* NEWS: Document the source command enhancement allowing it
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4c38e0a4
JB
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
4f2aea11 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
c91ecb25 38#include "wrapper.h"
015a42b4 39#include "cp-abi.h"
a02fd225 40#include "gdb_assert.h"
ae5a43e0 41#include "hashtab.h"
c906108c 42
ac3aafc7 43
8da61cc4
DJ
44/* Floatformat pairs. */
45const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_single_big,
47 &floatformat_ieee_single_little
48};
49const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_double_big,
51 &floatformat_ieee_double_little
52};
53const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_littlebyte_bigword
56};
57const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_i387_ext,
59 &floatformat_i387_ext
60};
61const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_m68881_ext,
63 &floatformat_m68881_ext
64};
65const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_arm_ext_big,
67 &floatformat_arm_ext_littlebyte_bigword
68};
69const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ia64_spill_big,
71 &floatformat_ia64_spill_little
72};
73const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_quad_big,
75 &floatformat_ia64_quad_little
76};
77const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_vax_f,
79 &floatformat_vax_f
80};
81const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_d,
83 &floatformat_vax_d
84};
b14d30e1
JM
85const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_ibm_long_double,
87 &floatformat_ibm_long_double
88};
8da61cc4 89
8da61cc4 90
c906108c 91int opaque_type_resolution = 1;
920d2a44
AC
92static void
93show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
94 struct cmd_list_element *c,
95 const char *value)
920d2a44
AC
96{
97 fprintf_filtered (file, _("\
98Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
99 value);
100}
101
5d161b24 102int overload_debug = 0;
920d2a44
AC
103static void
104show_overload_debug (struct ui_file *file, int from_tty,
105 struct cmd_list_element *c, const char *value)
106{
7ba81444
MS
107 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
108 value);
920d2a44 109}
c906108c 110
c5aa993b
JM
111struct extra
112 {
113 char str[128];
114 int len;
7ba81444 115 }; /* Maximum extension is 128! FIXME */
c906108c 116
a14ed312 117static void print_bit_vector (B_TYPE *, int);
ad2f7632 118static void print_arg_types (struct field *, int, int);
a14ed312
KB
119static void dump_fn_fieldlists (struct type *, int);
120static void print_cplus_stuff (struct type *, int);
7a292a7a 121
c906108c 122
e9bb382b
UW
123/* Allocate a new OBJFILE-associated type structure and fill it
124 with some defaults. Space for the type structure is allocated
125 on the objfile's objfile_obstack. */
c906108c
SS
126
127struct type *
fba45db2 128alloc_type (struct objfile *objfile)
c906108c 129{
52f0bd74 130 struct type *type;
c906108c 131
e9bb382b
UW
132 gdb_assert (objfile != NULL);
133
7ba81444 134 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
135 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
136 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
137 struct main_type);
138 OBJSTAT (objfile, n_types++);
c906108c 139
e9bb382b
UW
140 TYPE_OBJFILE_OWNED (type) = 1;
141 TYPE_OWNER (type).objfile = objfile;
c906108c 142
7ba81444 143 /* Initialize the fields that might not be zero. */
c906108c
SS
144
145 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 146 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 147 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 148
c16abbde 149 return type;
c906108c
SS
150}
151
e9bb382b
UW
152/* Allocate a new GDBARCH-associated type structure and fill it
153 with some defaults. Space for the type structure is allocated
154 on the heap. */
155
156struct type *
157alloc_type_arch (struct gdbarch *gdbarch)
158{
159 struct type *type;
160
161 gdb_assert (gdbarch != NULL);
162
163 /* Alloc the structure and start off with all fields zeroed. */
164
165 type = XZALLOC (struct type);
166 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
167
168 TYPE_OBJFILE_OWNED (type) = 0;
169 TYPE_OWNER (type).gdbarch = gdbarch;
170
171 /* Initialize the fields that might not be zero. */
172
173 TYPE_CODE (type) = TYPE_CODE_UNDEF;
174 TYPE_VPTR_FIELDNO (type) = -1;
175 TYPE_CHAIN (type) = type; /* Chain back to itself. */
176
177 return type;
178}
179
180/* If TYPE is objfile-associated, allocate a new type structure
181 associated with the same objfile. If TYPE is gdbarch-associated,
182 allocate a new type structure associated with the same gdbarch. */
183
184struct type *
185alloc_type_copy (const struct type *type)
186{
187 if (TYPE_OBJFILE_OWNED (type))
188 return alloc_type (TYPE_OWNER (type).objfile);
189 else
190 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
191}
192
193/* If TYPE is gdbarch-associated, return that architecture.
194 If TYPE is objfile-associated, return that objfile's architecture. */
195
196struct gdbarch *
197get_type_arch (const struct type *type)
198{
199 if (TYPE_OBJFILE_OWNED (type))
200 return get_objfile_arch (TYPE_OWNER (type).objfile);
201 else
202 return TYPE_OWNER (type).gdbarch;
203}
204
205
2fdde8f8
DJ
206/* Alloc a new type instance structure, fill it with some defaults,
207 and point it at OLDTYPE. Allocate the new type instance from the
208 same place as OLDTYPE. */
209
210static struct type *
211alloc_type_instance (struct type *oldtype)
212{
213 struct type *type;
214
215 /* Allocate the structure. */
216
e9bb382b 217 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 218 type = XZALLOC (struct type);
2fdde8f8 219 else
1deafd4e
PA
220 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
221 struct type);
222
2fdde8f8
DJ
223 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
224
225 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
226
c16abbde 227 return type;
2fdde8f8
DJ
228}
229
230/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 231 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
232static void
233smash_type (struct type *type)
234{
e9bb382b
UW
235 int objfile_owned = TYPE_OBJFILE_OWNED (type);
236 union type_owner owner = TYPE_OWNER (type);
237
2fdde8f8
DJ
238 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
239
e9bb382b
UW
240 /* Restore owner information. */
241 TYPE_OBJFILE_OWNED (type) = objfile_owned;
242 TYPE_OWNER (type) = owner;
243
2fdde8f8
DJ
244 /* For now, delete the rings. */
245 TYPE_CHAIN (type) = type;
246
247 /* For now, leave the pointer/reference types alone. */
248}
249
c906108c
SS
250/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
251 to a pointer to memory where the pointer type should be stored.
252 If *TYPEPTR is zero, update it to point to the pointer type we return.
253 We allocate new memory if needed. */
254
255struct type *
fba45db2 256make_pointer_type (struct type *type, struct type **typeptr)
c906108c 257{
52f0bd74 258 struct type *ntype; /* New type */
053cb41b 259 struct type *chain;
c906108c
SS
260
261 ntype = TYPE_POINTER_TYPE (type);
262
c5aa993b 263 if (ntype)
c906108c 264 {
c5aa993b 265 if (typeptr == 0)
7ba81444
MS
266 return ntype; /* Don't care about alloc,
267 and have new type. */
c906108c 268 else if (*typeptr == 0)
c5aa993b 269 {
7ba81444 270 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 271 return ntype;
c5aa993b 272 }
c906108c
SS
273 }
274
275 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
276 {
e9bb382b 277 ntype = alloc_type_copy (type);
c906108c
SS
278 if (typeptr)
279 *typeptr = ntype;
280 }
7ba81444 281 else /* We have storage, but need to reset it. */
c906108c
SS
282 {
283 ntype = *typeptr;
053cb41b 284 chain = TYPE_CHAIN (ntype);
2fdde8f8 285 smash_type (ntype);
053cb41b 286 TYPE_CHAIN (ntype) = chain;
c906108c
SS
287 }
288
289 TYPE_TARGET_TYPE (ntype) = type;
290 TYPE_POINTER_TYPE (type) = ntype;
291
7ba81444
MS
292 /* FIXME! Assume the machine has only one representation for
293 pointers! */
c906108c 294
50810684
UW
295 TYPE_LENGTH (ntype)
296 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
297 TYPE_CODE (ntype) = TYPE_CODE_PTR;
298
67b2adb2 299 /* Mark pointers as unsigned. The target converts between pointers
76e71323 300 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 301 gdbarch_address_to_pointer. */
876cecd0 302 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 303
c906108c
SS
304 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
305 TYPE_POINTER_TYPE (type) = ntype;
306
053cb41b
JB
307 /* Update the length of all the other variants of this type. */
308 chain = TYPE_CHAIN (ntype);
309 while (chain != ntype)
310 {
311 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
312 chain = TYPE_CHAIN (chain);
313 }
314
c906108c
SS
315 return ntype;
316}
317
318/* Given a type TYPE, return a type of pointers to that type.
319 May need to construct such a type if this is the first use. */
320
321struct type *
fba45db2 322lookup_pointer_type (struct type *type)
c906108c 323{
c5aa993b 324 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
325}
326
7ba81444
MS
327/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
328 points to a pointer to memory where the reference type should be
329 stored. If *TYPEPTR is zero, update it to point to the reference
330 type we return. We allocate new memory if needed. */
c906108c
SS
331
332struct type *
fba45db2 333make_reference_type (struct type *type, struct type **typeptr)
c906108c 334{
52f0bd74 335 struct type *ntype; /* New type */
1e98b326 336 struct type *chain;
c906108c
SS
337
338 ntype = TYPE_REFERENCE_TYPE (type);
339
c5aa993b 340 if (ntype)
c906108c 341 {
c5aa993b 342 if (typeptr == 0)
7ba81444
MS
343 return ntype; /* Don't care about alloc,
344 and have new type. */
c906108c 345 else if (*typeptr == 0)
c5aa993b 346 {
7ba81444 347 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 348 return ntype;
c5aa993b 349 }
c906108c
SS
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
e9bb382b 354 ntype = alloc_type_copy (type);
c906108c
SS
355 if (typeptr)
356 *typeptr = ntype;
357 }
7ba81444 358 else /* We have storage, but need to reset it. */
c906108c
SS
359 {
360 ntype = *typeptr;
1e98b326 361 chain = TYPE_CHAIN (ntype);
2fdde8f8 362 smash_type (ntype);
1e98b326 363 TYPE_CHAIN (ntype) = chain;
c906108c
SS
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_REFERENCE_TYPE (type) = ntype;
368
7ba81444
MS
369 /* FIXME! Assume the machine has only one representation for
370 references, and that it matches the (only) representation for
371 pointers! */
c906108c 372
50810684
UW
373 TYPE_LENGTH (ntype) =
374 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 375 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 376
c906108c
SS
377 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
378 TYPE_REFERENCE_TYPE (type) = ntype;
379
1e98b326
JB
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
c906108c
SS
388 return ntype;
389}
390
7ba81444
MS
391/* Same as above, but caller doesn't care about memory allocation
392 details. */
c906108c
SS
393
394struct type *
fba45db2 395lookup_reference_type (struct type *type)
c906108c 396{
c5aa993b 397 return make_reference_type (type, (struct type **) 0);
c906108c
SS
398}
399
7ba81444
MS
400/* Lookup a function type that returns type TYPE. TYPEPTR, if
401 nonzero, points to a pointer to memory where the function type
402 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 403 function type we return. We allocate new memory if needed. */
c906108c
SS
404
405struct type *
0c8b41f1 406make_function_type (struct type *type, struct type **typeptr)
c906108c 407{
52f0bd74 408 struct type *ntype; /* New type */
c906108c
SS
409
410 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
411 {
e9bb382b 412 ntype = alloc_type_copy (type);
c906108c
SS
413 if (typeptr)
414 *typeptr = ntype;
415 }
7ba81444 416 else /* We have storage, but need to reset it. */
c906108c
SS
417 {
418 ntype = *typeptr;
2fdde8f8 419 smash_type (ntype);
c906108c
SS
420 }
421
422 TYPE_TARGET_TYPE (ntype) = type;
423
424 TYPE_LENGTH (ntype) = 1;
425 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 426
c906108c
SS
427 return ntype;
428}
429
430
431/* Given a type TYPE, return a type of functions that return that type.
432 May need to construct such a type if this is the first use. */
433
434struct type *
fba45db2 435lookup_function_type (struct type *type)
c906108c 436{
0c8b41f1 437 return make_function_type (type, (struct type **) 0);
c906108c
SS
438}
439
47663de5
MS
440/* Identify address space identifier by name --
441 return the integer flag defined in gdbtypes.h. */
442extern int
50810684 443address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 444{
8b2dbe47 445 int type_flags;
7ba81444 446 /* Check for known address space delimiters. */
47663de5 447 if (!strcmp (space_identifier, "code"))
876cecd0 448 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 449 else if (!strcmp (space_identifier, "data"))
876cecd0 450 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
451 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
452 && gdbarch_address_class_name_to_type_flags (gdbarch,
453 space_identifier,
454 &type_flags))
8b2dbe47 455 return type_flags;
47663de5 456 else
8a3fe4f8 457 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
458}
459
460/* Identify address space identifier by integer flag as defined in
7ba81444 461 gdbtypes.h -- return the string version of the adress space name. */
47663de5 462
321432c0 463const char *
50810684 464address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 465{
876cecd0 466 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 467 return "code";
876cecd0 468 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 469 return "data";
876cecd0 470 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
471 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
472 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
473 else
474 return NULL;
475}
476
2fdde8f8 477/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
478
479 If STORAGE is non-NULL, create the new type instance there.
480 STORAGE must be in the same obstack as TYPE. */
47663de5 481
b9362cc7 482static struct type *
2fdde8f8
DJ
483make_qualified_type (struct type *type, int new_flags,
484 struct type *storage)
47663de5
MS
485{
486 struct type *ntype;
487
488 ntype = type;
5f61c20e
JK
489 do
490 {
491 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
492 return ntype;
493 ntype = TYPE_CHAIN (ntype);
494 }
495 while (ntype != type);
47663de5 496
2fdde8f8
DJ
497 /* Create a new type instance. */
498 if (storage == NULL)
499 ntype = alloc_type_instance (type);
500 else
501 {
7ba81444
MS
502 /* If STORAGE was provided, it had better be in the same objfile
503 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
504 if one objfile is freed and the other kept, we'd have
505 dangling pointers. */
ad766c0a
JB
506 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
507
2fdde8f8
DJ
508 ntype = storage;
509 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
510 TYPE_CHAIN (ntype) = ntype;
511 }
47663de5
MS
512
513 /* Pointers or references to the original type are not relevant to
2fdde8f8 514 the new type. */
47663de5
MS
515 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
516 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 517
2fdde8f8
DJ
518 /* Chain the new qualified type to the old type. */
519 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
520 TYPE_CHAIN (type) = ntype;
521
522 /* Now set the instance flags and return the new type. */
523 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 524
ab5d3da6
KB
525 /* Set length of new type to that of the original type. */
526 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
527
47663de5
MS
528 return ntype;
529}
530
2fdde8f8
DJ
531/* Make an address-space-delimited variant of a type -- a type that
532 is identical to the one supplied except that it has an address
533 space attribute attached to it (such as "code" or "data").
534
7ba81444
MS
535 The space attributes "code" and "data" are for Harvard
536 architectures. The address space attributes are for architectures
537 which have alternately sized pointers or pointers with alternate
538 representations. */
2fdde8f8
DJ
539
540struct type *
541make_type_with_address_space (struct type *type, int space_flag)
542{
543 struct type *ntype;
544 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
545 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
546 | TYPE_INSTANCE_FLAG_DATA_SPACE
547 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
548 | space_flag);
549
550 return make_qualified_type (type, new_flags, NULL);
551}
c906108c
SS
552
553/* Make a "c-v" variant of a type -- a type that is identical to the
554 one supplied except that it may have const or volatile attributes
555 CNST is a flag for setting the const attribute
556 VOLTL is a flag for setting the volatile attribute
557 TYPE is the base type whose variant we are creating.
c906108c 558
ad766c0a
JB
559 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
560 storage to hold the new qualified type; *TYPEPTR and TYPE must be
561 in the same objfile. Otherwise, allocate fresh memory for the new
562 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
563 new type we construct. */
c906108c 564struct type *
7ba81444
MS
565make_cv_type (int cnst, int voltl,
566 struct type *type,
567 struct type **typeptr)
c906108c 568{
52f0bd74
AC
569 struct type *ntype; /* New type */
570 struct type *tmp_type = type; /* tmp type */
c906108c
SS
571 struct objfile *objfile;
572
2fdde8f8 573 int new_flags = (TYPE_INSTANCE_FLAGS (type)
876cecd0 574 & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 575
c906108c 576 if (cnst)
876cecd0 577 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
578
579 if (voltl)
876cecd0 580 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 581
2fdde8f8 582 if (typeptr && *typeptr != NULL)
a02fd225 583 {
ad766c0a
JB
584 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
585 a C-V variant chain that threads across objfiles: if one
586 objfile gets freed, then the other has a broken C-V chain.
587
588 This code used to try to copy over the main type from TYPE to
589 *TYPEPTR if they were in different objfiles, but that's
590 wrong, too: TYPE may have a field list or member function
591 lists, which refer to types of their own, etc. etc. The
592 whole shebang would need to be copied over recursively; you
593 can't have inter-objfile pointers. The only thing to do is
594 to leave stub types as stub types, and look them up afresh by
595 name each time you encounter them. */
596 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
597 }
598
7ba81444
MS
599 ntype = make_qualified_type (type, new_flags,
600 typeptr ? *typeptr : NULL);
c906108c 601
2fdde8f8
DJ
602 if (typeptr != NULL)
603 *typeptr = ntype;
a02fd225 604
2fdde8f8 605 return ntype;
a02fd225 606}
c906108c 607
2fdde8f8
DJ
608/* Replace the contents of ntype with the type *type. This changes the
609 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
610 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 611
cda6c68a
JB
612 In order to build recursive types, it's inevitable that we'll need
613 to update types in place --- but this sort of indiscriminate
614 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
615 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
616 clear if more steps are needed. */
dd6bda65
DJ
617void
618replace_type (struct type *ntype, struct type *type)
619{
ab5d3da6 620 struct type *chain;
dd6bda65 621
ad766c0a
JB
622 /* These two types had better be in the same objfile. Otherwise,
623 the assignment of one type's main type structure to the other
624 will produce a type with references to objects (names; field
625 lists; etc.) allocated on an objfile other than its own. */
626 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
627
2fdde8f8 628 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 629
7ba81444
MS
630 /* The type length is not a part of the main type. Update it for
631 each type on the variant chain. */
ab5d3da6 632 chain = ntype;
5f61c20e
JK
633 do
634 {
635 /* Assert that this element of the chain has no address-class bits
636 set in its flags. Such type variants might have type lengths
637 which are supposed to be different from the non-address-class
638 variants. This assertion shouldn't ever be triggered because
639 symbol readers which do construct address-class variants don't
640 call replace_type(). */
641 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
642
643 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
644 chain = TYPE_CHAIN (chain);
645 }
646 while (ntype != chain);
ab5d3da6 647
2fdde8f8
DJ
648 /* Assert that the two types have equivalent instance qualifiers.
649 This should be true for at least all of our debug readers. */
650 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
651}
652
c906108c
SS
653/* Implement direct support for MEMBER_TYPE in GNU C++.
654 May need to construct such a type if this is the first use.
655 The TYPE is the type of the member. The DOMAIN is the type
656 of the aggregate that the member belongs to. */
657
658struct type *
0d5de010 659lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 660{
52f0bd74 661 struct type *mtype;
c906108c 662
e9bb382b 663 mtype = alloc_type_copy (type);
0d5de010 664 smash_to_memberptr_type (mtype, domain, type);
c16abbde 665 return mtype;
c906108c
SS
666}
667
0d5de010
DJ
668/* Return a pointer-to-method type, for a method of type TO_TYPE. */
669
670struct type *
671lookup_methodptr_type (struct type *to_type)
672{
673 struct type *mtype;
674
e9bb382b 675 mtype = alloc_type_copy (to_type);
0d5de010
DJ
676 TYPE_TARGET_TYPE (mtype) = to_type;
677 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
ad4820ab 678 TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
0d5de010
DJ
679 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
680 return mtype;
681}
682
7ba81444
MS
683/* Allocate a stub method whose return type is TYPE. This apparently
684 happens for speed of symbol reading, since parsing out the
685 arguments to the method is cpu-intensive, the way we are doing it.
686 So, we will fill in arguments later. This always returns a fresh
687 type. */
c906108c
SS
688
689struct type *
fba45db2 690allocate_stub_method (struct type *type)
c906108c
SS
691{
692 struct type *mtype;
693
e9bb382b
UW
694 mtype = alloc_type_copy (type);
695 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
696 TYPE_LENGTH (mtype) = 1;
697 TYPE_STUB (mtype) = 1;
c906108c
SS
698 TYPE_TARGET_TYPE (mtype) = type;
699 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 700 return mtype;
c906108c
SS
701}
702
7ba81444
MS
703/* Create a range type using either a blank type supplied in
704 RESULT_TYPE, or creating a new type, inheriting the objfile from
705 INDEX_TYPE.
c906108c 706
7ba81444
MS
707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
708 to HIGH_BOUND, inclusive.
c906108c 709
7ba81444
MS
710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
712
713struct type *
fba45db2 714create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 715 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
716{
717 if (result_type == NULL)
e9bb382b 718 result_type = alloc_type_copy (index_type);
c906108c
SS
719 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
720 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 721 if (TYPE_STUB (index_type))
876cecd0 722 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
723 else
724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
727 TYPE_LOW_BOUND (result_type) = low_bound;
728 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 729
c5aa993b 730 if (low_bound >= 0)
876cecd0 731 TYPE_UNSIGNED (result_type) = 1;
c906108c 732
262452ec 733 return result_type;
c906108c
SS
734}
735
7ba81444
MS
736/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
738 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
739
740int
fba45db2 741get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
742{
743 CHECK_TYPEDEF (type);
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_RANGE:
747 *lowp = TYPE_LOW_BOUND (type);
748 *highp = TYPE_HIGH_BOUND (type);
749 return 1;
750 case TYPE_CODE_ENUM:
751 if (TYPE_NFIELDS (type) > 0)
752 {
753 /* The enums may not be sorted by value, so search all
754 entries */
755 int i;
756
757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
758 for (i = 0; i < TYPE_NFIELDS (type); i++)
759 {
760 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
761 *lowp = TYPE_FIELD_BITPOS (type, i);
762 if (TYPE_FIELD_BITPOS (type, i) > *highp)
763 *highp = TYPE_FIELD_BITPOS (type, i);
764 }
765
7ba81444 766 /* Set unsigned indicator if warranted. */
c5aa993b 767 if (*lowp >= 0)
c906108c 768 {
876cecd0 769 TYPE_UNSIGNED (type) = 1;
c906108c
SS
770 }
771 }
772 else
773 {
774 *lowp = 0;
775 *highp = -1;
776 }
777 return 0;
778 case TYPE_CODE_BOOL:
779 *lowp = 0;
780 *highp = 1;
781 return 0;
782 case TYPE_CODE_INT:
c5aa993b 783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
784 return -1;
785 if (!TYPE_UNSIGNED (type))
786 {
c5aa993b 787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
788 *highp = -*lowp - 1;
789 return 0;
790 }
7ba81444 791 /* ... fall through for unsigned ints ... */
c906108c
SS
792 case TYPE_CODE_CHAR:
793 *lowp = 0;
794 /* This round-about calculation is to avoid shifting by
7b83ea04 795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 796 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
798 *highp = (*highp - 1) | *highp;
799 return 0;
800 default:
801 return -1;
802 }
803}
804
7ba81444
MS
805/* Create an array type using either a blank type supplied in
806 RESULT_TYPE, or creating a new type, inheriting the objfile from
807 RANGE_TYPE.
c906108c
SS
808
809 Elements will be of type ELEMENT_TYPE, the indices will be of type
810 RANGE_TYPE.
811
7ba81444
MS
812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
813 sure it is TYPE_CODE_UNDEF before we bash it into an array
814 type? */
c906108c
SS
815
816struct type *
7ba81444
MS
817create_array_type (struct type *result_type,
818 struct type *element_type,
fba45db2 819 struct type *range_type)
c906108c
SS
820{
821 LONGEST low_bound, high_bound;
822
823 if (result_type == NULL)
e9bb382b
UW
824 result_type = alloc_type_copy (range_type);
825
c906108c
SS
826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
827 TYPE_TARGET_TYPE (result_type) = element_type;
828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
829 low_bound = high_bound = 0;
830 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
831 /* Be careful when setting the array length. Ada arrays can be
832 empty arrays with the high_bound being smaller than the low_bound.
833 In such cases, the array length should be zero. */
834 if (high_bound < low_bound)
835 TYPE_LENGTH (result_type) = 0;
836 else
837 TYPE_LENGTH (result_type) =
838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
839 TYPE_NFIELDS (result_type) = 1;
840 TYPE_FIELDS (result_type) =
1deafd4e 841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 842 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
843 TYPE_VPTR_FIELDNO (result_type) = -1;
844
845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
846 if (TYPE_LENGTH (result_type) == 0)
876cecd0 847 TYPE_TARGET_STUB (result_type) = 1;
c906108c 848
c16abbde 849 return result_type;
c906108c
SS
850}
851
e3506a9f
UW
852struct type *
853lookup_array_range_type (struct type *element_type,
854 int low_bound, int high_bound)
855{
50810684 856 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
857 struct type *index_type = builtin_type (gdbarch)->builtin_int;
858 struct type *range_type
859 = create_range_type (NULL, index_type, low_bound, high_bound);
860 return create_array_type (NULL, element_type, range_type);
861}
862
7ba81444
MS
863/* Create a string type using either a blank type supplied in
864 RESULT_TYPE, or creating a new type. String types are similar
865 enough to array of char types that we can use create_array_type to
866 build the basic type and then bash it into a string type.
c906108c
SS
867
868 For fixed length strings, the range type contains 0 as the lower
869 bound and the length of the string minus one as the upper bound.
870
7ba81444
MS
871 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
872 sure it is TYPE_CODE_UNDEF before we bash it into a string
873 type? */
c906108c
SS
874
875struct type *
3b7538c0
UW
876create_string_type (struct type *result_type,
877 struct type *string_char_type,
7ba81444 878 struct type *range_type)
c906108c
SS
879{
880 result_type = create_array_type (result_type,
f290d38e 881 string_char_type,
c906108c
SS
882 range_type);
883 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 884 return result_type;
c906108c
SS
885}
886
e3506a9f
UW
887struct type *
888lookup_string_range_type (struct type *string_char_type,
889 int low_bound, int high_bound)
890{
891 struct type *result_type;
892 result_type = lookup_array_range_type (string_char_type,
893 low_bound, high_bound);
894 TYPE_CODE (result_type) = TYPE_CODE_STRING;
895 return result_type;
896}
897
c906108c 898struct type *
fba45db2 899create_set_type (struct type *result_type, struct type *domain_type)
c906108c 900{
c906108c 901 if (result_type == NULL)
e9bb382b
UW
902 result_type = alloc_type_copy (domain_type);
903
c906108c
SS
904 TYPE_CODE (result_type) = TYPE_CODE_SET;
905 TYPE_NFIELDS (result_type) = 1;
1deafd4e 906 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 907
74a9bb82 908 if (!TYPE_STUB (domain_type))
c906108c 909 {
f9780d5b 910 LONGEST low_bound, high_bound, bit_length;
c906108c
SS
911 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
912 low_bound = high_bound = 0;
913 bit_length = high_bound - low_bound + 1;
914 TYPE_LENGTH (result_type)
915 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 916 if (low_bound >= 0)
876cecd0 917 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
918 }
919 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
920
c16abbde 921 return result_type;
c906108c
SS
922}
923
ea37ba09
DJ
924/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
925 and any array types nested inside it. */
926
927void
928make_vector_type (struct type *array_type)
929{
930 struct type *inner_array, *elt_type;
931 int flags;
932
933 /* Find the innermost array type, in case the array is
934 multi-dimensional. */
935 inner_array = array_type;
936 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
937 inner_array = TYPE_TARGET_TYPE (inner_array);
938
939 elt_type = TYPE_TARGET_TYPE (inner_array);
940 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
941 {
942 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
943 elt_type = make_qualified_type (elt_type, flags, NULL);
944 TYPE_TARGET_TYPE (inner_array) = elt_type;
945 }
946
876cecd0 947 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
948}
949
794ac428 950struct type *
ac3aafc7
EZ
951init_vector_type (struct type *elt_type, int n)
952{
953 struct type *array_type;
e3506a9f 954 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 955 make_vector_type (array_type);
ac3aafc7
EZ
956 return array_type;
957}
958
0d5de010
DJ
959/* Smash TYPE to be a type of pointers to members of DOMAIN with type
960 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
961 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
962 TYPE doesn't include the offset (that's the value of the MEMBER
963 itself), but does include the structure type into which it points
964 (for some reason).
c906108c 965
7ba81444
MS
966 When "smashing" the type, we preserve the objfile that the old type
967 pointed to, since we aren't changing where the type is actually
c906108c
SS
968 allocated. */
969
970void
0d5de010
DJ
971smash_to_memberptr_type (struct type *type, struct type *domain,
972 struct type *to_type)
c906108c 973{
2fdde8f8 974 smash_type (type);
c906108c
SS
975 TYPE_TARGET_TYPE (type) = to_type;
976 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
977 /* Assume that a data member pointer is the same size as a normal
978 pointer. */
50810684
UW
979 TYPE_LENGTH (type)
980 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 981 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
982}
983
984/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
985 METHOD just means `function that gets an extra "this" argument'.
986
7ba81444
MS
987 When "smashing" the type, we preserve the objfile that the old type
988 pointed to, since we aren't changing where the type is actually
c906108c
SS
989 allocated. */
990
991void
fba45db2 992smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
993 struct type *to_type, struct field *args,
994 int nargs, int varargs)
c906108c 995{
2fdde8f8 996 smash_type (type);
c906108c
SS
997 TYPE_TARGET_TYPE (type) = to_type;
998 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
999 TYPE_FIELDS (type) = args;
1000 TYPE_NFIELDS (type) = nargs;
1001 if (varargs)
876cecd0 1002 TYPE_VARARGS (type) = 1;
c906108c
SS
1003 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1004 TYPE_CODE (type) = TYPE_CODE_METHOD;
1005}
1006
1007/* Return a typename for a struct/union/enum type without "struct ",
1008 "union ", or "enum ". If the type has a NULL name, return NULL. */
1009
1010char *
aa1ee363 1011type_name_no_tag (const struct type *type)
c906108c
SS
1012{
1013 if (TYPE_TAG_NAME (type) != NULL)
1014 return TYPE_TAG_NAME (type);
1015
7ba81444
MS
1016 /* Is there code which expects this to return the name if there is
1017 no tag name? My guess is that this is mainly used for C++ in
1018 cases where the two will always be the same. */
c906108c
SS
1019 return TYPE_NAME (type);
1020}
1021
7ba81444
MS
1022/* Lookup a typedef or primitive type named NAME, visible in lexical
1023 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1024 suitably defined. */
c906108c
SS
1025
1026struct type *
e6c014f2
UW
1027lookup_typename (const struct language_defn *language,
1028 struct gdbarch *gdbarch, char *name,
1029 struct block *block, int noerr)
c906108c 1030{
52f0bd74
AC
1031 struct symbol *sym;
1032 struct type *tmp;
c906108c 1033
2570f2b7 1034 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1035 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1036 {
e6c014f2 1037 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1038 if (tmp)
1039 {
c16abbde 1040 return tmp;
c906108c
SS
1041 }
1042 else if (!tmp && noerr)
1043 {
c16abbde 1044 return NULL;
c906108c
SS
1045 }
1046 else
1047 {
8a3fe4f8 1048 error (_("No type named %s."), name);
c906108c
SS
1049 }
1050 }
1051 return (SYMBOL_TYPE (sym));
1052}
1053
1054struct type *
e6c014f2
UW
1055lookup_unsigned_typename (const struct language_defn *language,
1056 struct gdbarch *gdbarch, char *name)
c906108c
SS
1057{
1058 char *uns = alloca (strlen (name) + 10);
1059
1060 strcpy (uns, "unsigned ");
1061 strcpy (uns + 9, name);
e6c014f2 1062 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1063}
1064
1065struct type *
e6c014f2
UW
1066lookup_signed_typename (const struct language_defn *language,
1067 struct gdbarch *gdbarch, char *name)
c906108c
SS
1068{
1069 struct type *t;
1070 char *uns = alloca (strlen (name) + 8);
1071
1072 strcpy (uns, "signed ");
1073 strcpy (uns + 7, name);
e6c014f2 1074 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1075 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1076 if (t != NULL)
1077 return t;
e6c014f2 1078 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1079}
1080
1081/* Lookup a structure type named "struct NAME",
1082 visible in lexical block BLOCK. */
1083
1084struct type *
fba45db2 1085lookup_struct (char *name, struct block *block)
c906108c 1086{
52f0bd74 1087 struct symbol *sym;
c906108c 1088
2570f2b7 1089 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1090
1091 if (sym == NULL)
1092 {
8a3fe4f8 1093 error (_("No struct type named %s."), name);
c906108c
SS
1094 }
1095 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1096 {
7ba81444
MS
1097 error (_("This context has class, union or enum %s, not a struct."),
1098 name);
c906108c
SS
1099 }
1100 return (SYMBOL_TYPE (sym));
1101}
1102
1103/* Lookup a union type named "union NAME",
1104 visible in lexical block BLOCK. */
1105
1106struct type *
fba45db2 1107lookup_union (char *name, struct block *block)
c906108c 1108{
52f0bd74 1109 struct symbol *sym;
c5aa993b 1110 struct type *t;
c906108c 1111
2570f2b7 1112 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1113
1114 if (sym == NULL)
8a3fe4f8 1115 error (_("No union type named %s."), name);
c906108c 1116
c5aa993b 1117 t = SYMBOL_TYPE (sym);
c906108c
SS
1118
1119 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1120 return t;
c906108c
SS
1121
1122 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1123 * a further "declared_type" field to discover it is really a union.
1124 */
c5aa993b
JM
1125 if (HAVE_CPLUS_STRUCT (t))
1126 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c16abbde 1127 return t;
c906108c 1128
7ba81444
MS
1129 /* If we get here, it's not a union. */
1130 error (_("This context has class, struct or enum %s, not a union."),
1131 name);
c906108c
SS
1132}
1133
1134
1135/* Lookup an enum type named "enum NAME",
1136 visible in lexical block BLOCK. */
1137
1138struct type *
fba45db2 1139lookup_enum (char *name, struct block *block)
c906108c 1140{
52f0bd74 1141 struct symbol *sym;
c906108c 1142
2570f2b7 1143 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1144 if (sym == NULL)
1145 {
8a3fe4f8 1146 error (_("No enum type named %s."), name);
c906108c
SS
1147 }
1148 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1149 {
7ba81444
MS
1150 error (_("This context has class, struct or union %s, not an enum."),
1151 name);
c906108c
SS
1152 }
1153 return (SYMBOL_TYPE (sym));
1154}
1155
1156/* Lookup a template type named "template NAME<TYPE>",
1157 visible in lexical block BLOCK. */
1158
1159struct type *
7ba81444
MS
1160lookup_template_type (char *name, struct type *type,
1161 struct block *block)
c906108c
SS
1162{
1163 struct symbol *sym;
7ba81444
MS
1164 char *nam = (char *)
1165 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1166 strcpy (nam, name);
1167 strcat (nam, "<");
0004e5a2 1168 strcat (nam, TYPE_NAME (type));
7ba81444 1169 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1170
2570f2b7 1171 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1172
1173 if (sym == NULL)
1174 {
8a3fe4f8 1175 error (_("No template type named %s."), name);
c906108c
SS
1176 }
1177 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1178 {
7ba81444
MS
1179 error (_("This context has class, union or enum %s, not a struct."),
1180 name);
c906108c
SS
1181 }
1182 return (SYMBOL_TYPE (sym));
1183}
1184
7ba81444
MS
1185/* Given a type TYPE, lookup the type of the component of type named
1186 NAME.
c906108c 1187
7ba81444
MS
1188 TYPE can be either a struct or union, or a pointer or reference to
1189 a struct or union. If it is a pointer or reference, its target
1190 type is automatically used. Thus '.' and '->' are interchangable,
1191 as specified for the definitions of the expression element types
1192 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1193
1194 If NOERR is nonzero, return zero if NAME is not suitably defined.
1195 If NAME is the name of a baseclass type, return that type. */
1196
1197struct type *
fba45db2 1198lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1199{
1200 int i;
1201
1202 for (;;)
1203 {
1204 CHECK_TYPEDEF (type);
1205 if (TYPE_CODE (type) != TYPE_CODE_PTR
1206 && TYPE_CODE (type) != TYPE_CODE_REF)
1207 break;
1208 type = TYPE_TARGET_TYPE (type);
1209 }
1210
687d6395
MS
1211 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1212 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c
SS
1213 {
1214 target_terminal_ours ();
1215 gdb_flush (gdb_stdout);
1216 fprintf_unfiltered (gdb_stderr, "Type ");
1217 type_print (type, "", gdb_stderr, -1);
8a3fe4f8 1218 error (_(" is not a structure or union type."));
c906108c
SS
1219 }
1220
1221#if 0
7ba81444
MS
1222 /* FIXME: This change put in by Michael seems incorrect for the case
1223 where the structure tag name is the same as the member name.
1224 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1225 foo; } bell;" Disabled by fnf. */
c906108c
SS
1226 {
1227 char *typename;
1228
1229 typename = type_name_no_tag (type);
762f08a3 1230 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1231 return type;
1232 }
1233#endif
1234
1235 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1236 {
1237 char *t_field_name = TYPE_FIELD_NAME (type, i);
1238
db577aea 1239 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1240 {
1241 return TYPE_FIELD_TYPE (type, i);
1242 }
1243 }
1244
1245 /* OK, it's not in this class. Recursively check the baseclasses. */
1246 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1247 {
1248 struct type *t;
1249
9733fc94 1250 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1251 if (t != NULL)
1252 {
1253 return t;
1254 }
1255 }
1256
1257 if (noerr)
1258 {
1259 return NULL;
1260 }
c5aa993b 1261
c906108c
SS
1262 target_terminal_ours ();
1263 gdb_flush (gdb_stdout);
1264 fprintf_unfiltered (gdb_stderr, "Type ");
1265 type_print (type, "", gdb_stderr, -1);
1266 fprintf_unfiltered (gdb_stderr, " has no component named ");
1267 fputs_filtered (name, gdb_stderr);
8a3fe4f8 1268 error (("."));
c5aa993b 1269 return (struct type *) -1; /* For lint */
c906108c
SS
1270}
1271
81fe8080
DE
1272/* Lookup the vptr basetype/fieldno values for TYPE.
1273 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1274 vptr_fieldno. Also, if found and basetype is from the same objfile,
1275 cache the results.
1276 If not found, return -1 and ignore BASETYPEP.
1277 Callers should be aware that in some cases (for example,
c906108c 1278 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1279 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1280 this function will not be able to find the
7ba81444 1281 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1282 vptr_basetype will remain NULL or incomplete. */
c906108c 1283
81fe8080
DE
1284int
1285get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1286{
1287 CHECK_TYPEDEF (type);
1288
1289 if (TYPE_VPTR_FIELDNO (type) < 0)
1290 {
1291 int i;
1292
7ba81444
MS
1293 /* We must start at zero in case the first (and only) baseclass
1294 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1295 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1296 {
81fe8080
DE
1297 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1298 int fieldno;
1299 struct type *basetype;
1300
1301 fieldno = get_vptr_fieldno (baseclass, &basetype);
1302 if (fieldno >= 0)
c906108c 1303 {
81fe8080
DE
1304 /* If the type comes from a different objfile we can't cache
1305 it, it may have a different lifetime. PR 2384 */
5ef73790 1306 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1307 {
1308 TYPE_VPTR_FIELDNO (type) = fieldno;
1309 TYPE_VPTR_BASETYPE (type) = basetype;
1310 }
1311 if (basetypep)
1312 *basetypep = basetype;
1313 return fieldno;
c906108c
SS
1314 }
1315 }
81fe8080
DE
1316
1317 /* Not found. */
1318 return -1;
1319 }
1320 else
1321 {
1322 if (basetypep)
1323 *basetypep = TYPE_VPTR_BASETYPE (type);
1324 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1325 }
1326}
1327
44e1a9eb
DJ
1328static void
1329stub_noname_complaint (void)
1330{
e2e0b3e5 1331 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1332}
1333
c906108c
SS
1334/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1335
1336 If this is a stubbed struct (i.e. declared as struct foo *), see if
1337 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1338 definition, so we can use it in future. There used to be a comment
1339 (but not any code) that if we don't find a full definition, we'd
1340 set a flag so we don't spend time in the future checking the same
1341 type. That would be a mistake, though--we might load in more
1342 symbols which contain a full definition for the type.
c906108c 1343
7b83ea04 1344 This used to be coded as a macro, but I don't think it is called
c54eabfa 1345 often enough to merit such treatment.
c906108c 1346
c54eabfa 1347 Find the real type of TYPE. This function returns the real type,
7ba81444
MS
1348 after removing all layers of typedefs and completing opaque or stub
1349 types. Completion changes the TYPE argument, but stripping of
c54eabfa
JK
1350 typedefs does not.
1351
1352 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1353 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1354 check_typedef can still return different type than the original TYPE
1355 pointer. */
c906108c
SS
1356
1357struct type *
a02fd225 1358check_typedef (struct type *type)
c906108c
SS
1359{
1360 struct type *orig_type = type;
a02fd225
DJ
1361 int is_const, is_volatile;
1362
423c0af8
MS
1363 gdb_assert (type);
1364
c906108c
SS
1365 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1366 {
1367 if (!TYPE_TARGET_TYPE (type))
1368 {
c5aa993b 1369 char *name;
c906108c
SS
1370 struct symbol *sym;
1371
1372 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1373 reading a symtab. Infinite recursion is one danger. */
c906108c
SS
1374 if (currently_reading_symtab)
1375 return type;
1376
1377 name = type_name_no_tag (type);
7ba81444
MS
1378 /* FIXME: shouldn't we separately check the TYPE_NAME and
1379 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1380 VAR_DOMAIN as appropriate? (this code was written before
1381 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1382 if (name == NULL)
1383 {
23136709 1384 stub_noname_complaint ();
c906108c
SS
1385 return type;
1386 }
2570f2b7 1387 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1388 if (sym)
1389 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1390 else /* TYPE_CODE_UNDEF */
e9bb382b 1391 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1392 }
1393 type = TYPE_TARGET_TYPE (type);
1394 }
1395
a02fd225
DJ
1396 is_const = TYPE_CONST (type);
1397 is_volatile = TYPE_VOLATILE (type);
1398
7ba81444
MS
1399 /* If this is a struct/class/union with no fields, then check
1400 whether a full definition exists somewhere else. This is for
1401 systems where a type definition with no fields is issued for such
1402 types, instead of identifying them as stub types in the first
1403 place. */
c5aa993b 1404
7ba81444
MS
1405 if (TYPE_IS_OPAQUE (type)
1406 && opaque_type_resolution
1407 && !currently_reading_symtab)
c906108c 1408 {
c5aa993b
JM
1409 char *name = type_name_no_tag (type);
1410 struct type *newtype;
c906108c
SS
1411 if (name == NULL)
1412 {
23136709 1413 stub_noname_complaint ();
c906108c
SS
1414 return type;
1415 }
1416 newtype = lookup_transparent_type (name);
ad766c0a 1417
c906108c 1418 if (newtype)
ad766c0a 1419 {
7ba81444
MS
1420 /* If the resolved type and the stub are in the same
1421 objfile, then replace the stub type with the real deal.
1422 But if they're in separate objfiles, leave the stub
1423 alone; we'll just look up the transparent type every time
1424 we call check_typedef. We can't create pointers between
1425 types allocated to different objfiles, since they may
1426 have different lifetimes. Trying to copy NEWTYPE over to
1427 TYPE's objfile is pointless, too, since you'll have to
1428 move over any other types NEWTYPE refers to, which could
1429 be an unbounded amount of stuff. */
ad766c0a
JB
1430 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1431 make_cv_type (is_const, is_volatile, newtype, &type);
1432 else
1433 type = newtype;
1434 }
c906108c 1435 }
7ba81444
MS
1436 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1437 types. */
74a9bb82 1438 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1439 {
c5aa993b 1440 char *name = type_name_no_tag (type);
c906108c 1441 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1442 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1443 as appropriate? (this code was written before TYPE_NAME and
1444 TYPE_TAG_NAME were separate). */
c906108c
SS
1445 struct symbol *sym;
1446 if (name == NULL)
1447 {
23136709 1448 stub_noname_complaint ();
c906108c
SS
1449 return type;
1450 }
2570f2b7 1451 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1452 if (sym)
c26f2453
JB
1453 {
1454 /* Same as above for opaque types, we can replace the stub
1455 with the complete type only if they are int the same
1456 objfile. */
1457 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
7ba81444
MS
1458 make_cv_type (is_const, is_volatile,
1459 SYMBOL_TYPE (sym), &type);
c26f2453
JB
1460 else
1461 type = SYMBOL_TYPE (sym);
1462 }
c906108c
SS
1463 }
1464
74a9bb82 1465 if (TYPE_TARGET_STUB (type))
c906108c
SS
1466 {
1467 struct type *range_type;
1468 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1469
74a9bb82 1470 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1471 {
7ba81444 1472 /* Empty. */
c5aa993b 1473 }
c906108c
SS
1474 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1475 && TYPE_NFIELDS (type) == 1
262452ec 1476 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1477 == TYPE_CODE_RANGE))
1478 {
1479 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1480 number of elements and the target type's length.
1481 Watch out for Ada null Ada arrays where the high bound
43bbcdc2
PH
1482 is smaller than the low bound. */
1483 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1484 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1485 ULONGEST len;
1486
ab0d6e0d 1487 if (high_bound < low_bound)
43bbcdc2
PH
1488 len = 0;
1489 else {
1490 /* For now, we conservatively take the array length to be 0
1491 if its length exceeds UINT_MAX. The code below assumes
1492 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1493 which is technically not guaranteed by C, but is usually true
1494 (because it would be true if x were unsigned with its
1495 high-order bit on). It uses the fact that
1496 high_bound-low_bound is always representable in
1497 ULONGEST and that if high_bound-low_bound+1 overflows,
1498 it overflows to 0. We must change these tests if we
1499 decide to increase the representation of TYPE_LENGTH
1500 from unsigned int to ULONGEST. */
1501 ULONGEST ulow = low_bound, uhigh = high_bound;
1502 ULONGEST tlen = TYPE_LENGTH (target_type);
1503
1504 len = tlen * (uhigh - ulow + 1);
1505 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1506 || len > UINT_MAX)
1507 len = 0;
1508 }
1509 TYPE_LENGTH (type) = len;
876cecd0 1510 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1511 }
1512 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1513 {
1514 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1515 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1516 }
1517 }
7ba81444 1518 /* Cache TYPE_LENGTH for future use. */
c906108c
SS
1519 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1520 return type;
1521}
1522
7ba81444 1523/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1524 occurs, silently return a void type. */
c91ecb25 1525
b9362cc7 1526static struct type *
48319d1f 1527safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1528{
1529 struct ui_file *saved_gdb_stderr;
1530 struct type *type;
1531
7ba81444 1532 /* Suppress error messages. */
c91ecb25
ND
1533 saved_gdb_stderr = gdb_stderr;
1534 gdb_stderr = ui_file_new ();
1535
7ba81444 1536 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1537 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1538 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1539
7ba81444 1540 /* Stop suppressing error messages. */
c91ecb25
ND
1541 ui_file_delete (gdb_stderr);
1542 gdb_stderr = saved_gdb_stderr;
1543
1544 return type;
1545}
1546
c906108c
SS
1547/* Ugly hack to convert method stubs into method types.
1548
7ba81444
MS
1549 He ain't kiddin'. This demangles the name of the method into a
1550 string including argument types, parses out each argument type,
1551 generates a string casting a zero to that type, evaluates the
1552 string, and stuffs the resulting type into an argtype vector!!!
1553 Then it knows the type of the whole function (including argument
1554 types for overloading), which info used to be in the stab's but was
1555 removed to hack back the space required for them. */
c906108c 1556
de17c821 1557static void
fba45db2 1558check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1559{
50810684 1560 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1561 struct fn_field *f;
1562 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1563 char *demangled_name = cplus_demangle (mangled_name,
1564 DMGL_PARAMS | DMGL_ANSI);
1565 char *argtypetext, *p;
1566 int depth = 0, argcount = 1;
ad2f7632 1567 struct field *argtypes;
c906108c
SS
1568 struct type *mtype;
1569
1570 /* Make sure we got back a function string that we can use. */
1571 if (demangled_name)
1572 p = strchr (demangled_name, '(');
502dcf4e
AC
1573 else
1574 p = NULL;
c906108c
SS
1575
1576 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1577 error (_("Internal: Cannot demangle mangled name `%s'."),
1578 mangled_name);
c906108c
SS
1579
1580 /* Now, read in the parameters that define this type. */
1581 p += 1;
1582 argtypetext = p;
1583 while (*p)
1584 {
070ad9f0 1585 if (*p == '(' || *p == '<')
c906108c
SS
1586 {
1587 depth += 1;
1588 }
070ad9f0 1589 else if (*p == ')' || *p == '>')
c906108c
SS
1590 {
1591 depth -= 1;
1592 }
1593 else if (*p == ',' && depth == 0)
1594 {
1595 argcount += 1;
1596 }
1597
1598 p += 1;
1599 }
1600
ad2f7632
DJ
1601 /* If we read one argument and it was ``void'', don't count it. */
1602 if (strncmp (argtypetext, "(void)", 6) == 0)
1603 argcount -= 1;
c906108c 1604
ad2f7632
DJ
1605 /* We need one extra slot, for the THIS pointer. */
1606
1607 argtypes = (struct field *)
1608 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1609 p = argtypetext;
4a1970e4
DJ
1610
1611 /* Add THIS pointer for non-static methods. */
1612 f = TYPE_FN_FIELDLIST1 (type, method_id);
1613 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1614 argcount = 0;
1615 else
1616 {
ad2f7632 1617 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1618 argcount = 1;
1619 }
c906108c 1620
c5aa993b 1621 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1622 {
1623 depth = 0;
1624 while (*p)
1625 {
1626 if (depth <= 0 && (*p == ',' || *p == ')'))
1627 {
ad2f7632
DJ
1628 /* Avoid parsing of ellipsis, they will be handled below.
1629 Also avoid ``void'' as above. */
1630 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1631 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1632 {
ad2f7632 1633 argtypes[argcount].type =
48319d1f 1634 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1635 argcount += 1;
1636 }
1637 argtypetext = p + 1;
1638 }
1639
070ad9f0 1640 if (*p == '(' || *p == '<')
c906108c
SS
1641 {
1642 depth += 1;
1643 }
070ad9f0 1644 else if (*p == ')' || *p == '>')
c906108c
SS
1645 {
1646 depth -= 1;
1647 }
1648
1649 p += 1;
1650 }
1651 }
1652
c906108c
SS
1653 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1654
1655 /* Now update the old "stub" type into a real type. */
1656 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1657 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1658 TYPE_FIELDS (mtype) = argtypes;
1659 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1660 TYPE_STUB (mtype) = 0;
c906108c 1661 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1662 if (p[-2] == '.')
876cecd0 1663 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1664
1665 xfree (demangled_name);
c906108c
SS
1666}
1667
7ba81444
MS
1668/* This is the external interface to check_stub_method, above. This
1669 function unstubs all of the signatures for TYPE's METHOD_ID method
1670 name. After calling this function TYPE_FN_FIELD_STUB will be
1671 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1672 correct.
de17c821
DJ
1673
1674 This function unfortunately can not die until stabs do. */
1675
1676void
1677check_stub_method_group (struct type *type, int method_id)
1678{
1679 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1680 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1681 int j, found_stub = 0;
de17c821
DJ
1682
1683 for (j = 0; j < len; j++)
1684 if (TYPE_FN_FIELD_STUB (f, j))
1685 {
1686 found_stub = 1;
1687 check_stub_method (type, method_id, j);
1688 }
1689
7ba81444
MS
1690 /* GNU v3 methods with incorrect names were corrected when we read
1691 in type information, because it was cheaper to do it then. The
1692 only GNU v2 methods with incorrect method names are operators and
1693 destructors; destructors were also corrected when we read in type
1694 information.
de17c821
DJ
1695
1696 Therefore the only thing we need to handle here are v2 operator
1697 names. */
1698 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1699 {
1700 int ret;
1701 char dem_opname[256];
1702
7ba81444
MS
1703 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1704 method_id),
de17c821
DJ
1705 dem_opname, DMGL_ANSI);
1706 if (!ret)
7ba81444
MS
1707 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1708 method_id),
de17c821
DJ
1709 dem_opname, 0);
1710 if (ret)
1711 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1712 }
1713}
1714
c906108c
SS
1715const struct cplus_struct_type cplus_struct_default;
1716
1717void
fba45db2 1718allocate_cplus_struct_type (struct type *type)
c906108c 1719{
b4ba55a1
JB
1720 if (HAVE_CPLUS_STRUCT (type))
1721 /* Structure was already allocated. Nothing more to do. */
1722 return;
1723
1724 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1725 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1726 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1727 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1728}
1729
b4ba55a1
JB
1730const struct gnat_aux_type gnat_aux_default =
1731 { NULL };
1732
1733/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1734 and allocate the associated gnat-specific data. The gnat-specific
1735 data is also initialized to gnat_aux_default. */
1736void
1737allocate_gnat_aux_type (struct type *type)
1738{
1739 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1740 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1741 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1742 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1743}
1744
1745
c906108c
SS
1746/* Helper function to initialize the standard scalar types.
1747
e9bb382b
UW
1748 If NAME is non-NULL, then we make a copy of the string pointed
1749 to by name in the objfile_obstack for that objfile, and initialize
1750 the type name to that copy. There are places (mipsread.c in particular),
1751 where init_type is called with a NULL value for NAME). */
c906108c
SS
1752
1753struct type *
7ba81444
MS
1754init_type (enum type_code code, int length, int flags,
1755 char *name, struct objfile *objfile)
c906108c 1756{
52f0bd74 1757 struct type *type;
c906108c
SS
1758
1759 type = alloc_type (objfile);
1760 TYPE_CODE (type) = code;
1761 TYPE_LENGTH (type) = length;
876cecd0
TT
1762
1763 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1764 if (flags & TYPE_FLAG_UNSIGNED)
1765 TYPE_UNSIGNED (type) = 1;
1766 if (flags & TYPE_FLAG_NOSIGN)
1767 TYPE_NOSIGN (type) = 1;
1768 if (flags & TYPE_FLAG_STUB)
1769 TYPE_STUB (type) = 1;
1770 if (flags & TYPE_FLAG_TARGET_STUB)
1771 TYPE_TARGET_STUB (type) = 1;
1772 if (flags & TYPE_FLAG_STATIC)
1773 TYPE_STATIC (type) = 1;
1774 if (flags & TYPE_FLAG_PROTOTYPED)
1775 TYPE_PROTOTYPED (type) = 1;
1776 if (flags & TYPE_FLAG_INCOMPLETE)
1777 TYPE_INCOMPLETE (type) = 1;
1778 if (flags & TYPE_FLAG_VARARGS)
1779 TYPE_VARARGS (type) = 1;
1780 if (flags & TYPE_FLAG_VECTOR)
1781 TYPE_VECTOR (type) = 1;
1782 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1783 TYPE_STUB_SUPPORTED (type) = 1;
1784 if (flags & TYPE_FLAG_NOTTEXT)
1785 TYPE_NOTTEXT (type) = 1;
1786 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1787 TYPE_FIXED_INSTANCE (type) = 1;
1788
e9bb382b
UW
1789 if (name)
1790 TYPE_NAME (type) = obsavestring (name, strlen (name),
1791 &objfile->objfile_obstack);
c906108c
SS
1792
1793 /* C++ fancies. */
1794
973ccf8b 1795 if (name && strcmp (name, "char") == 0)
876cecd0 1796 TYPE_NOSIGN (type) = 1;
973ccf8b 1797
b4ba55a1 1798 switch (code)
c906108c 1799 {
b4ba55a1
JB
1800 case TYPE_CODE_STRUCT:
1801 case TYPE_CODE_UNION:
1802 case TYPE_CODE_NAMESPACE:
1803 INIT_CPLUS_SPECIFIC (type);
1804 break;
1805 case TYPE_CODE_FLT:
1806 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1807 break;
1808 case TYPE_CODE_FUNC:
1809 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1810 break;
c906108c 1811 }
c16abbde 1812 return type;
c906108c
SS
1813}
1814
c906108c 1815int
fba45db2 1816can_dereference (struct type *t)
c906108c 1817{
7ba81444
MS
1818 /* FIXME: Should we return true for references as well as
1819 pointers? */
c906108c
SS
1820 CHECK_TYPEDEF (t);
1821 return
1822 (t != NULL
1823 && TYPE_CODE (t) == TYPE_CODE_PTR
1824 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1825}
1826
adf40b2e 1827int
fba45db2 1828is_integral_type (struct type *t)
adf40b2e
JM
1829{
1830 CHECK_TYPEDEF (t);
1831 return
1832 ((t != NULL)
d4f3574e
SS
1833 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1834 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1835 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1836 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1837 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1838 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1839}
1840
4e8f195d
TT
1841/* A helper function which returns true if types A and B represent the
1842 "same" class type. This is true if the types have the same main
1843 type, or the same name. */
1844
1845int
1846class_types_same_p (const struct type *a, const struct type *b)
1847{
1848 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1849 || (TYPE_NAME (a) && TYPE_NAME (b)
1850 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1851}
1852
7b83ea04 1853/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1854 Return 1 if so, and 0 if not.
1855 Note: callers may want to check for identity of the types before
1856 calling this function -- identical types are considered to satisfy
7ba81444 1857 the ancestor relationship even if they're identical. */
c906108c
SS
1858
1859int
fba45db2 1860is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1861{
1862 int i;
c5aa993b 1863
c906108c
SS
1864 CHECK_TYPEDEF (base);
1865 CHECK_TYPEDEF (dclass);
1866
4e8f195d 1867 if (class_types_same_p (base, dclass))
6b1ba9a0 1868 return 1;
c906108c
SS
1869
1870 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d
TT
1871 {
1872 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1873 return 1;
1874 }
c906108c
SS
1875
1876 return 0;
1877}
4e8f195d
TT
1878
1879/* Like is_ancestor, but only returns true when BASE is a public
1880 ancestor of DCLASS. */
1881
1882int
1883is_public_ancestor (struct type *base, struct type *dclass)
1884{
1885 int i;
1886
1887 CHECK_TYPEDEF (base);
1888 CHECK_TYPEDEF (dclass);
1889
1890 if (class_types_same_p (base, dclass))
1891 return 1;
1892
1893 for (i = 0; i < TYPE_N_BASECLASSES (dclass); ++i)
1894 {
1895 if (! BASETYPE_VIA_PUBLIC (dclass, i))
1896 continue;
1897 if (is_public_ancestor (base, TYPE_BASECLASS (dclass, i)))
1898 return 1;
1899 }
1900
1901 return 0;
1902}
1903
1904/* A helper function for is_unique_ancestor. */
1905
1906static int
1907is_unique_ancestor_worker (struct type *base, struct type *dclass,
1908 int *offset,
1909 const bfd_byte *contents, CORE_ADDR address)
1910{
1911 int i, count = 0;
1912
1913 CHECK_TYPEDEF (base);
1914 CHECK_TYPEDEF (dclass);
1915
1916 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1917 {
1918 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1919 int this_offset = baseclass_offset (dclass, i, contents, address);
1920
1921 if (this_offset == -1)
1922 error (_("virtual baseclass botch"));
1923
1924 if (class_types_same_p (base, iter))
1925 {
1926 /* If this is the first subclass, set *OFFSET and set count
1927 to 1. Otherwise, if this is at the same offset as
1928 previous instances, do nothing. Otherwise, increment
1929 count. */
1930 if (*offset == -1)
1931 {
1932 *offset = this_offset;
1933 count = 1;
1934 }
1935 else if (this_offset == *offset)
1936 {
1937 /* Nothing. */
1938 }
1939 else
1940 ++count;
1941 }
1942 else
1943 count += is_unique_ancestor_worker (base, iter, offset,
1944 contents + this_offset,
1945 address + this_offset);
1946 }
1947
1948 return count;
1949}
1950
1951/* Like is_ancestor, but only returns true if BASE is a unique base
1952 class of the type of VAL. */
1953
1954int
1955is_unique_ancestor (struct type *base, struct value *val)
1956{
1957 int offset = -1;
1958
1959 return is_unique_ancestor_worker (base, value_type (val), &offset,
1960 value_contents (val),
1961 value_address (val)) == 1;
1962}
1963
c906108c
SS
1964\f
1965
c5aa993b 1966
c906108c
SS
1967/* Functions for overload resolution begin here */
1968
1969/* Compare two badness vectors A and B and return the result.
7ba81444
MS
1970 0 => A and B are identical
1971 1 => A and B are incomparable
1972 2 => A is better than B
1973 3 => A is worse than B */
c906108c
SS
1974
1975int
fba45db2 1976compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
1977{
1978 int i;
1979 int tmp;
c5aa993b
JM
1980 short found_pos = 0; /* any positives in c? */
1981 short found_neg = 0; /* any negatives in c? */
1982
1983 /* differing lengths => incomparable */
c906108c
SS
1984 if (a->length != b->length)
1985 return 1;
1986
c5aa993b
JM
1987 /* Subtract b from a */
1988 for (i = 0; i < a->length; i++)
c906108c
SS
1989 {
1990 tmp = a->rank[i] - b->rank[i];
1991 if (tmp > 0)
c5aa993b 1992 found_pos = 1;
c906108c 1993 else if (tmp < 0)
c5aa993b 1994 found_neg = 1;
c906108c
SS
1995 }
1996
1997 if (found_pos)
1998 {
1999 if (found_neg)
c5aa993b 2000 return 1; /* incomparable */
c906108c 2001 else
c5aa993b 2002 return 3; /* A > B */
c906108c 2003 }
c5aa993b
JM
2004 else
2005 /* no positives */
c906108c
SS
2006 {
2007 if (found_neg)
c5aa993b 2008 return 2; /* A < B */
c906108c 2009 else
c5aa993b 2010 return 0; /* A == B */
c906108c
SS
2011 }
2012}
2013
7ba81444
MS
2014/* Rank a function by comparing its parameter types (PARMS, length
2015 NPARMS), to the types of an argument list (ARGS, length NARGS).
2016 Return a pointer to a badness vector. This has NARGS + 1
2017 entries. */
c906108c
SS
2018
2019struct badness_vector *
7ba81444
MS
2020rank_function (struct type **parms, int nparms,
2021 struct type **args, int nargs)
c906108c
SS
2022{
2023 int i;
c5aa993b 2024 struct badness_vector *bv;
c906108c
SS
2025 int min_len = nparms < nargs ? nparms : nargs;
2026
2027 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 2028 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
2029 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2030
2031 /* First compare the lengths of the supplied lists.
7ba81444 2032 If there is a mismatch, set it to a high value. */
c5aa993b 2033
c906108c 2034 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2035 arguments and ellipsis parameter lists, we should consider those
2036 and rank the length-match more finely. */
c906108c
SS
2037
2038 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2039
2040 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
2041 for (i = 1; i <= min_len; i++)
2042 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 2043
c5aa993b
JM
2044 /* If more arguments than parameters, add dummy entries */
2045 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2046 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2047
2048 return bv;
2049}
2050
973ccf8b
DJ
2051/* Compare the names of two integer types, assuming that any sign
2052 qualifiers have been checked already. We do it this way because
2053 there may be an "int" in the name of one of the types. */
2054
2055static int
2056integer_types_same_name_p (const char *first, const char *second)
2057{
2058 int first_p, second_p;
2059
7ba81444
MS
2060 /* If both are shorts, return 1; if neither is a short, keep
2061 checking. */
973ccf8b
DJ
2062 first_p = (strstr (first, "short") != NULL);
2063 second_p = (strstr (second, "short") != NULL);
2064 if (first_p && second_p)
2065 return 1;
2066 if (first_p || second_p)
2067 return 0;
2068
2069 /* Likewise for long. */
2070 first_p = (strstr (first, "long") != NULL);
2071 second_p = (strstr (second, "long") != NULL);
2072 if (first_p && second_p)
2073 return 1;
2074 if (first_p || second_p)
2075 return 0;
2076
2077 /* Likewise for char. */
2078 first_p = (strstr (first, "char") != NULL);
2079 second_p = (strstr (second, "char") != NULL);
2080 if (first_p && second_p)
2081 return 1;
2082 if (first_p || second_p)
2083 return 0;
2084
2085 /* They must both be ints. */
2086 return 1;
2087}
2088
c906108c
SS
2089/* Compare one type (PARM) for compatibility with another (ARG).
2090 * PARM is intended to be the parameter type of a function; and
2091 * ARG is the supplied argument's type. This function tests if
2092 * the latter can be converted to the former.
2093 *
2094 * Return 0 if they are identical types;
2095 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2096 * PARM is to ARG. The higher the return value, the worse the match.
2097 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c
SS
2098
2099int
fba45db2 2100rank_one_type (struct type *parm, struct type *arg)
c906108c 2101{
7ba81444 2102 /* Identical type pointers. */
c906108c 2103 /* However, this still doesn't catch all cases of same type for arg
7ba81444
MS
2104 and param. The reason is that builtin types are different from
2105 the same ones constructed from the object. */
c906108c
SS
2106 if (parm == arg)
2107 return 0;
2108
2109 /* Resolve typedefs */
2110 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2111 parm = check_typedef (parm);
2112 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2113 arg = check_typedef (arg);
2114
070ad9f0 2115 /*
7ba81444
MS
2116 Well, damnit, if the names are exactly the same, I'll say they
2117 are exactly the same. This happens when we generate method
2118 stubs. The types won't point to the same address, but they
070ad9f0
DB
2119 really are the same.
2120 */
2121
687d6395
MS
2122 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2123 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
7ba81444 2124 return 0;
070ad9f0 2125
7ba81444 2126 /* Check if identical after resolving typedefs. */
c906108c
SS
2127 if (parm == arg)
2128 return 0;
2129
db577aea 2130 /* See through references, since we can almost make non-references
7ba81444 2131 references. */
db577aea 2132 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2133 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2134 + REFERENCE_CONVERSION_BADNESS);
2135 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2136 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2137 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2138 if (overload_debug)
7ba81444
MS
2139 /* Debugging only. */
2140 fprintf_filtered (gdb_stderr,
2141 "------ Arg is %s [%d], parm is %s [%d]\n",
2142 TYPE_NAME (arg), TYPE_CODE (arg),
2143 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2144
2145 /* x -> y means arg of type x being supplied for parameter of type y */
2146
2147 switch (TYPE_CODE (parm))
2148 {
c5aa993b
JM
2149 case TYPE_CODE_PTR:
2150 switch (TYPE_CODE (arg))
2151 {
2152 case TYPE_CODE_PTR:
66c53f2b
KS
2153 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2154 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
c5aa993b
JM
2155 return VOID_PTR_CONVERSION_BADNESS;
2156 else
7ba81444
MS
2157 return rank_one_type (TYPE_TARGET_TYPE (parm),
2158 TYPE_TARGET_TYPE (arg));
c5aa993b 2159 case TYPE_CODE_ARRAY:
7ba81444
MS
2160 return rank_one_type (TYPE_TARGET_TYPE (parm),
2161 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2162 case TYPE_CODE_FUNC:
2163 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2164 case TYPE_CODE_INT:
2165 case TYPE_CODE_ENUM:
4f2aea11 2166 case TYPE_CODE_FLAGS:
c5aa993b
JM
2167 case TYPE_CODE_CHAR:
2168 case TYPE_CODE_RANGE:
2169 case TYPE_CODE_BOOL:
2170 return POINTER_CONVERSION_BADNESS;
2171 default:
2172 return INCOMPATIBLE_TYPE_BADNESS;
2173 }
2174 case TYPE_CODE_ARRAY:
2175 switch (TYPE_CODE (arg))
2176 {
2177 case TYPE_CODE_PTR:
2178 case TYPE_CODE_ARRAY:
7ba81444
MS
2179 return rank_one_type (TYPE_TARGET_TYPE (parm),
2180 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2181 default:
2182 return INCOMPATIBLE_TYPE_BADNESS;
2183 }
2184 case TYPE_CODE_FUNC:
2185 switch (TYPE_CODE (arg))
2186 {
2187 case TYPE_CODE_PTR: /* funcptr -> func */
2188 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2189 default:
2190 return INCOMPATIBLE_TYPE_BADNESS;
2191 }
2192 case TYPE_CODE_INT:
2193 switch (TYPE_CODE (arg))
2194 {
2195 case TYPE_CODE_INT:
2196 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2197 {
2198 /* Deal with signed, unsigned, and plain chars and
7ba81444 2199 signed and unsigned ints. */
c5aa993b
JM
2200 if (TYPE_NOSIGN (parm))
2201 {
2202 /* This case only for character types */
7ba81444
MS
2203 if (TYPE_NOSIGN (arg))
2204 return 0; /* plain char -> plain char */
2205 else /* signed/unsigned char -> plain char */
2206 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2207 }
2208 else if (TYPE_UNSIGNED (parm))
2209 {
2210 if (TYPE_UNSIGNED (arg))
2211 {
7ba81444
MS
2212 /* unsigned int -> unsigned int, or
2213 unsigned long -> unsigned long */
2214 if (integer_types_same_name_p (TYPE_NAME (parm),
2215 TYPE_NAME (arg)))
973ccf8b 2216 return 0;
7ba81444
MS
2217 else if (integer_types_same_name_p (TYPE_NAME (arg),
2218 "int")
2219 && integer_types_same_name_p (TYPE_NAME (parm),
2220 "long"))
c5aa993b
JM
2221 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2222 else
1c5cb38e 2223 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2224 }
2225 else
2226 {
7ba81444
MS
2227 if (integer_types_same_name_p (TYPE_NAME (arg),
2228 "long")
2229 && integer_types_same_name_p (TYPE_NAME (parm),
2230 "int"))
1c5cb38e 2231 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2232 else
2233 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2234 }
2235 }
2236 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2237 {
7ba81444
MS
2238 if (integer_types_same_name_p (TYPE_NAME (parm),
2239 TYPE_NAME (arg)))
c5aa993b 2240 return 0;
7ba81444
MS
2241 else if (integer_types_same_name_p (TYPE_NAME (arg),
2242 "int")
2243 && integer_types_same_name_p (TYPE_NAME (parm),
2244 "long"))
c5aa993b
JM
2245 return INTEGER_PROMOTION_BADNESS;
2246 else
1c5cb38e 2247 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2248 }
2249 else
1c5cb38e 2250 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2251 }
2252 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2253 return INTEGER_PROMOTION_BADNESS;
2254 else
1c5cb38e 2255 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2256 case TYPE_CODE_ENUM:
4f2aea11 2257 case TYPE_CODE_FLAGS:
c5aa993b
JM
2258 case TYPE_CODE_CHAR:
2259 case TYPE_CODE_RANGE:
2260 case TYPE_CODE_BOOL:
2261 return INTEGER_PROMOTION_BADNESS;
2262 case TYPE_CODE_FLT:
2263 return INT_FLOAT_CONVERSION_BADNESS;
2264 case TYPE_CODE_PTR:
2265 return NS_POINTER_CONVERSION_BADNESS;
2266 default:
2267 return INCOMPATIBLE_TYPE_BADNESS;
2268 }
2269 break;
2270 case TYPE_CODE_ENUM:
2271 switch (TYPE_CODE (arg))
2272 {
2273 case TYPE_CODE_INT:
2274 case TYPE_CODE_CHAR:
2275 case TYPE_CODE_RANGE:
2276 case TYPE_CODE_BOOL:
2277 case TYPE_CODE_ENUM:
1c5cb38e 2278 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2279 case TYPE_CODE_FLT:
2280 return INT_FLOAT_CONVERSION_BADNESS;
2281 default:
2282 return INCOMPATIBLE_TYPE_BADNESS;
2283 }
2284 break;
2285 case TYPE_CODE_CHAR:
2286 switch (TYPE_CODE (arg))
2287 {
2288 case TYPE_CODE_RANGE:
2289 case TYPE_CODE_BOOL:
2290 case TYPE_CODE_ENUM:
1c5cb38e 2291 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2292 case TYPE_CODE_FLT:
2293 return INT_FLOAT_CONVERSION_BADNESS;
2294 case TYPE_CODE_INT:
2295 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2296 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2297 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2298 return INTEGER_PROMOTION_BADNESS;
2299 /* >>> !! else fall through !! <<< */
2300 case TYPE_CODE_CHAR:
7ba81444
MS
2301 /* Deal with signed, unsigned, and plain chars for C++ and
2302 with int cases falling through from previous case. */
c5aa993b
JM
2303 if (TYPE_NOSIGN (parm))
2304 {
2305 if (TYPE_NOSIGN (arg))
2306 return 0;
2307 else
1c5cb38e 2308 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2309 }
2310 else if (TYPE_UNSIGNED (parm))
2311 {
2312 if (TYPE_UNSIGNED (arg))
2313 return 0;
2314 else
2315 return INTEGER_PROMOTION_BADNESS;
2316 }
2317 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2318 return 0;
2319 else
1c5cb38e 2320 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2321 default:
2322 return INCOMPATIBLE_TYPE_BADNESS;
2323 }
2324 break;
2325 case TYPE_CODE_RANGE:
2326 switch (TYPE_CODE (arg))
2327 {
2328 case TYPE_CODE_INT:
2329 case TYPE_CODE_CHAR:
2330 case TYPE_CODE_RANGE:
2331 case TYPE_CODE_BOOL:
2332 case TYPE_CODE_ENUM:
1c5cb38e 2333 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2334 case TYPE_CODE_FLT:
2335 return INT_FLOAT_CONVERSION_BADNESS;
2336 default:
2337 return INCOMPATIBLE_TYPE_BADNESS;
2338 }
2339 break;
2340 case TYPE_CODE_BOOL:
2341 switch (TYPE_CODE (arg))
2342 {
2343 case TYPE_CODE_INT:
2344 case TYPE_CODE_CHAR:
2345 case TYPE_CODE_RANGE:
2346 case TYPE_CODE_ENUM:
2347 case TYPE_CODE_FLT:
2348 case TYPE_CODE_PTR:
2349 return BOOLEAN_CONVERSION_BADNESS;
2350 case TYPE_CODE_BOOL:
2351 return 0;
2352 default:
2353 return INCOMPATIBLE_TYPE_BADNESS;
2354 }
2355 break;
2356 case TYPE_CODE_FLT:
2357 switch (TYPE_CODE (arg))
2358 {
2359 case TYPE_CODE_FLT:
2360 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2361 return FLOAT_PROMOTION_BADNESS;
2362 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2363 return 0;
2364 else
2365 return FLOAT_CONVERSION_BADNESS;
2366 case TYPE_CODE_INT:
2367 case TYPE_CODE_BOOL:
2368 case TYPE_CODE_ENUM:
2369 case TYPE_CODE_RANGE:
2370 case TYPE_CODE_CHAR:
2371 return INT_FLOAT_CONVERSION_BADNESS;
2372 default:
2373 return INCOMPATIBLE_TYPE_BADNESS;
2374 }
2375 break;
2376 case TYPE_CODE_COMPLEX:
2377 switch (TYPE_CODE (arg))
7ba81444 2378 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2379 case TYPE_CODE_FLT:
2380 return FLOAT_PROMOTION_BADNESS;
2381 case TYPE_CODE_COMPLEX:
2382 return 0;
2383 default:
2384 return INCOMPATIBLE_TYPE_BADNESS;
2385 }
2386 break;
2387 case TYPE_CODE_STRUCT:
c906108c 2388 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2389 switch (TYPE_CODE (arg))
2390 {
2391 case TYPE_CODE_STRUCT:
2392 /* Check for derivation */
2393 if (is_ancestor (parm, arg))
2394 return BASE_CONVERSION_BADNESS;
2395 /* else fall through */
2396 default:
2397 return INCOMPATIBLE_TYPE_BADNESS;
2398 }
2399 break;
2400 case TYPE_CODE_UNION:
2401 switch (TYPE_CODE (arg))
2402 {
2403 case TYPE_CODE_UNION:
2404 default:
2405 return INCOMPATIBLE_TYPE_BADNESS;
2406 }
2407 break;
0d5de010 2408 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2409 switch (TYPE_CODE (arg))
2410 {
2411 default:
2412 return INCOMPATIBLE_TYPE_BADNESS;
2413 }
2414 break;
2415 case TYPE_CODE_METHOD:
2416 switch (TYPE_CODE (arg))
2417 {
2418
2419 default:
2420 return INCOMPATIBLE_TYPE_BADNESS;
2421 }
2422 break;
2423 case TYPE_CODE_REF:
2424 switch (TYPE_CODE (arg))
2425 {
2426
2427 default:
2428 return INCOMPATIBLE_TYPE_BADNESS;
2429 }
2430
2431 break;
2432 case TYPE_CODE_SET:
2433 switch (TYPE_CODE (arg))
2434 {
2435 /* Not in C++ */
2436 case TYPE_CODE_SET:
7ba81444
MS
2437 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2438 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2439 default:
2440 return INCOMPATIBLE_TYPE_BADNESS;
2441 }
2442 break;
2443 case TYPE_CODE_VOID:
2444 default:
2445 return INCOMPATIBLE_TYPE_BADNESS;
2446 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2447}
2448
c5aa993b
JM
2449
2450/* End of functions for overload resolution */
c906108c 2451
c906108c 2452static void
fba45db2 2453print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2454{
2455 int bitno;
2456
2457 for (bitno = 0; bitno < nbits; bitno++)
2458 {
2459 if ((bitno % 8) == 0)
2460 {
2461 puts_filtered (" ");
2462 }
2463 if (B_TST (bits, bitno))
a3f17187 2464 printf_filtered (("1"));
c906108c 2465 else
a3f17187 2466 printf_filtered (("0"));
c906108c
SS
2467 }
2468}
2469
ad2f7632 2470/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2471 include it since we may get into a infinitely recursive
2472 situation. */
c906108c
SS
2473
2474static void
ad2f7632 2475print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2476{
2477 if (args != NULL)
2478 {
ad2f7632
DJ
2479 int i;
2480
2481 for (i = 0; i < nargs; i++)
2482 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2483 }
2484}
2485
d6a843b5
JK
2486int
2487field_is_static (struct field *f)
2488{
2489 /* "static" fields are the fields whose location is not relative
2490 to the address of the enclosing struct. It would be nice to
2491 have a dedicated flag that would be set for static fields when
2492 the type is being created. But in practice, checking the field
2493 loc_kind should give us an accurate answer (at least as long as
2494 we assume that DWARF block locations are not going to be used
2495 for static fields). FIXME? */
2496 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2497 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2498}
2499
c906108c 2500static void
fba45db2 2501dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2502{
2503 int method_idx;
2504 int overload_idx;
2505 struct fn_field *f;
2506
2507 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2508 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2509 printf_filtered ("\n");
2510 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2511 {
2512 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2513 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2514 method_idx,
2515 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2516 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2517 gdb_stdout);
a3f17187 2518 printf_filtered (_(") length %d\n"),
c906108c
SS
2519 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2520 for (overload_idx = 0;
2521 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2522 overload_idx++)
2523 {
2524 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2525 overload_idx,
2526 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2527 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2528 gdb_stdout);
c906108c
SS
2529 printf_filtered (")\n");
2530 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2531 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2532 gdb_stdout);
c906108c
SS
2533 printf_filtered ("\n");
2534
2535 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2536 spaces + 8 + 2);
2537
2538 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2539 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2540 gdb_stdout);
c906108c
SS
2541 printf_filtered ("\n");
2542
ad2f7632 2543 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2544 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2545 overload_idx)),
ad2f7632 2546 spaces);
c906108c 2547 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2548 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2549 gdb_stdout);
c906108c
SS
2550 printf_filtered ("\n");
2551
2552 printfi_filtered (spaces + 8, "is_const %d\n",
2553 TYPE_FN_FIELD_CONST (f, overload_idx));
2554 printfi_filtered (spaces + 8, "is_volatile %d\n",
2555 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2556 printfi_filtered (spaces + 8, "is_private %d\n",
2557 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2558 printfi_filtered (spaces + 8, "is_protected %d\n",
2559 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2560 printfi_filtered (spaces + 8, "is_stub %d\n",
2561 TYPE_FN_FIELD_STUB (f, overload_idx));
2562 printfi_filtered (spaces + 8, "voffset %u\n",
2563 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2564 }
2565 }
2566}
2567
2568static void
fba45db2 2569print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2570{
2571 printfi_filtered (spaces, "n_baseclasses %d\n",
2572 TYPE_N_BASECLASSES (type));
2573 printfi_filtered (spaces, "nfn_fields %d\n",
2574 TYPE_NFN_FIELDS (type));
2575 printfi_filtered (spaces, "nfn_fields_total %d\n",
2576 TYPE_NFN_FIELDS_TOTAL (type));
2577 if (TYPE_N_BASECLASSES (type) > 0)
2578 {
2579 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2580 TYPE_N_BASECLASSES (type));
7ba81444
MS
2581 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2582 gdb_stdout);
c906108c
SS
2583 printf_filtered (")");
2584
2585 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2586 TYPE_N_BASECLASSES (type));
2587 puts_filtered ("\n");
2588 }
2589 if (TYPE_NFIELDS (type) > 0)
2590 {
2591 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2592 {
7ba81444
MS
2593 printfi_filtered (spaces,
2594 "private_field_bits (%d bits at *",
c906108c 2595 TYPE_NFIELDS (type));
7ba81444
MS
2596 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2597 gdb_stdout);
c906108c
SS
2598 printf_filtered (")");
2599 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2600 TYPE_NFIELDS (type));
2601 puts_filtered ("\n");
2602 }
2603 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2604 {
7ba81444
MS
2605 printfi_filtered (spaces,
2606 "protected_field_bits (%d bits at *",
c906108c 2607 TYPE_NFIELDS (type));
7ba81444
MS
2608 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2609 gdb_stdout);
c906108c
SS
2610 printf_filtered (")");
2611 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2612 TYPE_NFIELDS (type));
2613 puts_filtered ("\n");
2614 }
2615 }
2616 if (TYPE_NFN_FIELDS (type) > 0)
2617 {
2618 dump_fn_fieldlists (type, spaces);
2619 }
2620}
2621
b4ba55a1
JB
2622/* Print the contents of the TYPE's type_specific union, assuming that
2623 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2624
2625static void
2626print_gnat_stuff (struct type *type, int spaces)
2627{
2628 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2629
2630 recursive_dump_type (descriptive_type, spaces + 2);
2631}
2632
c906108c
SS
2633static struct obstack dont_print_type_obstack;
2634
2635void
fba45db2 2636recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2637{
2638 int idx;
2639
2640 if (spaces == 0)
2641 obstack_begin (&dont_print_type_obstack, 0);
2642
2643 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2644 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2645 {
2646 struct type **first_dont_print
7ba81444 2647 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2648
7ba81444
MS
2649 int i = (struct type **)
2650 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2651
2652 while (--i >= 0)
2653 {
2654 if (type == first_dont_print[i])
2655 {
2656 printfi_filtered (spaces, "type node ");
d4f3574e 2657 gdb_print_host_address (type, gdb_stdout);
a3f17187 2658 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2659 return;
2660 }
2661 }
2662
2663 obstack_ptr_grow (&dont_print_type_obstack, type);
2664 }
2665
2666 printfi_filtered (spaces, "type node ");
d4f3574e 2667 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2668 printf_filtered ("\n");
2669 printfi_filtered (spaces, "name '%s' (",
2670 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2671 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2672 printf_filtered (")\n");
e9e79dd9
FF
2673 printfi_filtered (spaces, "tagname '%s' (",
2674 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2675 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2676 printf_filtered (")\n");
c906108c
SS
2677 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2678 switch (TYPE_CODE (type))
2679 {
c5aa993b
JM
2680 case TYPE_CODE_UNDEF:
2681 printf_filtered ("(TYPE_CODE_UNDEF)");
2682 break;
2683 case TYPE_CODE_PTR:
2684 printf_filtered ("(TYPE_CODE_PTR)");
2685 break;
2686 case TYPE_CODE_ARRAY:
2687 printf_filtered ("(TYPE_CODE_ARRAY)");
2688 break;
2689 case TYPE_CODE_STRUCT:
2690 printf_filtered ("(TYPE_CODE_STRUCT)");
2691 break;
2692 case TYPE_CODE_UNION:
2693 printf_filtered ("(TYPE_CODE_UNION)");
2694 break;
2695 case TYPE_CODE_ENUM:
2696 printf_filtered ("(TYPE_CODE_ENUM)");
2697 break;
4f2aea11
MK
2698 case TYPE_CODE_FLAGS:
2699 printf_filtered ("(TYPE_CODE_FLAGS)");
2700 break;
c5aa993b
JM
2701 case TYPE_CODE_FUNC:
2702 printf_filtered ("(TYPE_CODE_FUNC)");
2703 break;
2704 case TYPE_CODE_INT:
2705 printf_filtered ("(TYPE_CODE_INT)");
2706 break;
2707 case TYPE_CODE_FLT:
2708 printf_filtered ("(TYPE_CODE_FLT)");
2709 break;
2710 case TYPE_CODE_VOID:
2711 printf_filtered ("(TYPE_CODE_VOID)");
2712 break;
2713 case TYPE_CODE_SET:
2714 printf_filtered ("(TYPE_CODE_SET)");
2715 break;
2716 case TYPE_CODE_RANGE:
2717 printf_filtered ("(TYPE_CODE_RANGE)");
2718 break;
2719 case TYPE_CODE_STRING:
2720 printf_filtered ("(TYPE_CODE_STRING)");
2721 break;
e9e79dd9
FF
2722 case TYPE_CODE_BITSTRING:
2723 printf_filtered ("(TYPE_CODE_BITSTRING)");
2724 break;
c5aa993b
JM
2725 case TYPE_CODE_ERROR:
2726 printf_filtered ("(TYPE_CODE_ERROR)");
2727 break;
0d5de010
DJ
2728 case TYPE_CODE_MEMBERPTR:
2729 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2730 break;
2731 case TYPE_CODE_METHODPTR:
2732 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2733 break;
2734 case TYPE_CODE_METHOD:
2735 printf_filtered ("(TYPE_CODE_METHOD)");
2736 break;
2737 case TYPE_CODE_REF:
2738 printf_filtered ("(TYPE_CODE_REF)");
2739 break;
2740 case TYPE_CODE_CHAR:
2741 printf_filtered ("(TYPE_CODE_CHAR)");
2742 break;
2743 case TYPE_CODE_BOOL:
2744 printf_filtered ("(TYPE_CODE_BOOL)");
2745 break;
e9e79dd9
FF
2746 case TYPE_CODE_COMPLEX:
2747 printf_filtered ("(TYPE_CODE_COMPLEX)");
2748 break;
c5aa993b
JM
2749 case TYPE_CODE_TYPEDEF:
2750 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2751 break;
e9e79dd9
FF
2752 case TYPE_CODE_TEMPLATE:
2753 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2754 break;
2755 case TYPE_CODE_TEMPLATE_ARG:
2756 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2757 break;
5c4e30ca
DC
2758 case TYPE_CODE_NAMESPACE:
2759 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2760 break;
c5aa993b
JM
2761 default:
2762 printf_filtered ("(UNKNOWN TYPE CODE)");
2763 break;
c906108c
SS
2764 }
2765 puts_filtered ("\n");
2766 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
2767 if (TYPE_OBJFILE_OWNED (type))
2768 {
2769 printfi_filtered (spaces, "objfile ");
2770 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2771 }
2772 else
2773 {
2774 printfi_filtered (spaces, "gdbarch ");
2775 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2776 }
c906108c
SS
2777 printf_filtered ("\n");
2778 printfi_filtered (spaces, "target_type ");
d4f3574e 2779 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2780 printf_filtered ("\n");
2781 if (TYPE_TARGET_TYPE (type) != NULL)
2782 {
2783 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2784 }
2785 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2786 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2787 printf_filtered ("\n");
2788 printfi_filtered (spaces, "reference_type ");
d4f3574e 2789 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2790 printf_filtered ("\n");
2fdde8f8
DJ
2791 printfi_filtered (spaces, "type_chain ");
2792 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2793 printf_filtered ("\n");
7ba81444
MS
2794 printfi_filtered (spaces, "instance_flags 0x%x",
2795 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2796 if (TYPE_CONST (type))
2797 {
2798 puts_filtered (" TYPE_FLAG_CONST");
2799 }
2800 if (TYPE_VOLATILE (type))
2801 {
2802 puts_filtered (" TYPE_FLAG_VOLATILE");
2803 }
2804 if (TYPE_CODE_SPACE (type))
2805 {
2806 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2807 }
2808 if (TYPE_DATA_SPACE (type))
2809 {
2810 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2811 }
8b2dbe47
KB
2812 if (TYPE_ADDRESS_CLASS_1 (type))
2813 {
2814 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2815 }
2816 if (TYPE_ADDRESS_CLASS_2 (type))
2817 {
2818 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2819 }
2fdde8f8 2820 puts_filtered ("\n");
876cecd0
TT
2821
2822 printfi_filtered (spaces, "flags");
762a036f 2823 if (TYPE_UNSIGNED (type))
c906108c
SS
2824 {
2825 puts_filtered (" TYPE_FLAG_UNSIGNED");
2826 }
762a036f
FF
2827 if (TYPE_NOSIGN (type))
2828 {
2829 puts_filtered (" TYPE_FLAG_NOSIGN");
2830 }
2831 if (TYPE_STUB (type))
c906108c
SS
2832 {
2833 puts_filtered (" TYPE_FLAG_STUB");
2834 }
762a036f
FF
2835 if (TYPE_TARGET_STUB (type))
2836 {
2837 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2838 }
2839 if (TYPE_STATIC (type))
2840 {
2841 puts_filtered (" TYPE_FLAG_STATIC");
2842 }
762a036f
FF
2843 if (TYPE_PROTOTYPED (type))
2844 {
2845 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2846 }
2847 if (TYPE_INCOMPLETE (type))
2848 {
2849 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2850 }
762a036f
FF
2851 if (TYPE_VARARGS (type))
2852 {
2853 puts_filtered (" TYPE_FLAG_VARARGS");
2854 }
f5f8a009
EZ
2855 /* This is used for things like AltiVec registers on ppc. Gcc emits
2856 an attribute for the array type, which tells whether or not we
2857 have a vector, instead of a regular array. */
2858 if (TYPE_VECTOR (type))
2859 {
2860 puts_filtered (" TYPE_FLAG_VECTOR");
2861 }
876cecd0
TT
2862 if (TYPE_FIXED_INSTANCE (type))
2863 {
2864 puts_filtered (" TYPE_FIXED_INSTANCE");
2865 }
2866 if (TYPE_STUB_SUPPORTED (type))
2867 {
2868 puts_filtered (" TYPE_STUB_SUPPORTED");
2869 }
2870 if (TYPE_NOTTEXT (type))
2871 {
2872 puts_filtered (" TYPE_NOTTEXT");
2873 }
c906108c
SS
2874 puts_filtered ("\n");
2875 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 2876 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
2877 puts_filtered ("\n");
2878 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2879 {
2880 printfi_filtered (spaces + 2,
2881 "[%d] bitpos %d bitsize %d type ",
2882 idx, TYPE_FIELD_BITPOS (type, idx),
2883 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 2884 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
2885 printf_filtered (" name '%s' (",
2886 TYPE_FIELD_NAME (type, idx) != NULL
2887 ? TYPE_FIELD_NAME (type, idx)
2888 : "<NULL>");
d4f3574e 2889 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
2890 printf_filtered (")\n");
2891 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2892 {
2893 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2894 }
2895 }
43bbcdc2
PH
2896 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2897 {
2898 printfi_filtered (spaces, "low %s%s high %s%s\n",
2899 plongest (TYPE_LOW_BOUND (type)),
2900 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2901 plongest (TYPE_HIGH_BOUND (type)),
2902 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2903 }
c906108c 2904 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 2905 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
2906 puts_filtered ("\n");
2907 if (TYPE_VPTR_BASETYPE (type) != NULL)
2908 {
2909 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2910 }
7ba81444
MS
2911 printfi_filtered (spaces, "vptr_fieldno %d\n",
2912 TYPE_VPTR_FIELDNO (type));
c906108c 2913
b4ba55a1
JB
2914 switch (TYPE_SPECIFIC_FIELD (type))
2915 {
2916 case TYPE_SPECIFIC_CPLUS_STUFF:
2917 printfi_filtered (spaces, "cplus_stuff ");
2918 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2919 gdb_stdout);
2920 puts_filtered ("\n");
2921 print_cplus_stuff (type, spaces);
2922 break;
8da61cc4 2923
b4ba55a1
JB
2924 case TYPE_SPECIFIC_GNAT_STUFF:
2925 printfi_filtered (spaces, "gnat_stuff ");
2926 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2927 puts_filtered ("\n");
2928 print_gnat_stuff (type, spaces);
2929 break;
701c159d 2930
b4ba55a1
JB
2931 case TYPE_SPECIFIC_FLOATFORMAT:
2932 printfi_filtered (spaces, "floatformat ");
2933 if (TYPE_FLOATFORMAT (type) == NULL)
2934 puts_filtered ("(null)");
2935 else
2936 {
2937 puts_filtered ("{ ");
2938 if (TYPE_FLOATFORMAT (type)[0] == NULL
2939 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2940 puts_filtered ("(null)");
2941 else
2942 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2943
2944 puts_filtered (", ");
2945 if (TYPE_FLOATFORMAT (type)[1] == NULL
2946 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2947 puts_filtered ("(null)");
2948 else
2949 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2950
2951 puts_filtered (" }");
2952 }
2953 puts_filtered ("\n");
2954 break;
c906108c 2955
b4ba55a1
JB
2956 case TYPE_SPECIFIC_CALLING_CONVENTION:
2957 printfi_filtered (spaces, "calling_convention %d\n",
2958 TYPE_CALLING_CONVENTION (type));
2959 break;
c906108c 2960 }
b4ba55a1 2961
c906108c
SS
2962 if (spaces == 0)
2963 obstack_free (&dont_print_type_obstack, NULL);
2964}
2965
ae5a43e0
DJ
2966/* Trivial helpers for the libiberty hash table, for mapping one
2967 type to another. */
2968
2969struct type_pair
2970{
2971 struct type *old, *new;
2972};
2973
2974static hashval_t
2975type_pair_hash (const void *item)
2976{
2977 const struct type_pair *pair = item;
2978 return htab_hash_pointer (pair->old);
2979}
2980
2981static int
2982type_pair_eq (const void *item_lhs, const void *item_rhs)
2983{
2984 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2985 return lhs->old == rhs->old;
2986}
2987
2988/* Allocate the hash table used by copy_type_recursive to walk
2989 types without duplicates. We use OBJFILE's obstack, because
2990 OBJFILE is about to be deleted. */
2991
2992htab_t
2993create_copied_types_hash (struct objfile *objfile)
2994{
2995 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2996 NULL, &objfile->objfile_obstack,
2997 hashtab_obstack_allocate,
2998 dummy_obstack_deallocate);
2999}
3000
7ba81444
MS
3001/* Recursively copy (deep copy) TYPE, if it is associated with
3002 OBJFILE. Return a new type allocated using malloc, a saved type if
3003 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3004 not associated with OBJFILE. */
ae5a43e0
DJ
3005
3006struct type *
7ba81444
MS
3007copy_type_recursive (struct objfile *objfile,
3008 struct type *type,
ae5a43e0
DJ
3009 htab_t copied_types)
3010{
3011 struct type_pair *stored, pair;
3012 void **slot;
3013 struct type *new_type;
3014
e9bb382b 3015 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3016 return type;
3017
7ba81444
MS
3018 /* This type shouldn't be pointing to any types in other objfiles;
3019 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3020 gdb_assert (TYPE_OBJFILE (type) == objfile);
3021
3022 pair.old = type;
3023 slot = htab_find_slot (copied_types, &pair, INSERT);
3024 if (*slot != NULL)
3025 return ((struct type_pair *) *slot)->new;
3026
e9bb382b 3027 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3028
3029 /* We must add the new type to the hash table immediately, in case
3030 we encounter this type again during a recursive call below. */
d87ecdfb 3031 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3032 stored->old = type;
3033 stored->new = new_type;
3034 *slot = stored;
3035
876cecd0
TT
3036 /* Copy the common fields of types. For the main type, we simply
3037 copy the entire thing and then update specific fields as needed. */
3038 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3039 TYPE_OBJFILE_OWNED (new_type) = 0;
3040 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3041
ae5a43e0
DJ
3042 if (TYPE_NAME (type))
3043 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3044 if (TYPE_TAG_NAME (type))
3045 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3046
3047 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3048 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3049
3050 /* Copy the fields. */
ae5a43e0
DJ
3051 if (TYPE_NFIELDS (type))
3052 {
3053 int i, nfields;
3054
3055 nfields = TYPE_NFIELDS (type);
1deafd4e 3056 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3057 for (i = 0; i < nfields; i++)
3058 {
7ba81444
MS
3059 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3060 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3061 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3062 if (TYPE_FIELD_TYPE (type, i))
3063 TYPE_FIELD_TYPE (new_type, i)
3064 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3065 copied_types);
3066 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3067 TYPE_FIELD_NAME (new_type, i) =
3068 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3069 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3070 {
d6a843b5
JK
3071 case FIELD_LOC_KIND_BITPOS:
3072 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3073 TYPE_FIELD_BITPOS (type, i));
3074 break;
3075 case FIELD_LOC_KIND_PHYSADDR:
3076 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3077 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3078 break;
3079 case FIELD_LOC_KIND_PHYSNAME:
3080 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3081 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3082 i)));
3083 break;
3084 default:
3085 internal_error (__FILE__, __LINE__,
3086 _("Unexpected type field location kind: %d"),
3087 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3088 }
3089 }
3090 }
3091
43bbcdc2
PH
3092 /* For range types, copy the bounds information. */
3093 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3094 {
3095 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3096 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3097 }
3098
ae5a43e0
DJ
3099 /* Copy pointers to other types. */
3100 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3101 TYPE_TARGET_TYPE (new_type) =
3102 copy_type_recursive (objfile,
3103 TYPE_TARGET_TYPE (type),
3104 copied_types);
ae5a43e0 3105 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3106 TYPE_VPTR_BASETYPE (new_type) =
3107 copy_type_recursive (objfile,
3108 TYPE_VPTR_BASETYPE (type),
3109 copied_types);
ae5a43e0
DJ
3110 /* Maybe copy the type_specific bits.
3111
3112 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3113 base classes and methods. There's no fundamental reason why we
3114 can't, but at the moment it is not needed. */
3115
3116 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3117 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3118 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3119 || TYPE_CODE (type) == TYPE_CODE_UNION
3120 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3121 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3122 INIT_CPLUS_SPECIFIC (new_type);
3123
3124 return new_type;
3125}
3126
4af88198
JB
3127/* Make a copy of the given TYPE, except that the pointer & reference
3128 types are not preserved.
3129
3130 This function assumes that the given type has an associated objfile.
3131 This objfile is used to allocate the new type. */
3132
3133struct type *
3134copy_type (const struct type *type)
3135{
3136 struct type *new_type;
3137
e9bb382b 3138 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3139
e9bb382b 3140 new_type = alloc_type_copy (type);
4af88198
JB
3141 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3142 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3143 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3144 sizeof (struct main_type));
3145
3146 return new_type;
3147}
3148
e9bb382b
UW
3149
3150/* Helper functions to initialize architecture-specific types. */
3151
3152/* Allocate a type structure associated with GDBARCH and set its
3153 CODE, LENGTH, and NAME fields. */
3154struct type *
3155arch_type (struct gdbarch *gdbarch,
3156 enum type_code code, int length, char *name)
3157{
3158 struct type *type;
3159
3160 type = alloc_type_arch (gdbarch);
3161 TYPE_CODE (type) = code;
3162 TYPE_LENGTH (type) = length;
3163
3164 if (name)
3165 TYPE_NAME (type) = xstrdup (name);
3166
3167 return type;
3168}
3169
3170/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3171 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3172 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3173struct type *
3174arch_integer_type (struct gdbarch *gdbarch,
3175 int bit, int unsigned_p, char *name)
3176{
3177 struct type *t;
3178
3179 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3180 if (unsigned_p)
3181 TYPE_UNSIGNED (t) = 1;
3182 if (name && strcmp (name, "char") == 0)
3183 TYPE_NOSIGN (t) = 1;
3184
3185 return t;
3186}
3187
3188/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3189 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3190 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3191struct type *
3192arch_character_type (struct gdbarch *gdbarch,
3193 int bit, int unsigned_p, char *name)
3194{
3195 struct type *t;
3196
3197 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3198 if (unsigned_p)
3199 TYPE_UNSIGNED (t) = 1;
3200
3201 return t;
3202}
3203
3204/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3205 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3206 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3207struct type *
3208arch_boolean_type (struct gdbarch *gdbarch,
3209 int bit, int unsigned_p, char *name)
3210{
3211 struct type *t;
3212
3213 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3214 if (unsigned_p)
3215 TYPE_UNSIGNED (t) = 1;
3216
3217 return t;
3218}
3219
3220/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3221 BIT is the type size in bits; if BIT equals -1, the size is
3222 determined by the floatformat. NAME is the type name. Set the
3223 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3224struct type *
e9bb382b
UW
3225arch_float_type (struct gdbarch *gdbarch,
3226 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3227{
3228 struct type *t;
3229
3230 if (bit == -1)
3231 {
3232 gdb_assert (floatformats != NULL);
3233 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3234 bit = floatformats[0]->totalsize;
3235 }
3236 gdb_assert (bit >= 0);
3237
e9bb382b 3238 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3239 TYPE_FLOATFORMAT (t) = floatformats;
3240 return t;
3241}
3242
e9bb382b
UW
3243/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3244 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3245struct type *
e9bb382b
UW
3246arch_complex_type (struct gdbarch *gdbarch,
3247 char *name, struct type *target_type)
27067745
UW
3248{
3249 struct type *t;
e9bb382b
UW
3250 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3251 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3252 TYPE_TARGET_TYPE (t) = target_type;
3253 return t;
3254}
3255
e9bb382b 3256/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3257 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3258struct type *
3259arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3260{
3261 int nfields = length * TARGET_CHAR_BIT;
3262 struct type *type;
3263
3264 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3265 TYPE_UNSIGNED (type) = 1;
3266 TYPE_NFIELDS (type) = nfields;
3267 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3268
3269 return type;
3270}
3271
3272/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3273 position BITPOS is called NAME. */
3274void
3275append_flags_type_flag (struct type *type, int bitpos, char *name)
3276{
3277 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3278 gdb_assert (bitpos < TYPE_NFIELDS (type));
3279 gdb_assert (bitpos >= 0);
3280
3281 if (name)
3282 {
3283 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3284 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3285 }
3286 else
3287 {
3288 /* Don't show this field to the user. */
3289 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3290 }
3291}
3292
3293/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3294 specified by CODE) associated with GDBARCH. NAME is the type name. */
3295struct type *
3296arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3297{
3298 struct type *t;
3299 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3300 t = arch_type (gdbarch, code, 0, NULL);
3301 TYPE_TAG_NAME (t) = name;
3302 INIT_CPLUS_SPECIFIC (t);
3303 return t;
3304}
3305
3306/* Add new field with name NAME and type FIELD to composite type T.
3307 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3308void
3309append_composite_type_field_aligned (struct type *t, char *name,
3310 struct type *field, int alignment)
3311{
3312 struct field *f;
3313 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3314 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3315 sizeof (struct field) * TYPE_NFIELDS (t));
3316 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3317 memset (f, 0, sizeof f[0]);
3318 FIELD_TYPE (f[0]) = field;
3319 FIELD_NAME (f[0]) = name;
3320 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3321 {
3322 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3323 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3324 }
3325 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3326 {
3327 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3328 if (TYPE_NFIELDS (t) > 1)
3329 {
3330 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3331 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3332 * TARGET_CHAR_BIT));
3333
3334 if (alignment)
3335 {
3336 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3337 if (left)
3338 {
3339 FIELD_BITPOS (f[0]) += left;
3340 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3341 }
3342 }
3343 }
3344 }
3345}
3346
3347/* Add new field with name NAME and type FIELD to composite type T. */
3348void
3349append_composite_type_field (struct type *t, char *name,
3350 struct type *field)
3351{
3352 append_composite_type_field_aligned (t, name, field, 0);
3353}
3354
3355
000177f0
AC
3356static struct gdbarch_data *gdbtypes_data;
3357
3358const struct builtin_type *
3359builtin_type (struct gdbarch *gdbarch)
3360{
3361 return gdbarch_data (gdbarch, gdbtypes_data);
3362}
3363
3364static void *
3365gdbtypes_post_init (struct gdbarch *gdbarch)
3366{
3367 struct builtin_type *builtin_type
3368 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3369
46bf5051 3370 /* Basic types. */
e9bb382b
UW
3371 builtin_type->builtin_void
3372 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3373 builtin_type->builtin_char
3374 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3375 !gdbarch_char_signed (gdbarch), "char");
3376 builtin_type->builtin_signed_char
3377 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3378 0, "signed char");
3379 builtin_type->builtin_unsigned_char
3380 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3381 1, "unsigned char");
3382 builtin_type->builtin_short
3383 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3384 0, "short");
3385 builtin_type->builtin_unsigned_short
3386 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3387 1, "unsigned short");
3388 builtin_type->builtin_int
3389 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3390 0, "int");
3391 builtin_type->builtin_unsigned_int
3392 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3393 1, "unsigned int");
3394 builtin_type->builtin_long
3395 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3396 0, "long");
3397 builtin_type->builtin_unsigned_long
3398 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3399 1, "unsigned long");
3400 builtin_type->builtin_long_long
3401 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3402 0, "long long");
3403 builtin_type->builtin_unsigned_long_long
3404 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3405 1, "unsigned long long");
70bd8e24 3406 builtin_type->builtin_float
e9bb382b 3407 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3408 "float", gdbarch_float_format (gdbarch));
70bd8e24 3409 builtin_type->builtin_double
e9bb382b 3410 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3411 "double", gdbarch_double_format (gdbarch));
70bd8e24 3412 builtin_type->builtin_long_double
e9bb382b 3413 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3414 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3415 builtin_type->builtin_complex
e9bb382b
UW
3416 = arch_complex_type (gdbarch, "complex",
3417 builtin_type->builtin_float);
70bd8e24 3418 builtin_type->builtin_double_complex
e9bb382b
UW
3419 = arch_complex_type (gdbarch, "double complex",
3420 builtin_type->builtin_double);
3421 builtin_type->builtin_string
3422 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3423 builtin_type->builtin_bool
3424 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3425
7678ef8f
TJB
3426 /* The following three are about decimal floating point types, which
3427 are 32-bits, 64-bits and 128-bits respectively. */
3428 builtin_type->builtin_decfloat
e9bb382b 3429 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3430 builtin_type->builtin_decdouble
e9bb382b 3431 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3432 builtin_type->builtin_declong
e9bb382b 3433 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3434
69feb676 3435 /* "True" character types. */
e9bb382b
UW
3436 builtin_type->builtin_true_char
3437 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3438 builtin_type->builtin_true_unsigned_char
3439 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3440
df4df182 3441 /* Fixed-size integer types. */
e9bb382b
UW
3442 builtin_type->builtin_int0
3443 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3444 builtin_type->builtin_int8
3445 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3446 builtin_type->builtin_uint8
3447 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3448 builtin_type->builtin_int16
3449 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3450 builtin_type->builtin_uint16
3451 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3452 builtin_type->builtin_int32
3453 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3454 builtin_type->builtin_uint32
3455 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3456 builtin_type->builtin_int64
3457 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3458 builtin_type->builtin_uint64
3459 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3460 builtin_type->builtin_int128
3461 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3462 builtin_type->builtin_uint128
3463 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3464 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3465 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
df4df182 3466
46bf5051 3467 /* Default data/code pointer types. */
e9bb382b
UW
3468 builtin_type->builtin_data_ptr
3469 = lookup_pointer_type (builtin_type->builtin_void);
3470 builtin_type->builtin_func_ptr
3471 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
46bf5051 3472
78267919 3473 /* This type represents a GDB internal function. */
e9bb382b
UW
3474 builtin_type->internal_fn
3475 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3476 "<internal function>");
78267919 3477
46bf5051
UW
3478 return builtin_type;
3479}
3480
3481
3482/* This set of objfile-based types is intended to be used by symbol
3483 readers as basic types. */
3484
3485static const struct objfile_data *objfile_type_data;
3486
3487const struct objfile_type *
3488objfile_type (struct objfile *objfile)
3489{
3490 struct gdbarch *gdbarch;
3491 struct objfile_type *objfile_type
3492 = objfile_data (objfile, objfile_type_data);
3493
3494 if (objfile_type)
3495 return objfile_type;
3496
3497 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3498 1, struct objfile_type);
3499
3500 /* Use the objfile architecture to determine basic type properties. */
3501 gdbarch = get_objfile_arch (objfile);
3502
3503 /* Basic types. */
3504 objfile_type->builtin_void
3505 = init_type (TYPE_CODE_VOID, 1,
3506 0,
3507 "void", objfile);
3508
3509 objfile_type->builtin_char
3510 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3511 (TYPE_FLAG_NOSIGN
3512 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3513 "char", objfile);
3514 objfile_type->builtin_signed_char
3515 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3516 0,
3517 "signed char", objfile);
3518 objfile_type->builtin_unsigned_char
3519 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3520 TYPE_FLAG_UNSIGNED,
3521 "unsigned char", objfile);
3522 objfile_type->builtin_short
3523 = init_type (TYPE_CODE_INT,
3524 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3525 0, "short", objfile);
3526 objfile_type->builtin_unsigned_short
3527 = init_type (TYPE_CODE_INT,
3528 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3529 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3530 objfile_type->builtin_int
3531 = init_type (TYPE_CODE_INT,
3532 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3533 0, "int", objfile);
3534 objfile_type->builtin_unsigned_int
3535 = init_type (TYPE_CODE_INT,
3536 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3537 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3538 objfile_type->builtin_long
3539 = init_type (TYPE_CODE_INT,
3540 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3541 0, "long", objfile);
3542 objfile_type->builtin_unsigned_long
3543 = init_type (TYPE_CODE_INT,
3544 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3545 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3546 objfile_type->builtin_long_long
3547 = init_type (TYPE_CODE_INT,
3548 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3549 0, "long long", objfile);
3550 objfile_type->builtin_unsigned_long_long
3551 = init_type (TYPE_CODE_INT,
3552 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3553 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3554
3555 objfile_type->builtin_float
3556 = init_type (TYPE_CODE_FLT,
3557 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3558 0, "float", objfile);
3559 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3560 = gdbarch_float_format (gdbarch);
3561 objfile_type->builtin_double
3562 = init_type (TYPE_CODE_FLT,
3563 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3564 0, "double", objfile);
3565 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3566 = gdbarch_double_format (gdbarch);
3567 objfile_type->builtin_long_double
3568 = init_type (TYPE_CODE_FLT,
3569 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3570 0, "long double", objfile);
3571 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3572 = gdbarch_long_double_format (gdbarch);
3573
3574 /* This type represents a type that was unrecognized in symbol read-in. */
3575 objfile_type->builtin_error
3576 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3577
3578 /* The following set of types is used for symbols with no
3579 debug information. */
3580 objfile_type->nodebug_text_symbol
3581 = init_type (TYPE_CODE_FUNC, 1, 0,
3582 "<text variable, no debug info>", objfile);
3583 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3584 = objfile_type->builtin_int;
3585 objfile_type->nodebug_data_symbol
3586 = init_type (TYPE_CODE_INT,
3587 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3588 "<data variable, no debug info>", objfile);
3589 objfile_type->nodebug_unknown_symbol
3590 = init_type (TYPE_CODE_INT, 1, 0,
3591 "<variable (not text or data), no debug info>", objfile);
3592 objfile_type->nodebug_tls_symbol
3593 = init_type (TYPE_CODE_INT,
3594 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3595 "<thread local variable, no debug info>", objfile);
000177f0
AC
3596
3597 /* NOTE: on some targets, addresses and pointers are not necessarily
3598 the same --- for example, on the D10V, pointers are 16 bits long,
3599 but addresses are 32 bits long. See doc/gdbint.texinfo,
3600 ``Pointers Are Not Always Addresses''.
3601
3602 The upshot is:
3603 - gdb's `struct type' always describes the target's
3604 representation.
3605 - gdb's `struct value' objects should always hold values in
3606 target form.
3607 - gdb's CORE_ADDR values are addresses in the unified virtual
3608 address space that the assembler and linker work with. Thus,
3609 since target_read_memory takes a CORE_ADDR as an argument, it
3610 can access any memory on the target, even if the processor has
3611 separate code and data address spaces.
3612
3613 So, for example:
3614 - If v is a value holding a D10V code pointer, its contents are
3615 in target form: a big-endian address left-shifted two bits.
3616 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3617 sizeof (void *) == 2 on the target.
3618
46bf5051
UW
3619 In this context, objfile_type->builtin_core_addr is a bit odd:
3620 it's a target type for a value the target will never see. It's
3621 only used to hold the values of (typeless) linker symbols, which
3622 are indeed in the unified virtual address space. */
000177f0 3623
46bf5051
UW
3624 objfile_type->builtin_core_addr
3625 = init_type (TYPE_CODE_INT,
3626 gdbarch_addr_bit (gdbarch) / 8,
3627 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3628
46bf5051
UW
3629 set_objfile_data (objfile, objfile_type_data, objfile_type);
3630 return objfile_type;
000177f0
AC
3631}
3632
46bf5051 3633
a14ed312 3634extern void _initialize_gdbtypes (void);
c906108c 3635void
fba45db2 3636_initialize_gdbtypes (void)
c906108c 3637{
5674de60 3638 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 3639 objfile_type_data = register_objfile_data ();
5674de60 3640
85c07804
AC
3641 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3642Set debugging of C++ overloading."), _("\
3643Show debugging of C++ overloading."), _("\
3644When enabled, ranking of the functions is displayed."),
3645 NULL,
920d2a44 3646 show_overload_debug,
85c07804 3647 &setdebuglist, &showdebuglist);
5674de60 3648
7ba81444 3649 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3650 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3651 &opaque_type_resolution, _("\
3652Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3653Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3654 NULL,
3655 show_opaque_type_resolution,
3656 &setlist, &showlist);
c906108c 3657}
This page took 1.069702 seconds and 4 git commands to generate.