* remote.c (remote_start_remote): If the solib list is global,
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1
DJ
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6# 2008 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
623d3eb1 346i:const struct target_desc *:target_desc:::::::plongest ((long) gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
97030eea
UW
469f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
97030eea 566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
552c04a7
TT
578# Given a vector of command-line arguments, return a newly allocated
579# string which, when passed to the create_inferior function, will be
580# parsed (on Unix systems, by the shell) to yield the same vector.
581# This function should call error() if the argument vector is not
582# representable for this target or if this target does not support
583# command-line arguments.
584# ARGC is the number of elements in the vector.
585# ARGV is an array of strings, one per argument.
97030eea
UW
586m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
589v:int:cannot_step_breakpoint:::0:0::0
590v:int:have_nonsteppable_watchpoint:::0:0::0
591F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 594# Is a register in a group
97030eea 595m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 596# Fetch the pointer to the ith function argument.
97030eea 597F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
598
599# Return the appropriate register set for a core file section with
600# name SECT_NAME and size SECT_SIZE.
97030eea 601M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 602
17ea7499
CES
603# Supported register notes in a core file.
604v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
605
de584861
PA
606# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
607# core file into buffer READBUF with length LEN.
97030eea 608M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 609
0d5de010
DJ
610# If the elements of C++ vtables are in-place function descriptors rather
611# than normal function pointers (which may point to code or a descriptor),
612# set this to one.
97030eea 613v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
614
615# Set if the least significant bit of the delta is used instead of the least
616# significant bit of the pfn for pointers to virtual member functions.
97030eea 617v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
618
619# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 620F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 621
237fc4c9
PA
622# The maximum length of an instruction on this architecture.
623V:ULONGEST:max_insn_length:::0:0
624
625# Copy the instruction at FROM to TO, and make any adjustments
626# necessary to single-step it at that address.
627#
628# REGS holds the state the thread's registers will have before
629# executing the copied instruction; the PC in REGS will refer to FROM,
630# not the copy at TO. The caller should update it to point at TO later.
631#
632# Return a pointer to data of the architecture's choice to be passed
633# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
634# the instruction's effects have been completely simulated, with the
635# resulting state written back to REGS.
636#
637# For a general explanation of displaced stepping and how GDB uses it,
638# see the comments in infrun.c.
639#
640# The TO area is only guaranteed to have space for
641# gdbarch_max_insn_length (arch) bytes, so this function must not
642# write more bytes than that to that area.
643#
644# If you do not provide this function, GDB assumes that the
645# architecture does not support displaced stepping.
646#
647# If your architecture doesn't need to adjust instructions before
648# single-stepping them, consider using simple_displaced_step_copy_insn
649# here.
650M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
651
652# Fix up the state resulting from successfully single-stepping a
653# displaced instruction, to give the result we would have gotten from
654# stepping the instruction in its original location.
655#
656# REGS is the register state resulting from single-stepping the
657# displaced instruction.
658#
659# CLOSURE is the result from the matching call to
660# gdbarch_displaced_step_copy_insn.
661#
662# If you provide gdbarch_displaced_step_copy_insn.but not this
663# function, then GDB assumes that no fixup is needed after
664# single-stepping the instruction.
665#
666# For a general explanation of displaced stepping and how GDB uses it,
667# see the comments in infrun.c.
668M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
669
670# Free a closure returned by gdbarch_displaced_step_copy_insn.
671#
672# If you provide gdbarch_displaced_step_copy_insn, you must provide
673# this function as well.
674#
675# If your architecture uses closures that don't need to be freed, then
676# you can use simple_displaced_step_free_closure here.
677#
678# For a general explanation of displaced stepping and how GDB uses it,
679# see the comments in infrun.c.
680m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
681
682# Return the address of an appropriate place to put displaced
683# instructions while we step over them. There need only be one such
684# place, since we're only stepping one thread over a breakpoint at a
685# time.
686#
687# For a general explanation of displaced stepping and how GDB uses it,
688# see the comments in infrun.c.
689m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
690
1c772458 691# Refresh overlay mapped state for section OSECT.
97030eea 692F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 693
97030eea 694M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
695
696# Handle special encoding of static variables in stabs debug info.
97030eea 697F:char *:static_transform_name:char *name:name
203c3895 698# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 699v:int:sofun_address_maybe_missing:::0:0::0
1cded358
AR
700
701# Signal translation: translate inferior's signal (host's) number into
702# GDB's representation.
703m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
704# Signal translation: translate GDB's signal number into inferior's host
705# signal number.
706m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c
DJ
707
708# Record architecture-specific information from the symbol table.
709M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf
PA
710
711# True if the list of shared libraries is one and only for all
712# processes, as opposed to a list of shared libraries per inferior.
713v:int:has_global_solist:::0:0::0
104c1213 714EOF
104c1213
JM
715}
716
0b8f9e4d
AC
717#
718# The .log file
719#
720exec > new-gdbarch.log
34620563 721function_list | while do_read
0b8f9e4d
AC
722do
723 cat <<EOF
2f9b146e 724${class} ${returntype} ${function} ($formal)
104c1213 725EOF
3d9a5942
AC
726 for r in ${read}
727 do
728 eval echo \"\ \ \ \ ${r}=\${${r}}\"
729 done
f0d4cc9e 730 if class_is_predicate_p && fallback_default_p
0b8f9e4d 731 then
66d659b1 732 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
733 kill $$
734 exit 1
735 fi
72e74a21 736 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
737 then
738 echo "Error: postdefault is useless when invalid_p=0" 1>&2
739 kill $$
740 exit 1
741 fi
a72293e2
AC
742 if class_is_multiarch_p
743 then
744 if class_is_predicate_p ; then :
745 elif test "x${predefault}" = "x"
746 then
2f9b146e 747 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
748 kill $$
749 exit 1
750 fi
751 fi
3d9a5942 752 echo ""
0b8f9e4d
AC
753done
754
755exec 1>&2
756compare_new gdbarch.log
757
104c1213
JM
758
759copyright ()
760{
761cat <<EOF
59233f88
AC
762/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
763
104c1213 764/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 765
50efebf8 766 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 767 Free Software Foundation, Inc.
104c1213
JM
768
769 This file is part of GDB.
770
771 This program is free software; you can redistribute it and/or modify
772 it under the terms of the GNU General Public License as published by
50efebf8 773 the Free Software Foundation; either version 3 of the License, or
104c1213 774 (at your option) any later version.
50efebf8 775
104c1213
JM
776 This program is distributed in the hope that it will be useful,
777 but WITHOUT ANY WARRANTY; without even the implied warranty of
778 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
779 GNU General Public License for more details.
50efebf8 780
104c1213 781 You should have received a copy of the GNU General Public License
50efebf8 782 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 783
104c1213
JM
784/* This file was created with the aid of \`\`gdbarch.sh''.
785
52204a0b 786 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
787 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
788 against the existing \`\`gdbarch.[hc]''. Any differences found
789 being reported.
790
791 If editing this file, please also run gdbarch.sh and merge any
52204a0b 792 changes into that script. Conversely, when making sweeping changes
104c1213
JM
793 to this file, modifying gdbarch.sh and using its output may prove
794 easier. */
795
796EOF
797}
798
799#
800# The .h file
801#
802
803exec > new-gdbarch.h
804copyright
805cat <<EOF
806#ifndef GDBARCH_H
807#define GDBARCH_H
808
da3331ec
AC
809struct floatformat;
810struct ui_file;
104c1213
JM
811struct frame_info;
812struct value;
b6af0555 813struct objfile;
1c772458 814struct obj_section;
a2cf933a 815struct minimal_symbol;
049ee0e4 816struct regcache;
b59ff9d5 817struct reggroup;
6ce6d90f 818struct regset;
a89aa300 819struct disassemble_info;
e2d0e7eb 820struct target_ops;
030f20e1 821struct obstack;
8181d85f 822struct bp_target_info;
424163ea 823struct target_desc;
237fc4c9 824struct displaced_step_closure;
17ea7499 825struct core_regset_section;
104c1213 826
104c1213 827extern struct gdbarch *current_gdbarch;
1cf3db46 828extern struct gdbarch *target_gdbarch;
104c1213
JM
829EOF
830
831# function typedef's
3d9a5942
AC
832printf "\n"
833printf "\n"
834printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 835function_list | while do_read
104c1213 836do
2ada493a
AC
837 if class_is_info_p
838 then
3d9a5942
AC
839 printf "\n"
840 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
841 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 842 fi
104c1213
JM
843done
844
845# function typedef's
3d9a5942
AC
846printf "\n"
847printf "\n"
848printf "/* The following are initialized by the target dependent code. */\n"
34620563 849function_list | while do_read
104c1213 850do
72e74a21 851 if [ -n "${comment}" ]
34620563
AC
852 then
853 echo "${comment}" | sed \
854 -e '2 s,#,/*,' \
855 -e '3,$ s,#, ,' \
856 -e '$ s,$, */,'
857 fi
412d5987
AC
858
859 if class_is_predicate_p
2ada493a 860 then
412d5987
AC
861 printf "\n"
862 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 863 fi
2ada493a
AC
864 if class_is_variable_p
865 then
3d9a5942
AC
866 printf "\n"
867 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
868 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
869 fi
870 if class_is_function_p
871 then
3d9a5942 872 printf "\n"
72e74a21 873 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
874 then
875 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
876 elif class_is_multiarch_p
877 then
878 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
879 else
880 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
881 fi
72e74a21 882 if [ "x${formal}" = "xvoid" ]
104c1213 883 then
3d9a5942 884 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 885 else
3d9a5942 886 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 887 fi
3d9a5942 888 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 889 fi
104c1213
JM
890done
891
892# close it off
893cat <<EOF
894
895extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
896
897
898/* Mechanism for co-ordinating the selection of a specific
899 architecture.
900
901 GDB targets (*-tdep.c) can register an interest in a specific
902 architecture. Other GDB components can register a need to maintain
903 per-architecture data.
904
905 The mechanisms below ensures that there is only a loose connection
906 between the set-architecture command and the various GDB
0fa6923a 907 components. Each component can independently register their need
104c1213
JM
908 to maintain architecture specific data with gdbarch.
909
910 Pragmatics:
911
912 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
913 didn't scale.
914
915 The more traditional mega-struct containing architecture specific
916 data for all the various GDB components was also considered. Since
0fa6923a 917 GDB is built from a variable number of (fairly independent)
104c1213
JM
918 components it was determined that the global aproach was not
919 applicable. */
920
921
922/* Register a new architectural family with GDB.
923
924 Register support for the specified ARCHITECTURE with GDB. When
925 gdbarch determines that the specified architecture has been
926 selected, the corresponding INIT function is called.
927
928 --
929
930 The INIT function takes two parameters: INFO which contains the
931 information available to gdbarch about the (possibly new)
932 architecture; ARCHES which is a list of the previously created
933 \`\`struct gdbarch'' for this architecture.
934
0f79675b 935 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 936 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
937
938 The ARCHES parameter is a linked list (sorted most recently used)
939 of all the previously created architures for this architecture
940 family. The (possibly NULL) ARCHES->gdbarch can used to access
941 values from the previously selected architecture for this
942 architecture family. The global \`\`current_gdbarch'' shall not be
943 used.
104c1213
JM
944
945 The INIT function shall return any of: NULL - indicating that it
ec3d358c 946 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
947 gdbarch'' from the ARCHES list - indicating that the new
948 architecture is just a synonym for an earlier architecture (see
949 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
950 - that describes the selected architecture (see gdbarch_alloc()).
951
952 The DUMP_TDEP function shall print out all target specific values.
953 Care should be taken to ensure that the function works in both the
954 multi-arch and non- multi-arch cases. */
104c1213
JM
955
956struct gdbarch_list
957{
958 struct gdbarch *gdbarch;
959 struct gdbarch_list *next;
960};
961
962struct gdbarch_info
963{
104c1213
JM
964 /* Use default: NULL (ZERO). */
965 const struct bfd_arch_info *bfd_arch_info;
966
428721aa 967 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
968 int byte_order;
969
9d4fde75
SS
970 int byte_order_for_code;
971
104c1213
JM
972 /* Use default: NULL (ZERO). */
973 bfd *abfd;
974
975 /* Use default: NULL (ZERO). */
976 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
977
978 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
979 enum gdb_osabi osabi;
424163ea
DJ
980
981 /* Use default: NULL (ZERO). */
982 const struct target_desc *target_desc;
104c1213
JM
983};
984
985typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 986typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 987
4b9b3959 988/* DEPRECATED - use gdbarch_register() */
104c1213
JM
989extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
990
4b9b3959
AC
991extern void gdbarch_register (enum bfd_architecture architecture,
992 gdbarch_init_ftype *,
993 gdbarch_dump_tdep_ftype *);
994
104c1213 995
b4a20239
AC
996/* Return a freshly allocated, NULL terminated, array of the valid
997 architecture names. Since architectures are registered during the
998 _initialize phase this function only returns useful information
999 once initialization has been completed. */
1000
1001extern const char **gdbarch_printable_names (void);
1002
1003
104c1213
JM
1004/* Helper function. Search the list of ARCHES for a GDBARCH that
1005 matches the information provided by INFO. */
1006
424163ea 1007extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1008
1009
1010/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1011 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1012 parameters. set_gdbarch_*() functions are called to complete the
1013 initialization of the object. */
1014
1015extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1016
1017
4b9b3959
AC
1018/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1019 It is assumed that the caller freeds the \`\`struct
1020 gdbarch_tdep''. */
1021
058f20d5
JB
1022extern void gdbarch_free (struct gdbarch *);
1023
1024
aebd7893
AC
1025/* Helper function. Allocate memory from the \`\`struct gdbarch''
1026 obstack. The memory is freed when the corresponding architecture
1027 is also freed. */
1028
1029extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1030#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1031#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1032
1033
b732d07d 1034/* Helper function. Force an update of the current architecture.
104c1213 1035
b732d07d
AC
1036 The actual architecture selected is determined by INFO, \`\`(gdb) set
1037 architecture'' et.al., the existing architecture and BFD's default
1038 architecture. INFO should be initialized to zero and then selected
1039 fields should be updated.
104c1213 1040
16f33e29
AC
1041 Returns non-zero if the update succeeds */
1042
1043extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1044
1045
ebdba546
AC
1046/* Helper function. Find an architecture matching info.
1047
1048 INFO should be initialized using gdbarch_info_init, relevant fields
1049 set, and then finished using gdbarch_info_fill.
1050
1051 Returns the corresponding architecture, or NULL if no matching
1052 architecture was found. "current_gdbarch" is not updated. */
1053
1054extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1055
1056
1057/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1058
1059 FIXME: kettenis/20031124: Of the functions that follow, only
1060 gdbarch_from_bfd is supposed to survive. The others will
1061 dissappear since in the future GDB will (hopefully) be truly
1062 multi-arch. However, for now we're still stuck with the concept of
1063 a single active architecture. */
1064
1065extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1066
104c1213
JM
1067
1068/* Register per-architecture data-pointer.
1069
1070 Reserve space for a per-architecture data-pointer. An identifier
1071 for the reserved data-pointer is returned. That identifer should
95160752 1072 be saved in a local static variable.
104c1213 1073
fcc1c85c
AC
1074 Memory for the per-architecture data shall be allocated using
1075 gdbarch_obstack_zalloc. That memory will be deleted when the
1076 corresponding architecture object is deleted.
104c1213 1077
95160752
AC
1078 When a previously created architecture is re-selected, the
1079 per-architecture data-pointer for that previous architecture is
76860b5f 1080 restored. INIT() is not re-called.
104c1213
JM
1081
1082 Multiple registrarants for any architecture are allowed (and
1083 strongly encouraged). */
1084
95160752 1085struct gdbarch_data;
104c1213 1086
030f20e1
AC
1087typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1088extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1089typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1090extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1091extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1092 struct gdbarch_data *data,
1093 void *pointer);
104c1213 1094
451fbdda 1095extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1096
1097
0fa6923a 1098/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1099 byte-order, ...) using information found in the BFD */
1100
1101extern void set_gdbarch_from_file (bfd *);
1102
1103
e514a9d6
JM
1104/* Initialize the current architecture to the "first" one we find on
1105 our list. */
1106
1107extern void initialize_current_architecture (void);
1108
104c1213
JM
1109/* gdbarch trace variable */
1110extern int gdbarch_debug;
1111
4b9b3959 1112extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1113
1114#endif
1115EOF
1116exec 1>&2
1117#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1118compare_new gdbarch.h
104c1213
JM
1119
1120
1121#
1122# C file
1123#
1124
1125exec > new-gdbarch.c
1126copyright
1127cat <<EOF
1128
1129#include "defs.h"
7355ddba 1130#include "arch-utils.h"
104c1213 1131
104c1213 1132#include "gdbcmd.h"
faaf634c 1133#include "inferior.h"
104c1213
JM
1134#include "symcat.h"
1135
f0d4cc9e 1136#include "floatformat.h"
104c1213 1137
95160752 1138#include "gdb_assert.h"
b66d6d2e 1139#include "gdb_string.h"
b59ff9d5 1140#include "reggroups.h"
4be87837 1141#include "osabi.h"
aebd7893 1142#include "gdb_obstack.h"
383f836e 1143#include "observer.h"
a3ecef73 1144#include "regcache.h"
95160752 1145
104c1213
JM
1146/* Static function declarations */
1147
b3cc3077 1148static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1149
104c1213
JM
1150/* Non-zero if we want to trace architecture code. */
1151
1152#ifndef GDBARCH_DEBUG
1153#define GDBARCH_DEBUG 0
1154#endif
1155int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1156static void
1157show_gdbarch_debug (struct ui_file *file, int from_tty,
1158 struct cmd_list_element *c, const char *value)
1159{
1160 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1161}
104c1213 1162
456fcf94 1163static const char *
8da61cc4 1164pformat (const struct floatformat **format)
456fcf94
AC
1165{
1166 if (format == NULL)
1167 return "(null)";
1168 else
8da61cc4
DJ
1169 /* Just print out one of them - this is only for diagnostics. */
1170 return format[0]->name;
456fcf94
AC
1171}
1172
104c1213
JM
1173EOF
1174
1175# gdbarch open the gdbarch object
3d9a5942
AC
1176printf "\n"
1177printf "/* Maintain the struct gdbarch object */\n"
1178printf "\n"
1179printf "struct gdbarch\n"
1180printf "{\n"
76860b5f
AC
1181printf " /* Has this architecture been fully initialized? */\n"
1182printf " int initialized_p;\n"
aebd7893
AC
1183printf "\n"
1184printf " /* An obstack bound to the lifetime of the architecture. */\n"
1185printf " struct obstack *obstack;\n"
1186printf "\n"
3d9a5942 1187printf " /* basic architectural information */\n"
34620563 1188function_list | while do_read
104c1213 1189do
2ada493a
AC
1190 if class_is_info_p
1191 then
3d9a5942 1192 printf " ${returntype} ${function};\n"
2ada493a 1193 fi
104c1213 1194done
3d9a5942
AC
1195printf "\n"
1196printf " /* target specific vector. */\n"
1197printf " struct gdbarch_tdep *tdep;\n"
1198printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1199printf "\n"
1200printf " /* per-architecture data-pointers */\n"
95160752 1201printf " unsigned nr_data;\n"
3d9a5942
AC
1202printf " void **data;\n"
1203printf "\n"
1204printf " /* per-architecture swap-regions */\n"
1205printf " struct gdbarch_swap *swap;\n"
1206printf "\n"
104c1213
JM
1207cat <<EOF
1208 /* Multi-arch values.
1209
1210 When extending this structure you must:
1211
1212 Add the field below.
1213
1214 Declare set/get functions and define the corresponding
1215 macro in gdbarch.h.
1216
1217 gdbarch_alloc(): If zero/NULL is not a suitable default,
1218 initialize the new field.
1219
1220 verify_gdbarch(): Confirm that the target updated the field
1221 correctly.
1222
7e73cedf 1223 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1224 field is dumped out
1225
c0e8c252 1226 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1227 variable (base values on the host's c-type system).
1228
1229 get_gdbarch(): Implement the set/get functions (probably using
1230 the macro's as shortcuts).
1231
1232 */
1233
1234EOF
34620563 1235function_list | while do_read
104c1213 1236do
2ada493a
AC
1237 if class_is_variable_p
1238 then
3d9a5942 1239 printf " ${returntype} ${function};\n"
2ada493a
AC
1240 elif class_is_function_p
1241 then
2f9b146e 1242 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1243 fi
104c1213 1244done
3d9a5942 1245printf "};\n"
104c1213
JM
1246
1247# A pre-initialized vector
3d9a5942
AC
1248printf "\n"
1249printf "\n"
104c1213
JM
1250cat <<EOF
1251/* The default architecture uses host values (for want of a better
1252 choice). */
1253EOF
3d9a5942
AC
1254printf "\n"
1255printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1256printf "\n"
1257printf "struct gdbarch startup_gdbarch =\n"
1258printf "{\n"
76860b5f 1259printf " 1, /* Always initialized. */\n"
aebd7893 1260printf " NULL, /* The obstack. */\n"
3d9a5942 1261printf " /* basic architecture information */\n"
4b9b3959 1262function_list | while do_read
104c1213 1263do
2ada493a
AC
1264 if class_is_info_p
1265 then
ec5cbaec 1266 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1267 fi
104c1213
JM
1268done
1269cat <<EOF
4b9b3959
AC
1270 /* target specific vector and its dump routine */
1271 NULL, NULL,
104c1213
JM
1272 /*per-architecture data-pointers and swap regions */
1273 0, NULL, NULL,
1274 /* Multi-arch values */
1275EOF
34620563 1276function_list | while do_read
104c1213 1277do
2ada493a
AC
1278 if class_is_function_p || class_is_variable_p
1279 then
ec5cbaec 1280 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1281 fi
104c1213
JM
1282done
1283cat <<EOF
c0e8c252 1284 /* startup_gdbarch() */
104c1213 1285};
4b9b3959 1286
c0e8c252 1287struct gdbarch *current_gdbarch = &startup_gdbarch;
1cf3db46 1288struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1289EOF
1290
1291# Create a new gdbarch struct
104c1213 1292cat <<EOF
7de2341d 1293
66b43ecb 1294/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1295 \`\`struct gdbarch_info''. */
1296EOF
3d9a5942 1297printf "\n"
104c1213
JM
1298cat <<EOF
1299struct gdbarch *
1300gdbarch_alloc (const struct gdbarch_info *info,
1301 struct gdbarch_tdep *tdep)
1302{
be7811ad 1303 struct gdbarch *gdbarch;
aebd7893
AC
1304
1305 /* Create an obstack for allocating all the per-architecture memory,
1306 then use that to allocate the architecture vector. */
1307 struct obstack *obstack = XMALLOC (struct obstack);
1308 obstack_init (obstack);
be7811ad
MD
1309 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1310 memset (gdbarch, 0, sizeof (*gdbarch));
1311 gdbarch->obstack = obstack;
85de9627 1312
be7811ad 1313 alloc_gdbarch_data (gdbarch);
85de9627 1314
be7811ad 1315 gdbarch->tdep = tdep;
104c1213 1316EOF
3d9a5942 1317printf "\n"
34620563 1318function_list | while do_read
104c1213 1319do
2ada493a
AC
1320 if class_is_info_p
1321 then
be7811ad 1322 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1323 fi
104c1213 1324done
3d9a5942
AC
1325printf "\n"
1326printf " /* Force the explicit initialization of these. */\n"
34620563 1327function_list | while do_read
104c1213 1328do
2ada493a
AC
1329 if class_is_function_p || class_is_variable_p
1330 then
72e74a21 1331 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1332 then
be7811ad 1333 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1334 fi
2ada493a 1335 fi
104c1213
JM
1336done
1337cat <<EOF
1338 /* gdbarch_alloc() */
1339
be7811ad 1340 return gdbarch;
104c1213
JM
1341}
1342EOF
1343
058f20d5 1344# Free a gdbarch struct.
3d9a5942
AC
1345printf "\n"
1346printf "\n"
058f20d5 1347cat <<EOF
aebd7893
AC
1348/* Allocate extra space using the per-architecture obstack. */
1349
1350void *
1351gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1352{
1353 void *data = obstack_alloc (arch->obstack, size);
1354 memset (data, 0, size);
1355 return data;
1356}
1357
1358
058f20d5
JB
1359/* Free a gdbarch struct. This should never happen in normal
1360 operation --- once you've created a gdbarch, you keep it around.
1361 However, if an architecture's init function encounters an error
1362 building the structure, it may need to clean up a partially
1363 constructed gdbarch. */
4b9b3959 1364
058f20d5
JB
1365void
1366gdbarch_free (struct gdbarch *arch)
1367{
aebd7893 1368 struct obstack *obstack;
95160752 1369 gdb_assert (arch != NULL);
aebd7893
AC
1370 gdb_assert (!arch->initialized_p);
1371 obstack = arch->obstack;
1372 obstack_free (obstack, 0); /* Includes the ARCH. */
1373 xfree (obstack);
058f20d5
JB
1374}
1375EOF
1376
104c1213 1377# verify a new architecture
104c1213 1378cat <<EOF
db446970
AC
1379
1380
1381/* Ensure that all values in a GDBARCH are reasonable. */
1382
104c1213 1383static void
be7811ad 1384verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1385{
f16a1923
AC
1386 struct ui_file *log;
1387 struct cleanup *cleanups;
1388 long dummy;
1389 char *buf;
f16a1923
AC
1390 log = mem_fileopen ();
1391 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1392 /* fundamental */
be7811ad 1393 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1394 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1395 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1396 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1397 /* Check those that need to be defined for the given multi-arch level. */
1398EOF
34620563 1399function_list | while do_read
104c1213 1400do
2ada493a
AC
1401 if class_is_function_p || class_is_variable_p
1402 then
72e74a21 1403 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1404 then
3d9a5942 1405 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1406 elif class_is_predicate_p
1407 then
3d9a5942 1408 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1409 # FIXME: See do_read for potential simplification
72e74a21 1410 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1411 then
3d9a5942 1412 printf " if (${invalid_p})\n"
be7811ad 1413 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1414 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1415 then
be7811ad
MD
1416 printf " if (gdbarch->${function} == ${predefault})\n"
1417 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1418 elif [ -n "${postdefault}" ]
f0d4cc9e 1419 then
be7811ad
MD
1420 printf " if (gdbarch->${function} == 0)\n"
1421 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1422 elif [ -n "${invalid_p}" ]
104c1213 1423 then
4d60522e 1424 printf " if (${invalid_p})\n"
f16a1923 1425 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1426 elif [ -n "${predefault}" ]
104c1213 1427 then
be7811ad 1428 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1429 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1430 fi
2ada493a 1431 fi
104c1213
JM
1432done
1433cat <<EOF
f16a1923
AC
1434 buf = ui_file_xstrdup (log, &dummy);
1435 make_cleanup (xfree, buf);
1436 if (strlen (buf) > 0)
1437 internal_error (__FILE__, __LINE__,
85c07804 1438 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1439 buf);
1440 do_cleanups (cleanups);
104c1213
JM
1441}
1442EOF
1443
1444# dump the structure
3d9a5942
AC
1445printf "\n"
1446printf "\n"
104c1213 1447cat <<EOF
4b9b3959
AC
1448/* Print out the details of the current architecture. */
1449
104c1213 1450void
be7811ad 1451gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1452{
b78960be 1453 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1454#if defined (GDB_NM_FILE)
1455 gdb_nm_file = GDB_NM_FILE;
1456#endif
1457 fprintf_unfiltered (file,
1458 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1459 gdb_nm_file);
104c1213 1460EOF
97030eea 1461function_list | sort -t: -k 3 | while do_read
104c1213 1462do
1e9f55d0
AC
1463 # First the predicate
1464 if class_is_predicate_p
1465 then
7996bcec 1466 printf " fprintf_unfiltered (file,\n"
48f7351b 1467 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1468 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1469 fi
48f7351b 1470 # Print the corresponding value.
283354d8 1471 if class_is_function_p
4b9b3959 1472 then
7996bcec 1473 printf " fprintf_unfiltered (file,\n"
48f7351b 1474 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
be7811ad 1475 printf " (long) gdbarch->${function});\n"
4b9b3959 1476 else
48f7351b 1477 # It is a variable
2f9b146e
AC
1478 case "${print}:${returntype}" in
1479 :CORE_ADDR )
0b1553bc
UW
1480 fmt="%s"
1481 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1482 ;;
2f9b146e 1483 :* )
48f7351b 1484 fmt="%s"
623d3eb1 1485 print="plongest (gdbarch->${function})"
48f7351b
AC
1486 ;;
1487 * )
2f9b146e 1488 fmt="%s"
48f7351b
AC
1489 ;;
1490 esac
3d9a5942 1491 printf " fprintf_unfiltered (file,\n"
48f7351b 1492 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1493 printf " ${print});\n"
2ada493a 1494 fi
104c1213 1495done
381323f4 1496cat <<EOF
be7811ad
MD
1497 if (gdbarch->dump_tdep != NULL)
1498 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1499}
1500EOF
104c1213
JM
1501
1502
1503# GET/SET
3d9a5942 1504printf "\n"
104c1213
JM
1505cat <<EOF
1506struct gdbarch_tdep *
1507gdbarch_tdep (struct gdbarch *gdbarch)
1508{
1509 if (gdbarch_debug >= 2)
3d9a5942 1510 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1511 return gdbarch->tdep;
1512}
1513EOF
3d9a5942 1514printf "\n"
34620563 1515function_list | while do_read
104c1213 1516do
2ada493a
AC
1517 if class_is_predicate_p
1518 then
3d9a5942
AC
1519 printf "\n"
1520 printf "int\n"
1521 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1522 printf "{\n"
8de9bdc4 1523 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1524 printf " return ${predicate};\n"
3d9a5942 1525 printf "}\n"
2ada493a
AC
1526 fi
1527 if class_is_function_p
1528 then
3d9a5942
AC
1529 printf "\n"
1530 printf "${returntype}\n"
72e74a21 1531 if [ "x${formal}" = "xvoid" ]
104c1213 1532 then
3d9a5942 1533 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1534 else
3d9a5942 1535 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1536 fi
3d9a5942 1537 printf "{\n"
8de9bdc4 1538 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1539 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1540 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1541 then
1542 # Allow a call to a function with a predicate.
956ac328 1543 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1544 fi
3d9a5942
AC
1545 printf " if (gdbarch_debug >= 2)\n"
1546 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1547 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1548 then
1549 if class_is_multiarch_p
1550 then
1551 params="gdbarch"
1552 else
1553 params=""
1554 fi
1555 else
1556 if class_is_multiarch_p
1557 then
1558 params="gdbarch, ${actual}"
1559 else
1560 params="${actual}"
1561 fi
1562 fi
72e74a21 1563 if [ "x${returntype}" = "xvoid" ]
104c1213 1564 then
4a5c6a1d 1565 printf " gdbarch->${function} (${params});\n"
104c1213 1566 else
4a5c6a1d 1567 printf " return gdbarch->${function} (${params});\n"
104c1213 1568 fi
3d9a5942
AC
1569 printf "}\n"
1570 printf "\n"
1571 printf "void\n"
1572 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1573 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1574 printf "{\n"
1575 printf " gdbarch->${function} = ${function};\n"
1576 printf "}\n"
2ada493a
AC
1577 elif class_is_variable_p
1578 then
3d9a5942
AC
1579 printf "\n"
1580 printf "${returntype}\n"
1581 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1582 printf "{\n"
8de9bdc4 1583 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1584 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1585 then
3d9a5942 1586 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1587 elif [ -n "${invalid_p}" ]
104c1213 1588 then
956ac328
AC
1589 printf " /* Check variable is valid. */\n"
1590 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1591 elif [ -n "${predefault}" ]
104c1213 1592 then
956ac328
AC
1593 printf " /* Check variable changed from pre-default. */\n"
1594 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1595 fi
3d9a5942
AC
1596 printf " if (gdbarch_debug >= 2)\n"
1597 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1598 printf " return gdbarch->${function};\n"
1599 printf "}\n"
1600 printf "\n"
1601 printf "void\n"
1602 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1603 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1604 printf "{\n"
1605 printf " gdbarch->${function} = ${function};\n"
1606 printf "}\n"
2ada493a
AC
1607 elif class_is_info_p
1608 then
3d9a5942
AC
1609 printf "\n"
1610 printf "${returntype}\n"
1611 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1612 printf "{\n"
8de9bdc4 1613 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1614 printf " if (gdbarch_debug >= 2)\n"
1615 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1616 printf " return gdbarch->${function};\n"
1617 printf "}\n"
2ada493a 1618 fi
104c1213
JM
1619done
1620
1621# All the trailing guff
1622cat <<EOF
1623
1624
f44c642f 1625/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1626 modules. */
1627
1628struct gdbarch_data
1629{
95160752 1630 unsigned index;
76860b5f 1631 int init_p;
030f20e1
AC
1632 gdbarch_data_pre_init_ftype *pre_init;
1633 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1634};
1635
1636struct gdbarch_data_registration
1637{
104c1213
JM
1638 struct gdbarch_data *data;
1639 struct gdbarch_data_registration *next;
1640};
1641
f44c642f 1642struct gdbarch_data_registry
104c1213 1643{
95160752 1644 unsigned nr;
104c1213
JM
1645 struct gdbarch_data_registration *registrations;
1646};
1647
f44c642f 1648struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1649{
1650 0, NULL,
1651};
1652
030f20e1
AC
1653static struct gdbarch_data *
1654gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1655 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1656{
1657 struct gdbarch_data_registration **curr;
76860b5f 1658 /* Append the new registraration. */
f44c642f 1659 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1660 (*curr) != NULL;
1661 curr = &(*curr)->next);
1662 (*curr) = XMALLOC (struct gdbarch_data_registration);
1663 (*curr)->next = NULL;
104c1213 1664 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1665 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1666 (*curr)->data->pre_init = pre_init;
1667 (*curr)->data->post_init = post_init;
76860b5f 1668 (*curr)->data->init_p = 1;
104c1213
JM
1669 return (*curr)->data;
1670}
1671
030f20e1
AC
1672struct gdbarch_data *
1673gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1674{
1675 return gdbarch_data_register (pre_init, NULL);
1676}
1677
1678struct gdbarch_data *
1679gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1680{
1681 return gdbarch_data_register (NULL, post_init);
1682}
104c1213 1683
b3cc3077 1684/* Create/delete the gdbarch data vector. */
95160752
AC
1685
1686static void
b3cc3077 1687alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1688{
b3cc3077
JB
1689 gdb_assert (gdbarch->data == NULL);
1690 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1691 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1692}
3c875b6f 1693
76860b5f 1694/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1695 data-pointer. */
1696
95160752 1697void
030f20e1
AC
1698deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1699 struct gdbarch_data *data,
1700 void *pointer)
95160752
AC
1701{
1702 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1703 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1704 gdb_assert (data->pre_init == NULL);
95160752
AC
1705 gdbarch->data[data->index] = pointer;
1706}
1707
104c1213
JM
1708/* Return the current value of the specified per-architecture
1709 data-pointer. */
1710
1711void *
451fbdda 1712gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1713{
451fbdda 1714 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1715 if (gdbarch->data[data->index] == NULL)
76860b5f 1716 {
030f20e1
AC
1717 /* The data-pointer isn't initialized, call init() to get a
1718 value. */
1719 if (data->pre_init != NULL)
1720 /* Mid architecture creation: pass just the obstack, and not
1721 the entire architecture, as that way it isn't possible for
1722 pre-init code to refer to undefined architecture
1723 fields. */
1724 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1725 else if (gdbarch->initialized_p
1726 && data->post_init != NULL)
1727 /* Post architecture creation: pass the entire architecture
1728 (as all fields are valid), but be careful to also detect
1729 recursive references. */
1730 {
1731 gdb_assert (data->init_p);
1732 data->init_p = 0;
1733 gdbarch->data[data->index] = data->post_init (gdbarch);
1734 data->init_p = 1;
1735 }
1736 else
1737 /* The architecture initialization hasn't completed - punt -
1738 hope that the caller knows what they are doing. Once
1739 deprecated_set_gdbarch_data has been initialized, this can be
1740 changed to an internal error. */
1741 return NULL;
76860b5f
AC
1742 gdb_assert (gdbarch->data[data->index] != NULL);
1743 }
451fbdda 1744 return gdbarch->data[data->index];
104c1213
JM
1745}
1746
1747
f44c642f 1748/* Keep a registry of the architectures known by GDB. */
104c1213 1749
4b9b3959 1750struct gdbarch_registration
104c1213
JM
1751{
1752 enum bfd_architecture bfd_architecture;
1753 gdbarch_init_ftype *init;
4b9b3959 1754 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1755 struct gdbarch_list *arches;
4b9b3959 1756 struct gdbarch_registration *next;
104c1213
JM
1757};
1758
f44c642f 1759static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1760
b4a20239
AC
1761static void
1762append_name (const char ***buf, int *nr, const char *name)
1763{
1764 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1765 (*buf)[*nr] = name;
1766 *nr += 1;
1767}
1768
1769const char **
1770gdbarch_printable_names (void)
1771{
7996bcec
AC
1772 /* Accumulate a list of names based on the registed list of
1773 architectures. */
1774 enum bfd_architecture a;
1775 int nr_arches = 0;
1776 const char **arches = NULL;
1777 struct gdbarch_registration *rego;
1778 for (rego = gdbarch_registry;
1779 rego != NULL;
1780 rego = rego->next)
b4a20239 1781 {
7996bcec
AC
1782 const struct bfd_arch_info *ap;
1783 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1784 if (ap == NULL)
1785 internal_error (__FILE__, __LINE__,
85c07804 1786 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1787 do
1788 {
1789 append_name (&arches, &nr_arches, ap->printable_name);
1790 ap = ap->next;
1791 }
1792 while (ap != NULL);
b4a20239 1793 }
7996bcec
AC
1794 append_name (&arches, &nr_arches, NULL);
1795 return arches;
b4a20239
AC
1796}
1797
1798
104c1213 1799void
4b9b3959
AC
1800gdbarch_register (enum bfd_architecture bfd_architecture,
1801 gdbarch_init_ftype *init,
1802 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1803{
4b9b3959 1804 struct gdbarch_registration **curr;
104c1213 1805 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1806 /* Check that BFD recognizes this architecture */
104c1213
JM
1807 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1808 if (bfd_arch_info == NULL)
1809 {
8e65ff28 1810 internal_error (__FILE__, __LINE__,
85c07804 1811 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1812 bfd_architecture);
104c1213
JM
1813 }
1814 /* Check that we haven't seen this architecture before */
f44c642f 1815 for (curr = &gdbarch_registry;
104c1213
JM
1816 (*curr) != NULL;
1817 curr = &(*curr)->next)
1818 {
1819 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1820 internal_error (__FILE__, __LINE__,
85c07804 1821 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1822 bfd_arch_info->printable_name);
104c1213
JM
1823 }
1824 /* log it */
1825 if (gdbarch_debug)
1826 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1827 bfd_arch_info->printable_name,
1828 (long) init);
1829 /* Append it */
4b9b3959 1830 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1831 (*curr)->bfd_architecture = bfd_architecture;
1832 (*curr)->init = init;
4b9b3959 1833 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1834 (*curr)->arches = NULL;
1835 (*curr)->next = NULL;
4b9b3959
AC
1836}
1837
1838void
1839register_gdbarch_init (enum bfd_architecture bfd_architecture,
1840 gdbarch_init_ftype *init)
1841{
1842 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1843}
104c1213
JM
1844
1845
424163ea 1846/* Look for an architecture using gdbarch_info. */
104c1213
JM
1847
1848struct gdbarch_list *
1849gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1850 const struct gdbarch_info *info)
1851{
1852 for (; arches != NULL; arches = arches->next)
1853 {
1854 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1855 continue;
1856 if (info->byte_order != arches->gdbarch->byte_order)
1857 continue;
4be87837
DJ
1858 if (info->osabi != arches->gdbarch->osabi)
1859 continue;
424163ea
DJ
1860 if (info->target_desc != arches->gdbarch->target_desc)
1861 continue;
104c1213
JM
1862 return arches;
1863 }
1864 return NULL;
1865}
1866
1867
ebdba546
AC
1868/* Find an architecture that matches the specified INFO. Create a new
1869 architecture if needed. Return that new architecture. Assumes
1870 that there is no current architecture. */
104c1213 1871
ebdba546 1872static struct gdbarch *
7a107747 1873find_arch_by_info (struct gdbarch_info info)
104c1213
JM
1874{
1875 struct gdbarch *new_gdbarch;
4b9b3959 1876 struct gdbarch_registration *rego;
104c1213 1877
ebdba546
AC
1878 /* The existing architecture has been swapped out - all this code
1879 works from a clean slate. */
1880 gdb_assert (current_gdbarch == NULL);
1881
b732d07d 1882 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1883 sources: "set ..."; INFOabfd supplied; and the global
1884 defaults. */
1885 gdbarch_info_fill (&info);
4be87837 1886
b732d07d
AC
1887 /* Must have found some sort of architecture. */
1888 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1889
1890 if (gdbarch_debug)
1891 {
1892 fprintf_unfiltered (gdb_stdlog,
ebdba546 1893 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1894 (info.bfd_arch_info != NULL
1895 ? info.bfd_arch_info->printable_name
1896 : "(null)"));
1897 fprintf_unfiltered (gdb_stdlog,
ebdba546 1898 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 1899 info.byte_order,
d7449b42 1900 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1901 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1902 : "default"));
4be87837 1903 fprintf_unfiltered (gdb_stdlog,
ebdba546 1904 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 1905 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1906 fprintf_unfiltered (gdb_stdlog,
ebdba546 1907 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
1908 (long) info.abfd);
1909 fprintf_unfiltered (gdb_stdlog,
ebdba546 1910 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
1911 (long) info.tdep_info);
1912 }
1913
ebdba546 1914 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1915 for (rego = gdbarch_registry;
1916 rego != NULL;
1917 rego = rego->next)
1918 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1919 break;
1920 if (rego == NULL)
1921 {
1922 if (gdbarch_debug)
ebdba546
AC
1923 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1924 "No matching architecture\n");
b732d07d
AC
1925 return 0;
1926 }
1927
ebdba546 1928 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1929 new_gdbarch = rego->init (info, rego->arches);
1930
ebdba546
AC
1931 /* Did the tdep code like it? No. Reject the change and revert to
1932 the old architecture. */
104c1213
JM
1933 if (new_gdbarch == NULL)
1934 {
1935 if (gdbarch_debug)
ebdba546
AC
1936 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1937 "Target rejected architecture\n");
1938 return NULL;
104c1213
JM
1939 }
1940
ebdba546
AC
1941 /* Is this a pre-existing architecture (as determined by already
1942 being initialized)? Move it to the front of the architecture
1943 list (keeping the list sorted Most Recently Used). */
1944 if (new_gdbarch->initialized_p)
104c1213 1945 {
ebdba546
AC
1946 struct gdbarch_list **list;
1947 struct gdbarch_list *this;
104c1213 1948 if (gdbarch_debug)
ebdba546
AC
1949 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1950 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
1951 (long) new_gdbarch,
1952 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1953 /* Find the existing arch in the list. */
1954 for (list = &rego->arches;
1955 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1956 list = &(*list)->next);
1957 /* It had better be in the list of architectures. */
1958 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1959 /* Unlink THIS. */
1960 this = (*list);
1961 (*list) = this->next;
1962 /* Insert THIS at the front. */
1963 this->next = rego->arches;
1964 rego->arches = this;
1965 /* Return it. */
1966 return new_gdbarch;
104c1213
JM
1967 }
1968
ebdba546
AC
1969 /* It's a new architecture. */
1970 if (gdbarch_debug)
1971 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1972 "New architecture 0x%08lx (%s) selected\n",
1973 (long) new_gdbarch,
1974 new_gdbarch->bfd_arch_info->printable_name);
1975
1976 /* Insert the new architecture into the front of the architecture
1977 list (keep the list sorted Most Recently Used). */
0f79675b
AC
1978 {
1979 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1980 this->next = rego->arches;
1981 this->gdbarch = new_gdbarch;
1982 rego->arches = this;
1983 }
104c1213 1984
4b9b3959
AC
1985 /* Check that the newly installed architecture is valid. Plug in
1986 any post init values. */
1987 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 1988 verify_gdbarch (new_gdbarch);
ebdba546 1989 new_gdbarch->initialized_p = 1;
104c1213 1990
4b9b3959 1991 if (gdbarch_debug)
ebdba546
AC
1992 gdbarch_dump (new_gdbarch, gdb_stdlog);
1993
1994 return new_gdbarch;
1995}
1996
1997struct gdbarch *
1998gdbarch_find_by_info (struct gdbarch_info info)
1999{
e487cc15
UW
2000 struct gdbarch *new_gdbarch;
2001
ebdba546
AC
2002 /* Save the previously selected architecture, setting the global to
2003 NULL. This stops things like gdbarch->init() trying to use the
2004 previous architecture's configuration. The previous architecture
2005 may not even be of the same architecture family. The most recent
2006 architecture of the same family is found at the head of the
2007 rego->arches list. */
e487cc15
UW
2008 struct gdbarch *old_gdbarch = current_gdbarch;
2009 current_gdbarch = NULL;
ebdba546
AC
2010
2011 /* Find the specified architecture. */
e487cc15 2012 new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2013
2014 /* Restore the existing architecture. */
2015 gdb_assert (current_gdbarch == NULL);
e487cc15 2016 current_gdbarch = old_gdbarch;
4b9b3959 2017
ebdba546 2018 return new_gdbarch;
104c1213
JM
2019}
2020
e487cc15 2021/* Make the specified architecture current. */
ebdba546
AC
2022
2023void
2024deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2025{
2026 gdb_assert (new_gdbarch != NULL);
2027 gdb_assert (current_gdbarch != NULL);
2028 gdb_assert (new_gdbarch->initialized_p);
e487cc15 2029 current_gdbarch = new_gdbarch;
1cf3db46 2030 target_gdbarch = new_gdbarch;
383f836e 2031 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2032 registers_changed ();
ebdba546 2033}
104c1213 2034
104c1213 2035extern void _initialize_gdbarch (void);
b4a20239 2036
104c1213 2037void
34620563 2038_initialize_gdbarch (void)
104c1213 2039{
59233f88
AC
2040 struct cmd_list_element *c;
2041
85c07804
AC
2042 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2043Set architecture debugging."), _("\\
2044Show architecture debugging."), _("\\
2045When non-zero, architecture debugging is enabled."),
2046 NULL,
920d2a44 2047 show_gdbarch_debug,
85c07804 2048 &setdebuglist, &showdebuglist);
104c1213
JM
2049}
2050EOF
2051
2052# close things off
2053exec 1>&2
2054#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2055compare_new gdbarch.c
This page took 0.779652 seconds and 4 git commands to generate.