2002-06-11 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
d7f0b9ce 2 Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002
b6ba6518 3 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "bfd.h"
26#include "symtab.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "expression.h"
31#include "language.h"
32#include "target.h"
33#include "value.h"
34#include "demangle.h"
35#include "complaints.h"
36#include "gdbcmd.h"
c91ecb25 37#include "wrapper.h"
015a42b4 38#include "cp-abi.h"
a02fd225 39#include "gdb_assert.h"
c906108c
SS
40
41/* These variables point to the objects
42 representing the predefined C data types. */
43
44struct type *builtin_type_void;
45struct type *builtin_type_char;
9e0b60a8 46struct type *builtin_type_true_char;
c906108c
SS
47struct type *builtin_type_short;
48struct type *builtin_type_int;
49struct type *builtin_type_long;
50struct type *builtin_type_long_long;
51struct type *builtin_type_signed_char;
52struct type *builtin_type_unsigned_char;
53struct type *builtin_type_unsigned_short;
54struct type *builtin_type_unsigned_int;
55struct type *builtin_type_unsigned_long;
56struct type *builtin_type_unsigned_long_long;
57struct type *builtin_type_float;
58struct type *builtin_type_double;
59struct type *builtin_type_long_double;
60struct type *builtin_type_complex;
61struct type *builtin_type_double_complex;
62struct type *builtin_type_string;
63struct type *builtin_type_int8;
64struct type *builtin_type_uint8;
65struct type *builtin_type_int16;
66struct type *builtin_type_uint16;
67struct type *builtin_type_int32;
68struct type *builtin_type_uint32;
69struct type *builtin_type_int64;
70struct type *builtin_type_uint64;
8b982acf
EZ
71struct type *builtin_type_int128;
72struct type *builtin_type_uint128;
c906108c 73struct type *builtin_type_bool;
ac3aafc7
EZ
74
75/* 128 bit long vector types */
3139facc 76struct type *builtin_type_v2_double;
ac3aafc7 77struct type *builtin_type_v4_float;
3139facc 78struct type *builtin_type_v2_int64;
ac3aafc7
EZ
79struct type *builtin_type_v4_int32;
80struct type *builtin_type_v8_int16;
81struct type *builtin_type_v16_int8;
82/* 64 bit long vector types */
6599f021 83struct type *builtin_type_v2_float;
ac3aafc7
EZ
84struct type *builtin_type_v2_int32;
85struct type *builtin_type_v4_int16;
86struct type *builtin_type_v8_int8;
87
917317f4 88struct type *builtin_type_v4sf;
c2d11a7d 89struct type *builtin_type_v4si;
08cf96df 90struct type *builtin_type_v16qi;
c2d11a7d 91struct type *builtin_type_v8qi;
08cf96df 92struct type *builtin_type_v8hi;
c2d11a7d
JM
93struct type *builtin_type_v4hi;
94struct type *builtin_type_v2si;
08cf96df 95struct type *builtin_type_vec128;
3139facc 96struct type *builtin_type_vec128i;
598f52df
AC
97struct type *builtin_type_ieee_single_big;
98struct type *builtin_type_ieee_single_little;
99struct type *builtin_type_ieee_double_big;
100struct type *builtin_type_ieee_double_little;
101struct type *builtin_type_ieee_double_littlebyte_bigword;
102struct type *builtin_type_i387_ext;
103struct type *builtin_type_m68881_ext;
104struct type *builtin_type_i960_ext;
105struct type *builtin_type_m88110_ext;
106struct type *builtin_type_m88110_harris_ext;
107struct type *builtin_type_arm_ext_big;
108struct type *builtin_type_arm_ext_littlebyte_bigword;
109struct type *builtin_type_ia64_spill_big;
110struct type *builtin_type_ia64_spill_little;
111struct type *builtin_type_ia64_quad_big;
112struct type *builtin_type_ia64_quad_little;
090a2205 113struct type *builtin_type_void_data_ptr;
ee3a7b7f 114struct type *builtin_type_void_func_ptr;
c4093a6a
JM
115struct type *builtin_type_CORE_ADDR;
116struct type *builtin_type_bfd_vma;
c906108c
SS
117
118int opaque_type_resolution = 1;
5d161b24 119int overload_debug = 0;
c906108c 120
c5aa993b
JM
121struct extra
122 {
123 char str[128];
124 int len;
8c990f3c 125 }; /* maximum extension is 128! FIXME */
c906108c 126
a14ed312
KB
127static void add_name (struct extra *, char *);
128static void add_mangled_type (struct extra *, struct type *);
c906108c 129#if 0
a14ed312 130static void cfront_mangle_name (struct type *, int, int);
c906108c 131#endif
a14ed312
KB
132static void print_bit_vector (B_TYPE *, int);
133static void print_arg_types (struct type **, int);
134static void dump_fn_fieldlists (struct type *, int);
135static void print_cplus_stuff (struct type *, int);
136static void virtual_base_list_aux (struct type *dclass);
7a292a7a 137
c906108c
SS
138
139/* Alloc a new type structure and fill it with some defaults. If
140 OBJFILE is non-NULL, then allocate the space for the type structure
2fdde8f8
DJ
141 in that objfile's type_obstack. Otherwise allocate the new type structure
142 by xmalloc () (for permanent types). */
c906108c
SS
143
144struct type *
fba45db2 145alloc_type (struct objfile *objfile)
c906108c
SS
146{
147 register struct type *type;
148
149 /* Alloc the structure and start off with all fields zeroed. */
150
151 if (objfile == NULL)
152 {
2fdde8f8
DJ
153 type = xmalloc (sizeof (struct type));
154 memset (type, 0, sizeof (struct type));
155 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
c906108c
SS
156 }
157 else
158 {
2fdde8f8
DJ
159 type = obstack_alloc (&objfile->type_obstack,
160 sizeof (struct type));
161 memset (type, 0, sizeof (struct type));
162 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->type_obstack,
163 sizeof (struct main_type));
c906108c
SS
164 OBJSTAT (objfile, n_types++);
165 }
2fdde8f8 166 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
c906108c
SS
167
168 /* Initialize the fields that might not be zero. */
169
170 TYPE_CODE (type) = TYPE_CODE_UNDEF;
171 TYPE_OBJFILE (type) = objfile;
172 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c
SS
174
175 return (type);
176}
177
2fdde8f8
DJ
178/* Alloc a new type instance structure, fill it with some defaults,
179 and point it at OLDTYPE. Allocate the new type instance from the
180 same place as OLDTYPE. */
181
182static struct type *
183alloc_type_instance (struct type *oldtype)
184{
185 struct type *type;
186
187 /* Allocate the structure. */
188
189 if (TYPE_OBJFILE (oldtype) == NULL)
190 {
191 type = xmalloc (sizeof (struct type));
192 memset (type, 0, sizeof (struct type));
193 }
194 else
195 {
196 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->type_obstack,
197 sizeof (struct type));
198 memset (type, 0, sizeof (struct type));
199 }
200 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
201
202 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
203
204 return (type);
205}
206
207/* Clear all remnants of the previous type at TYPE, in preparation for
208 replacing it with something else. */
209static void
210smash_type (struct type *type)
211{
212 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
213
214 /* For now, delete the rings. */
215 TYPE_CHAIN (type) = type;
216
217 /* For now, leave the pointer/reference types alone. */
218}
219
c906108c
SS
220/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
221 to a pointer to memory where the pointer type should be stored.
222 If *TYPEPTR is zero, update it to point to the pointer type we return.
223 We allocate new memory if needed. */
224
225struct type *
fba45db2 226make_pointer_type (struct type *type, struct type **typeptr)
c906108c 227{
c5aa993b 228 register struct type *ntype; /* New type */
c906108c
SS
229 struct objfile *objfile;
230
231 ntype = TYPE_POINTER_TYPE (type);
232
c5aa993b 233 if (ntype)
c906108c 234 {
c5aa993b
JM
235 if (typeptr == 0)
236 return ntype; /* Don't care about alloc, and have new type. */
c906108c 237 else if (*typeptr == 0)
c5aa993b 238 {
c906108c
SS
239 *typeptr = ntype; /* Tracking alloc, and we have new type. */
240 return ntype;
c5aa993b 241 }
c906108c
SS
242 }
243
244 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
245 {
246 ntype = alloc_type (TYPE_OBJFILE (type));
247 if (typeptr)
248 *typeptr = ntype;
249 }
c5aa993b
JM
250 else
251 /* We have storage, but need to reset it. */
c906108c
SS
252 {
253 ntype = *typeptr;
254 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 255 smash_type (ntype);
c906108c
SS
256 TYPE_OBJFILE (ntype) = objfile;
257 }
258
259 TYPE_TARGET_TYPE (ntype) = type;
260 TYPE_POINTER_TYPE (type) = ntype;
261
262 /* FIXME! Assume the machine has only one representation for pointers! */
263
264 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
265 TYPE_CODE (ntype) = TYPE_CODE_PTR;
266
67b2adb2
AC
267 /* Mark pointers as unsigned. The target converts between pointers
268 and addresses (CORE_ADDRs) using POINTER_TO_ADDRESS() and
269 ADDRESS_TO_POINTER(). */
c906108c 270 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
c5aa993b 271
c906108c
SS
272 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
273 TYPE_POINTER_TYPE (type) = ntype;
274
275 return ntype;
276}
277
278/* Given a type TYPE, return a type of pointers to that type.
279 May need to construct such a type if this is the first use. */
280
281struct type *
fba45db2 282lookup_pointer_type (struct type *type)
c906108c 283{
c5aa993b 284 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
285}
286
287/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
288 to a pointer to memory where the reference type should be stored.
289 If *TYPEPTR is zero, update it to point to the reference type we return.
290 We allocate new memory if needed. */
291
292struct type *
fba45db2 293make_reference_type (struct type *type, struct type **typeptr)
c906108c 294{
c5aa993b 295 register struct type *ntype; /* New type */
c906108c
SS
296 struct objfile *objfile;
297
298 ntype = TYPE_REFERENCE_TYPE (type);
299
c5aa993b 300 if (ntype)
c906108c 301 {
c5aa993b
JM
302 if (typeptr == 0)
303 return ntype; /* Don't care about alloc, and have new type. */
c906108c 304 else if (*typeptr == 0)
c5aa993b 305 {
c906108c
SS
306 *typeptr = ntype; /* Tracking alloc, and we have new type. */
307 return ntype;
c5aa993b 308 }
c906108c
SS
309 }
310
311 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
312 {
313 ntype = alloc_type (TYPE_OBJFILE (type));
314 if (typeptr)
315 *typeptr = ntype;
316 }
c5aa993b
JM
317 else
318 /* We have storage, but need to reset it. */
c906108c
SS
319 {
320 ntype = *typeptr;
321 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 322 smash_type (ntype);
c906108c
SS
323 TYPE_OBJFILE (ntype) = objfile;
324 }
325
326 TYPE_TARGET_TYPE (ntype) = type;
327 TYPE_REFERENCE_TYPE (type) = ntype;
328
329 /* FIXME! Assume the machine has only one representation for references,
330 and that it matches the (only) representation for pointers! */
331
332 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
333 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 334
c906108c
SS
335 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
336 TYPE_REFERENCE_TYPE (type) = ntype;
337
338 return ntype;
339}
340
341/* Same as above, but caller doesn't care about memory allocation details. */
342
343struct type *
fba45db2 344lookup_reference_type (struct type *type)
c906108c 345{
c5aa993b 346 return make_reference_type (type, (struct type **) 0);
c906108c
SS
347}
348
349/* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
350 to a pointer to memory where the function type should be stored.
351 If *TYPEPTR is zero, update it to point to the function type we return.
352 We allocate new memory if needed. */
353
354struct type *
fba45db2 355make_function_type (struct type *type, struct type **typeptr)
c906108c 356{
c5aa993b 357 register struct type *ntype; /* New type */
c906108c
SS
358 struct objfile *objfile;
359
360 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
361 {
362 ntype = alloc_type (TYPE_OBJFILE (type));
363 if (typeptr)
364 *typeptr = ntype;
365 }
c5aa993b
JM
366 else
367 /* We have storage, but need to reset it. */
c906108c
SS
368 {
369 ntype = *typeptr;
370 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 371 smash_type (ntype);
c906108c
SS
372 TYPE_OBJFILE (ntype) = objfile;
373 }
374
375 TYPE_TARGET_TYPE (ntype) = type;
376
377 TYPE_LENGTH (ntype) = 1;
378 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 379
c906108c
SS
380 return ntype;
381}
382
383
384/* Given a type TYPE, return a type of functions that return that type.
385 May need to construct such a type if this is the first use. */
386
387struct type *
fba45db2 388lookup_function_type (struct type *type)
c906108c 389{
c5aa993b 390 return make_function_type (type, (struct type **) 0);
c906108c
SS
391}
392
47663de5
MS
393/* Identify address space identifier by name --
394 return the integer flag defined in gdbtypes.h. */
395extern int
396address_space_name_to_int (char *space_identifier)
397{
398 /* Check for known address space delimiters. */
399 if (!strcmp (space_identifier, "code"))
400 return TYPE_FLAG_CODE_SPACE;
401 else if (!strcmp (space_identifier, "data"))
402 return TYPE_FLAG_DATA_SPACE;
403 else
404 error ("Unknown address space specifier: \"%s\"", space_identifier);
405}
406
407/* Identify address space identifier by integer flag as defined in
408 gdbtypes.h -- return the string version of the adress space name. */
409
410extern char *
411address_space_int_to_name (int space_flag)
412{
413 if (space_flag & TYPE_FLAG_CODE_SPACE)
414 return "code";
415 else if (space_flag & TYPE_FLAG_DATA_SPACE)
416 return "data";
417 else
418 return NULL;
419}
420
2fdde8f8
DJ
421/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
422 If STORAGE is non-NULL, create the new type instance there. */
47663de5
MS
423
424struct type *
2fdde8f8
DJ
425make_qualified_type (struct type *type, int new_flags,
426 struct type *storage)
47663de5
MS
427{
428 struct type *ntype;
429
430 ntype = type;
431 do {
2fdde8f8 432 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
47663de5 433 return ntype;
2fdde8f8 434 ntype = TYPE_CHAIN (ntype);
47663de5
MS
435 } while (ntype != type);
436
2fdde8f8
DJ
437 /* Create a new type instance. */
438 if (storage == NULL)
439 ntype = alloc_type_instance (type);
440 else
441 {
442 ntype = storage;
443 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
444 TYPE_CHAIN (ntype) = ntype;
445 }
47663de5
MS
446
447 /* Pointers or references to the original type are not relevant to
2fdde8f8 448 the new type. */
47663de5
MS
449 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
450 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 451
2fdde8f8
DJ
452 /* Chain the new qualified type to the old type. */
453 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
454 TYPE_CHAIN (type) = ntype;
455
456 /* Now set the instance flags and return the new type. */
457 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 458
47663de5
MS
459 return ntype;
460}
461
2fdde8f8
DJ
462/* Make an address-space-delimited variant of a type -- a type that
463 is identical to the one supplied except that it has an address
464 space attribute attached to it (such as "code" or "data").
465
466 This is for Harvard architectures. */
467
468struct type *
469make_type_with_address_space (struct type *type, int space_flag)
470{
471 struct type *ntype;
472 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
473 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE))
474 | space_flag);
475
476 return make_qualified_type (type, new_flags, NULL);
477}
c906108c
SS
478
479/* Make a "c-v" variant of a type -- a type that is identical to the
480 one supplied except that it may have const or volatile attributes
481 CNST is a flag for setting the const attribute
482 VOLTL is a flag for setting the volatile attribute
483 TYPE is the base type whose variant we are creating.
484 TYPEPTR, if nonzero, points
485 to a pointer to memory where the reference type should be stored.
486 If *TYPEPTR is zero, update it to point to the reference type we return.
487 We allocate new memory if needed. */
488
489struct type *
fba45db2 490make_cv_type (int cnst, int voltl, struct type *type, struct type **typeptr)
c906108c 491{
c5aa993b
JM
492 register struct type *ntype; /* New type */
493 register struct type *tmp_type = type; /* tmp type */
c906108c
SS
494 struct objfile *objfile;
495
2fdde8f8
DJ
496 int new_flags = (TYPE_INSTANCE_FLAGS (type)
497 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
c906108c 498
c906108c 499 if (cnst)
2fdde8f8 500 new_flags |= TYPE_FLAG_CONST;
c906108c
SS
501
502 if (voltl)
2fdde8f8 503 new_flags |= TYPE_FLAG_VOLATILE;
a02fd225 504
2fdde8f8 505 if (typeptr && *typeptr != NULL)
a02fd225 506 {
2fdde8f8
DJ
507 /* Objfile is per-core-type. This const-qualified type had best
508 belong to the same objfile as the type it is qualifying, unless
509 we are overwriting a stub type, in which case the safest thing
510 to do is to copy the core type into the new objfile. */
a02fd225 511
2fdde8f8
DJ
512 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type)
513 || TYPE_STUB (*typeptr));
514 if (TYPE_OBJFILE (*typeptr) != TYPE_OBJFILE (type))
515 {
516 TYPE_MAIN_TYPE (*typeptr)
517 = TYPE_ALLOC (*typeptr, sizeof (struct main_type));
518 *TYPE_MAIN_TYPE (*typeptr)
519 = *TYPE_MAIN_TYPE (type);
520 }
521 }
522
523 ntype = make_qualified_type (type, new_flags, typeptr ? *typeptr : NULL);
c906108c 524
2fdde8f8
DJ
525 if (typeptr != NULL)
526 *typeptr = ntype;
a02fd225 527
2fdde8f8 528 return ntype;
a02fd225 529}
c906108c 530
2fdde8f8
DJ
531/* Replace the contents of ntype with the type *type. This changes the
532 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
533 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 534
cda6c68a
JB
535 In order to build recursive types, it's inevitable that we'll need
536 to update types in place --- but this sort of indiscriminate
537 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
538 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
539 clear if more steps are needed. */
dd6bda65
DJ
540void
541replace_type (struct type *ntype, struct type *type)
542{
543 struct type *cv_chain, *as_chain, *ptr, *ref;
544
2fdde8f8 545 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 546
2fdde8f8
DJ
547 /* Assert that the two types have equivalent instance qualifiers.
548 This should be true for at least all of our debug readers. */
549 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
550}
551
c906108c
SS
552/* Implement direct support for MEMBER_TYPE in GNU C++.
553 May need to construct such a type if this is the first use.
554 The TYPE is the type of the member. The DOMAIN is the type
555 of the aggregate that the member belongs to. */
556
557struct type *
fba45db2 558lookup_member_type (struct type *type, struct type *domain)
c906108c
SS
559{
560 register struct type *mtype;
561
562 mtype = alloc_type (TYPE_OBJFILE (type));
563 smash_to_member_type (mtype, domain, type);
564 return (mtype);
565}
566
7b83ea04 567/* Allocate a stub method whose return type is TYPE.
c906108c
SS
568 This apparently happens for speed of symbol reading, since parsing
569 out the arguments to the method is cpu-intensive, the way we are doing
570 it. So, we will fill in arguments later.
571 This always returns a fresh type. */
572
573struct type *
fba45db2 574allocate_stub_method (struct type *type)
c906108c
SS
575{
576 struct type *mtype;
577
7e956337
FF
578 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
579 TYPE_OBJFILE (type));
c906108c
SS
580 TYPE_TARGET_TYPE (mtype) = type;
581 /* _DOMAIN_TYPE (mtype) = unknown yet */
582 /* _ARG_TYPES (mtype) = unknown yet */
c906108c
SS
583 return (mtype);
584}
585
586/* Create a range type using either a blank type supplied in RESULT_TYPE,
587 or creating a new type, inheriting the objfile from INDEX_TYPE.
588
589 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
590 HIGH_BOUND, inclusive.
591
592 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
593 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
594
595struct type *
fba45db2
KB
596create_range_type (struct type *result_type, struct type *index_type,
597 int low_bound, int high_bound)
c906108c
SS
598{
599 if (result_type == NULL)
600 {
601 result_type = alloc_type (TYPE_OBJFILE (index_type));
602 }
603 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
604 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 605 if (TYPE_STUB (index_type))
c906108c
SS
606 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
607 else
608 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
609 TYPE_NFIELDS (result_type) = 2;
610 TYPE_FIELDS (result_type) = (struct field *)
611 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
612 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
613 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
614 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
c5aa993b
JM
615 TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
616 TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
c906108c 617
c5aa993b 618 if (low_bound >= 0)
c906108c
SS
619 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
620
621 return (result_type);
622}
623
624/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
625 Return 1 of type is a range type, 0 if it is discrete (and bounds
626 will fit in LONGEST), or -1 otherwise. */
627
628int
fba45db2 629get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
630{
631 CHECK_TYPEDEF (type);
632 switch (TYPE_CODE (type))
633 {
634 case TYPE_CODE_RANGE:
635 *lowp = TYPE_LOW_BOUND (type);
636 *highp = TYPE_HIGH_BOUND (type);
637 return 1;
638 case TYPE_CODE_ENUM:
639 if (TYPE_NFIELDS (type) > 0)
640 {
641 /* The enums may not be sorted by value, so search all
642 entries */
643 int i;
644
645 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
646 for (i = 0; i < TYPE_NFIELDS (type); i++)
647 {
648 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
649 *lowp = TYPE_FIELD_BITPOS (type, i);
650 if (TYPE_FIELD_BITPOS (type, i) > *highp)
651 *highp = TYPE_FIELD_BITPOS (type, i);
652 }
653
654 /* Set unsigned indicator if warranted. */
c5aa993b 655 if (*lowp >= 0)
c906108c
SS
656 {
657 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
658 }
659 }
660 else
661 {
662 *lowp = 0;
663 *highp = -1;
664 }
665 return 0;
666 case TYPE_CODE_BOOL:
667 *lowp = 0;
668 *highp = 1;
669 return 0;
670 case TYPE_CODE_INT:
c5aa993b 671 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
672 return -1;
673 if (!TYPE_UNSIGNED (type))
674 {
c5aa993b 675 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
676 *highp = -*lowp - 1;
677 return 0;
678 }
679 /* ... fall through for unsigned ints ... */
680 case TYPE_CODE_CHAR:
681 *lowp = 0;
682 /* This round-about calculation is to avoid shifting by
7b83ea04
AC
683 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
684 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
685 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
686 *highp = (*highp - 1) | *highp;
687 return 0;
688 default:
689 return -1;
690 }
691}
692
693/* Create an array type using either a blank type supplied in RESULT_TYPE,
694 or creating a new type, inheriting the objfile from RANGE_TYPE.
695
696 Elements will be of type ELEMENT_TYPE, the indices will be of type
697 RANGE_TYPE.
698
699 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
700 sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
701
702struct type *
fba45db2
KB
703create_array_type (struct type *result_type, struct type *element_type,
704 struct type *range_type)
c906108c
SS
705{
706 LONGEST low_bound, high_bound;
707
708 if (result_type == NULL)
709 {
710 result_type = alloc_type (TYPE_OBJFILE (range_type));
711 }
712 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
713 TYPE_TARGET_TYPE (result_type) = element_type;
714 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
715 low_bound = high_bound = 0;
716 CHECK_TYPEDEF (element_type);
717 TYPE_LENGTH (result_type) =
718 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
719 TYPE_NFIELDS (result_type) = 1;
720 TYPE_FIELDS (result_type) =
721 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
722 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
723 TYPE_FIELD_TYPE (result_type, 0) = range_type;
724 TYPE_VPTR_FIELDNO (result_type) = -1;
725
726 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
727 if (TYPE_LENGTH (result_type) == 0)
728 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
729
730 return (result_type);
731}
732
733/* Create a string type using either a blank type supplied in RESULT_TYPE,
734 or creating a new type. String types are similar enough to array of
735 char types that we can use create_array_type to build the basic type
736 and then bash it into a string type.
737
738 For fixed length strings, the range type contains 0 as the lower
739 bound and the length of the string minus one as the upper bound.
740
741 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
742 sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
743
744struct type *
fba45db2 745create_string_type (struct type *result_type, struct type *range_type)
c906108c
SS
746{
747 result_type = create_array_type (result_type,
748 *current_language->string_char_type,
749 range_type);
750 TYPE_CODE (result_type) = TYPE_CODE_STRING;
751 return (result_type);
752}
753
754struct type *
fba45db2 755create_set_type (struct type *result_type, struct type *domain_type)
c906108c
SS
756{
757 LONGEST low_bound, high_bound, bit_length;
758 if (result_type == NULL)
759 {
760 result_type = alloc_type (TYPE_OBJFILE (domain_type));
761 }
762 TYPE_CODE (result_type) = TYPE_CODE_SET;
763 TYPE_NFIELDS (result_type) = 1;
764 TYPE_FIELDS (result_type) = (struct field *)
765 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
766 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
767
74a9bb82 768 if (!TYPE_STUB (domain_type))
c906108c
SS
769 {
770 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
771 low_bound = high_bound = 0;
772 bit_length = high_bound - low_bound + 1;
773 TYPE_LENGTH (result_type)
774 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
775 }
776 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
777
c5aa993b 778 if (low_bound >= 0)
c906108c
SS
779 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
780
781 return (result_type);
782}
783
917317f4
JM
784/* Construct and return a type of the form:
785 struct NAME { ELT_TYPE ELT_NAME[N]; }
786 We use these types for SIMD registers. For example, the type of
787 the SSE registers on the late x86-family processors is:
788 struct __builtin_v4sf { float f[4]; }
789 built by the function call:
790 init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
791 The type returned is a permanent type, allocated using malloc; it
792 doesn't live in any objfile's obstack. */
c2d11a7d 793static struct type *
917317f4
JM
794init_simd_type (char *name,
795 struct type *elt_type,
796 char *elt_name,
797 int n)
798{
73d322b1
EZ
799 struct type *simd_type;
800 struct type *array_type;
801
802 simd_type = init_composite_type (name, TYPE_CODE_STRUCT);
803 array_type = create_array_type (0, elt_type,
804 create_range_type (0, builtin_type_int,
805 0, n-1));
806 append_composite_type_field (simd_type, elt_name, array_type);
807 return simd_type;
917317f4
JM
808}
809
ac3aafc7
EZ
810static struct type *
811init_vector_type (struct type *elt_type, int n)
812{
813 struct type *array_type;
814
815 array_type = create_array_type (0, elt_type,
816 create_range_type (0, builtin_type_int,
817 0, n-1));
818 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
819 return array_type;
820}
821
08cf96df
EZ
822static struct type *
823build_builtin_type_vec128 (void)
824{
825 /* Construct a type for the 128 bit registers. The type we're
826 building is this: */
827#if 0
ac3aafc7 828 union __gdb_builtin_type_vec128
08cf96df 829 {
ac3aafc7
EZ
830 int128_t uint128;
831 float v4_float[4];
832 int32_t v4_int32[4];
833 int16_t v8_int16[8];
834 int8_t v16_int8[16];
08cf96df
EZ
835 };
836#endif
837
838 struct type *t;
08cf96df 839
73d322b1
EZ
840 t = init_composite_type ("__gdb_builtin_type_vec128", TYPE_CODE_UNION);
841 append_composite_type_field (t, "uint128", builtin_type_int128);
ac3aafc7
EZ
842 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
843 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
844 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
845 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
08cf96df
EZ
846
847 return t;
848}
917317f4 849
3139facc
MH
850static struct type *
851build_builtin_type_vec128i (void)
852{
853 /* 128-bit Intel SIMD registers */
854 struct type *t;
855
856 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
857 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
858 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
859 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
860 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
861 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
862 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
863 append_composite_type_field (t, "uint128", builtin_type_int128);
864
865 return t;
866}
867
7b83ea04 868/* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
c906108c
SS
869 A MEMBER is a wierd thing -- it amounts to a typed offset into
870 a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
871 include the offset (that's the value of the MEMBER itself), but does
872 include the structure type into which it points (for some reason).
873
874 When "smashing" the type, we preserve the objfile that the
875 old type pointed to, since we aren't changing where the type is actually
876 allocated. */
877
878void
fba45db2
KB
879smash_to_member_type (struct type *type, struct type *domain,
880 struct type *to_type)
c906108c
SS
881{
882 struct objfile *objfile;
883
884 objfile = TYPE_OBJFILE (type);
885
2fdde8f8 886 smash_type (type);
c906108c
SS
887 TYPE_OBJFILE (type) = objfile;
888 TYPE_TARGET_TYPE (type) = to_type;
889 TYPE_DOMAIN_TYPE (type) = domain;
890 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
891 TYPE_CODE (type) = TYPE_CODE_MEMBER;
892}
893
894/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
895 METHOD just means `function that gets an extra "this" argument'.
896
897 When "smashing" the type, we preserve the objfile that the
898 old type pointed to, since we aren't changing where the type is actually
899 allocated. */
900
901void
fba45db2
KB
902smash_to_method_type (struct type *type, struct type *domain,
903 struct type *to_type, struct type **args)
c906108c
SS
904{
905 struct objfile *objfile;
906
907 objfile = TYPE_OBJFILE (type);
908
2fdde8f8 909 smash_type (type);
c906108c
SS
910 TYPE_OBJFILE (type) = objfile;
911 TYPE_TARGET_TYPE (type) = to_type;
912 TYPE_DOMAIN_TYPE (type) = domain;
913 TYPE_ARG_TYPES (type) = args;
914 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
915 TYPE_CODE (type) = TYPE_CODE_METHOD;
916}
917
918/* Return a typename for a struct/union/enum type without "struct ",
919 "union ", or "enum ". If the type has a NULL name, return NULL. */
920
921char *
fba45db2 922type_name_no_tag (register const struct type *type)
c906108c
SS
923{
924 if (TYPE_TAG_NAME (type) != NULL)
925 return TYPE_TAG_NAME (type);
926
927 /* Is there code which expects this to return the name if there is no
928 tag name? My guess is that this is mainly used for C++ in cases where
929 the two will always be the same. */
930 return TYPE_NAME (type);
931}
932
7b83ea04 933/* Lookup a primitive type named NAME.
c5aa993b 934 Return zero if NAME is not a primitive type. */
c906108c
SS
935
936struct type *
fba45db2 937lookup_primitive_typename (char *name)
c906108c 938{
c5aa993b
JM
939 struct type **const *p;
940
941 for (p = current_language->la_builtin_type_vector; *p != NULL; p++)
942 {
0004e5a2 943 if (STREQ (TYPE_NAME (**p), name))
c5aa993b
JM
944 {
945 return (**p);
946 }
947 }
948 return (NULL);
c906108c
SS
949}
950
951/* Lookup a typedef or primitive type named NAME,
952 visible in lexical block BLOCK.
953 If NOERR is nonzero, return zero if NAME is not suitably defined. */
954
955struct type *
fba45db2 956lookup_typename (char *name, struct block *block, int noerr)
c906108c
SS
957{
958 register struct symbol *sym;
959 register struct type *tmp;
960
961 sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
962 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
963 {
964 tmp = lookup_primitive_typename (name);
965 if (tmp)
966 {
967 return (tmp);
968 }
969 else if (!tmp && noerr)
970 {
971 return (NULL);
972 }
973 else
974 {
975 error ("No type named %s.", name);
976 }
977 }
978 return (SYMBOL_TYPE (sym));
979}
980
981struct type *
fba45db2 982lookup_unsigned_typename (char *name)
c906108c
SS
983{
984 char *uns = alloca (strlen (name) + 10);
985
986 strcpy (uns, "unsigned ");
987 strcpy (uns + 9, name);
988 return (lookup_typename (uns, (struct block *) NULL, 0));
989}
990
991struct type *
fba45db2 992lookup_signed_typename (char *name)
c906108c
SS
993{
994 struct type *t;
995 char *uns = alloca (strlen (name) + 8);
996
997 strcpy (uns, "signed ");
998 strcpy (uns + 7, name);
999 t = lookup_typename (uns, (struct block *) NULL, 1);
1000 /* If we don't find "signed FOO" just try again with plain "FOO". */
1001 if (t != NULL)
1002 return t;
1003 return lookup_typename (name, (struct block *) NULL, 0);
1004}
1005
1006/* Lookup a structure type named "struct NAME",
1007 visible in lexical block BLOCK. */
1008
1009struct type *
fba45db2 1010lookup_struct (char *name, struct block *block)
c906108c
SS
1011{
1012 register struct symbol *sym;
1013
1014 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1015 (struct symtab **) NULL);
1016
1017 if (sym == NULL)
1018 {
1019 error ("No struct type named %s.", name);
1020 }
1021 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1022 {
1023 error ("This context has class, union or enum %s, not a struct.", name);
1024 }
1025 return (SYMBOL_TYPE (sym));
1026}
1027
1028/* Lookup a union type named "union NAME",
1029 visible in lexical block BLOCK. */
1030
1031struct type *
fba45db2 1032lookup_union (char *name, struct block *block)
c906108c
SS
1033{
1034 register struct symbol *sym;
c5aa993b 1035 struct type *t;
c906108c
SS
1036
1037 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1038 (struct symtab **) NULL);
1039
1040 if (sym == NULL)
1041 error ("No union type named %s.", name);
1042
c5aa993b 1043 t = SYMBOL_TYPE (sym);
c906108c
SS
1044
1045 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1046 return (t);
1047
1048 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1049 * a further "declared_type" field to discover it is really a union.
1050 */
c5aa993b
JM
1051 if (HAVE_CPLUS_STRUCT (t))
1052 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c906108c
SS
1053 return (t);
1054
1055 /* If we get here, it's not a union */
1056 error ("This context has class, struct or enum %s, not a union.", name);
1057}
1058
1059
1060/* Lookup an enum type named "enum NAME",
1061 visible in lexical block BLOCK. */
1062
1063struct type *
fba45db2 1064lookup_enum (char *name, struct block *block)
c906108c
SS
1065{
1066 register struct symbol *sym;
1067
c5aa993b 1068 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
c906108c
SS
1069 (struct symtab **) NULL);
1070 if (sym == NULL)
1071 {
1072 error ("No enum type named %s.", name);
1073 }
1074 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1075 {
1076 error ("This context has class, struct or union %s, not an enum.", name);
1077 }
1078 return (SYMBOL_TYPE (sym));
1079}
1080
1081/* Lookup a template type named "template NAME<TYPE>",
1082 visible in lexical block BLOCK. */
1083
1084struct type *
fba45db2 1085lookup_template_type (char *name, struct type *type, struct block *block)
c906108c
SS
1086{
1087 struct symbol *sym;
0004e5a2 1088 char *nam = (char *) alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1089 strcpy (nam, name);
1090 strcat (nam, "<");
0004e5a2 1091 strcat (nam, TYPE_NAME (type));
c5aa993b 1092 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1093
c5aa993b 1094 sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
c906108c
SS
1095
1096 if (sym == NULL)
1097 {
1098 error ("No template type named %s.", name);
1099 }
1100 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1101 {
1102 error ("This context has class, union or enum %s, not a struct.", name);
1103 }
1104 return (SYMBOL_TYPE (sym));
1105}
1106
7b83ea04 1107/* Given a type TYPE, lookup the type of the component of type named NAME.
c906108c
SS
1108
1109 TYPE can be either a struct or union, or a pointer or reference to a struct or
1110 union. If it is a pointer or reference, its target type is automatically used.
1111 Thus '.' and '->' are interchangable, as specified for the definitions of the
1112 expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
1113
1114 If NOERR is nonzero, return zero if NAME is not suitably defined.
1115 If NAME is the name of a baseclass type, return that type. */
1116
1117struct type *
fba45db2 1118lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1119{
1120 int i;
1121
1122 for (;;)
1123 {
1124 CHECK_TYPEDEF (type);
1125 if (TYPE_CODE (type) != TYPE_CODE_PTR
1126 && TYPE_CODE (type) != TYPE_CODE_REF)
1127 break;
1128 type = TYPE_TARGET_TYPE (type);
1129 }
1130
1131 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
1132 TYPE_CODE (type) != TYPE_CODE_UNION)
1133 {
1134 target_terminal_ours ();
1135 gdb_flush (gdb_stdout);
1136 fprintf_unfiltered (gdb_stderr, "Type ");
1137 type_print (type, "", gdb_stderr, -1);
1138 error (" is not a structure or union type.");
1139 }
1140
1141#if 0
1142 /* FIXME: This change put in by Michael seems incorrect for the case where
1143 the structure tag name is the same as the member name. I.E. when doing
1144 "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
1145 Disabled by fnf. */
1146 {
1147 char *typename;
1148
1149 typename = type_name_no_tag (type);
1150 if (typename != NULL && STREQ (typename, name))
1151 return type;
1152 }
1153#endif
1154
1155 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1156 {
1157 char *t_field_name = TYPE_FIELD_NAME (type, i);
1158
db577aea 1159 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1160 {
1161 return TYPE_FIELD_TYPE (type, i);
1162 }
1163 }
1164
1165 /* OK, it's not in this class. Recursively check the baseclasses. */
1166 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1167 {
1168 struct type *t;
1169
1170 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
1171 if (t != NULL)
1172 {
1173 return t;
1174 }
1175 }
1176
1177 if (noerr)
1178 {
1179 return NULL;
1180 }
c5aa993b 1181
c906108c
SS
1182 target_terminal_ours ();
1183 gdb_flush (gdb_stdout);
1184 fprintf_unfiltered (gdb_stderr, "Type ");
1185 type_print (type, "", gdb_stderr, -1);
1186 fprintf_unfiltered (gdb_stderr, " has no component named ");
1187 fputs_filtered (name, gdb_stderr);
1188 error (".");
c5aa993b 1189 return (struct type *) -1; /* For lint */
c906108c
SS
1190}
1191
1192/* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1193 valid. Callers should be aware that in some cases (for example,
1194 the type or one of its baseclasses is a stub type and we are
1195 debugging a .o file), this function will not be able to find the virtual
1196 function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
1197 will remain NULL. */
1198
1199void
fba45db2 1200fill_in_vptr_fieldno (struct type *type)
c906108c
SS
1201{
1202 CHECK_TYPEDEF (type);
1203
1204 if (TYPE_VPTR_FIELDNO (type) < 0)
1205 {
1206 int i;
1207
1208 /* We must start at zero in case the first (and only) baseclass is
7b83ea04 1209 virtual (and hence we cannot share the table pointer). */
c906108c
SS
1210 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1211 {
1212 fill_in_vptr_fieldno (TYPE_BASECLASS (type, i));
1213 if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0)
1214 {
1215 TYPE_VPTR_FIELDNO (type)
1216 = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i));
1217 TYPE_VPTR_BASETYPE (type)
1218 = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i));
1219 break;
1220 }
1221 }
1222 }
1223}
1224
1225/* Find the method and field indices for the destructor in class type T.
1226 Return 1 if the destructor was found, otherwise, return 0. */
1227
1228int
fba45db2 1229get_destructor_fn_field (struct type *t, int *method_indexp, int *field_indexp)
c906108c
SS
1230{
1231 int i;
1232
1233 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1234 {
1235 int j;
1236 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1237
1238 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1239 {
015a42b4 1240 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
c906108c
SS
1241 {
1242 *method_indexp = i;
1243 *field_indexp = j;
1244 return 1;
1245 }
1246 }
1247 }
1248 return 0;
1249}
1250
1251/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1252
1253 If this is a stubbed struct (i.e. declared as struct foo *), see if
1254 we can find a full definition in some other file. If so, copy this
1255 definition, so we can use it in future. There used to be a comment (but
1256 not any code) that if we don't find a full definition, we'd set a flag
1257 so we don't spend time in the future checking the same type. That would
1258 be a mistake, though--we might load in more symbols which contain a
1259 full definition for the type.
1260
7b83ea04 1261 This used to be coded as a macro, but I don't think it is called
c906108c
SS
1262 often enough to merit such treatment. */
1263
1264struct complaint stub_noname_complaint =
c5aa993b 1265{"stub type has NULL name", 0, 0};
c906108c
SS
1266
1267struct type *
a02fd225 1268check_typedef (struct type *type)
c906108c
SS
1269{
1270 struct type *orig_type = type;
a02fd225
DJ
1271 int is_const, is_volatile;
1272
c906108c
SS
1273 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1274 {
1275 if (!TYPE_TARGET_TYPE (type))
1276 {
c5aa993b 1277 char *name;
c906108c
SS
1278 struct symbol *sym;
1279
1280 /* It is dangerous to call lookup_symbol if we are currently
1281 reading a symtab. Infinite recursion is one danger. */
1282 if (currently_reading_symtab)
1283 return type;
1284
1285 name = type_name_no_tag (type);
1286 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1287 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1288 as appropriate? (this code was written before TYPE_NAME and
1289 TYPE_TAG_NAME were separate). */
1290 if (name == NULL)
1291 {
1292 complain (&stub_noname_complaint);
1293 return type;
1294 }
c5aa993b 1295 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0,
c906108c
SS
1296 (struct symtab **) NULL);
1297 if (sym)
1298 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1299 else
c5aa993b 1300 TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */
c906108c
SS
1301 }
1302 type = TYPE_TARGET_TYPE (type);
1303 }
1304
a02fd225
DJ
1305 is_const = TYPE_CONST (type);
1306 is_volatile = TYPE_VOLATILE (type);
1307
c906108c
SS
1308 /* If this is a struct/class/union with no fields, then check whether a
1309 full definition exists somewhere else. This is for systems where a
1310 type definition with no fields is issued for such types, instead of
c5aa993b
JM
1311 identifying them as stub types in the first place */
1312
c906108c
SS
1313 if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
1314 {
c5aa993b
JM
1315 char *name = type_name_no_tag (type);
1316 struct type *newtype;
c906108c
SS
1317 if (name == NULL)
1318 {
1319 complain (&stub_noname_complaint);
1320 return type;
1321 }
1322 newtype = lookup_transparent_type (name);
1323 if (newtype)
a02fd225 1324 make_cv_type (is_const, is_volatile, newtype, &type);
c906108c
SS
1325 }
1326 /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
74a9bb82 1327 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1328 {
c5aa993b 1329 char *name = type_name_no_tag (type);
c906108c 1330 /* FIXME: shouldn't we separately check the TYPE_NAME and the
7b83ea04
AC
1331 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1332 as appropriate? (this code was written before TYPE_NAME and
1333 TYPE_TAG_NAME were separate). */
c906108c
SS
1334 struct symbol *sym;
1335 if (name == NULL)
1336 {
1337 complain (&stub_noname_complaint);
1338 return type;
1339 }
1340 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL);
1341 if (sym)
a02fd225 1342 make_cv_type (is_const, is_volatile, SYMBOL_TYPE (sym), &type);
c906108c
SS
1343 }
1344
74a9bb82 1345 if (TYPE_TARGET_STUB (type))
c906108c
SS
1346 {
1347 struct type *range_type;
1348 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1349
74a9bb82 1350 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b
JM
1351 {
1352 }
c906108c
SS
1353 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1354 && TYPE_NFIELDS (type) == 1
1355 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1356 == TYPE_CODE_RANGE))
1357 {
1358 /* Now recompute the length of the array type, based on its
1359 number of elements and the target type's length. */
1360 TYPE_LENGTH (type) =
1361 ((TYPE_FIELD_BITPOS (range_type, 1)
1362 - TYPE_FIELD_BITPOS (range_type, 0)
1363 + 1)
1364 * TYPE_LENGTH (target_type));
1365 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1366 }
1367 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1368 {
1369 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1370 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1371 }
1372 }
1373 /* Cache TYPE_LENGTH for future use. */
1374 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1375 return type;
1376}
1377
1378/* New code added to support parsing of Cfront stabs strings */
c906108c
SS
1379#define INIT_EXTRA { pextras->len=0; pextras->str[0]='\0'; }
1380#define ADD_EXTRA(c) { pextras->str[pextras->len++]=c; }
1381
c5aa993b 1382static void
fba45db2 1383add_name (struct extra *pextras, char *n)
c906108c
SS
1384{
1385 int nlen;
1386
c5aa993b 1387 if ((nlen = (n ? strlen (n) : 0)) == 0)
c906108c 1388 return;
c5aa993b
JM
1389 sprintf (pextras->str + pextras->len, "%d%s", nlen, n);
1390 pextras->len = strlen (pextras->str);
c906108c
SS
1391}
1392
c5aa993b 1393static void
fba45db2 1394add_mangled_type (struct extra *pextras, struct type *t)
c906108c
SS
1395{
1396 enum type_code tcode;
1397 int tlen, tflags;
c5aa993b 1398 char *tname;
c906108c 1399
c5aa993b
JM
1400 tcode = TYPE_CODE (t);
1401 tlen = TYPE_LENGTH (t);
1402 tflags = TYPE_FLAGS (t);
1403 tname = TYPE_NAME (t);
c906108c
SS
1404 /* args of "..." seem to get mangled as "e" */
1405
c5aa993b
JM
1406 switch (tcode)
1407 {
1408 case TYPE_CODE_INT:
1409 if (tflags == 1)
1410 ADD_EXTRA ('U');
1411 switch (tlen)
1412 {
1413 case 1:
1414 ADD_EXTRA ('c');
1415 break;
1416 case 2:
1417 ADD_EXTRA ('s');
1418 break;
1419 case 4:
1420 {
1421 char *pname;
1422 if ((pname = strrchr (tname, 'l'), pname) && !strcmp (pname, "long"))
9846de1b
JM
1423 {
1424 ADD_EXTRA ('l');
1425 }
1426 else
1427 {
1428 ADD_EXTRA ('i');
1429 }
c5aa993b
JM
1430 }
1431 break;
1432 default:
1433 {
1434
1435 static struct complaint msg =
1436 {"Bad int type code length x%x\n", 0, 0};
1437
1438 complain (&msg, tlen);
1439
1440 }
1441 }
1442 break;
1443 case TYPE_CODE_FLT:
1444 switch (tlen)
1445 {
1446 case 4:
1447 ADD_EXTRA ('f');
1448 break;
1449 case 8:
1450 ADD_EXTRA ('d');
1451 break;
1452 case 16:
1453 ADD_EXTRA ('r');
1454 break;
1455 default:
1456 {
1457 static struct complaint msg =
1458 {"Bad float type code length x%x\n", 0, 0};
1459 complain (&msg, tlen);
1460 }
1461 }
1462 break;
1463 case TYPE_CODE_REF:
1464 ADD_EXTRA ('R');
1465 /* followed by what it's a ref to */
1466 break;
1467 case TYPE_CODE_PTR:
1468 ADD_EXTRA ('P');
1469 /* followed by what it's a ptr to */
1470 break;
1471 case TYPE_CODE_TYPEDEF:
1472 {
1473 static struct complaint msg =
1474 {"Typedefs in overloaded functions not yet supported\n", 0, 0};
1475 complain (&msg);
1476 }
c906108c
SS
1477 /* followed by type bytes & name */
1478 break;
1479 case TYPE_CODE_FUNC:
c5aa993b 1480 ADD_EXTRA ('F');
c906108c
SS
1481 /* followed by func's arg '_' & ret types */
1482 break;
1483 case TYPE_CODE_VOID:
c5aa993b 1484 ADD_EXTRA ('v');
c906108c
SS
1485 break;
1486 case TYPE_CODE_METHOD:
c5aa993b 1487 ADD_EXTRA ('M');
c906108c 1488 /* followed by name of class and func's arg '_' & ret types */
c5aa993b
JM
1489 add_name (pextras, tname);
1490 ADD_EXTRA ('F'); /* then mangle function */
c906108c 1491 break;
c5aa993b
JM
1492 case TYPE_CODE_STRUCT: /* C struct */
1493 case TYPE_CODE_UNION: /* C union */
1494 case TYPE_CODE_ENUM: /* Enumeration type */
c906108c 1495 /* followed by name of type */
c5aa993b 1496 add_name (pextras, tname);
c906108c
SS
1497 break;
1498
c5aa993b
JM
1499 /* errors possible types/not supported */
1500 case TYPE_CODE_CHAR:
1501 case TYPE_CODE_ARRAY: /* Array type */
1502 case TYPE_CODE_MEMBER: /* Member type */
c906108c 1503 case TYPE_CODE_BOOL:
c5aa993b 1504 case TYPE_CODE_COMPLEX: /* Complex float */
c906108c 1505 case TYPE_CODE_UNDEF:
c5aa993b
JM
1506 case TYPE_CODE_SET: /* Pascal sets */
1507 case TYPE_CODE_RANGE:
c906108c
SS
1508 case TYPE_CODE_STRING:
1509 case TYPE_CODE_BITSTRING:
1510 case TYPE_CODE_ERROR:
c5aa993b 1511 default:
c906108c 1512 {
c5aa993b
JM
1513 static struct complaint msg =
1514 {"Unknown type code x%x\n", 0, 0};
1515 complain (&msg, tcode);
c906108c
SS
1516 }
1517 }
0004e5a2
DJ
1518 if (TYPE_TARGET_TYPE (t))
1519 add_mangled_type (pextras, TYPE_TARGET_TYPE (t));
c906108c
SS
1520}
1521
1522#if 0
1523void
fba45db2 1524cfront_mangle_name (struct type *type, int i, int j)
c906108c 1525{
c5aa993b
JM
1526 struct fn_field *f;
1527 char *mangled_name = gdb_mangle_name (type, i, j);
1528
1529 f = TYPE_FN_FIELDLIST1 (type, i); /* moved from below */
1530
7b83ea04 1531 /* kludge to support cfront methods - gdb expects to find "F" for
c5aa993b
JM
1532 ARM_mangled names, so when we mangle, we have to add it here */
1533 if (ARM_DEMANGLING)
1534 {
1535 int k;
1536 char *arm_mangled_name;
1537 struct fn_field *method = &f[j];
1538 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1539 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1540 char *newname = type_name_no_tag (type);
1541
1542 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1543 int nargs = TYPE_NFIELDS (ftype); /* number of args */
1544 struct extra extras, *pextras = &extras;
1545 INIT_EXTRA
c906108c
SS
1546
1547 if (TYPE_FN_FIELD_STATIC_P (f, j)) /* j for sublist within this list */
c5aa993b
JM
1548 ADD_EXTRA ('S')
1549 ADD_EXTRA ('F')
c906108c 1550 /* add args here! */
c5aa993b
JM
1551 if (nargs <= 1) /* no args besides this */
1552 ADD_EXTRA ('v')
1553 else
1554 {
1555 for (k = 1; k < nargs; k++)
1556 {
1557 struct type *t;
1558 t = TYPE_FIELD_TYPE (ftype, k);
1559 add_mangled_type (pextras, t);
1560 }
1561 }
1562 ADD_EXTRA ('\0')
1563 printf ("add_mangled_type: %s\n", extras.str); /* FIXME */
3c37485b 1564 xasprintf (&arm_mangled_name, "%s%s", mangled_name, extras.str);
b8c9b27d 1565 xfree (mangled_name);
c5aa993b
JM
1566 mangled_name = arm_mangled_name;
1567 }
c906108c 1568}
c5aa993b 1569#endif /* 0 */
c906108c
SS
1570
1571#undef ADD_EXTRA
1572/* End of new code added to support parsing of Cfront stabs strings */
1573
c91ecb25
ND
1574/* Parse a type expression in the string [P..P+LENGTH). If an error occurs,
1575 silently return builtin_type_void. */
1576
1577struct type *
1578safe_parse_type (char *p, int length)
1579{
1580 struct ui_file *saved_gdb_stderr;
1581 struct type *type;
1582
1583 /* Suppress error messages. */
1584 saved_gdb_stderr = gdb_stderr;
1585 gdb_stderr = ui_file_new ();
1586
1587 /* Call parse_and_eval_type() without fear of longjmp()s. */
1588 if (!gdb_parse_and_eval_type (p, length, &type))
1589 type = builtin_type_void;
1590
1591 /* Stop suppressing error messages. */
1592 ui_file_delete (gdb_stderr);
1593 gdb_stderr = saved_gdb_stderr;
1594
1595 return type;
1596}
1597
c906108c
SS
1598/* Ugly hack to convert method stubs into method types.
1599
1600 He ain't kiddin'. This demangles the name of the method into a string
1601 including argument types, parses out each argument type, generates
1602 a string casting a zero to that type, evaluates the string, and stuffs
1603 the resulting type into an argtype vector!!! Then it knows the type
1604 of the whole function (including argument types for overloading),
1605 which info used to be in the stab's but was removed to hack back
1606 the space required for them. */
1607
1608void
fba45db2 1609check_stub_method (struct type *type, int method_id, int signature_id)
c906108c
SS
1610{
1611 struct fn_field *f;
1612 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1613 char *demangled_name = cplus_demangle (mangled_name,
1614 DMGL_PARAMS | DMGL_ANSI);
1615 char *argtypetext, *p;
1616 int depth = 0, argcount = 1;
1617 struct type **argtypes;
1618 struct type *mtype;
1619
1620 /* Make sure we got back a function string that we can use. */
1621 if (demangled_name)
1622 p = strchr (demangled_name, '(');
502dcf4e
AC
1623 else
1624 p = NULL;
c906108c
SS
1625
1626 if (demangled_name == NULL || p == NULL)
1627 error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
1628
1629 /* Now, read in the parameters that define this type. */
1630 p += 1;
1631 argtypetext = p;
1632 while (*p)
1633 {
070ad9f0 1634 if (*p == '(' || *p == '<')
c906108c
SS
1635 {
1636 depth += 1;
1637 }
070ad9f0 1638 else if (*p == ')' || *p == '>')
c906108c
SS
1639 {
1640 depth -= 1;
1641 }
1642 else if (*p == ',' && depth == 0)
1643 {
1644 argcount += 1;
1645 }
1646
1647 p += 1;
1648 }
1649
1650 /* We need two more slots: one for the THIS pointer, and one for the
1651 NULL [...] or void [end of arglist]. */
1652
1653 argtypes = (struct type **)
1654 TYPE_ALLOC (type, (argcount + 2) * sizeof (struct type *));
1655 p = argtypetext;
4a1970e4
DJ
1656
1657 /* Add THIS pointer for non-static methods. */
1658 f = TYPE_FN_FIELDLIST1 (type, method_id);
1659 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1660 argcount = 0;
1661 else
1662 {
1663 argtypes[0] = lookup_pointer_type (type);
1664 argcount = 1;
1665 }
c906108c 1666
c5aa993b 1667 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1668 {
1669 depth = 0;
1670 while (*p)
1671 {
1672 if (depth <= 0 && (*p == ',' || *p == ')'))
1673 {
1674 /* Avoid parsing of ellipsis, they will be handled below. */
1675 if (strncmp (argtypetext, "...", p - argtypetext) != 0)
1676 {
1677 argtypes[argcount] =
c91ecb25 1678 safe_parse_type (argtypetext, p - argtypetext);
c906108c
SS
1679 argcount += 1;
1680 }
1681 argtypetext = p + 1;
1682 }
1683
070ad9f0 1684 if (*p == '(' || *p == '<')
c906108c
SS
1685 {
1686 depth += 1;
1687 }
070ad9f0 1688 else if (*p == ')' || *p == '>')
c906108c
SS
1689 {
1690 depth -= 1;
1691 }
1692
1693 p += 1;
1694 }
1695 }
1696
c5aa993b 1697 if (p[-2] != '.') /* Not '...' */
c906108c
SS
1698 {
1699 argtypes[argcount] = builtin_type_void; /* List terminator */
1700 }
1701 else
1702 {
c5aa993b 1703 argtypes[argcount] = NULL; /* Ellist terminator */
c906108c
SS
1704 }
1705
b8c9b27d 1706 xfree (demangled_name);
c906108c 1707
c906108c
SS
1708 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1709
1710 /* Now update the old "stub" type into a real type. */
1711 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1712 TYPE_DOMAIN_TYPE (mtype) = type;
1713 TYPE_ARG_TYPES (mtype) = argtypes;
1714 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1715 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1716}
1717
1718const struct cplus_struct_type cplus_struct_default;
1719
1720void
fba45db2 1721allocate_cplus_struct_type (struct type *type)
c906108c
SS
1722{
1723 if (!HAVE_CPLUS_STRUCT (type))
1724 {
1725 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1726 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
c5aa993b 1727 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1728 }
1729}
1730
1731/* Helper function to initialize the standard scalar types.
1732
1733 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
1734 of the string pointed to by name in the type_obstack for that objfile,
1735 and initialize the type name to that copy. There are places (mipsread.c
1736 in particular, where init_type is called with a NULL value for NAME). */
1737
1738struct type *
fba45db2
KB
1739init_type (enum type_code code, int length, int flags, char *name,
1740 struct objfile *objfile)
c906108c
SS
1741{
1742 register struct type *type;
1743
1744 type = alloc_type (objfile);
1745 TYPE_CODE (type) = code;
1746 TYPE_LENGTH (type) = length;
1747 TYPE_FLAGS (type) |= flags;
1748 if ((name != NULL) && (objfile != NULL))
1749 {
1750 TYPE_NAME (type) =
c5aa993b 1751 obsavestring (name, strlen (name), &objfile->type_obstack);
c906108c
SS
1752 }
1753 else
1754 {
1755 TYPE_NAME (type) = name;
1756 }
1757
1758 /* C++ fancies. */
1759
1760 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1761 {
1762 INIT_CPLUS_SPECIFIC (type);
1763 }
1764 return (type);
1765}
1766
0e101458
AC
1767/* Helper function. Create an empty composite type. */
1768
1769struct type *
1770init_composite_type (char *name, enum type_code code)
1771{
1772 struct type *t;
1773 gdb_assert (code == TYPE_CODE_STRUCT
1774 || code == TYPE_CODE_UNION);
1775 t = init_type (code, 0, 0, NULL, NULL);
1776 TYPE_TAG_NAME (t) = name;
1777 return t;
1778}
1779
1780/* Helper function. Append a field to a composite type. */
1781
1782void
1783append_composite_type_field (struct type *t, char *name, struct type *field)
1784{
1785 struct field *f;
1786 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1787 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1788 sizeof (struct field) * TYPE_NFIELDS (t));
1789 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1790 memset (f, 0, sizeof f[0]);
1791 FIELD_TYPE (f[0]) = field;
1792 FIELD_NAME (f[0]) = name;
1793 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1794 {
73d322b1 1795 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
0e101458
AC
1796 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1797 }
1798 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1799 {
1800 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1801 if (TYPE_NFIELDS (t) > 1)
1802 {
1803 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1804 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1805 }
1806 }
1807}
1808
c906108c
SS
1809/* Look up a fundamental type for the specified objfile.
1810 May need to construct such a type if this is the first use.
1811
1812 Some object file formats (ELF, COFF, etc) do not define fundamental
1813 types such as "int" or "double". Others (stabs for example), do
1814 define fundamental types.
1815
1816 For the formats which don't provide fundamental types, gdb can create
1817 such types, using defaults reasonable for the current language and
1818 the current target machine.
1819
1820 NOTE: This routine is obsolescent. Each debugging format reader
1821 should manage it's own fundamental types, either creating them from
1822 suitable defaults or reading them from the debugging information,
1823 whichever is appropriate. The DWARF reader has already been
1824 fixed to do this. Once the other readers are fixed, this routine
1825 will go away. Also note that fundamental types should be managed
1826 on a compilation unit basis in a multi-language environment, not
1827 on a linkage unit basis as is done here. */
1828
1829
1830struct type *
fba45db2 1831lookup_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
1832{
1833 register struct type **typep;
1834 register int nbytes;
1835
1836 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1837 {
1838 error ("internal error - invalid fundamental type id %d", typeid);
1839 }
1840
1841 /* If this is the first time we need a fundamental type for this objfile
1842 then we need to initialize the vector of type pointers. */
c5aa993b
JM
1843
1844 if (objfile->fundamental_types == NULL)
c906108c
SS
1845 {
1846 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
c5aa993b
JM
1847 objfile->fundamental_types = (struct type **)
1848 obstack_alloc (&objfile->type_obstack, nbytes);
1849 memset ((char *) objfile->fundamental_types, 0, nbytes);
c906108c
SS
1850 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1851 }
1852
1853 /* Look for this particular type in the fundamental type vector. If one is
1854 not found, create and install one appropriate for the current language. */
1855
c5aa993b 1856 typep = objfile->fundamental_types + typeid;
c906108c
SS
1857 if (*typep == NULL)
1858 {
1859 *typep = create_fundamental_type (objfile, typeid);
1860 }
1861
1862 return (*typep);
1863}
1864
1865int
fba45db2 1866can_dereference (struct type *t)
c906108c
SS
1867{
1868 /* FIXME: Should we return true for references as well as pointers? */
1869 CHECK_TYPEDEF (t);
1870 return
1871 (t != NULL
1872 && TYPE_CODE (t) == TYPE_CODE_PTR
1873 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1874}
1875
adf40b2e 1876int
fba45db2 1877is_integral_type (struct type *t)
adf40b2e
JM
1878{
1879 CHECK_TYPEDEF (t);
1880 return
1881 ((t != NULL)
d4f3574e
SS
1882 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1883 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1884 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1885 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1886 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1887}
1888
c906108c
SS
1889/* Chill varying string and arrays are represented as follows:
1890
1891 struct { int __var_length; ELEMENT_TYPE[MAX_SIZE] __var_data};
1892
1893 Return true if TYPE is such a Chill varying type. */
1894
1895int
fba45db2 1896chill_varying_type (struct type *type)
c906108c
SS
1897{
1898 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1899 || TYPE_NFIELDS (type) != 2
1900 || strcmp (TYPE_FIELD_NAME (type, 0), "__var_length") != 0)
1901 return 0;
1902 return 1;
1903}
1904
7b83ea04 1905/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1906 Return 1 if so, and 0 if not.
1907 Note: callers may want to check for identity of the types before
1908 calling this function -- identical types are considered to satisfy
1909 the ancestor relationship even if they're identical */
1910
1911int
fba45db2 1912is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1913{
1914 int i;
c5aa993b 1915
c906108c
SS
1916 CHECK_TYPEDEF (base);
1917 CHECK_TYPEDEF (dclass);
1918
1919 if (base == dclass)
1920 return 1;
6b1ba9a0
ND
1921 if (TYPE_NAME (base) && TYPE_NAME (dclass) &&
1922 !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1923 return 1;
c906108c
SS
1924
1925 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1926 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1927 return 1;
1928
1929 return 0;
1930}
1931
1932
1933
1934/* See whether DCLASS has a virtual table. This routine is aimed at
1935 the HP/Taligent ANSI C++ runtime model, and may not work with other
1936 runtime models. Return 1 => Yes, 0 => No. */
1937
1938int
fba45db2 1939has_vtable (struct type *dclass)
c906108c
SS
1940{
1941 /* In the HP ANSI C++ runtime model, a class has a vtable only if it
1942 has virtual functions or virtual bases. */
1943
1944 register int i;
1945
c5aa993b 1946 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
c906108c 1947 return 0;
c5aa993b 1948
c906108c 1949 /* First check for the presence of virtual bases */
c5aa993b
JM
1950 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1951 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1952 if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1953 return 1;
1954
c906108c 1955 /* Next check for virtual functions */
c5aa993b
JM
1956 if (TYPE_FN_FIELDLISTS (dclass))
1957 for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
1958 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
c906108c 1959 return 1;
c5aa993b
JM
1960
1961 /* Recurse on non-virtual bases to see if any of them needs a vtable */
1962 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1963 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1964 if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
1965 (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
1966 return 1;
1967
1968 /* Well, maybe we don't need a virtual table */
c906108c
SS
1969 return 0;
1970}
1971
1972/* Return a pointer to the "primary base class" of DCLASS.
c5aa993b 1973
c906108c
SS
1974 A NULL return indicates that DCLASS has no primary base, or that it
1975 couldn't be found (insufficient information).
c5aa993b 1976
c906108c
SS
1977 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1978 and may not work with other runtime models. */
1979
1980struct type *
fba45db2 1981primary_base_class (struct type *dclass)
c906108c
SS
1982{
1983 /* In HP ANSI C++'s runtime model, a "primary base class" of a class
1984 is the first directly inherited, non-virtual base class that
1985 requires a virtual table */
1986
1987 register int i;
1988
c5aa993b 1989 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
c906108c
SS
1990 return NULL;
1991
c5aa993b
JM
1992 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1993 if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
1994 has_vtable (TYPE_FIELD_TYPE (dclass, i)))
1995 return TYPE_FIELD_TYPE (dclass, i);
c906108c
SS
1996
1997 return NULL;
1998}
1999
2000/* Global manipulated by virtual_base_list[_aux]() */
2001
c5aa993b 2002static struct vbase *current_vbase_list = NULL;
c906108c
SS
2003
2004/* Return a pointer to a null-terminated list of struct vbase
2005 items. The vbasetype pointer of each item in the list points to the
2006 type information for a virtual base of the argument DCLASS.
c5aa993b 2007
7b83ea04 2008 Helper function for virtual_base_list().
c906108c
SS
2009 Note: the list goes backward, right-to-left. virtual_base_list()
2010 copies the items out in reverse order. */
2011
7a292a7a 2012static void
fba45db2 2013virtual_base_list_aux (struct type *dclass)
c906108c 2014{
c5aa993b 2015 struct vbase *tmp_vbase;
c906108c
SS
2016 register int i;
2017
c5aa993b 2018 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
7a292a7a 2019 return;
c906108c
SS
2020
2021 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2022 {
2023 /* Recurse on this ancestor, first */
c5aa993b 2024 virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
c906108c
SS
2025
2026 /* If this current base is itself virtual, add it to the list */
c5aa993b
JM
2027 if (BASETYPE_VIA_VIRTUAL (dclass, i))
2028 {
2029 struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
2030
2031 /* Check if base already recorded */
2032 tmp_vbase = current_vbase_list;
2033 while (tmp_vbase)
2034 {
2035 if (tmp_vbase->vbasetype == basetype)
2036 break; /* found it */
2037 tmp_vbase = tmp_vbase->next;
2038 }
2039
2040 if (!tmp_vbase) /* normal exit from loop */
2041 {
2042 /* Allocate new item for this virtual base */
2043 tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
2044
2045 /* Stick it on at the end of the list */
2046 tmp_vbase->vbasetype = basetype;
2047 tmp_vbase->next = current_vbase_list;
2048 current_vbase_list = tmp_vbase;
2049 }
2050 } /* if virtual */
2051 } /* for loop over bases */
c906108c
SS
2052}
2053
2054
2055/* Compute the list of virtual bases in the right order. Virtual
2056 bases are laid out in the object's memory area in order of their
2057 occurrence in a depth-first, left-to-right search through the
2058 ancestors.
c5aa993b 2059
c906108c
SS
2060 Argument DCLASS is the type whose virtual bases are required.
2061 Return value is the address of a null-terminated array of pointers
2062 to struct type items.
c5aa993b 2063
c906108c
SS
2064 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
2065 and may not work with other runtime models.
c5aa993b 2066
c906108c
SS
2067 This routine merely hands off the argument to virtual_base_list_aux()
2068 and then copies the result into an array to save space. */
2069
2070struct type **
fba45db2 2071virtual_base_list (struct type *dclass)
c906108c 2072{
c5aa993b
JM
2073 register struct vbase *tmp_vbase;
2074 register struct vbase *tmp_vbase_2;
c906108c
SS
2075 register int i;
2076 int count;
c5aa993b 2077 struct type **vbase_array;
c906108c
SS
2078
2079 current_vbase_list = NULL;
c5aa993b 2080 virtual_base_list_aux (dclass);
c906108c 2081
c5aa993b 2082 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
c906108c
SS
2083 /* no body */ ;
2084
2085 count = i;
2086
c5aa993b 2087 vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
c906108c 2088
c5aa993b 2089 for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
c906108c
SS
2090 vbase_array[i] = tmp_vbase->vbasetype;
2091
2092 /* Get rid of constructed chain */
2093 tmp_vbase_2 = tmp_vbase = current_vbase_list;
2094 while (tmp_vbase)
2095 {
2096 tmp_vbase = tmp_vbase->next;
b8c9b27d 2097 xfree (tmp_vbase_2);
c906108c
SS
2098 tmp_vbase_2 = tmp_vbase;
2099 }
c5aa993b 2100
c906108c
SS
2101 vbase_array[count] = NULL;
2102 return vbase_array;
2103}
2104
2105/* Return the length of the virtual base list of the type DCLASS. */
2106
2107int
fba45db2 2108virtual_base_list_length (struct type *dclass)
c906108c
SS
2109{
2110 register int i;
c5aa993b
JM
2111 register struct vbase *tmp_vbase;
2112
c906108c 2113 current_vbase_list = NULL;
c5aa993b 2114 virtual_base_list_aux (dclass);
c906108c 2115
c5aa993b 2116 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
c906108c
SS
2117 /* no body */ ;
2118 return i;
2119}
2120
2121/* Return the number of elements of the virtual base list of the type
2122 DCLASS, ignoring those appearing in the primary base (and its
2123 primary base, recursively). */
2124
2125int
fba45db2 2126virtual_base_list_length_skip_primaries (struct type *dclass)
c906108c
SS
2127{
2128 register int i;
c5aa993b
JM
2129 register struct vbase *tmp_vbase;
2130 struct type *primary;
c906108c
SS
2131
2132 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2133
2134 if (!primary)
2135 return virtual_base_list_length (dclass);
2136
2137 current_vbase_list = NULL;
c5aa993b 2138 virtual_base_list_aux (dclass);
c906108c 2139
c5aa993b 2140 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
c906108c
SS
2141 {
2142 if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
c5aa993b 2143 continue;
c906108c
SS
2144 i++;
2145 }
2146 return i;
2147}
2148
2149
2150/* Return the index (position) of type BASE, which is a virtual base
2151 class of DCLASS, in the latter's virtual base list. A return of -1
2152 indicates "not found" or a problem. */
2153
2154int
fba45db2 2155virtual_base_index (struct type *base, struct type *dclass)
c906108c 2156{
c5aa993b 2157 register struct type *vbase;
c906108c
SS
2158 register int i;
2159
c5aa993b
JM
2160 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2161 (TYPE_CODE (base) != TYPE_CODE_CLASS))
c906108c
SS
2162 return -1;
2163
2164 i = 0;
015a42b4 2165 vbase = virtual_base_list (dclass)[0];
c906108c
SS
2166 while (vbase)
2167 {
2168 if (vbase == base)
c5aa993b 2169 break;
015a42b4 2170 vbase = virtual_base_list (dclass)[++i];
c906108c
SS
2171 }
2172
2173 return vbase ? i : -1;
2174}
2175
2176
2177
2178/* Return the index (position) of type BASE, which is a virtual base
2179 class of DCLASS, in the latter's virtual base list. Skip over all
2180 bases that may appear in the virtual base list of the primary base
2181 class of DCLASS (recursively). A return of -1 indicates "not
2182 found" or a problem. */
2183
2184int
fba45db2 2185virtual_base_index_skip_primaries (struct type *base, struct type *dclass)
c906108c 2186{
c5aa993b 2187 register struct type *vbase;
c906108c 2188 register int i, j;
c5aa993b 2189 struct type *primary;
c906108c 2190
c5aa993b
JM
2191 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2192 (TYPE_CODE (base) != TYPE_CODE_CLASS))
c906108c
SS
2193 return -1;
2194
c5aa993b 2195 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
c906108c
SS
2196
2197 j = -1;
2198 i = 0;
015a42b4 2199 vbase = virtual_base_list (dclass)[0];
c906108c
SS
2200 while (vbase)
2201 {
c5aa993b
JM
2202 if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
2203 j++;
c906108c 2204 if (vbase == base)
c5aa993b 2205 break;
015a42b4 2206 vbase = virtual_base_list (dclass)[++i];
c906108c
SS
2207 }
2208
2209 return vbase ? j : -1;
2210}
2211
2212/* Return position of a derived class DCLASS in the list of
2213 * primary bases starting with the remotest ancestor.
2214 * Position returned is 0-based. */
2215
2216int
fba45db2 2217class_index_in_primary_list (struct type *dclass)
c906108c 2218{
c5aa993b 2219 struct type *pbc; /* primary base class */
c906108c 2220
c5aa993b 2221 /* Simply recurse on primary base */
c906108c
SS
2222 pbc = TYPE_PRIMARY_BASE (dclass);
2223 if (pbc)
2224 return 1 + class_index_in_primary_list (pbc);
2225 else
2226 return 0;
2227}
2228
2229/* Return a count of the number of virtual functions a type has.
2230 * This includes all the virtual functions it inherits from its
2231 * base classes too.
2232 */
2233
2234/* pai: FIXME This doesn't do the right thing: count redefined virtual
2235 * functions only once (latest redefinition)
2236 */
2237
2238int
fba45db2 2239count_virtual_fns (struct type *dclass)
c906108c 2240{
c5aa993b 2241 int fn, oi; /* function and overloaded instance indices */
c5aa993b
JM
2242 int vfuncs; /* count to return */
2243
2244 /* recurse on bases that can share virtual table */
2245 struct type *pbc = primary_base_class (dclass);
c906108c
SS
2246 if (pbc)
2247 vfuncs = count_virtual_fns (pbc);
7f7e9482
AC
2248 else
2249 vfuncs = 0;
c5aa993b 2250
c906108c
SS
2251 for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
2252 for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
2253 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
c5aa993b 2254 vfuncs++;
c906108c
SS
2255
2256 return vfuncs;
2257}
c906108c
SS
2258\f
2259
c5aa993b 2260
c906108c
SS
2261/* Functions for overload resolution begin here */
2262
2263/* Compare two badness vectors A and B and return the result.
2264 * 0 => A and B are identical
2265 * 1 => A and B are incomparable
2266 * 2 => A is better than B
2267 * 3 => A is worse than B */
2268
2269int
fba45db2 2270compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2271{
2272 int i;
2273 int tmp;
c5aa993b
JM
2274 short found_pos = 0; /* any positives in c? */
2275 short found_neg = 0; /* any negatives in c? */
2276
2277 /* differing lengths => incomparable */
c906108c
SS
2278 if (a->length != b->length)
2279 return 1;
2280
c5aa993b
JM
2281 /* Subtract b from a */
2282 for (i = 0; i < a->length; i++)
c906108c
SS
2283 {
2284 tmp = a->rank[i] - b->rank[i];
2285 if (tmp > 0)
c5aa993b 2286 found_pos = 1;
c906108c 2287 else if (tmp < 0)
c5aa993b 2288 found_neg = 1;
c906108c
SS
2289 }
2290
2291 if (found_pos)
2292 {
2293 if (found_neg)
c5aa993b 2294 return 1; /* incomparable */
c906108c 2295 else
c5aa993b 2296 return 3; /* A > B */
c906108c 2297 }
c5aa993b
JM
2298 else
2299 /* no positives */
c906108c
SS
2300 {
2301 if (found_neg)
c5aa993b 2302 return 2; /* A < B */
c906108c 2303 else
c5aa993b 2304 return 0; /* A == B */
c906108c
SS
2305 }
2306}
2307
2308/* Rank a function by comparing its parameter types (PARMS, length NPARMS),
2309 * to the types of an argument list (ARGS, length NARGS).
2310 * Return a pointer to a badness vector. This has NARGS + 1 entries. */
2311
2312struct badness_vector *
fba45db2 2313rank_function (struct type **parms, int nparms, struct type **args, int nargs)
c906108c
SS
2314{
2315 int i;
c5aa993b 2316 struct badness_vector *bv;
c906108c
SS
2317 int min_len = nparms < nargs ? nparms : nargs;
2318
2319 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 2320 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
2321 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2322
2323 /* First compare the lengths of the supplied lists.
2324 * If there is a mismatch, set it to a high value. */
c5aa993b 2325
c906108c
SS
2326 /* pai/1997-06-03 FIXME: when we have debug info about default
2327 * arguments and ellipsis parameter lists, we should consider those
2328 * and rank the length-match more finely. */
2329
2330 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2331
2332 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
2333 for (i = 1; i <= min_len; i++)
2334 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 2335
c5aa993b
JM
2336 /* If more arguments than parameters, add dummy entries */
2337 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2338 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2339
2340 return bv;
2341}
2342
2343/* Compare one type (PARM) for compatibility with another (ARG).
2344 * PARM is intended to be the parameter type of a function; and
2345 * ARG is the supplied argument's type. This function tests if
2346 * the latter can be converted to the former.
2347 *
2348 * Return 0 if they are identical types;
2349 * Otherwise, return an integer which corresponds to how compatible
2350 * PARM is to ARG. The higher the return value, the worse the match.
2351 * Generally the "bad" conversions are all uniformly assigned a 100 */
2352
2353int
fba45db2 2354rank_one_type (struct type *parm, struct type *arg)
c906108c
SS
2355{
2356 /* Identical type pointers */
2357 /* However, this still doesn't catch all cases of same type for arg
2358 * and param. The reason is that builtin types are different from
2359 * the same ones constructed from the object. */
2360 if (parm == arg)
2361 return 0;
2362
2363 /* Resolve typedefs */
2364 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2365 parm = check_typedef (parm);
2366 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2367 arg = check_typedef (arg);
2368
070ad9f0
DB
2369 /*
2370 Well, damnit, if the names are exactly the same,
2371 i'll say they are exactly the same. This happens when we generate
2372 method stubs. The types won't point to the same address, but they
2373 really are the same.
2374 */
2375
6b1ba9a0
ND
2376 if (TYPE_NAME (parm) && TYPE_NAME (arg) &&
2377 !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
070ad9f0
DB
2378 return 0;
2379
c906108c
SS
2380 /* Check if identical after resolving typedefs */
2381 if (parm == arg)
2382 return 0;
2383
db577aea
AC
2384 /* See through references, since we can almost make non-references
2385 references. */
2386 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2387 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2388 + REFERENCE_CONVERSION_BADNESS);
2389 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2390 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2391 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2392 if (overload_debug)
db577aea 2393 /* Debugging only. */
5d161b24
DB
2394 fprintf_filtered (gdb_stderr,"------ Arg is %s [%d], parm is %s [%d]\n",
2395 TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2396
2397 /* x -> y means arg of type x being supplied for parameter of type y */
2398
2399 switch (TYPE_CODE (parm))
2400 {
c5aa993b
JM
2401 case TYPE_CODE_PTR:
2402 switch (TYPE_CODE (arg))
2403 {
2404 case TYPE_CODE_PTR:
2405 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2406 return VOID_PTR_CONVERSION_BADNESS;
2407 else
2408 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2409 case TYPE_CODE_ARRAY:
2410 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2411 case TYPE_CODE_FUNC:
2412 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2413 case TYPE_CODE_INT:
2414 case TYPE_CODE_ENUM:
2415 case TYPE_CODE_CHAR:
2416 case TYPE_CODE_RANGE:
2417 case TYPE_CODE_BOOL:
2418 return POINTER_CONVERSION_BADNESS;
2419 default:
2420 return INCOMPATIBLE_TYPE_BADNESS;
2421 }
2422 case TYPE_CODE_ARRAY:
2423 switch (TYPE_CODE (arg))
2424 {
2425 case TYPE_CODE_PTR:
2426 case TYPE_CODE_ARRAY:
2427 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2428 default:
2429 return INCOMPATIBLE_TYPE_BADNESS;
2430 }
2431 case TYPE_CODE_FUNC:
2432 switch (TYPE_CODE (arg))
2433 {
2434 case TYPE_CODE_PTR: /* funcptr -> func */
2435 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2436 default:
2437 return INCOMPATIBLE_TYPE_BADNESS;
2438 }
2439 case TYPE_CODE_INT:
2440 switch (TYPE_CODE (arg))
2441 {
2442 case TYPE_CODE_INT:
2443 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2444 {
2445 /* Deal with signed, unsigned, and plain chars and
7b83ea04 2446 signed and unsigned ints */
c5aa993b
JM
2447 if (TYPE_NOSIGN (parm))
2448 {
2449 /* This case only for character types */
2450 if (TYPE_NOSIGN (arg)) /* plain char -> plain char */
2451 return 0;
2452 else
2453 return INTEGER_COERCION_BADNESS; /* signed/unsigned char -> plain char */
2454 }
2455 else if (TYPE_UNSIGNED (parm))
2456 {
2457 if (TYPE_UNSIGNED (arg))
2458 {
db577aea 2459 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
c5aa993b 2460 return 0; /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
db577aea 2461 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
c5aa993b
JM
2462 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2463 else
2464 return INTEGER_COERCION_BADNESS; /* unsigned long -> unsigned int */
2465 }
2466 else
2467 {
db577aea 2468 if (!strcmp_iw (TYPE_NAME (arg), "long") && !strcmp_iw (TYPE_NAME (parm), "int"))
c5aa993b
JM
2469 return INTEGER_COERCION_BADNESS; /* signed long -> unsigned int */
2470 else
2471 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2472 }
2473 }
2474 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2475 {
db577aea 2476 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
c5aa993b 2477 return 0;
db577aea 2478 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
c5aa993b
JM
2479 return INTEGER_PROMOTION_BADNESS;
2480 else
2481 return INTEGER_COERCION_BADNESS;
2482 }
2483 else
2484 return INTEGER_COERCION_BADNESS;
2485 }
2486 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2487 return INTEGER_PROMOTION_BADNESS;
2488 else
2489 return INTEGER_COERCION_BADNESS;
2490 case TYPE_CODE_ENUM:
2491 case TYPE_CODE_CHAR:
2492 case TYPE_CODE_RANGE:
2493 case TYPE_CODE_BOOL:
2494 return INTEGER_PROMOTION_BADNESS;
2495 case TYPE_CODE_FLT:
2496 return INT_FLOAT_CONVERSION_BADNESS;
2497 case TYPE_CODE_PTR:
2498 return NS_POINTER_CONVERSION_BADNESS;
2499 default:
2500 return INCOMPATIBLE_TYPE_BADNESS;
2501 }
2502 break;
2503 case TYPE_CODE_ENUM:
2504 switch (TYPE_CODE (arg))
2505 {
2506 case TYPE_CODE_INT:
2507 case TYPE_CODE_CHAR:
2508 case TYPE_CODE_RANGE:
2509 case TYPE_CODE_BOOL:
2510 case TYPE_CODE_ENUM:
2511 return INTEGER_COERCION_BADNESS;
2512 case TYPE_CODE_FLT:
2513 return INT_FLOAT_CONVERSION_BADNESS;
2514 default:
2515 return INCOMPATIBLE_TYPE_BADNESS;
2516 }
2517 break;
2518 case TYPE_CODE_CHAR:
2519 switch (TYPE_CODE (arg))
2520 {
2521 case TYPE_CODE_RANGE:
2522 case TYPE_CODE_BOOL:
2523 case TYPE_CODE_ENUM:
2524 return INTEGER_COERCION_BADNESS;
2525 case TYPE_CODE_FLT:
2526 return INT_FLOAT_CONVERSION_BADNESS;
2527 case TYPE_CODE_INT:
2528 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2529 return INTEGER_COERCION_BADNESS;
2530 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2531 return INTEGER_PROMOTION_BADNESS;
2532 /* >>> !! else fall through !! <<< */
2533 case TYPE_CODE_CHAR:
2534 /* Deal with signed, unsigned, and plain chars for C++
2535 and with int cases falling through from previous case */
2536 if (TYPE_NOSIGN (parm))
2537 {
2538 if (TYPE_NOSIGN (arg))
2539 return 0;
2540 else
2541 return INTEGER_COERCION_BADNESS;
2542 }
2543 else if (TYPE_UNSIGNED (parm))
2544 {
2545 if (TYPE_UNSIGNED (arg))
2546 return 0;
2547 else
2548 return INTEGER_PROMOTION_BADNESS;
2549 }
2550 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2551 return 0;
2552 else
2553 return INTEGER_COERCION_BADNESS;
2554 default:
2555 return INCOMPATIBLE_TYPE_BADNESS;
2556 }
2557 break;
2558 case TYPE_CODE_RANGE:
2559 switch (TYPE_CODE (arg))
2560 {
2561 case TYPE_CODE_INT:
2562 case TYPE_CODE_CHAR:
2563 case TYPE_CODE_RANGE:
2564 case TYPE_CODE_BOOL:
2565 case TYPE_CODE_ENUM:
2566 return INTEGER_COERCION_BADNESS;
2567 case TYPE_CODE_FLT:
2568 return INT_FLOAT_CONVERSION_BADNESS;
2569 default:
2570 return INCOMPATIBLE_TYPE_BADNESS;
2571 }
2572 break;
2573 case TYPE_CODE_BOOL:
2574 switch (TYPE_CODE (arg))
2575 {
2576 case TYPE_CODE_INT:
2577 case TYPE_CODE_CHAR:
2578 case TYPE_CODE_RANGE:
2579 case TYPE_CODE_ENUM:
2580 case TYPE_CODE_FLT:
2581 case TYPE_CODE_PTR:
2582 return BOOLEAN_CONVERSION_BADNESS;
2583 case TYPE_CODE_BOOL:
2584 return 0;
2585 default:
2586 return INCOMPATIBLE_TYPE_BADNESS;
2587 }
2588 break;
2589 case TYPE_CODE_FLT:
2590 switch (TYPE_CODE (arg))
2591 {
2592 case TYPE_CODE_FLT:
2593 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2594 return FLOAT_PROMOTION_BADNESS;
2595 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2596 return 0;
2597 else
2598 return FLOAT_CONVERSION_BADNESS;
2599 case TYPE_CODE_INT:
2600 case TYPE_CODE_BOOL:
2601 case TYPE_CODE_ENUM:
2602 case TYPE_CODE_RANGE:
2603 case TYPE_CODE_CHAR:
2604 return INT_FLOAT_CONVERSION_BADNESS;
2605 default:
2606 return INCOMPATIBLE_TYPE_BADNESS;
2607 }
2608 break;
2609 case TYPE_CODE_COMPLEX:
2610 switch (TYPE_CODE (arg))
2611 { /* Strictly not needed for C++, but... */
2612 case TYPE_CODE_FLT:
2613 return FLOAT_PROMOTION_BADNESS;
2614 case TYPE_CODE_COMPLEX:
2615 return 0;
2616 default:
2617 return INCOMPATIBLE_TYPE_BADNESS;
2618 }
2619 break;
2620 case TYPE_CODE_STRUCT:
c906108c 2621 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2622 switch (TYPE_CODE (arg))
2623 {
2624 case TYPE_CODE_STRUCT:
2625 /* Check for derivation */
2626 if (is_ancestor (parm, arg))
2627 return BASE_CONVERSION_BADNESS;
2628 /* else fall through */
2629 default:
2630 return INCOMPATIBLE_TYPE_BADNESS;
2631 }
2632 break;
2633 case TYPE_CODE_UNION:
2634 switch (TYPE_CODE (arg))
2635 {
2636 case TYPE_CODE_UNION:
2637 default:
2638 return INCOMPATIBLE_TYPE_BADNESS;
2639 }
2640 break;
2641 case TYPE_CODE_MEMBER:
2642 switch (TYPE_CODE (arg))
2643 {
2644 default:
2645 return INCOMPATIBLE_TYPE_BADNESS;
2646 }
2647 break;
2648 case TYPE_CODE_METHOD:
2649 switch (TYPE_CODE (arg))
2650 {
2651
2652 default:
2653 return INCOMPATIBLE_TYPE_BADNESS;
2654 }
2655 break;
2656 case TYPE_CODE_REF:
2657 switch (TYPE_CODE (arg))
2658 {
2659
2660 default:
2661 return INCOMPATIBLE_TYPE_BADNESS;
2662 }
2663
2664 break;
2665 case TYPE_CODE_SET:
2666 switch (TYPE_CODE (arg))
2667 {
2668 /* Not in C++ */
2669 case TYPE_CODE_SET:
2670 return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
2671 default:
2672 return INCOMPATIBLE_TYPE_BADNESS;
2673 }
2674 break;
2675 case TYPE_CODE_VOID:
2676 default:
2677 return INCOMPATIBLE_TYPE_BADNESS;
2678 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2679}
2680
c5aa993b
JM
2681
2682/* End of functions for overload resolution */
c906108c 2683
c906108c 2684static void
fba45db2 2685print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2686{
2687 int bitno;
2688
2689 for (bitno = 0; bitno < nbits; bitno++)
2690 {
2691 if ((bitno % 8) == 0)
2692 {
2693 puts_filtered (" ");
2694 }
2695 if (B_TST (bits, bitno))
2696 {
2697 printf_filtered ("1");
2698 }
2699 else
2700 {
2701 printf_filtered ("0");
2702 }
2703 }
2704}
2705
2706/* The args list is a strange beast. It is either terminated by a NULL
2707 pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID
2708 type for normal fixed argcount functions. (FIXME someday)
2709 Also note the first arg should be the "this" pointer, we may not want to
2710 include it since we may get into a infinitely recursive situation. */
2711
2712static void
fba45db2 2713print_arg_types (struct type **args, int spaces)
c906108c
SS
2714{
2715 if (args != NULL)
2716 {
2717 while (*args != NULL)
2718 {
2719 recursive_dump_type (*args, spaces + 2);
0004e5a2 2720 if (TYPE_CODE (*args++) == TYPE_CODE_VOID)
c906108c
SS
2721 {
2722 break;
2723 }
2724 }
2725 }
2726}
2727
2728static void
fba45db2 2729dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2730{
2731 int method_idx;
2732 int overload_idx;
2733 struct fn_field *f;
2734
2735 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2736 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2737 printf_filtered ("\n");
2738 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2739 {
2740 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2741 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2742 method_idx,
2743 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2744 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2745 gdb_stdout);
c906108c
SS
2746 printf_filtered (") length %d\n",
2747 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2748 for (overload_idx = 0;
2749 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2750 overload_idx++)
2751 {
2752 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2753 overload_idx,
2754 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2755 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2756 gdb_stdout);
c906108c
SS
2757 printf_filtered (")\n");
2758 printfi_filtered (spaces + 8, "type ");
d4f3574e 2759 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
c906108c
SS
2760 printf_filtered ("\n");
2761
2762 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2763 spaces + 8 + 2);
2764
2765 printfi_filtered (spaces + 8, "args ");
d4f3574e 2766 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
c906108c
SS
2767 printf_filtered ("\n");
2768
2769 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces);
2770 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2771 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2772 gdb_stdout);
c906108c
SS
2773 printf_filtered ("\n");
2774
2775 printfi_filtered (spaces + 8, "is_const %d\n",
2776 TYPE_FN_FIELD_CONST (f, overload_idx));
2777 printfi_filtered (spaces + 8, "is_volatile %d\n",
2778 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2779 printfi_filtered (spaces + 8, "is_private %d\n",
2780 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2781 printfi_filtered (spaces + 8, "is_protected %d\n",
2782 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2783 printfi_filtered (spaces + 8, "is_stub %d\n",
2784 TYPE_FN_FIELD_STUB (f, overload_idx));
2785 printfi_filtered (spaces + 8, "voffset %u\n",
2786 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2787 }
2788 }
2789}
2790
2791static void
fba45db2 2792print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2793{
2794 printfi_filtered (spaces, "n_baseclasses %d\n",
2795 TYPE_N_BASECLASSES (type));
2796 printfi_filtered (spaces, "nfn_fields %d\n",
2797 TYPE_NFN_FIELDS (type));
2798 printfi_filtered (spaces, "nfn_fields_total %d\n",
2799 TYPE_NFN_FIELDS_TOTAL (type));
2800 if (TYPE_N_BASECLASSES (type) > 0)
2801 {
2802 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2803 TYPE_N_BASECLASSES (type));
d4f3574e 2804 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
c906108c
SS
2805 printf_filtered (")");
2806
2807 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2808 TYPE_N_BASECLASSES (type));
2809 puts_filtered ("\n");
2810 }
2811 if (TYPE_NFIELDS (type) > 0)
2812 {
2813 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2814 {
2815 printfi_filtered (spaces, "private_field_bits (%d bits at *",
2816 TYPE_NFIELDS (type));
d4f3574e 2817 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
c906108c
SS
2818 printf_filtered (")");
2819 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2820 TYPE_NFIELDS (type));
2821 puts_filtered ("\n");
2822 }
2823 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2824 {
2825 printfi_filtered (spaces, "protected_field_bits (%d bits at *",
2826 TYPE_NFIELDS (type));
d4f3574e 2827 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
c906108c
SS
2828 printf_filtered (")");
2829 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2830 TYPE_NFIELDS (type));
2831 puts_filtered ("\n");
2832 }
2833 }
2834 if (TYPE_NFN_FIELDS (type) > 0)
2835 {
2836 dump_fn_fieldlists (type, spaces);
2837 }
2838}
2839
e9e79dd9
FF
2840static void
2841print_bound_type (int bt)
2842{
2843 switch (bt)
2844 {
2845 case BOUND_CANNOT_BE_DETERMINED:
2846 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2847 break;
2848 case BOUND_BY_REF_ON_STACK:
2849 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2850 break;
2851 case BOUND_BY_VALUE_ON_STACK:
2852 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2853 break;
2854 case BOUND_BY_REF_IN_REG:
2855 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2856 break;
2857 case BOUND_BY_VALUE_IN_REG:
2858 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2859 break;
2860 case BOUND_SIMPLE:
2861 printf_filtered ("(BOUND_SIMPLE)");
2862 break;
2863 default:
2864 printf_filtered ("(unknown bound type)");
2865 break;
2866 }
2867}
2868
c906108c
SS
2869static struct obstack dont_print_type_obstack;
2870
2871void
fba45db2 2872recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2873{
2874 int idx;
2875
2876 if (spaces == 0)
2877 obstack_begin (&dont_print_type_obstack, 0);
2878
2879 if (TYPE_NFIELDS (type) > 0
2880 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2881 {
2882 struct type **first_dont_print
c5aa993b 2883 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2884
c5aa993b
JM
2885 int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
2886 - first_dont_print;
c906108c
SS
2887
2888 while (--i >= 0)
2889 {
2890 if (type == first_dont_print[i])
2891 {
2892 printfi_filtered (spaces, "type node ");
d4f3574e 2893 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2894 printf_filtered (" <same as already seen type>\n");
2895 return;
2896 }
2897 }
2898
2899 obstack_ptr_grow (&dont_print_type_obstack, type);
2900 }
2901
2902 printfi_filtered (spaces, "type node ");
d4f3574e 2903 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2904 printf_filtered ("\n");
2905 printfi_filtered (spaces, "name '%s' (",
2906 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2907 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2908 printf_filtered (")\n");
e9e79dd9
FF
2909 printfi_filtered (spaces, "tagname '%s' (",
2910 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2911 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2912 printf_filtered (")\n");
c906108c
SS
2913 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2914 switch (TYPE_CODE (type))
2915 {
c5aa993b
JM
2916 case TYPE_CODE_UNDEF:
2917 printf_filtered ("(TYPE_CODE_UNDEF)");
2918 break;
2919 case TYPE_CODE_PTR:
2920 printf_filtered ("(TYPE_CODE_PTR)");
2921 break;
2922 case TYPE_CODE_ARRAY:
2923 printf_filtered ("(TYPE_CODE_ARRAY)");
2924 break;
2925 case TYPE_CODE_STRUCT:
2926 printf_filtered ("(TYPE_CODE_STRUCT)");
2927 break;
2928 case TYPE_CODE_UNION:
2929 printf_filtered ("(TYPE_CODE_UNION)");
2930 break;
2931 case TYPE_CODE_ENUM:
2932 printf_filtered ("(TYPE_CODE_ENUM)");
2933 break;
2934 case TYPE_CODE_FUNC:
2935 printf_filtered ("(TYPE_CODE_FUNC)");
2936 break;
2937 case TYPE_CODE_INT:
2938 printf_filtered ("(TYPE_CODE_INT)");
2939 break;
2940 case TYPE_CODE_FLT:
2941 printf_filtered ("(TYPE_CODE_FLT)");
2942 break;
2943 case TYPE_CODE_VOID:
2944 printf_filtered ("(TYPE_CODE_VOID)");
2945 break;
2946 case TYPE_CODE_SET:
2947 printf_filtered ("(TYPE_CODE_SET)");
2948 break;
2949 case TYPE_CODE_RANGE:
2950 printf_filtered ("(TYPE_CODE_RANGE)");
2951 break;
2952 case TYPE_CODE_STRING:
2953 printf_filtered ("(TYPE_CODE_STRING)");
2954 break;
e9e79dd9
FF
2955 case TYPE_CODE_BITSTRING:
2956 printf_filtered ("(TYPE_CODE_BITSTRING)");
2957 break;
c5aa993b
JM
2958 case TYPE_CODE_ERROR:
2959 printf_filtered ("(TYPE_CODE_ERROR)");
2960 break;
2961 case TYPE_CODE_MEMBER:
2962 printf_filtered ("(TYPE_CODE_MEMBER)");
2963 break;
2964 case TYPE_CODE_METHOD:
2965 printf_filtered ("(TYPE_CODE_METHOD)");
2966 break;
2967 case TYPE_CODE_REF:
2968 printf_filtered ("(TYPE_CODE_REF)");
2969 break;
2970 case TYPE_CODE_CHAR:
2971 printf_filtered ("(TYPE_CODE_CHAR)");
2972 break;
2973 case TYPE_CODE_BOOL:
2974 printf_filtered ("(TYPE_CODE_BOOL)");
2975 break;
e9e79dd9
FF
2976 case TYPE_CODE_COMPLEX:
2977 printf_filtered ("(TYPE_CODE_COMPLEX)");
2978 break;
c5aa993b
JM
2979 case TYPE_CODE_TYPEDEF:
2980 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2981 break;
e9e79dd9
FF
2982 case TYPE_CODE_TEMPLATE:
2983 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2984 break;
2985 case TYPE_CODE_TEMPLATE_ARG:
2986 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2987 break;
c5aa993b
JM
2988 default:
2989 printf_filtered ("(UNKNOWN TYPE CODE)");
2990 break;
c906108c
SS
2991 }
2992 puts_filtered ("\n");
2993 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9e79dd9
FF
2994 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2995 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2996 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2997 puts_filtered ("\n");
2998 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2999 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
3000 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
3001 puts_filtered ("\n");
c906108c 3002 printfi_filtered (spaces, "objfile ");
d4f3574e 3003 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
c906108c
SS
3004 printf_filtered ("\n");
3005 printfi_filtered (spaces, "target_type ");
d4f3574e 3006 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3007 printf_filtered ("\n");
3008 if (TYPE_TARGET_TYPE (type) != NULL)
3009 {
3010 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3011 }
3012 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3013 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3014 printf_filtered ("\n");
3015 printfi_filtered (spaces, "reference_type ");
d4f3574e 3016 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3017 printf_filtered ("\n");
2fdde8f8
DJ
3018 printfi_filtered (spaces, "type_chain ");
3019 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3020 printf_filtered ("\n");
2fdde8f8
DJ
3021 printfi_filtered (spaces, "instance_flags 0x%x", TYPE_INSTANCE_FLAGS (type));
3022 if (TYPE_CONST (type))
3023 {
3024 puts_filtered (" TYPE_FLAG_CONST");
3025 }
3026 if (TYPE_VOLATILE (type))
3027 {
3028 puts_filtered (" TYPE_FLAG_VOLATILE");
3029 }
3030 if (TYPE_CODE_SPACE (type))
3031 {
3032 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3033 }
3034 if (TYPE_DATA_SPACE (type))
3035 {
3036 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3037 }
3038 puts_filtered ("\n");
c906108c 3039 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
762a036f 3040 if (TYPE_UNSIGNED (type))
c906108c
SS
3041 {
3042 puts_filtered (" TYPE_FLAG_UNSIGNED");
3043 }
762a036f
FF
3044 if (TYPE_NOSIGN (type))
3045 {
3046 puts_filtered (" TYPE_FLAG_NOSIGN");
3047 }
3048 if (TYPE_STUB (type))
c906108c
SS
3049 {
3050 puts_filtered (" TYPE_FLAG_STUB");
3051 }
762a036f
FF
3052 if (TYPE_TARGET_STUB (type))
3053 {
3054 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3055 }
3056 if (TYPE_STATIC (type))
3057 {
3058 puts_filtered (" TYPE_FLAG_STATIC");
3059 }
762a036f
FF
3060 if (TYPE_PROTOTYPED (type))
3061 {
3062 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3063 }
3064 if (TYPE_INCOMPLETE (type))
3065 {
3066 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3067 }
762a036f
FF
3068 if (TYPE_VARARGS (type))
3069 {
3070 puts_filtered (" TYPE_FLAG_VARARGS");
3071 }
f5f8a009
EZ
3072 /* This is used for things like AltiVec registers on ppc. Gcc emits
3073 an attribute for the array type, which tells whether or not we
3074 have a vector, instead of a regular array. */
3075 if (TYPE_VECTOR (type))
3076 {
3077 puts_filtered (" TYPE_FLAG_VECTOR");
3078 }
c906108c
SS
3079 puts_filtered ("\n");
3080 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3081 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3082 puts_filtered ("\n");
3083 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3084 {
3085 printfi_filtered (spaces + 2,
3086 "[%d] bitpos %d bitsize %d type ",
3087 idx, TYPE_FIELD_BITPOS (type, idx),
3088 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3089 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3090 printf_filtered (" name '%s' (",
3091 TYPE_FIELD_NAME (type, idx) != NULL
3092 ? TYPE_FIELD_NAME (type, idx)
3093 : "<NULL>");
d4f3574e 3094 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3095 printf_filtered (")\n");
3096 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3097 {
3098 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3099 }
3100 }
3101 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3102 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3103 puts_filtered ("\n");
3104 if (TYPE_VPTR_BASETYPE (type) != NULL)
3105 {
3106 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3107 }
3108 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3109 switch (TYPE_CODE (type))
3110 {
c5aa993b
JM
3111 case TYPE_CODE_METHOD:
3112 case TYPE_CODE_FUNC:
3113 printfi_filtered (spaces, "arg_types ");
d4f3574e 3114 gdb_print_host_address (TYPE_ARG_TYPES (type), gdb_stdout);
c5aa993b
JM
3115 puts_filtered ("\n");
3116 print_arg_types (TYPE_ARG_TYPES (type), spaces);
3117 break;
c906108c 3118
c5aa993b
JM
3119 case TYPE_CODE_STRUCT:
3120 printfi_filtered (spaces, "cplus_stuff ");
d4f3574e 3121 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
3122 puts_filtered ("\n");
3123 print_cplus_stuff (type, spaces);
3124 break;
c906108c 3125
701c159d
AC
3126 case TYPE_CODE_FLT:
3127 printfi_filtered (spaces, "floatformat ");
3128 if (TYPE_FLOATFORMAT (type) == NULL
3129 || TYPE_FLOATFORMAT (type)->name == NULL)
3130 puts_filtered ("(null)");
3131 else
3132 puts_filtered (TYPE_FLOATFORMAT (type)->name);
3133 puts_filtered ("\n");
3134 break;
3135
c5aa993b
JM
3136 default:
3137 /* We have to pick one of the union types to be able print and test
7b83ea04
AC
3138 the value. Pick cplus_struct_type, even though we know it isn't
3139 any particular one. */
c5aa993b 3140 printfi_filtered (spaces, "type_specific ");
d4f3574e 3141 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
3142 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
3143 {
3144 printf_filtered (" (unknown data form)");
3145 }
3146 printf_filtered ("\n");
3147 break;
c906108c
SS
3148
3149 }
3150 if (spaces == 0)
3151 obstack_free (&dont_print_type_obstack, NULL);
3152}
3153
a14ed312 3154static void build_gdbtypes (void);
c906108c 3155static void
fba45db2 3156build_gdbtypes (void)
c906108c
SS
3157{
3158 builtin_type_void =
3159 init_type (TYPE_CODE_VOID, 1,
3160 0,
3161 "void", (struct objfile *) NULL);
3162 builtin_type_char =
3163 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4e409299
JB
3164 (TYPE_FLAG_NOSIGN
3165 | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
c906108c 3166 "char", (struct objfile *) NULL);
c5aa993b 3167 builtin_type_true_char =
9e0b60a8
JM
3168 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3169 0,
3170 "true character", (struct objfile *) NULL);
c906108c
SS
3171 builtin_type_signed_char =
3172 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3173 0,
3174 "signed char", (struct objfile *) NULL);
3175 builtin_type_unsigned_char =
3176 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3177 TYPE_FLAG_UNSIGNED,
3178 "unsigned char", (struct objfile *) NULL);
3179 builtin_type_short =
3180 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3181 0,
3182 "short", (struct objfile *) NULL);
3183 builtin_type_unsigned_short =
3184 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3185 TYPE_FLAG_UNSIGNED,
3186 "unsigned short", (struct objfile *) NULL);
3187 builtin_type_int =
3188 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3189 0,
3190 "int", (struct objfile *) NULL);
3191 builtin_type_unsigned_int =
3192 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3193 TYPE_FLAG_UNSIGNED,
3194 "unsigned int", (struct objfile *) NULL);
3195 builtin_type_long =
3196 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3197 0,
3198 "long", (struct objfile *) NULL);
3199 builtin_type_unsigned_long =
3200 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3201 TYPE_FLAG_UNSIGNED,
3202 "unsigned long", (struct objfile *) NULL);
3203 builtin_type_long_long =
3204 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3205 0,
3206 "long long", (struct objfile *) NULL);
c5aa993b 3207 builtin_type_unsigned_long_long =
c906108c
SS
3208 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3209 TYPE_FLAG_UNSIGNED,
3210 "unsigned long long", (struct objfile *) NULL);
3211 builtin_type_float =
3212 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3213 0,
3214 "float", (struct objfile *) NULL);
9c9532c9
CV
3215/* vinschen@redhat.com 2002-02-08:
3216 The below lines are disabled since they are doing the wrong
3217 thing for non-multiarch targets. They are setting the correct
3218 type of floats for the target but while on multiarch targets
3219 this is done everytime the architecture changes, it's done on
3220 non-multiarch targets only on startup, leaving the wrong values
3221 in even if the architecture changes (eg. from big-endian to
3222 little-endian). */
3223#if 0
701c159d 3224 TYPE_FLOATFORMAT (builtin_type_float) = TARGET_FLOAT_FORMAT;
9c9532c9 3225#endif
c906108c
SS
3226 builtin_type_double =
3227 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3228 0,
3229 "double", (struct objfile *) NULL);
9c9532c9 3230#if 0
701c159d 3231 TYPE_FLOATFORMAT (builtin_type_double) = TARGET_DOUBLE_FORMAT;
9c9532c9 3232#endif
c906108c
SS
3233 builtin_type_long_double =
3234 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
3235 0,
3236 "long double", (struct objfile *) NULL);
9c9532c9 3237#if 0
701c159d 3238 TYPE_FLOATFORMAT (builtin_type_long_double) = TARGET_LONG_DOUBLE_FORMAT;
9c9532c9 3239#endif
c906108c
SS
3240 builtin_type_complex =
3241 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3242 0,
3243 "complex", (struct objfile *) NULL);
3244 TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
3245 builtin_type_double_complex =
3246 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3247 0,
3248 "double complex", (struct objfile *) NULL);
3249 TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
3250 builtin_type_string =
3251 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3252 0,
3253 "string", (struct objfile *) NULL);
3254 builtin_type_int8 =
3255 init_type (TYPE_CODE_INT, 8 / 8,
3256 0,
3257 "int8_t", (struct objfile *) NULL);
3258 builtin_type_uint8 =
3259 init_type (TYPE_CODE_INT, 8 / 8,
3260 TYPE_FLAG_UNSIGNED,
3261 "uint8_t", (struct objfile *) NULL);
3262 builtin_type_int16 =
3263 init_type (TYPE_CODE_INT, 16 / 8,
3264 0,
3265 "int16_t", (struct objfile *) NULL);
3266 builtin_type_uint16 =
3267 init_type (TYPE_CODE_INT, 16 / 8,
3268 TYPE_FLAG_UNSIGNED,
3269 "uint16_t", (struct objfile *) NULL);
3270 builtin_type_int32 =
3271 init_type (TYPE_CODE_INT, 32 / 8,
3272 0,
3273 "int32_t", (struct objfile *) NULL);
3274 builtin_type_uint32 =
3275 init_type (TYPE_CODE_INT, 32 / 8,
3276 TYPE_FLAG_UNSIGNED,
3277 "uint32_t", (struct objfile *) NULL);
3278 builtin_type_int64 =
3279 init_type (TYPE_CODE_INT, 64 / 8,
3280 0,
3281 "int64_t", (struct objfile *) NULL);
3282 builtin_type_uint64 =
3283 init_type (TYPE_CODE_INT, 64 / 8,
3284 TYPE_FLAG_UNSIGNED,
3285 "uint64_t", (struct objfile *) NULL);
8b982acf
EZ
3286 builtin_type_int128 =
3287 init_type (TYPE_CODE_INT, 128 / 8,
3288 0,
3289 "int128_t", (struct objfile *) NULL);
3290 builtin_type_uint128 =
3291 init_type (TYPE_CODE_INT, 128 / 8,
3292 TYPE_FLAG_UNSIGNED,
3293 "uint128_t", (struct objfile *) NULL);
c906108c
SS
3294 builtin_type_bool =
3295 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3296 0,
3297 "bool", (struct objfile *) NULL);
3298
c5aa993b 3299 /* Add user knob for controlling resolution of opaque types */
c906108c 3300 add_show_from_set
c5aa993b 3301 (add_set_cmd ("opaque-type-resolution", class_support, var_boolean, (char *) &opaque_type_resolution,
c906108c
SS
3302 "Set resolution of opaque struct/class/union types (if set before loading symbols).",
3303 &setlist),
3304 &showlist);
3305 opaque_type_resolution = 1;
3306
917317f4
JM
3307 /* Build SIMD types. */
3308 builtin_type_v4sf
3309 = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
c2d11a7d
JM
3310 builtin_type_v4si
3311 = init_simd_type ("__builtin_v4si", builtin_type_int32, "f", 4);
08cf96df
EZ
3312 builtin_type_v16qi
3313 = init_simd_type ("__builtin_v16qi", builtin_type_int8, "f", 16);
c2d11a7d
JM
3314 builtin_type_v8qi
3315 = init_simd_type ("__builtin_v8qi", builtin_type_int8, "f", 8);
08cf96df
EZ
3316 builtin_type_v8hi
3317 = init_simd_type ("__builtin_v8hi", builtin_type_int16, "f", 8);
c2d11a7d
JM
3318 builtin_type_v4hi
3319 = init_simd_type ("__builtin_v4hi", builtin_type_int16, "f", 4);
3320 builtin_type_v2si
3321 = init_simd_type ("__builtin_v2si", builtin_type_int32, "f", 2);
c4093a6a 3322
ac3aafc7 3323 /* 128 bit vectors. */
3139facc 3324 builtin_type_v2_double = init_vector_type (builtin_type_double, 2);
ac3aafc7 3325 builtin_type_v4_float = init_vector_type (builtin_type_float, 4);
3139facc 3326 builtin_type_v2_int64 = init_vector_type (builtin_type_int64, 2);
ac3aafc7
EZ
3327 builtin_type_v4_int32 = init_vector_type (builtin_type_int32, 4);
3328 builtin_type_v8_int16 = init_vector_type (builtin_type_int16, 8);
3329 builtin_type_v16_int8 = init_vector_type (builtin_type_int8, 16);
3330 /* 64 bit vectors. */
6599f021 3331 builtin_type_v2_float = init_vector_type (builtin_type_float, 2);
ac3aafc7
EZ
3332 builtin_type_v2_int32 = init_vector_type (builtin_type_int32, 2);
3333 builtin_type_v4_int16 = init_vector_type (builtin_type_int16, 4);
3334 builtin_type_v8_int8 = init_vector_type (builtin_type_int8, 8);
3335
08cf96df 3336 /* Vector types. */
ac3aafc7 3337 builtin_type_vec128 = build_builtin_type_vec128 ();
3139facc 3338 builtin_type_vec128i = build_builtin_type_vec128i ();
08cf96df 3339
c4093a6a 3340 /* Pointer/Address types. */
ee3a7b7f
JB
3341
3342 /* NOTE: on some targets, addresses and pointers are not necessarily
3343 the same --- for example, on the D10V, pointers are 16 bits long,
3344 but addresses are 32 bits long. See doc/gdbint.texinfo,
3345 ``Pointers Are Not Always Addresses''.
3346
3347 The upshot is:
3348 - gdb's `struct type' always describes the target's
3349 representation.
3350 - gdb's `struct value' objects should always hold values in
3351 target form.
3352 - gdb's CORE_ADDR values are addresses in the unified virtual
3353 address space that the assembler and linker work with. Thus,
3354 since target_read_memory takes a CORE_ADDR as an argument, it
3355 can access any memory on the target, even if the processor has
3356 separate code and data address spaces.
3357
3358 So, for example:
3359 - If v is a value holding a D10V code pointer, its contents are
3360 in target form: a big-endian address left-shifted two bits.
3361 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3362 sizeof (void *) == 2 on the target.
3363
3364 In this context, builtin_type_CORE_ADDR is a bit odd: it's a
3365 target type for a value the target will never see. It's only
3366 used to hold the values of (typeless) linker symbols, which are
3367 indeed in the unified virtual address space. */
090a2205 3368 builtin_type_void_data_ptr = make_pointer_type (builtin_type_void, NULL);
ee3a7b7f
JB
3369 builtin_type_void_func_ptr
3370 = lookup_pointer_type (lookup_function_type (builtin_type_void));
c4093a6a 3371 builtin_type_CORE_ADDR =
52204a0b 3372 init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
c4093a6a
JM
3373 TYPE_FLAG_UNSIGNED,
3374 "__CORE_ADDR", (struct objfile *) NULL);
3375 builtin_type_bfd_vma =
3376 init_type (TYPE_CODE_INT, TARGET_BFD_VMA_BIT / 8,
3377 TYPE_FLAG_UNSIGNED,
3378 "__bfd_vma", (struct objfile *) NULL);
c906108c
SS
3379}
3380
3381
a14ed312 3382extern void _initialize_gdbtypes (void);
c906108c 3383void
fba45db2 3384_initialize_gdbtypes (void)
c906108c 3385{
5d161b24 3386 struct cmd_list_element *c;
c906108c 3387 build_gdbtypes ();
0f71a2f6
JM
3388
3389 /* FIXME - For the moment, handle types by swapping them in and out.
3390 Should be using the per-architecture data-pointer and a large
3391 struct. */
c5aa993b
JM
3392 register_gdbarch_swap (&builtin_type_void, sizeof (struct type *), NULL);
3393 register_gdbarch_swap (&builtin_type_char, sizeof (struct type *), NULL);
3394 register_gdbarch_swap (&builtin_type_short, sizeof (struct type *), NULL);
3395 register_gdbarch_swap (&builtin_type_int, sizeof (struct type *), NULL);
3396 register_gdbarch_swap (&builtin_type_long, sizeof (struct type *), NULL);
3397 register_gdbarch_swap (&builtin_type_long_long, sizeof (struct type *), NULL);
3398 register_gdbarch_swap (&builtin_type_signed_char, sizeof (struct type *), NULL);
3399 register_gdbarch_swap (&builtin_type_unsigned_char, sizeof (struct type *), NULL);
3400 register_gdbarch_swap (&builtin_type_unsigned_short, sizeof (struct type *), NULL);
3401 register_gdbarch_swap (&builtin_type_unsigned_int, sizeof (struct type *), NULL);
3402 register_gdbarch_swap (&builtin_type_unsigned_long, sizeof (struct type *), NULL);
3403 register_gdbarch_swap (&builtin_type_unsigned_long_long, sizeof (struct type *), NULL);
3404 register_gdbarch_swap (&builtin_type_float, sizeof (struct type *), NULL);
3405 register_gdbarch_swap (&builtin_type_double, sizeof (struct type *), NULL);
3406 register_gdbarch_swap (&builtin_type_long_double, sizeof (struct type *), NULL);
3407 register_gdbarch_swap (&builtin_type_complex, sizeof (struct type *), NULL);
3408 register_gdbarch_swap (&builtin_type_double_complex, sizeof (struct type *), NULL);
3409 register_gdbarch_swap (&builtin_type_string, sizeof (struct type *), NULL);
3410 register_gdbarch_swap (&builtin_type_int8, sizeof (struct type *), NULL);
3411 register_gdbarch_swap (&builtin_type_uint8, sizeof (struct type *), NULL);
3412 register_gdbarch_swap (&builtin_type_int16, sizeof (struct type *), NULL);
3413 register_gdbarch_swap (&builtin_type_uint16, sizeof (struct type *), NULL);
3414 register_gdbarch_swap (&builtin_type_int32, sizeof (struct type *), NULL);
3415 register_gdbarch_swap (&builtin_type_uint32, sizeof (struct type *), NULL);
3416 register_gdbarch_swap (&builtin_type_int64, sizeof (struct type *), NULL);
3417 register_gdbarch_swap (&builtin_type_uint64, sizeof (struct type *), NULL);
8b982acf
EZ
3418 register_gdbarch_swap (&builtin_type_int128, sizeof (struct type *), NULL);
3419 register_gdbarch_swap (&builtin_type_uint128, sizeof (struct type *), NULL);
917317f4 3420 register_gdbarch_swap (&builtin_type_v4sf, sizeof (struct type *), NULL);
c2d11a7d 3421 register_gdbarch_swap (&builtin_type_v4si, sizeof (struct type *), NULL);
08cf96df 3422 register_gdbarch_swap (&builtin_type_v16qi, sizeof (struct type *), NULL);
c2d11a7d 3423 register_gdbarch_swap (&builtin_type_v8qi, sizeof (struct type *), NULL);
08cf96df 3424 register_gdbarch_swap (&builtin_type_v8hi, sizeof (struct type *), NULL);
c2d11a7d
JM
3425 register_gdbarch_swap (&builtin_type_v4hi, sizeof (struct type *), NULL);
3426 register_gdbarch_swap (&builtin_type_v2si, sizeof (struct type *), NULL);
3139facc 3427 register_gdbarch_swap (&builtin_type_v2_double, sizeof (struct type *), NULL);
ac3aafc7 3428 register_gdbarch_swap (&builtin_type_v4_float, sizeof (struct type *), NULL);
3139facc 3429 register_gdbarch_swap (&builtin_type_v2_int64, sizeof (struct type *), NULL);
ac3aafc7
EZ
3430 register_gdbarch_swap (&builtin_type_v4_int32, sizeof (struct type *), NULL);
3431 register_gdbarch_swap (&builtin_type_v8_int16, sizeof (struct type *), NULL);
3432 register_gdbarch_swap (&builtin_type_v16_int8, sizeof (struct type *), NULL);
6599f021 3433 register_gdbarch_swap (&builtin_type_v2_float, sizeof (struct type *), NULL);
ac3aafc7
EZ
3434 register_gdbarch_swap (&builtin_type_v2_int32, sizeof (struct type *), NULL);
3435 register_gdbarch_swap (&builtin_type_v8_int8, sizeof (struct type *), NULL);
3436 register_gdbarch_swap (&builtin_type_v4_int16, sizeof (struct type *), NULL);
08cf96df 3437 register_gdbarch_swap (&builtin_type_vec128, sizeof (struct type *), NULL);
3139facc 3438 register_gdbarch_swap (&builtin_type_vec128i, sizeof (struct type *), NULL);
090a2205 3439 REGISTER_GDBARCH_SWAP (builtin_type_void_data_ptr);
ee3a7b7f 3440 REGISTER_GDBARCH_SWAP (builtin_type_void_func_ptr);
c4093a6a
JM
3441 REGISTER_GDBARCH_SWAP (builtin_type_CORE_ADDR);
3442 REGISTER_GDBARCH_SWAP (builtin_type_bfd_vma);
0f71a2f6 3443 register_gdbarch_swap (NULL, 0, build_gdbtypes);
5d161b24 3444
598f52df
AC
3445 /* Note: These types do not need to be swapped - they are target
3446 neutral. */
3447 builtin_type_ieee_single_big =
3448 init_type (TYPE_CODE_FLT, floatformat_ieee_single_big.totalsize / 8,
3449 0, "builtin_type_ieee_single_big", NULL);
3450 TYPE_FLOATFORMAT (builtin_type_ieee_single_big) = &floatformat_ieee_single_big;
3451 builtin_type_ieee_single_little =
3452 init_type (TYPE_CODE_FLT, floatformat_ieee_single_little.totalsize / 8,
3453 0, "builtin_type_ieee_single_little", NULL);
069e84fd 3454 TYPE_FLOATFORMAT (builtin_type_ieee_single_little) = &floatformat_ieee_single_little;
598f52df
AC
3455 builtin_type_ieee_double_big =
3456 init_type (TYPE_CODE_FLT, floatformat_ieee_double_big.totalsize / 8,
3457 0, "builtin_type_ieee_double_big", NULL);
069e84fd 3458 TYPE_FLOATFORMAT (builtin_type_ieee_double_big) = &floatformat_ieee_double_big;
598f52df
AC
3459 builtin_type_ieee_double_little =
3460 init_type (TYPE_CODE_FLT, floatformat_ieee_double_little.totalsize / 8,
3461 0, "builtin_type_ieee_double_little", NULL);
069e84fd 3462 TYPE_FLOATFORMAT (builtin_type_ieee_double_little) = &floatformat_ieee_double_little;
598f52df
AC
3463 builtin_type_ieee_double_littlebyte_bigword =
3464 init_type (TYPE_CODE_FLT, floatformat_ieee_double_littlebyte_bigword.totalsize / 8,
3465 0, "builtin_type_ieee_double_littlebyte_bigword", NULL);
069e84fd 3466 TYPE_FLOATFORMAT (builtin_type_ieee_double_littlebyte_bigword) = &floatformat_ieee_double_littlebyte_bigword;
598f52df
AC
3467 builtin_type_i387_ext =
3468 init_type (TYPE_CODE_FLT, floatformat_i387_ext.totalsize / 8,
3469 0, "builtin_type_i387_ext", NULL);
e371b258 3470 TYPE_FLOATFORMAT (builtin_type_i387_ext) = &floatformat_i387_ext;
598f52df
AC
3471 builtin_type_m68881_ext =
3472 init_type (TYPE_CODE_FLT, floatformat_m68881_ext.totalsize / 8,
3473 0, "builtin_type_m68881_ext", NULL);
069e84fd 3474 TYPE_FLOATFORMAT (builtin_type_m68881_ext) = &floatformat_m68881_ext;
598f52df
AC
3475 builtin_type_i960_ext =
3476 init_type (TYPE_CODE_FLT, floatformat_i960_ext.totalsize / 8,
3477 0, "builtin_type_i960_ext", NULL);
069e84fd 3478 TYPE_FLOATFORMAT (builtin_type_i960_ext) = &floatformat_i960_ext;
598f52df
AC
3479 builtin_type_m88110_ext =
3480 init_type (TYPE_CODE_FLT, floatformat_m88110_ext.totalsize / 8,
3481 0, "builtin_type_m88110_ext", NULL);
069e84fd 3482 TYPE_FLOATFORMAT (builtin_type_m88110_ext) = &floatformat_m88110_ext;
598f52df
AC
3483 builtin_type_m88110_harris_ext =
3484 init_type (TYPE_CODE_FLT, floatformat_m88110_harris_ext.totalsize / 8,
3485 0, "builtin_type_m88110_harris_ext", NULL);
069e84fd 3486 TYPE_FLOATFORMAT (builtin_type_m88110_harris_ext) = &floatformat_m88110_harris_ext;
598f52df
AC
3487 builtin_type_arm_ext_big =
3488 init_type (TYPE_CODE_FLT, floatformat_arm_ext_big.totalsize / 8,
3489 0, "builtin_type_arm_ext_big", NULL);
069e84fd 3490 TYPE_FLOATFORMAT (builtin_type_arm_ext_big) = &floatformat_arm_ext_big;
598f52df
AC
3491 builtin_type_arm_ext_littlebyte_bigword =
3492 init_type (TYPE_CODE_FLT, floatformat_arm_ext_littlebyte_bigword.totalsize / 8,
3493 0, "builtin_type_arm_ext_littlebyte_bigword", NULL);
069e84fd 3494 TYPE_FLOATFORMAT (builtin_type_arm_ext_littlebyte_bigword) = &floatformat_arm_ext_littlebyte_bigword;
598f52df
AC
3495 builtin_type_ia64_spill_big =
3496 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_big.totalsize / 8,
3497 0, "builtin_type_ia64_spill_big", NULL);
069e84fd 3498 TYPE_FLOATFORMAT (builtin_type_ia64_spill_big) = &floatformat_ia64_spill_big;
598f52df
AC
3499 builtin_type_ia64_spill_little =
3500 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_little.totalsize / 8,
3501 0, "builtin_type_ia64_spill_little", NULL);
069e84fd 3502 TYPE_FLOATFORMAT (builtin_type_ia64_spill_little) = &floatformat_ia64_spill_little;
598f52df
AC
3503 builtin_type_ia64_quad_big =
3504 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_big.totalsize / 8,
3505 0, "builtin_type_ia64_quad_big", NULL);
069e84fd 3506 TYPE_FLOATFORMAT (builtin_type_ia64_quad_big) = &floatformat_ia64_quad_big;
598f52df
AC
3507 builtin_type_ia64_quad_little =
3508 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_little.totalsize / 8,
3509 0, "builtin_type_ia64_quad_little", NULL);
069e84fd 3510 TYPE_FLOATFORMAT (builtin_type_ia64_quad_little) = &floatformat_ia64_quad_little;
598f52df 3511
5d161b24
DB
3512 add_show_from_set (
3513 add_set_cmd ("overload", no_class, var_zinteger, (char *) &overload_debug,
3514 "Set debugging of C++ overloading.\n\
3515 When enabled, ranking of the functions\n\
3516 is displayed.", &setdebuglist),
3517 &showdebuglist);
c906108c 3518}
This page took 0.359548 seconds and 4 git commands to generate.