Fix PR python/19438, PR python/18393 - initialize dictionaries
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
012b3a21
WT
449# Some targets/architectures can do extra processing/display of
450# segmentation faults. E.g., Intel MPX boundary faults.
451# Call the architecture dependent function to handle the fault.
452# UIOUT is the output stream where the handler will place information.
453M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
c2169756
AC
455# GDB's standard (or well known) register numbers. These can map onto
456# a real register or a pseudo (computed) register or not be defined at
1200cd6e 457# all (-1).
3e8c568d 458# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
459v:int:sp_regnum:::-1:-1::0
460v:int:pc_regnum:::-1:-1::0
461v:int:ps_regnum:::-1:-1::0
462v:int:fp0_regnum:::0:-1::0
88c72b7d 463# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 464m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 465# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 466m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 467# Convert from an sdb register number to an internal gdb register number.
d3f73121 468m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 469# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 470# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 471m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 472m:const char *:register_name:int regnr:regnr::0
9c04cab7 473
7b9ee6a8
DJ
474# Return the type of a register specified by the architecture. Only
475# the register cache should call this function directly; others should
476# use "register_type".
97030eea 477M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 478
669fac23
DJ
479M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 481# deprecated_fp_regnum.
97030eea 482v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 483
97030eea
UW
484M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485v:int:call_dummy_location::::AT_ENTRY_POINT::0
486M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 487
97030eea 488m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 489m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 490M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
491# MAP a GDB RAW register number onto a simulator register number. See
492# also include/...-sim.h.
e7faf938 493m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
494m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
495m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
496
497# Determine the address where a longjmp will land and save this address
498# in PC. Return nonzero on success.
499#
500# FRAME corresponds to the longjmp frame.
97030eea 501F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 502
104c1213 503#
97030eea 504v:int:believe_pcc_promotion:::::::
104c1213 505#
0abe36f5 506m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 507f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 508f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 509# Construct a value representing the contents of register REGNUM in
2ed3c037 510# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
511# allocate and return a struct value with all value attributes
512# (but not the value contents) filled in.
2ed3c037 513m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 514#
9898f801
UW
515m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
516m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 517M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 518
6a3a010b
MR
519# Return the return-value convention that will be used by FUNCTION
520# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
521# case the return convention is computed based only on VALTYPE.
522#
523# If READBUF is not NULL, extract the return value and save it in this buffer.
524#
525# If WRITEBUF is not NULL, it contains a return value which will be
526# stored into the appropriate register. This can be used when we want
527# to force the value returned by a function (see the "return" command
528# for instance).
6a3a010b 529M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 530
18648a37
YQ
531# Return true if the return value of function is stored in the first hidden
532# parameter. In theory, this feature should be language-dependent, specified
533# by language and its ABI, such as C++. Unfortunately, compiler may
534# implement it to a target-dependent feature. So that we need such hook here
535# to be aware of this in GDB.
536m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
537
6093d2eb 538m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 539M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
540# On some platforms, a single function may provide multiple entry points,
541# e.g. one that is used for function-pointer calls and a different one
542# that is used for direct function calls.
543# In order to ensure that breakpoints set on the function will trigger
544# no matter via which entry point the function is entered, a platform
545# may provide the skip_entrypoint callback. It is called with IP set
546# to the main entry point of a function (as determined by the symbol table),
547# and should return the address of the innermost entry point, where the
548# actual breakpoint needs to be set. Note that skip_entrypoint is used
549# by GDB common code even when debugging optimized code, where skip_prologue
550# is not used.
551M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
552
97030eea 553f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 554m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
555# Return the adjusted address and kind to use for Z0/Z1 packets.
556# KIND is usually the memory length of the breakpoint, but may have a
557# different target-specific meaning.
0e05dfcb 558m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 559M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
560m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
561m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 562v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
563
564# A function can be addressed by either it's "pointer" (possibly a
565# descriptor address) or "entry point" (first executable instruction).
566# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 567# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
568# a simplified subset of that functionality - the function's address
569# corresponds to the "function pointer" and the function's start
570# corresponds to the "function entry point" - and hence is redundant.
571
97030eea 572v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 573
123dc839
DJ
574# Return the remote protocol register number associated with this
575# register. Normally the identity mapping.
97030eea 576m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 577
b2756930 578# Fetch the target specific address used to represent a load module.
97030eea 579F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 580#
97030eea
UW
581v:CORE_ADDR:frame_args_skip:::0:::0
582M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
583M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
584# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
585# frame-base. Enable frame-base before frame-unwind.
97030eea 586F:int:frame_num_args:struct frame_info *frame:frame
104c1213 587#
97030eea
UW
588M:CORE_ADDR:frame_align:CORE_ADDR address:address
589m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
590v:int:frame_red_zone_size
f0d4cc9e 591#
97030eea 592m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
593# On some machines there are bits in addresses which are not really
594# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 595# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
596# we get a "real" address such as one would find in a symbol table.
597# This is used only for addresses of instructions, and even then I'm
598# not sure it's used in all contexts. It exists to deal with there
599# being a few stray bits in the PC which would mislead us, not as some
600# sort of generic thing to handle alignment or segmentation (it's
601# possible it should be in TARGET_READ_PC instead).
24568a2c 602m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
603
604# FIXME/cagney/2001-01-18: This should be split in two. A target method that
605# indicates if the target needs software single step. An ISA method to
606# implement it.
607#
e6590a1b
UW
608# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
609# target can single step. If not, then implement single step using breakpoints.
64c4637f 610#
6f112b18 611# A return value of 1 means that the software_single_step breakpoints
21edc42f
YQ
612# were inserted; 0 means they were not. Multiple breakpoints may be
613# inserted for some instructions such as conditional branch. However,
614# each implementation must always evaluate the condition and only put
615# the breakpoint at the branch destination if the condition is true, so
616# that we ensure forward progress when stepping past a conditional
617# branch to self.
97030eea 618F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 619
3352ef37
AC
620# Return non-zero if the processor is executing a delay slot and a
621# further single-step is needed before the instruction finishes.
97030eea 622M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 623# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 624# disassembler. Perhaps objdump can handle it?
97030eea
UW
625f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
626f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
627
628
cfd8ab24 629# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
630# evaluates non-zero, this is the address where the debugger will place
631# a step-resume breakpoint to get us past the dynamic linker.
97030eea 632m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 633# Some systems also have trampoline code for returning from shared libs.
2c02bd72 634m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 635
c12260ac
CV
636# A target might have problems with watchpoints as soon as the stack
637# frame of the current function has been destroyed. This mostly happens
c9cf6e20 638# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
639# is defined to return a non-zero value if either the given addr is one
640# instruction after the stack destroying instruction up to the trailing
641# return instruction or if we can figure out that the stack frame has
642# already been invalidated regardless of the value of addr. Targets
643# which don't suffer from that problem could just let this functionality
644# untouched.
c9cf6e20 645m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
646# Process an ELF symbol in the minimal symbol table in a backend-specific
647# way. Normally this hook is supposed to do nothing, however if required,
648# then this hook can be used to apply tranformations to symbols that are
649# considered special in some way. For example the MIPS backend uses it
650# to interpret \`st_other' information to mark compressed code symbols so
651# that they can be treated in the appropriate manner in the processing of
652# the main symbol table and DWARF-2 records.
653F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 654f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
655# Process a symbol in the main symbol table in a backend-specific way.
656# Normally this hook is supposed to do nothing, however if required,
657# then this hook can be used to apply tranformations to symbols that
658# are considered special in some way. This is currently used by the
659# MIPS backend to make sure compressed code symbols have the ISA bit
660# set. This in turn is needed for symbol values seen in GDB to match
661# the values used at the runtime by the program itself, for function
662# and label references.
663f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
664# Adjust the address retrieved from a DWARF-2 record other than a line
665# entry in a backend-specific way. Normally this hook is supposed to
666# return the address passed unchanged, however if that is incorrect for
667# any reason, then this hook can be used to fix the address up in the
668# required manner. This is currently used by the MIPS backend to make
669# sure addresses in FDE, range records, etc. referring to compressed
670# code have the ISA bit set, matching line information and the symbol
671# table.
672f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
673# Adjust the address updated by a line entry in a backend-specific way.
674# Normally this hook is supposed to return the address passed unchanged,
675# however in the case of inconsistencies in these records, this hook can
676# be used to fix them up in the required manner. This is currently used
677# by the MIPS backend to make sure all line addresses in compressed code
678# are presented with the ISA bit set, which is not always the case. This
679# in turn ensures breakpoint addresses are correctly matched against the
680# stop PC.
681f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
682v:int:cannot_step_breakpoint:::0:0::0
683v:int:have_nonsteppable_watchpoint:::0:0::0
684F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
685M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
686
687# Return the appropriate type_flags for the supplied address class.
688# This function should return 1 if the address class was recognized and
689# type_flags was set, zero otherwise.
97030eea 690M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 691# Is a register in a group
97030eea 692m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 693# Fetch the pointer to the ith function argument.
97030eea 694F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 695
5aa82d05
AA
696# Iterate over all supported register notes in a core file. For each
697# supported register note section, the iterator must call CB and pass
698# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
699# the supported register note sections based on the current register
700# values. Otherwise it should enumerate all supported register note
701# sections.
702M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 703
6432734d
UW
704# Create core file notes
705M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
706
b3ac9c77
SDJ
707# The elfcore writer hook to use to write Linux prpsinfo notes to core
708# files. Most Linux architectures use the same prpsinfo32 or
709# prpsinfo64 layouts, and so won't need to provide this hook, as we
710# call the Linux generic routines in bfd to write prpsinfo notes by
711# default.
712F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
713
35c2fab7
UW
714# Find core file memory regions
715M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
716
de584861 717# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
718# core file into buffer READBUF with length LEN. Return the number of bytes read
719# (zero indicates failure).
720# failed, otherwise, return the red length of READBUF.
721M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 722
356a5233
JB
723# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
724# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
725# Return the number of bytes read (zero indicates failure).
726M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 727
c0edd9ed 728# How the core target converts a PTID from a core file to a string.
28439f5e
PA
729M:char *:core_pid_to_str:ptid_t ptid:ptid
730
4dfc5dbc
JB
731# How the core target extracts the name of a thread from a core file.
732M:const char *:core_thread_name:struct thread_info *thr:thr
733
a78c2d62 734# BFD target to use when generating a core file.
86ba1042 735V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 736
0d5de010
DJ
737# If the elements of C++ vtables are in-place function descriptors rather
738# than normal function pointers (which may point to code or a descriptor),
739# set this to one.
97030eea 740v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
741
742# Set if the least significant bit of the delta is used instead of the least
743# significant bit of the pfn for pointers to virtual member functions.
97030eea 744v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
745
746# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 747f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 748
1668ae25 749# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
750V:ULONGEST:max_insn_length:::0:0
751
752# Copy the instruction at FROM to TO, and make any adjustments
753# necessary to single-step it at that address.
754#
755# REGS holds the state the thread's registers will have before
756# executing the copied instruction; the PC in REGS will refer to FROM,
757# not the copy at TO. The caller should update it to point at TO later.
758#
759# Return a pointer to data of the architecture's choice to be passed
760# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
761# the instruction's effects have been completely simulated, with the
762# resulting state written back to REGS.
763#
764# For a general explanation of displaced stepping and how GDB uses it,
765# see the comments in infrun.c.
766#
767# The TO area is only guaranteed to have space for
768# gdbarch_max_insn_length (arch) bytes, so this function must not
769# write more bytes than that to that area.
770#
771# If you do not provide this function, GDB assumes that the
772# architecture does not support displaced stepping.
773#
774# If your architecture doesn't need to adjust instructions before
775# single-stepping them, consider using simple_displaced_step_copy_insn
776# here.
7f03bd92
PA
777#
778# If the instruction cannot execute out of line, return NULL. The
779# core falls back to stepping past the instruction in-line instead in
780# that case.
237fc4c9
PA
781M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
782
99e40580
UW
783# Return true if GDB should use hardware single-stepping to execute
784# the displaced instruction identified by CLOSURE. If false,
785# GDB will simply restart execution at the displaced instruction
786# location, and it is up to the target to ensure GDB will receive
787# control again (e.g. by placing a software breakpoint instruction
788# into the displaced instruction buffer).
789#
790# The default implementation returns false on all targets that
791# provide a gdbarch_software_single_step routine, and true otherwise.
792m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
793
237fc4c9
PA
794# Fix up the state resulting from successfully single-stepping a
795# displaced instruction, to give the result we would have gotten from
796# stepping the instruction in its original location.
797#
798# REGS is the register state resulting from single-stepping the
799# displaced instruction.
800#
801# CLOSURE is the result from the matching call to
802# gdbarch_displaced_step_copy_insn.
803#
804# If you provide gdbarch_displaced_step_copy_insn.but not this
805# function, then GDB assumes that no fixup is needed after
806# single-stepping the instruction.
807#
808# For a general explanation of displaced stepping and how GDB uses it,
809# see the comments in infrun.c.
810M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
811
812# Free a closure returned by gdbarch_displaced_step_copy_insn.
813#
814# If you provide gdbarch_displaced_step_copy_insn, you must provide
815# this function as well.
816#
817# If your architecture uses closures that don't need to be freed, then
818# you can use simple_displaced_step_free_closure here.
819#
820# For a general explanation of displaced stepping and how GDB uses it,
821# see the comments in infrun.c.
822m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
823
824# Return the address of an appropriate place to put displaced
825# instructions while we step over them. There need only be one such
826# place, since we're only stepping one thread over a breakpoint at a
827# time.
828#
829# For a general explanation of displaced stepping and how GDB uses it,
830# see the comments in infrun.c.
831m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
832
dde08ee1
PA
833# Relocate an instruction to execute at a different address. OLDLOC
834# is the address in the inferior memory where the instruction to
835# relocate is currently at. On input, TO points to the destination
836# where we want the instruction to be copied (and possibly adjusted)
837# to. On output, it points to one past the end of the resulting
838# instruction(s). The effect of executing the instruction at TO shall
839# be the same as if executing it at FROM. For example, call
840# instructions that implicitly push the return address on the stack
841# should be adjusted to return to the instruction after OLDLOC;
842# relative branches, and other PC-relative instructions need the
843# offset adjusted; etc.
844M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
845
1c772458 846# Refresh overlay mapped state for section OSECT.
97030eea 847F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 848
97030eea 849M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
850
851# Handle special encoding of static variables in stabs debug info.
0d5cff50 852F:const char *:static_transform_name:const char *name:name
203c3895 853# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 854v:int:sofun_address_maybe_missing:::0:0::0
1cded358 855
0508c3ec
HZ
856# Parse the instruction at ADDR storing in the record execution log
857# the registers REGCACHE and memory ranges that will be affected when
858# the instruction executes, along with their current values.
859# Return -1 if something goes wrong, 0 otherwise.
860M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
861
3846b520
HZ
862# Save process state after a signal.
863# Return -1 if something goes wrong, 0 otherwise.
2ea28649 864M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 865
22203bbf 866# Signal translation: translate inferior's signal (target's) number
86b49880
PA
867# into GDB's representation. The implementation of this method must
868# be host independent. IOW, don't rely on symbols of the NAT_FILE
869# header (the nm-*.h files), the host <signal.h> header, or similar
870# headers. This is mainly used when cross-debugging core files ---
871# "Live" targets hide the translation behind the target interface
1f8cf220
PA
872# (target_wait, target_resume, etc.).
873M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 874
eb14d406
SDJ
875# Signal translation: translate the GDB's internal signal number into
876# the inferior's signal (target's) representation. The implementation
877# of this method must be host independent. IOW, don't rely on symbols
878# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
879# header, or similar headers.
880# Return the target signal number if found, or -1 if the GDB internal
881# signal number is invalid.
882M:int:gdb_signal_to_target:enum gdb_signal signal:signal
883
4aa995e1
PA
884# Extra signal info inspection.
885#
886# Return a type suitable to inspect extra signal information.
887M:struct type *:get_siginfo_type:void:
888
60c5725c
DJ
889# Record architecture-specific information from the symbol table.
890M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 891
a96d9b2e
SDJ
892# Function for the 'catch syscall' feature.
893
894# Get architecture-specific system calls information from registers.
895M:LONGEST:get_syscall_number:ptid_t ptid:ptid
896
458c8db8
SDJ
897# The filename of the XML syscall for this architecture.
898v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
899
900# Information about system calls from this architecture
901v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
902
55aa24fb
SDJ
903# SystemTap related fields and functions.
904
05c0465e
SDJ
905# A NULL-terminated array of prefixes used to mark an integer constant
906# on the architecture's assembly.
55aa24fb
SDJ
907# For example, on x86 integer constants are written as:
908#
909# \$10 ;; integer constant 10
910#
911# in this case, this prefix would be the character \`\$\'.
05c0465e 912v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 913
05c0465e
SDJ
914# A NULL-terminated array of suffixes used to mark an integer constant
915# on the architecture's assembly.
916v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 917
05c0465e
SDJ
918# A NULL-terminated array of prefixes used to mark a register name on
919# the architecture's assembly.
55aa24fb
SDJ
920# For example, on x86 the register name is written as:
921#
922# \%eax ;; register eax
923#
924# in this case, this prefix would be the character \`\%\'.
05c0465e 925v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 926
05c0465e
SDJ
927# A NULL-terminated array of suffixes used to mark a register name on
928# the architecture's assembly.
929v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 930
05c0465e
SDJ
931# A NULL-terminated array of prefixes used to mark a register
932# indirection on the architecture's assembly.
55aa24fb
SDJ
933# For example, on x86 the register indirection is written as:
934#
935# \(\%eax\) ;; indirecting eax
936#
937# in this case, this prefix would be the charater \`\(\'.
938#
939# Please note that we use the indirection prefix also for register
940# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 941v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 942
05c0465e
SDJ
943# A NULL-terminated array of suffixes used to mark a register
944# indirection on the architecture's assembly.
55aa24fb
SDJ
945# For example, on x86 the register indirection is written as:
946#
947# \(\%eax\) ;; indirecting eax
948#
949# in this case, this prefix would be the charater \`\)\'.
950#
951# Please note that we use the indirection suffix also for register
952# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 953v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 954
05c0465e 955# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
956#
957# For example, on PPC a register is represented by a number in the assembly
958# language (e.g., \`10\' is the 10th general-purpose register). However,
959# inside GDB this same register has an \`r\' appended to its name, so the 10th
960# register would be represented as \`r10\' internally.
08af7a40 961v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
962
963# Suffix used to name a register using GDB's nomenclature.
08af7a40 964v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
965
966# Check if S is a single operand.
967#
968# Single operands can be:
969# \- Literal integers, e.g. \`\$10\' on x86
970# \- Register access, e.g. \`\%eax\' on x86
971# \- Register indirection, e.g. \`\(\%eax\)\' on x86
972# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
973#
974# This function should check for these patterns on the string
975# and return 1 if some were found, or zero otherwise. Please try to match
976# as much info as you can from the string, i.e., if you have to match
977# something like \`\(\%\', do not match just the \`\(\'.
978M:int:stap_is_single_operand:const char *s:s
979
980# Function used to handle a "special case" in the parser.
981#
982# A "special case" is considered to be an unknown token, i.e., a token
983# that the parser does not know how to parse. A good example of special
984# case would be ARM's register displacement syntax:
985#
986# [R0, #4] ;; displacing R0 by 4
987#
988# Since the parser assumes that a register displacement is of the form:
989#
990# <number> <indirection_prefix> <register_name> <indirection_suffix>
991#
992# it means that it will not be able to recognize and parse this odd syntax.
993# Therefore, we should add a special case function that will handle this token.
994#
995# This function should generate the proper expression form of the expression
996# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
997# and so on). It should also return 1 if the parsing was successful, or zero
998# if the token was not recognized as a special token (in this case, returning
999# zero means that the special parser is deferring the parsing to the generic
1000# parser), and should advance the buffer pointer (p->arg).
1001M:int:stap_parse_special_token:struct stap_parse_info *p:p
1002
8b367e17
JM
1003# DTrace related functions.
1004
1005# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1006# NARG must be >= 0.
1007M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1008
1009# True if the given ADDR does not contain the instruction sequence
1010# corresponding to a disabled DTrace is-enabled probe.
1011M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1012
1013# Enable a DTrace is-enabled probe at ADDR.
1014M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1015
1016# Disable a DTrace is-enabled probe at ADDR.
1017M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1018
50c71eaf
PA
1019# True if the list of shared libraries is one and only for all
1020# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1021# This usually means that all processes, although may or may not share
1022# an address space, will see the same set of symbols at the same
1023# addresses.
50c71eaf 1024v:int:has_global_solist:::0:0::0
2567c7d9
PA
1025
1026# On some targets, even though each inferior has its own private
1027# address space, the debug interface takes care of making breakpoints
1028# visible to all address spaces automatically. For such cases,
1029# this property should be set to true.
1030v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1031
1032# True if inferiors share an address space (e.g., uClinux).
1033m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1034
1035# True if a fast tracepoint can be set at an address.
6b940e6a 1036m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1037
5f034a78
MK
1038# Guess register state based on tracepoint location. Used for tracepoints
1039# where no registers have been collected, but there's only one location,
1040# allowing us to guess the PC value, and perhaps some other registers.
1041# On entry, regcache has all registers marked as unavailable.
1042m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1043
f870a310
TT
1044# Return the "auto" target charset.
1045f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1046# Return the "auto" target wide charset.
1047f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1048
1049# If non-empty, this is a file extension that will be opened in place
1050# of the file extension reported by the shared library list.
1051#
1052# This is most useful for toolchains that use a post-linker tool,
1053# where the names of the files run on the target differ in extension
1054# compared to the names of the files GDB should load for debug info.
1055v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1056
1057# If true, the target OS has DOS-based file system semantics. That
1058# is, absolute paths include a drive name, and the backslash is
1059# considered a directory separator.
1060v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1061
1062# Generate bytecodes to collect the return address in a frame.
1063# Since the bytecodes run on the target, possibly with GDB not even
1064# connected, the full unwinding machinery is not available, and
1065# typically this function will issue bytecodes for one or more likely
1066# places that the return address may be found.
1067m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1068
3030c96e 1069# Implement the "info proc" command.
7bc112c1 1070M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1071
451b7c33
TT
1072# Implement the "info proc" command for core files. Noe that there
1073# are two "info_proc"-like methods on gdbarch -- one for core files,
1074# one for live targets.
7bc112c1 1075M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1076
19630284
JB
1077# Iterate over all objfiles in the order that makes the most sense
1078# for the architecture to make global symbol searches.
1079#
1080# CB is a callback function where OBJFILE is the objfile to be searched,
1081# and CB_DATA a pointer to user-defined data (the same data that is passed
1082# when calling this gdbarch method). The iteration stops if this function
1083# returns nonzero.
1084#
1085# CB_DATA is a pointer to some user-defined data to be passed to
1086# the callback.
1087#
1088# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1089# inspected when the symbol search was requested.
1090m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1091
7e35103a
JB
1092# Ravenscar arch-dependent ops.
1093v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1094
1095# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1096m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1097
1098# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1099m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1100
1101# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1102m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1103
1104# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1105# Return 0 if *READPTR is already at the end of the buffer.
1106# Return -1 if there is insufficient buffer for a whole entry.
1107# Return 1 if an entry was read into *TYPEP and *VALP.
1108M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1109
1110# Find the address range of the current inferior's vsyscall/vDSO, and
1111# write it to *RANGE. If the vsyscall's length can't be determined, a
1112# range with zero length is returned. Returns true if the vsyscall is
1113# found, false otherwise.
1114m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1115
1116# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1117# PROT has GDB_MMAP_PROT_* bitmask format.
1118# Throw an error if it is not possible. Returned address is always valid.
1119f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1120
7f361056
JK
1121# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1122# Print a warning if it is not possible.
1123f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1124
f208eee0
JK
1125# Return string (caller has to use xfree for it) with options for GCC
1126# to produce code for this target, typically "-m64", "-m32" or "-m31".
1127# These options are put before CU's DW_AT_producer compilation options so that
1128# they can override it. Method may also return NULL.
1129m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1130
1131# Return a regular expression that matches names used by this
1132# architecture in GNU configury triplets. The result is statically
1133# allocated and must not be freed. The default implementation simply
1134# returns the BFD architecture name, which is correct in nearly every
1135# case.
1136m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1137
1138# Return the size in 8-bit bytes of an addressable memory unit on this
1139# architecture. This corresponds to the number of 8-bit bytes associated to
1140# each address in memory.
1141m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1142
104c1213 1143EOF
104c1213
JM
1144}
1145
0b8f9e4d
AC
1146#
1147# The .log file
1148#
1149exec > new-gdbarch.log
34620563 1150function_list | while do_read
0b8f9e4d
AC
1151do
1152 cat <<EOF
2f9b146e 1153${class} ${returntype} ${function} ($formal)
104c1213 1154EOF
3d9a5942
AC
1155 for r in ${read}
1156 do
1157 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1158 done
f0d4cc9e 1159 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1160 then
66d659b1 1161 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1162 kill $$
1163 exit 1
1164 fi
72e74a21 1165 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1166 then
1167 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1168 kill $$
1169 exit 1
1170 fi
a72293e2
AC
1171 if class_is_multiarch_p
1172 then
1173 if class_is_predicate_p ; then :
1174 elif test "x${predefault}" = "x"
1175 then
2f9b146e 1176 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1177 kill $$
1178 exit 1
1179 fi
1180 fi
3d9a5942 1181 echo ""
0b8f9e4d
AC
1182done
1183
1184exec 1>&2
1185compare_new gdbarch.log
1186
104c1213
JM
1187
1188copyright ()
1189{
1190cat <<EOF
c4bfde41
JK
1191/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1192/* vi:set ro: */
59233f88 1193
104c1213 1194/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1195
618f726f 1196 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1197
1198 This file is part of GDB.
1199
1200 This program is free software; you can redistribute it and/or modify
1201 it under the terms of the GNU General Public License as published by
50efebf8 1202 the Free Software Foundation; either version 3 of the License, or
104c1213 1203 (at your option) any later version.
618f726f 1204
104c1213
JM
1205 This program is distributed in the hope that it will be useful,
1206 but WITHOUT ANY WARRANTY; without even the implied warranty of
1207 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1208 GNU General Public License for more details.
618f726f 1209
104c1213 1210 You should have received a copy of the GNU General Public License
50efebf8 1211 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1212
104c1213
JM
1213/* This file was created with the aid of \`\`gdbarch.sh''.
1214
52204a0b 1215 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1216 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1217 against the existing \`\`gdbarch.[hc]''. Any differences found
1218 being reported.
1219
1220 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1221 changes into that script. Conversely, when making sweeping changes
104c1213 1222 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1223 easier. */
104c1213
JM
1224
1225EOF
1226}
1227
1228#
1229# The .h file
1230#
1231
1232exec > new-gdbarch.h
1233copyright
1234cat <<EOF
1235#ifndef GDBARCH_H
1236#define GDBARCH_H
1237
eb7a547a
JB
1238#include "frame.h"
1239
da3331ec
AC
1240struct floatformat;
1241struct ui_file;
104c1213 1242struct value;
b6af0555 1243struct objfile;
1c772458 1244struct obj_section;
a2cf933a 1245struct minimal_symbol;
049ee0e4 1246struct regcache;
b59ff9d5 1247struct reggroup;
6ce6d90f 1248struct regset;
a89aa300 1249struct disassemble_info;
e2d0e7eb 1250struct target_ops;
030f20e1 1251struct obstack;
8181d85f 1252struct bp_target_info;
424163ea 1253struct target_desc;
3e29f34a
MR
1254struct objfile;
1255struct symbol;
237fc4c9 1256struct displaced_step_closure;
a96d9b2e 1257struct syscall;
175ff332 1258struct agent_expr;
6710bf39 1259struct axs_value;
55aa24fb 1260struct stap_parse_info;
8b367e17 1261struct parser_state;
7e35103a 1262struct ravenscar_arch_ops;
b3ac9c77 1263struct elf_internal_linux_prpsinfo;
3437254d 1264struct mem_range;
458c8db8 1265struct syscalls_info;
4dfc5dbc 1266struct thread_info;
012b3a21 1267struct ui_out;
104c1213 1268
8a526fa6
PA
1269#include "regcache.h"
1270
6ecd4729
PA
1271/* The architecture associated with the inferior through the
1272 connection to the target.
1273
1274 The architecture vector provides some information that is really a
1275 property of the inferior, accessed through a particular target:
1276 ptrace operations; the layout of certain RSP packets; the solib_ops
1277 vector; etc. To differentiate architecture accesses to
1278 per-inferior/target properties from
1279 per-thread/per-frame/per-objfile properties, accesses to
1280 per-inferior/target properties should be made through this
1281 gdbarch. */
1282
1283/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1284extern struct gdbarch *target_gdbarch (void);
6ecd4729 1285
19630284
JB
1286/* Callback type for the 'iterate_over_objfiles_in_search_order'
1287 gdbarch method. */
1288
1289typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1290 (struct objfile *objfile, void *cb_data);
5aa82d05 1291
1528345d
AA
1292/* Callback type for regset section iterators. The callback usually
1293 invokes the REGSET's supply or collect method, to which it must
1294 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1295 section name, and HUMAN_NAME is used for diagnostic messages.
1296 CB_DATA should have been passed unchanged through the iterator. */
1297
5aa82d05 1298typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1299 (const char *sect_name, int size, const struct regset *regset,
1300 const char *human_name, void *cb_data);
104c1213
JM
1301EOF
1302
1303# function typedef's
3d9a5942
AC
1304printf "\n"
1305printf "\n"
0963b4bd 1306printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1307function_list | while do_read
104c1213 1308do
2ada493a
AC
1309 if class_is_info_p
1310 then
3d9a5942
AC
1311 printf "\n"
1312 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1313 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1314 fi
104c1213
JM
1315done
1316
1317# function typedef's
3d9a5942
AC
1318printf "\n"
1319printf "\n"
0963b4bd 1320printf "/* The following are initialized by the target dependent code. */\n"
34620563 1321function_list | while do_read
104c1213 1322do
72e74a21 1323 if [ -n "${comment}" ]
34620563
AC
1324 then
1325 echo "${comment}" | sed \
1326 -e '2 s,#,/*,' \
1327 -e '3,$ s,#, ,' \
1328 -e '$ s,$, */,'
1329 fi
412d5987
AC
1330
1331 if class_is_predicate_p
2ada493a 1332 then
412d5987
AC
1333 printf "\n"
1334 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1335 fi
2ada493a
AC
1336 if class_is_variable_p
1337 then
3d9a5942
AC
1338 printf "\n"
1339 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1340 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1341 fi
1342 if class_is_function_p
1343 then
3d9a5942 1344 printf "\n"
72e74a21 1345 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1346 then
1347 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1348 elif class_is_multiarch_p
1349 then
1350 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1351 else
1352 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1353 fi
72e74a21 1354 if [ "x${formal}" = "xvoid" ]
104c1213 1355 then
3d9a5942 1356 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1357 else
3d9a5942 1358 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1359 fi
3d9a5942 1360 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1361 fi
104c1213
JM
1362done
1363
1364# close it off
1365cat <<EOF
1366
a96d9b2e
SDJ
1367/* Definition for an unknown syscall, used basically in error-cases. */
1368#define UNKNOWN_SYSCALL (-1)
1369
104c1213
JM
1370extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1371
1372
1373/* Mechanism for co-ordinating the selection of a specific
1374 architecture.
1375
1376 GDB targets (*-tdep.c) can register an interest in a specific
1377 architecture. Other GDB components can register a need to maintain
1378 per-architecture data.
1379
1380 The mechanisms below ensures that there is only a loose connection
1381 between the set-architecture command and the various GDB
0fa6923a 1382 components. Each component can independently register their need
104c1213
JM
1383 to maintain architecture specific data with gdbarch.
1384
1385 Pragmatics:
1386
1387 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1388 didn't scale.
1389
1390 The more traditional mega-struct containing architecture specific
1391 data for all the various GDB components was also considered. Since
0fa6923a 1392 GDB is built from a variable number of (fairly independent)
104c1213 1393 components it was determined that the global aproach was not
0963b4bd 1394 applicable. */
104c1213
JM
1395
1396
1397/* Register a new architectural family with GDB.
1398
1399 Register support for the specified ARCHITECTURE with GDB. When
1400 gdbarch determines that the specified architecture has been
1401 selected, the corresponding INIT function is called.
1402
1403 --
1404
1405 The INIT function takes two parameters: INFO which contains the
1406 information available to gdbarch about the (possibly new)
1407 architecture; ARCHES which is a list of the previously created
1408 \`\`struct gdbarch'' for this architecture.
1409
0f79675b 1410 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1411 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1412
1413 The ARCHES parameter is a linked list (sorted most recently used)
1414 of all the previously created architures for this architecture
1415 family. The (possibly NULL) ARCHES->gdbarch can used to access
1416 values from the previously selected architecture for this
59837fe0 1417 architecture family.
104c1213
JM
1418
1419 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1420 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1421 gdbarch'' from the ARCHES list - indicating that the new
1422 architecture is just a synonym for an earlier architecture (see
1423 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1424 - that describes the selected architecture (see gdbarch_alloc()).
1425
1426 The DUMP_TDEP function shall print out all target specific values.
1427 Care should be taken to ensure that the function works in both the
0963b4bd 1428 multi-arch and non- multi-arch cases. */
104c1213
JM
1429
1430struct gdbarch_list
1431{
1432 struct gdbarch *gdbarch;
1433 struct gdbarch_list *next;
1434};
1435
1436struct gdbarch_info
1437{
0963b4bd 1438 /* Use default: NULL (ZERO). */
104c1213
JM
1439 const struct bfd_arch_info *bfd_arch_info;
1440
428721aa 1441 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1442 enum bfd_endian byte_order;
104c1213 1443
94123b4f 1444 enum bfd_endian byte_order_for_code;
9d4fde75 1445
0963b4bd 1446 /* Use default: NULL (ZERO). */
104c1213
JM
1447 bfd *abfd;
1448
0963b4bd 1449 /* Use default: NULL (ZERO). */
ede5f151 1450 void *tdep_info;
4be87837
DJ
1451
1452 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1453 enum gdb_osabi osabi;
424163ea
DJ
1454
1455 /* Use default: NULL (ZERO). */
1456 const struct target_desc *target_desc;
104c1213
JM
1457};
1458
1459typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1460typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1461
4b9b3959 1462/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1463extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1464
4b9b3959
AC
1465extern void gdbarch_register (enum bfd_architecture architecture,
1466 gdbarch_init_ftype *,
1467 gdbarch_dump_tdep_ftype *);
1468
104c1213 1469
b4a20239
AC
1470/* Return a freshly allocated, NULL terminated, array of the valid
1471 architecture names. Since architectures are registered during the
1472 _initialize phase this function only returns useful information
0963b4bd 1473 once initialization has been completed. */
b4a20239
AC
1474
1475extern const char **gdbarch_printable_names (void);
1476
1477
104c1213 1478/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1479 matches the information provided by INFO. */
104c1213 1480
424163ea 1481extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1482
1483
1484/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1485 basic initialization using values obtained from the INFO and TDEP
104c1213 1486 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1487 initialization of the object. */
104c1213
JM
1488
1489extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1490
1491
4b9b3959
AC
1492/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1493 It is assumed that the caller freeds the \`\`struct
0963b4bd 1494 gdbarch_tdep''. */
4b9b3959 1495
058f20d5
JB
1496extern void gdbarch_free (struct gdbarch *);
1497
1498
aebd7893
AC
1499/* Helper function. Allocate memory from the \`\`struct gdbarch''
1500 obstack. The memory is freed when the corresponding architecture
1501 is also freed. */
1502
1503extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1504#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1505#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1506
6c214e7c
PP
1507/* Duplicate STRING, returning an equivalent string that's allocated on the
1508 obstack associated with GDBARCH. The string is freed when the corresponding
1509 architecture is also freed. */
1510
1511extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1512
0963b4bd 1513/* Helper function. Force an update of the current architecture.
104c1213 1514
b732d07d
AC
1515 The actual architecture selected is determined by INFO, \`\`(gdb) set
1516 architecture'' et.al., the existing architecture and BFD's default
1517 architecture. INFO should be initialized to zero and then selected
1518 fields should be updated.
104c1213 1519
0963b4bd 1520 Returns non-zero if the update succeeds. */
16f33e29
AC
1521
1522extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1523
1524
ebdba546
AC
1525/* Helper function. Find an architecture matching info.
1526
1527 INFO should be initialized using gdbarch_info_init, relevant fields
1528 set, and then finished using gdbarch_info_fill.
1529
1530 Returns the corresponding architecture, or NULL if no matching
59837fe0 1531 architecture was found. */
ebdba546
AC
1532
1533extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1534
1535
aff68abb 1536/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1537
aff68abb 1538extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1539
104c1213
JM
1540
1541/* Register per-architecture data-pointer.
1542
1543 Reserve space for a per-architecture data-pointer. An identifier
1544 for the reserved data-pointer is returned. That identifer should
95160752 1545 be saved in a local static variable.
104c1213 1546
fcc1c85c
AC
1547 Memory for the per-architecture data shall be allocated using
1548 gdbarch_obstack_zalloc. That memory will be deleted when the
1549 corresponding architecture object is deleted.
104c1213 1550
95160752
AC
1551 When a previously created architecture is re-selected, the
1552 per-architecture data-pointer for that previous architecture is
76860b5f 1553 restored. INIT() is not re-called.
104c1213
JM
1554
1555 Multiple registrarants for any architecture are allowed (and
1556 strongly encouraged). */
1557
95160752 1558struct gdbarch_data;
104c1213 1559
030f20e1
AC
1560typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1561extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1562typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1563extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1564extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1565 struct gdbarch_data *data,
1566 void *pointer);
104c1213 1567
451fbdda 1568extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1569
1570
0fa6923a 1571/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1572 byte-order, ...) using information found in the BFD. */
104c1213
JM
1573
1574extern void set_gdbarch_from_file (bfd *);
1575
1576
e514a9d6
JM
1577/* Initialize the current architecture to the "first" one we find on
1578 our list. */
1579
1580extern void initialize_current_architecture (void);
1581
104c1213 1582/* gdbarch trace variable */
ccce17b0 1583extern unsigned int gdbarch_debug;
104c1213 1584
4b9b3959 1585extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1586
1587#endif
1588EOF
1589exec 1>&2
1590#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1591compare_new gdbarch.h
104c1213
JM
1592
1593
1594#
1595# C file
1596#
1597
1598exec > new-gdbarch.c
1599copyright
1600cat <<EOF
1601
1602#include "defs.h"
7355ddba 1603#include "arch-utils.h"
104c1213 1604
104c1213 1605#include "gdbcmd.h"
faaf634c 1606#include "inferior.h"
104c1213
JM
1607#include "symcat.h"
1608
f0d4cc9e 1609#include "floatformat.h"
b59ff9d5 1610#include "reggroups.h"
4be87837 1611#include "osabi.h"
aebd7893 1612#include "gdb_obstack.h"
383f836e 1613#include "observer.h"
a3ecef73 1614#include "regcache.h"
19630284 1615#include "objfiles.h"
95160752 1616
104c1213
JM
1617/* Static function declarations */
1618
b3cc3077 1619static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1620
104c1213
JM
1621/* Non-zero if we want to trace architecture code. */
1622
1623#ifndef GDBARCH_DEBUG
1624#define GDBARCH_DEBUG 0
1625#endif
ccce17b0 1626unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1627static void
1628show_gdbarch_debug (struct ui_file *file, int from_tty,
1629 struct cmd_list_element *c, const char *value)
1630{
1631 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1632}
104c1213 1633
456fcf94 1634static const char *
8da61cc4 1635pformat (const struct floatformat **format)
456fcf94
AC
1636{
1637 if (format == NULL)
1638 return "(null)";
1639 else
8da61cc4
DJ
1640 /* Just print out one of them - this is only for diagnostics. */
1641 return format[0]->name;
456fcf94
AC
1642}
1643
08105857
PA
1644static const char *
1645pstring (const char *string)
1646{
1647 if (string == NULL)
1648 return "(null)";
1649 return string;
05c0465e
SDJ
1650}
1651
1652/* Helper function to print a list of strings, represented as "const
1653 char *const *". The list is printed comma-separated. */
1654
1655static char *
1656pstring_list (const char *const *list)
1657{
1658 static char ret[100];
1659 const char *const *p;
1660 size_t offset = 0;
1661
1662 if (list == NULL)
1663 return "(null)";
1664
1665 ret[0] = '\0';
1666 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1667 {
1668 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1669 offset += 2 + s;
1670 }
1671
1672 if (offset > 0)
1673 {
1674 gdb_assert (offset - 2 < sizeof (ret));
1675 ret[offset - 2] = '\0';
1676 }
1677
1678 return ret;
08105857
PA
1679}
1680
104c1213
JM
1681EOF
1682
1683# gdbarch open the gdbarch object
3d9a5942 1684printf "\n"
0963b4bd 1685printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1686printf "\n"
1687printf "struct gdbarch\n"
1688printf "{\n"
76860b5f
AC
1689printf " /* Has this architecture been fully initialized? */\n"
1690printf " int initialized_p;\n"
aebd7893
AC
1691printf "\n"
1692printf " /* An obstack bound to the lifetime of the architecture. */\n"
1693printf " struct obstack *obstack;\n"
1694printf "\n"
0963b4bd 1695printf " /* basic architectural information. */\n"
34620563 1696function_list | while do_read
104c1213 1697do
2ada493a
AC
1698 if class_is_info_p
1699 then
3d9a5942 1700 printf " ${returntype} ${function};\n"
2ada493a 1701 fi
104c1213 1702done
3d9a5942 1703printf "\n"
0963b4bd 1704printf " /* target specific vector. */\n"
3d9a5942
AC
1705printf " struct gdbarch_tdep *tdep;\n"
1706printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1707printf "\n"
0963b4bd 1708printf " /* per-architecture data-pointers. */\n"
95160752 1709printf " unsigned nr_data;\n"
3d9a5942
AC
1710printf " void **data;\n"
1711printf "\n"
104c1213
JM
1712cat <<EOF
1713 /* Multi-arch values.
1714
1715 When extending this structure you must:
1716
1717 Add the field below.
1718
1719 Declare set/get functions and define the corresponding
1720 macro in gdbarch.h.
1721
1722 gdbarch_alloc(): If zero/NULL is not a suitable default,
1723 initialize the new field.
1724
1725 verify_gdbarch(): Confirm that the target updated the field
1726 correctly.
1727
7e73cedf 1728 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1729 field is dumped out
1730
104c1213
JM
1731 get_gdbarch(): Implement the set/get functions (probably using
1732 the macro's as shortcuts).
1733
1734 */
1735
1736EOF
34620563 1737function_list | while do_read
104c1213 1738do
2ada493a
AC
1739 if class_is_variable_p
1740 then
3d9a5942 1741 printf " ${returntype} ${function};\n"
2ada493a
AC
1742 elif class_is_function_p
1743 then
2f9b146e 1744 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1745 fi
104c1213 1746done
3d9a5942 1747printf "};\n"
104c1213 1748
104c1213 1749# Create a new gdbarch struct
104c1213 1750cat <<EOF
7de2341d 1751
66b43ecb 1752/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1753 \`\`struct gdbarch_info''. */
104c1213 1754EOF
3d9a5942 1755printf "\n"
104c1213
JM
1756cat <<EOF
1757struct gdbarch *
1758gdbarch_alloc (const struct gdbarch_info *info,
1759 struct gdbarch_tdep *tdep)
1760{
be7811ad 1761 struct gdbarch *gdbarch;
aebd7893
AC
1762
1763 /* Create an obstack for allocating all the per-architecture memory,
1764 then use that to allocate the architecture vector. */
70ba0933 1765 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1766 obstack_init (obstack);
8d749320 1767 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1768 memset (gdbarch, 0, sizeof (*gdbarch));
1769 gdbarch->obstack = obstack;
85de9627 1770
be7811ad 1771 alloc_gdbarch_data (gdbarch);
85de9627 1772
be7811ad 1773 gdbarch->tdep = tdep;
104c1213 1774EOF
3d9a5942 1775printf "\n"
34620563 1776function_list | while do_read
104c1213 1777do
2ada493a
AC
1778 if class_is_info_p
1779 then
be7811ad 1780 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1781 fi
104c1213 1782done
3d9a5942 1783printf "\n"
0963b4bd 1784printf " /* Force the explicit initialization of these. */\n"
34620563 1785function_list | while do_read
104c1213 1786do
2ada493a
AC
1787 if class_is_function_p || class_is_variable_p
1788 then
72e74a21 1789 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1790 then
be7811ad 1791 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1792 fi
2ada493a 1793 fi
104c1213
JM
1794done
1795cat <<EOF
1796 /* gdbarch_alloc() */
1797
be7811ad 1798 return gdbarch;
104c1213
JM
1799}
1800EOF
1801
058f20d5 1802# Free a gdbarch struct.
3d9a5942
AC
1803printf "\n"
1804printf "\n"
058f20d5 1805cat <<EOF
aebd7893
AC
1806/* Allocate extra space using the per-architecture obstack. */
1807
1808void *
1809gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1810{
1811 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1812
aebd7893
AC
1813 memset (data, 0, size);
1814 return data;
1815}
1816
6c214e7c
PP
1817/* See gdbarch.h. */
1818
1819char *
1820gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1821{
1822 return obstack_strdup (arch->obstack, string);
1823}
1824
aebd7893 1825
058f20d5
JB
1826/* Free a gdbarch struct. This should never happen in normal
1827 operation --- once you've created a gdbarch, you keep it around.
1828 However, if an architecture's init function encounters an error
1829 building the structure, it may need to clean up a partially
1830 constructed gdbarch. */
4b9b3959 1831
058f20d5
JB
1832void
1833gdbarch_free (struct gdbarch *arch)
1834{
aebd7893 1835 struct obstack *obstack;
05c547f6 1836
95160752 1837 gdb_assert (arch != NULL);
aebd7893
AC
1838 gdb_assert (!arch->initialized_p);
1839 obstack = arch->obstack;
1840 obstack_free (obstack, 0); /* Includes the ARCH. */
1841 xfree (obstack);
058f20d5
JB
1842}
1843EOF
1844
104c1213 1845# verify a new architecture
104c1213 1846cat <<EOF
db446970
AC
1847
1848
1849/* Ensure that all values in a GDBARCH are reasonable. */
1850
104c1213 1851static void
be7811ad 1852verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1853{
f16a1923
AC
1854 struct ui_file *log;
1855 struct cleanup *cleanups;
759ef836 1856 long length;
f16a1923 1857 char *buf;
05c547f6 1858
f16a1923
AC
1859 log = mem_fileopen ();
1860 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1861 /* fundamental */
be7811ad 1862 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1863 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1864 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1865 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1866 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1867EOF
34620563 1868function_list | while do_read
104c1213 1869do
2ada493a
AC
1870 if class_is_function_p || class_is_variable_p
1871 then
72e74a21 1872 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1873 then
3d9a5942 1874 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1875 elif class_is_predicate_p
1876 then
0963b4bd 1877 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1878 # FIXME: See do_read for potential simplification
72e74a21 1879 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1880 then
3d9a5942 1881 printf " if (${invalid_p})\n"
be7811ad 1882 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1883 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1884 then
be7811ad
MD
1885 printf " if (gdbarch->${function} == ${predefault})\n"
1886 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1887 elif [ -n "${postdefault}" ]
f0d4cc9e 1888 then
be7811ad
MD
1889 printf " if (gdbarch->${function} == 0)\n"
1890 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1891 elif [ -n "${invalid_p}" ]
104c1213 1892 then
4d60522e 1893 printf " if (${invalid_p})\n"
f16a1923 1894 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1895 elif [ -n "${predefault}" ]
104c1213 1896 then
be7811ad 1897 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1898 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1899 fi
2ada493a 1900 fi
104c1213
JM
1901done
1902cat <<EOF
759ef836 1903 buf = ui_file_xstrdup (log, &length);
f16a1923 1904 make_cleanup (xfree, buf);
759ef836 1905 if (length > 0)
f16a1923 1906 internal_error (__FILE__, __LINE__,
85c07804 1907 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1908 buf);
1909 do_cleanups (cleanups);
104c1213
JM
1910}
1911EOF
1912
1913# dump the structure
3d9a5942
AC
1914printf "\n"
1915printf "\n"
104c1213 1916cat <<EOF
0963b4bd 1917/* Print out the details of the current architecture. */
4b9b3959 1918
104c1213 1919void
be7811ad 1920gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1921{
b78960be 1922 const char *gdb_nm_file = "<not-defined>";
05c547f6 1923
b78960be
AC
1924#if defined (GDB_NM_FILE)
1925 gdb_nm_file = GDB_NM_FILE;
1926#endif
1927 fprintf_unfiltered (file,
1928 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1929 gdb_nm_file);
104c1213 1930EOF
97030eea 1931function_list | sort -t: -k 3 | while do_read
104c1213 1932do
1e9f55d0
AC
1933 # First the predicate
1934 if class_is_predicate_p
1935 then
7996bcec 1936 printf " fprintf_unfiltered (file,\n"
48f7351b 1937 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1938 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1939 fi
48f7351b 1940 # Print the corresponding value.
283354d8 1941 if class_is_function_p
4b9b3959 1942 then
7996bcec 1943 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1944 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1945 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1946 else
48f7351b 1947 # It is a variable
2f9b146e
AC
1948 case "${print}:${returntype}" in
1949 :CORE_ADDR )
0b1553bc
UW
1950 fmt="%s"
1951 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1952 ;;
2f9b146e 1953 :* )
48f7351b 1954 fmt="%s"
623d3eb1 1955 print="plongest (gdbarch->${function})"
48f7351b
AC
1956 ;;
1957 * )
2f9b146e 1958 fmt="%s"
48f7351b
AC
1959 ;;
1960 esac
3d9a5942 1961 printf " fprintf_unfiltered (file,\n"
48f7351b 1962 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1963 printf " ${print});\n"
2ada493a 1964 fi
104c1213 1965done
381323f4 1966cat <<EOF
be7811ad
MD
1967 if (gdbarch->dump_tdep != NULL)
1968 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1969}
1970EOF
104c1213
JM
1971
1972
1973# GET/SET
3d9a5942 1974printf "\n"
104c1213
JM
1975cat <<EOF
1976struct gdbarch_tdep *
1977gdbarch_tdep (struct gdbarch *gdbarch)
1978{
1979 if (gdbarch_debug >= 2)
3d9a5942 1980 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1981 return gdbarch->tdep;
1982}
1983EOF
3d9a5942 1984printf "\n"
34620563 1985function_list | while do_read
104c1213 1986do
2ada493a
AC
1987 if class_is_predicate_p
1988 then
3d9a5942
AC
1989 printf "\n"
1990 printf "int\n"
1991 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1992 printf "{\n"
8de9bdc4 1993 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1994 printf " return ${predicate};\n"
3d9a5942 1995 printf "}\n"
2ada493a
AC
1996 fi
1997 if class_is_function_p
1998 then
3d9a5942
AC
1999 printf "\n"
2000 printf "${returntype}\n"
72e74a21 2001 if [ "x${formal}" = "xvoid" ]
104c1213 2002 then
3d9a5942 2003 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2004 else
3d9a5942 2005 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2006 fi
3d9a5942 2007 printf "{\n"
8de9bdc4 2008 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2009 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2010 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2011 then
2012 # Allow a call to a function with a predicate.
956ac328 2013 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2014 fi
3d9a5942
AC
2015 printf " if (gdbarch_debug >= 2)\n"
2016 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2017 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2018 then
2019 if class_is_multiarch_p
2020 then
2021 params="gdbarch"
2022 else
2023 params=""
2024 fi
2025 else
2026 if class_is_multiarch_p
2027 then
2028 params="gdbarch, ${actual}"
2029 else
2030 params="${actual}"
2031 fi
2032 fi
72e74a21 2033 if [ "x${returntype}" = "xvoid" ]
104c1213 2034 then
4a5c6a1d 2035 printf " gdbarch->${function} (${params});\n"
104c1213 2036 else
4a5c6a1d 2037 printf " return gdbarch->${function} (${params});\n"
104c1213 2038 fi
3d9a5942
AC
2039 printf "}\n"
2040 printf "\n"
2041 printf "void\n"
2042 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2043 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2044 printf "{\n"
2045 printf " gdbarch->${function} = ${function};\n"
2046 printf "}\n"
2ada493a
AC
2047 elif class_is_variable_p
2048 then
3d9a5942
AC
2049 printf "\n"
2050 printf "${returntype}\n"
2051 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2052 printf "{\n"
8de9bdc4 2053 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2054 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2055 then
3d9a5942 2056 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2057 elif [ -n "${invalid_p}" ]
104c1213 2058 then
956ac328
AC
2059 printf " /* Check variable is valid. */\n"
2060 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2061 elif [ -n "${predefault}" ]
104c1213 2062 then
956ac328
AC
2063 printf " /* Check variable changed from pre-default. */\n"
2064 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2065 fi
3d9a5942
AC
2066 printf " if (gdbarch_debug >= 2)\n"
2067 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2068 printf " return gdbarch->${function};\n"
2069 printf "}\n"
2070 printf "\n"
2071 printf "void\n"
2072 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2073 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2074 printf "{\n"
2075 printf " gdbarch->${function} = ${function};\n"
2076 printf "}\n"
2ada493a
AC
2077 elif class_is_info_p
2078 then
3d9a5942
AC
2079 printf "\n"
2080 printf "${returntype}\n"
2081 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2082 printf "{\n"
8de9bdc4 2083 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2084 printf " if (gdbarch_debug >= 2)\n"
2085 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2086 printf " return gdbarch->${function};\n"
2087 printf "}\n"
2ada493a 2088 fi
104c1213
JM
2089done
2090
2091# All the trailing guff
2092cat <<EOF
2093
2094
f44c642f 2095/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2096 modules. */
104c1213
JM
2097
2098struct gdbarch_data
2099{
95160752 2100 unsigned index;
76860b5f 2101 int init_p;
030f20e1
AC
2102 gdbarch_data_pre_init_ftype *pre_init;
2103 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2104};
2105
2106struct gdbarch_data_registration
2107{
104c1213
JM
2108 struct gdbarch_data *data;
2109 struct gdbarch_data_registration *next;
2110};
2111
f44c642f 2112struct gdbarch_data_registry
104c1213 2113{
95160752 2114 unsigned nr;
104c1213
JM
2115 struct gdbarch_data_registration *registrations;
2116};
2117
f44c642f 2118struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2119{
2120 0, NULL,
2121};
2122
030f20e1
AC
2123static struct gdbarch_data *
2124gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2125 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2126{
2127 struct gdbarch_data_registration **curr;
05c547f6
MS
2128
2129 /* Append the new registration. */
f44c642f 2130 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2131 (*curr) != NULL;
2132 curr = &(*curr)->next);
70ba0933 2133 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2134 (*curr)->next = NULL;
70ba0933 2135 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2136 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2137 (*curr)->data->pre_init = pre_init;
2138 (*curr)->data->post_init = post_init;
76860b5f 2139 (*curr)->data->init_p = 1;
104c1213
JM
2140 return (*curr)->data;
2141}
2142
030f20e1
AC
2143struct gdbarch_data *
2144gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2145{
2146 return gdbarch_data_register (pre_init, NULL);
2147}
2148
2149struct gdbarch_data *
2150gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2151{
2152 return gdbarch_data_register (NULL, post_init);
2153}
104c1213 2154
0963b4bd 2155/* Create/delete the gdbarch data vector. */
95160752
AC
2156
2157static void
b3cc3077 2158alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2159{
b3cc3077
JB
2160 gdb_assert (gdbarch->data == NULL);
2161 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2162 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2163}
3c875b6f 2164
76860b5f 2165/* Initialize the current value of the specified per-architecture
0963b4bd 2166 data-pointer. */
b3cc3077 2167
95160752 2168void
030f20e1
AC
2169deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2170 struct gdbarch_data *data,
2171 void *pointer)
95160752
AC
2172{
2173 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2174 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2175 gdb_assert (data->pre_init == NULL);
95160752
AC
2176 gdbarch->data[data->index] = pointer;
2177}
2178
104c1213 2179/* Return the current value of the specified per-architecture
0963b4bd 2180 data-pointer. */
104c1213
JM
2181
2182void *
451fbdda 2183gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2184{
451fbdda 2185 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2186 if (gdbarch->data[data->index] == NULL)
76860b5f 2187 {
030f20e1
AC
2188 /* The data-pointer isn't initialized, call init() to get a
2189 value. */
2190 if (data->pre_init != NULL)
2191 /* Mid architecture creation: pass just the obstack, and not
2192 the entire architecture, as that way it isn't possible for
2193 pre-init code to refer to undefined architecture
2194 fields. */
2195 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2196 else if (gdbarch->initialized_p
2197 && data->post_init != NULL)
2198 /* Post architecture creation: pass the entire architecture
2199 (as all fields are valid), but be careful to also detect
2200 recursive references. */
2201 {
2202 gdb_assert (data->init_p);
2203 data->init_p = 0;
2204 gdbarch->data[data->index] = data->post_init (gdbarch);
2205 data->init_p = 1;
2206 }
2207 else
2208 /* The architecture initialization hasn't completed - punt -
2209 hope that the caller knows what they are doing. Once
2210 deprecated_set_gdbarch_data has been initialized, this can be
2211 changed to an internal error. */
2212 return NULL;
76860b5f
AC
2213 gdb_assert (gdbarch->data[data->index] != NULL);
2214 }
451fbdda 2215 return gdbarch->data[data->index];
104c1213
JM
2216}
2217
2218
0963b4bd 2219/* Keep a registry of the architectures known by GDB. */
104c1213 2220
4b9b3959 2221struct gdbarch_registration
104c1213
JM
2222{
2223 enum bfd_architecture bfd_architecture;
2224 gdbarch_init_ftype *init;
4b9b3959 2225 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2226 struct gdbarch_list *arches;
4b9b3959 2227 struct gdbarch_registration *next;
104c1213
JM
2228};
2229
f44c642f 2230static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2231
b4a20239
AC
2232static void
2233append_name (const char ***buf, int *nr, const char *name)
2234{
1dc7a623 2235 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2236 (*buf)[*nr] = name;
2237 *nr += 1;
2238}
2239
2240const char **
2241gdbarch_printable_names (void)
2242{
7996bcec 2243 /* Accumulate a list of names based on the registed list of
0963b4bd 2244 architectures. */
7996bcec
AC
2245 int nr_arches = 0;
2246 const char **arches = NULL;
2247 struct gdbarch_registration *rego;
05c547f6 2248
7996bcec
AC
2249 for (rego = gdbarch_registry;
2250 rego != NULL;
2251 rego = rego->next)
b4a20239 2252 {
7996bcec
AC
2253 const struct bfd_arch_info *ap;
2254 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2255 if (ap == NULL)
2256 internal_error (__FILE__, __LINE__,
85c07804 2257 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2258 do
2259 {
2260 append_name (&arches, &nr_arches, ap->printable_name);
2261 ap = ap->next;
2262 }
2263 while (ap != NULL);
b4a20239 2264 }
7996bcec
AC
2265 append_name (&arches, &nr_arches, NULL);
2266 return arches;
b4a20239
AC
2267}
2268
2269
104c1213 2270void
4b9b3959
AC
2271gdbarch_register (enum bfd_architecture bfd_architecture,
2272 gdbarch_init_ftype *init,
2273 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2274{
4b9b3959 2275 struct gdbarch_registration **curr;
104c1213 2276 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2277
ec3d358c 2278 /* Check that BFD recognizes this architecture */
104c1213
JM
2279 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2280 if (bfd_arch_info == NULL)
2281 {
8e65ff28 2282 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2283 _("gdbarch: Attempt to register "
2284 "unknown architecture (%d)"),
8e65ff28 2285 bfd_architecture);
104c1213 2286 }
0963b4bd 2287 /* Check that we haven't seen this architecture before. */
f44c642f 2288 for (curr = &gdbarch_registry;
104c1213
JM
2289 (*curr) != NULL;
2290 curr = &(*curr)->next)
2291 {
2292 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2293 internal_error (__FILE__, __LINE__,
64b9b334 2294 _("gdbarch: Duplicate registration "
0963b4bd 2295 "of architecture (%s)"),
8e65ff28 2296 bfd_arch_info->printable_name);
104c1213
JM
2297 }
2298 /* log it */
2299 if (gdbarch_debug)
30737ed9 2300 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2301 bfd_arch_info->printable_name,
30737ed9 2302 host_address_to_string (init));
104c1213 2303 /* Append it */
70ba0933 2304 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2305 (*curr)->bfd_architecture = bfd_architecture;
2306 (*curr)->init = init;
4b9b3959 2307 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2308 (*curr)->arches = NULL;
2309 (*curr)->next = NULL;
4b9b3959
AC
2310}
2311
2312void
2313register_gdbarch_init (enum bfd_architecture bfd_architecture,
2314 gdbarch_init_ftype *init)
2315{
2316 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2317}
104c1213
JM
2318
2319
424163ea 2320/* Look for an architecture using gdbarch_info. */
104c1213
JM
2321
2322struct gdbarch_list *
2323gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2324 const struct gdbarch_info *info)
2325{
2326 for (; arches != NULL; arches = arches->next)
2327 {
2328 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2329 continue;
2330 if (info->byte_order != arches->gdbarch->byte_order)
2331 continue;
4be87837
DJ
2332 if (info->osabi != arches->gdbarch->osabi)
2333 continue;
424163ea
DJ
2334 if (info->target_desc != arches->gdbarch->target_desc)
2335 continue;
104c1213
JM
2336 return arches;
2337 }
2338 return NULL;
2339}
2340
2341
ebdba546 2342/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2343 architecture if needed. Return that new architecture. */
104c1213 2344
59837fe0
UW
2345struct gdbarch *
2346gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2347{
2348 struct gdbarch *new_gdbarch;
4b9b3959 2349 struct gdbarch_registration *rego;
104c1213 2350
b732d07d 2351 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2352 sources: "set ..."; INFOabfd supplied; and the global
2353 defaults. */
2354 gdbarch_info_fill (&info);
4be87837 2355
0963b4bd 2356 /* Must have found some sort of architecture. */
b732d07d 2357 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2358
2359 if (gdbarch_debug)
2360 {
2361 fprintf_unfiltered (gdb_stdlog,
59837fe0 2362 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2363 (info.bfd_arch_info != NULL
2364 ? info.bfd_arch_info->printable_name
2365 : "(null)"));
2366 fprintf_unfiltered (gdb_stdlog,
59837fe0 2367 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2368 info.byte_order,
d7449b42 2369 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2370 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2371 : "default"));
4be87837 2372 fprintf_unfiltered (gdb_stdlog,
59837fe0 2373 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2374 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2375 fprintf_unfiltered (gdb_stdlog,
59837fe0 2376 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2377 host_address_to_string (info.abfd));
104c1213 2378 fprintf_unfiltered (gdb_stdlog,
59837fe0 2379 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2380 host_address_to_string (info.tdep_info));
104c1213
JM
2381 }
2382
ebdba546 2383 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2384 for (rego = gdbarch_registry;
2385 rego != NULL;
2386 rego = rego->next)
2387 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2388 break;
2389 if (rego == NULL)
2390 {
2391 if (gdbarch_debug)
59837fe0 2392 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2393 "No matching architecture\n");
b732d07d
AC
2394 return 0;
2395 }
2396
ebdba546 2397 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2398 new_gdbarch = rego->init (info, rego->arches);
2399
ebdba546
AC
2400 /* Did the tdep code like it? No. Reject the change and revert to
2401 the old architecture. */
104c1213
JM
2402 if (new_gdbarch == NULL)
2403 {
2404 if (gdbarch_debug)
59837fe0 2405 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2406 "Target rejected architecture\n");
2407 return NULL;
104c1213
JM
2408 }
2409
ebdba546
AC
2410 /* Is this a pre-existing architecture (as determined by already
2411 being initialized)? Move it to the front of the architecture
2412 list (keeping the list sorted Most Recently Used). */
2413 if (new_gdbarch->initialized_p)
104c1213 2414 {
ebdba546 2415 struct gdbarch_list **list;
fe978cb0 2416 struct gdbarch_list *self;
104c1213 2417 if (gdbarch_debug)
59837fe0 2418 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2419 "Previous architecture %s (%s) selected\n",
2420 host_address_to_string (new_gdbarch),
104c1213 2421 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2422 /* Find the existing arch in the list. */
2423 for (list = &rego->arches;
2424 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2425 list = &(*list)->next);
2426 /* It had better be in the list of architectures. */
2427 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2428 /* Unlink SELF. */
2429 self = (*list);
2430 (*list) = self->next;
2431 /* Insert SELF at the front. */
2432 self->next = rego->arches;
2433 rego->arches = self;
ebdba546
AC
2434 /* Return it. */
2435 return new_gdbarch;
104c1213
JM
2436 }
2437
ebdba546
AC
2438 /* It's a new architecture. */
2439 if (gdbarch_debug)
59837fe0 2440 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2441 "New architecture %s (%s) selected\n",
2442 host_address_to_string (new_gdbarch),
ebdba546
AC
2443 new_gdbarch->bfd_arch_info->printable_name);
2444
2445 /* Insert the new architecture into the front of the architecture
2446 list (keep the list sorted Most Recently Used). */
0f79675b 2447 {
fe978cb0
PA
2448 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2449 self->next = rego->arches;
2450 self->gdbarch = new_gdbarch;
2451 rego->arches = self;
0f79675b 2452 }
104c1213 2453
4b9b3959
AC
2454 /* Check that the newly installed architecture is valid. Plug in
2455 any post init values. */
2456 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2457 verify_gdbarch (new_gdbarch);
ebdba546 2458 new_gdbarch->initialized_p = 1;
104c1213 2459
4b9b3959 2460 if (gdbarch_debug)
ebdba546
AC
2461 gdbarch_dump (new_gdbarch, gdb_stdlog);
2462
2463 return new_gdbarch;
2464}
2465
e487cc15 2466/* Make the specified architecture current. */
ebdba546
AC
2467
2468void
aff68abb 2469set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2470{
2471 gdb_assert (new_gdbarch != NULL);
ebdba546 2472 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2473 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2474 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2475 registers_changed ();
ebdba546 2476}
104c1213 2477
f5656ead 2478/* Return the current inferior's arch. */
6ecd4729
PA
2479
2480struct gdbarch *
f5656ead 2481target_gdbarch (void)
6ecd4729
PA
2482{
2483 return current_inferior ()->gdbarch;
2484}
2485
104c1213 2486extern void _initialize_gdbarch (void);
b4a20239 2487
104c1213 2488void
34620563 2489_initialize_gdbarch (void)
104c1213 2490{
ccce17b0 2491 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2492Set architecture debugging."), _("\\
2493Show architecture debugging."), _("\\
2494When non-zero, architecture debugging is enabled."),
2495 NULL,
920d2a44 2496 show_gdbarch_debug,
85c07804 2497 &setdebuglist, &showdebuglist);
104c1213
JM
2498}
2499EOF
2500
2501# close things off
2502exec 1>&2
2503#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2504compare_new gdbarch.c
This page took 2.24716 seconds and 4 git commands to generate.