* defs.h: Adjust comment.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532 24# environment.
0e05dfcb
DJ
25LANG=C ; export LANG
26LC_ALL=C ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
489# Return the adjusted address and kind to use for Z0/Z1 packets.
490# KIND is usually the memory length of the breakpoint, but may have a
491# different target-specific meaning.
0e05dfcb 492m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 493M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
494m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 496v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
497
498# A function can be addressed by either it's "pointer" (possibly a
499# descriptor address) or "entry point" (first executable instruction).
500# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 501# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
502# a simplified subset of that functionality - the function's address
503# corresponds to the "function pointer" and the function's start
504# corresponds to the "function entry point" - and hence is redundant.
505
97030eea 506v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 507
123dc839
DJ
508# Return the remote protocol register number associated with this
509# register. Normally the identity mapping.
97030eea 510m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 511
b2756930 512# Fetch the target specific address used to represent a load module.
97030eea 513F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 514#
97030eea
UW
515v:CORE_ADDR:frame_args_skip:::0:::0
516M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
518# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519# frame-base. Enable frame-base before frame-unwind.
97030eea 520F:int:frame_num_args:struct frame_info *frame:frame
104c1213 521#
97030eea
UW
522M:CORE_ADDR:frame_align:CORE_ADDR address:address
523m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524v:int:frame_red_zone_size
f0d4cc9e 525#
97030eea 526m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
527# On some machines there are bits in addresses which are not really
528# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 529# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
530# we get a "real" address such as one would find in a symbol table.
531# This is used only for addresses of instructions, and even then I'm
532# not sure it's used in all contexts. It exists to deal with there
533# being a few stray bits in the PC which would mislead us, not as some
534# sort of generic thing to handle alignment or segmentation (it's
535# possible it should be in TARGET_READ_PC instead).
24568a2c 536m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 537# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 538# gdbarch_addr_bits_remove.
24568a2c 539m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
540
541# FIXME/cagney/2001-01-18: This should be split in two. A target method that
542# indicates if the target needs software single step. An ISA method to
543# implement it.
544#
545# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546# breakpoints using the breakpoint system instead of blatting memory directly
547# (as with rs6000).
64c4637f 548#
e6590a1b
UW
549# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550# target can single step. If not, then implement single step using breakpoints.
64c4637f 551#
e6590a1b
UW
552# A return value of 1 means that the software_single_step breakpoints
553# were inserted; 0 means they were not.
97030eea 554F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 555
3352ef37
AC
556# Return non-zero if the processor is executing a delay slot and a
557# further single-step is needed before the instruction finishes.
97030eea 558M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 559# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 560# disassembler. Perhaps objdump can handle it?
97030eea
UW
561f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
563
564
cfd8ab24 565# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
566# evaluates non-zero, this is the address where the debugger will place
567# a step-resume breakpoint to get us past the dynamic linker.
97030eea 568m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 569# Some systems also have trampoline code for returning from shared libs.
e17a4113 570m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 571
c12260ac
CV
572# A target might have problems with watchpoints as soon as the stack
573# frame of the current function has been destroyed. This mostly happens
574# as the first action in a funtion's epilogue. in_function_epilogue_p()
575# is defined to return a non-zero value if either the given addr is one
576# instruction after the stack destroying instruction up to the trailing
577# return instruction or if we can figure out that the stack frame has
578# already been invalidated regardless of the value of addr. Targets
579# which don't suffer from that problem could just let this functionality
580# untouched.
97030eea 581m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
582f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
584v:int:cannot_step_breakpoint:::0:0::0
585v:int:have_nonsteppable_watchpoint:::0:0::0
586F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 589# Is a register in a group
97030eea 590m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 591# Fetch the pointer to the ith function argument.
97030eea 592F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
593
594# Return the appropriate register set for a core file section with
595# name SECT_NAME and size SECT_SIZE.
97030eea 596M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 597
959b8724
PA
598# When creating core dumps, some systems encode the PID in addition
599# to the LWP id in core file register section names. In those cases, the
600# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601# is set to true for such architectures; false if "XXX" represents an LWP
602# or thread id with no special encoding.
603v:int:core_reg_section_encodes_pid:::0:0::0
604
17ea7499
CES
605# Supported register notes in a core file.
606v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
de584861
PA
608# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609# core file into buffer READBUF with length LEN.
97030eea 610M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 611
28439f5e
PA
612# How the core_stratum layer converts a PTID from a core file to a
613# string.
614M:char *:core_pid_to_str:ptid_t ptid:ptid
615
a78c2d62
UW
616# BFD target to use when generating a core file.
617V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
0d5de010
DJ
619# If the elements of C++ vtables are in-place function descriptors rather
620# than normal function pointers (which may point to code or a descriptor),
621# set this to one.
97030eea 622v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
623
624# Set if the least significant bit of the delta is used instead of the least
625# significant bit of the pfn for pointers to virtual member functions.
97030eea 626v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
627
628# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 629F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 630
237fc4c9
PA
631# The maximum length of an instruction on this architecture.
632V:ULONGEST:max_insn_length:::0:0
633
634# Copy the instruction at FROM to TO, and make any adjustments
635# necessary to single-step it at that address.
636#
637# REGS holds the state the thread's registers will have before
638# executing the copied instruction; the PC in REGS will refer to FROM,
639# not the copy at TO. The caller should update it to point at TO later.
640#
641# Return a pointer to data of the architecture's choice to be passed
642# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643# the instruction's effects have been completely simulated, with the
644# resulting state written back to REGS.
645#
646# For a general explanation of displaced stepping and how GDB uses it,
647# see the comments in infrun.c.
648#
649# The TO area is only guaranteed to have space for
650# gdbarch_max_insn_length (arch) bytes, so this function must not
651# write more bytes than that to that area.
652#
653# If you do not provide this function, GDB assumes that the
654# architecture does not support displaced stepping.
655#
656# If your architecture doesn't need to adjust instructions before
657# single-stepping them, consider using simple_displaced_step_copy_insn
658# here.
659M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
99e40580
UW
661# Return true if GDB should use hardware single-stepping to execute
662# the displaced instruction identified by CLOSURE. If false,
663# GDB will simply restart execution at the displaced instruction
664# location, and it is up to the target to ensure GDB will receive
665# control again (e.g. by placing a software breakpoint instruction
666# into the displaced instruction buffer).
667#
668# The default implementation returns false on all targets that
669# provide a gdbarch_software_single_step routine, and true otherwise.
670m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
237fc4c9
PA
672# Fix up the state resulting from successfully single-stepping a
673# displaced instruction, to give the result we would have gotten from
674# stepping the instruction in its original location.
675#
676# REGS is the register state resulting from single-stepping the
677# displaced instruction.
678#
679# CLOSURE is the result from the matching call to
680# gdbarch_displaced_step_copy_insn.
681#
682# If you provide gdbarch_displaced_step_copy_insn.but not this
683# function, then GDB assumes that no fixup is needed after
684# single-stepping the instruction.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690# Free a closure returned by gdbarch_displaced_step_copy_insn.
691#
692# If you provide gdbarch_displaced_step_copy_insn, you must provide
693# this function as well.
694#
695# If your architecture uses closures that don't need to be freed, then
696# you can use simple_displaced_step_free_closure here.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702# Return the address of an appropriate place to put displaced
703# instructions while we step over them. There need only be one such
704# place, since we're only stepping one thread over a breakpoint at a
705# time.
706#
707# For a general explanation of displaced stepping and how GDB uses it,
708# see the comments in infrun.c.
709m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
1c772458 711# Refresh overlay mapped state for section OSECT.
97030eea 712F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 713
97030eea 714M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
715
716# Handle special encoding of static variables in stabs debug info.
97030eea 717F:char *:static_transform_name:char *name:name
203c3895 718# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 719v:int:sofun_address_maybe_missing:::0:0::0
1cded358 720
0508c3ec
HZ
721# Parse the instruction at ADDR storing in the record execution log
722# the registers REGCACHE and memory ranges that will be affected when
723# the instruction executes, along with their current values.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
3846b520
HZ
727# Save process state after a signal.
728# Return -1 if something goes wrong, 0 otherwise.
729M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
1cded358
AR
731# Signal translation: translate inferior's signal (host's) number into
732# GDB's representation.
733m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734# Signal translation: translate GDB's signal number into inferior's host
735# signal number.
736m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 737
4aa995e1
PA
738# Extra signal info inspection.
739#
740# Return a type suitable to inspect extra signal information.
741M:struct type *:get_siginfo_type:void:
742
60c5725c
DJ
743# Record architecture-specific information from the symbol table.
744M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 745
a96d9b2e
SDJ
746# Function for the 'catch syscall' feature.
747
748# Get architecture-specific system calls information from registers.
749M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
50c71eaf
PA
751# True if the list of shared libraries is one and only for all
752# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
753# This usually means that all processes, although may or may not share
754# an address space, will see the same set of symbols at the same
755# addresses.
50c71eaf 756v:int:has_global_solist:::0:0::0
2567c7d9
PA
757
758# On some targets, even though each inferior has its own private
759# address space, the debug interface takes care of making breakpoints
760# visible to all address spaces automatically. For such cases,
761# this property should be set to true.
762v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
763
764# True if inferiors share an address space (e.g., uClinux).
765m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
766
767# True if a fast tracepoint can be set at an address.
768m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9
L
769
770# Not NULL if a target has additonal field for qSupported.
771v:const char *:qsupported:::0:0::0:gdbarch->qsupported
f870a310
TT
772
773# Return the "auto" target charset.
774f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
775# Return the "auto" target wide charset.
776f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
777
778# If non-empty, this is a file extension that will be opened in place
779# of the file extension reported by the shared library list.
780#
781# This is most useful for toolchains that use a post-linker tool,
782# where the names of the files run on the target differ in extension
783# compared to the names of the files GDB should load for debug info.
784v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
785
786# If true, the target OS has DOS-based file system semantics. That
787# is, absolute paths include a drive name, and the backslash is
788# considered a directory separator.
789v:int:has_dos_based_file_system:::0:0::0
104c1213 790EOF
104c1213
JM
791}
792
0b8f9e4d
AC
793#
794# The .log file
795#
796exec > new-gdbarch.log
34620563 797function_list | while do_read
0b8f9e4d
AC
798do
799 cat <<EOF
2f9b146e 800${class} ${returntype} ${function} ($formal)
104c1213 801EOF
3d9a5942
AC
802 for r in ${read}
803 do
804 eval echo \"\ \ \ \ ${r}=\${${r}}\"
805 done
f0d4cc9e 806 if class_is_predicate_p && fallback_default_p
0b8f9e4d 807 then
66d659b1 808 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
809 kill $$
810 exit 1
811 fi
72e74a21 812 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
813 then
814 echo "Error: postdefault is useless when invalid_p=0" 1>&2
815 kill $$
816 exit 1
817 fi
a72293e2
AC
818 if class_is_multiarch_p
819 then
820 if class_is_predicate_p ; then :
821 elif test "x${predefault}" = "x"
822 then
2f9b146e 823 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
824 kill $$
825 exit 1
826 fi
827 fi
3d9a5942 828 echo ""
0b8f9e4d
AC
829done
830
831exec 1>&2
832compare_new gdbarch.log
833
104c1213
JM
834
835copyright ()
836{
837cat <<EOF
59233f88
AC
838/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
839
104c1213 840/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 841
f801e1e0
MS
842 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
843 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
844
845 This file is part of GDB.
846
847 This program is free software; you can redistribute it and/or modify
848 it under the terms of the GNU General Public License as published by
50efebf8 849 the Free Software Foundation; either version 3 of the License, or
104c1213 850 (at your option) any later version.
50efebf8 851
104c1213
JM
852 This program is distributed in the hope that it will be useful,
853 but WITHOUT ANY WARRANTY; without even the implied warranty of
854 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
855 GNU General Public License for more details.
50efebf8 856
104c1213 857 You should have received a copy of the GNU General Public License
50efebf8 858 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 859
104c1213
JM
860/* This file was created with the aid of \`\`gdbarch.sh''.
861
52204a0b 862 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
863 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
864 against the existing \`\`gdbarch.[hc]''. Any differences found
865 being reported.
866
867 If editing this file, please also run gdbarch.sh and merge any
52204a0b 868 changes into that script. Conversely, when making sweeping changes
104c1213
JM
869 to this file, modifying gdbarch.sh and using its output may prove
870 easier. */
871
872EOF
873}
874
875#
876# The .h file
877#
878
879exec > new-gdbarch.h
880copyright
881cat <<EOF
882#ifndef GDBARCH_H
883#define GDBARCH_H
884
da3331ec
AC
885struct floatformat;
886struct ui_file;
104c1213
JM
887struct frame_info;
888struct value;
b6af0555 889struct objfile;
1c772458 890struct obj_section;
a2cf933a 891struct minimal_symbol;
049ee0e4 892struct regcache;
b59ff9d5 893struct reggroup;
6ce6d90f 894struct regset;
a89aa300 895struct disassemble_info;
e2d0e7eb 896struct target_ops;
030f20e1 897struct obstack;
8181d85f 898struct bp_target_info;
424163ea 899struct target_desc;
237fc4c9 900struct displaced_step_closure;
17ea7499 901struct core_regset_section;
a96d9b2e 902struct syscall;
104c1213 903
9e2ace22
JB
904/* The architecture associated with the connection to the target.
905
906 The architecture vector provides some information that is really
907 a property of the target: The layout of certain packets, for instance;
908 or the solib_ops vector. Etc. To differentiate architecture accesses
909 to per-target properties from per-thread/per-frame/per-objfile properties,
910 accesses to per-target properties should be made through target_gdbarch.
911
912 Eventually, when support for multiple targets is implemented in
913 GDB, this global should be made target-specific. */
1cf3db46 914extern struct gdbarch *target_gdbarch;
104c1213
JM
915EOF
916
917# function typedef's
3d9a5942
AC
918printf "\n"
919printf "\n"
920printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 921function_list | while do_read
104c1213 922do
2ada493a
AC
923 if class_is_info_p
924 then
3d9a5942
AC
925 printf "\n"
926 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
927 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 928 fi
104c1213
JM
929done
930
931# function typedef's
3d9a5942
AC
932printf "\n"
933printf "\n"
934printf "/* The following are initialized by the target dependent code. */\n"
34620563 935function_list | while do_read
104c1213 936do
72e74a21 937 if [ -n "${comment}" ]
34620563
AC
938 then
939 echo "${comment}" | sed \
940 -e '2 s,#,/*,' \
941 -e '3,$ s,#, ,' \
942 -e '$ s,$, */,'
943 fi
412d5987
AC
944
945 if class_is_predicate_p
2ada493a 946 then
412d5987
AC
947 printf "\n"
948 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 949 fi
2ada493a
AC
950 if class_is_variable_p
951 then
3d9a5942
AC
952 printf "\n"
953 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
954 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
955 fi
956 if class_is_function_p
957 then
3d9a5942 958 printf "\n"
72e74a21 959 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
960 then
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
962 elif class_is_multiarch_p
963 then
964 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
965 else
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
967 fi
72e74a21 968 if [ "x${formal}" = "xvoid" ]
104c1213 969 then
3d9a5942 970 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 971 else
3d9a5942 972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 973 fi
3d9a5942 974 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 975 fi
104c1213
JM
976done
977
978# close it off
979cat <<EOF
980
a96d9b2e
SDJ
981/* Definition for an unknown syscall, used basically in error-cases. */
982#define UNKNOWN_SYSCALL (-1)
983
104c1213
JM
984extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
985
986
987/* Mechanism for co-ordinating the selection of a specific
988 architecture.
989
990 GDB targets (*-tdep.c) can register an interest in a specific
991 architecture. Other GDB components can register a need to maintain
992 per-architecture data.
993
994 The mechanisms below ensures that there is only a loose connection
995 between the set-architecture command and the various GDB
0fa6923a 996 components. Each component can independently register their need
104c1213
JM
997 to maintain architecture specific data with gdbarch.
998
999 Pragmatics:
1000
1001 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1002 didn't scale.
1003
1004 The more traditional mega-struct containing architecture specific
1005 data for all the various GDB components was also considered. Since
0fa6923a 1006 GDB is built from a variable number of (fairly independent)
104c1213
JM
1007 components it was determined that the global aproach was not
1008 applicable. */
1009
1010
1011/* Register a new architectural family with GDB.
1012
1013 Register support for the specified ARCHITECTURE with GDB. When
1014 gdbarch determines that the specified architecture has been
1015 selected, the corresponding INIT function is called.
1016
1017 --
1018
1019 The INIT function takes two parameters: INFO which contains the
1020 information available to gdbarch about the (possibly new)
1021 architecture; ARCHES which is a list of the previously created
1022 \`\`struct gdbarch'' for this architecture.
1023
0f79675b 1024 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1025 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1026
1027 The ARCHES parameter is a linked list (sorted most recently used)
1028 of all the previously created architures for this architecture
1029 family. The (possibly NULL) ARCHES->gdbarch can used to access
1030 values from the previously selected architecture for this
59837fe0 1031 architecture family.
104c1213
JM
1032
1033 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1034 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1035 gdbarch'' from the ARCHES list - indicating that the new
1036 architecture is just a synonym for an earlier architecture (see
1037 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1038 - that describes the selected architecture (see gdbarch_alloc()).
1039
1040 The DUMP_TDEP function shall print out all target specific values.
1041 Care should be taken to ensure that the function works in both the
1042 multi-arch and non- multi-arch cases. */
104c1213
JM
1043
1044struct gdbarch_list
1045{
1046 struct gdbarch *gdbarch;
1047 struct gdbarch_list *next;
1048};
1049
1050struct gdbarch_info
1051{
104c1213
JM
1052 /* Use default: NULL (ZERO). */
1053 const struct bfd_arch_info *bfd_arch_info;
1054
428721aa 1055 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1056 int byte_order;
1057
9d4fde75
SS
1058 int byte_order_for_code;
1059
104c1213
JM
1060 /* Use default: NULL (ZERO). */
1061 bfd *abfd;
1062
1063 /* Use default: NULL (ZERO). */
1064 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1065
1066 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1067 enum gdb_osabi osabi;
424163ea
DJ
1068
1069 /* Use default: NULL (ZERO). */
1070 const struct target_desc *target_desc;
104c1213
JM
1071};
1072
1073typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1074typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1075
4b9b3959 1076/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1077extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1078
4b9b3959
AC
1079extern void gdbarch_register (enum bfd_architecture architecture,
1080 gdbarch_init_ftype *,
1081 gdbarch_dump_tdep_ftype *);
1082
104c1213 1083
b4a20239
AC
1084/* Return a freshly allocated, NULL terminated, array of the valid
1085 architecture names. Since architectures are registered during the
1086 _initialize phase this function only returns useful information
1087 once initialization has been completed. */
1088
1089extern const char **gdbarch_printable_names (void);
1090
1091
104c1213
JM
1092/* Helper function. Search the list of ARCHES for a GDBARCH that
1093 matches the information provided by INFO. */
1094
424163ea 1095extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1096
1097
1098/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1099 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1100 parameters. set_gdbarch_*() functions are called to complete the
1101 initialization of the object. */
1102
1103extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1104
1105
4b9b3959
AC
1106/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1107 It is assumed that the caller freeds the \`\`struct
1108 gdbarch_tdep''. */
1109
058f20d5
JB
1110extern void gdbarch_free (struct gdbarch *);
1111
1112
aebd7893
AC
1113/* Helper function. Allocate memory from the \`\`struct gdbarch''
1114 obstack. The memory is freed when the corresponding architecture
1115 is also freed. */
1116
1117extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1118#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1119#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1120
1121
b732d07d 1122/* Helper function. Force an update of the current architecture.
104c1213 1123
b732d07d
AC
1124 The actual architecture selected is determined by INFO, \`\`(gdb) set
1125 architecture'' et.al., the existing architecture and BFD's default
1126 architecture. INFO should be initialized to zero and then selected
1127 fields should be updated.
104c1213 1128
16f33e29
AC
1129 Returns non-zero if the update succeeds */
1130
1131extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1132
1133
ebdba546
AC
1134/* Helper function. Find an architecture matching info.
1135
1136 INFO should be initialized using gdbarch_info_init, relevant fields
1137 set, and then finished using gdbarch_info_fill.
1138
1139 Returns the corresponding architecture, or NULL if no matching
59837fe0 1140 architecture was found. */
ebdba546
AC
1141
1142extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1143
1144
59837fe0 1145/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1146
1147 FIXME: kettenis/20031124: Of the functions that follow, only
1148 gdbarch_from_bfd is supposed to survive. The others will
1149 dissappear since in the future GDB will (hopefully) be truly
1150 multi-arch. However, for now we're still stuck with the concept of
1151 a single active architecture. */
1152
59837fe0 1153extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1154
104c1213
JM
1155
1156/* Register per-architecture data-pointer.
1157
1158 Reserve space for a per-architecture data-pointer. An identifier
1159 for the reserved data-pointer is returned. That identifer should
95160752 1160 be saved in a local static variable.
104c1213 1161
fcc1c85c
AC
1162 Memory for the per-architecture data shall be allocated using
1163 gdbarch_obstack_zalloc. That memory will be deleted when the
1164 corresponding architecture object is deleted.
104c1213 1165
95160752
AC
1166 When a previously created architecture is re-selected, the
1167 per-architecture data-pointer for that previous architecture is
76860b5f 1168 restored. INIT() is not re-called.
104c1213
JM
1169
1170 Multiple registrarants for any architecture are allowed (and
1171 strongly encouraged). */
1172
95160752 1173struct gdbarch_data;
104c1213 1174
030f20e1
AC
1175typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1176extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1177typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1178extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1179extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1180 struct gdbarch_data *data,
1181 void *pointer);
104c1213 1182
451fbdda 1183extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1184
1185
0fa6923a 1186/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1187 byte-order, ...) using information found in the BFD */
1188
1189extern void set_gdbarch_from_file (bfd *);
1190
1191
e514a9d6
JM
1192/* Initialize the current architecture to the "first" one we find on
1193 our list. */
1194
1195extern void initialize_current_architecture (void);
1196
104c1213
JM
1197/* gdbarch trace variable */
1198extern int gdbarch_debug;
1199
4b9b3959 1200extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1201
1202#endif
1203EOF
1204exec 1>&2
1205#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1206compare_new gdbarch.h
104c1213
JM
1207
1208
1209#
1210# C file
1211#
1212
1213exec > new-gdbarch.c
1214copyright
1215cat <<EOF
1216
1217#include "defs.h"
7355ddba 1218#include "arch-utils.h"
104c1213 1219
104c1213 1220#include "gdbcmd.h"
faaf634c 1221#include "inferior.h"
104c1213
JM
1222#include "symcat.h"
1223
f0d4cc9e 1224#include "floatformat.h"
104c1213 1225
95160752 1226#include "gdb_assert.h"
b66d6d2e 1227#include "gdb_string.h"
b59ff9d5 1228#include "reggroups.h"
4be87837 1229#include "osabi.h"
aebd7893 1230#include "gdb_obstack.h"
383f836e 1231#include "observer.h"
a3ecef73 1232#include "regcache.h"
95160752 1233
104c1213
JM
1234/* Static function declarations */
1235
b3cc3077 1236static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1237
104c1213
JM
1238/* Non-zero if we want to trace architecture code. */
1239
1240#ifndef GDBARCH_DEBUG
1241#define GDBARCH_DEBUG 0
1242#endif
1243int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1244static void
1245show_gdbarch_debug (struct ui_file *file, int from_tty,
1246 struct cmd_list_element *c, const char *value)
1247{
1248 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1249}
104c1213 1250
456fcf94 1251static const char *
8da61cc4 1252pformat (const struct floatformat **format)
456fcf94
AC
1253{
1254 if (format == NULL)
1255 return "(null)";
1256 else
8da61cc4
DJ
1257 /* Just print out one of them - this is only for diagnostics. */
1258 return format[0]->name;
456fcf94
AC
1259}
1260
08105857
PA
1261static const char *
1262pstring (const char *string)
1263{
1264 if (string == NULL)
1265 return "(null)";
1266 return string;
1267}
1268
104c1213
JM
1269EOF
1270
1271# gdbarch open the gdbarch object
3d9a5942
AC
1272printf "\n"
1273printf "/* Maintain the struct gdbarch object */\n"
1274printf "\n"
1275printf "struct gdbarch\n"
1276printf "{\n"
76860b5f
AC
1277printf " /* Has this architecture been fully initialized? */\n"
1278printf " int initialized_p;\n"
aebd7893
AC
1279printf "\n"
1280printf " /* An obstack bound to the lifetime of the architecture. */\n"
1281printf " struct obstack *obstack;\n"
1282printf "\n"
3d9a5942 1283printf " /* basic architectural information */\n"
34620563 1284function_list | while do_read
104c1213 1285do
2ada493a
AC
1286 if class_is_info_p
1287 then
3d9a5942 1288 printf " ${returntype} ${function};\n"
2ada493a 1289 fi
104c1213 1290done
3d9a5942
AC
1291printf "\n"
1292printf " /* target specific vector. */\n"
1293printf " struct gdbarch_tdep *tdep;\n"
1294printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1295printf "\n"
1296printf " /* per-architecture data-pointers */\n"
95160752 1297printf " unsigned nr_data;\n"
3d9a5942
AC
1298printf " void **data;\n"
1299printf "\n"
1300printf " /* per-architecture swap-regions */\n"
1301printf " struct gdbarch_swap *swap;\n"
1302printf "\n"
104c1213
JM
1303cat <<EOF
1304 /* Multi-arch values.
1305
1306 When extending this structure you must:
1307
1308 Add the field below.
1309
1310 Declare set/get functions and define the corresponding
1311 macro in gdbarch.h.
1312
1313 gdbarch_alloc(): If zero/NULL is not a suitable default,
1314 initialize the new field.
1315
1316 verify_gdbarch(): Confirm that the target updated the field
1317 correctly.
1318
7e73cedf 1319 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1320 field is dumped out
1321
c0e8c252 1322 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1323 variable (base values on the host's c-type system).
1324
1325 get_gdbarch(): Implement the set/get functions (probably using
1326 the macro's as shortcuts).
1327
1328 */
1329
1330EOF
34620563 1331function_list | while do_read
104c1213 1332do
2ada493a
AC
1333 if class_is_variable_p
1334 then
3d9a5942 1335 printf " ${returntype} ${function};\n"
2ada493a
AC
1336 elif class_is_function_p
1337 then
2f9b146e 1338 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1339 fi
104c1213 1340done
3d9a5942 1341printf "};\n"
104c1213
JM
1342
1343# A pre-initialized vector
3d9a5942
AC
1344printf "\n"
1345printf "\n"
104c1213
JM
1346cat <<EOF
1347/* The default architecture uses host values (for want of a better
1348 choice). */
1349EOF
3d9a5942
AC
1350printf "\n"
1351printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1352printf "\n"
1353printf "struct gdbarch startup_gdbarch =\n"
1354printf "{\n"
76860b5f 1355printf " 1, /* Always initialized. */\n"
aebd7893 1356printf " NULL, /* The obstack. */\n"
3d9a5942 1357printf " /* basic architecture information */\n"
4b9b3959 1358function_list | while do_read
104c1213 1359do
2ada493a
AC
1360 if class_is_info_p
1361 then
ec5cbaec 1362 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1363 fi
104c1213
JM
1364done
1365cat <<EOF
4b9b3959
AC
1366 /* target specific vector and its dump routine */
1367 NULL, NULL,
104c1213
JM
1368 /*per-architecture data-pointers and swap regions */
1369 0, NULL, NULL,
1370 /* Multi-arch values */
1371EOF
34620563 1372function_list | while do_read
104c1213 1373do
2ada493a
AC
1374 if class_is_function_p || class_is_variable_p
1375 then
ec5cbaec 1376 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1377 fi
104c1213
JM
1378done
1379cat <<EOF
c0e8c252 1380 /* startup_gdbarch() */
104c1213 1381};
4b9b3959 1382
1cf3db46 1383struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1384EOF
1385
1386# Create a new gdbarch struct
104c1213 1387cat <<EOF
7de2341d 1388
66b43ecb 1389/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1390 \`\`struct gdbarch_info''. */
1391EOF
3d9a5942 1392printf "\n"
104c1213
JM
1393cat <<EOF
1394struct gdbarch *
1395gdbarch_alloc (const struct gdbarch_info *info,
1396 struct gdbarch_tdep *tdep)
1397{
be7811ad 1398 struct gdbarch *gdbarch;
aebd7893
AC
1399
1400 /* Create an obstack for allocating all the per-architecture memory,
1401 then use that to allocate the architecture vector. */
1402 struct obstack *obstack = XMALLOC (struct obstack);
1403 obstack_init (obstack);
be7811ad
MD
1404 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1405 memset (gdbarch, 0, sizeof (*gdbarch));
1406 gdbarch->obstack = obstack;
85de9627 1407
be7811ad 1408 alloc_gdbarch_data (gdbarch);
85de9627 1409
be7811ad 1410 gdbarch->tdep = tdep;
104c1213 1411EOF
3d9a5942 1412printf "\n"
34620563 1413function_list | while do_read
104c1213 1414do
2ada493a
AC
1415 if class_is_info_p
1416 then
be7811ad 1417 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1418 fi
104c1213 1419done
3d9a5942
AC
1420printf "\n"
1421printf " /* Force the explicit initialization of these. */\n"
34620563 1422function_list | while do_read
104c1213 1423do
2ada493a
AC
1424 if class_is_function_p || class_is_variable_p
1425 then
72e74a21 1426 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1427 then
be7811ad 1428 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1429 fi
2ada493a 1430 fi
104c1213
JM
1431done
1432cat <<EOF
1433 /* gdbarch_alloc() */
1434
be7811ad 1435 return gdbarch;
104c1213
JM
1436}
1437EOF
1438
058f20d5 1439# Free a gdbarch struct.
3d9a5942
AC
1440printf "\n"
1441printf "\n"
058f20d5 1442cat <<EOF
aebd7893
AC
1443/* Allocate extra space using the per-architecture obstack. */
1444
1445void *
1446gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1447{
1448 void *data = obstack_alloc (arch->obstack, size);
1449 memset (data, 0, size);
1450 return data;
1451}
1452
1453
058f20d5
JB
1454/* Free a gdbarch struct. This should never happen in normal
1455 operation --- once you've created a gdbarch, you keep it around.
1456 However, if an architecture's init function encounters an error
1457 building the structure, it may need to clean up a partially
1458 constructed gdbarch. */
4b9b3959 1459
058f20d5
JB
1460void
1461gdbarch_free (struct gdbarch *arch)
1462{
aebd7893 1463 struct obstack *obstack;
95160752 1464 gdb_assert (arch != NULL);
aebd7893
AC
1465 gdb_assert (!arch->initialized_p);
1466 obstack = arch->obstack;
1467 obstack_free (obstack, 0); /* Includes the ARCH. */
1468 xfree (obstack);
058f20d5
JB
1469}
1470EOF
1471
104c1213 1472# verify a new architecture
104c1213 1473cat <<EOF
db446970
AC
1474
1475
1476/* Ensure that all values in a GDBARCH are reasonable. */
1477
104c1213 1478static void
be7811ad 1479verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1480{
f16a1923
AC
1481 struct ui_file *log;
1482 struct cleanup *cleanups;
759ef836 1483 long length;
f16a1923 1484 char *buf;
f16a1923
AC
1485 log = mem_fileopen ();
1486 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1487 /* fundamental */
be7811ad 1488 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1489 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1490 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1491 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1492 /* Check those that need to be defined for the given multi-arch level. */
1493EOF
34620563 1494function_list | while do_read
104c1213 1495do
2ada493a
AC
1496 if class_is_function_p || class_is_variable_p
1497 then
72e74a21 1498 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1499 then
3d9a5942 1500 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1501 elif class_is_predicate_p
1502 then
3d9a5942 1503 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1504 # FIXME: See do_read for potential simplification
72e74a21 1505 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1506 then
3d9a5942 1507 printf " if (${invalid_p})\n"
be7811ad 1508 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1509 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1510 then
be7811ad
MD
1511 printf " if (gdbarch->${function} == ${predefault})\n"
1512 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1513 elif [ -n "${postdefault}" ]
f0d4cc9e 1514 then
be7811ad
MD
1515 printf " if (gdbarch->${function} == 0)\n"
1516 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1517 elif [ -n "${invalid_p}" ]
104c1213 1518 then
4d60522e 1519 printf " if (${invalid_p})\n"
f16a1923 1520 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1521 elif [ -n "${predefault}" ]
104c1213 1522 then
be7811ad 1523 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1524 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1525 fi
2ada493a 1526 fi
104c1213
JM
1527done
1528cat <<EOF
759ef836 1529 buf = ui_file_xstrdup (log, &length);
f16a1923 1530 make_cleanup (xfree, buf);
759ef836 1531 if (length > 0)
f16a1923 1532 internal_error (__FILE__, __LINE__,
85c07804 1533 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1534 buf);
1535 do_cleanups (cleanups);
104c1213
JM
1536}
1537EOF
1538
1539# dump the structure
3d9a5942
AC
1540printf "\n"
1541printf "\n"
104c1213 1542cat <<EOF
4b9b3959
AC
1543/* Print out the details of the current architecture. */
1544
104c1213 1545void
be7811ad 1546gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1547{
b78960be 1548 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1549#if defined (GDB_NM_FILE)
1550 gdb_nm_file = GDB_NM_FILE;
1551#endif
1552 fprintf_unfiltered (file,
1553 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1554 gdb_nm_file);
104c1213 1555EOF
97030eea 1556function_list | sort -t: -k 3 | while do_read
104c1213 1557do
1e9f55d0
AC
1558 # First the predicate
1559 if class_is_predicate_p
1560 then
7996bcec 1561 printf " fprintf_unfiltered (file,\n"
48f7351b 1562 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1563 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1564 fi
48f7351b 1565 # Print the corresponding value.
283354d8 1566 if class_is_function_p
4b9b3959 1567 then
7996bcec 1568 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1569 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1570 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1571 else
48f7351b 1572 # It is a variable
2f9b146e
AC
1573 case "${print}:${returntype}" in
1574 :CORE_ADDR )
0b1553bc
UW
1575 fmt="%s"
1576 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1577 ;;
2f9b146e 1578 :* )
48f7351b 1579 fmt="%s"
623d3eb1 1580 print="plongest (gdbarch->${function})"
48f7351b
AC
1581 ;;
1582 * )
2f9b146e 1583 fmt="%s"
48f7351b
AC
1584 ;;
1585 esac
3d9a5942 1586 printf " fprintf_unfiltered (file,\n"
48f7351b 1587 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1588 printf " ${print});\n"
2ada493a 1589 fi
104c1213 1590done
381323f4 1591cat <<EOF
be7811ad
MD
1592 if (gdbarch->dump_tdep != NULL)
1593 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1594}
1595EOF
104c1213
JM
1596
1597
1598# GET/SET
3d9a5942 1599printf "\n"
104c1213
JM
1600cat <<EOF
1601struct gdbarch_tdep *
1602gdbarch_tdep (struct gdbarch *gdbarch)
1603{
1604 if (gdbarch_debug >= 2)
3d9a5942 1605 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1606 return gdbarch->tdep;
1607}
1608EOF
3d9a5942 1609printf "\n"
34620563 1610function_list | while do_read
104c1213 1611do
2ada493a
AC
1612 if class_is_predicate_p
1613 then
3d9a5942
AC
1614 printf "\n"
1615 printf "int\n"
1616 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1617 printf "{\n"
8de9bdc4 1618 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1619 printf " return ${predicate};\n"
3d9a5942 1620 printf "}\n"
2ada493a
AC
1621 fi
1622 if class_is_function_p
1623 then
3d9a5942
AC
1624 printf "\n"
1625 printf "${returntype}\n"
72e74a21 1626 if [ "x${formal}" = "xvoid" ]
104c1213 1627 then
3d9a5942 1628 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1629 else
3d9a5942 1630 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1631 fi
3d9a5942 1632 printf "{\n"
8de9bdc4 1633 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1634 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1635 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1636 then
1637 # Allow a call to a function with a predicate.
956ac328 1638 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1639 fi
3d9a5942
AC
1640 printf " if (gdbarch_debug >= 2)\n"
1641 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1642 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1643 then
1644 if class_is_multiarch_p
1645 then
1646 params="gdbarch"
1647 else
1648 params=""
1649 fi
1650 else
1651 if class_is_multiarch_p
1652 then
1653 params="gdbarch, ${actual}"
1654 else
1655 params="${actual}"
1656 fi
1657 fi
72e74a21 1658 if [ "x${returntype}" = "xvoid" ]
104c1213 1659 then
4a5c6a1d 1660 printf " gdbarch->${function} (${params});\n"
104c1213 1661 else
4a5c6a1d 1662 printf " return gdbarch->${function} (${params});\n"
104c1213 1663 fi
3d9a5942
AC
1664 printf "}\n"
1665 printf "\n"
1666 printf "void\n"
1667 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1668 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1669 printf "{\n"
1670 printf " gdbarch->${function} = ${function};\n"
1671 printf "}\n"
2ada493a
AC
1672 elif class_is_variable_p
1673 then
3d9a5942
AC
1674 printf "\n"
1675 printf "${returntype}\n"
1676 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1677 printf "{\n"
8de9bdc4 1678 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1679 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1680 then
3d9a5942 1681 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1682 elif [ -n "${invalid_p}" ]
104c1213 1683 then
956ac328
AC
1684 printf " /* Check variable is valid. */\n"
1685 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1686 elif [ -n "${predefault}" ]
104c1213 1687 then
956ac328
AC
1688 printf " /* Check variable changed from pre-default. */\n"
1689 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1690 fi
3d9a5942
AC
1691 printf " if (gdbarch_debug >= 2)\n"
1692 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1693 printf " return gdbarch->${function};\n"
1694 printf "}\n"
1695 printf "\n"
1696 printf "void\n"
1697 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1698 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1699 printf "{\n"
1700 printf " gdbarch->${function} = ${function};\n"
1701 printf "}\n"
2ada493a
AC
1702 elif class_is_info_p
1703 then
3d9a5942
AC
1704 printf "\n"
1705 printf "${returntype}\n"
1706 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1707 printf "{\n"
8de9bdc4 1708 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1709 printf " if (gdbarch_debug >= 2)\n"
1710 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1711 printf " return gdbarch->${function};\n"
1712 printf "}\n"
2ada493a 1713 fi
104c1213
JM
1714done
1715
1716# All the trailing guff
1717cat <<EOF
1718
1719
f44c642f 1720/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1721 modules. */
1722
1723struct gdbarch_data
1724{
95160752 1725 unsigned index;
76860b5f 1726 int init_p;
030f20e1
AC
1727 gdbarch_data_pre_init_ftype *pre_init;
1728 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1729};
1730
1731struct gdbarch_data_registration
1732{
104c1213
JM
1733 struct gdbarch_data *data;
1734 struct gdbarch_data_registration *next;
1735};
1736
f44c642f 1737struct gdbarch_data_registry
104c1213 1738{
95160752 1739 unsigned nr;
104c1213
JM
1740 struct gdbarch_data_registration *registrations;
1741};
1742
f44c642f 1743struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1744{
1745 0, NULL,
1746};
1747
030f20e1
AC
1748static struct gdbarch_data *
1749gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1750 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1751{
1752 struct gdbarch_data_registration **curr;
76860b5f 1753 /* Append the new registraration. */
f44c642f 1754 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1755 (*curr) != NULL;
1756 curr = &(*curr)->next);
1757 (*curr) = XMALLOC (struct gdbarch_data_registration);
1758 (*curr)->next = NULL;
104c1213 1759 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1760 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1761 (*curr)->data->pre_init = pre_init;
1762 (*curr)->data->post_init = post_init;
76860b5f 1763 (*curr)->data->init_p = 1;
104c1213
JM
1764 return (*curr)->data;
1765}
1766
030f20e1
AC
1767struct gdbarch_data *
1768gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1769{
1770 return gdbarch_data_register (pre_init, NULL);
1771}
1772
1773struct gdbarch_data *
1774gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1775{
1776 return gdbarch_data_register (NULL, post_init);
1777}
104c1213 1778
b3cc3077 1779/* Create/delete the gdbarch data vector. */
95160752
AC
1780
1781static void
b3cc3077 1782alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1783{
b3cc3077
JB
1784 gdb_assert (gdbarch->data == NULL);
1785 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1786 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1787}
3c875b6f 1788
76860b5f 1789/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1790 data-pointer. */
1791
95160752 1792void
030f20e1
AC
1793deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1794 struct gdbarch_data *data,
1795 void *pointer)
95160752
AC
1796{
1797 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1798 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1799 gdb_assert (data->pre_init == NULL);
95160752
AC
1800 gdbarch->data[data->index] = pointer;
1801}
1802
104c1213
JM
1803/* Return the current value of the specified per-architecture
1804 data-pointer. */
1805
1806void *
451fbdda 1807gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1808{
451fbdda 1809 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1810 if (gdbarch->data[data->index] == NULL)
76860b5f 1811 {
030f20e1
AC
1812 /* The data-pointer isn't initialized, call init() to get a
1813 value. */
1814 if (data->pre_init != NULL)
1815 /* Mid architecture creation: pass just the obstack, and not
1816 the entire architecture, as that way it isn't possible for
1817 pre-init code to refer to undefined architecture
1818 fields. */
1819 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1820 else if (gdbarch->initialized_p
1821 && data->post_init != NULL)
1822 /* Post architecture creation: pass the entire architecture
1823 (as all fields are valid), but be careful to also detect
1824 recursive references. */
1825 {
1826 gdb_assert (data->init_p);
1827 data->init_p = 0;
1828 gdbarch->data[data->index] = data->post_init (gdbarch);
1829 data->init_p = 1;
1830 }
1831 else
1832 /* The architecture initialization hasn't completed - punt -
1833 hope that the caller knows what they are doing. Once
1834 deprecated_set_gdbarch_data has been initialized, this can be
1835 changed to an internal error. */
1836 return NULL;
76860b5f
AC
1837 gdb_assert (gdbarch->data[data->index] != NULL);
1838 }
451fbdda 1839 return gdbarch->data[data->index];
104c1213
JM
1840}
1841
1842
f44c642f 1843/* Keep a registry of the architectures known by GDB. */
104c1213 1844
4b9b3959 1845struct gdbarch_registration
104c1213
JM
1846{
1847 enum bfd_architecture bfd_architecture;
1848 gdbarch_init_ftype *init;
4b9b3959 1849 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1850 struct gdbarch_list *arches;
4b9b3959 1851 struct gdbarch_registration *next;
104c1213
JM
1852};
1853
f44c642f 1854static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1855
b4a20239
AC
1856static void
1857append_name (const char ***buf, int *nr, const char *name)
1858{
1859 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1860 (*buf)[*nr] = name;
1861 *nr += 1;
1862}
1863
1864const char **
1865gdbarch_printable_names (void)
1866{
7996bcec
AC
1867 /* Accumulate a list of names based on the registed list of
1868 architectures. */
1869 enum bfd_architecture a;
1870 int nr_arches = 0;
1871 const char **arches = NULL;
1872 struct gdbarch_registration *rego;
1873 for (rego = gdbarch_registry;
1874 rego != NULL;
1875 rego = rego->next)
b4a20239 1876 {
7996bcec
AC
1877 const struct bfd_arch_info *ap;
1878 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1879 if (ap == NULL)
1880 internal_error (__FILE__, __LINE__,
85c07804 1881 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1882 do
1883 {
1884 append_name (&arches, &nr_arches, ap->printable_name);
1885 ap = ap->next;
1886 }
1887 while (ap != NULL);
b4a20239 1888 }
7996bcec
AC
1889 append_name (&arches, &nr_arches, NULL);
1890 return arches;
b4a20239
AC
1891}
1892
1893
104c1213 1894void
4b9b3959
AC
1895gdbarch_register (enum bfd_architecture bfd_architecture,
1896 gdbarch_init_ftype *init,
1897 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1898{
4b9b3959 1899 struct gdbarch_registration **curr;
104c1213 1900 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1901 /* Check that BFD recognizes this architecture */
104c1213
JM
1902 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1903 if (bfd_arch_info == NULL)
1904 {
8e65ff28 1905 internal_error (__FILE__, __LINE__,
85c07804 1906 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1907 bfd_architecture);
104c1213
JM
1908 }
1909 /* Check that we haven't seen this architecture before */
f44c642f 1910 for (curr = &gdbarch_registry;
104c1213
JM
1911 (*curr) != NULL;
1912 curr = &(*curr)->next)
1913 {
1914 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1915 internal_error (__FILE__, __LINE__,
85c07804 1916 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1917 bfd_arch_info->printable_name);
104c1213
JM
1918 }
1919 /* log it */
1920 if (gdbarch_debug)
30737ed9 1921 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1922 bfd_arch_info->printable_name,
30737ed9 1923 host_address_to_string (init));
104c1213 1924 /* Append it */
4b9b3959 1925 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1926 (*curr)->bfd_architecture = bfd_architecture;
1927 (*curr)->init = init;
4b9b3959 1928 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1929 (*curr)->arches = NULL;
1930 (*curr)->next = NULL;
4b9b3959
AC
1931}
1932
1933void
1934register_gdbarch_init (enum bfd_architecture bfd_architecture,
1935 gdbarch_init_ftype *init)
1936{
1937 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1938}
104c1213
JM
1939
1940
424163ea 1941/* Look for an architecture using gdbarch_info. */
104c1213
JM
1942
1943struct gdbarch_list *
1944gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1945 const struct gdbarch_info *info)
1946{
1947 for (; arches != NULL; arches = arches->next)
1948 {
1949 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1950 continue;
1951 if (info->byte_order != arches->gdbarch->byte_order)
1952 continue;
4be87837
DJ
1953 if (info->osabi != arches->gdbarch->osabi)
1954 continue;
424163ea
DJ
1955 if (info->target_desc != arches->gdbarch->target_desc)
1956 continue;
104c1213
JM
1957 return arches;
1958 }
1959 return NULL;
1960}
1961
1962
ebdba546 1963/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1964 architecture if needed. Return that new architecture. */
104c1213 1965
59837fe0
UW
1966struct gdbarch *
1967gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1968{
1969 struct gdbarch *new_gdbarch;
4b9b3959 1970 struct gdbarch_registration *rego;
104c1213 1971
b732d07d 1972 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1973 sources: "set ..."; INFOabfd supplied; and the global
1974 defaults. */
1975 gdbarch_info_fill (&info);
4be87837 1976
b732d07d
AC
1977 /* Must have found some sort of architecture. */
1978 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1979
1980 if (gdbarch_debug)
1981 {
1982 fprintf_unfiltered (gdb_stdlog,
59837fe0 1983 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1984 (info.bfd_arch_info != NULL
1985 ? info.bfd_arch_info->printable_name
1986 : "(null)"));
1987 fprintf_unfiltered (gdb_stdlog,
59837fe0 1988 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1989 info.byte_order,
d7449b42 1990 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1991 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1992 : "default"));
4be87837 1993 fprintf_unfiltered (gdb_stdlog,
59837fe0 1994 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1995 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1996 fprintf_unfiltered (gdb_stdlog,
59837fe0 1997 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1998 host_address_to_string (info.abfd));
104c1213 1999 fprintf_unfiltered (gdb_stdlog,
59837fe0 2000 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2001 host_address_to_string (info.tdep_info));
104c1213
JM
2002 }
2003
ebdba546 2004 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2005 for (rego = gdbarch_registry;
2006 rego != NULL;
2007 rego = rego->next)
2008 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2009 break;
2010 if (rego == NULL)
2011 {
2012 if (gdbarch_debug)
59837fe0 2013 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2014 "No matching architecture\n");
b732d07d
AC
2015 return 0;
2016 }
2017
ebdba546 2018 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2019 new_gdbarch = rego->init (info, rego->arches);
2020
ebdba546
AC
2021 /* Did the tdep code like it? No. Reject the change and revert to
2022 the old architecture. */
104c1213
JM
2023 if (new_gdbarch == NULL)
2024 {
2025 if (gdbarch_debug)
59837fe0 2026 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2027 "Target rejected architecture\n");
2028 return NULL;
104c1213
JM
2029 }
2030
ebdba546
AC
2031 /* Is this a pre-existing architecture (as determined by already
2032 being initialized)? Move it to the front of the architecture
2033 list (keeping the list sorted Most Recently Used). */
2034 if (new_gdbarch->initialized_p)
104c1213 2035 {
ebdba546
AC
2036 struct gdbarch_list **list;
2037 struct gdbarch_list *this;
104c1213 2038 if (gdbarch_debug)
59837fe0 2039 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2040 "Previous architecture %s (%s) selected\n",
2041 host_address_to_string (new_gdbarch),
104c1213 2042 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2043 /* Find the existing arch in the list. */
2044 for (list = &rego->arches;
2045 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2046 list = &(*list)->next);
2047 /* It had better be in the list of architectures. */
2048 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2049 /* Unlink THIS. */
2050 this = (*list);
2051 (*list) = this->next;
2052 /* Insert THIS at the front. */
2053 this->next = rego->arches;
2054 rego->arches = this;
2055 /* Return it. */
2056 return new_gdbarch;
104c1213
JM
2057 }
2058
ebdba546
AC
2059 /* It's a new architecture. */
2060 if (gdbarch_debug)
59837fe0 2061 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2062 "New architecture %s (%s) selected\n",
2063 host_address_to_string (new_gdbarch),
ebdba546
AC
2064 new_gdbarch->bfd_arch_info->printable_name);
2065
2066 /* Insert the new architecture into the front of the architecture
2067 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2068 {
2069 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2070 this->next = rego->arches;
2071 this->gdbarch = new_gdbarch;
2072 rego->arches = this;
2073 }
104c1213 2074
4b9b3959
AC
2075 /* Check that the newly installed architecture is valid. Plug in
2076 any post init values. */
2077 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2078 verify_gdbarch (new_gdbarch);
ebdba546 2079 new_gdbarch->initialized_p = 1;
104c1213 2080
4b9b3959 2081 if (gdbarch_debug)
ebdba546
AC
2082 gdbarch_dump (new_gdbarch, gdb_stdlog);
2083
2084 return new_gdbarch;
2085}
2086
e487cc15 2087/* Make the specified architecture current. */
ebdba546
AC
2088
2089void
59837fe0 2090deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2091{
2092 gdb_assert (new_gdbarch != NULL);
ebdba546 2093 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2094 target_gdbarch = new_gdbarch;
383f836e 2095 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2096 registers_changed ();
ebdba546 2097}
104c1213 2098
104c1213 2099extern void _initialize_gdbarch (void);
b4a20239 2100
104c1213 2101void
34620563 2102_initialize_gdbarch (void)
104c1213 2103{
59233f88
AC
2104 struct cmd_list_element *c;
2105
85c07804
AC
2106 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2107Set architecture debugging."), _("\\
2108Show architecture debugging."), _("\\
2109When non-zero, architecture debugging is enabled."),
2110 NULL,
920d2a44 2111 show_gdbarch_debug,
85c07804 2112 &setdebuglist, &showdebuglist);
104c1213
JM
2113}
2114EOF
2115
2116# close things off
2117exec 1>&2
2118#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2119compare_new gdbarch.c
This page took 0.85496 seconds and 4 git commands to generate.