When non-multi-arch, use predefault as the value of a pure-multi-arch
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
338d7c5c 4# Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
59233f88
AC
22compare_new ()
23{
24 file=$1
66b43ecb 25 if test ! -r ${file}
59233f88
AC
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34}
35
36
37# Format of the input table
0b8f9e4d 38read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
39
40do_read ()
41{
34620563
AC
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 50 then
34620563
AC
51 continue
52 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 53 then
34620563
AC
54 comment="${comment}
55${line}"
f0d4cc9e 56 else
3d9a5942
AC
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
34620563
AC
64 eval read ${read} <<EOF
65${line}
66EOF
67 IFS="${OFS}"
68
3d9a5942
AC
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
a72293e2
AC
79 case "${class}" in
80 m ) staticdefault="${predefault}" ;;
81 M ) staticdefault="0" ;;
82 * ) test "${staticdefault}" || staticdefault=0 ;;
83 esac
34620563
AC
84 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
85 # multi-arch defaults.
86 # test "${predefault}" || predefault=0
87 test "${fmt}" || fmt="%ld"
88 test "${print}" || print="(long) ${macro}"
89 case "${invalid_p}" in
90 0 ) valid_p=1 ;;
91 "" )
72e74a21 92 if [ -n "${predefault}" ]
34620563
AC
93 then
94 #invalid_p="gdbarch->${function} == ${predefault}"
95 valid_p="gdbarch->${function} != ${predefault}"
96 else
97 #invalid_p="gdbarch->${function} == 0"
98 valid_p="gdbarch->${function} != 0"
99 fi
100 ;;
101 * ) valid_p="!(${invalid_p})"
102 esac
103
104 # PREDEFAULT is a valid fallback definition of MEMBER when
105 # multi-arch is not enabled. This ensures that the
106 # default value, when multi-arch is the same as the
107 # default value when not multi-arch. POSTDEFAULT is
108 # always a valid definition of MEMBER as this again
109 # ensures consistency.
110
72e74a21 111 if [ -n "${postdefault}" ]
34620563
AC
112 then
113 fallbackdefault="${postdefault}"
72e74a21 114 elif [ -n "${predefault}" ]
34620563
AC
115 then
116 fallbackdefault="${predefault}"
117 else
73d3c16e 118 fallbackdefault="0"
34620563
AC
119 fi
120
121 #NOT YET: See gdbarch.log for basic verification of
122 # database
123
124 break
f0d4cc9e 125 fi
34620563 126 done
72e74a21 127 if [ -n "${class}" ]
34620563
AC
128 then
129 true
c0e8c252
AC
130 else
131 false
132 fi
133}
134
104c1213 135
f0d4cc9e
AC
136fallback_default_p ()
137{
72e74a21
JB
138 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
139 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
140}
141
142class_is_variable_p ()
143{
4a5c6a1d
AC
144 case "${class}" in
145 *v* | *V* ) true ;;
146 * ) false ;;
147 esac
f0d4cc9e
AC
148}
149
150class_is_function_p ()
151{
4a5c6a1d
AC
152 case "${class}" in
153 *f* | *F* | *m* | *M* ) true ;;
154 * ) false ;;
155 esac
156}
157
158class_is_multiarch_p ()
159{
160 case "${class}" in
161 *m* | *M* ) true ;;
162 * ) false ;;
163 esac
f0d4cc9e
AC
164}
165
166class_is_predicate_p ()
167{
4a5c6a1d
AC
168 case "${class}" in
169 *F* | *V* | *M* ) true ;;
170 * ) false ;;
171 esac
f0d4cc9e
AC
172}
173
174class_is_info_p ()
175{
4a5c6a1d
AC
176 case "${class}" in
177 *i* ) true ;;
178 * ) false ;;
179 esac
f0d4cc9e
AC
180}
181
182
cff3e48b
JM
183# dump out/verify the doco
184for field in ${read}
185do
186 case ${field} in
187
188 class ) : ;;
c4093a6a 189
c0e8c252
AC
190 # # -> line disable
191 # f -> function
192 # hiding a function
2ada493a
AC
193 # F -> function + predicate
194 # hiding a function + predicate to test function validity
c0e8c252
AC
195 # v -> variable
196 # hiding a variable
2ada493a
AC
197 # V -> variable + predicate
198 # hiding a variable + predicate to test variables validity
c0e8c252
AC
199 # i -> set from info
200 # hiding something from the ``struct info'' object
4a5c6a1d
AC
201 # m -> multi-arch function
202 # hiding a multi-arch function (parameterised with the architecture)
203 # M -> multi-arch function + predicate
204 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
205
206 level ) : ;;
207
c0e8c252
AC
208 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
209 # LEVEL is a predicate on checking that a given method is
210 # initialized (using INVALID_P).
cff3e48b
JM
211
212 macro ) : ;;
213
c0e8c252 214 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
215
216 returntype ) : ;;
217
c0e8c252 218 # For functions, the return type; for variables, the data type
cff3e48b
JM
219
220 function ) : ;;
221
c0e8c252
AC
222 # For functions, the member function name; for variables, the
223 # variable name. Member function names are always prefixed with
224 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
225
226 formal ) : ;;
227
c0e8c252
AC
228 # The formal argument list. It is assumed that the formal
229 # argument list includes the actual name of each list element.
230 # A function with no arguments shall have ``void'' as the
231 # formal argument list.
cff3e48b
JM
232
233 actual ) : ;;
234
c0e8c252
AC
235 # The list of actual arguments. The arguments specified shall
236 # match the FORMAL list given above. Functions with out
237 # arguments leave this blank.
cff3e48b
JM
238
239 attrib ) : ;;
240
c0e8c252
AC
241 # Any GCC attributes that should be attached to the function
242 # declaration. At present this field is unused.
cff3e48b 243
0b8f9e4d 244 staticdefault ) : ;;
c0e8c252
AC
245
246 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
247 # created. STATICDEFAULT is the value to insert into that
248 # static gdbarch object. Since this a static object only
249 # simple expressions can be used.
cff3e48b 250
0b8f9e4d 251 # If STATICDEFAULT is empty, zero is used.
c0e8c252 252
0b8f9e4d 253 predefault ) : ;;
cff3e48b 254
10312cc4
AC
255 # An initial value to assign to MEMBER of the freshly
256 # malloc()ed gdbarch object. After initialization, the
257 # freshly malloc()ed object is passed to the target
258 # architecture code for further updates.
cff3e48b 259
0b8f9e4d
AC
260 # If PREDEFAULT is empty, zero is used.
261
10312cc4
AC
262 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
263 # INVALID_P are specified, PREDEFAULT will be used as the
264 # default for the non- multi-arch target.
265
266 # A zero PREDEFAULT function will force the fallback to call
267 # internal_error().
f0d4cc9e
AC
268
269 # Variable declarations can refer to ``gdbarch'' which will
270 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
271
272 postdefault ) : ;;
273
274 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
275 # the target architecture code fail to change the PREDEFAULT
276 # value.
0b8f9e4d
AC
277
278 # If POSTDEFAULT is empty, no post update is performed.
279
280 # If both INVALID_P and POSTDEFAULT are non-empty then
281 # INVALID_P will be used to determine if MEMBER should be
282 # changed to POSTDEFAULT.
283
10312cc4
AC
284 # If a non-empty POSTDEFAULT and a zero INVALID_P are
285 # specified, POSTDEFAULT will be used as the default for the
286 # non- multi-arch target (regardless of the value of
287 # PREDEFAULT).
288
f0d4cc9e
AC
289 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
290
291 # Variable declarations can refer to ``gdbarch'' which will
292 # contain the current architecture. Care should be taken.
cff3e48b 293
c4093a6a 294 invalid_p ) : ;;
cff3e48b 295
0b8f9e4d 296 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 297 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
298 # initialize MEMBER or the initialized the member is invalid.
299 # If POSTDEFAULT is non-empty then MEMBER will be updated to
300 # that value. If POSTDEFAULT is empty then internal_error()
301 # is called.
302
303 # If INVALID_P is empty, a check that MEMBER is no longer
304 # equal to PREDEFAULT is used.
305
f0d4cc9e
AC
306 # The expression ``0'' disables the INVALID_P check making
307 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
308
309 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
310
311 fmt ) : ;;
312
c0e8c252
AC
313 # printf style format string that can be used to print out the
314 # MEMBER. Sometimes "%s" is useful. For functions, this is
315 # ignored and the function address is printed.
316
0b8f9e4d 317 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
318
319 print ) : ;;
320
c0e8c252
AC
321 # An optional equation that casts MEMBER to a value suitable
322 # for formatting by FMT.
323
0b8f9e4d 324 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
325
326 print_p ) : ;;
327
c0e8c252
AC
328 # An optional indicator for any predicte to wrap around the
329 # print member code.
330
4b9b3959 331 # () -> Call a custom function to do the dump.
c0e8c252
AC
332 # exp -> Wrap print up in ``if (${print_p}) ...
333 # ``'' -> No predicate
cff3e48b 334
0b8f9e4d
AC
335 # If PRINT_P is empty, ``1'' is always used.
336
cff3e48b
JM
337 description ) : ;;
338
0b8f9e4d 339 # Currently unused.
cff3e48b
JM
340
341 *) exit 1;;
342 esac
343done
344
cff3e48b 345
104c1213
JM
346function_list ()
347{
cff3e48b 348 # See below (DOCO) for description of each field
34620563 349 cat <<EOF
0b8f9e4d 350i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213
JM
351#
352i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
66b43ecb
AC
353# Number of bits in a char or unsigned char for the target machine.
354# Just like CHAR_BIT in <limits.h> but describes the target machine.
355# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
356#
357# Number of bits in a short or unsigned short for the target machine.
358v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
359# Number of bits in an int or unsigned int for the target machine.
360v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
361# Number of bits in a long or unsigned long for the target machine.
362v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
363# Number of bits in a long long or unsigned long long for the target
364# machine.
365v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
366# Number of bits in a float for the target machine.
367v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
368# Number of bits in a double for the target machine.
369v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
370# Number of bits in a long double for the target machine.
371v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
52204a0b
DT
372# For most targets, a pointer on the target and its representation as an
373# address in GDB have the same size and "look the same". For such a
374# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
375# / addr_bit will be set from it.
376#
377# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
378# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
379#
380# ptr_bit is the size of a pointer on the target
66b43ecb 381v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b
DT
382# addr_bit is the size of a target address as represented in gdb
383v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb
AC
384# Number of bits in a BFD_VMA for the target object file format.
385v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 386#
be8dfb87 387v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
104c1213 388#
39f77062
KB
389f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
390f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
be8dfb87
AC
391f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
392f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
393f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
394f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
39d4ef09
AC
395# Function for getting target's idea of a frame pointer. FIXME: GDB's
396# whole scheme for dealing with "frames" and "frame pointers" needs a
397# serious shakedown.
398f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 399#
61a0eb5b
AC
400M:::void:register_read:int regnum, char *buf:regnum, buf:
401M:::void:register_write:int regnum, char *buf:regnum, buf:
402#
104c1213 403v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
404# This macro gives the number of pseudo-registers that live in the
405# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
406# These pseudo-registers may be aliases for other registers,
407# combinations of other registers, or they may be computed by GDB.
0aba1244 408v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
104c1213
JM
409v:2:SP_REGNUM:int:sp_regnum::::0:-1
410v:2:FP_REGNUM:int:fp_regnum::::0:-1
411v:2:PC_REGNUM:int:pc_regnum::::0:-1
0b8f9e4d
AC
412v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
413v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
414v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
88c72b7d
AC
415# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
416f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
417# Provide a default mapping from a ecoff register number to a gdb REGNUM.
418f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
419# Provide a default mapping from a DWARF register number to a gdb REGNUM.
420f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
421# Convert from an sdb register number to an internal gdb register number.
422# This should be defined in tm.h, if REGISTER_NAMES is not set up
423# to map one to one onto the sdb register numbers.
424f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
425f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
0b8f9e4d 426f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
104c1213
JM
427v:2:REGISTER_SIZE:int:register_size::::0:-1
428v:2:REGISTER_BYTES:int:register_bytes::::0:-1
429f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
430f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
431v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
432f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
433v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
434f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
666e11c5 435f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
7c7651b2
AC
436# MAP a GDB RAW register number onto a simulator register number. See
437# also include/...-sim.h.
438f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
2649061d 439F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
01fb7433
AC
440f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
441f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
104c1213
JM
442#
443v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
a985cd41 444v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
0b8f9e4d
AC
445f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
446v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
83e6b173 447v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
104c1213 448v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
0b8f9e4d 449v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
a4a7d16f 450f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
104c1213 451v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
0b8f9e4d
AC
452v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
453v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
454v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
455v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
456f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
10312cc4 457f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
7824d2f2 458f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
104c1213 459#
f0d4cc9e
AC
460v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
461v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
0b8f9e4d 462f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
104c1213
JM
463f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
464#
0b8f9e4d
AC
465f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
466f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
467f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
34620563
AC
468# This function is called when the value of a pseudo-register needs to
469# be updated. Typically it will be defined on a per-architecture
470# basis.
7f1b2585 471f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
34620563
AC
472# This function is called when the value of a pseudo-register needs to
473# be set or stored. Typically it will be defined on a
474# per-architecture basis.
7f1b2585 475f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
104c1213 476#
ac2e2ef7
AC
477f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
478f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 479F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 480#
0b8f9e4d 481f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
104c1213
JM
482f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
483f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
c0e8c252 484f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
69a0d5f4 485F:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
c0e8c252 486f:2:POP_FRAME:void:pop_frame:void:-:::0
104c1213 487#
c0e8c252
AC
488f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
489f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
d6dd581e 490F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
56f12751 491f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213
JM
492#
493f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
5fdff426 494F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
104c1213
JM
495#
496f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 497f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 498f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
0b8f9e4d
AC
499f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
500f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
501f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213 502v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
e02bc4cc 503f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
104c1213
JM
504v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
505#
0b8f9e4d 506f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
507#
508v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 509f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
104c1213
JM
510f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
511f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
512f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
513f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
514f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
515f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
516f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
517#
2ada493a 518F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
0a49d05e 519v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
d03e67c9 520F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
d1e3cf49 521F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
58d5518e 522v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e
AC
523#
524v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
525v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
526v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
875e1767
AC
527f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
528# On some machines there are bits in addresses which are not really
529# part of the address, but are used by the kernel, the hardware, etc.
530# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
531# we get a "real" address such as one would find in a symbol table.
532# This is used only for addresses of instructions, and even then I'm
533# not sure it's used in all contexts. It exists to deal with there
534# being a few stray bits in the PC which would mislead us, not as some
535# sort of generic thing to handle alignment or segmentation (it's
536# possible it should be in TARGET_READ_PC instead).
537f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
538# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
539# the target needs software single step. An ISA method to implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
542# using the breakpoint system instead of blatting memory directly (as with rs6000).
543#
544# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
545# single step. If not, then implement single step using breakpoints.
546F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
2bf0cb65 547f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 548f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
68e9cc94
CV
549# For SVR4 shared libraries, each call goes through a small piece of
550# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
551# to nonzero if we are current stopped in one of these.
552f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
c12260ac
CV
553# A target might have problems with watchpoints as soon as the stack
554# frame of the current function has been destroyed. This mostly happens
555# as the first action in a funtion's epilogue. in_function_epilogue_p()
556# is defined to return a non-zero value if either the given addr is one
557# instruction after the stack destroying instruction up to the trailing
558# return instruction or if we can figure out that the stack frame has
559# already been invalidated regardless of the value of addr. Targets
560# which don't suffer from that problem could just let this functionality
561# untouched.
562m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
104c1213 563EOF
104c1213
JM
564}
565
0b8f9e4d
AC
566#
567# The .log file
568#
569exec > new-gdbarch.log
34620563 570function_list | while do_read
0b8f9e4d
AC
571do
572 cat <<EOF
104c1213
JM
573${class} ${macro}(${actual})
574 ${returntype} ${function} ($formal)${attrib}
104c1213 575EOF
3d9a5942
AC
576 for r in ${read}
577 do
578 eval echo \"\ \ \ \ ${r}=\${${r}}\"
579 done
580# #fallbackdefault=${fallbackdefault}
581# #valid_p=${valid_p}
582#EOF
f0d4cc9e 583 if class_is_predicate_p && fallback_default_p
0b8f9e4d 584 then
66b43ecb 585 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
586 kill $$
587 exit 1
588 fi
72e74a21 589 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
590 then
591 echo "Error: postdefault is useless when invalid_p=0" 1>&2
592 kill $$
593 exit 1
594 fi
a72293e2
AC
595 if class_is_multiarch_p
596 then
597 if class_is_predicate_p ; then :
598 elif test "x${predefault}" = "x"
599 then
600 echo "Error: pure multi-arch function must have a predefault" 1>&2
601 kill $$
602 exit 1
603 fi
604 fi
3d9a5942 605 echo ""
0b8f9e4d
AC
606done
607
608exec 1>&2
609compare_new gdbarch.log
610
104c1213
JM
611
612copyright ()
613{
614cat <<EOF
59233f88
AC
615/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
616
104c1213 617/* Dynamic architecture support for GDB, the GNU debugger.
338d7c5c 618 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
104c1213
JM
619
620 This file is part of GDB.
621
622 This program is free software; you can redistribute it and/or modify
623 it under the terms of the GNU General Public License as published by
624 the Free Software Foundation; either version 2 of the License, or
625 (at your option) any later version.
626
627 This program is distributed in the hope that it will be useful,
628 but WITHOUT ANY WARRANTY; without even the implied warranty of
629 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
630 GNU General Public License for more details.
631
632 You should have received a copy of the GNU General Public License
633 along with this program; if not, write to the Free Software
634 Foundation, Inc., 59 Temple Place - Suite 330,
635 Boston, MA 02111-1307, USA. */
636
104c1213
JM
637/* This file was created with the aid of \`\`gdbarch.sh''.
638
52204a0b 639 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
640 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
641 against the existing \`\`gdbarch.[hc]''. Any differences found
642 being reported.
643
644 If editing this file, please also run gdbarch.sh and merge any
52204a0b 645 changes into that script. Conversely, when making sweeping changes
104c1213
JM
646 to this file, modifying gdbarch.sh and using its output may prove
647 easier. */
648
649EOF
650}
651
652#
653# The .h file
654#
655
656exec > new-gdbarch.h
657copyright
658cat <<EOF
659#ifndef GDBARCH_H
660#define GDBARCH_H
661
2bf0cb65 662#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6
AC
663#if !GDB_MULTI_ARCH
664#include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
665#endif
2bf0cb65 666
104c1213
JM
667struct frame_info;
668struct value;
669
670
104c1213
JM
671extern struct gdbarch *current_gdbarch;
672
673
104c1213
JM
674/* If any of the following are defined, the target wasn't correctly
675 converted. */
676
104c1213
JM
677#if GDB_MULTI_ARCH
678#if defined (EXTRA_FRAME_INFO)
679#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
680#endif
681#endif
682
683#if GDB_MULTI_ARCH
684#if defined (FRAME_FIND_SAVED_REGS)
685#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
686#endif
687#endif
83905903
AC
688
689#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
690#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
691#endif
104c1213
JM
692EOF
693
694# function typedef's
3d9a5942
AC
695printf "\n"
696printf "\n"
697printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 698function_list | while do_read
104c1213 699do
2ada493a
AC
700 if class_is_info_p
701 then
3d9a5942
AC
702 printf "\n"
703 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
704 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
83905903
AC
705 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
706 printf "#error \"Non multi-arch definition of ${macro}\"\n"
707 printf "#endif\n"
3d9a5942
AC
708 printf "#if GDB_MULTI_ARCH\n"
709 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
710 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
711 printf "#endif\n"
712 printf "#endif\n"
2ada493a 713 fi
104c1213
JM
714done
715
716# function typedef's
3d9a5942
AC
717printf "\n"
718printf "\n"
719printf "/* The following are initialized by the target dependent code. */\n"
34620563 720function_list | while do_read
104c1213 721do
72e74a21 722 if [ -n "${comment}" ]
34620563
AC
723 then
724 echo "${comment}" | sed \
725 -e '2 s,#,/*,' \
726 -e '3,$ s,#, ,' \
727 -e '$ s,$, */,'
728 fi
b77be6cf 729 if class_is_multiarch_p
2ada493a 730 then
b77be6cf
AC
731 if class_is_predicate_p
732 then
733 printf "\n"
734 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
735 fi
736 else
737 if class_is_predicate_p
738 then
739 printf "\n"
740 printf "#if defined (${macro})\n"
741 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
742 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 743 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
744 printf "#define ${macro}_P() (1)\n"
745 printf "#endif\n"
eee30e78 746 printf "#endif\n"
b77be6cf
AC
747 printf "\n"
748 printf "/* Default predicate for non- multi-arch targets. */\n"
749 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
750 printf "#define ${macro}_P() (0)\n"
751 printf "#endif\n"
752 printf "\n"
753 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
83905903
AC
754 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
755 printf "#error \"Non multi-arch definition of ${macro}\"\n"
756 printf "#endif\n"
b77be6cf
AC
757 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
758 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
759 printf "#endif\n"
760 fi
4a5c6a1d 761 fi
2ada493a
AC
762 if class_is_variable_p
763 then
f0d4cc9e 764 if fallback_default_p || class_is_predicate_p
33489c5b 765 then
3d9a5942
AC
766 printf "\n"
767 printf "/* Default (value) for non- multi-arch platforms. */\n"
768 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
769 echo "#define ${macro} (${fallbackdefault})" \
770 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 771 printf "#endif\n"
33489c5b 772 fi
3d9a5942
AC
773 printf "\n"
774 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
775 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
83905903
AC
776 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
777 printf "#error \"Non multi-arch definition of ${macro}\"\n"
778 printf "#endif\n"
3d9a5942
AC
779 printf "#if GDB_MULTI_ARCH\n"
780 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
781 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
782 printf "#endif\n"
783 printf "#endif\n"
2ada493a
AC
784 fi
785 if class_is_function_p
786 then
b77be6cf
AC
787 if class_is_multiarch_p ; then :
788 elif fallback_default_p || class_is_predicate_p
33489c5b 789 then
3d9a5942
AC
790 printf "\n"
791 printf "/* Default (function) for non- multi-arch platforms. */\n"
792 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 793 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 794 then
8e65ff28 795 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
33489c5b 796 else
f0d4cc9e
AC
797 # FIXME: Should be passing current_gdbarch through!
798 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
799 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 800 fi
3d9a5942 801 printf "#endif\n"
33489c5b 802 fi
3d9a5942 803 printf "\n"
72e74a21 804 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
805 then
806 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
807 elif class_is_multiarch_p
808 then
809 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
810 else
811 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
812 fi
72e74a21 813 if [ "x${formal}" = "xvoid" ]
104c1213 814 then
3d9a5942 815 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 816 else
3d9a5942 817 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 818 fi
3d9a5942 819 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
820 if class_is_multiarch_p ; then :
821 else
83905903
AC
822 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
823 printf "#error \"Non multi-arch definition of ${macro}\"\n"
824 printf "#endif\n"
4a5c6a1d
AC
825 printf "#if GDB_MULTI_ARCH\n"
826 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
72e74a21 827 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
828 then
829 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 830 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
831 then
832 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
833 else
834 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
835 fi
836 printf "#endif\n"
837 printf "#endif\n"
104c1213 838 fi
2ada493a 839 fi
104c1213
JM
840done
841
842# close it off
843cat <<EOF
844
845extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
846
847
848/* Mechanism for co-ordinating the selection of a specific
849 architecture.
850
851 GDB targets (*-tdep.c) can register an interest in a specific
852 architecture. Other GDB components can register a need to maintain
853 per-architecture data.
854
855 The mechanisms below ensures that there is only a loose connection
856 between the set-architecture command and the various GDB
0fa6923a 857 components. Each component can independently register their need
104c1213
JM
858 to maintain architecture specific data with gdbarch.
859
860 Pragmatics:
861
862 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
863 didn't scale.
864
865 The more traditional mega-struct containing architecture specific
866 data for all the various GDB components was also considered. Since
0fa6923a 867 GDB is built from a variable number of (fairly independent)
104c1213
JM
868 components it was determined that the global aproach was not
869 applicable. */
870
871
872/* Register a new architectural family with GDB.
873
874 Register support for the specified ARCHITECTURE with GDB. When
875 gdbarch determines that the specified architecture has been
876 selected, the corresponding INIT function is called.
877
878 --
879
880 The INIT function takes two parameters: INFO which contains the
881 information available to gdbarch about the (possibly new)
882 architecture; ARCHES which is a list of the previously created
883 \`\`struct gdbarch'' for this architecture.
884
885 The INIT function parameter INFO shall, as far as possible, be
886 pre-initialized with information obtained from INFO.ABFD or
887 previously selected architecture (if similar). INIT shall ensure
888 that the INFO.BYTE_ORDER is non-zero.
889
890 The INIT function shall return any of: NULL - indicating that it
ec3d358c 891 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
892 gdbarch'' from the ARCHES list - indicating that the new
893 architecture is just a synonym for an earlier architecture (see
894 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
895 - that describes the selected architecture (see gdbarch_alloc()).
896
897 The DUMP_TDEP function shall print out all target specific values.
898 Care should be taken to ensure that the function works in both the
899 multi-arch and non- multi-arch cases. */
104c1213
JM
900
901struct gdbarch_list
902{
903 struct gdbarch *gdbarch;
904 struct gdbarch_list *next;
905};
906
907struct gdbarch_info
908{
104c1213
JM
909 /* Use default: NULL (ZERO). */
910 const struct bfd_arch_info *bfd_arch_info;
911
912 /* Use default: 0 (ZERO). */
913 int byte_order;
914
915 /* Use default: NULL (ZERO). */
916 bfd *abfd;
917
918 /* Use default: NULL (ZERO). */
919 struct gdbarch_tdep_info *tdep_info;
920};
921
922typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 923typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 924
4b9b3959 925/* DEPRECATED - use gdbarch_register() */
104c1213
JM
926extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
927
4b9b3959
AC
928extern void gdbarch_register (enum bfd_architecture architecture,
929 gdbarch_init_ftype *,
930 gdbarch_dump_tdep_ftype *);
931
104c1213 932
b4a20239
AC
933/* Return a freshly allocated, NULL terminated, array of the valid
934 architecture names. Since architectures are registered during the
935 _initialize phase this function only returns useful information
936 once initialization has been completed. */
937
938extern const char **gdbarch_printable_names (void);
939
940
104c1213
JM
941/* Helper function. Search the list of ARCHES for a GDBARCH that
942 matches the information provided by INFO. */
943
944extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
945
946
947/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
948 basic initialization using values obtained from the INFO andTDEP
949 parameters. set_gdbarch_*() functions are called to complete the
950 initialization of the object. */
951
952extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
953
954
4b9b3959
AC
955/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
956 It is assumed that the caller freeds the \`\`struct
957 gdbarch_tdep''. */
958
058f20d5
JB
959extern void gdbarch_free (struct gdbarch *);
960
961
b732d07d 962/* Helper function. Force an update of the current architecture.
104c1213 963
b732d07d
AC
964 The actual architecture selected is determined by INFO, \`\`(gdb) set
965 architecture'' et.al., the existing architecture and BFD's default
966 architecture. INFO should be initialized to zero and then selected
967 fields should be updated.
104c1213 968
16f33e29
AC
969 Returns non-zero if the update succeeds */
970
971extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
972
973
974
975/* Register per-architecture data-pointer.
976
977 Reserve space for a per-architecture data-pointer. An identifier
978 for the reserved data-pointer is returned. That identifer should
95160752 979 be saved in a local static variable.
104c1213 980
95160752
AC
981 The per-architecture data-pointer can be initialized in one of two
982 ways: The value can be set explicitly using a call to
983 set_gdbarch_data(); the value can be set implicitly using the value
984 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
985 called after the basic architecture vector has been created.
104c1213 986
95160752
AC
987 When a previously created architecture is re-selected, the
988 per-architecture data-pointer for that previous architecture is
989 restored. INIT() is not called.
990
991 During initialization, multiple assignments of the data-pointer are
992 allowed, non-NULL values are deleted by calling FREE(). If the
993 architecture is deleted using gdbarch_free() all non-NULL data
994 pointers are also deleted using FREE().
104c1213
JM
995
996 Multiple registrarants for any architecture are allowed (and
997 strongly encouraged). */
998
95160752 999struct gdbarch_data;
104c1213 1000
95160752
AC
1001typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1002typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1003 void *pointer);
1004extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1005 gdbarch_data_free_ftype *free);
1006extern void set_gdbarch_data (struct gdbarch *gdbarch,
1007 struct gdbarch_data *data,
1008 void *pointer);
104c1213
JM
1009
1010extern void *gdbarch_data (struct gdbarch_data*);
1011
1012
104c1213
JM
1013/* Register per-architecture memory region.
1014
1015 Provide a memory-region swap mechanism. Per-architecture memory
1016 region are created. These memory regions are swapped whenever the
1017 architecture is changed. For a new architecture, the memory region
1018 is initialized with zero (0) and the INIT function is called.
1019
1020 Memory regions are swapped / initialized in the order that they are
1021 registered. NULL DATA and/or INIT values can be specified.
1022
1023 New code should use register_gdbarch_data(). */
1024
1025typedef void (gdbarch_swap_ftype) (void);
1026extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1027#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1028
1029
1030
0fa6923a 1031/* The target-system-dependent byte order is dynamic */
104c1213
JM
1032
1033/* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1034 is selectable at runtime. The user can use the \`\`set endian''
1035 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1036 target_byte_order should be auto-detected (from the program image
1037 say). */
1038
1039#if GDB_MULTI_ARCH
1040/* Multi-arch GDB is always bi-endian. */
1041#define TARGET_BYTE_ORDER_SELECTABLE_P 1
1042#endif
1043
1044#ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1045/* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1046 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1047#ifdef TARGET_BYTE_ORDER_SELECTABLE
1048#define TARGET_BYTE_ORDER_SELECTABLE_P 1
1049#else
1050#define TARGET_BYTE_ORDER_SELECTABLE_P 0
1051#endif
1052#endif
1053
1054extern int target_byte_order;
1055#ifdef TARGET_BYTE_ORDER_SELECTABLE
1056/* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1057 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1058#undef TARGET_BYTE_ORDER
1059#endif
1060#ifndef TARGET_BYTE_ORDER
1061#define TARGET_BYTE_ORDER (target_byte_order + 0)
1062#endif
1063
1064extern int target_byte_order_auto;
1065#ifndef TARGET_BYTE_ORDER_AUTO
1066#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1067#endif
1068
1069
1070
0fa6923a 1071/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1072
1073extern int target_architecture_auto;
1074#ifndef TARGET_ARCHITECTURE_AUTO
1075#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1076#endif
1077
1078extern const struct bfd_arch_info *target_architecture;
1079#ifndef TARGET_ARCHITECTURE
1080#define TARGET_ARCHITECTURE (target_architecture + 0)
1081#endif
1082
104c1213 1083
0fa6923a 1084/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1085
104c1213 1086extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
ff844c8d 1087 unsigned int len, disassemble_info *info);
104c1213
JM
1088
1089extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1090 disassemble_info *info);
1091
1092extern void dis_asm_print_address (bfd_vma addr,
1093 disassemble_info *info);
1094
1095extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1096extern disassemble_info tm_print_insn_info;
104c1213
JM
1097#ifndef TARGET_PRINT_INSN_INFO
1098#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1099#endif
1100
1101
1102
0fa6923a 1103/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1104 byte-order, ...) using information found in the BFD */
1105
1106extern void set_gdbarch_from_file (bfd *);
1107
1108
e514a9d6
JM
1109/* Initialize the current architecture to the "first" one we find on
1110 our list. */
1111
1112extern void initialize_current_architecture (void);
1113
ceaa8edf
JB
1114/* For non-multiarched targets, do any initialization of the default
1115 gdbarch object necessary after the _initialize_MODULE functions
1116 have run. */
1117extern void initialize_non_multiarch ();
104c1213
JM
1118
1119/* gdbarch trace variable */
1120extern int gdbarch_debug;
1121
4b9b3959 1122extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1123
1124#endif
1125EOF
1126exec 1>&2
1127#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1128compare_new gdbarch.h
104c1213
JM
1129
1130
1131#
1132# C file
1133#
1134
1135exec > new-gdbarch.c
1136copyright
1137cat <<EOF
1138
1139#include "defs.h"
7355ddba 1140#include "arch-utils.h"
104c1213
JM
1141
1142#if GDB_MULTI_ARCH
1143#include "gdbcmd.h"
1144#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1145#else
1146/* Just include everything in sight so that the every old definition
1147 of macro is visible. */
1148#include "gdb_string.h"
1149#include <ctype.h>
1150#include "symtab.h"
1151#include "frame.h"
1152#include "inferior.h"
1153#include "breakpoint.h"
0596389c 1154#include "gdb_wait.h"
104c1213
JM
1155#include "gdbcore.h"
1156#include "gdbcmd.h"
1157#include "target.h"
1158#include "gdbthread.h"
1159#include "annotate.h"
1160#include "symfile.h" /* for overlay functions */
fd0407d6 1161#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1162#endif
1163#include "symcat.h"
1164
f0d4cc9e 1165#include "floatformat.h"
104c1213 1166
95160752 1167#include "gdb_assert.h"
67c2c32c 1168#include "gdb-events.h"
95160752 1169
104c1213
JM
1170/* Static function declarations */
1171
1172static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077
JB
1173static void alloc_gdbarch_data (struct gdbarch *);
1174static void init_gdbarch_data (struct gdbarch *);
95160752 1175static void free_gdbarch_data (struct gdbarch *);
104c1213
JM
1176static void init_gdbarch_swap (struct gdbarch *);
1177static void swapout_gdbarch_swap (struct gdbarch *);
1178static void swapin_gdbarch_swap (struct gdbarch *);
1179
1180/* Convenience macro for allocting typesafe memory. */
1181
1182#ifndef XMALLOC
1183#define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1184#endif
1185
1186
1187/* Non-zero if we want to trace architecture code. */
1188
1189#ifndef GDBARCH_DEBUG
1190#define GDBARCH_DEBUG 0
1191#endif
1192int gdbarch_debug = GDBARCH_DEBUG;
1193
1194EOF
1195
1196# gdbarch open the gdbarch object
3d9a5942
AC
1197printf "\n"
1198printf "/* Maintain the struct gdbarch object */\n"
1199printf "\n"
1200printf "struct gdbarch\n"
1201printf "{\n"
1202printf " /* basic architectural information */\n"
34620563 1203function_list | while do_read
104c1213 1204do
2ada493a
AC
1205 if class_is_info_p
1206 then
3d9a5942 1207 printf " ${returntype} ${function};\n"
2ada493a 1208 fi
104c1213 1209done
3d9a5942
AC
1210printf "\n"
1211printf " /* target specific vector. */\n"
1212printf " struct gdbarch_tdep *tdep;\n"
1213printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1214printf "\n"
1215printf " /* per-architecture data-pointers */\n"
95160752 1216printf " unsigned nr_data;\n"
3d9a5942
AC
1217printf " void **data;\n"
1218printf "\n"
1219printf " /* per-architecture swap-regions */\n"
1220printf " struct gdbarch_swap *swap;\n"
1221printf "\n"
104c1213
JM
1222cat <<EOF
1223 /* Multi-arch values.
1224
1225 When extending this structure you must:
1226
1227 Add the field below.
1228
1229 Declare set/get functions and define the corresponding
1230 macro in gdbarch.h.
1231
1232 gdbarch_alloc(): If zero/NULL is not a suitable default,
1233 initialize the new field.
1234
1235 verify_gdbarch(): Confirm that the target updated the field
1236 correctly.
1237
7e73cedf 1238 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1239 field is dumped out
1240
c0e8c252 1241 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1242 variable (base values on the host's c-type system).
1243
1244 get_gdbarch(): Implement the set/get functions (probably using
1245 the macro's as shortcuts).
1246
1247 */
1248
1249EOF
34620563 1250function_list | while do_read
104c1213 1251do
2ada493a
AC
1252 if class_is_variable_p
1253 then
3d9a5942 1254 printf " ${returntype} ${function};\n"
2ada493a
AC
1255 elif class_is_function_p
1256 then
3d9a5942 1257 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1258 fi
104c1213 1259done
3d9a5942 1260printf "};\n"
104c1213
JM
1261
1262# A pre-initialized vector
3d9a5942
AC
1263printf "\n"
1264printf "\n"
104c1213
JM
1265cat <<EOF
1266/* The default architecture uses host values (for want of a better
1267 choice). */
1268EOF
3d9a5942
AC
1269printf "\n"
1270printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1271printf "\n"
1272printf "struct gdbarch startup_gdbarch =\n"
1273printf "{\n"
1274printf " /* basic architecture information */\n"
4b9b3959 1275function_list | while do_read
104c1213 1276do
2ada493a
AC
1277 if class_is_info_p
1278 then
3d9a5942 1279 printf " ${staticdefault},\n"
2ada493a 1280 fi
104c1213
JM
1281done
1282cat <<EOF
4b9b3959
AC
1283 /* target specific vector and its dump routine */
1284 NULL, NULL,
104c1213
JM
1285 /*per-architecture data-pointers and swap regions */
1286 0, NULL, NULL,
1287 /* Multi-arch values */
1288EOF
34620563 1289function_list | while do_read
104c1213 1290do
2ada493a
AC
1291 if class_is_function_p || class_is_variable_p
1292 then
3d9a5942 1293 printf " ${staticdefault},\n"
2ada493a 1294 fi
104c1213
JM
1295done
1296cat <<EOF
c0e8c252 1297 /* startup_gdbarch() */
104c1213 1298};
4b9b3959 1299
c0e8c252 1300struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1301
1302/* Do any initialization needed for a non-multiarch configuration
1303 after the _initialize_MODULE functions have been run. */
1304void
1305initialize_non_multiarch ()
1306{
1307 alloc_gdbarch_data (&startup_gdbarch);
1308 init_gdbarch_data (&startup_gdbarch);
1309}
104c1213
JM
1310EOF
1311
1312# Create a new gdbarch struct
3d9a5942
AC
1313printf "\n"
1314printf "\n"
104c1213 1315cat <<EOF
66b43ecb 1316/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1317 \`\`struct gdbarch_info''. */
1318EOF
3d9a5942 1319printf "\n"
104c1213
JM
1320cat <<EOF
1321struct gdbarch *
1322gdbarch_alloc (const struct gdbarch_info *info,
1323 struct gdbarch_tdep *tdep)
1324{
85de9627
AC
1325 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1326 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1327 the current local architecture and not the previous global
1328 architecture. This ensures that the new architectures initial
1329 values are not influenced by the previous architecture. Once
1330 everything is parameterised with gdbarch, this will go away. */
1331 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1332 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1333
1334 alloc_gdbarch_data (current_gdbarch);
1335
1336 current_gdbarch->tdep = tdep;
104c1213 1337EOF
3d9a5942 1338printf "\n"
34620563 1339function_list | while do_read
104c1213 1340do
2ada493a
AC
1341 if class_is_info_p
1342 then
85de9627 1343 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1344 fi
104c1213 1345done
3d9a5942
AC
1346printf "\n"
1347printf " /* Force the explicit initialization of these. */\n"
34620563 1348function_list | while do_read
104c1213 1349do
2ada493a
AC
1350 if class_is_function_p || class_is_variable_p
1351 then
72e74a21 1352 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1353 then
85de9627 1354 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1355 fi
2ada493a 1356 fi
104c1213
JM
1357done
1358cat <<EOF
1359 /* gdbarch_alloc() */
1360
85de9627 1361 return current_gdbarch;
104c1213
JM
1362}
1363EOF
1364
058f20d5 1365# Free a gdbarch struct.
3d9a5942
AC
1366printf "\n"
1367printf "\n"
058f20d5
JB
1368cat <<EOF
1369/* Free a gdbarch struct. This should never happen in normal
1370 operation --- once you've created a gdbarch, you keep it around.
1371 However, if an architecture's init function encounters an error
1372 building the structure, it may need to clean up a partially
1373 constructed gdbarch. */
4b9b3959 1374
058f20d5
JB
1375void
1376gdbarch_free (struct gdbarch *arch)
1377{
95160752
AC
1378 gdb_assert (arch != NULL);
1379 free_gdbarch_data (arch);
338d7c5c 1380 xfree (arch);
058f20d5
JB
1381}
1382EOF
1383
104c1213 1384# verify a new architecture
3d9a5942
AC
1385printf "\n"
1386printf "\n"
1387printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1388printf "\n"
104c1213
JM
1389cat <<EOF
1390static void
1391verify_gdbarch (struct gdbarch *gdbarch)
1392{
f16a1923
AC
1393 struct ui_file *log;
1394 struct cleanup *cleanups;
1395 long dummy;
1396 char *buf;
104c1213 1397 /* Only perform sanity checks on a multi-arch target. */
6166d547 1398 if (!GDB_MULTI_ARCH)
104c1213 1399 return;
f16a1923
AC
1400 log = mem_fileopen ();
1401 cleanups = make_cleanup_ui_file_delete (log);
104c1213
JM
1402 /* fundamental */
1403 if (gdbarch->byte_order == 0)
f16a1923 1404 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1405 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1406 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1407 /* Check those that need to be defined for the given multi-arch level. */
1408EOF
34620563 1409function_list | while do_read
104c1213 1410do
2ada493a
AC
1411 if class_is_function_p || class_is_variable_p
1412 then
72e74a21 1413 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1414 then
3d9a5942 1415 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1416 elif class_is_predicate_p
1417 then
3d9a5942 1418 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1419 # FIXME: See do_read for potential simplification
72e74a21 1420 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1421 then
3d9a5942
AC
1422 printf " if (${invalid_p})\n"
1423 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1424 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1425 then
3d9a5942
AC
1426 printf " if (gdbarch->${function} == ${predefault})\n"
1427 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1428 elif [ -n "${postdefault}" ]
f0d4cc9e 1429 then
3d9a5942
AC
1430 printf " if (gdbarch->${function} == 0)\n"
1431 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1432 elif [ -n "${invalid_p}" ]
104c1213 1433 then
3d9a5942
AC
1434 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1435 printf " && (${invalid_p}))\n"
f16a1923 1436 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1437 elif [ -n "${predefault}" ]
104c1213 1438 then
3d9a5942
AC
1439 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1440 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1441 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1442 fi
2ada493a 1443 fi
104c1213
JM
1444done
1445cat <<EOF
f16a1923
AC
1446 buf = ui_file_xstrdup (log, &dummy);
1447 make_cleanup (xfree, buf);
1448 if (strlen (buf) > 0)
1449 internal_error (__FILE__, __LINE__,
1450 "verify_gdbarch: the following are invalid ...%s",
1451 buf);
1452 do_cleanups (cleanups);
104c1213
JM
1453}
1454EOF
1455
1456# dump the structure
3d9a5942
AC
1457printf "\n"
1458printf "\n"
104c1213 1459cat <<EOF
4b9b3959
AC
1460/* Print out the details of the current architecture. */
1461
1462/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1463 just happens to match the global variable \`\`current_gdbarch''. That
1464 way macros refering to that variable get the local and not the global
1465 version - ulgh. Once everything is parameterised with gdbarch, this
1466 will go away. */
1467
104c1213 1468void
4b9b3959 1469gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1470{
4b9b3959
AC
1471 fprintf_unfiltered (file,
1472 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1473 GDB_MULTI_ARCH);
104c1213 1474EOF
08e45a40 1475function_list | sort -t: +2 | while do_read
104c1213 1476do
4a5c6a1d 1477 # multiarch functions don't have macros.
08e45a40
AC
1478 if class_is_multiarch_p
1479 then
1480 printf " if (GDB_MULTI_ARCH)\n"
1481 printf " fprintf_unfiltered (file,\n"
1482 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1483 printf " (long) current_gdbarch->${function});\n"
1484 continue
1485 fi
1486 printf "#ifdef ${macro}\n"
72e74a21 1487 if [ "x${returntype}" = "xvoid" ]
63e69063 1488 then
08e45a40 1489 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1490 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1491 fi
2ada493a
AC
1492 if class_is_function_p
1493 then
3d9a5942
AC
1494 printf " fprintf_unfiltered (file,\n"
1495 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1496 printf " \"${macro}(${actual})\",\n"
1497 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1498 else
3d9a5942
AC
1499 printf " fprintf_unfiltered (file,\n"
1500 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1501 printf " XSTRING (${macro}));\n"
4b9b3959 1502 fi
08e45a40 1503 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1504 then
08e45a40 1505 printf "#endif\n"
4a5c6a1d 1506 fi
72e74a21 1507 if [ "x${print_p}" = "x()" ]
4b9b3959 1508 then
4a5c6a1d 1509 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1510 elif [ "x${print_p}" = "x0" ]
4b9b3959 1511 then
4a5c6a1d 1512 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1513 elif [ -n "${print_p}" ]
4b9b3959 1514 then
4a5c6a1d 1515 printf " if (${print_p})\n"
3d9a5942
AC
1516 printf " fprintf_unfiltered (file,\n"
1517 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1518 printf " ${print});\n"
4b9b3959
AC
1519 elif class_is_function_p
1520 then
3d9a5942
AC
1521 printf " if (GDB_MULTI_ARCH)\n"
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1524 printf " (long) current_gdbarch->${function}\n"
1525 printf " /*${macro} ()*/);\n"
4b9b3959 1526 else
3d9a5942
AC
1527 printf " fprintf_unfiltered (file,\n"
1528 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1529 printf " ${print});\n"
2ada493a 1530 fi
3d9a5942 1531 printf "#endif\n"
104c1213 1532done
381323f4 1533cat <<EOF
4b9b3959
AC
1534 if (current_gdbarch->dump_tdep != NULL)
1535 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1536}
1537EOF
104c1213
JM
1538
1539
1540# GET/SET
3d9a5942 1541printf "\n"
104c1213
JM
1542cat <<EOF
1543struct gdbarch_tdep *
1544gdbarch_tdep (struct gdbarch *gdbarch)
1545{
1546 if (gdbarch_debug >= 2)
3d9a5942 1547 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1548 return gdbarch->tdep;
1549}
1550EOF
3d9a5942 1551printf "\n"
34620563 1552function_list | while do_read
104c1213 1553do
2ada493a
AC
1554 if class_is_predicate_p
1555 then
3d9a5942
AC
1556 printf "\n"
1557 printf "int\n"
1558 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1559 printf "{\n"
72e74a21 1560 if [ -n "${valid_p}" ]
2ada493a 1561 then
3d9a5942 1562 printf " return ${valid_p};\n"
2ada493a 1563 else
3d9a5942 1564 printf "#error \"gdbarch_${function}_p: not defined\"\n"
2ada493a 1565 fi
3d9a5942 1566 printf "}\n"
2ada493a
AC
1567 fi
1568 if class_is_function_p
1569 then
3d9a5942
AC
1570 printf "\n"
1571 printf "${returntype}\n"
72e74a21 1572 if [ "x${formal}" = "xvoid" ]
104c1213 1573 then
3d9a5942 1574 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1575 else
3d9a5942 1576 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1577 fi
3d9a5942
AC
1578 printf "{\n"
1579 printf " if (gdbarch->${function} == 0)\n"
8e65ff28
AC
1580 printf " internal_error (__FILE__, __LINE__,\n"
1581 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
3d9a5942
AC
1582 printf " if (gdbarch_debug >= 2)\n"
1583 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1584 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1585 then
1586 if class_is_multiarch_p
1587 then
1588 params="gdbarch"
1589 else
1590 params=""
1591 fi
1592 else
1593 if class_is_multiarch_p
1594 then
1595 params="gdbarch, ${actual}"
1596 else
1597 params="${actual}"
1598 fi
1599 fi
72e74a21 1600 if [ "x${returntype}" = "xvoid" ]
104c1213 1601 then
4a5c6a1d 1602 printf " gdbarch->${function} (${params});\n"
104c1213 1603 else
4a5c6a1d 1604 printf " return gdbarch->${function} (${params});\n"
104c1213 1605 fi
3d9a5942
AC
1606 printf "}\n"
1607 printf "\n"
1608 printf "void\n"
1609 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1610 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1611 printf "{\n"
1612 printf " gdbarch->${function} = ${function};\n"
1613 printf "}\n"
2ada493a
AC
1614 elif class_is_variable_p
1615 then
3d9a5942
AC
1616 printf "\n"
1617 printf "${returntype}\n"
1618 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1619 printf "{\n"
72e74a21 1620 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1621 then
3d9a5942 1622 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1623 elif [ -n "${invalid_p}" ]
104c1213 1624 then
3d9a5942 1625 printf " if (${invalid_p})\n"
8e65ff28
AC
1626 printf " internal_error (__FILE__, __LINE__,\n"
1627 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
72e74a21 1628 elif [ -n "${predefault}" ]
104c1213 1629 then
3d9a5942 1630 printf " if (gdbarch->${function} == ${predefault})\n"
8e65ff28
AC
1631 printf " internal_error (__FILE__, __LINE__,\n"
1632 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
104c1213 1633 fi
3d9a5942
AC
1634 printf " if (gdbarch_debug >= 2)\n"
1635 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1636 printf " return gdbarch->${function};\n"
1637 printf "}\n"
1638 printf "\n"
1639 printf "void\n"
1640 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1641 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1642 printf "{\n"
1643 printf " gdbarch->${function} = ${function};\n"
1644 printf "}\n"
2ada493a
AC
1645 elif class_is_info_p
1646 then
3d9a5942
AC
1647 printf "\n"
1648 printf "${returntype}\n"
1649 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1650 printf "{\n"
1651 printf " if (gdbarch_debug >= 2)\n"
1652 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1653 printf " return gdbarch->${function};\n"
1654 printf "}\n"
2ada493a 1655 fi
104c1213
JM
1656done
1657
1658# All the trailing guff
1659cat <<EOF
1660
1661
f44c642f 1662/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1663 modules. */
1664
1665struct gdbarch_data
1666{
95160752
AC
1667 unsigned index;
1668 gdbarch_data_init_ftype *init;
1669 gdbarch_data_free_ftype *free;
104c1213
JM
1670};
1671
1672struct gdbarch_data_registration
1673{
104c1213
JM
1674 struct gdbarch_data *data;
1675 struct gdbarch_data_registration *next;
1676};
1677
f44c642f 1678struct gdbarch_data_registry
104c1213 1679{
95160752 1680 unsigned nr;
104c1213
JM
1681 struct gdbarch_data_registration *registrations;
1682};
1683
f44c642f 1684struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1685{
1686 0, NULL,
1687};
1688
1689struct gdbarch_data *
95160752
AC
1690register_gdbarch_data (gdbarch_data_init_ftype *init,
1691 gdbarch_data_free_ftype *free)
104c1213
JM
1692{
1693 struct gdbarch_data_registration **curr;
f44c642f 1694 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1695 (*curr) != NULL;
1696 curr = &(*curr)->next);
1697 (*curr) = XMALLOC (struct gdbarch_data_registration);
1698 (*curr)->next = NULL;
104c1213 1699 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1700 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752
AC
1701 (*curr)->data->init = init;
1702 (*curr)->data->free = free;
104c1213
JM
1703 return (*curr)->data;
1704}
1705
1706
b3cc3077 1707/* Walk through all the registered users initializing each in turn. */
104c1213
JM
1708
1709static void
b3cc3077 1710init_gdbarch_data (struct gdbarch *gdbarch)
104c1213 1711{
b3cc3077
JB
1712 struct gdbarch_data_registration *rego;
1713 for (rego = gdbarch_data_registry.registrations;
1714 rego != NULL;
1715 rego = rego->next)
104c1213 1716 {
b3cc3077
JB
1717 struct gdbarch_data *data = rego->data;
1718 gdb_assert (data->index < gdbarch->nr_data);
1719 if (data->init != NULL)
95160752 1720 {
b3cc3077
JB
1721 void *pointer = data->init (gdbarch);
1722 set_gdbarch_data (gdbarch, data, pointer);
95160752
AC
1723 }
1724 }
1725}
1726
b3cc3077 1727/* Create/delete the gdbarch data vector. */
95160752
AC
1728
1729static void
b3cc3077 1730alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1731{
b3cc3077
JB
1732 gdb_assert (gdbarch->data == NULL);
1733 gdbarch->nr_data = gdbarch_data_registry.nr;
1734 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1735}
3c875b6f 1736
b3cc3077
JB
1737static void
1738free_gdbarch_data (struct gdbarch *gdbarch)
1739{
1740 struct gdbarch_data_registration *rego;
1741 gdb_assert (gdbarch->data != NULL);
1742 for (rego = gdbarch_data_registry.registrations;
1743 rego != NULL;
1744 rego = rego->next)
95160752 1745 {
b3cc3077
JB
1746 struct gdbarch_data *data = rego->data;
1747 gdb_assert (data->index < gdbarch->nr_data);
1748 if (data->free != NULL && gdbarch->data[data->index] != NULL)
95160752 1749 {
b3cc3077
JB
1750 data->free (gdbarch, gdbarch->data[data->index]);
1751 gdbarch->data[data->index] = NULL;
95160752 1752 }
104c1213 1753 }
b3cc3077
JB
1754 xfree (gdbarch->data);
1755 gdbarch->data = NULL;
104c1213
JM
1756}
1757
1758
b3cc3077
JB
1759/* Initialize the current value of thee specified per-architecture
1760 data-pointer. */
1761
95160752
AC
1762void
1763set_gdbarch_data (struct gdbarch *gdbarch,
1764 struct gdbarch_data *data,
1765 void *pointer)
1766{
1767 gdb_assert (data->index < gdbarch->nr_data);
1768 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1769 data->free (gdbarch, gdbarch->data[data->index]);
1770 gdbarch->data[data->index] = pointer;
1771}
1772
104c1213
JM
1773/* Return the current value of the specified per-architecture
1774 data-pointer. */
1775
1776void *
34620563 1777gdbarch_data (struct gdbarch_data *data)
104c1213 1778{
95160752 1779 gdb_assert (data->index < current_gdbarch->nr_data);
104c1213
JM
1780 return current_gdbarch->data[data->index];
1781}
1782
1783
1784
f44c642f 1785/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1786
1787struct gdbarch_swap
1788{
1789 void *swap;
1790 struct gdbarch_swap_registration *source;
1791 struct gdbarch_swap *next;
1792};
1793
1794struct gdbarch_swap_registration
1795{
1796 void *data;
1797 unsigned long sizeof_data;
1798 gdbarch_swap_ftype *init;
1799 struct gdbarch_swap_registration *next;
1800};
1801
f44c642f 1802struct gdbarch_swap_registry
104c1213
JM
1803{
1804 int nr;
1805 struct gdbarch_swap_registration *registrations;
1806};
1807
f44c642f 1808struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1809{
1810 0, NULL,
1811};
1812
1813void
1814register_gdbarch_swap (void *data,
1815 unsigned long sizeof_data,
1816 gdbarch_swap_ftype *init)
1817{
1818 struct gdbarch_swap_registration **rego;
f44c642f 1819 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1820 (*rego) != NULL;
1821 rego = &(*rego)->next);
1822 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1823 (*rego)->next = NULL;
1824 (*rego)->init = init;
1825 (*rego)->data = data;
1826 (*rego)->sizeof_data = sizeof_data;
1827}
1828
1829
1830static void
1831init_gdbarch_swap (struct gdbarch *gdbarch)
1832{
1833 struct gdbarch_swap_registration *rego;
1834 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 1835 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1836 rego != NULL;
1837 rego = rego->next)
1838 {
1839 if (rego->data != NULL)
1840 {
1841 (*curr) = XMALLOC (struct gdbarch_swap);
1842 (*curr)->source = rego;
1843 (*curr)->swap = xmalloc (rego->sizeof_data);
1844 (*curr)->next = NULL;
1845 memset (rego->data, 0, rego->sizeof_data);
1846 curr = &(*curr)->next;
1847 }
1848 if (rego->init != NULL)
1849 rego->init ();
1850 }
1851}
1852
1853static void
1854swapout_gdbarch_swap (struct gdbarch *gdbarch)
1855{
1856 struct gdbarch_swap *curr;
1857 for (curr = gdbarch->swap;
1858 curr != NULL;
1859 curr = curr->next)
1860 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1861}
1862
1863static void
1864swapin_gdbarch_swap (struct gdbarch *gdbarch)
1865{
1866 struct gdbarch_swap *curr;
1867 for (curr = gdbarch->swap;
1868 curr != NULL;
1869 curr = curr->next)
1870 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1871}
1872
1873
f44c642f 1874/* Keep a registry of the architectures known by GDB. */
104c1213 1875
4b9b3959 1876struct gdbarch_registration
104c1213
JM
1877{
1878 enum bfd_architecture bfd_architecture;
1879 gdbarch_init_ftype *init;
4b9b3959 1880 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1881 struct gdbarch_list *arches;
4b9b3959 1882 struct gdbarch_registration *next;
104c1213
JM
1883};
1884
f44c642f 1885static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1886
b4a20239
AC
1887static void
1888append_name (const char ***buf, int *nr, const char *name)
1889{
1890 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1891 (*buf)[*nr] = name;
1892 *nr += 1;
1893}
1894
1895const char **
1896gdbarch_printable_names (void)
1897{
1898 if (GDB_MULTI_ARCH)
1899 {
1900 /* Accumulate a list of names based on the registed list of
1901 architectures. */
1902 enum bfd_architecture a;
1903 int nr_arches = 0;
1904 const char **arches = NULL;
4b9b3959 1905 struct gdbarch_registration *rego;
f44c642f 1906 for (rego = gdbarch_registry;
b4a20239
AC
1907 rego != NULL;
1908 rego = rego->next)
1909 {
1910 const struct bfd_arch_info *ap;
1911 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1912 if (ap == NULL)
8e65ff28
AC
1913 internal_error (__FILE__, __LINE__,
1914 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
1915 do
1916 {
1917 append_name (&arches, &nr_arches, ap->printable_name);
1918 ap = ap->next;
1919 }
1920 while (ap != NULL);
1921 }
1922 append_name (&arches, &nr_arches, NULL);
1923 return arches;
1924 }
1925 else
1926 /* Just return all the architectures that BFD knows. Assume that
1927 the legacy architecture framework supports them. */
1928 return bfd_arch_list ();
1929}
1930
1931
104c1213 1932void
4b9b3959
AC
1933gdbarch_register (enum bfd_architecture bfd_architecture,
1934 gdbarch_init_ftype *init,
1935 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1936{
4b9b3959 1937 struct gdbarch_registration **curr;
104c1213 1938 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1939 /* Check that BFD recognizes this architecture */
104c1213
JM
1940 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1941 if (bfd_arch_info == NULL)
1942 {
8e65ff28
AC
1943 internal_error (__FILE__, __LINE__,
1944 "gdbarch: Attempt to register unknown architecture (%d)",
1945 bfd_architecture);
104c1213
JM
1946 }
1947 /* Check that we haven't seen this architecture before */
f44c642f 1948 for (curr = &gdbarch_registry;
104c1213
JM
1949 (*curr) != NULL;
1950 curr = &(*curr)->next)
1951 {
1952 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
1953 internal_error (__FILE__, __LINE__,
1954 "gdbarch: Duplicate registraration of architecture (%s)",
1955 bfd_arch_info->printable_name);
104c1213
JM
1956 }
1957 /* log it */
1958 if (gdbarch_debug)
1959 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1960 bfd_arch_info->printable_name,
1961 (long) init);
1962 /* Append it */
4b9b3959 1963 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1964 (*curr)->bfd_architecture = bfd_architecture;
1965 (*curr)->init = init;
4b9b3959 1966 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1967 (*curr)->arches = NULL;
1968 (*curr)->next = NULL;
8e1a459b
C
1969 /* When non- multi-arch, install whatever target dump routine we've
1970 been provided - hopefully that routine has been written correctly
4b9b3959
AC
1971 and works regardless of multi-arch. */
1972 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1973 && startup_gdbarch.dump_tdep == NULL)
1974 startup_gdbarch.dump_tdep = dump_tdep;
1975}
1976
1977void
1978register_gdbarch_init (enum bfd_architecture bfd_architecture,
1979 gdbarch_init_ftype *init)
1980{
1981 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1982}
104c1213
JM
1983
1984
1985/* Look for an architecture using gdbarch_info. Base search on only
1986 BFD_ARCH_INFO and BYTE_ORDER. */
1987
1988struct gdbarch_list *
1989gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1990 const struct gdbarch_info *info)
1991{
1992 for (; arches != NULL; arches = arches->next)
1993 {
1994 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1995 continue;
1996 if (info->byte_order != arches->gdbarch->byte_order)
1997 continue;
1998 return arches;
1999 }
2000 return NULL;
2001}
2002
2003
2004/* Update the current architecture. Return ZERO if the update request
2005 failed. */
2006
2007int
16f33e29 2008gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2009{
2010 struct gdbarch *new_gdbarch;
2011 struct gdbarch_list **list;
4b9b3959 2012 struct gdbarch_registration *rego;
104c1213 2013
b732d07d
AC
2014 /* Fill in missing parts of the INFO struct using a number of
2015 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2016
2017 /* \`\`(gdb) set architecture ...'' */
2018 if (info.bfd_arch_info == NULL
2019 && !TARGET_ARCHITECTURE_AUTO)
2020 info.bfd_arch_info = TARGET_ARCHITECTURE;
2021 if (info.bfd_arch_info == NULL
2022 && info.abfd != NULL
2023 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2024 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2025 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2026 if (info.bfd_arch_info == NULL)
b732d07d
AC
2027 info.bfd_arch_info = TARGET_ARCHITECTURE;
2028
2029 /* \`\`(gdb) set byte-order ...'' */
2030 if (info.byte_order == 0
2031 && !TARGET_BYTE_ORDER_AUTO)
2032 info.byte_order = TARGET_BYTE_ORDER;
2033 /* From the INFO struct. */
2034 if (info.byte_order == 0
2035 && info.abfd != NULL)
2036 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
2037 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
2038 : 0);
2039 /* From the current target. */
104c1213 2040 if (info.byte_order == 0)
b732d07d 2041 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2042
b732d07d
AC
2043 /* Must have found some sort of architecture. */
2044 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2045
2046 if (gdbarch_debug)
2047 {
2048 fprintf_unfiltered (gdb_stdlog,
b732d07d 2049 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2050 (info.bfd_arch_info != NULL
2051 ? info.bfd_arch_info->printable_name
2052 : "(null)"));
2053 fprintf_unfiltered (gdb_stdlog,
b732d07d 2054 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213
JM
2055 info.byte_order,
2056 (info.byte_order == BIG_ENDIAN ? "big"
2057 : info.byte_order == LITTLE_ENDIAN ? "little"
2058 : "default"));
2059 fprintf_unfiltered (gdb_stdlog,
b732d07d 2060 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2061 (long) info.abfd);
2062 fprintf_unfiltered (gdb_stdlog,
b732d07d 2063 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2064 (long) info.tdep_info);
2065 }
2066
b732d07d
AC
2067 /* Find the target that knows about this architecture. */
2068 for (rego = gdbarch_registry;
2069 rego != NULL;
2070 rego = rego->next)
2071 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2072 break;
2073 if (rego == NULL)
2074 {
2075 if (gdbarch_debug)
2076 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2077 return 0;
2078 }
2079
104c1213
JM
2080 /* Ask the target for a replacement architecture. */
2081 new_gdbarch = rego->init (info, rego->arches);
2082
2083 /* Did the target like it? No. Reject the change. */
2084 if (new_gdbarch == NULL)
2085 {
2086 if (gdbarch_debug)
3d9a5942 2087 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
104c1213
JM
2088 return 0;
2089 }
2090
2091 /* Did the architecture change? No. Do nothing. */
2092 if (current_gdbarch == new_gdbarch)
2093 {
2094 if (gdbarch_debug)
3d9a5942 2095 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2096 (long) new_gdbarch,
2097 new_gdbarch->bfd_arch_info->printable_name);
2098 return 1;
2099 }
2100
2101 /* Swap all data belonging to the old target out */
2102 swapout_gdbarch_swap (current_gdbarch);
2103
2104 /* Is this a pre-existing architecture? Yes. Swap it in. */
2105 for (list = &rego->arches;
2106 (*list) != NULL;
2107 list = &(*list)->next)
2108 {
2109 if ((*list)->gdbarch == new_gdbarch)
2110 {
2111 if (gdbarch_debug)
4b9b3959 2112 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2113 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2114 (long) new_gdbarch,
2115 new_gdbarch->bfd_arch_info->printable_name);
2116 current_gdbarch = new_gdbarch;
2117 swapin_gdbarch_swap (new_gdbarch);
67c2c32c 2118 architecture_changed_event ();
104c1213
JM
2119 return 1;
2120 }
2121 }
4b9b3959 2122
104c1213
JM
2123 /* Append this new architecture to this targets list. */
2124 (*list) = XMALLOC (struct gdbarch_list);
2125 (*list)->next = NULL;
2126 (*list)->gdbarch = new_gdbarch;
2127
2128 /* Switch to this new architecture. Dump it out. */
2129 current_gdbarch = new_gdbarch;
2130 if (gdbarch_debug)
2131 {
2132 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2133 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2134 (long) new_gdbarch,
2135 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2136 }
2137
4b9b3959
AC
2138 /* Check that the newly installed architecture is valid. Plug in
2139 any post init values. */
2140 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2141 verify_gdbarch (new_gdbarch);
2142
2143 /* Initialize the per-architecture memory (swap) areas.
2144 CURRENT_GDBARCH must be update before these modules are
2145 called. */
2146 init_gdbarch_swap (new_gdbarch);
2147
b3cc3077
JB
2148 /* Initialize the per-architecture data-pointer of all parties that
2149 registered an interest in this architecture. CURRENT_GDBARCH
2150 must be updated before these modules are called. */
2151 init_gdbarch_data (new_gdbarch);
67c2c32c
KS
2152 architecture_changed_event ();
2153
4b9b3959
AC
2154 if (gdbarch_debug)
2155 gdbarch_dump (current_gdbarch, gdb_stdlog);
2156
104c1213
JM
2157 return 1;
2158}
2159
2160
104c1213
JM
2161/* Disassembler */
2162
2163/* Pointer to the target-dependent disassembly function. */
2164int (*tm_print_insn) (bfd_vma, disassemble_info *);
2165disassemble_info tm_print_insn_info;
2166
2167
104c1213 2168extern void _initialize_gdbarch (void);
b4a20239 2169
104c1213 2170void
34620563 2171_initialize_gdbarch (void)
104c1213 2172{
59233f88
AC
2173 struct cmd_list_element *c;
2174
104c1213
JM
2175 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2176 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2177 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2178 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2179 tm_print_insn_info.print_address_func = dis_asm_print_address;
2180
59233f88 2181 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2182 class_maintenance,
2183 var_zinteger,
2184 (char *)&gdbarch_debug,
3d9a5942 2185 "Set architecture debugging.\\n\\
59233f88
AC
2186When non-zero, architecture debugging is enabled.", &setdebuglist),
2187 &showdebuglist);
2188 c = add_set_cmd ("archdebug",
2189 class_maintenance,
2190 var_zinteger,
2191 (char *)&gdbarch_debug,
3d9a5942 2192 "Set architecture debugging.\\n\\
59233f88
AC
2193When non-zero, architecture debugging is enabled.", &setlist);
2194
2195 deprecate_cmd (c, "set debug arch");
2196 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2197}
2198EOF
2199
2200# close things off
2201exec 1>&2
2202#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2203compare_new gdbarch.c
This page took 0.439014 seconds and 4 git commands to generate.