
104c1213
JM
1773done
1774
1775# All the trailing guff
1776cat <<EOF
1777
1778
f44c642f 1779/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1780 modules. */
1781
1782struct gdbarch_data
1783{
95160752 1784 unsigned index;
76860b5f 1785 int init_p;
030f20e1
AC
1786 gdbarch_data_pre_init_ftype *pre_init;
1787 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1788};
1789
1790struct gdbarch_data_registration
1791{
104c1213
JM
1792 struct gdbarch_data *data;
1793 struct gdbarch_data_registration *next;
1794};
1795
f44c642f 1796struct gdbarch_data_registry
104c1213 1797{
95160752 1798 unsigned nr;
104c1213
JM
1799 struct gdbarch_data_registration *registrations;
1800};
1801
f44c642f 1802struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1803{
1804 0, NULL,
1805};
1806
030f20e1
AC
1807static struct gdbarch_data *
1808gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1809 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1810{
1811 struct gdbarch_data_registration **curr;
76860b5f 1812 /* Append the new registraration. */
f44c642f 1813 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1814 (*curr) != NULL;
1815 curr = &(*curr)->next);
1816 (*curr) = XMALLOC (struct gdbarch_data_registration);
1817 (*curr)->next = NULL;
104c1213 1818 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1819 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1820 (*curr)->data->pre_init = pre_init;
1821 (*curr)->data->post_init = post_init;
76860b5f 1822 (*curr)->data->init_p = 1;
104c1213
JM
1823 return (*curr)->data;
1824}
1825
030f20e1
AC
1826struct gdbarch_data *
1827gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1828{
1829 return gdbarch_data_register (pre_init, NULL);
1830}
1831
1832struct gdbarch_data *
1833gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1834{
1835 return gdbarch_data_register (NULL, post_init);
1836}
104c1213 1837
b3cc3077 1838/* Create/delete the gdbarch data vector. */
95160752
AC
1839
1840static void
b3cc3077 1841alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1842{
b3cc3077
JB
1843 gdb_assert (gdbarch->data == NULL);
1844 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1845 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1846}
3c875b6f 1847
76860b5f 1848/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1849 data-pointer. */
1850
95160752 1851void
030f20e1
AC
1852deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1853 struct gdbarch_data *data,
1854 void *pointer)
95160752
AC
1855{
1856 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1857 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1858 gdb_assert (data->pre_init == NULL);
95160752
AC
1859 gdbarch->data[data->index] = pointer;
1860}
1861
104c1213
JM
1862/* Return the current value of the specified per-architecture
1863 data-pointer. */
1864
1865void *
451fbdda 1866gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1867{
451fbdda 1868 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1869 if (gdbarch->data[data->index] == NULL)
76860b5f 1870 {
030f20e1
AC
1871 /* The data-pointer isn't initialized, call init() to get a
1872 value. */
1873 if (data->pre_init != NULL)
1874 /* Mid architecture creation: pass just the obstack, and not
1875 the entire architecture, as that way it isn't possible for
1876 pre-init code to refer to undefined architecture
1877 fields. */
1878 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1879 else if (gdbarch->initialized_p
1880 && data->post_init != NULL)
1881 /* Post architecture creation: pass the entire architecture
1882 (as all fields are valid), but be careful to also detect
1883 recursive references. */
1884 {
1885 gdb_assert (data->init_p);
1886 data->init_p = 0;
1887 gdbarch->data[data->index] = data->post_init (gdbarch);
1888 data->init_p = 1;
1889 }
1890 else
1891 /* The architecture initialization hasn't completed - punt -
1892 hope that the caller knows what they are doing. Once
1893 deprecated_set_gdbarch_data has been initialized, this can be
1894 changed to an internal error. */
1895 return NULL;
76860b5f
AC
1896 gdb_assert (gdbarch->data[data->index] != NULL);
1897 }
451fbdda 1898 return gdbarch->data[data->index];
104c1213
JM
1899}
1900
1901
1902
f44c642f 1903/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1904
1905struct gdbarch_swap
1906{
1907 void *swap;
1908 struct gdbarch_swap_registration *source;
1909 struct gdbarch_swap *next;
1910};
1911
1912struct gdbarch_swap_registration
1913{
1914 void *data;
1915 unsigned long sizeof_data;
1916 gdbarch_swap_ftype *init;
1917 struct gdbarch_swap_registration *next;
1918};
1919
f44c642f 1920struct gdbarch_swap_registry
104c1213
JM
1921{
1922 int nr;
1923 struct gdbarch_swap_registration *registrations;
1924};
1925
f44c642f 1926struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1927{
1928 0, NULL,
1929};
1930
1931void
046a4708
AC
1932deprecated_register_gdbarch_swap (void *data,
1933 unsigned long sizeof_data,
1934 gdbarch_swap_ftype *init)
104c1213
JM
1935{
1936 struct gdbarch_swap_registration **rego;
f44c642f 1937 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1938 (*rego) != NULL;
1939 rego = &(*rego)->next);
1940 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1941 (*rego)->next = NULL;
1942 (*rego)->init = init;
1943 (*rego)->data = data;
1944 (*rego)->sizeof_data = sizeof_data;
1945}
1946
40af4b0c 1947static void
7de2341d 1948current_gdbarch_swap_init_hack (void)
104c1213
JM
1949{
1950 struct gdbarch_swap_registration *rego;
7de2341d 1951 struct gdbarch_swap **curr = &current_gdbarch->swap;
f44c642f 1952 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1953 rego != NULL;
1954 rego = rego->next)
1955 {
1956 if (rego->data != NULL)
1957 {
7de2341d
AC
1958 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1959 struct gdbarch_swap);
104c1213 1960 (*curr)->source = rego;
7de2341d
AC
1961 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1962 rego->sizeof_data);
104c1213 1963 (*curr)->next = NULL;
104c1213
JM
1964 curr = &(*curr)->next;
1965 }
1966 if (rego->init != NULL)
1967 rego->init ();
1968 }
1969}
1970
7de2341d
AC
1971static struct gdbarch *
1972current_gdbarch_swap_out_hack (void)
104c1213 1973{
7de2341d 1974 struct gdbarch *old_gdbarch = current_gdbarch;
104c1213 1975 struct gdbarch_swap *curr;
7de2341d
AC
1976
1977 gdb_assert (old_gdbarch != NULL);
1978 for (curr = old_gdbarch->swap;
104c1213
JM
1979 curr != NULL;
1980 curr = curr->next)
7de2341d
AC
1981 {
1982 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1983 memset (curr->source->data, 0, curr->source->sizeof_data);
1984 }
1985 current_gdbarch = NULL;
1986 return old_gdbarch;
104c1213
JM
1987}
1988
1989static void
7de2341d 1990current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
104c1213
JM
1991{
1992 struct gdbarch_swap *curr;
7de2341d
AC
1993
1994 gdb_assert (current_gdbarch == NULL);
1995 for (curr = new_gdbarch->swap;
104c1213
JM
1996 curr != NULL;
1997 curr = curr->next)
1998 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
7de2341d 1999 current_gdbarch = new_gdbarch;
104c1213
JM
2000}
2001
2002
f44c642f 2003/* Keep a registry of the architectures known by GDB. */
104c1213 2004
4b9b3959 2005struct gdbarch_registration
104c1213
JM
2006{
2007 enum bfd_architecture bfd_architecture;
2008 gdbarch_init_ftype *init;
4b9b3959 2009 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2010 struct gdbarch_list *arches;
4b9b3959 2011 struct gdbarch_registration *next;
104c1213
JM
2012};
2013
f44c642f 2014static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2015
b4a20239
AC
2016static void
2017append_name (const char ***buf, int *nr, const char *name)
2018{
2019 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2020 (*buf)[*nr] = name;
2021 *nr += 1;
2022}
2023
2024const char **
2025gdbarch_printable_names (void)
2026{
7996bcec
AC
2027 /* Accumulate a list of names based on the registed list of
2028 architectures. */
2029 enum bfd_architecture a;
2030 int nr_arches = 0;
2031 const char **arches = NULL;
2032 struct gdbarch_registration *rego;
2033 for (rego = gdbarch_registry;
2034 rego != NULL;
2035 rego = rego->next)
b4a20239 2036 {
7996bcec
AC
2037 const struct bfd_arch_info *ap;
2038 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2039 if (ap == NULL)
2040 internal_error (__FILE__, __LINE__,
2041 "gdbarch_architecture_names: multi-arch unknown");
2042 do
2043 {
2044 append_name (&arches, &nr_arches, ap->printable_name);
2045 ap = ap->next;
2046 }
2047 while (ap != NULL);
b4a20239 2048 }
7996bcec
AC
2049 append_name (&arches, &nr_arches, NULL);
2050 return arches;
b4a20239
AC
2051}
2052
2053
104c1213 2054void
4b9b3959
AC
2055gdbarch_register (enum bfd_architecture bfd_architecture,
2056 gdbarch_init_ftype *init,
2057 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2058{
4b9b3959 2059 struct gdbarch_registration **curr;
104c1213 2060 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2061 /* Check that BFD recognizes this architecture */
104c1213
JM
2062 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2063 if (bfd_arch_info == NULL)
2064 {
8e65ff28
AC
2065 internal_error (__FILE__, __LINE__,
2066 "gdbarch: Attempt to register unknown architecture (%d)",
2067 bfd_architecture);
104c1213
JM
2068 }
2069 /* Check that we haven't seen this architecture before */
f44c642f 2070 for (curr = &gdbarch_registry;
104c1213
JM
2071 (*curr) != NULL;
2072 curr = &(*curr)->next)
2073 {
2074 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2075 internal_error (__FILE__, __LINE__,
2076 "gdbarch: Duplicate registraration of architecture (%s)",
2077 bfd_arch_info->printable_name);
104c1213
JM
2078 }
2079 /* log it */
2080 if (gdbarch_debug)
2081 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2082 bfd_arch_info->printable_name,
2083 (long) init);
2084 /* Append it */
4b9b3959 2085 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2086 (*curr)->bfd_architecture = bfd_architecture;
2087 (*curr)->init = init;
4b9b3959 2088 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2089 (*curr)->arches = NULL;
2090 (*curr)->next = NULL;
4b9b3959
AC
2091}
2092
2093void
2094register_gdbarch_init (enum bfd_architecture bfd_architecture,
2095 gdbarch_init_ftype *init)
2096{
2097 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2098}
104c1213
JM
2099
2100
2101/* Look for an architecture using gdbarch_info. Base search on only
2102 BFD_ARCH_INFO and BYTE_ORDER. */
2103
2104struct gdbarch_list *
2105gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2106 const struct gdbarch_info *info)
2107{
2108 for (; arches != NULL; arches = arches->next)
2109 {
2110 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2111 continue;
2112 if (info->byte_order != arches->gdbarch->byte_order)
2113 continue;
4be87837
DJ
2114 if (info->osabi != arches->gdbarch->osabi)
2115 continue;
104c1213
JM
2116 return arches;
2117 }
2118 return NULL;
2119}
2120
2121
ebdba546
AC
2122/* Find an architecture that matches the specified INFO. Create a new
2123 architecture if needed. Return that new architecture. Assumes
2124 that there is no current architecture. */
104c1213 2125
ebdba546
AC
2126static struct gdbarch *
2127find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
104c1213
JM
2128{
2129 struct gdbarch *new_gdbarch;
4b9b3959 2130 struct gdbarch_registration *rego;
104c1213 2131
ebdba546
AC
2132 /* The existing architecture has been swapped out - all this code
2133 works from a clean slate. */
2134 gdb_assert (current_gdbarch == NULL);
2135
b732d07d 2136 /* Fill in missing parts of the INFO struct using a number of
ebdba546
AC
2137 sources: "set ..."; INFOabfd supplied; and the existing
2138 architecture. */
2139 gdbarch_info_fill (old_gdbarch, &info);
4be87837 2140
b732d07d
AC
2141 /* Must have found some sort of architecture. */
2142 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2143
2144 if (gdbarch_debug)
2145 {
2146 fprintf_unfiltered (gdb_stdlog,
ebdba546 2147 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2148 (info.bfd_arch_info != NULL
2149 ? info.bfd_arch_info->printable_name
2150 : "(null)"));
2151 fprintf_unfiltered (gdb_stdlog,
ebdba546 2152 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 2153 info.byte_order,
d7449b42 2154 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2155 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2156 : "default"));
4be87837 2157 fprintf_unfiltered (gdb_stdlog,
ebdba546 2158 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 2159 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2160 fprintf_unfiltered (gdb_stdlog,
ebdba546 2161 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
2162 (long) info.abfd);
2163 fprintf_unfiltered (gdb_stdlog,
ebdba546 2164 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
2165 (long) info.tdep_info);
2166 }
2167
ebdba546 2168 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2169 for (rego = gdbarch_registry;
2170 rego != NULL;
2171 rego = rego->next)
2172 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2173 break;
2174 if (rego == NULL)
2175 {
2176 if (gdbarch_debug)
ebdba546
AC
2177 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2178 "No matching architecture\n");
b732d07d
AC
2179 return 0;
2180 }
2181
ebdba546 2182 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2183 new_gdbarch = rego->init (info, rego->arches);
2184
ebdba546
AC
2185 /* Did the tdep code like it? No. Reject the change and revert to
2186 the old architecture. */
104c1213
JM
2187 if (new_gdbarch == NULL)
2188 {
2189 if (gdbarch_debug)
ebdba546
AC
2190 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2191 "Target rejected architecture\n");
2192 return NULL;
104c1213
JM
2193 }
2194
ebdba546
AC
2195 /* Is this a pre-existing architecture (as determined by already
2196 being initialized)? Move it to the front of the architecture
2197 list (keeping the list sorted Most Recently Used). */
2198 if (new_gdbarch->initialized_p)
104c1213 2199 {
ebdba546
AC
2200 struct gdbarch_list **list;
2201 struct gdbarch_list *this;
104c1213 2202 if (gdbarch_debug)
ebdba546
AC
2203 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2204 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
2205 (long) new_gdbarch,
2206 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2207 /* Find the existing arch in the list. */
2208 for (list = &rego->arches;
2209 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2210 list = &(*list)->next);
2211 /* It had better be in the list of architectures. */
2212 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2213 /* Unlink THIS. */
2214 this = (*list);
2215 (*list) = this->next;
2216 /* Insert THIS at the front. */
2217 this->next = rego->arches;
2218 rego->arches = this;
2219 /* Return it. */
2220 return new_gdbarch;
104c1213
JM
2221 }
2222
ebdba546
AC
2223 /* It's a new architecture. */
2224 if (gdbarch_debug)
2225 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2226 "New architecture 0x%08lx (%s) selected\n",
2227 (long) new_gdbarch,
2228 new_gdbarch->bfd_arch_info->printable_name);
2229
2230 /* Insert the new architecture into the front of the architecture
2231 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2232 {
2233 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2234 this->next = rego->arches;
2235 this->gdbarch = new_gdbarch;
2236 rego->arches = this;
2237 }
104c1213 2238
4b9b3959
AC
2239 /* Check that the newly installed architecture is valid. Plug in
2240 any post init values. */
2241 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2242 verify_gdbarch (new_gdbarch);
ebdba546 2243 new_gdbarch->initialized_p = 1;
104c1213 2244
ebdba546
AC
2245 /* Initialize any per-architecture swap areas. This phase requires
2246 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2247 swap the entire architecture out. */
2248 current_gdbarch = new_gdbarch;
7de2341d 2249 current_gdbarch_swap_init_hack ();
ebdba546 2250 current_gdbarch_swap_out_hack ();
67c2c32c 2251
4b9b3959 2252 if (gdbarch_debug)
ebdba546
AC
2253 gdbarch_dump (new_gdbarch, gdb_stdlog);
2254
2255 return new_gdbarch;
2256}
2257
2258struct gdbarch *
2259gdbarch_find_by_info (struct gdbarch_info info)
2260{
2261 /* Save the previously selected architecture, setting the global to
2262 NULL. This stops things like gdbarch->init() trying to use the
2263 previous architecture's configuration. The previous architecture
2264 may not even be of the same architecture family. The most recent
2265 architecture of the same family is found at the head of the
2266 rego->arches list. */
2267 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2268
2269 /* Find the specified architecture. */
2270 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2271
2272 /* Restore the existing architecture. */
2273 gdb_assert (current_gdbarch == NULL);
2274 current_gdbarch_swap_in_hack (old_gdbarch);
4b9b3959 2275
ebdba546 2276 return new_gdbarch;
104c1213
JM
2277}
2278
ebdba546
AC
2279/* Make the specified architecture current, swapping the existing one
2280 out. */
2281
2282void
2283deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2284{
2285 gdb_assert (new_gdbarch != NULL);
2286 gdb_assert (current_gdbarch != NULL);
2287 gdb_assert (new_gdbarch->initialized_p);
2288 current_gdbarch_swap_out_hack ();
2289 current_gdbarch_swap_in_hack (new_gdbarch);
2290 architecture_changed_event ();
2291}
104c1213 2292
104c1213 2293extern void _initialize_gdbarch (void);
b4a20239 2294
104c1213 2295void
34620563 2296_initialize_gdbarch (void)
104c1213 2297{
59233f88
AC
2298 struct cmd_list_element *c;
2299
59233f88 2300 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2301 class_maintenance,
2302 var_zinteger,
2303 (char *)&gdbarch_debug,
3d9a5942 2304 "Set architecture debugging.\\n\\
59233f88
AC
2305When non-zero, architecture debugging is enabled.", &setdebuglist),
2306 &showdebuglist);
2307 c = add_set_cmd ("archdebug",
2308 class_maintenance,
2309 var_zinteger,
2310 (char *)&gdbarch_debug,
3d9a5942 2311 "Set architecture debugging.\\n\\
59233f88
AC
2312When non-zero, architecture debugging is enabled.", &setlist);
2313
2314 deprecate_cmd (c, "set debug arch");
2315 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2316}
2317EOF
2318
2319# close things off
2320exec 1>&2
2321#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2322compare_new gdbarch.c
This page took 0.502913 seconds and 4 git commands to generate.