Remove use of the no longer needed -mminimal-toc option.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
61baf725 5# Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
9b790ce7
UW
386# Returns the floating-point format to be used for values of length LENGTH.
387# NAME, if non-NULL, is the type name, which may be used to distinguish
388# different target formats of the same length.
389m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
390
52204a0b
DT
391# For most targets, a pointer on the target and its representation as an
392# address in GDB have the same size and "look the same". For such a
17a912b6 393# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
394# / addr_bit will be set from it.
395#
17a912b6 396# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
397# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398# gdbarch_address_to_pointer as well.
52204a0b
DT
399#
400# ptr_bit is the size of a pointer on the target
be7811ad 401v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 402# addr_bit is the size of a target address as represented in gdb
be7811ad 403v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 404#
8da614df
CV
405# dwarf2_addr_size is the target address size as used in the Dwarf debug
406# info. For .debug_frame FDEs, this is supposed to be the target address
407# size from the associated CU header, and which is equivalent to the
408# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409# Unfortunately there is no good way to determine this value. Therefore
410# dwarf2_addr_size simply defaults to the target pointer size.
411#
412# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413# defined using the target's pointer size so far.
414#
415# Note that dwarf2_addr_size only needs to be redefined by a target if the
416# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417# and if Dwarf versions < 4 need to be supported.
418v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
419#
4e409299 420# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 421v:int:char_signed:::1:-1:1
4e409299 422#
97030eea
UW
423F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
425# Function for getting target's idea of a frame pointer. FIXME: GDB's
426# whole scheme for dealing with "frames" and "frame pointers" needs a
427# serious shakedown.
a54fba4c 428m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 429#
05d1431c 430M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
431# Read a register into a new struct value. If the register is wholly
432# or partly unavailable, this should call mark_value_bytes_unavailable
433# as appropriate. If this is defined, then pseudo_register_read will
434# never be called.
435M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 436M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 437#
97030eea 438v:int:num_regs:::0:-1
0aba1244
EZ
439# This macro gives the number of pseudo-registers that live in the
440# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
441# These pseudo-registers may be aliases for other registers,
442# combinations of other registers, or they may be computed by GDB.
97030eea 443v:int:num_pseudo_regs:::0:0::0
c2169756 444
175ff332
HZ
445# Assemble agent expression bytecode to collect pseudo-register REG.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
448
449# Assemble agent expression bytecode to push the value of pseudo-register
450# REG on the interpreter stack.
451# Return -1 if something goes wrong, 0 otherwise.
452M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
453
012b3a21
WT
454# Some targets/architectures can do extra processing/display of
455# segmentation faults. E.g., Intel MPX boundary faults.
456# Call the architecture dependent function to handle the fault.
457# UIOUT is the output stream where the handler will place information.
458M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
459
c2169756
AC
460# GDB's standard (or well known) register numbers. These can map onto
461# a real register or a pseudo (computed) register or not be defined at
1200cd6e 462# all (-1).
3e8c568d 463# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
464v:int:sp_regnum:::-1:-1::0
465v:int:pc_regnum:::-1:-1::0
466v:int:ps_regnum:::-1:-1::0
467v:int:fp0_regnum:::0:-1::0
88c72b7d 468# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 469m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 470# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 471m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 472# Convert from an sdb register number to an internal gdb register number.
d3f73121 473m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 474# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 475# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 476m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 477m:const char *:register_name:int regnr:regnr::0
9c04cab7 478
7b9ee6a8
DJ
479# Return the type of a register specified by the architecture. Only
480# the register cache should call this function directly; others should
481# use "register_type".
97030eea 482M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 483
669fac23
DJ
484M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 486# deprecated_fp_regnum.
97030eea 487v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 488
97030eea
UW
489M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490v:int:call_dummy_location::::AT_ENTRY_POINT::0
491M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 492
7eb89530
YQ
493# Return true if the code of FRAME is writable.
494m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
495
97030eea 496m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 497m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 498M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
499# MAP a GDB RAW register number onto a simulator register number. See
500# also include/...-sim.h.
e7faf938 501m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
502m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
504
505# Determine the address where a longjmp will land and save this address
506# in PC. Return nonzero on success.
507#
508# FRAME corresponds to the longjmp frame.
97030eea 509F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 510
104c1213 511#
97030eea 512v:int:believe_pcc_promotion:::::::
104c1213 513#
0abe36f5 514m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 515f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 516f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 517# Construct a value representing the contents of register REGNUM in
2ed3c037 518# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
519# allocate and return a struct value with all value attributes
520# (but not the value contents) filled in.
2ed3c037 521m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 522#
9898f801
UW
523m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 525M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 526
6a3a010b
MR
527# Return the return-value convention that will be used by FUNCTION
528# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
529# case the return convention is computed based only on VALTYPE.
530#
531# If READBUF is not NULL, extract the return value and save it in this buffer.
532#
533# If WRITEBUF is not NULL, it contains a return value which will be
534# stored into the appropriate register. This can be used when we want
535# to force the value returned by a function (see the "return" command
536# for instance).
6a3a010b 537M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 538
18648a37
YQ
539# Return true if the return value of function is stored in the first hidden
540# parameter. In theory, this feature should be language-dependent, specified
541# by language and its ABI, such as C++. Unfortunately, compiler may
542# implement it to a target-dependent feature. So that we need such hook here
543# to be aware of this in GDB.
544m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
545
6093d2eb 546m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 547M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
548# On some platforms, a single function may provide multiple entry points,
549# e.g. one that is used for function-pointer calls and a different one
550# that is used for direct function calls.
551# In order to ensure that breakpoints set on the function will trigger
552# no matter via which entry point the function is entered, a platform
553# may provide the skip_entrypoint callback. It is called with IP set
554# to the main entry point of a function (as determined by the symbol table),
555# and should return the address of the innermost entry point, where the
556# actual breakpoint needs to be set. Note that skip_entrypoint is used
557# by GDB common code even when debugging optimized code, where skip_prologue
558# is not used.
559M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
560
97030eea 561f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
22f13eb8 562m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:0:default_breakpoint_from_pc::0
cd6c3b4f
YQ
563
564# Return the breakpoint kind for this target based on *PCPTR.
565m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:
566
567# Return the software breakpoint from KIND. KIND can have target
568# specific meaning like the Z0 kind parameter.
569# SIZE is set to the software breakpoint's length in memory.
570m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0
571
833b7ab5
YQ
572# Return the breakpoint kind for this target based on the current
573# processor state (e.g. the current instruction mode on ARM) and the
574# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
575m:int:breakpoint_kind_from_current_state:struct regcache *regcache, CORE_ADDR *pcptr:regcache, pcptr:0:default_breakpoint_kind_from_current_state::0
576
97030eea 577M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
578m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
579m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 580v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
581
582# A function can be addressed by either it's "pointer" (possibly a
583# descriptor address) or "entry point" (first executable instruction).
584# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 585# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
586# a simplified subset of that functionality - the function's address
587# corresponds to the "function pointer" and the function's start
588# corresponds to the "function entry point" - and hence is redundant.
589
97030eea 590v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 591
123dc839
DJ
592# Return the remote protocol register number associated with this
593# register. Normally the identity mapping.
97030eea 594m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 595
b2756930 596# Fetch the target specific address used to represent a load module.
97030eea 597F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 598#
97030eea
UW
599v:CORE_ADDR:frame_args_skip:::0:::0
600M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
601M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
602# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
603# frame-base. Enable frame-base before frame-unwind.
97030eea 604F:int:frame_num_args:struct frame_info *frame:frame
104c1213 605#
97030eea
UW
606M:CORE_ADDR:frame_align:CORE_ADDR address:address
607m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
608v:int:frame_red_zone_size
f0d4cc9e 609#
97030eea 610m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
611# On some machines there are bits in addresses which are not really
612# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 613# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
614# we get a "real" address such as one would find in a symbol table.
615# This is used only for addresses of instructions, and even then I'm
616# not sure it's used in all contexts. It exists to deal with there
617# being a few stray bits in the PC which would mislead us, not as some
618# sort of generic thing to handle alignment or segmentation (it's
619# possible it should be in TARGET_READ_PC instead).
24568a2c 620m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
621
622# FIXME/cagney/2001-01-18: This should be split in two. A target method that
623# indicates if the target needs software single step. An ISA method to
624# implement it.
625#
e6590a1b
UW
626# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
627# target can single step. If not, then implement single step using breakpoints.
64c4637f 628#
93f9a11f
YQ
629# Return a vector of addresses on which the software single step
630# breakpoints should be inserted. NULL means software single step is
631# not used.
632# Multiple breakpoints may be inserted for some instructions such as
633# conditional branch. However, each implementation must always evaluate
634# the condition and only put the breakpoint at the branch destination if
635# the condition is true, so that we ensure forward progress when stepping
636# past a conditional branch to self.
f5ea389a 637F:VEC (CORE_ADDR) *:software_single_step:struct regcache *regcache:regcache
e6590a1b 638
3352ef37
AC
639# Return non-zero if the processor is executing a delay slot and a
640# further single-step is needed before the instruction finishes.
97030eea 641M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 642# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 643# disassembler. Perhaps objdump can handle it?
97030eea
UW
644f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
645f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
646
647
cfd8ab24 648# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
649# evaluates non-zero, this is the address where the debugger will place
650# a step-resume breakpoint to get us past the dynamic linker.
97030eea 651m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 652# Some systems also have trampoline code for returning from shared libs.
2c02bd72 653m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 654
c12260ac
CV
655# A target might have problems with watchpoints as soon as the stack
656# frame of the current function has been destroyed. This mostly happens
c9cf6e20 657# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
658# is defined to return a non-zero value if either the given addr is one
659# instruction after the stack destroying instruction up to the trailing
660# return instruction or if we can figure out that the stack frame has
661# already been invalidated regardless of the value of addr. Targets
662# which don't suffer from that problem could just let this functionality
663# untouched.
c9cf6e20 664m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
665# Process an ELF symbol in the minimal symbol table in a backend-specific
666# way. Normally this hook is supposed to do nothing, however if required,
667# then this hook can be used to apply tranformations to symbols that are
668# considered special in some way. For example the MIPS backend uses it
669# to interpret \`st_other' information to mark compressed code symbols so
670# that they can be treated in the appropriate manner in the processing of
671# the main symbol table and DWARF-2 records.
672F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 673f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
674# Process a symbol in the main symbol table in a backend-specific way.
675# Normally this hook is supposed to do nothing, however if required,
676# then this hook can be used to apply tranformations to symbols that
677# are considered special in some way. This is currently used by the
678# MIPS backend to make sure compressed code symbols have the ISA bit
679# set. This in turn is needed for symbol values seen in GDB to match
680# the values used at the runtime by the program itself, for function
681# and label references.
682f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
683# Adjust the address retrieved from a DWARF-2 record other than a line
684# entry in a backend-specific way. Normally this hook is supposed to
685# return the address passed unchanged, however if that is incorrect for
686# any reason, then this hook can be used to fix the address up in the
687# required manner. This is currently used by the MIPS backend to make
688# sure addresses in FDE, range records, etc. referring to compressed
689# code have the ISA bit set, matching line information and the symbol
690# table.
691f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
692# Adjust the address updated by a line entry in a backend-specific way.
693# Normally this hook is supposed to return the address passed unchanged,
694# however in the case of inconsistencies in these records, this hook can
695# be used to fix them up in the required manner. This is currently used
696# by the MIPS backend to make sure all line addresses in compressed code
697# are presented with the ISA bit set, which is not always the case. This
698# in turn ensures breakpoint addresses are correctly matched against the
699# stop PC.
700f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
701v:int:cannot_step_breakpoint:::0:0::0
702v:int:have_nonsteppable_watchpoint:::0:0::0
703F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
704M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
705
706# Return the appropriate type_flags for the supplied address class.
707# This function should return 1 if the address class was recognized and
708# type_flags was set, zero otherwise.
97030eea 709M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 710# Is a register in a group
97030eea 711m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 712# Fetch the pointer to the ith function argument.
97030eea 713F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 714
5aa82d05
AA
715# Iterate over all supported register notes in a core file. For each
716# supported register note section, the iterator must call CB and pass
717# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
718# the supported register note sections based on the current register
719# values. Otherwise it should enumerate all supported register note
720# sections.
721M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 722
6432734d
UW
723# Create core file notes
724M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
725
b3ac9c77
SDJ
726# The elfcore writer hook to use to write Linux prpsinfo notes to core
727# files. Most Linux architectures use the same prpsinfo32 or
728# prpsinfo64 layouts, and so won't need to provide this hook, as we
729# call the Linux generic routines in bfd to write prpsinfo notes by
730# default.
731F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
732
35c2fab7
UW
733# Find core file memory regions
734M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
735
de584861 736# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
737# core file into buffer READBUF with length LEN. Return the number of bytes read
738# (zero indicates failure).
739# failed, otherwise, return the red length of READBUF.
740M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 741
356a5233
JB
742# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
743# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
744# Return the number of bytes read (zero indicates failure).
745M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 746
c0edd9ed 747# How the core target converts a PTID from a core file to a string.
28439f5e
PA
748M:char *:core_pid_to_str:ptid_t ptid:ptid
749
4dfc5dbc
JB
750# How the core target extracts the name of a thread from a core file.
751M:const char *:core_thread_name:struct thread_info *thr:thr
752
a78c2d62 753# BFD target to use when generating a core file.
86ba1042 754V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 755
0d5de010
DJ
756# If the elements of C++ vtables are in-place function descriptors rather
757# than normal function pointers (which may point to code or a descriptor),
758# set this to one.
97030eea 759v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
760
761# Set if the least significant bit of the delta is used instead of the least
762# significant bit of the pfn for pointers to virtual member functions.
97030eea 763v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
764
765# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 766f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 767
1668ae25 768# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
769V:ULONGEST:max_insn_length:::0:0
770
771# Copy the instruction at FROM to TO, and make any adjustments
772# necessary to single-step it at that address.
773#
774# REGS holds the state the thread's registers will have before
775# executing the copied instruction; the PC in REGS will refer to FROM,
776# not the copy at TO. The caller should update it to point at TO later.
777#
778# Return a pointer to data of the architecture's choice to be passed
779# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
780# the instruction's effects have been completely simulated, with the
781# resulting state written back to REGS.
782#
783# For a general explanation of displaced stepping and how GDB uses it,
784# see the comments in infrun.c.
785#
786# The TO area is only guaranteed to have space for
787# gdbarch_max_insn_length (arch) bytes, so this function must not
788# write more bytes than that to that area.
789#
790# If you do not provide this function, GDB assumes that the
791# architecture does not support displaced stepping.
792#
793# If your architecture doesn't need to adjust instructions before
794# single-stepping them, consider using simple_displaced_step_copy_insn
795# here.
7f03bd92
PA
796#
797# If the instruction cannot execute out of line, return NULL. The
798# core falls back to stepping past the instruction in-line instead in
799# that case.
237fc4c9
PA
800M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
801
99e40580
UW
802# Return true if GDB should use hardware single-stepping to execute
803# the displaced instruction identified by CLOSURE. If false,
804# GDB will simply restart execution at the displaced instruction
805# location, and it is up to the target to ensure GDB will receive
806# control again (e.g. by placing a software breakpoint instruction
807# into the displaced instruction buffer).
808#
809# The default implementation returns false on all targets that
810# provide a gdbarch_software_single_step routine, and true otherwise.
811m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
812
237fc4c9
PA
813# Fix up the state resulting from successfully single-stepping a
814# displaced instruction, to give the result we would have gotten from
815# stepping the instruction in its original location.
816#
817# REGS is the register state resulting from single-stepping the
818# displaced instruction.
819#
820# CLOSURE is the result from the matching call to
821# gdbarch_displaced_step_copy_insn.
822#
823# If you provide gdbarch_displaced_step_copy_insn.but not this
824# function, then GDB assumes that no fixup is needed after
825# single-stepping the instruction.
826#
827# For a general explanation of displaced stepping and how GDB uses it,
828# see the comments in infrun.c.
829M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
830
831# Free a closure returned by gdbarch_displaced_step_copy_insn.
832#
833# If you provide gdbarch_displaced_step_copy_insn, you must provide
834# this function as well.
835#
836# If your architecture uses closures that don't need to be freed, then
837# you can use simple_displaced_step_free_closure here.
838#
839# For a general explanation of displaced stepping and how GDB uses it,
840# see the comments in infrun.c.
841m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
842
843# Return the address of an appropriate place to put displaced
844# instructions while we step over them. There need only be one such
845# place, since we're only stepping one thread over a breakpoint at a
846# time.
847#
848# For a general explanation of displaced stepping and how GDB uses it,
849# see the comments in infrun.c.
850m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
851
dde08ee1
PA
852# Relocate an instruction to execute at a different address. OLDLOC
853# is the address in the inferior memory where the instruction to
854# relocate is currently at. On input, TO points to the destination
855# where we want the instruction to be copied (and possibly adjusted)
856# to. On output, it points to one past the end of the resulting
857# instruction(s). The effect of executing the instruction at TO shall
858# be the same as if executing it at FROM. For example, call
859# instructions that implicitly push the return address on the stack
860# should be adjusted to return to the instruction after OLDLOC;
861# relative branches, and other PC-relative instructions need the
862# offset adjusted; etc.
863M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
864
1c772458 865# Refresh overlay mapped state for section OSECT.
97030eea 866F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 867
97030eea 868M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
869
870# Handle special encoding of static variables in stabs debug info.
0d5cff50 871F:const char *:static_transform_name:const char *name:name
203c3895 872# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 873v:int:sofun_address_maybe_missing:::0:0::0
1cded358 874
0508c3ec
HZ
875# Parse the instruction at ADDR storing in the record execution log
876# the registers REGCACHE and memory ranges that will be affected when
877# the instruction executes, along with their current values.
878# Return -1 if something goes wrong, 0 otherwise.
879M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
880
3846b520
HZ
881# Save process state after a signal.
882# Return -1 if something goes wrong, 0 otherwise.
2ea28649 883M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 884
22203bbf 885# Signal translation: translate inferior's signal (target's) number
86b49880
PA
886# into GDB's representation. The implementation of this method must
887# be host independent. IOW, don't rely on symbols of the NAT_FILE
888# header (the nm-*.h files), the host <signal.h> header, or similar
889# headers. This is mainly used when cross-debugging core files ---
890# "Live" targets hide the translation behind the target interface
1f8cf220
PA
891# (target_wait, target_resume, etc.).
892M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 893
eb14d406
SDJ
894# Signal translation: translate the GDB's internal signal number into
895# the inferior's signal (target's) representation. The implementation
896# of this method must be host independent. IOW, don't rely on symbols
897# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
898# header, or similar headers.
899# Return the target signal number if found, or -1 if the GDB internal
900# signal number is invalid.
901M:int:gdb_signal_to_target:enum gdb_signal signal:signal
902
4aa995e1
PA
903# Extra signal info inspection.
904#
905# Return a type suitable to inspect extra signal information.
906M:struct type *:get_siginfo_type:void:
907
60c5725c
DJ
908# Record architecture-specific information from the symbol table.
909M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 910
a96d9b2e
SDJ
911# Function for the 'catch syscall' feature.
912
913# Get architecture-specific system calls information from registers.
914M:LONGEST:get_syscall_number:ptid_t ptid:ptid
915
458c8db8
SDJ
916# The filename of the XML syscall for this architecture.
917v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
918
919# Information about system calls from this architecture
920v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
921
55aa24fb
SDJ
922# SystemTap related fields and functions.
923
05c0465e
SDJ
924# A NULL-terminated array of prefixes used to mark an integer constant
925# on the architecture's assembly.
55aa24fb
SDJ
926# For example, on x86 integer constants are written as:
927#
928# \$10 ;; integer constant 10
929#
930# in this case, this prefix would be the character \`\$\'.
05c0465e 931v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 932
05c0465e
SDJ
933# A NULL-terminated array of suffixes used to mark an integer constant
934# on the architecture's assembly.
935v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 936
05c0465e
SDJ
937# A NULL-terminated array of prefixes used to mark a register name on
938# the architecture's assembly.
55aa24fb
SDJ
939# For example, on x86 the register name is written as:
940#
941# \%eax ;; register eax
942#
943# in this case, this prefix would be the character \`\%\'.
05c0465e 944v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 945
05c0465e
SDJ
946# A NULL-terminated array of suffixes used to mark a register name on
947# the architecture's assembly.
948v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 949
05c0465e
SDJ
950# A NULL-terminated array of prefixes used to mark a register
951# indirection on the architecture's assembly.
55aa24fb
SDJ
952# For example, on x86 the register indirection is written as:
953#
954# \(\%eax\) ;; indirecting eax
955#
956# in this case, this prefix would be the charater \`\(\'.
957#
958# Please note that we use the indirection prefix also for register
959# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 960v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 961
05c0465e
SDJ
962# A NULL-terminated array of suffixes used to mark a register
963# indirection on the architecture's assembly.
55aa24fb
SDJ
964# For example, on x86 the register indirection is written as:
965#
966# \(\%eax\) ;; indirecting eax
967#
968# in this case, this prefix would be the charater \`\)\'.
969#
970# Please note that we use the indirection suffix also for register
971# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 972v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 973
05c0465e 974# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
975#
976# For example, on PPC a register is represented by a number in the assembly
977# language (e.g., \`10\' is the 10th general-purpose register). However,
978# inside GDB this same register has an \`r\' appended to its name, so the 10th
979# register would be represented as \`r10\' internally.
08af7a40 980v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
981
982# Suffix used to name a register using GDB's nomenclature.
08af7a40 983v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
984
985# Check if S is a single operand.
986#
987# Single operands can be:
988# \- Literal integers, e.g. \`\$10\' on x86
989# \- Register access, e.g. \`\%eax\' on x86
990# \- Register indirection, e.g. \`\(\%eax\)\' on x86
991# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
992#
993# This function should check for these patterns on the string
994# and return 1 if some were found, or zero otherwise. Please try to match
995# as much info as you can from the string, i.e., if you have to match
996# something like \`\(\%\', do not match just the \`\(\'.
997M:int:stap_is_single_operand:const char *s:s
998
999# Function used to handle a "special case" in the parser.
1000#
1001# A "special case" is considered to be an unknown token, i.e., a token
1002# that the parser does not know how to parse. A good example of special
1003# case would be ARM's register displacement syntax:
1004#
1005# [R0, #4] ;; displacing R0 by 4
1006#
1007# Since the parser assumes that a register displacement is of the form:
1008#
1009# <number> <indirection_prefix> <register_name> <indirection_suffix>
1010#
1011# it means that it will not be able to recognize and parse this odd syntax.
1012# Therefore, we should add a special case function that will handle this token.
1013#
1014# This function should generate the proper expression form of the expression
1015# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1016# and so on). It should also return 1 if the parsing was successful, or zero
1017# if the token was not recognized as a special token (in this case, returning
1018# zero means that the special parser is deferring the parsing to the generic
1019# parser), and should advance the buffer pointer (p->arg).
1020M:int:stap_parse_special_token:struct stap_parse_info *p:p
1021
8b367e17
JM
1022# DTrace related functions.
1023
1024# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1025# NARG must be >= 0.
1026M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1027
1028# True if the given ADDR does not contain the instruction sequence
1029# corresponding to a disabled DTrace is-enabled probe.
1030M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1031
1032# Enable a DTrace is-enabled probe at ADDR.
1033M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1034
1035# Disable a DTrace is-enabled probe at ADDR.
1036M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1037
50c71eaf
PA
1038# True if the list of shared libraries is one and only for all
1039# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1040# This usually means that all processes, although may or may not share
1041# an address space, will see the same set of symbols at the same
1042# addresses.
50c71eaf 1043v:int:has_global_solist:::0:0::0
2567c7d9
PA
1044
1045# On some targets, even though each inferior has its own private
1046# address space, the debug interface takes care of making breakpoints
1047# visible to all address spaces automatically. For such cases,
1048# this property should be set to true.
1049v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1050
1051# True if inferiors share an address space (e.g., uClinux).
1052m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1053
1054# True if a fast tracepoint can be set at an address.
6b940e6a 1055m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1056
5f034a78
MK
1057# Guess register state based on tracepoint location. Used for tracepoints
1058# where no registers have been collected, but there's only one location,
1059# allowing us to guess the PC value, and perhaps some other registers.
1060# On entry, regcache has all registers marked as unavailable.
1061m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1062
f870a310
TT
1063# Return the "auto" target charset.
1064f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1065# Return the "auto" target wide charset.
1066f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1067
1068# If non-empty, this is a file extension that will be opened in place
1069# of the file extension reported by the shared library list.
1070#
1071# This is most useful for toolchains that use a post-linker tool,
1072# where the names of the files run on the target differ in extension
1073# compared to the names of the files GDB should load for debug info.
1074v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1075
1076# If true, the target OS has DOS-based file system semantics. That
1077# is, absolute paths include a drive name, and the backslash is
1078# considered a directory separator.
1079v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1080
1081# Generate bytecodes to collect the return address in a frame.
1082# Since the bytecodes run on the target, possibly with GDB not even
1083# connected, the full unwinding machinery is not available, and
1084# typically this function will issue bytecodes for one or more likely
1085# places that the return address may be found.
1086m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1087
3030c96e 1088# Implement the "info proc" command.
7bc112c1 1089M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1090
451b7c33
TT
1091# Implement the "info proc" command for core files. Noe that there
1092# are two "info_proc"-like methods on gdbarch -- one for core files,
1093# one for live targets.
7bc112c1 1094M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1095
19630284
JB
1096# Iterate over all objfiles in the order that makes the most sense
1097# for the architecture to make global symbol searches.
1098#
1099# CB is a callback function where OBJFILE is the objfile to be searched,
1100# and CB_DATA a pointer to user-defined data (the same data that is passed
1101# when calling this gdbarch method). The iteration stops if this function
1102# returns nonzero.
1103#
1104# CB_DATA is a pointer to some user-defined data to be passed to
1105# the callback.
1106#
1107# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1108# inspected when the symbol search was requested.
1109m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1110
7e35103a
JB
1111# Ravenscar arch-dependent ops.
1112v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1113
1114# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1115m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1116
1117# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1118m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1119
1120# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1121m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1122
1123# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1124# Return 0 if *READPTR is already at the end of the buffer.
1125# Return -1 if there is insufficient buffer for a whole entry.
1126# Return 1 if an entry was read into *TYPEP and *VALP.
1127M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d 1128
2faa3447
JB
1129# Print the description of a single auxv entry described by TYPE and VAL
1130# to FILE.
1131m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1132
3437254d
PA
1133# Find the address range of the current inferior's vsyscall/vDSO, and
1134# write it to *RANGE. If the vsyscall's length can't be determined, a
1135# range with zero length is returned. Returns true if the vsyscall is
1136# found, false otherwise.
1137m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1138
1139# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1140# PROT has GDB_MMAP_PROT_* bitmask format.
1141# Throw an error if it is not possible. Returned address is always valid.
1142f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1143
7f361056
JK
1144# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1145# Print a warning if it is not possible.
1146f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1147
f208eee0
JK
1148# Return string (caller has to use xfree for it) with options for GCC
1149# to produce code for this target, typically "-m64", "-m32" or "-m31".
1150# These options are put before CU's DW_AT_producer compilation options so that
1151# they can override it. Method may also return NULL.
1152m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1153
1154# Return a regular expression that matches names used by this
1155# architecture in GNU configury triplets. The result is statically
1156# allocated and must not be freed. The default implementation simply
1157# returns the BFD architecture name, which is correct in nearly every
1158# case.
1159m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1160
1161# Return the size in 8-bit bytes of an addressable memory unit on this
1162# architecture. This corresponds to the number of 8-bit bytes associated to
1163# each address in memory.
1164m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1165
65b48a81
PB
1166# Functions for allowing a target to modify its disassembler options.
1167v:char **:disassembler_options:::0:0::0:pstring (*gdbarch->disassembler_options)
1168v:const disasm_options_t *:valid_disassembler_options:::0:0::0:host_address_to_string (gdbarch->valid_disassembler_options->name)
1169
104c1213 1170EOF
104c1213
JM
1171}
1172
0b8f9e4d
AC
1173#
1174# The .log file
1175#
1176exec > new-gdbarch.log
34620563 1177function_list | while do_read
0b8f9e4d
AC
1178do
1179 cat <<EOF
2f9b146e 1180${class} ${returntype} ${function} ($formal)
104c1213 1181EOF
3d9a5942
AC
1182 for r in ${read}
1183 do
1184 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1185 done
f0d4cc9e 1186 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1187 then
66d659b1 1188 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1189 kill $$
1190 exit 1
1191 fi
72e74a21 1192 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1193 then
1194 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1195 kill $$
1196 exit 1
1197 fi
a72293e2
AC
1198 if class_is_multiarch_p
1199 then
1200 if class_is_predicate_p ; then :
1201 elif test "x${predefault}" = "x"
1202 then
2f9b146e 1203 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1204 kill $$
1205 exit 1
1206 fi
1207 fi
3d9a5942 1208 echo ""
0b8f9e4d
AC
1209done
1210
1211exec 1>&2
1212compare_new gdbarch.log
1213
104c1213
JM
1214
1215copyright ()
1216{
1217cat <<EOF
c4bfde41
JK
1218/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1219/* vi:set ro: */
59233f88 1220
104c1213 1221/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1222
61baf725 1223 Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
1224
1225 This file is part of GDB.
1226
1227 This program is free software; you can redistribute it and/or modify
1228 it under the terms of the GNU General Public License as published by
50efebf8 1229 the Free Software Foundation; either version 3 of the License, or
104c1213 1230 (at your option) any later version.
618f726f 1231
104c1213
JM
1232 This program is distributed in the hope that it will be useful,
1233 but WITHOUT ANY WARRANTY; without even the implied warranty of
1234 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1235 GNU General Public License for more details.
618f726f 1236
104c1213 1237 You should have received a copy of the GNU General Public License
50efebf8 1238 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1239
104c1213
JM
1240/* This file was created with the aid of \`\`gdbarch.sh''.
1241
52204a0b 1242 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1243 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1244 against the existing \`\`gdbarch.[hc]''. Any differences found
1245 being reported.
1246
1247 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1248 changes into that script. Conversely, when making sweeping changes
104c1213 1249 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1250 easier. */
104c1213
JM
1251
1252EOF
1253}
1254
1255#
1256# The .h file
1257#
1258
1259exec > new-gdbarch.h
1260copyright
1261cat <<EOF
1262#ifndef GDBARCH_H
1263#define GDBARCH_H
1264
eb7a547a 1265#include "frame.h"
65b48a81 1266#include "dis-asm.h"
eb7a547a 1267
da3331ec
AC
1268struct floatformat;
1269struct ui_file;
104c1213 1270struct value;
b6af0555 1271struct objfile;
1c772458 1272struct obj_section;
a2cf933a 1273struct minimal_symbol;
049ee0e4 1274struct regcache;
b59ff9d5 1275struct reggroup;
6ce6d90f 1276struct regset;
a89aa300 1277struct disassemble_info;
e2d0e7eb 1278struct target_ops;
030f20e1 1279struct obstack;
8181d85f 1280struct bp_target_info;
424163ea 1281struct target_desc;
3e29f34a
MR
1282struct objfile;
1283struct symbol;
237fc4c9 1284struct displaced_step_closure;
a96d9b2e 1285struct syscall;
175ff332 1286struct agent_expr;
6710bf39 1287struct axs_value;
55aa24fb 1288struct stap_parse_info;
8b367e17 1289struct parser_state;
7e35103a 1290struct ravenscar_arch_ops;
b3ac9c77 1291struct elf_internal_linux_prpsinfo;
3437254d 1292struct mem_range;
458c8db8 1293struct syscalls_info;
4dfc5dbc 1294struct thread_info;
012b3a21 1295struct ui_out;
104c1213 1296
8a526fa6
PA
1297#include "regcache.h"
1298
6ecd4729
PA
1299/* The architecture associated with the inferior through the
1300 connection to the target.
1301
1302 The architecture vector provides some information that is really a
1303 property of the inferior, accessed through a particular target:
1304 ptrace operations; the layout of certain RSP packets; the solib_ops
1305 vector; etc. To differentiate architecture accesses to
1306 per-inferior/target properties from
1307 per-thread/per-frame/per-objfile properties, accesses to
1308 per-inferior/target properties should be made through this
1309 gdbarch. */
1310
1311/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1312extern struct gdbarch *target_gdbarch (void);
6ecd4729 1313
19630284
JB
1314/* Callback type for the 'iterate_over_objfiles_in_search_order'
1315 gdbarch method. */
1316
1317typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1318 (struct objfile *objfile, void *cb_data);
5aa82d05 1319
1528345d
AA
1320/* Callback type for regset section iterators. The callback usually
1321 invokes the REGSET's supply or collect method, to which it must
1322 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1323 section name, and HUMAN_NAME is used for diagnostic messages.
1324 CB_DATA should have been passed unchanged through the iterator. */
1325
5aa82d05 1326typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1327 (const char *sect_name, int size, const struct regset *regset,
1328 const char *human_name, void *cb_data);
104c1213
JM
1329EOF
1330
1331# function typedef's
3d9a5942
AC
1332printf "\n"
1333printf "\n"
0963b4bd 1334printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1335function_list | while do_read
104c1213 1336do
2ada493a
AC
1337 if class_is_info_p
1338 then
3d9a5942
AC
1339 printf "\n"
1340 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1341 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1342 fi
104c1213
JM
1343done
1344
1345# function typedef's
3d9a5942
AC
1346printf "\n"
1347printf "\n"
0963b4bd 1348printf "/* The following are initialized by the target dependent code. */\n"
34620563 1349function_list | while do_read
104c1213 1350do
72e74a21 1351 if [ -n "${comment}" ]
34620563
AC
1352 then
1353 echo "${comment}" | sed \
1354 -e '2 s,#,/*,' \
1355 -e '3,$ s,#, ,' \
1356 -e '$ s,$, */,'
1357 fi
412d5987
AC
1358
1359 if class_is_predicate_p
2ada493a 1360 then
412d5987
AC
1361 printf "\n"
1362 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1363 fi
2ada493a
AC
1364 if class_is_variable_p
1365 then
3d9a5942
AC
1366 printf "\n"
1367 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1368 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1369 fi
1370 if class_is_function_p
1371 then
3d9a5942 1372 printf "\n"
72e74a21 1373 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1374 then
1375 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1376 elif class_is_multiarch_p
1377 then
1378 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1379 else
1380 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1381 fi
72e74a21 1382 if [ "x${formal}" = "xvoid" ]
104c1213 1383 then
3d9a5942 1384 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1385 else
3d9a5942 1386 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1387 fi
3d9a5942 1388 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1389 fi
104c1213
JM
1390done
1391
1392# close it off
1393cat <<EOF
1394
a96d9b2e
SDJ
1395/* Definition for an unknown syscall, used basically in error-cases. */
1396#define UNKNOWN_SYSCALL (-1)
1397
104c1213
JM
1398extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1399
1400
1401/* Mechanism for co-ordinating the selection of a specific
1402 architecture.
1403
1404 GDB targets (*-tdep.c) can register an interest in a specific
1405 architecture. Other GDB components can register a need to maintain
1406 per-architecture data.
1407
1408 The mechanisms below ensures that there is only a loose connection
1409 between the set-architecture command and the various GDB
0fa6923a 1410 components. Each component can independently register their need
104c1213
JM
1411 to maintain architecture specific data with gdbarch.
1412
1413 Pragmatics:
1414
1415 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1416 didn't scale.
1417
1418 The more traditional mega-struct containing architecture specific
1419 data for all the various GDB components was also considered. Since
0fa6923a 1420 GDB is built from a variable number of (fairly independent)
104c1213 1421 components it was determined that the global aproach was not
0963b4bd 1422 applicable. */
104c1213
JM
1423
1424
1425/* Register a new architectural family with GDB.
1426
1427 Register support for the specified ARCHITECTURE with GDB. When
1428 gdbarch determines that the specified architecture has been
1429 selected, the corresponding INIT function is called.
1430
1431 --
1432
1433 The INIT function takes two parameters: INFO which contains the
1434 information available to gdbarch about the (possibly new)
1435 architecture; ARCHES which is a list of the previously created
1436 \`\`struct gdbarch'' for this architecture.
1437
0f79675b 1438 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1439 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1440
1441 The ARCHES parameter is a linked list (sorted most recently used)
1442 of all the previously created architures for this architecture
1443 family. The (possibly NULL) ARCHES->gdbarch can used to access
1444 values from the previously selected architecture for this
59837fe0 1445 architecture family.
104c1213
JM
1446
1447 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1448 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1449 gdbarch'' from the ARCHES list - indicating that the new
1450 architecture is just a synonym for an earlier architecture (see
1451 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1452 - that describes the selected architecture (see gdbarch_alloc()).
1453
1454 The DUMP_TDEP function shall print out all target specific values.
1455 Care should be taken to ensure that the function works in both the
0963b4bd 1456 multi-arch and non- multi-arch cases. */
104c1213
JM
1457
1458struct gdbarch_list
1459{
1460 struct gdbarch *gdbarch;
1461 struct gdbarch_list *next;
1462};
1463
1464struct gdbarch_info
1465{
0963b4bd 1466 /* Use default: NULL (ZERO). */
104c1213
JM
1467 const struct bfd_arch_info *bfd_arch_info;
1468
428721aa 1469 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1470 enum bfd_endian byte_order;
104c1213 1471
94123b4f 1472 enum bfd_endian byte_order_for_code;
9d4fde75 1473
0963b4bd 1474 /* Use default: NULL (ZERO). */
104c1213
JM
1475 bfd *abfd;
1476
0963b4bd 1477 /* Use default: NULL (ZERO). */
ede5f151 1478 void *tdep_info;
4be87837
DJ
1479
1480 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1481 enum gdb_osabi osabi;
424163ea
DJ
1482
1483 /* Use default: NULL (ZERO). */
1484 const struct target_desc *target_desc;
104c1213
JM
1485};
1486
1487typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1488typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1489
4b9b3959 1490/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1491extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1492
4b9b3959
AC
1493extern void gdbarch_register (enum bfd_architecture architecture,
1494 gdbarch_init_ftype *,
1495 gdbarch_dump_tdep_ftype *);
1496
104c1213 1497
b4a20239
AC
1498/* Return a freshly allocated, NULL terminated, array of the valid
1499 architecture names. Since architectures are registered during the
1500 _initialize phase this function only returns useful information
0963b4bd 1501 once initialization has been completed. */
b4a20239
AC
1502
1503extern const char **gdbarch_printable_names (void);
1504
1505
104c1213 1506/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1507 matches the information provided by INFO. */
104c1213 1508
424163ea 1509extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1510
1511
1512/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1513 basic initialization using values obtained from the INFO and TDEP
104c1213 1514 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1515 initialization of the object. */
104c1213
JM
1516
1517extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1518
1519
4b9b3959
AC
1520/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1521 It is assumed that the caller freeds the \`\`struct
0963b4bd 1522 gdbarch_tdep''. */
4b9b3959 1523
058f20d5
JB
1524extern void gdbarch_free (struct gdbarch *);
1525
1526
aebd7893
AC
1527/* Helper function. Allocate memory from the \`\`struct gdbarch''
1528 obstack. The memory is freed when the corresponding architecture
1529 is also freed. */
1530
1531extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1532#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1533#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1534
6c214e7c
PP
1535/* Duplicate STRING, returning an equivalent string that's allocated on the
1536 obstack associated with GDBARCH. The string is freed when the corresponding
1537 architecture is also freed. */
1538
1539extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1540
0963b4bd 1541/* Helper function. Force an update of the current architecture.
104c1213 1542
b732d07d
AC
1543 The actual architecture selected is determined by INFO, \`\`(gdb) set
1544 architecture'' et.al., the existing architecture and BFD's default
1545 architecture. INFO should be initialized to zero and then selected
1546 fields should be updated.
104c1213 1547
0963b4bd 1548 Returns non-zero if the update succeeds. */
16f33e29
AC
1549
1550extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1551
1552
ebdba546
AC
1553/* Helper function. Find an architecture matching info.
1554
1555 INFO should be initialized using gdbarch_info_init, relevant fields
1556 set, and then finished using gdbarch_info_fill.
1557
1558 Returns the corresponding architecture, or NULL if no matching
59837fe0 1559 architecture was found. */
ebdba546
AC
1560
1561extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1562
1563
aff68abb 1564/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1565
aff68abb 1566extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1567
104c1213
JM
1568
1569/* Register per-architecture data-pointer.
1570
1571 Reserve space for a per-architecture data-pointer. An identifier
1572 for the reserved data-pointer is returned. That identifer should
95160752 1573 be saved in a local static variable.
104c1213 1574
fcc1c85c
AC
1575 Memory for the per-architecture data shall be allocated using
1576 gdbarch_obstack_zalloc. That memory will be deleted when the
1577 corresponding architecture object is deleted.
104c1213 1578
95160752
AC
1579 When a previously created architecture is re-selected, the
1580 per-architecture data-pointer for that previous architecture is
76860b5f 1581 restored. INIT() is not re-called.
104c1213
JM
1582
1583 Multiple registrarants for any architecture are allowed (and
1584 strongly encouraged). */
1585
95160752 1586struct gdbarch_data;
104c1213 1587
030f20e1
AC
1588typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1589extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1590typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1591extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1592extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1593 struct gdbarch_data *data,
1594 void *pointer);
104c1213 1595
451fbdda 1596extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1597
1598
0fa6923a 1599/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1600 byte-order, ...) using information found in the BFD. */
104c1213
JM
1601
1602extern void set_gdbarch_from_file (bfd *);
1603
1604
e514a9d6
JM
1605/* Initialize the current architecture to the "first" one we find on
1606 our list. */
1607
1608extern void initialize_current_architecture (void);
1609
104c1213 1610/* gdbarch trace variable */
ccce17b0 1611extern unsigned int gdbarch_debug;
104c1213 1612
4b9b3959 1613extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1614
1615#endif
1616EOF
1617exec 1>&2
1618#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1619compare_new gdbarch.h
104c1213
JM
1620
1621
1622#
1623# C file
1624#
1625
1626exec > new-gdbarch.c
1627copyright
1628cat <<EOF
1629
1630#include "defs.h"
7355ddba 1631#include "arch-utils.h"
104c1213 1632
104c1213 1633#include "gdbcmd.h"
faaf634c 1634#include "inferior.h"
104c1213
JM
1635#include "symcat.h"
1636
f0d4cc9e 1637#include "floatformat.h"
b59ff9d5 1638#include "reggroups.h"
4be87837 1639#include "osabi.h"
aebd7893 1640#include "gdb_obstack.h"
383f836e 1641#include "observer.h"
a3ecef73 1642#include "regcache.h"
19630284 1643#include "objfiles.h"
2faa3447 1644#include "auxv.h"
95160752 1645
104c1213
JM
1646/* Static function declarations */
1647
b3cc3077 1648static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1649
104c1213
JM
1650/* Non-zero if we want to trace architecture code. */
1651
1652#ifndef GDBARCH_DEBUG
1653#define GDBARCH_DEBUG 0
1654#endif
ccce17b0 1655unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1656static void
1657show_gdbarch_debug (struct ui_file *file, int from_tty,
1658 struct cmd_list_element *c, const char *value)
1659{
1660 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1661}
104c1213 1662
456fcf94 1663static const char *
8da61cc4 1664pformat (const struct floatformat **format)
456fcf94
AC
1665{
1666 if (format == NULL)
1667 return "(null)";
1668 else
8da61cc4
DJ
1669 /* Just print out one of them - this is only for diagnostics. */
1670 return format[0]->name;
456fcf94
AC
1671}
1672
08105857
PA
1673static const char *
1674pstring (const char *string)
1675{
1676 if (string == NULL)
1677 return "(null)";
1678 return string;
05c0465e
SDJ
1679}
1680
1681/* Helper function to print a list of strings, represented as "const
1682 char *const *". The list is printed comma-separated. */
1683
1684static char *
1685pstring_list (const char *const *list)
1686{
1687 static char ret[100];
1688 const char *const *p;
1689 size_t offset = 0;
1690
1691 if (list == NULL)
1692 return "(null)";
1693
1694 ret[0] = '\0';
1695 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1696 {
1697 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1698 offset += 2 + s;
1699 }
1700
1701 if (offset > 0)
1702 {
1703 gdb_assert (offset - 2 < sizeof (ret));
1704 ret[offset - 2] = '\0';
1705 }
1706
1707 return ret;
08105857
PA
1708}
1709
104c1213
JM
1710EOF
1711
1712# gdbarch open the gdbarch object
3d9a5942 1713printf "\n"
0963b4bd 1714printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1715printf "\n"
1716printf "struct gdbarch\n"
1717printf "{\n"
76860b5f
AC
1718printf " /* Has this architecture been fully initialized? */\n"
1719printf " int initialized_p;\n"
aebd7893
AC
1720printf "\n"
1721printf " /* An obstack bound to the lifetime of the architecture. */\n"
1722printf " struct obstack *obstack;\n"
1723printf "\n"
0963b4bd 1724printf " /* basic architectural information. */\n"
34620563 1725function_list | while do_read
104c1213 1726do
2ada493a
AC
1727 if class_is_info_p
1728 then
3d9a5942 1729 printf " ${returntype} ${function};\n"
2ada493a 1730 fi
104c1213 1731done
3d9a5942 1732printf "\n"
0963b4bd 1733printf " /* target specific vector. */\n"
3d9a5942
AC
1734printf " struct gdbarch_tdep *tdep;\n"
1735printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1736printf "\n"
0963b4bd 1737printf " /* per-architecture data-pointers. */\n"
95160752 1738printf " unsigned nr_data;\n"
3d9a5942
AC
1739printf " void **data;\n"
1740printf "\n"
104c1213
JM
1741cat <<EOF
1742 /* Multi-arch values.
1743
1744 When extending this structure you must:
1745
1746 Add the field below.
1747
1748 Declare set/get functions and define the corresponding
1749 macro in gdbarch.h.
1750
1751 gdbarch_alloc(): If zero/NULL is not a suitable default,
1752 initialize the new field.
1753
1754 verify_gdbarch(): Confirm that the target updated the field
1755 correctly.
1756
7e73cedf 1757 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1758 field is dumped out
1759
104c1213
JM
1760 get_gdbarch(): Implement the set/get functions (probably using
1761 the macro's as shortcuts).
1762
1763 */
1764
1765EOF
34620563 1766function_list | while do_read
104c1213 1767do
2ada493a
AC
1768 if class_is_variable_p
1769 then
3d9a5942 1770 printf " ${returntype} ${function};\n"
2ada493a
AC
1771 elif class_is_function_p
1772 then
2f9b146e 1773 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1774 fi
104c1213 1775done
3d9a5942 1776printf "};\n"
104c1213 1777
104c1213 1778# Create a new gdbarch struct
104c1213 1779cat <<EOF
7de2341d 1780
66b43ecb 1781/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1782 \`\`struct gdbarch_info''. */
104c1213 1783EOF
3d9a5942 1784printf "\n"
104c1213
JM
1785cat <<EOF
1786struct gdbarch *
1787gdbarch_alloc (const struct gdbarch_info *info,
1788 struct gdbarch_tdep *tdep)
1789{
be7811ad 1790 struct gdbarch *gdbarch;
aebd7893
AC
1791
1792 /* Create an obstack for allocating all the per-architecture memory,
1793 then use that to allocate the architecture vector. */
70ba0933 1794 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1795 obstack_init (obstack);
8d749320 1796 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1797 memset (gdbarch, 0, sizeof (*gdbarch));
1798 gdbarch->obstack = obstack;
85de9627 1799
be7811ad 1800 alloc_gdbarch_data (gdbarch);
85de9627 1801
be7811ad 1802 gdbarch->tdep = tdep;
104c1213 1803EOF
3d9a5942 1804printf "\n"
34620563 1805function_list | while do_read
104c1213 1806do
2ada493a
AC
1807 if class_is_info_p
1808 then
be7811ad 1809 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1810 fi
104c1213 1811done
3d9a5942 1812printf "\n"
0963b4bd 1813printf " /* Force the explicit initialization of these. */\n"
34620563 1814function_list | while do_read
104c1213 1815do
2ada493a
AC
1816 if class_is_function_p || class_is_variable_p
1817 then
72e74a21 1818 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1819 then
be7811ad 1820 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1821 fi
2ada493a 1822 fi
104c1213
JM
1823done
1824cat <<EOF
1825 /* gdbarch_alloc() */
1826
be7811ad 1827 return gdbarch;
104c1213
JM
1828}
1829EOF
1830
058f20d5 1831# Free a gdbarch struct.
3d9a5942
AC
1832printf "\n"
1833printf "\n"
058f20d5 1834cat <<EOF
aebd7893
AC
1835/* Allocate extra space using the per-architecture obstack. */
1836
1837void *
1838gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1839{
1840 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1841
aebd7893
AC
1842 memset (data, 0, size);
1843 return data;
1844}
1845
6c214e7c
PP
1846/* See gdbarch.h. */
1847
1848char *
1849gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1850{
1851 return obstack_strdup (arch->obstack, string);
1852}
1853
aebd7893 1854
058f20d5
JB
1855/* Free a gdbarch struct. This should never happen in normal
1856 operation --- once you've created a gdbarch, you keep it around.
1857 However, if an architecture's init function encounters an error
1858 building the structure, it may need to clean up a partially
1859 constructed gdbarch. */
4b9b3959 1860
058f20d5
JB
1861void
1862gdbarch_free (struct gdbarch *arch)
1863{
aebd7893 1864 struct obstack *obstack;
05c547f6 1865
95160752 1866 gdb_assert (arch != NULL);
aebd7893
AC
1867 gdb_assert (!arch->initialized_p);
1868 obstack = arch->obstack;
1869 obstack_free (obstack, 0); /* Includes the ARCH. */
1870 xfree (obstack);
058f20d5
JB
1871}
1872EOF
1873
104c1213 1874# verify a new architecture
104c1213 1875cat <<EOF
db446970
AC
1876
1877
1878/* Ensure that all values in a GDBARCH are reasonable. */
1879
104c1213 1880static void
be7811ad 1881verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1882{
d7e74731 1883 string_file log;
05c547f6 1884
104c1213 1885 /* fundamental */
be7811ad 1886 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1887 log.puts ("\n\tbyte-order");
be7811ad 1888 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1889 log.puts ("\n\tbfd_arch_info");
0963b4bd 1890 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1891EOF
34620563 1892function_list | while do_read
104c1213 1893do
2ada493a
AC
1894 if class_is_function_p || class_is_variable_p
1895 then
72e74a21 1896 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1897 then
3d9a5942 1898 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1899 elif class_is_predicate_p
1900 then
0963b4bd 1901 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1902 # FIXME: See do_read for potential simplification
72e74a21 1903 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1904 then
3d9a5942 1905 printf " if (${invalid_p})\n"
be7811ad 1906 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1907 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1908 then
be7811ad
MD
1909 printf " if (gdbarch->${function} == ${predefault})\n"
1910 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1911 elif [ -n "${postdefault}" ]
f0d4cc9e 1912 then
be7811ad
MD
1913 printf " if (gdbarch->${function} == 0)\n"
1914 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1915 elif [ -n "${invalid_p}" ]
104c1213 1916 then
4d60522e 1917 printf " if (${invalid_p})\n"
d7e74731 1918 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1919 elif [ -n "${predefault}" ]
104c1213 1920 then
be7811ad 1921 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1922 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1923 fi
2ada493a 1924 fi
104c1213
JM
1925done
1926cat <<EOF
d7e74731 1927 if (!log.empty ())
f16a1923 1928 internal_error (__FILE__, __LINE__,
85c07804 1929 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1930 log.c_str ());
104c1213
JM
1931}
1932EOF
1933
1934# dump the structure
3d9a5942
AC
1935printf "\n"
1936printf "\n"
104c1213 1937cat <<EOF
0963b4bd 1938/* Print out the details of the current architecture. */
4b9b3959 1939
104c1213 1940void
be7811ad 1941gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1942{
b78960be 1943 const char *gdb_nm_file = "<not-defined>";
05c547f6 1944
b78960be
AC
1945#if defined (GDB_NM_FILE)
1946 gdb_nm_file = GDB_NM_FILE;
1947#endif
1948 fprintf_unfiltered (file,
1949 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1950 gdb_nm_file);
104c1213 1951EOF
97030eea 1952function_list | sort -t: -k 3 | while do_read
104c1213 1953do
1e9f55d0
AC
1954 # First the predicate
1955 if class_is_predicate_p
1956 then
7996bcec 1957 printf " fprintf_unfiltered (file,\n"
48f7351b 1958 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1959 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1960 fi
48f7351b 1961 # Print the corresponding value.
283354d8 1962 if class_is_function_p
4b9b3959 1963 then
7996bcec 1964 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1965 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1966 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1967 else
48f7351b 1968 # It is a variable
2f9b146e
AC
1969 case "${print}:${returntype}" in
1970 :CORE_ADDR )
0b1553bc
UW
1971 fmt="%s"
1972 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1973 ;;
2f9b146e 1974 :* )
48f7351b 1975 fmt="%s"
623d3eb1 1976 print="plongest (gdbarch->${function})"
48f7351b
AC
1977 ;;
1978 * )
2f9b146e 1979 fmt="%s"
48f7351b
AC
1980 ;;
1981 esac
3d9a5942 1982 printf " fprintf_unfiltered (file,\n"
48f7351b 1983 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1984 printf " ${print});\n"
2ada493a 1985 fi
104c1213 1986done
381323f4 1987cat <<EOF
be7811ad
MD
1988 if (gdbarch->dump_tdep != NULL)
1989 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1990}
1991EOF
104c1213
JM
1992
1993
1994# GET/SET
3d9a5942 1995printf "\n"
104c1213
JM
1996cat <<EOF
1997struct gdbarch_tdep *
1998gdbarch_tdep (struct gdbarch *gdbarch)
1999{
2000 if (gdbarch_debug >= 2)
3d9a5942 2001 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2002 return gdbarch->tdep;
2003}
2004EOF
3d9a5942 2005printf "\n"
34620563 2006function_list | while do_read
104c1213 2007do
2ada493a
AC
2008 if class_is_predicate_p
2009 then
3d9a5942
AC
2010 printf "\n"
2011 printf "int\n"
2012 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2013 printf "{\n"
8de9bdc4 2014 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2015 printf " return ${predicate};\n"
3d9a5942 2016 printf "}\n"
2ada493a
AC
2017 fi
2018 if class_is_function_p
2019 then
3d9a5942
AC
2020 printf "\n"
2021 printf "${returntype}\n"
72e74a21 2022 if [ "x${formal}" = "xvoid" ]
104c1213 2023 then
3d9a5942 2024 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2025 else
3d9a5942 2026 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2027 fi
3d9a5942 2028 printf "{\n"
8de9bdc4 2029 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2030 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2031 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2032 then
2033 # Allow a call to a function with a predicate.
956ac328 2034 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2035 fi
3d9a5942
AC
2036 printf " if (gdbarch_debug >= 2)\n"
2037 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2038 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2039 then
2040 if class_is_multiarch_p
2041 then
2042 params="gdbarch"
2043 else
2044 params=""
2045 fi
2046 else
2047 if class_is_multiarch_p
2048 then
2049 params="gdbarch, ${actual}"
2050 else
2051 params="${actual}"
2052 fi
2053 fi
72e74a21 2054 if [ "x${returntype}" = "xvoid" ]
104c1213 2055 then
4a5c6a1d 2056 printf " gdbarch->${function} (${params});\n"
104c1213 2057 else
4a5c6a1d 2058 printf " return gdbarch->${function} (${params});\n"
104c1213 2059 fi
3d9a5942
AC
2060 printf "}\n"
2061 printf "\n"
2062 printf "void\n"
2063 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2064 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2065 printf "{\n"
2066 printf " gdbarch->${function} = ${function};\n"
2067 printf "}\n"
2ada493a
AC
2068 elif class_is_variable_p
2069 then
3d9a5942
AC
2070 printf "\n"
2071 printf "${returntype}\n"
2072 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2073 printf "{\n"
8de9bdc4 2074 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2075 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2076 then
3d9a5942 2077 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2078 elif [ -n "${invalid_p}" ]
104c1213 2079 then
956ac328
AC
2080 printf " /* Check variable is valid. */\n"
2081 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2082 elif [ -n "${predefault}" ]
104c1213 2083 then
956ac328
AC
2084 printf " /* Check variable changed from pre-default. */\n"
2085 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2086 fi
3d9a5942
AC
2087 printf " if (gdbarch_debug >= 2)\n"
2088 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2089 printf " return gdbarch->${function};\n"
2090 printf "}\n"
2091 printf "\n"
2092 printf "void\n"
2093 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2094 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2095 printf "{\n"
2096 printf " gdbarch->${function} = ${function};\n"
2097 printf "}\n"
2ada493a
AC
2098 elif class_is_info_p
2099 then
3d9a5942
AC
2100 printf "\n"
2101 printf "${returntype}\n"
2102 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2103 printf "{\n"
8de9bdc4 2104 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2105 printf " if (gdbarch_debug >= 2)\n"
2106 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2107 printf " return gdbarch->${function};\n"
2108 printf "}\n"
2ada493a 2109 fi
104c1213
JM
2110done
2111
2112# All the trailing guff
2113cat <<EOF
2114
2115
f44c642f 2116/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2117 modules. */
104c1213
JM
2118
2119struct gdbarch_data
2120{
95160752 2121 unsigned index;
76860b5f 2122 int init_p;
030f20e1
AC
2123 gdbarch_data_pre_init_ftype *pre_init;
2124 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2125};
2126
2127struct gdbarch_data_registration
2128{
104c1213
JM
2129 struct gdbarch_data *data;
2130 struct gdbarch_data_registration *next;
2131};
2132
f44c642f 2133struct gdbarch_data_registry
104c1213 2134{
95160752 2135 unsigned nr;
104c1213
JM
2136 struct gdbarch_data_registration *registrations;
2137};
2138
f44c642f 2139struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2140{
2141 0, NULL,
2142};
2143
030f20e1
AC
2144static struct gdbarch_data *
2145gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2146 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2147{
2148 struct gdbarch_data_registration **curr;
05c547f6
MS
2149
2150 /* Append the new registration. */
f44c642f 2151 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2152 (*curr) != NULL;
2153 curr = &(*curr)->next);
70ba0933 2154 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2155 (*curr)->next = NULL;
70ba0933 2156 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2157 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2158 (*curr)->data->pre_init = pre_init;
2159 (*curr)->data->post_init = post_init;
76860b5f 2160 (*curr)->data->init_p = 1;
104c1213
JM
2161 return (*curr)->data;
2162}
2163
030f20e1
AC
2164struct gdbarch_data *
2165gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2166{
2167 return gdbarch_data_register (pre_init, NULL);
2168}
2169
2170struct gdbarch_data *
2171gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2172{
2173 return gdbarch_data_register (NULL, post_init);
2174}
104c1213 2175
0963b4bd 2176/* Create/delete the gdbarch data vector. */
95160752
AC
2177
2178static void
b3cc3077 2179alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2180{
b3cc3077
JB
2181 gdb_assert (gdbarch->data == NULL);
2182 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2183 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2184}
3c875b6f 2185
76860b5f 2186/* Initialize the current value of the specified per-architecture
0963b4bd 2187 data-pointer. */
b3cc3077 2188
95160752 2189void
030f20e1
AC
2190deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2191 struct gdbarch_data *data,
2192 void *pointer)
95160752
AC
2193{
2194 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2195 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2196 gdb_assert (data->pre_init == NULL);
95160752
AC
2197 gdbarch->data[data->index] = pointer;
2198}
2199
104c1213 2200/* Return the current value of the specified per-architecture
0963b4bd 2201 data-pointer. */
104c1213
JM
2202
2203void *
451fbdda 2204gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2205{
451fbdda 2206 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2207 if (gdbarch->data[data->index] == NULL)
76860b5f 2208 {
030f20e1
AC
2209 /* The data-pointer isn't initialized, call init() to get a
2210 value. */
2211 if (data->pre_init != NULL)
2212 /* Mid architecture creation: pass just the obstack, and not
2213 the entire architecture, as that way it isn't possible for
2214 pre-init code to refer to undefined architecture
2215 fields. */
2216 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2217 else if (gdbarch->initialized_p
2218 && data->post_init != NULL)
2219 /* Post architecture creation: pass the entire architecture
2220 (as all fields are valid), but be careful to also detect
2221 recursive references. */
2222 {
2223 gdb_assert (data->init_p);
2224 data->init_p = 0;
2225 gdbarch->data[data->index] = data->post_init (gdbarch);
2226 data->init_p = 1;
2227 }
2228 else
2229 /* The architecture initialization hasn't completed - punt -
2230 hope that the caller knows what they are doing. Once
2231 deprecated_set_gdbarch_data has been initialized, this can be
2232 changed to an internal error. */
2233 return NULL;
76860b5f
AC
2234 gdb_assert (gdbarch->data[data->index] != NULL);
2235 }
451fbdda 2236 return gdbarch->data[data->index];
104c1213
JM
2237}
2238
2239
0963b4bd 2240/* Keep a registry of the architectures known by GDB. */
104c1213 2241
4b9b3959 2242struct gdbarch_registration
104c1213
JM
2243{
2244 enum bfd_architecture bfd_architecture;
2245 gdbarch_init_ftype *init;
4b9b3959 2246 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2247 struct gdbarch_list *arches;
4b9b3959 2248 struct gdbarch_registration *next;
104c1213
JM
2249};
2250
f44c642f 2251static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2252
b4a20239
AC
2253static void
2254append_name (const char ***buf, int *nr, const char *name)
2255{
1dc7a623 2256 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2257 (*buf)[*nr] = name;
2258 *nr += 1;
2259}
2260
2261const char **
2262gdbarch_printable_names (void)
2263{
7996bcec 2264 /* Accumulate a list of names based on the registed list of
0963b4bd 2265 architectures. */
7996bcec
AC
2266 int nr_arches = 0;
2267 const char **arches = NULL;
2268 struct gdbarch_registration *rego;
05c547f6 2269
7996bcec
AC
2270 for (rego = gdbarch_registry;
2271 rego != NULL;
2272 rego = rego->next)
b4a20239 2273 {
7996bcec
AC
2274 const struct bfd_arch_info *ap;
2275 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2276 if (ap == NULL)
2277 internal_error (__FILE__, __LINE__,
85c07804 2278 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2279 do
2280 {
2281 append_name (&arches, &nr_arches, ap->printable_name);
2282 ap = ap->next;
2283 }
2284 while (ap != NULL);
b4a20239 2285 }
7996bcec
AC
2286 append_name (&arches, &nr_arches, NULL);
2287 return arches;
b4a20239
AC
2288}
2289
2290
104c1213 2291void
4b9b3959
AC
2292gdbarch_register (enum bfd_architecture bfd_architecture,
2293 gdbarch_init_ftype *init,
2294 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2295{
4b9b3959 2296 struct gdbarch_registration **curr;
104c1213 2297 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2298
ec3d358c 2299 /* Check that BFD recognizes this architecture */
104c1213
JM
2300 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2301 if (bfd_arch_info == NULL)
2302 {
8e65ff28 2303 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2304 _("gdbarch: Attempt to register "
2305 "unknown architecture (%d)"),
8e65ff28 2306 bfd_architecture);
104c1213 2307 }
0963b4bd 2308 /* Check that we haven't seen this architecture before. */
f44c642f 2309 for (curr = &gdbarch_registry;
104c1213
JM
2310 (*curr) != NULL;
2311 curr = &(*curr)->next)
2312 {
2313 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2314 internal_error (__FILE__, __LINE__,
64b9b334 2315 _("gdbarch: Duplicate registration "
0963b4bd 2316 "of architecture (%s)"),
8e65ff28 2317 bfd_arch_info->printable_name);
104c1213
JM
2318 }
2319 /* log it */
2320 if (gdbarch_debug)
30737ed9 2321 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2322 bfd_arch_info->printable_name,
30737ed9 2323 host_address_to_string (init));
104c1213 2324 /* Append it */
70ba0933 2325 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2326 (*curr)->bfd_architecture = bfd_architecture;
2327 (*curr)->init = init;
4b9b3959 2328 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2329 (*curr)->arches = NULL;
2330 (*curr)->next = NULL;
4b9b3959
AC
2331}
2332
2333void
2334register_gdbarch_init (enum bfd_architecture bfd_architecture,
2335 gdbarch_init_ftype *init)
2336{
2337 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2338}
104c1213
JM
2339
2340
424163ea 2341/* Look for an architecture using gdbarch_info. */
104c1213
JM
2342
2343struct gdbarch_list *
2344gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2345 const struct gdbarch_info *info)
2346{
2347 for (; arches != NULL; arches = arches->next)
2348 {
2349 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2350 continue;
2351 if (info->byte_order != arches->gdbarch->byte_order)
2352 continue;
4be87837
DJ
2353 if (info->osabi != arches->gdbarch->osabi)
2354 continue;
424163ea
DJ
2355 if (info->target_desc != arches->gdbarch->target_desc)
2356 continue;
104c1213
JM
2357 return arches;
2358 }
2359 return NULL;
2360}
2361
2362
ebdba546 2363/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2364 architecture if needed. Return that new architecture. */
104c1213 2365
59837fe0
UW
2366struct gdbarch *
2367gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2368{
2369 struct gdbarch *new_gdbarch;
4b9b3959 2370 struct gdbarch_registration *rego;
104c1213 2371
b732d07d 2372 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2373 sources: "set ..."; INFOabfd supplied; and the global
2374 defaults. */
2375 gdbarch_info_fill (&info);
4be87837 2376
0963b4bd 2377 /* Must have found some sort of architecture. */
b732d07d 2378 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2379
2380 if (gdbarch_debug)
2381 {
2382 fprintf_unfiltered (gdb_stdlog,
59837fe0 2383 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2384 (info.bfd_arch_info != NULL
2385 ? info.bfd_arch_info->printable_name
2386 : "(null)"));
2387 fprintf_unfiltered (gdb_stdlog,
59837fe0 2388 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2389 info.byte_order,
d7449b42 2390 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2391 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2392 : "default"));
4be87837 2393 fprintf_unfiltered (gdb_stdlog,
59837fe0 2394 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2395 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2396 fprintf_unfiltered (gdb_stdlog,
59837fe0 2397 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2398 host_address_to_string (info.abfd));
104c1213 2399 fprintf_unfiltered (gdb_stdlog,
59837fe0 2400 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2401 host_address_to_string (info.tdep_info));
104c1213
JM
2402 }
2403
ebdba546 2404 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2405 for (rego = gdbarch_registry;
2406 rego != NULL;
2407 rego = rego->next)
2408 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2409 break;
2410 if (rego == NULL)
2411 {
2412 if (gdbarch_debug)
59837fe0 2413 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2414 "No matching architecture\n");
b732d07d
AC
2415 return 0;
2416 }
2417
ebdba546 2418 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2419 new_gdbarch = rego->init (info, rego->arches);
2420
ebdba546
AC
2421 /* Did the tdep code like it? No. Reject the change and revert to
2422 the old architecture. */
104c1213
JM
2423 if (new_gdbarch == NULL)
2424 {
2425 if (gdbarch_debug)
59837fe0 2426 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2427 "Target rejected architecture\n");
2428 return NULL;
104c1213
JM
2429 }
2430
ebdba546
AC
2431 /* Is this a pre-existing architecture (as determined by already
2432 being initialized)? Move it to the front of the architecture
2433 list (keeping the list sorted Most Recently Used). */
2434 if (new_gdbarch->initialized_p)
104c1213 2435 {
ebdba546 2436 struct gdbarch_list **list;
fe978cb0 2437 struct gdbarch_list *self;
104c1213 2438 if (gdbarch_debug)
59837fe0 2439 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2440 "Previous architecture %s (%s) selected\n",
2441 host_address_to_string (new_gdbarch),
104c1213 2442 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2443 /* Find the existing arch in the list. */
2444 for (list = &rego->arches;
2445 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2446 list = &(*list)->next);
2447 /* It had better be in the list of architectures. */
2448 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2449 /* Unlink SELF. */
2450 self = (*list);
2451 (*list) = self->next;
2452 /* Insert SELF at the front. */
2453 self->next = rego->arches;
2454 rego->arches = self;
ebdba546
AC
2455 /* Return it. */
2456 return new_gdbarch;
104c1213
JM
2457 }
2458
ebdba546
AC
2459 /* It's a new architecture. */
2460 if (gdbarch_debug)
59837fe0 2461 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2462 "New architecture %s (%s) selected\n",
2463 host_address_to_string (new_gdbarch),
ebdba546
AC
2464 new_gdbarch->bfd_arch_info->printable_name);
2465
2466 /* Insert the new architecture into the front of the architecture
2467 list (keep the list sorted Most Recently Used). */
0f79675b 2468 {
fe978cb0
PA
2469 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2470 self->next = rego->arches;
2471 self->gdbarch = new_gdbarch;
2472 rego->arches = self;
0f79675b 2473 }
104c1213 2474
4b9b3959
AC
2475 /* Check that the newly installed architecture is valid. Plug in
2476 any post init values. */
2477 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2478 verify_gdbarch (new_gdbarch);
ebdba546 2479 new_gdbarch->initialized_p = 1;
104c1213 2480
4b9b3959 2481 if (gdbarch_debug)
ebdba546
AC
2482 gdbarch_dump (new_gdbarch, gdb_stdlog);
2483
2484 return new_gdbarch;
2485}
2486
e487cc15 2487/* Make the specified architecture current. */
ebdba546
AC
2488
2489void
aff68abb 2490set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2491{
2492 gdb_assert (new_gdbarch != NULL);
ebdba546 2493 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2494 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2495 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2496 registers_changed ();
ebdba546 2497}
104c1213 2498
f5656ead 2499/* Return the current inferior's arch. */
6ecd4729
PA
2500
2501struct gdbarch *
f5656ead 2502target_gdbarch (void)
6ecd4729
PA
2503{
2504 return current_inferior ()->gdbarch;
2505}
2506
104c1213 2507extern void _initialize_gdbarch (void);
b4a20239 2508
104c1213 2509void
34620563 2510_initialize_gdbarch (void)
104c1213 2511{
ccce17b0 2512 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2513Set architecture debugging."), _("\\
2514Show architecture debugging."), _("\\
2515When non-zero, architecture debugging is enabled."),
2516 NULL,
920d2a44 2517 show_gdbarch_debug,
85c07804 2518 &setdebuglist, &showdebuglist);
104c1213
JM
2519}
2520EOF
2521
2522# close things off
2523exec 1>&2
2524#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2525compare_new gdbarch.c
This page took 1.563163 seconds and 4 git commands to generate.