gdb: fix shellcheck warnings SC2034 (unused variable) in gdbarch.sh
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
a6fc5ffc 31 if test ! -r "${file}"
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
a6fc5ffc 34 elif diff -u "${file}" "new-${file}"
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
cb02ab24 70 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 73 eval read "${read}" <<EOF
34620563
AC
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
a6fc5ffc 89 if eval test "\"\${${r}}\" = ' '"
3d9a5942 90 then
a6fc5ffc 91 eval "${r}="
3d9a5942
AC
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
34620563
AC
125 #NOT YET: See gdbarch.log for basic verification of
126 # database
127
128 break
f0d4cc9e 129 fi
34620563 130 done
72e74a21 131 if [ -n "${class}" ]
34620563
AC
132 then
133 true
c0e8c252
AC
134 else
135 false
136 fi
137}
138
104c1213 139
f0d4cc9e
AC
140fallback_default_p ()
141{
9fdb2916
SM
142 { [ -n "${postdefault}" ] && [ "x${invalid_p}" != "x0" ]; } \
143 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
144}
145
146class_is_variable_p ()
147{
4a5c6a1d
AC
148 case "${class}" in
149 *v* | *V* ) true ;;
150 * ) false ;;
151 esac
f0d4cc9e
AC
152}
153
154class_is_function_p ()
155{
4a5c6a1d
AC
156 case "${class}" in
157 *f* | *F* | *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160}
161
162class_is_multiarch_p ()
163{
164 case "${class}" in
165 *m* | *M* ) true ;;
166 * ) false ;;
167 esac
f0d4cc9e
AC
168}
169
170class_is_predicate_p ()
171{
4a5c6a1d
AC
172 case "${class}" in
173 *F* | *V* | *M* ) true ;;
174 * ) false ;;
175 esac
f0d4cc9e
AC
176}
177
178class_is_info_p ()
179{
4a5c6a1d
AC
180 case "${class}" in
181 *i* ) true ;;
182 * ) false ;;
183 esac
f0d4cc9e
AC
184}
185
186
cff3e48b
JM
187# dump out/verify the doco
188for field in ${read}
189do
190 case ${field} in
191
192 class ) : ;;
c4093a6a 193
c0e8c252
AC
194 # # -> line disable
195 # f -> function
196 # hiding a function
2ada493a
AC
197 # F -> function + predicate
198 # hiding a function + predicate to test function validity
c0e8c252
AC
199 # v -> variable
200 # hiding a variable
2ada493a
AC
201 # V -> variable + predicate
202 # hiding a variable + predicate to test variables validity
c0e8c252
AC
203 # i -> set from info
204 # hiding something from the ``struct info'' object
4a5c6a1d
AC
205 # m -> multi-arch function
206 # hiding a multi-arch function (parameterised with the architecture)
207 # M -> multi-arch function + predicate
208 # hiding a multi-arch function + predicate to test function validity
cff3e48b 209
cff3e48b
JM
210 returntype ) : ;;
211
c0e8c252 212 # For functions, the return type; for variables, the data type
cff3e48b
JM
213
214 function ) : ;;
215
c0e8c252
AC
216 # For functions, the member function name; for variables, the
217 # variable name. Member function names are always prefixed with
218 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
219
220 formal ) : ;;
221
c0e8c252
AC
222 # The formal argument list. It is assumed that the formal
223 # argument list includes the actual name of each list element.
224 # A function with no arguments shall have ``void'' as the
225 # formal argument list.
cff3e48b
JM
226
227 actual ) : ;;
228
c0e8c252
AC
229 # The list of actual arguments. The arguments specified shall
230 # match the FORMAL list given above. Functions with out
231 # arguments leave this blank.
cff3e48b 232
0b8f9e4d 233 staticdefault ) : ;;
c0e8c252
AC
234
235 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
236 # created. STATICDEFAULT is the value to insert into that
237 # static gdbarch object. Since this a static object only
238 # simple expressions can be used.
cff3e48b 239
0b8f9e4d 240 # If STATICDEFAULT is empty, zero is used.
c0e8c252 241
0b8f9e4d 242 predefault ) : ;;
cff3e48b 243
10312cc4
AC
244 # An initial value to assign to MEMBER of the freshly
245 # malloc()ed gdbarch object. After initialization, the
246 # freshly malloc()ed object is passed to the target
247 # architecture code for further updates.
cff3e48b 248
0b8f9e4d
AC
249 # If PREDEFAULT is empty, zero is used.
250
10312cc4
AC
251 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
252 # INVALID_P are specified, PREDEFAULT will be used as the
253 # default for the non- multi-arch target.
254
255 # A zero PREDEFAULT function will force the fallback to call
256 # internal_error().
f0d4cc9e
AC
257
258 # Variable declarations can refer to ``gdbarch'' which will
259 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
260
261 postdefault ) : ;;
262
263 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
264 # the target architecture code fail to change the PREDEFAULT
265 # value.
0b8f9e4d
AC
266
267 # If POSTDEFAULT is empty, no post update is performed.
268
269 # If both INVALID_P and POSTDEFAULT are non-empty then
270 # INVALID_P will be used to determine if MEMBER should be
271 # changed to POSTDEFAULT.
272
10312cc4
AC
273 # If a non-empty POSTDEFAULT and a zero INVALID_P are
274 # specified, POSTDEFAULT will be used as the default for the
275 # non- multi-arch target (regardless of the value of
276 # PREDEFAULT).
277
f0d4cc9e
AC
278 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
279
be7811ad 280 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
281 # will contain the current architecture. Care should be
282 # taken.
cff3e48b 283
c4093a6a 284 invalid_p ) : ;;
cff3e48b 285
0b8f9e4d 286 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 287 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
288 # initialize MEMBER or the initialized the member is invalid.
289 # If POSTDEFAULT is non-empty then MEMBER will be updated to
290 # that value. If POSTDEFAULT is empty then internal_error()
291 # is called.
292
293 # If INVALID_P is empty, a check that MEMBER is no longer
294 # equal to PREDEFAULT is used.
295
f0d4cc9e
AC
296 # The expression ``0'' disables the INVALID_P check making
297 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
298
299 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 300
cff3e48b
JM
301 print ) : ;;
302
2f9b146e
AC
303 # An optional expression that convers MEMBER to a value
304 # suitable for formatting using %s.
c0e8c252 305
0b1553bc
UW
306 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
307 # or plongest (anything else) is used.
cff3e48b 308
283354d8 309 garbage_at_eol ) : ;;
0b8f9e4d 310
283354d8 311 # Catches stray fields.
cff3e48b 312
50248794
AC
313 *)
314 echo "Bad field ${field}"
315 exit 1;;
cff3e48b
JM
316 esac
317done
318
cff3e48b 319
104c1213
JM
320function_list ()
321{
cff3e48b 322 # See below (DOCO) for description of each field
34620563 323 cat <<EOF
ea480a30 324i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 325#
ea480a30
SM
326i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
327i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 328#
ea480a30 329i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 330#
ea480a30 331i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 332
66b43ecb 333# Number of bits in a short or unsigned short for the target machine.
ea480a30 334v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 335# Number of bits in an int or unsigned int for the target machine.
ea480a30 336v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 337# Number of bits in a long or unsigned long for the target machine.
ea480a30 338v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
339# Number of bits in a long long or unsigned long long for the target
340# machine.
ea480a30 341v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 342
f9e9243a
UW
343# The ABI default bit-size and format for "half", "float", "double", and
344# "long double". These bit/format pairs should eventually be combined
345# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
346# Each format describes both the big and little endian layouts (if
347# useful).
456fcf94 348
ea480a30
SM
349v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
350v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
351v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
352v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
353v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
354v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
355v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
356v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 357
53375380
PA
358# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
359# starting with C++11.
ea480a30 360v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 361# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 362v;int;wchar_signed;;;1;-1;1
53375380 363
9b790ce7
UW
364# Returns the floating-point format to be used for values of length LENGTH.
365# NAME, if non-NULL, is the type name, which may be used to distinguish
366# different target formats of the same length.
ea480a30 367m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 368
52204a0b
DT
369# For most targets, a pointer on the target and its representation as an
370# address in GDB have the same size and "look the same". For such a
17a912b6 371# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
372# / addr_bit will be set from it.
373#
17a912b6 374# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
375# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
376# gdbarch_address_to_pointer as well.
52204a0b
DT
377#
378# ptr_bit is the size of a pointer on the target
ea480a30 379v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 380# addr_bit is the size of a target address as represented in gdb
ea480a30 381v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 382#
8da614df
CV
383# dwarf2_addr_size is the target address size as used in the Dwarf debug
384# info. For .debug_frame FDEs, this is supposed to be the target address
385# size from the associated CU header, and which is equivalent to the
386# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
387# Unfortunately there is no good way to determine this value. Therefore
388# dwarf2_addr_size simply defaults to the target pointer size.
389#
390# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
391# defined using the target's pointer size so far.
392#
393# Note that dwarf2_addr_size only needs to be redefined by a target if the
394# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
395# and if Dwarf versions < 4 need to be supported.
ea480a30 396v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 397#
4e409299 398# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 399v;int;char_signed;;;1;-1;1
4e409299 400#
c113ed0c 401F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 402F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
403# Function for getting target's idea of a frame pointer. FIXME: GDB's
404# whole scheme for dealing with "frames" and "frame pointers" needs a
405# serious shakedown.
ea480a30 406m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 407#
849d0ba8 408M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
409# Read a register into a new struct value. If the register is wholly
410# or partly unavailable, this should call mark_value_bytes_unavailable
411# as appropriate. If this is defined, then pseudo_register_read will
412# never be called.
849d0ba8 413M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 414M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 415#
ea480a30 416v;int;num_regs;;;0;-1
0aba1244
EZ
417# This macro gives the number of pseudo-registers that live in the
418# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
419# These pseudo-registers may be aliases for other registers,
420# combinations of other registers, or they may be computed by GDB.
ea480a30 421v;int;num_pseudo_regs;;;0;0;;0
c2169756 422
175ff332
HZ
423# Assemble agent expression bytecode to collect pseudo-register REG.
424# Return -1 if something goes wrong, 0 otherwise.
ea480a30 425M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
426
427# Assemble agent expression bytecode to push the value of pseudo-register
428# REG on the interpreter stack.
429# Return -1 if something goes wrong, 0 otherwise.
ea480a30 430M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 431
012b3a21
WT
432# Some targets/architectures can do extra processing/display of
433# segmentation faults. E.g., Intel MPX boundary faults.
434# Call the architecture dependent function to handle the fault.
435# UIOUT is the output stream where the handler will place information.
ea480a30 436M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 437
c2169756
AC
438# GDB's standard (or well known) register numbers. These can map onto
439# a real register or a pseudo (computed) register or not be defined at
1200cd6e 440# all (-1).
3e8c568d 441# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
442v;int;sp_regnum;;;-1;-1;;0
443v;int;pc_regnum;;;-1;-1;;0
444v;int;ps_regnum;;;-1;-1;;0
445v;int;fp0_regnum;;;0;-1;;0
88c72b7d 446# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 447m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 448# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 449m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 450# Convert from an sdb register number to an internal gdb register number.
ea480a30 451m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 452# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 453# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
454m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
455m;const char *;register_name;int regnr;regnr;;0
9c04cab7 456
7b9ee6a8
DJ
457# Return the type of a register specified by the architecture. Only
458# the register cache should call this function directly; others should
459# use "register_type".
ea480a30 460M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 461
8bcb5208
AB
462# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
463# a dummy frame. A dummy frame is created before an inferior call,
464# the frame_id returned here must match the frame_id that was built
465# for the inferior call. Usually this means the returned frame_id's
466# stack address should match the address returned by
467# gdbarch_push_dummy_call, and the returned frame_id's code address
468# should match the address at which the breakpoint was set in the dummy
469# frame.
470m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 471# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 472# deprecated_fp_regnum.
ea480a30 473v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 474
cf84fa6b 475M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
476v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
477M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 478
7eb89530 479# Return true if the code of FRAME is writable.
ea480a30 480m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 481
ea480a30
SM
482m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
483m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
484M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
485# MAP a GDB RAW register number onto a simulator register number. See
486# also include/...-sim.h.
ea480a30
SM
487m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
488m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
489m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
490
491# Determine the address where a longjmp will land and save this address
492# in PC. Return nonzero on success.
493#
494# FRAME corresponds to the longjmp frame.
ea480a30 495F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 496
104c1213 497#
ea480a30 498v;int;believe_pcc_promotion;;;;;;;
104c1213 499#
ea480a30
SM
500m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
501f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
502f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 503# Construct a value representing the contents of register REGNUM in
2ed3c037 504# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
505# allocate and return a struct value with all value attributes
506# (but not the value contents) filled in.
ea480a30 507m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 508#
ea480a30
SM
509m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
510m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
511M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 512
6a3a010b
MR
513# Return the return-value convention that will be used by FUNCTION
514# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
515# case the return convention is computed based only on VALTYPE.
516#
517# If READBUF is not NULL, extract the return value and save it in this buffer.
518#
519# If WRITEBUF is not NULL, it contains a return value which will be
520# stored into the appropriate register. This can be used when we want
521# to force the value returned by a function (see the "return" command
522# for instance).
ea480a30 523M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 524
18648a37
YQ
525# Return true if the return value of function is stored in the first hidden
526# parameter. In theory, this feature should be language-dependent, specified
527# by language and its ABI, such as C++. Unfortunately, compiler may
528# implement it to a target-dependent feature. So that we need such hook here
529# to be aware of this in GDB.
ea480a30 530m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 531
ea480a30
SM
532m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
533M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
534# On some platforms, a single function may provide multiple entry points,
535# e.g. one that is used for function-pointer calls and a different one
536# that is used for direct function calls.
537# In order to ensure that breakpoints set on the function will trigger
538# no matter via which entry point the function is entered, a platform
539# may provide the skip_entrypoint callback. It is called with IP set
540# to the main entry point of a function (as determined by the symbol table),
541# and should return the address of the innermost entry point, where the
542# actual breakpoint needs to be set. Note that skip_entrypoint is used
543# by GDB common code even when debugging optimized code, where skip_prologue
544# is not used.
ea480a30 545M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 546
ea480a30
SM
547f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
548m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
549
550# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 551m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
552
553# Return the software breakpoint from KIND. KIND can have target
554# specific meaning like the Z0 kind parameter.
555# SIZE is set to the software breakpoint's length in memory.
ea480a30 556m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 557
833b7ab5
YQ
558# Return the breakpoint kind for this target based on the current
559# processor state (e.g. the current instruction mode on ARM) and the
560# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 561m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 562
ea480a30
SM
563M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
564m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
565m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
566v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
567
568# A function can be addressed by either it's "pointer" (possibly a
569# descriptor address) or "entry point" (first executable instruction).
570# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 571# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
572# a simplified subset of that functionality - the function's address
573# corresponds to the "function pointer" and the function's start
574# corresponds to the "function entry point" - and hence is redundant.
575
ea480a30 576v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 577
123dc839
DJ
578# Return the remote protocol register number associated with this
579# register. Normally the identity mapping.
ea480a30 580m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 581
b2756930 582# Fetch the target specific address used to represent a load module.
ea480a30 583F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
584
585# Return the thread-local address at OFFSET in the thread-local
586# storage for the thread PTID and the shared library or executable
587# file given by LM_ADDR. If that block of thread-local storage hasn't
588# been allocated yet, this function may throw an error. LM_ADDR may
589# be zero for statically linked multithreaded inferiors.
590
591M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 592#
ea480a30 593v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
594m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
595m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
596# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
597# frame-base. Enable frame-base before frame-unwind.
ea480a30 598F;int;frame_num_args;struct frame_info *frame;frame
104c1213 599#
ea480a30
SM
600M;CORE_ADDR;frame_align;CORE_ADDR address;address
601m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
602v;int;frame_red_zone_size
f0d4cc9e 603#
ea480a30 604m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
605# On some machines there are bits in addresses which are not really
606# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 607# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
608# we get a "real" address such as one would find in a symbol table.
609# This is used only for addresses of instructions, and even then I'm
610# not sure it's used in all contexts. It exists to deal with there
611# being a few stray bits in the PC which would mislead us, not as some
612# sort of generic thing to handle alignment or segmentation (it's
613# possible it should be in TARGET_READ_PC instead).
ea480a30 614m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 615
a738ea1d
YQ
616# On some machines, not all bits of an address word are significant.
617# For example, on AArch64, the top bits of an address known as the "tag"
618# are ignored by the kernel, the hardware, etc. and can be regarded as
619# additional data associated with the address.
5969f0db 620v;int;significant_addr_bit;;;;;;0
a738ea1d 621
e6590a1b
UW
622# FIXME/cagney/2001-01-18: This should be split in two. A target method that
623# indicates if the target needs software single step. An ISA method to
624# implement it.
625#
e6590a1b
UW
626# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
627# target can single step. If not, then implement single step using breakpoints.
64c4637f 628#
93f9a11f
YQ
629# Return a vector of addresses on which the software single step
630# breakpoints should be inserted. NULL means software single step is
631# not used.
632# Multiple breakpoints may be inserted for some instructions such as
633# conditional branch. However, each implementation must always evaluate
634# the condition and only put the breakpoint at the branch destination if
635# the condition is true, so that we ensure forward progress when stepping
636# past a conditional branch to self.
a0ff9e1a 637F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 638
3352ef37
AC
639# Return non-zero if the processor is executing a delay slot and a
640# further single-step is needed before the instruction finishes.
ea480a30 641M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 642# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 643# disassembler. Perhaps objdump can handle it?
39503f82 644f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 645f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
646
647
cfd8ab24 648# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
649# evaluates non-zero, this is the address where the debugger will place
650# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 651m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 652# Some systems also have trampoline code for returning from shared libs.
ea480a30 653m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 654
1d509aa6
MM
655# Return true if PC lies inside an indirect branch thunk.
656m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
657
c12260ac
CV
658# A target might have problems with watchpoints as soon as the stack
659# frame of the current function has been destroyed. This mostly happens
c9cf6e20 660# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
661# is defined to return a non-zero value if either the given addr is one
662# instruction after the stack destroying instruction up to the trailing
663# return instruction or if we can figure out that the stack frame has
664# already been invalidated regardless of the value of addr. Targets
665# which don't suffer from that problem could just let this functionality
666# untouched.
ea480a30 667m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
668# Process an ELF symbol in the minimal symbol table in a backend-specific
669# way. Normally this hook is supposed to do nothing, however if required,
670# then this hook can be used to apply tranformations to symbols that are
671# considered special in some way. For example the MIPS backend uses it
672# to interpret \`st_other' information to mark compressed code symbols so
673# that they can be treated in the appropriate manner in the processing of
674# the main symbol table and DWARF-2 records.
ea480a30
SM
675F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
676f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
677# Process a symbol in the main symbol table in a backend-specific way.
678# Normally this hook is supposed to do nothing, however if required,
679# then this hook can be used to apply tranformations to symbols that
680# are considered special in some way. This is currently used by the
681# MIPS backend to make sure compressed code symbols have the ISA bit
682# set. This in turn is needed for symbol values seen in GDB to match
683# the values used at the runtime by the program itself, for function
684# and label references.
ea480a30 685f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
686# Adjust the address retrieved from a DWARF-2 record other than a line
687# entry in a backend-specific way. Normally this hook is supposed to
688# return the address passed unchanged, however if that is incorrect for
689# any reason, then this hook can be used to fix the address up in the
690# required manner. This is currently used by the MIPS backend to make
691# sure addresses in FDE, range records, etc. referring to compressed
692# code have the ISA bit set, matching line information and the symbol
693# table.
ea480a30 694f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
695# Adjust the address updated by a line entry in a backend-specific way.
696# Normally this hook is supposed to return the address passed unchanged,
697# however in the case of inconsistencies in these records, this hook can
698# be used to fix them up in the required manner. This is currently used
699# by the MIPS backend to make sure all line addresses in compressed code
700# are presented with the ISA bit set, which is not always the case. This
701# in turn ensures breakpoint addresses are correctly matched against the
702# stop PC.
ea480a30
SM
703f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
704v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
705# See comment in target.h about continuable, steppable and
706# non-steppable watchpoints.
ea480a30
SM
707v;int;have_nonsteppable_watchpoint;;;0;0;;0
708F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
709M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
710# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
711# FS are passed from the generic execute_cfa_program function.
ea480a30 712m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
713
714# Return the appropriate type_flags for the supplied address class.
715# This function should return 1 if the address class was recognized and
716# type_flags was set, zero otherwise.
ea480a30 717M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 718# Is a register in a group
ea480a30 719m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 720# Fetch the pointer to the ith function argument.
ea480a30 721F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 722
5aa82d05
AA
723# Iterate over all supported register notes in a core file. For each
724# supported register note section, the iterator must call CB and pass
725# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
726# the supported register note sections based on the current register
727# values. Otherwise it should enumerate all supported register note
728# sections.
ea480a30 729M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 730
6432734d 731# Create core file notes
ea480a30 732M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 733
35c2fab7 734# Find core file memory regions
ea480a30 735M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 736
de584861 737# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
738# core file into buffer READBUF with length LEN. Return the number of bytes read
739# (zero indicates failure).
740# failed, otherwise, return the red length of READBUF.
ea480a30 741M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 742
356a5233
JB
743# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
744# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 745# Return the number of bytes read (zero indicates failure).
ea480a30 746M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 747
c0edd9ed 748# How the core target converts a PTID from a core file to a string.
a068643d 749M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 750
4dfc5dbc 751# How the core target extracts the name of a thread from a core file.
ea480a30 752M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 753
382b69bb
JB
754# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
755# from core file into buffer READBUF with length LEN. Return the number
756# of bytes read (zero indicates EOF, a negative value indicates failure).
757M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
758
a78c2d62 759# BFD target to use when generating a core file.
ea480a30 760V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 761
0d5de010
DJ
762# If the elements of C++ vtables are in-place function descriptors rather
763# than normal function pointers (which may point to code or a descriptor),
764# set this to one.
ea480a30 765v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
766
767# Set if the least significant bit of the delta is used instead of the least
768# significant bit of the pfn for pointers to virtual member functions.
ea480a30 769v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
770
771# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 772f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 773
1668ae25 774# The maximum length of an instruction on this architecture in bytes.
ea480a30 775V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
776
777# Copy the instruction at FROM to TO, and make any adjustments
778# necessary to single-step it at that address.
779#
780# REGS holds the state the thread's registers will have before
781# executing the copied instruction; the PC in REGS will refer to FROM,
782# not the copy at TO. The caller should update it to point at TO later.
783#
784# Return a pointer to data of the architecture's choice to be passed
785# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
786# the instruction's effects have been completely simulated, with the
787# resulting state written back to REGS.
788#
789# For a general explanation of displaced stepping and how GDB uses it,
790# see the comments in infrun.c.
791#
792# The TO area is only guaranteed to have space for
793# gdbarch_max_insn_length (arch) bytes, so this function must not
794# write more bytes than that to that area.
795#
796# If you do not provide this function, GDB assumes that the
797# architecture does not support displaced stepping.
798#
7f03bd92
PA
799# If the instruction cannot execute out of line, return NULL. The
800# core falls back to stepping past the instruction in-line instead in
801# that case.
fdb61c6c 802M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 803
99e40580
UW
804# Return true if GDB should use hardware single-stepping to execute
805# the displaced instruction identified by CLOSURE. If false,
806# GDB will simply restart execution at the displaced instruction
807# location, and it is up to the target to ensure GDB will receive
808# control again (e.g. by placing a software breakpoint instruction
809# into the displaced instruction buffer).
810#
811# The default implementation returns false on all targets that
812# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 813m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 814
237fc4c9
PA
815# Fix up the state resulting from successfully single-stepping a
816# displaced instruction, to give the result we would have gotten from
817# stepping the instruction in its original location.
818#
819# REGS is the register state resulting from single-stepping the
820# displaced instruction.
821#
822# CLOSURE is the result from the matching call to
823# gdbarch_displaced_step_copy_insn.
824#
825# If you provide gdbarch_displaced_step_copy_insn.but not this
826# function, then GDB assumes that no fixup is needed after
827# single-stepping the instruction.
828#
829# For a general explanation of displaced stepping and how GDB uses it,
830# see the comments in infrun.c.
ea480a30 831M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 832
237fc4c9
PA
833# Return the address of an appropriate place to put displaced
834# instructions while we step over them. There need only be one such
835# place, since we're only stepping one thread over a breakpoint at a
836# time.
837#
838# For a general explanation of displaced stepping and how GDB uses it,
839# see the comments in infrun.c.
ea480a30 840m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 841
dde08ee1
PA
842# Relocate an instruction to execute at a different address. OLDLOC
843# is the address in the inferior memory where the instruction to
844# relocate is currently at. On input, TO points to the destination
845# where we want the instruction to be copied (and possibly adjusted)
846# to. On output, it points to one past the end of the resulting
847# instruction(s). The effect of executing the instruction at TO shall
848# be the same as if executing it at FROM. For example, call
849# instructions that implicitly push the return address on the stack
850# should be adjusted to return to the instruction after OLDLOC;
851# relative branches, and other PC-relative instructions need the
852# offset adjusted; etc.
ea480a30 853M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 854
1c772458 855# Refresh overlay mapped state for section OSECT.
ea480a30 856F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 857
ea480a30 858M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
859
860# Handle special encoding of static variables in stabs debug info.
ea480a30 861F;const char *;static_transform_name;const char *name;name
203c3895 862# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 863v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 864
0508c3ec
HZ
865# Parse the instruction at ADDR storing in the record execution log
866# the registers REGCACHE and memory ranges that will be affected when
867# the instruction executes, along with their current values.
868# Return -1 if something goes wrong, 0 otherwise.
ea480a30 869M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 870
3846b520
HZ
871# Save process state after a signal.
872# Return -1 if something goes wrong, 0 otherwise.
ea480a30 873M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 874
22203bbf 875# Signal translation: translate inferior's signal (target's) number
86b49880
PA
876# into GDB's representation. The implementation of this method must
877# be host independent. IOW, don't rely on symbols of the NAT_FILE
878# header (the nm-*.h files), the host <signal.h> header, or similar
879# headers. This is mainly used when cross-debugging core files ---
880# "Live" targets hide the translation behind the target interface
1f8cf220 881# (target_wait, target_resume, etc.).
ea480a30 882M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 883
eb14d406
SDJ
884# Signal translation: translate the GDB's internal signal number into
885# the inferior's signal (target's) representation. The implementation
886# of this method must be host independent. IOW, don't rely on symbols
887# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
888# header, or similar headers.
889# Return the target signal number if found, or -1 if the GDB internal
890# signal number is invalid.
ea480a30 891M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 892
4aa995e1
PA
893# Extra signal info inspection.
894#
895# Return a type suitable to inspect extra signal information.
ea480a30 896M;struct type *;get_siginfo_type;void;
4aa995e1 897
60c5725c 898# Record architecture-specific information from the symbol table.
ea480a30 899M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 900
a96d9b2e
SDJ
901# Function for the 'catch syscall' feature.
902
903# Get architecture-specific system calls information from registers.
00431a78 904M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 905
458c8db8 906# The filename of the XML syscall for this architecture.
ea480a30 907v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
908
909# Information about system calls from this architecture
ea480a30 910v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 911
55aa24fb
SDJ
912# SystemTap related fields and functions.
913
05c0465e
SDJ
914# A NULL-terminated array of prefixes used to mark an integer constant
915# on the architecture's assembly.
55aa24fb
SDJ
916# For example, on x86 integer constants are written as:
917#
918# \$10 ;; integer constant 10
919#
920# in this case, this prefix would be the character \`\$\'.
ea480a30 921v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 922
05c0465e
SDJ
923# A NULL-terminated array of suffixes used to mark an integer constant
924# on the architecture's assembly.
ea480a30 925v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 926
05c0465e
SDJ
927# A NULL-terminated array of prefixes used to mark a register name on
928# the architecture's assembly.
55aa24fb
SDJ
929# For example, on x86 the register name is written as:
930#
931# \%eax ;; register eax
932#
933# in this case, this prefix would be the character \`\%\'.
ea480a30 934v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 935
05c0465e
SDJ
936# A NULL-terminated array of suffixes used to mark a register name on
937# the architecture's assembly.
ea480a30 938v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 939
05c0465e
SDJ
940# A NULL-terminated array of prefixes used to mark a register
941# indirection on the architecture's assembly.
55aa24fb
SDJ
942# For example, on x86 the register indirection is written as:
943#
944# \(\%eax\) ;; indirecting eax
945#
946# in this case, this prefix would be the charater \`\(\'.
947#
948# Please note that we use the indirection prefix also for register
949# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 950v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 951
05c0465e
SDJ
952# A NULL-terminated array of suffixes used to mark a register
953# indirection on the architecture's assembly.
55aa24fb
SDJ
954# For example, on x86 the register indirection is written as:
955#
956# \(\%eax\) ;; indirecting eax
957#
958# in this case, this prefix would be the charater \`\)\'.
959#
960# Please note that we use the indirection suffix also for register
961# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 962v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 963
05c0465e 964# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
965#
966# For example, on PPC a register is represented by a number in the assembly
967# language (e.g., \`10\' is the 10th general-purpose register). However,
968# inside GDB this same register has an \`r\' appended to its name, so the 10th
969# register would be represented as \`r10\' internally.
ea480a30 970v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
971
972# Suffix used to name a register using GDB's nomenclature.
ea480a30 973v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
974
975# Check if S is a single operand.
976#
977# Single operands can be:
978# \- Literal integers, e.g. \`\$10\' on x86
979# \- Register access, e.g. \`\%eax\' on x86
980# \- Register indirection, e.g. \`\(\%eax\)\' on x86
981# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
982#
983# This function should check for these patterns on the string
984# and return 1 if some were found, or zero otherwise. Please try to match
985# as much info as you can from the string, i.e., if you have to match
986# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 987M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
988
989# Function used to handle a "special case" in the parser.
990#
991# A "special case" is considered to be an unknown token, i.e., a token
992# that the parser does not know how to parse. A good example of special
993# case would be ARM's register displacement syntax:
994#
995# [R0, #4] ;; displacing R0 by 4
996#
997# Since the parser assumes that a register displacement is of the form:
998#
999# <number> <indirection_prefix> <register_name> <indirection_suffix>
1000#
1001# it means that it will not be able to recognize and parse this odd syntax.
1002# Therefore, we should add a special case function that will handle this token.
1003#
1004# This function should generate the proper expression form of the expression
1005# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1006# and so on). It should also return 1 if the parsing was successful, or zero
1007# if the token was not recognized as a special token (in this case, returning
1008# zero means that the special parser is deferring the parsing to the generic
1009# parser), and should advance the buffer pointer (p->arg).
ea480a30 1010M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1011
7d7571f0
SDJ
1012# Perform arch-dependent adjustments to a register name.
1013#
1014# In very specific situations, it may be necessary for the register
1015# name present in a SystemTap probe's argument to be handled in a
1016# special way. For example, on i386, GCC may over-optimize the
1017# register allocation and use smaller registers than necessary. In
1018# such cases, the client that is reading and evaluating the SystemTap
1019# probe (ourselves) will need to actually fetch values from the wider
1020# version of the register in question.
1021#
1022# To illustrate the example, consider the following probe argument
1023# (i386):
1024#
1025# 4@%ax
1026#
1027# This argument says that its value can be found at the %ax register,
1028# which is a 16-bit register. However, the argument's prefix says
1029# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1030# this case, GDB should actually fetch the probe's value from register
1031# %eax, not %ax. In this scenario, this function would actually
1032# replace the register name from %ax to %eax.
1033#
1034# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1035M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1036
8b367e17
JM
1037# DTrace related functions.
1038
1039# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1040# NARG must be >= 0.
37eedb39 1041M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1042
1043# True if the given ADDR does not contain the instruction sequence
1044# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1045M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1046
1047# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1048M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1049
1050# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1051M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1052
50c71eaf
PA
1053# True if the list of shared libraries is one and only for all
1054# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1055# This usually means that all processes, although may or may not share
1056# an address space, will see the same set of symbols at the same
1057# addresses.
ea480a30 1058v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1059
1060# On some targets, even though each inferior has its own private
1061# address space, the debug interface takes care of making breakpoints
1062# visible to all address spaces automatically. For such cases,
1063# this property should be set to true.
ea480a30 1064v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1065
1066# True if inferiors share an address space (e.g., uClinux).
ea480a30 1067m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1068
1069# True if a fast tracepoint can be set at an address.
281d762b 1070m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1071
5f034a78
MK
1072# Guess register state based on tracepoint location. Used for tracepoints
1073# where no registers have been collected, but there's only one location,
1074# allowing us to guess the PC value, and perhaps some other registers.
1075# On entry, regcache has all registers marked as unavailable.
ea480a30 1076m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1077
f870a310 1078# Return the "auto" target charset.
ea480a30 1079f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1080# Return the "auto" target wide charset.
ea480a30 1081f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1082
1083# If non-empty, this is a file extension that will be opened in place
1084# of the file extension reported by the shared library list.
1085#
1086# This is most useful for toolchains that use a post-linker tool,
1087# where the names of the files run on the target differ in extension
1088# compared to the names of the files GDB should load for debug info.
ea480a30 1089v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1090
1091# If true, the target OS has DOS-based file system semantics. That
1092# is, absolute paths include a drive name, and the backslash is
1093# considered a directory separator.
ea480a30 1094v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1095
1096# Generate bytecodes to collect the return address in a frame.
1097# Since the bytecodes run on the target, possibly with GDB not even
1098# connected, the full unwinding machinery is not available, and
1099# typically this function will issue bytecodes for one or more likely
1100# places that the return address may be found.
ea480a30 1101m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1102
3030c96e 1103# Implement the "info proc" command.
ea480a30 1104M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1105
451b7c33
TT
1106# Implement the "info proc" command for core files. Noe that there
1107# are two "info_proc"-like methods on gdbarch -- one for core files,
1108# one for live targets.
ea480a30 1109M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1110
19630284
JB
1111# Iterate over all objfiles in the order that makes the most sense
1112# for the architecture to make global symbol searches.
1113#
1114# CB is a callback function where OBJFILE is the objfile to be searched,
1115# and CB_DATA a pointer to user-defined data (the same data that is passed
1116# when calling this gdbarch method). The iteration stops if this function
1117# returns nonzero.
1118#
1119# CB_DATA is a pointer to some user-defined data to be passed to
1120# the callback.
1121#
1122# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1123# inspected when the symbol search was requested.
ea480a30 1124m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1125
7e35103a 1126# Ravenscar arch-dependent ops.
ea480a30 1127v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1128
1129# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1130m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1131
1132# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1133m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1134
1135# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1136m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1137
5133a315
LM
1138# Return true if there's a program/permanent breakpoint planted in
1139# memory at ADDRESS, return false otherwise.
1140m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1141
27a48a92
MK
1142# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1143# Return 0 if *READPTR is already at the end of the buffer.
1144# Return -1 if there is insufficient buffer for a whole entry.
1145# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1146M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1147
2faa3447
JB
1148# Print the description of a single auxv entry described by TYPE and VAL
1149# to FILE.
ea480a30 1150m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1151
3437254d
PA
1152# Find the address range of the current inferior's vsyscall/vDSO, and
1153# write it to *RANGE. If the vsyscall's length can't be determined, a
1154# range with zero length is returned. Returns true if the vsyscall is
1155# found, false otherwise.
ea480a30 1156m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1157
1158# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1159# PROT has GDB_MMAP_PROT_* bitmask format.
1160# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1161f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1162
7f361056
JK
1163# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1164# Print a warning if it is not possible.
ea480a30 1165f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1166
f208eee0
JK
1167# Return string (caller has to use xfree for it) with options for GCC
1168# to produce code for this target, typically "-m64", "-m32" or "-m31".
1169# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1170# they can override it.
1171m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1172
1173# Return a regular expression that matches names used by this
1174# architecture in GNU configury triplets. The result is statically
1175# allocated and must not be freed. The default implementation simply
1176# returns the BFD architecture name, which is correct in nearly every
1177# case.
ea480a30 1178m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1179
1180# Return the size in 8-bit bytes of an addressable memory unit on this
1181# architecture. This corresponds to the number of 8-bit bytes associated to
1182# each address in memory.
ea480a30 1183m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1184
65b48a81 1185# Functions for allowing a target to modify its disassembler options.
471b9d15 1186v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1187v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1188v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1189
5561fc30
AB
1190# Type alignment override method. Return the architecture specific
1191# alignment required for TYPE. If there is no special handling
1192# required for TYPE then return the value 0, GDB will then apply the
1193# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1194m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1195
aa7ca1bb
AH
1196# Return a string containing any flags for the given PC in the given FRAME.
1197f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1198
104c1213 1199EOF
104c1213
JM
1200}
1201
0b8f9e4d
AC
1202#
1203# The .log file
1204#
1205exec > new-gdbarch.log
34620563 1206function_list | while do_read
0b8f9e4d
AC
1207do
1208 cat <<EOF
2f9b146e 1209${class} ${returntype} ${function} ($formal)
104c1213 1210EOF
3d9a5942
AC
1211 for r in ${read}
1212 do
a6fc5ffc 1213 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1214 done
f0d4cc9e 1215 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1216 then
66d659b1 1217 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1218 kill $$
1219 exit 1
1220 fi
759cea5e 1221 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1222 then
1223 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1224 kill $$
1225 exit 1
1226 fi
a72293e2
AC
1227 if class_is_multiarch_p
1228 then
1229 if class_is_predicate_p ; then :
1230 elif test "x${predefault}" = "x"
1231 then
2f9b146e 1232 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1233 kill $$
1234 exit 1
1235 fi
1236 fi
3d9a5942 1237 echo ""
0b8f9e4d
AC
1238done
1239
1240exec 1>&2
1241compare_new gdbarch.log
1242
104c1213
JM
1243
1244copyright ()
1245{
1246cat <<EOF
c4bfde41
JK
1247/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1248/* vi:set ro: */
59233f88 1249
104c1213 1250/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1251
e5d78223 1252 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1253
1254 This file is part of GDB.
1255
1256 This program is free software; you can redistribute it and/or modify
1257 it under the terms of the GNU General Public License as published by
50efebf8 1258 the Free Software Foundation; either version 3 of the License, or
104c1213 1259 (at your option) any later version.
618f726f 1260
104c1213
JM
1261 This program is distributed in the hope that it will be useful,
1262 but WITHOUT ANY WARRANTY; without even the implied warranty of
1263 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1264 GNU General Public License for more details.
618f726f 1265
104c1213 1266 You should have received a copy of the GNU General Public License
50efebf8 1267 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1268
104c1213
JM
1269/* This file was created with the aid of \`\`gdbarch.sh''.
1270
52204a0b 1271 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1272 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1273 against the existing \`\`gdbarch.[hc]''. Any differences found
1274 being reported.
1275
1276 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1277 changes into that script. Conversely, when making sweeping changes
104c1213 1278 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1279 easier. */
104c1213
JM
1280
1281EOF
1282}
1283
1284#
1285# The .h file
1286#
1287
1288exec > new-gdbarch.h
1289copyright
1290cat <<EOF
1291#ifndef GDBARCH_H
1292#define GDBARCH_H
1293
a0ff9e1a 1294#include <vector>
eb7a547a 1295#include "frame.h"
65b48a81 1296#include "dis-asm.h"
284a0e3c 1297#include "gdb_obstack.h"
fdb61c6c 1298#include "infrun.h"
fe4b2ee6 1299#include "osabi.h"
eb7a547a 1300
da3331ec
AC
1301struct floatformat;
1302struct ui_file;
104c1213 1303struct value;
b6af0555 1304struct objfile;
1c772458 1305struct obj_section;
a2cf933a 1306struct minimal_symbol;
049ee0e4 1307struct regcache;
b59ff9d5 1308struct reggroup;
6ce6d90f 1309struct regset;
a89aa300 1310struct disassemble_info;
e2d0e7eb 1311struct target_ops;
030f20e1 1312struct obstack;
8181d85f 1313struct bp_target_info;
424163ea 1314struct target_desc;
3e29f34a 1315struct symbol;
a96d9b2e 1316struct syscall;
175ff332 1317struct agent_expr;
6710bf39 1318struct axs_value;
55aa24fb 1319struct stap_parse_info;
37eedb39 1320struct expr_builder;
7e35103a 1321struct ravenscar_arch_ops;
3437254d 1322struct mem_range;
458c8db8 1323struct syscalls_info;
4dfc5dbc 1324struct thread_info;
012b3a21 1325struct ui_out;
104c1213 1326
8a526fa6
PA
1327#include "regcache.h"
1328
6ecd4729
PA
1329/* The architecture associated with the inferior through the
1330 connection to the target.
1331
1332 The architecture vector provides some information that is really a
1333 property of the inferior, accessed through a particular target:
1334 ptrace operations; the layout of certain RSP packets; the solib_ops
1335 vector; etc. To differentiate architecture accesses to
1336 per-inferior/target properties from
1337 per-thread/per-frame/per-objfile properties, accesses to
1338 per-inferior/target properties should be made through this
1339 gdbarch. */
1340
1341/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1342extern struct gdbarch *target_gdbarch (void);
6ecd4729 1343
19630284
JB
1344/* Callback type for the 'iterate_over_objfiles_in_search_order'
1345 gdbarch method. */
1346
1347typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1348 (struct objfile *objfile, void *cb_data);
5aa82d05 1349
1528345d
AA
1350/* Callback type for regset section iterators. The callback usually
1351 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1352 pass a buffer - for collects this buffer will need to be created using
1353 COLLECT_SIZE, for supply the existing buffer being read from should
1354 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1355 is used for diagnostic messages. CB_DATA should have been passed
1356 unchanged through the iterator. */
1528345d 1357
5aa82d05 1358typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1359 (const char *sect_name, int supply_size, int collect_size,
1360 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1361
1362/* For a function call, does the function return a value using a
1363 normal value return or a structure return - passing a hidden
1364 argument pointing to storage. For the latter, there are two
1365 cases: language-mandated structure return and target ABI
1366 structure return. */
1367
1368enum function_call_return_method
1369{
1370 /* Standard value return. */
1371 return_method_normal = 0,
1372
1373 /* Language ABI structure return. This is handled
1374 by passing the return location as the first parameter to
1375 the function, even preceding "this". */
1376 return_method_hidden_param,
1377
1378 /* Target ABI struct return. This is target-specific; for instance,
1379 on ia64 the first argument is passed in out0 but the hidden
1380 structure return pointer would normally be passed in r8. */
1381 return_method_struct,
1382};
1383
104c1213
JM
1384EOF
1385
1386# function typedef's
3d9a5942
AC
1387printf "\n"
1388printf "\n"
0963b4bd 1389printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1390function_list | while do_read
104c1213 1391do
2ada493a
AC
1392 if class_is_info_p
1393 then
3d9a5942 1394 printf "\n"
8d113d13
SM
1395 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1396 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1397 fi
104c1213
JM
1398done
1399
1400# function typedef's
3d9a5942
AC
1401printf "\n"
1402printf "\n"
0963b4bd 1403printf "/* The following are initialized by the target dependent code. */\n"
34620563 1404function_list | while do_read
104c1213 1405do
72e74a21 1406 if [ -n "${comment}" ]
34620563
AC
1407 then
1408 echo "${comment}" | sed \
1409 -e '2 s,#,/*,' \
1410 -e '3,$ s,#, ,' \
1411 -e '$ s,$, */,'
1412 fi
412d5987
AC
1413
1414 if class_is_predicate_p
2ada493a 1415 then
412d5987 1416 printf "\n"
8d113d13 1417 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1418 fi
2ada493a
AC
1419 if class_is_variable_p
1420 then
3d9a5942 1421 printf "\n"
8d113d13
SM
1422 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1423 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1424 fi
1425 if class_is_function_p
1426 then
3d9a5942 1427 printf "\n"
72e74a21 1428 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1429 then
8d113d13 1430 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1431 elif class_is_multiarch_p
1432 then
8d113d13 1433 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1434 else
8d113d13 1435 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1436 fi
72e74a21 1437 if [ "x${formal}" = "xvoid" ]
104c1213 1438 then
8d113d13 1439 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1440 else
8d113d13 1441 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1442 fi
8d113d13 1443 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1444 fi
104c1213
JM
1445done
1446
1447# close it off
1448cat <<EOF
1449
1450extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1451
1452
1453/* Mechanism for co-ordinating the selection of a specific
1454 architecture.
1455
1456 GDB targets (*-tdep.c) can register an interest in a specific
1457 architecture. Other GDB components can register a need to maintain
1458 per-architecture data.
1459
1460 The mechanisms below ensures that there is only a loose connection
1461 between the set-architecture command and the various GDB
0fa6923a 1462 components. Each component can independently register their need
104c1213
JM
1463 to maintain architecture specific data with gdbarch.
1464
1465 Pragmatics:
1466
1467 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1468 didn't scale.
1469
1470 The more traditional mega-struct containing architecture specific
1471 data for all the various GDB components was also considered. Since
0fa6923a 1472 GDB is built from a variable number of (fairly independent)
104c1213 1473 components it was determined that the global aproach was not
0963b4bd 1474 applicable. */
104c1213
JM
1475
1476
1477/* Register a new architectural family with GDB.
1478
1479 Register support for the specified ARCHITECTURE with GDB. When
1480 gdbarch determines that the specified architecture has been
1481 selected, the corresponding INIT function is called.
1482
1483 --
1484
1485 The INIT function takes two parameters: INFO which contains the
1486 information available to gdbarch about the (possibly new)
1487 architecture; ARCHES which is a list of the previously created
1488 \`\`struct gdbarch'' for this architecture.
1489
0f79675b 1490 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1491 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1492
1493 The ARCHES parameter is a linked list (sorted most recently used)
1494 of all the previously created architures for this architecture
1495 family. The (possibly NULL) ARCHES->gdbarch can used to access
1496 values from the previously selected architecture for this
59837fe0 1497 architecture family.
104c1213
JM
1498
1499 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1500 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1501 gdbarch'' from the ARCHES list - indicating that the new
1502 architecture is just a synonym for an earlier architecture (see
1503 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1504 - that describes the selected architecture (see gdbarch_alloc()).
1505
1506 The DUMP_TDEP function shall print out all target specific values.
1507 Care should be taken to ensure that the function works in both the
0963b4bd 1508 multi-arch and non- multi-arch cases. */
104c1213
JM
1509
1510struct gdbarch_list
1511{
1512 struct gdbarch *gdbarch;
1513 struct gdbarch_list *next;
1514};
1515
1516struct gdbarch_info
1517{
0963b4bd 1518 /* Use default: NULL (ZERO). */
104c1213
JM
1519 const struct bfd_arch_info *bfd_arch_info;
1520
428721aa 1521 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1522 enum bfd_endian byte_order;
104c1213 1523
94123b4f 1524 enum bfd_endian byte_order_for_code;
9d4fde75 1525
0963b4bd 1526 /* Use default: NULL (ZERO). */
104c1213
JM
1527 bfd *abfd;
1528
0963b4bd 1529 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1530 union
1531 {
1532 /* Architecture-specific information. The generic form for targets
1533 that have extra requirements. */
1534 struct gdbarch_tdep_info *tdep_info;
1535
1536 /* Architecture-specific target description data. Numerous targets
1537 need only this, so give them an easy way to hold it. */
1538 struct tdesc_arch_data *tdesc_data;
1539
1540 /* SPU file system ID. This is a single integer, so using the
1541 generic form would only complicate code. Other targets may
1542 reuse this member if suitable. */
1543 int *id;
1544 };
4be87837
DJ
1545
1546 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1547 enum gdb_osabi osabi;
424163ea
DJ
1548
1549 /* Use default: NULL (ZERO). */
1550 const struct target_desc *target_desc;
104c1213
JM
1551};
1552
1553typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1554typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1555
4b9b3959 1556/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1557extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1558
4b9b3959
AC
1559extern void gdbarch_register (enum bfd_architecture architecture,
1560 gdbarch_init_ftype *,
1561 gdbarch_dump_tdep_ftype *);
1562
104c1213 1563
b4a20239
AC
1564/* Return a freshly allocated, NULL terminated, array of the valid
1565 architecture names. Since architectures are registered during the
1566 _initialize phase this function only returns useful information
0963b4bd 1567 once initialization has been completed. */
b4a20239
AC
1568
1569extern const char **gdbarch_printable_names (void);
1570
1571
104c1213 1572/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1573 matches the information provided by INFO. */
104c1213 1574
424163ea 1575extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1576
1577
1578/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1579 basic initialization using values obtained from the INFO and TDEP
104c1213 1580 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1581 initialization of the object. */
104c1213
JM
1582
1583extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1584
1585
4b9b3959
AC
1586/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1587 It is assumed that the caller freeds the \`\`struct
0963b4bd 1588 gdbarch_tdep''. */
4b9b3959 1589
058f20d5
JB
1590extern void gdbarch_free (struct gdbarch *);
1591
284a0e3c
SM
1592/* Get the obstack owned by ARCH. */
1593
1594extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1595
aebd7893
AC
1596/* Helper function. Allocate memory from the \`\`struct gdbarch''
1597 obstack. The memory is freed when the corresponding architecture
1598 is also freed. */
1599
284a0e3c
SM
1600#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1601 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1602
1603#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1604 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1605
6c214e7c
PP
1606/* Duplicate STRING, returning an equivalent string that's allocated on the
1607 obstack associated with GDBARCH. The string is freed when the corresponding
1608 architecture is also freed. */
1609
1610extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1611
0963b4bd 1612/* Helper function. Force an update of the current architecture.
104c1213 1613
b732d07d
AC
1614 The actual architecture selected is determined by INFO, \`\`(gdb) set
1615 architecture'' et.al., the existing architecture and BFD's default
1616 architecture. INFO should be initialized to zero and then selected
1617 fields should be updated.
104c1213 1618
0963b4bd 1619 Returns non-zero if the update succeeds. */
16f33e29
AC
1620
1621extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1622
1623
ebdba546
AC
1624/* Helper function. Find an architecture matching info.
1625
1626 INFO should be initialized using gdbarch_info_init, relevant fields
1627 set, and then finished using gdbarch_info_fill.
1628
1629 Returns the corresponding architecture, or NULL if no matching
59837fe0 1630 architecture was found. */
ebdba546
AC
1631
1632extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1633
1634
aff68abb 1635/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1636
aff68abb 1637extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1638
104c1213
JM
1639
1640/* Register per-architecture data-pointer.
1641
1642 Reserve space for a per-architecture data-pointer. An identifier
1643 for the reserved data-pointer is returned. That identifer should
95160752 1644 be saved in a local static variable.
104c1213 1645
fcc1c85c
AC
1646 Memory for the per-architecture data shall be allocated using
1647 gdbarch_obstack_zalloc. That memory will be deleted when the
1648 corresponding architecture object is deleted.
104c1213 1649
95160752
AC
1650 When a previously created architecture is re-selected, the
1651 per-architecture data-pointer for that previous architecture is
76860b5f 1652 restored. INIT() is not re-called.
104c1213
JM
1653
1654 Multiple registrarants for any architecture are allowed (and
1655 strongly encouraged). */
1656
95160752 1657struct gdbarch_data;
104c1213 1658
030f20e1
AC
1659typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1660extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1661typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1662extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1663extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1664 struct gdbarch_data *data,
1665 void *pointer);
104c1213 1666
451fbdda 1667extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1668
1669
0fa6923a 1670/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1671 byte-order, ...) using information found in the BFD. */
104c1213
JM
1672
1673extern void set_gdbarch_from_file (bfd *);
1674
1675
e514a9d6
JM
1676/* Initialize the current architecture to the "first" one we find on
1677 our list. */
1678
1679extern void initialize_current_architecture (void);
1680
104c1213 1681/* gdbarch trace variable */
ccce17b0 1682extern unsigned int gdbarch_debug;
104c1213 1683
4b9b3959 1684extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1685
f6efe3f8
SM
1686/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1687
1688static inline int
1689gdbarch_num_cooked_regs (gdbarch *arch)
1690{
1691 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1692}
1693
104c1213
JM
1694#endif
1695EOF
1696exec 1>&2
1697#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1698compare_new gdbarch.h
104c1213
JM
1699
1700
1701#
1702# C file
1703#
1704
1705exec > new-gdbarch.c
1706copyright
1707cat <<EOF
1708
1709#include "defs.h"
7355ddba 1710#include "arch-utils.h"
104c1213 1711
104c1213 1712#include "gdbcmd.h"
faaf634c 1713#include "inferior.h"
104c1213
JM
1714#include "symcat.h"
1715
f0d4cc9e 1716#include "floatformat.h"
b59ff9d5 1717#include "reggroups.h"
4be87837 1718#include "osabi.h"
aebd7893 1719#include "gdb_obstack.h"
0bee6dd4 1720#include "observable.h"
a3ecef73 1721#include "regcache.h"
19630284 1722#include "objfiles.h"
2faa3447 1723#include "auxv.h"
8bcb5208
AB
1724#include "frame-unwind.h"
1725#include "dummy-frame.h"
95160752 1726
104c1213
JM
1727/* Static function declarations */
1728
b3cc3077 1729static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1730
104c1213
JM
1731/* Non-zero if we want to trace architecture code. */
1732
1733#ifndef GDBARCH_DEBUG
1734#define GDBARCH_DEBUG 0
1735#endif
ccce17b0 1736unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1737static void
1738show_gdbarch_debug (struct ui_file *file, int from_tty,
1739 struct cmd_list_element *c, const char *value)
1740{
1741 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1742}
104c1213 1743
456fcf94 1744static const char *
8da61cc4 1745pformat (const struct floatformat **format)
456fcf94
AC
1746{
1747 if (format == NULL)
1748 return "(null)";
1749 else
8da61cc4
DJ
1750 /* Just print out one of them - this is only for diagnostics. */
1751 return format[0]->name;
456fcf94
AC
1752}
1753
08105857
PA
1754static const char *
1755pstring (const char *string)
1756{
1757 if (string == NULL)
1758 return "(null)";
1759 return string;
05c0465e
SDJ
1760}
1761
a121b7c1 1762static const char *
f7bb4e3a
PB
1763pstring_ptr (char **string)
1764{
1765 if (string == NULL || *string == NULL)
1766 return "(null)";
1767 return *string;
1768}
1769
05c0465e
SDJ
1770/* Helper function to print a list of strings, represented as "const
1771 char *const *". The list is printed comma-separated. */
1772
a121b7c1 1773static const char *
05c0465e
SDJ
1774pstring_list (const char *const *list)
1775{
1776 static char ret[100];
1777 const char *const *p;
1778 size_t offset = 0;
1779
1780 if (list == NULL)
1781 return "(null)";
1782
1783 ret[0] = '\0';
1784 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1785 {
1786 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1787 offset += 2 + s;
1788 }
1789
1790 if (offset > 0)
1791 {
1792 gdb_assert (offset - 2 < sizeof (ret));
1793 ret[offset - 2] = '\0';
1794 }
1795
1796 return ret;
08105857
PA
1797}
1798
104c1213
JM
1799EOF
1800
1801# gdbarch open the gdbarch object
3d9a5942 1802printf "\n"
0963b4bd 1803printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1804printf "\n"
1805printf "struct gdbarch\n"
1806printf "{\n"
76860b5f
AC
1807printf " /* Has this architecture been fully initialized? */\n"
1808printf " int initialized_p;\n"
aebd7893
AC
1809printf "\n"
1810printf " /* An obstack bound to the lifetime of the architecture. */\n"
1811printf " struct obstack *obstack;\n"
1812printf "\n"
0963b4bd 1813printf " /* basic architectural information. */\n"
34620563 1814function_list | while do_read
104c1213 1815do
2ada493a
AC
1816 if class_is_info_p
1817 then
8d113d13 1818 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1819 fi
104c1213 1820done
3d9a5942 1821printf "\n"
0963b4bd 1822printf " /* target specific vector. */\n"
3d9a5942
AC
1823printf " struct gdbarch_tdep *tdep;\n"
1824printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1825printf "\n"
0963b4bd 1826printf " /* per-architecture data-pointers. */\n"
95160752 1827printf " unsigned nr_data;\n"
3d9a5942
AC
1828printf " void **data;\n"
1829printf "\n"
104c1213
JM
1830cat <<EOF
1831 /* Multi-arch values.
1832
1833 When extending this structure you must:
1834
1835 Add the field below.
1836
1837 Declare set/get functions and define the corresponding
1838 macro in gdbarch.h.
1839
1840 gdbarch_alloc(): If zero/NULL is not a suitable default,
1841 initialize the new field.
1842
1843 verify_gdbarch(): Confirm that the target updated the field
1844 correctly.
1845
7e73cedf 1846 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1847 field is dumped out
1848
104c1213
JM
1849 get_gdbarch(): Implement the set/get functions (probably using
1850 the macro's as shortcuts).
1851
1852 */
1853
1854EOF
34620563 1855function_list | while do_read
104c1213 1856do
2ada493a
AC
1857 if class_is_variable_p
1858 then
8d113d13 1859 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1860 elif class_is_function_p
1861 then
8d113d13 1862 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1863 fi
104c1213 1864done
3d9a5942 1865printf "};\n"
104c1213 1866
104c1213 1867# Create a new gdbarch struct
104c1213 1868cat <<EOF
7de2341d 1869
66b43ecb 1870/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1871 \`\`struct gdbarch_info''. */
104c1213 1872EOF
3d9a5942 1873printf "\n"
104c1213
JM
1874cat <<EOF
1875struct gdbarch *
1876gdbarch_alloc (const struct gdbarch_info *info,
1877 struct gdbarch_tdep *tdep)
1878{
be7811ad 1879 struct gdbarch *gdbarch;
aebd7893
AC
1880
1881 /* Create an obstack for allocating all the per-architecture memory,
1882 then use that to allocate the architecture vector. */
70ba0933 1883 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1884 obstack_init (obstack);
8d749320 1885 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1886 memset (gdbarch, 0, sizeof (*gdbarch));
1887 gdbarch->obstack = obstack;
85de9627 1888
be7811ad 1889 alloc_gdbarch_data (gdbarch);
85de9627 1890
be7811ad 1891 gdbarch->tdep = tdep;
104c1213 1892EOF
3d9a5942 1893printf "\n"
34620563 1894function_list | while do_read
104c1213 1895do
2ada493a
AC
1896 if class_is_info_p
1897 then
8d113d13 1898 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1899 fi
104c1213 1900done
3d9a5942 1901printf "\n"
0963b4bd 1902printf " /* Force the explicit initialization of these. */\n"
34620563 1903function_list | while do_read
104c1213 1904do
2ada493a
AC
1905 if class_is_function_p || class_is_variable_p
1906 then
759cea5e 1907 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1908 then
8d113d13 1909 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1910 fi
2ada493a 1911 fi
104c1213
JM
1912done
1913cat <<EOF
1914 /* gdbarch_alloc() */
1915
be7811ad 1916 return gdbarch;
104c1213
JM
1917}
1918EOF
1919
058f20d5 1920# Free a gdbarch struct.
3d9a5942
AC
1921printf "\n"
1922printf "\n"
058f20d5 1923cat <<EOF
aebd7893 1924
284a0e3c 1925obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1926{
284a0e3c 1927 return arch->obstack;
aebd7893
AC
1928}
1929
6c214e7c
PP
1930/* See gdbarch.h. */
1931
1932char *
1933gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1934{
1935 return obstack_strdup (arch->obstack, string);
1936}
1937
aebd7893 1938
058f20d5
JB
1939/* Free a gdbarch struct. This should never happen in normal
1940 operation --- once you've created a gdbarch, you keep it around.
1941 However, if an architecture's init function encounters an error
1942 building the structure, it may need to clean up a partially
1943 constructed gdbarch. */
4b9b3959 1944
058f20d5
JB
1945void
1946gdbarch_free (struct gdbarch *arch)
1947{
aebd7893 1948 struct obstack *obstack;
05c547f6 1949
95160752 1950 gdb_assert (arch != NULL);
aebd7893
AC
1951 gdb_assert (!arch->initialized_p);
1952 obstack = arch->obstack;
1953 obstack_free (obstack, 0); /* Includes the ARCH. */
1954 xfree (obstack);
058f20d5
JB
1955}
1956EOF
1957
104c1213 1958# verify a new architecture
104c1213 1959cat <<EOF
db446970
AC
1960
1961
1962/* Ensure that all values in a GDBARCH are reasonable. */
1963
104c1213 1964static void
be7811ad 1965verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1966{
d7e74731 1967 string_file log;
05c547f6 1968
104c1213 1969 /* fundamental */
be7811ad 1970 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1971 log.puts ("\n\tbyte-order");
be7811ad 1972 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1973 log.puts ("\n\tbfd_arch_info");
0963b4bd 1974 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1975EOF
34620563 1976function_list | while do_read
104c1213 1977do
2ada493a
AC
1978 if class_is_function_p || class_is_variable_p
1979 then
72e74a21 1980 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1981 then
8d113d13 1982 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1983 elif class_is_predicate_p
1984 then
8d113d13 1985 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1986 # FIXME: See do_read for potential simplification
759cea5e 1987 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1988 then
8d113d13
SM
1989 printf " if (%s)\n" "$invalid_p"
1990 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1991 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1992 then
8d113d13
SM
1993 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1994 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1995 elif [ -n "${postdefault}" ]
f0d4cc9e 1996 then
8d113d13
SM
1997 printf " if (gdbarch->%s == 0)\n" "$function"
1998 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1999 elif [ -n "${invalid_p}" ]
104c1213 2000 then
8d113d13
SM
2001 printf " if (%s)\n" "$invalid_p"
2002 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 2003 elif [ -n "${predefault}" ]
104c1213 2004 then
8d113d13
SM
2005 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2006 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 2007 fi
2ada493a 2008 fi
104c1213
JM
2009done
2010cat <<EOF
d7e74731 2011 if (!log.empty ())
f16a1923 2012 internal_error (__FILE__, __LINE__,
85c07804 2013 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 2014 log.c_str ());
104c1213
JM
2015}
2016EOF
2017
2018# dump the structure
3d9a5942
AC
2019printf "\n"
2020printf "\n"
104c1213 2021cat <<EOF
0963b4bd 2022/* Print out the details of the current architecture. */
4b9b3959 2023
104c1213 2024void
be7811ad 2025gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2026{
b78960be 2027 const char *gdb_nm_file = "<not-defined>";
05c547f6 2028
b78960be
AC
2029#if defined (GDB_NM_FILE)
2030 gdb_nm_file = GDB_NM_FILE;
2031#endif
2032 fprintf_unfiltered (file,
2033 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2034 gdb_nm_file);
104c1213 2035EOF
ea480a30 2036function_list | sort '-t;' -k 3 | while do_read
104c1213 2037do
1e9f55d0
AC
2038 # First the predicate
2039 if class_is_predicate_p
2040 then
7996bcec 2041 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2042 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2043 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2044 fi
48f7351b 2045 # Print the corresponding value.
283354d8 2046 if class_is_function_p
4b9b3959 2047 then
7996bcec 2048 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2049 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2050 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2051 else
48f7351b 2052 # It is a variable
2f9b146e
AC
2053 case "${print}:${returntype}" in
2054 :CORE_ADDR )
0b1553bc
UW
2055 fmt="%s"
2056 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2057 ;;
2f9b146e 2058 :* )
48f7351b 2059 fmt="%s"
623d3eb1 2060 print="plongest (gdbarch->${function})"
48f7351b
AC
2061 ;;
2062 * )
2f9b146e 2063 fmt="%s"
48f7351b
AC
2064 ;;
2065 esac
3d9a5942 2066 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2067 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2068 printf " %s);\n" "$print"
2ada493a 2069 fi
104c1213 2070done
381323f4 2071cat <<EOF
be7811ad
MD
2072 if (gdbarch->dump_tdep != NULL)
2073 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2074}
2075EOF
104c1213
JM
2076
2077
2078# GET/SET
3d9a5942 2079printf "\n"
104c1213
JM
2080cat <<EOF
2081struct gdbarch_tdep *
2082gdbarch_tdep (struct gdbarch *gdbarch)
2083{
2084 if (gdbarch_debug >= 2)
3d9a5942 2085 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2086 return gdbarch->tdep;
2087}
2088EOF
3d9a5942 2089printf "\n"
34620563 2090function_list | while do_read
104c1213 2091do
2ada493a
AC
2092 if class_is_predicate_p
2093 then
3d9a5942
AC
2094 printf "\n"
2095 printf "int\n"
8d113d13 2096 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2097 printf "{\n"
8de9bdc4 2098 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2099 printf " return %s;\n" "$predicate"
3d9a5942 2100 printf "}\n"
2ada493a
AC
2101 fi
2102 if class_is_function_p
2103 then
3d9a5942 2104 printf "\n"
8d113d13 2105 printf "%s\n" "$returntype"
72e74a21 2106 if [ "x${formal}" = "xvoid" ]
104c1213 2107 then
8d113d13 2108 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2109 else
8d113d13 2110 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2111 fi
3d9a5942 2112 printf "{\n"
8de9bdc4 2113 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2114 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2115 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2116 then
2117 # Allow a call to a function with a predicate.
8d113d13 2118 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2119 fi
3d9a5942 2120 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2121 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
759cea5e 2122 if [ "x${actual}" = "x-" ] || [ "x${actual}" = "x" ]
4a5c6a1d
AC
2123 then
2124 if class_is_multiarch_p
2125 then
2126 params="gdbarch"
2127 else
2128 params=""
2129 fi
2130 else
2131 if class_is_multiarch_p
2132 then
2133 params="gdbarch, ${actual}"
2134 else
2135 params="${actual}"
2136 fi
2137 fi
72e74a21 2138 if [ "x${returntype}" = "xvoid" ]
104c1213 2139 then
8d113d13 2140 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2141 else
8d113d13 2142 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2143 fi
3d9a5942
AC
2144 printf "}\n"
2145 printf "\n"
2146 printf "void\n"
8d113d13 2147 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2148 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2149 printf "{\n"
8d113d13 2150 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2151 printf "}\n"
2ada493a
AC
2152 elif class_is_variable_p
2153 then
3d9a5942 2154 printf "\n"
8d113d13
SM
2155 printf "%s\n" "$returntype"
2156 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2157 printf "{\n"
8de9bdc4 2158 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2159 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2160 then
8d113d13 2161 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2162 elif [ -n "${invalid_p}" ]
104c1213 2163 then
956ac328 2164 printf " /* Check variable is valid. */\n"
8d113d13 2165 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2166 elif [ -n "${predefault}" ]
104c1213 2167 then
956ac328 2168 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2169 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2170 fi
3d9a5942 2171 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2172 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2173 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2174 printf "}\n"
2175 printf "\n"
2176 printf "void\n"
8d113d13 2177 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2178 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2179 printf "{\n"
8d113d13 2180 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2181 printf "}\n"
2ada493a
AC
2182 elif class_is_info_p
2183 then
3d9a5942 2184 printf "\n"
8d113d13
SM
2185 printf "%s\n" "$returntype"
2186 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2187 printf "{\n"
8de9bdc4 2188 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2189 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2190 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2191 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2192 printf "}\n"
2ada493a 2193 fi
104c1213
JM
2194done
2195
2196# All the trailing guff
2197cat <<EOF
2198
2199
f44c642f 2200/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2201 modules. */
104c1213
JM
2202
2203struct gdbarch_data
2204{
95160752 2205 unsigned index;
76860b5f 2206 int init_p;
030f20e1
AC
2207 gdbarch_data_pre_init_ftype *pre_init;
2208 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2209};
2210
2211struct gdbarch_data_registration
2212{
104c1213
JM
2213 struct gdbarch_data *data;
2214 struct gdbarch_data_registration *next;
2215};
2216
f44c642f 2217struct gdbarch_data_registry
104c1213 2218{
95160752 2219 unsigned nr;
104c1213
JM
2220 struct gdbarch_data_registration *registrations;
2221};
2222
f44c642f 2223struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2224{
2225 0, NULL,
2226};
2227
030f20e1
AC
2228static struct gdbarch_data *
2229gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2230 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2231{
2232 struct gdbarch_data_registration **curr;
05c547f6
MS
2233
2234 /* Append the new registration. */
f44c642f 2235 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2236 (*curr) != NULL;
2237 curr = &(*curr)->next);
70ba0933 2238 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2239 (*curr)->next = NULL;
70ba0933 2240 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2241 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2242 (*curr)->data->pre_init = pre_init;
2243 (*curr)->data->post_init = post_init;
76860b5f 2244 (*curr)->data->init_p = 1;
104c1213
JM
2245 return (*curr)->data;
2246}
2247
030f20e1
AC
2248struct gdbarch_data *
2249gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2250{
2251 return gdbarch_data_register (pre_init, NULL);
2252}
2253
2254struct gdbarch_data *
2255gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2256{
2257 return gdbarch_data_register (NULL, post_init);
2258}
104c1213 2259
0963b4bd 2260/* Create/delete the gdbarch data vector. */
95160752
AC
2261
2262static void
b3cc3077 2263alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2264{
b3cc3077
JB
2265 gdb_assert (gdbarch->data == NULL);
2266 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2267 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2268}
3c875b6f 2269
76860b5f 2270/* Initialize the current value of the specified per-architecture
0963b4bd 2271 data-pointer. */
b3cc3077 2272
95160752 2273void
030f20e1
AC
2274deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2275 struct gdbarch_data *data,
2276 void *pointer)
95160752
AC
2277{
2278 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2279 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2280 gdb_assert (data->pre_init == NULL);
95160752
AC
2281 gdbarch->data[data->index] = pointer;
2282}
2283
104c1213 2284/* Return the current value of the specified per-architecture
0963b4bd 2285 data-pointer. */
104c1213
JM
2286
2287void *
451fbdda 2288gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2289{
451fbdda 2290 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2291 if (gdbarch->data[data->index] == NULL)
76860b5f 2292 {
030f20e1
AC
2293 /* The data-pointer isn't initialized, call init() to get a
2294 value. */
2295 if (data->pre_init != NULL)
2296 /* Mid architecture creation: pass just the obstack, and not
2297 the entire architecture, as that way it isn't possible for
2298 pre-init code to refer to undefined architecture
2299 fields. */
2300 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2301 else if (gdbarch->initialized_p
2302 && data->post_init != NULL)
2303 /* Post architecture creation: pass the entire architecture
2304 (as all fields are valid), but be careful to also detect
2305 recursive references. */
2306 {
2307 gdb_assert (data->init_p);
2308 data->init_p = 0;
2309 gdbarch->data[data->index] = data->post_init (gdbarch);
2310 data->init_p = 1;
2311 }
2312 else
2313 /* The architecture initialization hasn't completed - punt -
2314 hope that the caller knows what they are doing. Once
2315 deprecated_set_gdbarch_data has been initialized, this can be
2316 changed to an internal error. */
2317 return NULL;
76860b5f
AC
2318 gdb_assert (gdbarch->data[data->index] != NULL);
2319 }
451fbdda 2320 return gdbarch->data[data->index];
104c1213
JM
2321}
2322
2323
0963b4bd 2324/* Keep a registry of the architectures known by GDB. */
104c1213 2325
4b9b3959 2326struct gdbarch_registration
104c1213
JM
2327{
2328 enum bfd_architecture bfd_architecture;
2329 gdbarch_init_ftype *init;
4b9b3959 2330 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2331 struct gdbarch_list *arches;
4b9b3959 2332 struct gdbarch_registration *next;
104c1213
JM
2333};
2334
f44c642f 2335static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2336
b4a20239
AC
2337static void
2338append_name (const char ***buf, int *nr, const char *name)
2339{
1dc7a623 2340 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2341 (*buf)[*nr] = name;
2342 *nr += 1;
2343}
2344
2345const char **
2346gdbarch_printable_names (void)
2347{
7996bcec 2348 /* Accumulate a list of names based on the registed list of
0963b4bd 2349 architectures. */
7996bcec
AC
2350 int nr_arches = 0;
2351 const char **arches = NULL;
2352 struct gdbarch_registration *rego;
05c547f6 2353
7996bcec
AC
2354 for (rego = gdbarch_registry;
2355 rego != NULL;
2356 rego = rego->next)
b4a20239 2357 {
7996bcec
AC
2358 const struct bfd_arch_info *ap;
2359 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2360 if (ap == NULL)
2361 internal_error (__FILE__, __LINE__,
85c07804 2362 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2363 do
2364 {
2365 append_name (&arches, &nr_arches, ap->printable_name);
2366 ap = ap->next;
2367 }
2368 while (ap != NULL);
b4a20239 2369 }
7996bcec
AC
2370 append_name (&arches, &nr_arches, NULL);
2371 return arches;
b4a20239
AC
2372}
2373
2374
104c1213 2375void
4b9b3959
AC
2376gdbarch_register (enum bfd_architecture bfd_architecture,
2377 gdbarch_init_ftype *init,
2378 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2379{
4b9b3959 2380 struct gdbarch_registration **curr;
104c1213 2381 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2382
ec3d358c 2383 /* Check that BFD recognizes this architecture */
104c1213
JM
2384 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2385 if (bfd_arch_info == NULL)
2386 {
8e65ff28 2387 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2388 _("gdbarch: Attempt to register "
2389 "unknown architecture (%d)"),
8e65ff28 2390 bfd_architecture);
104c1213 2391 }
0963b4bd 2392 /* Check that we haven't seen this architecture before. */
f44c642f 2393 for (curr = &gdbarch_registry;
104c1213
JM
2394 (*curr) != NULL;
2395 curr = &(*curr)->next)
2396 {
2397 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2398 internal_error (__FILE__, __LINE__,
64b9b334 2399 _("gdbarch: Duplicate registration "
0963b4bd 2400 "of architecture (%s)"),
8e65ff28 2401 bfd_arch_info->printable_name);
104c1213
JM
2402 }
2403 /* log it */
2404 if (gdbarch_debug)
30737ed9 2405 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2406 bfd_arch_info->printable_name,
30737ed9 2407 host_address_to_string (init));
104c1213 2408 /* Append it */
70ba0933 2409 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2410 (*curr)->bfd_architecture = bfd_architecture;
2411 (*curr)->init = init;
4b9b3959 2412 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2413 (*curr)->arches = NULL;
2414 (*curr)->next = NULL;
4b9b3959
AC
2415}
2416
2417void
2418register_gdbarch_init (enum bfd_architecture bfd_architecture,
2419 gdbarch_init_ftype *init)
2420{
2421 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2422}
104c1213
JM
2423
2424
424163ea 2425/* Look for an architecture using gdbarch_info. */
104c1213
JM
2426
2427struct gdbarch_list *
2428gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2429 const struct gdbarch_info *info)
2430{
2431 for (; arches != NULL; arches = arches->next)
2432 {
2433 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2434 continue;
2435 if (info->byte_order != arches->gdbarch->byte_order)
2436 continue;
4be87837
DJ
2437 if (info->osabi != arches->gdbarch->osabi)
2438 continue;
424163ea
DJ
2439 if (info->target_desc != arches->gdbarch->target_desc)
2440 continue;
104c1213
JM
2441 return arches;
2442 }
2443 return NULL;
2444}
2445
2446
ebdba546 2447/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2448 architecture if needed. Return that new architecture. */
104c1213 2449
59837fe0
UW
2450struct gdbarch *
2451gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2452{
2453 struct gdbarch *new_gdbarch;
4b9b3959 2454 struct gdbarch_registration *rego;
104c1213 2455
b732d07d 2456 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2457 sources: "set ..."; INFOabfd supplied; and the global
2458 defaults. */
2459 gdbarch_info_fill (&info);
4be87837 2460
0963b4bd 2461 /* Must have found some sort of architecture. */
b732d07d 2462 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2463
2464 if (gdbarch_debug)
2465 {
2466 fprintf_unfiltered (gdb_stdlog,
59837fe0 2467 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2468 (info.bfd_arch_info != NULL
2469 ? info.bfd_arch_info->printable_name
2470 : "(null)"));
2471 fprintf_unfiltered (gdb_stdlog,
59837fe0 2472 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2473 info.byte_order,
d7449b42 2474 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2475 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2476 : "default"));
4be87837 2477 fprintf_unfiltered (gdb_stdlog,
59837fe0 2478 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2479 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2480 fprintf_unfiltered (gdb_stdlog,
59837fe0 2481 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2482 host_address_to_string (info.abfd));
104c1213 2483 fprintf_unfiltered (gdb_stdlog,
59837fe0 2484 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2485 host_address_to_string (info.tdep_info));
104c1213
JM
2486 }
2487
ebdba546 2488 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2489 for (rego = gdbarch_registry;
2490 rego != NULL;
2491 rego = rego->next)
2492 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2493 break;
2494 if (rego == NULL)
2495 {
2496 if (gdbarch_debug)
59837fe0 2497 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2498 "No matching architecture\n");
b732d07d
AC
2499 return 0;
2500 }
2501
ebdba546 2502 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2503 new_gdbarch = rego->init (info, rego->arches);
2504
ebdba546
AC
2505 /* Did the tdep code like it? No. Reject the change and revert to
2506 the old architecture. */
104c1213
JM
2507 if (new_gdbarch == NULL)
2508 {
2509 if (gdbarch_debug)
59837fe0 2510 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2511 "Target rejected architecture\n");
2512 return NULL;
104c1213
JM
2513 }
2514
ebdba546
AC
2515 /* Is this a pre-existing architecture (as determined by already
2516 being initialized)? Move it to the front of the architecture
2517 list (keeping the list sorted Most Recently Used). */
2518 if (new_gdbarch->initialized_p)
104c1213 2519 {
ebdba546 2520 struct gdbarch_list **list;
fe978cb0 2521 struct gdbarch_list *self;
104c1213 2522 if (gdbarch_debug)
59837fe0 2523 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2524 "Previous architecture %s (%s) selected\n",
2525 host_address_to_string (new_gdbarch),
104c1213 2526 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2527 /* Find the existing arch in the list. */
2528 for (list = &rego->arches;
2529 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2530 list = &(*list)->next);
2531 /* It had better be in the list of architectures. */
2532 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2533 /* Unlink SELF. */
2534 self = (*list);
2535 (*list) = self->next;
2536 /* Insert SELF at the front. */
2537 self->next = rego->arches;
2538 rego->arches = self;
ebdba546
AC
2539 /* Return it. */
2540 return new_gdbarch;
104c1213
JM
2541 }
2542
ebdba546
AC
2543 /* It's a new architecture. */
2544 if (gdbarch_debug)
59837fe0 2545 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2546 "New architecture %s (%s) selected\n",
2547 host_address_to_string (new_gdbarch),
ebdba546
AC
2548 new_gdbarch->bfd_arch_info->printable_name);
2549
2550 /* Insert the new architecture into the front of the architecture
2551 list (keep the list sorted Most Recently Used). */
0f79675b 2552 {
fe978cb0
PA
2553 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2554 self->next = rego->arches;
2555 self->gdbarch = new_gdbarch;
2556 rego->arches = self;
0f79675b 2557 }
104c1213 2558
4b9b3959
AC
2559 /* Check that the newly installed architecture is valid. Plug in
2560 any post init values. */
2561 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2562 verify_gdbarch (new_gdbarch);
ebdba546 2563 new_gdbarch->initialized_p = 1;
104c1213 2564
4b9b3959 2565 if (gdbarch_debug)
ebdba546
AC
2566 gdbarch_dump (new_gdbarch, gdb_stdlog);
2567
2568 return new_gdbarch;
2569}
2570
e487cc15 2571/* Make the specified architecture current. */
ebdba546
AC
2572
2573void
aff68abb 2574set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2575{
2576 gdb_assert (new_gdbarch != NULL);
ebdba546 2577 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2578 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2579 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2580 registers_changed ();
ebdba546 2581}
104c1213 2582
f5656ead 2583/* Return the current inferior's arch. */
6ecd4729
PA
2584
2585struct gdbarch *
f5656ead 2586target_gdbarch (void)
6ecd4729
PA
2587{
2588 return current_inferior ()->gdbarch;
2589}
2590
a1237872 2591void _initialize_gdbarch ();
104c1213 2592void
a1237872 2593_initialize_gdbarch ()
104c1213 2594{
ccce17b0 2595 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2596Set architecture debugging."), _("\\
2597Show architecture debugging."), _("\\
2598When non-zero, architecture debugging is enabled."),
2599 NULL,
920d2a44 2600 show_gdbarch_debug,
85c07804 2601 &setdebuglist, &showdebuglist);
104c1213
JM
2602}
2603EOF
2604
2605# close things off
2606exec 1>&2
2607#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2608compare_new gdbarch.c
This page took 1.814439 seconds and 4 git commands to generate.