* linux-low.c (handle_extended_wait): Simplify, use my_waitpid.
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
CommitLineData
da6d8c04 1/* Low level interface to ptrace, for the remote server for GDB.
545587ee 2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
9b254dd1 3 2006, 2007, 2008 Free Software Foundation, Inc.
da6d8c04
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
da6d8c04
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
da6d8c04
DJ
19
20#include "server.h"
58caa3dc 21#include "linux-low.h"
da6d8c04 22
58caa3dc 23#include <sys/wait.h>
da6d8c04
DJ
24#include <stdio.h>
25#include <sys/param.h>
da6d8c04 26#include <sys/ptrace.h>
da6d8c04
DJ
27#include <signal.h>
28#include <sys/ioctl.h>
29#include <fcntl.h>
d07c63e7 30#include <string.h>
0a30fbc4
DJ
31#include <stdlib.h>
32#include <unistd.h>
fa6a77dc 33#include <errno.h>
fd500816 34#include <sys/syscall.h>
f9387fc3 35#include <sched.h>
07e059b5
VP
36#include <ctype.h>
37#include <pwd.h>
38#include <sys/types.h>
39#include <dirent.h>
da6d8c04 40
32ca6d61
DJ
41#ifndef PTRACE_GETSIGINFO
42# define PTRACE_GETSIGINFO 0x4202
43# define PTRACE_SETSIGINFO 0x4203
44#endif
45
fd462a61
DJ
46#ifndef O_LARGEFILE
47#define O_LARGEFILE 0
48#endif
49
24a09b5f
DJ
50/* If the system headers did not provide the constants, hard-code the normal
51 values. */
52#ifndef PTRACE_EVENT_FORK
53
54#define PTRACE_SETOPTIONS 0x4200
55#define PTRACE_GETEVENTMSG 0x4201
56
57/* options set using PTRACE_SETOPTIONS */
58#define PTRACE_O_TRACESYSGOOD 0x00000001
59#define PTRACE_O_TRACEFORK 0x00000002
60#define PTRACE_O_TRACEVFORK 0x00000004
61#define PTRACE_O_TRACECLONE 0x00000008
62#define PTRACE_O_TRACEEXEC 0x00000010
63#define PTRACE_O_TRACEVFORKDONE 0x00000020
64#define PTRACE_O_TRACEEXIT 0x00000040
65
66/* Wait extended result codes for the above trace options. */
67#define PTRACE_EVENT_FORK 1
68#define PTRACE_EVENT_VFORK 2
69#define PTRACE_EVENT_CLONE 3
70#define PTRACE_EVENT_EXEC 4
71#define PTRACE_EVENT_VFORK_DONE 5
72#define PTRACE_EVENT_EXIT 6
73
74#endif /* PTRACE_EVENT_FORK */
75
76/* We can't always assume that this flag is available, but all systems
77 with the ptrace event handlers also have __WALL, so it's safe to use
78 in some contexts. */
79#ifndef __WALL
80#define __WALL 0x40000000 /* Wait for any child. */
81#endif
82
42c81e2a
DJ
83#ifdef __UCLIBC__
84#if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
85#define HAS_NOMMU
86#endif
87#endif
88
24a09b5f
DJ
89/* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
90 representation of the thread ID.
611cb4a5 91
0d62e5e8
DJ
92 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
93 the same as the LWP ID. */
94
95struct inferior_list all_processes;
96
24a09b5f
DJ
97/* A list of all unknown processes which receive stop signals. Some other
98 process will presumably claim each of these as forked children
99 momentarily. */
100
101struct inferior_list stopped_pids;
102
0d62e5e8
DJ
103/* FIXME this is a bit of a hack, and could be removed. */
104int stopping_threads;
105
106/* FIXME make into a target method? */
24a09b5f
DJ
107int using_threads = 1;
108static int thread_db_active;
109
110static int must_set_ptrace_flags;
0d62e5e8 111
d61ddec4
UW
112/* This flag is true iff we've just created or attached to a new inferior
113 but it has not stopped yet. As soon as it does, we need to call the
114 low target's arch_setup callback. */
115static int new_inferior;
116
0d62e5e8 117static void linux_resume_one_process (struct inferior_list_entry *entry,
32ca6d61 118 int step, int signal, siginfo_t *info);
64386c31 119static void linux_resume (struct thread_resume *resume_info);
0d62e5e8
DJ
120static void stop_all_processes (void);
121static int linux_wait_for_event (struct thread_info *child);
ae13219e 122static int check_removed_breakpoint (struct process_info *event_child);
24a09b5f 123static void *add_process (unsigned long pid);
97438e3f 124static int my_waitpid (int pid, int *status, int flags);
0d62e5e8
DJ
125
126struct pending_signals
127{
128 int signal;
32ca6d61 129 siginfo_t info;
0d62e5e8
DJ
130 struct pending_signals *prev;
131};
611cb4a5 132
d844cde6 133#define PTRACE_ARG3_TYPE long
c6ecbae5 134#define PTRACE_XFER_TYPE long
da6d8c04 135
58caa3dc 136#ifdef HAVE_LINUX_REGSETS
52fa2412
UW
137static char *disabled_regsets;
138static int num_regsets;
58caa3dc
DJ
139#endif
140
0d62e5e8
DJ
141#define pid_of(proc) ((proc)->head.id)
142
143/* FIXME: Delete eventually. */
144#define inferior_pid (pid_of (get_thread_process (current_inferior)))
145
24a09b5f
DJ
146static void
147handle_extended_wait (struct process_info *event_child, int wstat)
148{
149 int event = wstat >> 16;
150 struct process_info *new_process;
151
152 if (event == PTRACE_EVENT_CLONE)
153 {
154 unsigned long new_pid;
836acd6d 155 int ret, status = W_STOPCODE (SIGSTOP);
24a09b5f
DJ
156
157 ptrace (PTRACE_GETEVENTMSG, inferior_pid, 0, &new_pid);
158
159 /* If we haven't already seen the new PID stop, wait for it now. */
160 if (! pull_pid_from_list (&stopped_pids, new_pid))
161 {
162 /* The new child has a pending SIGSTOP. We can't affect it until it
163 hits the SIGSTOP, but we're already attached. */
164
97438e3f 165 ret = my_waitpid (new_pid, &status, __WALL);
24a09b5f
DJ
166
167 if (ret == -1)
168 perror_with_name ("waiting for new child");
169 else if (ret != new_pid)
170 warning ("wait returned unexpected PID %d", ret);
da5898ce 171 else if (!WIFSTOPPED (status))
24a09b5f
DJ
172 warning ("wait returned unexpected status 0x%x", status);
173 }
174
175 ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);
176
177 new_process = (struct process_info *) add_process (new_pid);
178 add_thread (new_pid, new_process, new_pid);
179 new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
180
da5898ce
DJ
181 /* Normally we will get the pending SIGSTOP. But in some cases
182 we might get another signal delivered to the group first.
183 If we do, be sure not to lose it. */
184 if (WSTOPSIG (status) == SIGSTOP)
185 {
186 if (stopping_threads)
187 new_process->stopped = 1;
188 else
189 ptrace (PTRACE_CONT, new_pid, 0, 0);
190 }
24a09b5f 191 else
da5898ce
DJ
192 {
193 new_process->stop_expected = 1;
194 if (stopping_threads)
195 {
196 new_process->stopped = 1;
197 new_process->status_pending_p = 1;
198 new_process->status_pending = status;
199 }
200 else
201 /* Pass the signal on. This is what GDB does - except
202 shouldn't we really report it instead? */
203 ptrace (PTRACE_CONT, new_pid, 0, WSTOPSIG (status));
204 }
24a09b5f
DJ
205
206 /* Always resume the current thread. If we are stopping
207 threads, it will have a pending SIGSTOP; we may as well
208 collect it now. */
209 linux_resume_one_process (&event_child->head,
210 event_child->stepping, 0, NULL);
211 }
212}
213
0d62e5e8
DJ
214/* This function should only be called if the process got a SIGTRAP.
215 The SIGTRAP could mean several things.
216
217 On i386, where decr_pc_after_break is non-zero:
218 If we were single-stepping this process using PTRACE_SINGLESTEP,
219 we will get only the one SIGTRAP (even if the instruction we
220 stepped over was a breakpoint). The value of $eip will be the
221 next instruction.
222 If we continue the process using PTRACE_CONT, we will get a
223 SIGTRAP when we hit a breakpoint. The value of $eip will be
224 the instruction after the breakpoint (i.e. needs to be
225 decremented). If we report the SIGTRAP to GDB, we must also
226 report the undecremented PC. If we cancel the SIGTRAP, we
227 must resume at the decremented PC.
228
229 (Presumably, not yet tested) On a non-decr_pc_after_break machine
230 with hardware or kernel single-step:
231 If we single-step over a breakpoint instruction, our PC will
232 point at the following instruction. If we continue and hit a
233 breakpoint instruction, our PC will point at the breakpoint
234 instruction. */
235
236static CORE_ADDR
237get_stop_pc (void)
238{
239 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
240
241 if (get_thread_process (current_inferior)->stepping)
242 return stop_pc;
243 else
244 return stop_pc - the_low_target.decr_pc_after_break;
245}
ce3a066d 246
0d62e5e8 247static void *
a1928bad 248add_process (unsigned long pid)
611cb4a5 249{
0d62e5e8
DJ
250 struct process_info *process;
251
252 process = (struct process_info *) malloc (sizeof (*process));
253 memset (process, 0, sizeof (*process));
254
255 process->head.id = pid;
0d62e5e8
DJ
256 process->lwpid = pid;
257
258 add_inferior_to_list (&all_processes, &process->head);
259
260 return process;
261}
611cb4a5 262
da6d8c04
DJ
263/* Start an inferior process and returns its pid.
264 ALLARGS is a vector of program-name and args. */
265
ce3a066d
DJ
266static int
267linux_create_inferior (char *program, char **allargs)
da6d8c04 268{
0d62e5e8 269 void *new_process;
da6d8c04
DJ
270 int pid;
271
42c81e2a 272#if defined(__UCLIBC__) && defined(HAS_NOMMU)
52fb6437
NS
273 pid = vfork ();
274#else
da6d8c04 275 pid = fork ();
52fb6437 276#endif
da6d8c04
DJ
277 if (pid < 0)
278 perror_with_name ("fork");
279
280 if (pid == 0)
281 {
282 ptrace (PTRACE_TRACEME, 0, 0, 0);
283
254787d4 284 signal (__SIGRTMIN + 1, SIG_DFL);
0d62e5e8 285
a9fa9f7d
DJ
286 setpgid (0, 0);
287
2b876972
DJ
288 execv (program, allargs);
289 if (errno == ENOENT)
290 execvp (program, allargs);
da6d8c04
DJ
291
292 fprintf (stderr, "Cannot exec %s: %s.\n", program,
d07c63e7 293 strerror (errno));
da6d8c04
DJ
294 fflush (stderr);
295 _exit (0177);
296 }
297
0d62e5e8 298 new_process = add_process (pid);
a06660f7 299 add_thread (pid, new_process, pid);
24a09b5f 300 must_set_ptrace_flags = 1;
d61ddec4 301 new_inferior = 1;
611cb4a5 302
a9fa9f7d 303 return pid;
da6d8c04
DJ
304}
305
306/* Attach to an inferior process. */
307
0d62e5e8 308void
24a09b5f 309linux_attach_lwp (unsigned long pid)
da6d8c04 310{
0d62e5e8 311 struct process_info *new_process;
611cb4a5 312
da6d8c04
DJ
313 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
314 {
2d717e4f
DJ
315 if (all_threads.head != NULL)
316 {
317 /* If we fail to attach to an LWP, just warn. */
318 fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
319 strerror (errno), errno);
320 fflush (stderr);
321 return;
322 }
323 else
324 /* If we fail to attach to a process, report an error. */
325 error ("Cannot attach to process %ld: %s (%d)\n", pid,
43d5792c 326 strerror (errno), errno);
da6d8c04
DJ
327 }
328
24a09b5f
DJ
329 ptrace (PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACECLONE);
330
0d62e5e8 331 new_process = (struct process_info *) add_process (pid);
24a09b5f
DJ
332 add_thread (pid, new_process, pid);
333 new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
0d62e5e8
DJ
334
335 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
336 brings it to a halt. We should ignore that SIGSTOP and resume the process
337 (unless this is the first process, in which case the flag will be cleared
338 in linux_attach).
339
340 On the other hand, if we are currently trying to stop all threads, we
341 should treat the new thread as if we had sent it a SIGSTOP. This works
342 because we are guaranteed that add_process added us to the end of the
343 list, and so the new thread has not yet reached wait_for_sigstop (but
344 will). */
345 if (! stopping_threads)
346 new_process->stop_expected = 1;
347}
348
349int
a1928bad 350linux_attach (unsigned long pid)
0d62e5e8
DJ
351{
352 struct process_info *process;
353
24a09b5f 354 linux_attach_lwp (pid);
0d62e5e8 355
ae13219e
DJ
356 /* Don't ignore the initial SIGSTOP if we just attached to this process.
357 It will be collected by wait shortly. */
0d62e5e8
DJ
358 process = (struct process_info *) find_inferior_id (&all_processes, pid);
359 process->stop_expected = 0;
360
d61ddec4
UW
361 new_inferior = 1;
362
da6d8c04
DJ
363 return 0;
364}
365
366/* Kill the inferior process. Make us have no inferior. */
367
ce3a066d 368static void
0d62e5e8 369linux_kill_one_process (struct inferior_list_entry *entry)
da6d8c04 370{
0d62e5e8
DJ
371 struct thread_info *thread = (struct thread_info *) entry;
372 struct process_info *process = get_thread_process (thread);
373 int wstat;
374
fd500816
DJ
375 /* We avoid killing the first thread here, because of a Linux kernel (at
376 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
377 the children get a chance to be reaped, it will remain a zombie
378 forever. */
379 if (entry == all_threads.head)
380 return;
381
0d62e5e8
DJ
382 do
383 {
384 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
385
386 /* Make sure it died. The loop is most likely unnecessary. */
387 wstat = linux_wait_for_event (thread);
388 } while (WIFSTOPPED (wstat));
da6d8c04
DJ
389}
390
0d62e5e8
DJ
391static void
392linux_kill (void)
393{
fd500816 394 struct thread_info *thread = (struct thread_info *) all_threads.head;
9d606399 395 struct process_info *process;
fd500816
DJ
396 int wstat;
397
9d606399
DJ
398 if (thread == NULL)
399 return;
400
0d62e5e8 401 for_each_inferior (&all_threads, linux_kill_one_process);
fd500816
DJ
402
403 /* See the comment in linux_kill_one_process. We did not kill the first
404 thread in the list, so do so now. */
9d606399 405 process = get_thread_process (thread);
fd500816
DJ
406 do
407 {
408 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
409
410 /* Make sure it died. The loop is most likely unnecessary. */
411 wstat = linux_wait_for_event (thread);
412 } while (WIFSTOPPED (wstat));
2d717e4f
DJ
413
414 clear_inferiors ();
415 free (all_processes.head);
416 all_processes.head = all_processes.tail = NULL;
0d62e5e8
DJ
417}
418
6ad8ae5c
DJ
419static void
420linux_detach_one_process (struct inferior_list_entry *entry)
421{
422 struct thread_info *thread = (struct thread_info *) entry;
423 struct process_info *process = get_thread_process (thread);
424
ae13219e
DJ
425 /* Make sure the process isn't stopped at a breakpoint that's
426 no longer there. */
427 check_removed_breakpoint (process);
428
429 /* If this process is stopped but is expecting a SIGSTOP, then make
430 sure we take care of that now. This isn't absolutely guaranteed
431 to collect the SIGSTOP, but is fairly likely to. */
432 if (process->stop_expected)
433 {
434 /* Clear stop_expected, so that the SIGSTOP will be reported. */
435 process->stop_expected = 0;
436 if (process->stopped)
437 linux_resume_one_process (&process->head, 0, 0, NULL);
438 linux_wait_for_event (thread);
439 }
440
441 /* Flush any pending changes to the process's registers. */
442 regcache_invalidate_one ((struct inferior_list_entry *)
443 get_process_thread (process));
444
445 /* Finally, let it resume. */
6ad8ae5c
DJ
446 ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
447}
448
dd6953e1 449static int
6ad8ae5c
DJ
450linux_detach (void)
451{
ae13219e 452 delete_all_breakpoints ();
6ad8ae5c 453 for_each_inferior (&all_threads, linux_detach_one_process);
ae13219e 454 clear_inferiors ();
2d717e4f
DJ
455 free (all_processes.head);
456 all_processes.head = all_processes.tail = NULL;
dd6953e1 457 return 0;
6ad8ae5c
DJ
458}
459
444d6139
PA
460static void
461linux_join (void)
462{
463 extern unsigned long signal_pid;
464 int status, ret;
465
466 do {
467 ret = waitpid (signal_pid, &status, 0);
468 if (WIFEXITED (status) || WIFSIGNALED (status))
469 break;
470 } while (ret != -1 || errno != ECHILD);
471}
472
6ad8ae5c 473/* Return nonzero if the given thread is still alive. */
0d62e5e8 474static int
24a09b5f 475linux_thread_alive (unsigned long lwpid)
0d62e5e8 476{
24a09b5f 477 if (find_inferior_id (&all_threads, lwpid) != NULL)
0d62e5e8
DJ
478 return 1;
479 else
480 return 0;
481}
482
483/* Return nonzero if this process stopped at a breakpoint which
484 no longer appears to be inserted. Also adjust the PC
485 appropriately to resume where the breakpoint used to be. */
ce3a066d 486static int
0d62e5e8 487check_removed_breakpoint (struct process_info *event_child)
da6d8c04 488{
0d62e5e8
DJ
489 CORE_ADDR stop_pc;
490 struct thread_info *saved_inferior;
491
492 if (event_child->pending_is_breakpoint == 0)
493 return 0;
494
495 if (debug_threads)
ae13219e
DJ
496 fprintf (stderr, "Checking for breakpoint in process %ld.\n",
497 event_child->lwpid);
0d62e5e8
DJ
498
499 saved_inferior = current_inferior;
500 current_inferior = get_process_thread (event_child);
501
502 stop_pc = get_stop_pc ();
503
504 /* If the PC has changed since we stopped, then we shouldn't do
505 anything. This happens if, for instance, GDB handled the
506 decr_pc_after_break subtraction itself. */
507 if (stop_pc != event_child->pending_stop_pc)
508 {
509 if (debug_threads)
ae13219e
DJ
510 fprintf (stderr, "Ignoring, PC was changed. Old PC was 0x%08llx\n",
511 event_child->pending_stop_pc);
0d62e5e8
DJ
512
513 event_child->pending_is_breakpoint = 0;
514 current_inferior = saved_inferior;
515 return 0;
516 }
517
518 /* If the breakpoint is still there, we will report hitting it. */
519 if ((*the_low_target.breakpoint_at) (stop_pc))
520 {
521 if (debug_threads)
522 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
523 current_inferior = saved_inferior;
524 return 0;
525 }
526
527 if (debug_threads)
528 fprintf (stderr, "Removed breakpoint.\n");
529
530 /* For decr_pc_after_break targets, here is where we perform the
531 decrement. We go immediately from this function to resuming,
532 and can not safely call get_stop_pc () again. */
533 if (the_low_target.set_pc != NULL)
534 (*the_low_target.set_pc) (stop_pc);
535
536 /* We consumed the pending SIGTRAP. */
5544ad89 537 event_child->pending_is_breakpoint = 0;
0d62e5e8
DJ
538 event_child->status_pending_p = 0;
539 event_child->status_pending = 0;
540
541 current_inferior = saved_inferior;
da6d8c04
DJ
542 return 1;
543}
544
0d62e5e8
DJ
545/* Return 1 if this process has an interesting status pending. This function
546 may silently resume an inferior process. */
611cb4a5 547static int
0d62e5e8
DJ
548status_pending_p (struct inferior_list_entry *entry, void *dummy)
549{
550 struct process_info *process = (struct process_info *) entry;
551
552 if (process->status_pending_p)
553 if (check_removed_breakpoint (process))
554 {
555 /* This thread was stopped at a breakpoint, and the breakpoint
556 is now gone. We were told to continue (or step...) all threads,
557 so GDB isn't trying to single-step past this breakpoint.
558 So instead of reporting the old SIGTRAP, pretend we got to
559 the breakpoint just after it was removed instead of just
560 before; resume the process. */
32ca6d61 561 linux_resume_one_process (&process->head, 0, 0, NULL);
0d62e5e8
DJ
562 return 0;
563 }
564
565 return process->status_pending_p;
566}
567
568static void
569linux_wait_for_process (struct process_info **childp, int *wstatp)
611cb4a5 570{
0d62e5e8
DJ
571 int ret;
572 int to_wait_for = -1;
573
574 if (*childp != NULL)
575 to_wait_for = (*childp)->lwpid;
611cb4a5 576
24a09b5f 577retry:
611cb4a5
DJ
578 while (1)
579 {
0d62e5e8
DJ
580 ret = waitpid (to_wait_for, wstatp, WNOHANG);
581
582 if (ret == -1)
583 {
584 if (errno != ECHILD)
585 perror_with_name ("waitpid");
586 }
587 else if (ret > 0)
588 break;
589
590 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
591
592 if (ret == -1)
593 {
594 if (errno != ECHILD)
595 perror_with_name ("waitpid (WCLONE)");
596 }
597 else if (ret > 0)
598 break;
599
600 usleep (1000);
601 }
602
603 if (debug_threads
604 && (!WIFSTOPPED (*wstatp)
605 || (WSTOPSIG (*wstatp) != 32
606 && WSTOPSIG (*wstatp) != 33)))
607 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
608
609 if (to_wait_for == -1)
610 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
611
24a09b5f
DJ
612 /* If we didn't find a process, one of two things presumably happened:
613 - A process we started and then detached from has exited. Ignore it.
614 - A process we are controlling has forked and the new child's stop
615 was reported to us by the kernel. Save its PID. */
616 if (*childp == NULL && WIFSTOPPED (*wstatp))
617 {
618 add_pid_to_list (&stopped_pids, ret);
619 goto retry;
620 }
621 else if (*childp == NULL)
622 goto retry;
623
0d62e5e8
DJ
624 (*childp)->stopped = 1;
625 (*childp)->pending_is_breakpoint = 0;
626
32ca6d61
DJ
627 (*childp)->last_status = *wstatp;
628
d61ddec4
UW
629 /* Architecture-specific setup after inferior is running.
630 This needs to happen after we have attached to the inferior
631 and it is stopped for the first time, but before we access
632 any inferior registers. */
633 if (new_inferior)
634 {
635 the_low_target.arch_setup ();
52fa2412
UW
636#ifdef HAVE_LINUX_REGSETS
637 memset (disabled_regsets, 0, num_regsets);
638#endif
d61ddec4
UW
639 new_inferior = 0;
640 }
641
0d62e5e8
DJ
642 if (debug_threads
643 && WIFSTOPPED (*wstatp))
644 {
645 current_inferior = (struct thread_info *)
24a09b5f 646 find_inferior_id (&all_threads, (*childp)->lwpid);
0d62e5e8
DJ
647 /* For testing only; i386_stop_pc prints out a diagnostic. */
648 if (the_low_target.get_pc != NULL)
649 get_stop_pc ();
650 }
651}
611cb4a5 652
0d62e5e8
DJ
653static int
654linux_wait_for_event (struct thread_info *child)
655{
656 CORE_ADDR stop_pc;
657 struct process_info *event_child;
658 int wstat;
b65d95c5 659 int bp_status;
0d62e5e8
DJ
660
661 /* Check for a process with a pending status. */
662 /* It is possible that the user changed the pending task's registers since
663 it stopped. We correctly handle the change of PC if we hit a breakpoint
e5379b03 664 (in check_removed_breakpoint); signals should be reported anyway. */
0d62e5e8
DJ
665 if (child == NULL)
666 {
667 event_child = (struct process_info *)
668 find_inferior (&all_processes, status_pending_p, NULL);
669 if (debug_threads && event_child)
a1928bad 670 fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
0d62e5e8
DJ
671 }
672 else
673 {
674 event_child = get_thread_process (child);
675 if (event_child->status_pending_p
676 && check_removed_breakpoint (event_child))
677 event_child = NULL;
678 }
611cb4a5 679
0d62e5e8
DJ
680 if (event_child != NULL)
681 {
682 if (event_child->status_pending_p)
611cb4a5 683 {
0d62e5e8 684 if (debug_threads)
a1928bad 685 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
0d62e5e8
DJ
686 event_child->lwpid, event_child->status_pending);
687 wstat = event_child->status_pending;
688 event_child->status_pending_p = 0;
689 event_child->status_pending = 0;
690 current_inferior = get_process_thread (event_child);
691 return wstat;
692 }
693 }
694
695 /* We only enter this loop if no process has a pending wait status. Thus
696 any action taken in response to a wait status inside this loop is
697 responding as soon as we detect the status, not after any pending
698 events. */
699 while (1)
700 {
701 if (child == NULL)
702 event_child = NULL;
703 else
704 event_child = get_thread_process (child);
705
706 linux_wait_for_process (&event_child, &wstat);
707
708 if (event_child == NULL)
709 error ("event from unknown child");
611cb4a5 710
0d62e5e8 711 current_inferior = (struct thread_info *)
24a09b5f 712 find_inferior_id (&all_threads, event_child->lwpid);
0d62e5e8 713
89be2091 714 /* Check for thread exit. */
24a09b5f 715 if (! WIFSTOPPED (wstat))
0d62e5e8 716 {
89be2091 717 if (debug_threads)
24a09b5f 718 fprintf (stderr, "LWP %ld exiting\n", event_child->head.id);
89be2091
DJ
719
720 /* If the last thread is exiting, just return. */
721 if (all_threads.head == all_threads.tail)
722 return wstat;
723
24a09b5f 724 dead_thread_notify (thread_id_to_gdb_id (event_child->lwpid));
89be2091
DJ
725
726 remove_inferior (&all_processes, &event_child->head);
727 free (event_child);
728 remove_thread (current_inferior);
729 current_inferior = (struct thread_info *) all_threads.head;
730
731 /* If we were waiting for this particular child to do something...
732 well, it did something. */
733 if (child != NULL)
734 return wstat;
735
736 /* Wait for a more interesting event. */
737 continue;
738 }
739
24a09b5f 740 if (WIFSTOPPED (wstat)
89be2091
DJ
741 && WSTOPSIG (wstat) == SIGSTOP
742 && event_child->stop_expected)
743 {
744 if (debug_threads)
745 fprintf (stderr, "Expected stop.\n");
746 event_child->stop_expected = 0;
747 linux_resume_one_process (&event_child->head,
748 event_child->stepping, 0, NULL);
749 continue;
750 }
751
24a09b5f
DJ
752 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
753 && wstat >> 16 != 0)
754 {
755 handle_extended_wait (event_child, wstat);
756 continue;
757 }
758
89be2091
DJ
759 /* If GDB is not interested in this signal, don't stop other
760 threads, and don't report it to GDB. Just resume the
761 inferior right away. We do this for threading-related
69f223ed
DJ
762 signals as well as any that GDB specifically requested we
763 ignore. But never ignore SIGSTOP if we sent it ourselves,
764 and do not ignore signals when stepping - they may require
765 special handling to skip the signal handler. */
89be2091
DJ
766 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
767 thread library? */
768 if (WIFSTOPPED (wstat)
69f223ed 769 && !event_child->stepping
24a09b5f
DJ
770 && (
771#ifdef USE_THREAD_DB
772 (thread_db_active && (WSTOPSIG (wstat) == __SIGRTMIN
773 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
774 ||
775#endif
776 (pass_signals[target_signal_from_host (WSTOPSIG (wstat))]
777 && (WSTOPSIG (wstat) != SIGSTOP || !stopping_threads))))
89be2091
DJ
778 {
779 siginfo_t info, *info_p;
780
781 if (debug_threads)
24a09b5f
DJ
782 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
783 WSTOPSIG (wstat), event_child->head.id);
89be2091
DJ
784
785 if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0)
786 info_p = &info;
787 else
788 info_p = NULL;
789 linux_resume_one_process (&event_child->head,
790 event_child->stepping,
791 WSTOPSIG (wstat), info_p);
792 continue;
0d62e5e8 793 }
611cb4a5 794
0d62e5e8
DJ
795 /* If this event was not handled above, and is not a SIGTRAP, report
796 it. */
797 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
798 return wstat;
611cb4a5 799
0d62e5e8
DJ
800 /* If this target does not support breakpoints, we simply report the
801 SIGTRAP; it's of no concern to us. */
802 if (the_low_target.get_pc == NULL)
803 return wstat;
804
805 stop_pc = get_stop_pc ();
806
807 /* bp_reinsert will only be set if we were single-stepping.
808 Notice that we will resume the process after hitting
809 a gdbserver breakpoint; single-stepping to/over one
810 is not supported (yet). */
811 if (event_child->bp_reinsert != 0)
812 {
813 if (debug_threads)
814 fprintf (stderr, "Reinserted breakpoint.\n");
815 reinsert_breakpoint (event_child->bp_reinsert);
816 event_child->bp_reinsert = 0;
817
818 /* Clear the single-stepping flag and SIGTRAP as we resume. */
32ca6d61 819 linux_resume_one_process (&event_child->head, 0, 0, NULL);
0d62e5e8
DJ
820 continue;
821 }
822
b65d95c5 823 bp_status = check_breakpoints (stop_pc);
0d62e5e8 824
b65d95c5 825 if (bp_status != 0)
0d62e5e8 826 {
b65d95c5
DJ
827 if (debug_threads)
828 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
829
0d62e5e8 830 /* We hit one of our own breakpoints. We mark it as a pending
e5379b03 831 breakpoint, so that check_removed_breakpoint () will do the PC
0d62e5e8
DJ
832 adjustment for us at the appropriate time. */
833 event_child->pending_is_breakpoint = 1;
834 event_child->pending_stop_pc = stop_pc;
835
b65d95c5 836 /* We may need to put the breakpoint back. We continue in the event
0d62e5e8
DJ
837 loop instead of simply replacing the breakpoint right away,
838 in order to not lose signals sent to the thread that hit the
839 breakpoint. Unfortunately this increases the window where another
840 thread could sneak past the removed breakpoint. For the current
841 use of server-side breakpoints (thread creation) this is
842 acceptable; but it needs to be considered before this breakpoint
843 mechanism can be used in more general ways. For some breakpoints
844 it may be necessary to stop all other threads, but that should
845 be avoided where possible.
846
847 If breakpoint_reinsert_addr is NULL, that means that we can
848 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
849 mark it for reinsertion, and single-step.
850
851 Otherwise, call the target function to figure out where we need
852 our temporary breakpoint, create it, and continue executing this
853 process. */
b65d95c5
DJ
854 if (bp_status == 2)
855 /* No need to reinsert. */
856 linux_resume_one_process (&event_child->head, 0, 0, NULL);
857 else if (the_low_target.breakpoint_reinsert_addr == NULL)
0d62e5e8
DJ
858 {
859 event_child->bp_reinsert = stop_pc;
860 uninsert_breakpoint (stop_pc);
32ca6d61 861 linux_resume_one_process (&event_child->head, 1, 0, NULL);
0d62e5e8
DJ
862 }
863 else
864 {
865 reinsert_breakpoint_by_bp
866 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
32ca6d61 867 linux_resume_one_process (&event_child->head, 0, 0, NULL);
611cb4a5 868 }
0d62e5e8
DJ
869
870 continue;
871 }
872
b65d95c5
DJ
873 if (debug_threads)
874 fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");
875
0d62e5e8
DJ
876 /* If we were single-stepping, we definitely want to report the
877 SIGTRAP. The single-step operation has completed, so also
aa691b87 878 clear the stepping flag; in general this does not matter,
0d62e5e8
DJ
879 because the SIGTRAP will be reported to the client, which
880 will give us a new action for this thread, but clear it for
881 consistency anyway. It's safe to clear the stepping flag
882 because the only consumer of get_stop_pc () after this point
e5379b03 883 is check_removed_breakpoint, and pending_is_breakpoint is not
0d62e5e8
DJ
884 set. It might be wiser to use a step_completed flag instead. */
885 if (event_child->stepping)
886 {
887 event_child->stepping = 0;
888 return wstat;
889 }
890
891 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
892 Check if it is a breakpoint, and if so mark the process information
893 accordingly. This will handle both the necessary fiddling with the
894 PC on decr_pc_after_break targets and suppressing extra threads
895 hitting a breakpoint if two hit it at once and then GDB removes it
896 after the first is reported. Arguably it would be better to report
897 multiple threads hitting breakpoints simultaneously, but the current
898 remote protocol does not allow this. */
899 if ((*the_low_target.breakpoint_at) (stop_pc))
900 {
901 event_child->pending_is_breakpoint = 1;
902 event_child->pending_stop_pc = stop_pc;
611cb4a5
DJ
903 }
904
905 return wstat;
906 }
0d62e5e8 907
611cb4a5
DJ
908 /* NOTREACHED */
909 return 0;
910}
911
0d62e5e8 912/* Wait for process, returns status. */
da6d8c04 913
ce3a066d
DJ
914static unsigned char
915linux_wait (char *status)
da6d8c04 916{
e5f1222d 917 int w;
0d62e5e8
DJ
918 struct thread_info *child = NULL;
919
920retry:
921 /* If we were only supposed to resume one thread, only wait for
922 that thread - if it's still alive. If it died, however - which
923 can happen if we're coming from the thread death case below -
924 then we need to make sure we restart the other threads. We could
925 pick a thread at random or restart all; restarting all is less
926 arbitrary. */
d592fa2f 927 if (cont_thread != 0 && cont_thread != -1)
0d62e5e8
DJ
928 {
929 child = (struct thread_info *) find_inferior_id (&all_threads,
930 cont_thread);
931
932 /* No stepping, no signal - unless one is pending already, of course. */
933 if (child == NULL)
64386c31
DJ
934 {
935 struct thread_resume resume_info;
936 resume_info.thread = -1;
937 resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
938 linux_resume (&resume_info);
939 }
0d62e5e8 940 }
da6d8c04 941
0d62e5e8
DJ
942 w = linux_wait_for_event (child);
943 stop_all_processes ();
da6d8c04 944
24a09b5f
DJ
945 if (must_set_ptrace_flags)
946 {
947 ptrace (PTRACE_SETOPTIONS, inferior_pid, 0, PTRACE_O_TRACECLONE);
948 must_set_ptrace_flags = 0;
949 }
950
0d62e5e8
DJ
951 /* If we are waiting for a particular child, and it exited,
952 linux_wait_for_event will return its exit status. Similarly if
953 the last child exited. If this is not the last child, however,
954 do not report it as exited until there is a 'thread exited' response
955 available in the remote protocol. Instead, just wait for another event.
956 This should be safe, because if the thread crashed we will already
957 have reported the termination signal to GDB; that should stop any
958 in-progress stepping operations, etc.
959
960 Report the exit status of the last thread to exit. This matches
961 LinuxThreads' behavior. */
962
963 if (all_threads.head == all_threads.tail)
da6d8c04 964 {
0d62e5e8
DJ
965 if (WIFEXITED (w))
966 {
967 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
968 *status = 'W';
969 clear_inferiors ();
075b3282
DJ
970 free (all_processes.head);
971 all_processes.head = all_processes.tail = NULL;
b80864fb 972 return WEXITSTATUS (w);
0d62e5e8
DJ
973 }
974 else if (!WIFSTOPPED (w))
975 {
976 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
0d62e5e8 977 *status = 'X';
075b3282
DJ
978 clear_inferiors ();
979 free (all_processes.head);
980 all_processes.head = all_processes.tail = NULL;
b80864fb 981 return target_signal_from_host (WTERMSIG (w));
0d62e5e8 982 }
da6d8c04 983 }
0d62e5e8 984 else
da6d8c04 985 {
0d62e5e8
DJ
986 if (!WIFSTOPPED (w))
987 goto retry;
da6d8c04
DJ
988 }
989
da6d8c04 990 *status = 'T';
b80864fb 991 return target_signal_from_host (WSTOPSIG (w));
da6d8c04
DJ
992}
993
fd500816
DJ
994/* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if
995 thread groups are in use, we need to use tkill. */
996
997static int
a1928bad 998kill_lwp (unsigned long lwpid, int signo)
fd500816
DJ
999{
1000 static int tkill_failed;
1001
1002 errno = 0;
1003
1004#ifdef SYS_tkill
1005 if (!tkill_failed)
1006 {
1007 int ret = syscall (SYS_tkill, lwpid, signo);
1008 if (errno != ENOSYS)
1009 return ret;
1010 errno = 0;
1011 tkill_failed = 1;
1012 }
1013#endif
1014
1015 return kill (lwpid, signo);
1016}
1017
0d62e5e8
DJ
1018static void
1019send_sigstop (struct inferior_list_entry *entry)
1020{
1021 struct process_info *process = (struct process_info *) entry;
1022
1023 if (process->stopped)
1024 return;
1025
1026 /* If we already have a pending stop signal for this process, don't
1027 send another. */
1028 if (process->stop_expected)
1029 {
ae13219e
DJ
1030 if (debug_threads)
1031 fprintf (stderr, "Have pending sigstop for process %ld\n",
1032 process->lwpid);
1033
1034 /* We clear the stop_expected flag so that wait_for_sigstop
1035 will receive the SIGSTOP event (instead of silently resuming and
1036 waiting again). It'll be reset below. */
0d62e5e8
DJ
1037 process->stop_expected = 0;
1038 return;
1039 }
1040
1041 if (debug_threads)
a1928bad 1042 fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id);
0d62e5e8 1043
fd500816 1044 kill_lwp (process->head.id, SIGSTOP);
0d62e5e8
DJ
1045}
1046
1047static void
1048wait_for_sigstop (struct inferior_list_entry *entry)
1049{
1050 struct process_info *process = (struct process_info *) entry;
1051 struct thread_info *saved_inferior, *thread;
a1928bad
DJ
1052 int wstat;
1053 unsigned long saved_tid;
0d62e5e8
DJ
1054
1055 if (process->stopped)
1056 return;
1057
1058 saved_inferior = current_inferior;
1059 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
1060 thread = (struct thread_info *) find_inferior_id (&all_threads,
24a09b5f 1061 process->lwpid);
0d62e5e8
DJ
1062 wstat = linux_wait_for_event (thread);
1063
1064 /* If we stopped with a non-SIGSTOP signal, save it for later
1065 and record the pending SIGSTOP. If the process exited, just
1066 return. */
1067 if (WIFSTOPPED (wstat)
1068 && WSTOPSIG (wstat) != SIGSTOP)
1069 {
1070 if (debug_threads)
24a09b5f
DJ
1071 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
1072 process->lwpid, wstat);
0d62e5e8
DJ
1073 process->status_pending_p = 1;
1074 process->status_pending = wstat;
1075 process->stop_expected = 1;
1076 }
1077
1078 if (linux_thread_alive (saved_tid))
1079 current_inferior = saved_inferior;
1080 else
1081 {
1082 if (debug_threads)
1083 fprintf (stderr, "Previously current thread died.\n");
1084
1085 /* Set a valid thread as current. */
1086 set_desired_inferior (0);
1087 }
1088}
1089
1090static void
1091stop_all_processes (void)
1092{
1093 stopping_threads = 1;
1094 for_each_inferior (&all_processes, send_sigstop);
1095 for_each_inferior (&all_processes, wait_for_sigstop);
1096 stopping_threads = 0;
1097}
1098
da6d8c04
DJ
1099/* Resume execution of the inferior process.
1100 If STEP is nonzero, single-step it.
1101 If SIGNAL is nonzero, give it that signal. */
1102
ce3a066d 1103static void
0d62e5e8 1104linux_resume_one_process (struct inferior_list_entry *entry,
32ca6d61 1105 int step, int signal, siginfo_t *info)
da6d8c04 1106{
0d62e5e8
DJ
1107 struct process_info *process = (struct process_info *) entry;
1108 struct thread_info *saved_inferior;
1109
1110 if (process->stopped == 0)
1111 return;
1112
1113 /* If we have pending signals or status, and a new signal, enqueue the
1114 signal. Also enqueue the signal if we are waiting to reinsert a
1115 breakpoint; it will be picked up again below. */
1116 if (signal != 0
1117 && (process->status_pending_p || process->pending_signals != NULL
1118 || process->bp_reinsert != 0))
1119 {
1120 struct pending_signals *p_sig;
1121 p_sig = malloc (sizeof (*p_sig));
1122 p_sig->prev = process->pending_signals;
1123 p_sig->signal = signal;
32ca6d61
DJ
1124 if (info == NULL)
1125 memset (&p_sig->info, 0, sizeof (siginfo_t));
1126 else
1127 memcpy (&p_sig->info, info, sizeof (siginfo_t));
0d62e5e8
DJ
1128 process->pending_signals = p_sig;
1129 }
1130
e5379b03 1131 if (process->status_pending_p && !check_removed_breakpoint (process))
0d62e5e8
DJ
1132 return;
1133
1134 saved_inferior = current_inferior;
1135 current_inferior = get_process_thread (process);
1136
1137 if (debug_threads)
a1928bad 1138 fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid,
0d62e5e8
DJ
1139 step ? "step" : "continue", signal,
1140 process->stop_expected ? "expected" : "not expected");
1141
1142 /* This bit needs some thinking about. If we get a signal that
1143 we must report while a single-step reinsert is still pending,
1144 we often end up resuming the thread. It might be better to
1145 (ew) allow a stack of pending events; then we could be sure that
1146 the reinsert happened right away and not lose any signals.
1147
1148 Making this stack would also shrink the window in which breakpoints are
1149 uninserted (see comment in linux_wait_for_process) but not enough for
1150 complete correctness, so it won't solve that problem. It may be
1151 worthwhile just to solve this one, however. */
1152 if (process->bp_reinsert != 0)
1153 {
1154 if (debug_threads)
1155 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
1156 if (step == 0)
1157 fprintf (stderr, "BAD - reinserting but not stepping.\n");
1158 step = 1;
1159
1160 /* Postpone any pending signal. It was enqueued above. */
1161 signal = 0;
1162 }
1163
1164 check_removed_breakpoint (process);
1165
aa691b87 1166 if (debug_threads && the_low_target.get_pc != NULL)
0d62e5e8
DJ
1167 {
1168 fprintf (stderr, " ");
52fb6437 1169 (*the_low_target.get_pc) ();
0d62e5e8
DJ
1170 }
1171
1172 /* If we have pending signals, consume one unless we are trying to reinsert
1173 a breakpoint. */
1174 if (process->pending_signals != NULL && process->bp_reinsert == 0)
1175 {
1176 struct pending_signals **p_sig;
1177
1178 p_sig = &process->pending_signals;
1179 while ((*p_sig)->prev != NULL)
1180 p_sig = &(*p_sig)->prev;
1181
1182 signal = (*p_sig)->signal;
32ca6d61
DJ
1183 if ((*p_sig)->info.si_signo != 0)
1184 ptrace (PTRACE_SETSIGINFO, process->lwpid, 0, &(*p_sig)->info);
1185
0d62e5e8
DJ
1186 free (*p_sig);
1187 *p_sig = NULL;
1188 }
1189
1190 regcache_invalidate_one ((struct inferior_list_entry *)
1191 get_process_thread (process));
da6d8c04 1192 errno = 0;
0d62e5e8
DJ
1193 process->stopped = 0;
1194 process->stepping = step;
1195 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
1196
1197 current_inferior = saved_inferior;
da6d8c04 1198 if (errno)
3221518c
UW
1199 {
1200 /* ESRCH from ptrace either means that the thread was already
1201 running (an error) or that it is gone (a race condition). If
1202 it's gone, we will get a notification the next time we wait,
1203 so we can ignore the error. We could differentiate these
1204 two, but it's tricky without waiting; the thread still exists
1205 as a zombie, so sending it signal 0 would succeed. So just
1206 ignore ESRCH. */
1207 if (errno == ESRCH)
1208 return;
1209
1210 perror_with_name ("ptrace");
1211 }
da6d8c04
DJ
1212}
1213
64386c31
DJ
1214static struct thread_resume *resume_ptr;
1215
1216/* This function is called once per thread. We look up the thread
5544ad89
DJ
1217 in RESUME_PTR, and mark the thread with a pointer to the appropriate
1218 resume request.
1219
1220 This algorithm is O(threads * resume elements), but resume elements
1221 is small (and will remain small at least until GDB supports thread
1222 suspension). */
0d62e5e8 1223static void
5544ad89 1224linux_set_resume_request (struct inferior_list_entry *entry)
0d62e5e8
DJ
1225{
1226 struct process_info *process;
64386c31 1227 struct thread_info *thread;
5544ad89 1228 int ndx;
64386c31
DJ
1229
1230 thread = (struct thread_info *) entry;
1231 process = get_thread_process (thread);
1232
1233 ndx = 0;
1234 while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
1235 ndx++;
1236
5544ad89
DJ
1237 process->resume = &resume_ptr[ndx];
1238}
1239
1240/* This function is called once per thread. We check the thread's resume
1241 request, which will tell us whether to resume, step, or leave the thread
1242 stopped; and what signal, if any, it should be sent. For threads which
1243 we aren't explicitly told otherwise, we preserve the stepping flag; this
1244 is used for stepping over gdbserver-placed breakpoints. */
1245
1246static void
1247linux_continue_one_thread (struct inferior_list_entry *entry)
1248{
1249 struct process_info *process;
1250 struct thread_info *thread;
1251 int step;
1252
1253 thread = (struct thread_info *) entry;
1254 process = get_thread_process (thread);
1255
1256 if (process->resume->leave_stopped)
64386c31
DJ
1257 return;
1258
5544ad89
DJ
1259 if (process->resume->thread == -1)
1260 step = process->stepping || process->resume->step;
64386c31 1261 else
5544ad89
DJ
1262 step = process->resume->step;
1263
32ca6d61 1264 linux_resume_one_process (&process->head, step, process->resume->sig, NULL);
c6ecbae5 1265
5544ad89
DJ
1266 process->resume = NULL;
1267}
1268
1269/* This function is called once per thread. We check the thread's resume
1270 request, which will tell us whether to resume, step, or leave the thread
1271 stopped; and what signal, if any, it should be sent. We queue any needed
1272 signals, since we won't actually resume. We already have a pending event
1273 to report, so we don't need to preserve any step requests; they should
1274 be re-issued if necessary. */
1275
1276static void
1277linux_queue_one_thread (struct inferior_list_entry *entry)
1278{
1279 struct process_info *process;
1280 struct thread_info *thread;
1281
1282 thread = (struct thread_info *) entry;
1283 process = get_thread_process (thread);
1284
1285 if (process->resume->leave_stopped)
1286 return;
1287
1288 /* If we have a new signal, enqueue the signal. */
1289 if (process->resume->sig != 0)
1290 {
1291 struct pending_signals *p_sig;
1292 p_sig = malloc (sizeof (*p_sig));
1293 p_sig->prev = process->pending_signals;
1294 p_sig->signal = process->resume->sig;
32ca6d61
DJ
1295 memset (&p_sig->info, 0, sizeof (siginfo_t));
1296
1297 /* If this is the same signal we were previously stopped by,
1298 make sure to queue its siginfo. We can ignore the return
1299 value of ptrace; if it fails, we'll skip
1300 PTRACE_SETSIGINFO. */
1301 if (WIFSTOPPED (process->last_status)
1302 && WSTOPSIG (process->last_status) == process->resume->sig)
1303 ptrace (PTRACE_GETSIGINFO, process->lwpid, 0, &p_sig->info);
1304
5544ad89
DJ
1305 process->pending_signals = p_sig;
1306 }
1307
1308 process->resume = NULL;
1309}
1310
1311/* Set DUMMY if this process has an interesting status pending. */
1312static int
1313resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
1314{
1315 struct process_info *process = (struct process_info *) entry;
1316
1317 /* Processes which will not be resumed are not interesting, because
1318 we might not wait for them next time through linux_wait. */
1319 if (process->resume->leave_stopped)
1320 return 0;
1321
1322 /* If this thread has a removed breakpoint, we won't have any
1323 events to report later, so check now. check_removed_breakpoint
1324 may clear status_pending_p. We avoid calling check_removed_breakpoint
1325 for any thread that we are not otherwise going to resume - this
1326 lets us preserve stopped status when two threads hit a breakpoint.
1327 GDB removes the breakpoint to single-step a particular thread
1328 past it, then re-inserts it and resumes all threads. We want
1329 to report the second thread without resuming it in the interim. */
1330 if (process->status_pending_p)
1331 check_removed_breakpoint (process);
1332
1333 if (process->status_pending_p)
1334 * (int *) flag_p = 1;
1335
1336 return 0;
0d62e5e8
DJ
1337}
1338
1339static void
64386c31 1340linux_resume (struct thread_resume *resume_info)
0d62e5e8 1341{
5544ad89 1342 int pending_flag;
c6ecbae5 1343
5544ad89 1344 /* Yes, the use of a global here is rather ugly. */
64386c31 1345 resume_ptr = resume_info;
5544ad89
DJ
1346
1347 for_each_inferior (&all_threads, linux_set_resume_request);
1348
1349 /* If there is a thread which would otherwise be resumed, which
1350 has a pending status, then don't resume any threads - we can just
1351 report the pending status. Make sure to queue any signals
1352 that would otherwise be sent. */
1353 pending_flag = 0;
1354 find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
1355
1356 if (debug_threads)
1357 {
1358 if (pending_flag)
1359 fprintf (stderr, "Not resuming, pending status\n");
1360 else
1361 fprintf (stderr, "Resuming, no pending status\n");
1362 }
1363
1364 if (pending_flag)
1365 for_each_inferior (&all_threads, linux_queue_one_thread);
1366 else
a20d5e98 1367 for_each_inferior (&all_threads, linux_continue_one_thread);
0d62e5e8
DJ
1368}
1369
1370#ifdef HAVE_LINUX_USRREGS
da6d8c04
DJ
1371
1372int
0a30fbc4 1373register_addr (int regnum)
da6d8c04
DJ
1374{
1375 int addr;
1376
2ec06d2e 1377 if (regnum < 0 || regnum >= the_low_target.num_regs)
da6d8c04
DJ
1378 error ("Invalid register number %d.", regnum);
1379
2ec06d2e 1380 addr = the_low_target.regmap[regnum];
da6d8c04
DJ
1381
1382 return addr;
1383}
1384
58caa3dc 1385/* Fetch one register. */
da6d8c04
DJ
1386static void
1387fetch_register (int regno)
1388{
1389 CORE_ADDR regaddr;
48d93c75 1390 int i, size;
0d62e5e8 1391 char *buf;
da6d8c04 1392
2ec06d2e 1393 if (regno >= the_low_target.num_regs)
0a30fbc4 1394 return;
2ec06d2e 1395 if ((*the_low_target.cannot_fetch_register) (regno))
0a30fbc4 1396 return;
da6d8c04 1397
0a30fbc4
DJ
1398 regaddr = register_addr (regno);
1399 if (regaddr == -1)
1400 return;
48d93c75
UW
1401 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1402 & - sizeof (PTRACE_XFER_TYPE);
1403 buf = alloca (size);
1404 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
da6d8c04
DJ
1405 {
1406 errno = 0;
0d62e5e8 1407 *(PTRACE_XFER_TYPE *) (buf + i) =
da6d8c04
DJ
1408 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
1409 regaddr += sizeof (PTRACE_XFER_TYPE);
1410 if (errno != 0)
1411 {
1412 /* Warning, not error, in case we are attached; sometimes the
1413 kernel doesn't let us at the registers. */
1414 char *err = strerror (errno);
1415 char *msg = alloca (strlen (err) + 128);
1416 sprintf (msg, "reading register %d: %s", regno, err);
1417 error (msg);
1418 goto error_exit;
1419 }
1420 }
ee1a7ae4
UW
1421
1422 if (the_low_target.supply_ptrace_register)
1423 the_low_target.supply_ptrace_register (regno, buf);
5a1f5858
DJ
1424 else
1425 supply_register (regno, buf);
0d62e5e8 1426
da6d8c04
DJ
1427error_exit:;
1428}
1429
1430/* Fetch all registers, or just one, from the child process. */
58caa3dc
DJ
1431static void
1432usr_fetch_inferior_registers (int regno)
da6d8c04
DJ
1433{
1434 if (regno == -1 || regno == 0)
2ec06d2e 1435 for (regno = 0; regno < the_low_target.num_regs; regno++)
da6d8c04
DJ
1436 fetch_register (regno);
1437 else
1438 fetch_register (regno);
1439}
1440
1441/* Store our register values back into the inferior.
1442 If REGNO is -1, do this for all registers.
1443 Otherwise, REGNO specifies which register (so we can save time). */
58caa3dc
DJ
1444static void
1445usr_store_inferior_registers (int regno)
da6d8c04
DJ
1446{
1447 CORE_ADDR regaddr;
48d93c75 1448 int i, size;
0d62e5e8 1449 char *buf;
da6d8c04
DJ
1450
1451 if (regno >= 0)
1452 {
2ec06d2e 1453 if (regno >= the_low_target.num_regs)
0a30fbc4
DJ
1454 return;
1455
bc1e36ca 1456 if ((*the_low_target.cannot_store_register) (regno) == 1)
0a30fbc4
DJ
1457 return;
1458
1459 regaddr = register_addr (regno);
1460 if (regaddr == -1)
da6d8c04 1461 return;
da6d8c04 1462 errno = 0;
48d93c75
UW
1463 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1464 & - sizeof (PTRACE_XFER_TYPE);
1465 buf = alloca (size);
1466 memset (buf, 0, size);
ee1a7ae4
UW
1467
1468 if (the_low_target.collect_ptrace_register)
1469 the_low_target.collect_ptrace_register (regno, buf);
5a1f5858
DJ
1470 else
1471 collect_register (regno, buf);
ee1a7ae4 1472
48d93c75 1473 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
da6d8c04 1474 {
0a30fbc4
DJ
1475 errno = 0;
1476 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
2ff29de4 1477 *(PTRACE_XFER_TYPE *) (buf + i));
da6d8c04
DJ
1478 if (errno != 0)
1479 {
3221518c
UW
1480 /* At this point, ESRCH should mean the process is already gone,
1481 in which case we simply ignore attempts to change its registers.
1482 See also the related comment in linux_resume_one_process. */
1483 if (errno == ESRCH)
1484 return;
1485
bc1e36ca
DJ
1486 if ((*the_low_target.cannot_store_register) (regno) == 0)
1487 {
1488 char *err = strerror (errno);
1489 char *msg = alloca (strlen (err) + 128);
1490 sprintf (msg, "writing register %d: %s",
1491 regno, err);
1492 error (msg);
1493 return;
1494 }
da6d8c04 1495 }
2ff29de4 1496 regaddr += sizeof (PTRACE_XFER_TYPE);
da6d8c04 1497 }
da6d8c04
DJ
1498 }
1499 else
2ec06d2e 1500 for (regno = 0; regno < the_low_target.num_regs; regno++)
0d62e5e8 1501 usr_store_inferior_registers (regno);
da6d8c04 1502}
58caa3dc
DJ
1503#endif /* HAVE_LINUX_USRREGS */
1504
1505
1506
1507#ifdef HAVE_LINUX_REGSETS
1508
1509static int
0d62e5e8 1510regsets_fetch_inferior_registers ()
58caa3dc
DJ
1511{
1512 struct regset_info *regset;
e9d25b98 1513 int saw_general_regs = 0;
58caa3dc
DJ
1514
1515 regset = target_regsets;
1516
1517 while (regset->size >= 0)
1518 {
1519 void *buf;
1520 int res;
1521
52fa2412 1522 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
58caa3dc
DJ
1523 {
1524 regset ++;
1525 continue;
1526 }
1527
1528 buf = malloc (regset->size);
dfb64f85 1529#ifndef __sparc__
d06f167a 1530 res = ptrace (regset->get_request, inferior_pid, 0, buf);
dfb64f85
DJ
1531#else
1532 res = ptrace (regset->get_request, inferior_pid, buf, 0);
1533#endif
58caa3dc
DJ
1534 if (res < 0)
1535 {
1536 if (errno == EIO)
1537 {
52fa2412
UW
1538 /* If we get EIO on a regset, do not try it again for
1539 this process. */
1540 disabled_regsets[regset - target_regsets] = 1;
1541 continue;
58caa3dc
DJ
1542 }
1543 else
1544 {
0d62e5e8 1545 char s[256];
a1928bad 1546 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
0d62e5e8
DJ
1547 inferior_pid);
1548 perror (s);
58caa3dc
DJ
1549 }
1550 }
e9d25b98
DJ
1551 else if (regset->type == GENERAL_REGS)
1552 saw_general_regs = 1;
58caa3dc
DJ
1553 regset->store_function (buf);
1554 regset ++;
1555 }
e9d25b98
DJ
1556 if (saw_general_regs)
1557 return 0;
1558 else
1559 return 1;
58caa3dc
DJ
1560}
1561
1562static int
0d62e5e8 1563regsets_store_inferior_registers ()
58caa3dc
DJ
1564{
1565 struct regset_info *regset;
e9d25b98 1566 int saw_general_regs = 0;
58caa3dc
DJ
1567
1568 regset = target_regsets;
1569
1570 while (regset->size >= 0)
1571 {
1572 void *buf;
1573 int res;
1574
52fa2412 1575 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
58caa3dc
DJ
1576 {
1577 regset ++;
1578 continue;
1579 }
1580
1581 buf = malloc (regset->size);
545587ee
DJ
1582
1583 /* First fill the buffer with the current register set contents,
1584 in case there are any items in the kernel's regset that are
1585 not in gdbserver's regcache. */
dfb64f85 1586#ifndef __sparc__
545587ee 1587 res = ptrace (regset->get_request, inferior_pid, 0, buf);
dfb64f85
DJ
1588#else
1589 res = ptrace (regset->get_request, inferior_pid, buf, 0);
1590#endif
545587ee
DJ
1591
1592 if (res == 0)
1593 {
1594 /* Then overlay our cached registers on that. */
1595 regset->fill_function (buf);
1596
1597 /* Only now do we write the register set. */
dfb64f85
DJ
1598#ifndef __sparc__
1599 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1600#else
1601 res = ptrace (regset->set_request, inferior_pid, buf, 0);
1602#endif
545587ee
DJ
1603 }
1604
58caa3dc
DJ
1605 if (res < 0)
1606 {
1607 if (errno == EIO)
1608 {
52fa2412
UW
1609 /* If we get EIO on a regset, do not try it again for
1610 this process. */
1611 disabled_regsets[regset - target_regsets] = 1;
1612 continue;
58caa3dc 1613 }
3221518c
UW
1614 else if (errno == ESRCH)
1615 {
1616 /* At this point, ESRCH should mean the process is already gone,
1617 in which case we simply ignore attempts to change its registers.
1618 See also the related comment in linux_resume_one_process. */
1619 return 0;
1620 }
58caa3dc
DJ
1621 else
1622 {
ce3a066d 1623 perror ("Warning: ptrace(regsets_store_inferior_registers)");
58caa3dc
DJ
1624 }
1625 }
e9d25b98
DJ
1626 else if (regset->type == GENERAL_REGS)
1627 saw_general_regs = 1;
58caa3dc 1628 regset ++;
09ec9b38 1629 free (buf);
58caa3dc 1630 }
e9d25b98
DJ
1631 if (saw_general_regs)
1632 return 0;
1633 else
1634 return 1;
ce3a066d 1635 return 0;
58caa3dc
DJ
1636}
1637
1638#endif /* HAVE_LINUX_REGSETS */
1639
1640
1641void
ce3a066d 1642linux_fetch_registers (int regno)
58caa3dc
DJ
1643{
1644#ifdef HAVE_LINUX_REGSETS
52fa2412
UW
1645 if (regsets_fetch_inferior_registers () == 0)
1646 return;
58caa3dc
DJ
1647#endif
1648#ifdef HAVE_LINUX_USRREGS
1649 usr_fetch_inferior_registers (regno);
1650#endif
1651}
1652
1653void
ce3a066d 1654linux_store_registers (int regno)
58caa3dc
DJ
1655{
1656#ifdef HAVE_LINUX_REGSETS
52fa2412
UW
1657 if (regsets_store_inferior_registers () == 0)
1658 return;
58caa3dc
DJ
1659#endif
1660#ifdef HAVE_LINUX_USRREGS
1661 usr_store_inferior_registers (regno);
1662#endif
1663}
1664
da6d8c04 1665
da6d8c04
DJ
1666/* Copy LEN bytes from inferior's memory starting at MEMADDR
1667 to debugger memory starting at MYADDR. */
1668
c3e735a6 1669static int
f450004a 1670linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
da6d8c04
DJ
1671{
1672 register int i;
1673 /* Round starting address down to longword boundary. */
1674 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1675 /* Round ending address up; get number of longwords that makes. */
aa691b87
RM
1676 register int count
1677 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
da6d8c04
DJ
1678 / sizeof (PTRACE_XFER_TYPE);
1679 /* Allocate buffer of that many longwords. */
aa691b87 1680 register PTRACE_XFER_TYPE *buffer
da6d8c04 1681 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
fd462a61
DJ
1682 int fd;
1683 char filename[64];
1684
1685 /* Try using /proc. Don't bother for one word. */
1686 if (len >= 3 * sizeof (long))
1687 {
1688 /* We could keep this file open and cache it - possibly one per
1689 thread. That requires some juggling, but is even faster. */
1690 sprintf (filename, "/proc/%ld/mem", inferior_pid);
1691 fd = open (filename, O_RDONLY | O_LARGEFILE);
1692 if (fd == -1)
1693 goto no_proc;
1694
1695 /* If pread64 is available, use it. It's faster if the kernel
1696 supports it (only one syscall), and it's 64-bit safe even on
1697 32-bit platforms (for instance, SPARC debugging a SPARC64
1698 application). */
1699#ifdef HAVE_PREAD64
1700 if (pread64 (fd, myaddr, len, memaddr) != len)
1701#else
1702 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, memaddr, len) != len)
1703#endif
1704 {
1705 close (fd);
1706 goto no_proc;
1707 }
1708
1709 close (fd);
1710 return 0;
1711 }
da6d8c04 1712
fd462a61 1713 no_proc:
da6d8c04
DJ
1714 /* Read all the longwords */
1715 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1716 {
c3e735a6 1717 errno = 0;
d844cde6 1718 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
c3e735a6
DJ
1719 if (errno)
1720 return errno;
da6d8c04
DJ
1721 }
1722
1723 /* Copy appropriate bytes out of the buffer. */
1724 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
c3e735a6
DJ
1725
1726 return 0;
da6d8c04
DJ
1727}
1728
1729/* Copy LEN bytes of data from debugger memory at MYADDR
1730 to inferior's memory at MEMADDR.
1731 On failure (cannot write the inferior)
1732 returns the value of errno. */
1733
ce3a066d 1734static int
f450004a 1735linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
da6d8c04
DJ
1736{
1737 register int i;
1738 /* Round starting address down to longword boundary. */
1739 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1740 /* Round ending address up; get number of longwords that makes. */
1741 register int count
1742 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1743 /* Allocate buffer of that many longwords. */
1744 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
da6d8c04 1745
0d62e5e8
DJ
1746 if (debug_threads)
1747 {
1748 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1749 }
1750
da6d8c04
DJ
1751 /* Fill start and end extra bytes of buffer with existing memory data. */
1752
d844cde6
DJ
1753 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1754 (PTRACE_ARG3_TYPE) addr, 0);
da6d8c04
DJ
1755
1756 if (count > 1)
1757 {
1758 buffer[count - 1]
1759 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
d844cde6
DJ
1760 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1761 * sizeof (PTRACE_XFER_TYPE)),
1762 0);
da6d8c04
DJ
1763 }
1764
1765 /* Copy data to be written over corresponding part of buffer */
1766
1767 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1768
1769 /* Write the entire buffer. */
1770
1771 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1772 {
1773 errno = 0;
d844cde6 1774 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
da6d8c04
DJ
1775 if (errno)
1776 return errno;
1777 }
1778
1779 return 0;
1780}
2f2893d9 1781
24a09b5f
DJ
1782static int linux_supports_tracefork_flag;
1783
51c2684e 1784/* Helper functions for linux_test_for_tracefork, called via clone (). */
24a09b5f 1785
51c2684e
DJ
1786static int
1787linux_tracefork_grandchild (void *arg)
1788{
1789 _exit (0);
1790}
1791
7407e2de
AS
1792#define STACK_SIZE 4096
1793
51c2684e
DJ
1794static int
1795linux_tracefork_child (void *arg)
24a09b5f
DJ
1796{
1797 ptrace (PTRACE_TRACEME, 0, 0, 0);
1798 kill (getpid (), SIGSTOP);
7407e2de
AS
1799#ifdef __ia64__
1800 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
1801 CLONE_VM | SIGCHLD, NULL);
1802#else
1803 clone (linux_tracefork_grandchild, arg + STACK_SIZE,
1804 CLONE_VM | SIGCHLD, NULL);
1805#endif
24a09b5f
DJ
1806 _exit (0);
1807}
1808
1809/* Wrapper function for waitpid which handles EINTR. */
1810
1811static int
1812my_waitpid (int pid, int *status, int flags)
1813{
1814 int ret;
1815 do
1816 {
1817 ret = waitpid (pid, status, flags);
1818 }
1819 while (ret == -1 && errno == EINTR);
1820
1821 return ret;
1822}
1823
1824/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
1825 sure that we can enable the option, and that it had the desired
1826 effect. */
1827
1828static void
1829linux_test_for_tracefork (void)
1830{
1831 int child_pid, ret, status;
1832 long second_pid;
7407e2de 1833 char *stack = malloc (STACK_SIZE * 4);
24a09b5f
DJ
1834
1835 linux_supports_tracefork_flag = 0;
1836
51c2684e 1837 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
7407e2de
AS
1838#ifdef __ia64__
1839 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
1840 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
1841#else
1842 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
1843 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
1844#endif
24a09b5f 1845 if (child_pid == -1)
51c2684e 1846 perror_with_name ("clone");
24a09b5f
DJ
1847
1848 ret = my_waitpid (child_pid, &status, 0);
1849 if (ret == -1)
1850 perror_with_name ("waitpid");
1851 else if (ret != child_pid)
1852 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
1853 if (! WIFSTOPPED (status))
1854 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
1855
1856 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
1857 if (ret != 0)
1858 {
1859 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
1860 if (ret != 0)
1861 {
1862 warning ("linux_test_for_tracefork: failed to kill child");
1863 return;
1864 }
1865
1866 ret = my_waitpid (child_pid, &status, 0);
1867 if (ret != child_pid)
1868 warning ("linux_test_for_tracefork: failed to wait for killed child");
1869 else if (!WIFSIGNALED (status))
1870 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
1871 "killed child", status);
1872
1873 return;
1874 }
1875
1876 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
1877 if (ret != 0)
1878 warning ("linux_test_for_tracefork: failed to resume child");
1879
1880 ret = my_waitpid (child_pid, &status, 0);
1881
1882 if (ret == child_pid && WIFSTOPPED (status)
1883 && status >> 16 == PTRACE_EVENT_FORK)
1884 {
1885 second_pid = 0;
1886 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
1887 if (ret == 0 && second_pid != 0)
1888 {
1889 int second_status;
1890
1891 linux_supports_tracefork_flag = 1;
1892 my_waitpid (second_pid, &second_status, 0);
1893 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
1894 if (ret != 0)
1895 warning ("linux_test_for_tracefork: failed to kill second child");
1896 my_waitpid (second_pid, &status, 0);
1897 }
1898 }
1899 else
1900 warning ("linux_test_for_tracefork: unexpected result from waitpid "
1901 "(%d, status 0x%x)", ret, status);
1902
1903 do
1904 {
1905 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
1906 if (ret != 0)
1907 warning ("linux_test_for_tracefork: failed to kill child");
1908 my_waitpid (child_pid, &status, 0);
1909 }
1910 while (WIFSTOPPED (status));
51c2684e
DJ
1911
1912 free (stack);
24a09b5f
DJ
1913}
1914
1915
2f2893d9
DJ
1916static void
1917linux_look_up_symbols (void)
1918{
0d62e5e8 1919#ifdef USE_THREAD_DB
24a09b5f 1920 if (thread_db_active)
0d62e5e8
DJ
1921 return;
1922
24a09b5f 1923 thread_db_active = thread_db_init (!linux_supports_tracefork_flag);
0d62e5e8
DJ
1924#endif
1925}
1926
e5379b03 1927static void
ef57601b 1928linux_request_interrupt (void)
e5379b03 1929{
a1928bad 1930 extern unsigned long signal_pid;
e5379b03 1931
d592fa2f 1932 if (cont_thread != 0 && cont_thread != -1)
e5379b03
DJ
1933 {
1934 struct process_info *process;
1935
1936 process = get_thread_process (current_inferior);
ef57601b 1937 kill_lwp (process->lwpid, SIGINT);
e5379b03
DJ
1938 }
1939 else
ef57601b 1940 kill_lwp (signal_pid, SIGINT);
e5379b03
DJ
1941}
1942
aa691b87
RM
1943/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
1944 to debugger memory starting at MYADDR. */
1945
1946static int
f450004a 1947linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
aa691b87
RM
1948{
1949 char filename[PATH_MAX];
1950 int fd, n;
1951
a1928bad 1952 snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);
aa691b87
RM
1953
1954 fd = open (filename, O_RDONLY);
1955 if (fd < 0)
1956 return -1;
1957
1958 if (offset != (CORE_ADDR) 0
1959 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
1960 n = -1;
1961 else
1962 n = read (fd, myaddr, len);
1963
1964 close (fd);
1965
1966 return n;
1967}
1968
e013ee27
OF
1969/* These watchpoint related wrapper functions simply pass on the function call
1970 if the target has registered a corresponding function. */
1971
1972static int
1973linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
1974{
1975 if (the_low_target.insert_watchpoint != NULL)
1976 return the_low_target.insert_watchpoint (type, addr, len);
1977 else
1978 /* Unsupported (see target.h). */
1979 return 1;
1980}
1981
1982static int
1983linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
1984{
1985 if (the_low_target.remove_watchpoint != NULL)
1986 return the_low_target.remove_watchpoint (type, addr, len);
1987 else
1988 /* Unsupported (see target.h). */
1989 return 1;
1990}
1991
1992static int
1993linux_stopped_by_watchpoint (void)
1994{
1995 if (the_low_target.stopped_by_watchpoint != NULL)
1996 return the_low_target.stopped_by_watchpoint ();
1997 else
1998 return 0;
1999}
2000
2001static CORE_ADDR
2002linux_stopped_data_address (void)
2003{
2004 if (the_low_target.stopped_data_address != NULL)
2005 return the_low_target.stopped_data_address ();
2006 else
2007 return 0;
2008}
2009
42c81e2a 2010#if defined(__UCLIBC__) && defined(HAS_NOMMU)
52fb6437
NS
2011#if defined(__mcoldfire__)
2012/* These should really be defined in the kernel's ptrace.h header. */
2013#define PT_TEXT_ADDR 49*4
2014#define PT_DATA_ADDR 50*4
2015#define PT_TEXT_END_ADDR 51*4
2016#endif
2017
2018/* Under uClinux, programs are loaded at non-zero offsets, which we need
2019 to tell gdb about. */
2020
2021static int
2022linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
2023{
2024#if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
2025 unsigned long text, text_end, data;
2026 int pid = get_thread_process (current_inferior)->head.id;
2027
2028 errno = 0;
2029
2030 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
2031 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
2032 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
2033
2034 if (errno == 0)
2035 {
2036 /* Both text and data offsets produced at compile-time (and so
2037 used by gdb) are relative to the beginning of the program,
2038 with the data segment immediately following the text segment.
2039 However, the actual runtime layout in memory may put the data
2040 somewhere else, so when we send gdb a data base-address, we
2041 use the real data base address and subtract the compile-time
2042 data base-address from it (which is just the length of the
2043 text segment). BSS immediately follows data in both
2044 cases. */
2045 *text_p = text;
2046 *data_p = data - (text_end - text);
2047
2048 return 1;
2049 }
2050#endif
2051 return 0;
2052}
2053#endif
2054
07e059b5
VP
2055static int
2056linux_qxfer_osdata (const char *annex,
2057 unsigned char *readbuf, unsigned const char *writebuf,
2058 CORE_ADDR offset, int len)
2059{
2060 /* We make the process list snapshot when the object starts to be
2061 read. */
2062 static const char *buf;
2063 static long len_avail = -1;
2064 static struct buffer buffer;
2065
2066 DIR *dirp;
2067
2068 if (strcmp (annex, "processes") != 0)
2069 return 0;
2070
2071 if (!readbuf || writebuf)
2072 return 0;
2073
2074 if (offset == 0)
2075 {
2076 if (len_avail != -1 && len_avail != 0)
2077 buffer_free (&buffer);
2078 len_avail = 0;
2079 buf = NULL;
2080 buffer_init (&buffer);
2081 buffer_grow_str (&buffer, "<osdata type=\"processes\">");
2082
2083 dirp = opendir ("/proc");
2084 if (dirp)
2085 {
2086 struct dirent *dp;
2087 while ((dp = readdir (dirp)) != NULL)
2088 {
2089 struct stat statbuf;
2090 char procentry[sizeof ("/proc/4294967295")];
2091
2092 if (!isdigit (dp->d_name[0])
2093 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
2094 continue;
2095
2096 sprintf (procentry, "/proc/%s", dp->d_name);
2097 if (stat (procentry, &statbuf) == 0
2098 && S_ISDIR (statbuf.st_mode))
2099 {
2100 char pathname[128];
2101 FILE *f;
2102 char cmd[MAXPATHLEN + 1];
2103 struct passwd *entry;
2104
2105 sprintf (pathname, "/proc/%s/cmdline", dp->d_name);
2106 entry = getpwuid (statbuf.st_uid);
2107
2108 if ((f = fopen (pathname, "r")) != NULL)
2109 {
2110 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
2111 if (len > 0)
2112 {
2113 int i;
2114 for (i = 0; i < len; i++)
2115 if (cmd[i] == '\0')
2116 cmd[i] = ' ';
2117 cmd[len] = '\0';
2118
2119 buffer_xml_printf (
2120 &buffer,
2121 "<item>"
2122 "<column name=\"pid\">%s</column>"
2123 "<column name=\"user\">%s</column>"
2124 "<column name=\"command\">%s</column>"
2125 "</item>",
2126 dp->d_name,
2127 entry ? entry->pw_name : "?",
2128 cmd);
2129 }
2130 fclose (f);
2131 }
2132 }
2133 }
2134
2135 closedir (dirp);
2136 }
2137 buffer_grow_str0 (&buffer, "</osdata>\n");
2138 buf = buffer_finish (&buffer);
2139 len_avail = strlen (buf);
2140 }
2141
2142 if (offset >= len_avail)
2143 {
2144 /* Done. Get rid of the data. */
2145 buffer_free (&buffer);
2146 buf = NULL;
2147 len_avail = 0;
2148 return 0;
2149 }
2150
2151 if (len > len_avail - offset)
2152 len = len_avail - offset;
2153 memcpy (readbuf, buf + offset, len);
2154
2155 return len;
2156}
2157
ce3a066d
DJ
2158static struct target_ops linux_target_ops = {
2159 linux_create_inferior,
2160 linux_attach,
2161 linux_kill,
6ad8ae5c 2162 linux_detach,
444d6139 2163 linux_join,
ce3a066d
DJ
2164 linux_thread_alive,
2165 linux_resume,
2166 linux_wait,
2167 linux_fetch_registers,
2168 linux_store_registers,
2169 linux_read_memory,
2170 linux_write_memory,
2f2893d9 2171 linux_look_up_symbols,
ef57601b 2172 linux_request_interrupt,
aa691b87 2173 linux_read_auxv,
e013ee27
OF
2174 linux_insert_watchpoint,
2175 linux_remove_watchpoint,
2176 linux_stopped_by_watchpoint,
2177 linux_stopped_data_address,
42c81e2a 2178#if defined(__UCLIBC__) && defined(HAS_NOMMU)
52fb6437 2179 linux_read_offsets,
dae5f5cf
DJ
2180#else
2181 NULL,
2182#endif
2183#ifdef USE_THREAD_DB
2184 thread_db_get_tls_address,
2185#else
2186 NULL,
52fb6437 2187#endif
59a016f0
PA
2188 NULL,
2189 hostio_last_error_from_errno,
07e059b5 2190 linux_qxfer_osdata,
ce3a066d
DJ
2191};
2192
0d62e5e8
DJ
2193static void
2194linux_init_signals ()
2195{
2196 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
2197 to find what the cancel signal actually is. */
254787d4 2198 signal (__SIGRTMIN+1, SIG_IGN);
0d62e5e8
DJ
2199}
2200
da6d8c04
DJ
2201void
2202initialize_low (void)
2203{
24a09b5f 2204 thread_db_active = 0;
ce3a066d 2205 set_target_ops (&linux_target_ops);
611cb4a5
DJ
2206 set_breakpoint_data (the_low_target.breakpoint,
2207 the_low_target.breakpoint_len);
0d62e5e8 2208 linux_init_signals ();
24a09b5f 2209 linux_test_for_tracefork ();
52fa2412
UW
2210#ifdef HAVE_LINUX_REGSETS
2211 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
2212 ;
2213 disabled_regsets = malloc (num_regsets);
2214#endif
da6d8c04 2215}
This page took 0.590424 seconds and 4 git commands to generate.