Turn target_have_steppable_watchpoint into function
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ef83a141 42#include <algorithm>
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 56const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 68
8da61cc4 69/* Floatformat pairs. */
f9e9243a
UW
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
8da61cc4
DJ
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
b14d30e1 114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
b14d30e1 117};
2a67f09d
FW
118const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
121};
8da61cc4 122
2873700e
KS
123/* Should opaque types be resolved? */
124
491144b5 125static bool opaque_type_resolution = true;
2873700e 126
79bb1944 127/* See gdbtypes.h. */
2873700e
KS
128
129unsigned int overload_debug = 0;
130
a451cb65
KS
131/* A flag to enable strict type checking. */
132
491144b5 133static bool strict_type_checking = true;
a451cb65 134
2873700e 135/* A function to show whether opaque types are resolved. */
5212577a 136
920d2a44
AC
137static void
138show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
139 struct cmd_list_element *c,
140 const char *value)
920d2a44 141{
3e43a32a
MS
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
144 value);
145}
146
2873700e 147/* A function to show whether C++ overload debugging is enabled. */
5212577a 148
920d2a44
AC
149static void
150show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152{
7ba81444
MS
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
154 value);
920d2a44 155}
c906108c 156
a451cb65
KS
157/* A function to show the status of strict type checking. */
158
159static void
160show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
164}
165
5212577a 166\f
e9bb382b
UW
167/* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
c906108c
SS
170
171struct type *
fba45db2 172alloc_type (struct objfile *objfile)
c906108c 173{
52f0bd74 174 struct type *type;
c906108c 175
e9bb382b
UW
176 gdb_assert (objfile != NULL);
177
7ba81444 178 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
181 struct main_type);
182 OBJSTAT (objfile, n_types++);
c906108c 183
e9bb382b
UW
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
c906108c 186
7ba81444 187 /* Initialize the fields that might not be zero. */
c906108c 188
67607e24 189 type->set_code (TYPE_CODE_UNDEF);
2fdde8f8 190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 191
c16abbde 192 return type;
c906108c
SS
193}
194
e9bb382b
UW
195/* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
8f57eec2 197 on the obstack associated with GDBARCH. */
e9bb382b
UW
198
199struct type *
200alloc_type_arch (struct gdbarch *gdbarch)
201{
202 struct type *type;
203
204 gdb_assert (gdbarch != NULL);
205
206 /* Alloc the structure and start off with all fields zeroed. */
207
8f57eec2
PP
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
210
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
213
214 /* Initialize the fields that might not be zero. */
215
67607e24 216 type->set_code (TYPE_CODE_UNDEF);
e9bb382b
UW
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220}
221
222/* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226struct type *
227alloc_type_copy (const struct type *type)
228{
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
231 else
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233}
234
235/* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
237
238struct gdbarch *
239get_type_arch (const struct type *type)
240{
2fabdf33
AB
241 struct gdbarch *arch;
242
e9bb382b 243 if (TYPE_OBJFILE_OWNED (type))
08feed99 244 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 245 else
2fabdf33
AB
246 arch = TYPE_OWNER (type).gdbarch;
247
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
251 returned. */
252 gdb_assert (arch != NULL);
253 return arch;
e9bb382b
UW
254}
255
99ad9427
YQ
256/* See gdbtypes.h. */
257
258struct type *
259get_target_type (struct type *type)
260{
261 if (type != NULL)
262 {
263 type = TYPE_TARGET_TYPE (type);
264 if (type != NULL)
265 type = check_typedef (type);
266 }
267
268 return type;
269}
270
2e056931
SM
271/* See gdbtypes.h. */
272
273unsigned int
274type_length_units (struct type *type)
275{
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
278
279 return TYPE_LENGTH (type) / unit_size;
280}
281
2fdde8f8
DJ
282/* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
285
286static struct type *
287alloc_type_instance (struct type *oldtype)
288{
289 struct type *type;
290
291 /* Allocate the structure. */
292
e9bb382b 293 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 295 else
1deafd4e
PA
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
297 struct type);
298
2fdde8f8
DJ
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
300
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
302
c16abbde 303 return type;
2fdde8f8
DJ
304}
305
306/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 307 replacing it with something else. Preserve owner information. */
5212577a 308
2fdde8f8
DJ
309static void
310smash_type (struct type *type)
311{
e9bb382b
UW
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
314
2fdde8f8
DJ
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316
e9bb382b
UW
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
320
2fdde8f8
DJ
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
323
324 /* For now, leave the pointer/reference types alone. */
325}
326
c906108c
SS
327/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
331
332struct type *
fba45db2 333make_pointer_type (struct type *type, struct type **typeptr)
c906108c 334{
52f0bd74 335 struct type *ntype; /* New type */
053cb41b 336 struct type *chain;
c906108c
SS
337
338 ntype = TYPE_POINTER_TYPE (type);
339
c5aa993b 340 if (ntype)
c906108c 341 {
c5aa993b 342 if (typeptr == 0)
7ba81444
MS
343 return ntype; /* Don't care about alloc,
344 and have new type. */
c906108c 345 else if (*typeptr == 0)
c5aa993b 346 {
7ba81444 347 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 348 return ntype;
c5aa993b 349 }
c906108c
SS
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
e9bb382b 354 ntype = alloc_type_copy (type);
c906108c
SS
355 if (typeptr)
356 *typeptr = ntype;
357 }
7ba81444 358 else /* We have storage, but need to reset it. */
c906108c
SS
359 {
360 ntype = *typeptr;
053cb41b 361 chain = TYPE_CHAIN (ntype);
2fdde8f8 362 smash_type (ntype);
053cb41b 363 TYPE_CHAIN (ntype) = chain;
c906108c
SS
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
368
5212577a 369 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 370
50810684
UW
371 TYPE_LENGTH (ntype)
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 373 ntype->set_code (TYPE_CODE_PTR);
c906108c 374
67b2adb2 375 /* Mark pointers as unsigned. The target converts between pointers
76e71323 376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 377 gdbarch_address_to_pointer. */
653223d3 378 ntype->set_is_unsigned (true);
c5aa993b 379
053cb41b
JB
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
c906108c
SS
388 return ntype;
389}
390
391/* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394struct type *
fba45db2 395lookup_pointer_type (struct type *type)
c906108c 396{
c5aa993b 397 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
398}
399
7ba81444
MS
400/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
405
406struct type *
3b224330
AV
407make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
c906108c 409{
52f0bd74 410 struct type *ntype; /* New type */
3b224330 411 struct type **reftype;
1e98b326 412 struct type *chain;
c906108c 413
3b224330
AV
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 418
c5aa993b 419 if (ntype)
c906108c 420 {
c5aa993b 421 if (typeptr == 0)
7ba81444
MS
422 return ntype; /* Don't care about alloc,
423 and have new type. */
c906108c 424 else if (*typeptr == 0)
c5aa993b 425 {
7ba81444 426 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 427 return ntype;
c5aa993b 428 }
c906108c
SS
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
e9bb382b 433 ntype = alloc_type_copy (type);
c906108c
SS
434 if (typeptr)
435 *typeptr = ntype;
436 }
7ba81444 437 else /* We have storage, but need to reset it. */
c906108c
SS
438 {
439 ntype = *typeptr;
1e98b326 440 chain = TYPE_CHAIN (ntype);
2fdde8f8 441 smash_type (ntype);
1e98b326 442 TYPE_CHAIN (ntype) = chain;
c906108c
SS
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
c906108c 450
7ba81444
MS
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
c906108c 454
50810684
UW
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 457 ntype->set_code (refcode);
c5aa993b 458
3b224330 459 *reftype = ntype;
c906108c 460
1e98b326
JB
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
464 {
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
467 }
468
c906108c
SS
469 return ntype;
470}
471
7ba81444
MS
472/* Same as above, but caller doesn't care about memory allocation
473 details. */
c906108c
SS
474
475struct type *
3b224330
AV
476lookup_reference_type (struct type *type, enum type_code refcode)
477{
478 return make_reference_type (type, (struct type **) 0, refcode);
479}
480
481/* Lookup the lvalue reference type for the type TYPE. */
482
483struct type *
484lookup_lvalue_reference_type (struct type *type)
485{
486 return lookup_reference_type (type, TYPE_CODE_REF);
487}
488
489/* Lookup the rvalue reference type for the type TYPE. */
490
491struct type *
492lookup_rvalue_reference_type (struct type *type)
c906108c 493{
3b224330 494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
495}
496
7ba81444
MS
497/* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 500 function type we return. We allocate new memory if needed. */
c906108c
SS
501
502struct type *
0c8b41f1 503make_function_type (struct type *type, struct type **typeptr)
c906108c 504{
52f0bd74 505 struct type *ntype; /* New type */
c906108c
SS
506
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 {
e9bb382b 509 ntype = alloc_type_copy (type);
c906108c
SS
510 if (typeptr)
511 *typeptr = ntype;
512 }
7ba81444 513 else /* We have storage, but need to reset it. */
c906108c
SS
514 {
515 ntype = *typeptr;
2fdde8f8 516 smash_type (ntype);
c906108c
SS
517 }
518
519 TYPE_TARGET_TYPE (ntype) = type;
520
521 TYPE_LENGTH (ntype) = 1;
67607e24 522 ntype->set_code (TYPE_CODE_FUNC);
c5aa993b 523
b6cdc2c1
JK
524 INIT_FUNC_SPECIFIC (ntype);
525
c906108c
SS
526 return ntype;
527}
528
c906108c
SS
529/* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
531
532struct type *
fba45db2 533lookup_function_type (struct type *type)
c906108c 534{
0c8b41f1 535 return make_function_type (type, (struct type **) 0);
c906108c
SS
536}
537
71918a86 538/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
539 function type. If the final type in PARAM_TYPES is NULL, make a
540 varargs function. */
71918a86
TT
541
542struct type *
543lookup_function_type_with_arguments (struct type *type,
544 int nparams,
545 struct type **param_types)
546{
547 struct type *fn = make_function_type (type, (struct type **) 0);
548 int i;
549
e314d629 550 if (nparams > 0)
a6fb9c08 551 {
e314d629
TT
552 if (param_types[nparams - 1] == NULL)
553 {
554 --nparams;
1d6286ed 555 fn->set_has_varargs (true);
e314d629 556 }
78134374 557 else if (check_typedef (param_types[nparams - 1])->code ()
e314d629
TT
558 == TYPE_CODE_VOID)
559 {
560 --nparams;
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
27e69b7a 563 fn->set_is_prototyped (true);
e314d629 564 }
54990598 565 else
27e69b7a 566 fn->set_is_prototyped (true);
a6fb9c08
TT
567 }
568
5e33d5f4 569 fn->set_num_fields (nparams);
3cabb6b0
SM
570 fn->set_fields
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
71918a86 572 for (i = 0; i < nparams; ++i)
5d14b6e5 573 fn->field (i).set_type (param_types[i]);
71918a86
TT
574
575 return fn;
576}
577
69896a2c
PA
578/* Identify address space identifier by name -- return a
579 type_instance_flags. */
5212577a 580
314ad88d 581type_instance_flags
69896a2c
PA
582address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
583 const char *space_identifier)
47663de5 584{
314ad88d 585 type_instance_flags type_flags;
d8734c88 586
7ba81444 587 /* Check for known address space delimiters. */
47663de5 588 if (!strcmp (space_identifier, "code"))
876cecd0 589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 590 else if (!strcmp (space_identifier, "data"))
876cecd0 591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
594 space_identifier,
595 &type_flags))
8b2dbe47 596 return type_flags;
47663de5 597 else
8a3fe4f8 598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
599}
600
69896a2c
PA
601/* Identify address space identifier by type_instance_flags and return
602 the string version of the adress space name. */
47663de5 603
321432c0 604const char *
69896a2c
PA
605address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
606 type_instance_flags space_flag)
47663de5 607{
876cecd0 608 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 609 return "code";
876cecd0 610 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 611 return "data";
876cecd0 612 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
613 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
614 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
615 else
616 return NULL;
617}
618
2fdde8f8 619/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
620
621 If STORAGE is non-NULL, create the new type instance there.
622 STORAGE must be in the same obstack as TYPE. */
47663de5 623
b9362cc7 624static struct type *
314ad88d 625make_qualified_type (struct type *type, type_instance_flags new_flags,
2fdde8f8 626 struct type *storage)
47663de5
MS
627{
628 struct type *ntype;
629
630 ntype = type;
5f61c20e
JK
631 do
632 {
10242f36 633 if (ntype->instance_flags () == new_flags)
5f61c20e
JK
634 return ntype;
635 ntype = TYPE_CHAIN (ntype);
636 }
637 while (ntype != type);
47663de5 638
2fdde8f8
DJ
639 /* Create a new type instance. */
640 if (storage == NULL)
641 ntype = alloc_type_instance (type);
642 else
643 {
7ba81444
MS
644 /* If STORAGE was provided, it had better be in the same objfile
645 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
646 if one objfile is freed and the other kept, we'd have
647 dangling pointers. */
ad766c0a
JB
648 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
649
2fdde8f8
DJ
650 ntype = storage;
651 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
652 TYPE_CHAIN (ntype) = ntype;
653 }
47663de5
MS
654
655 /* Pointers or references to the original type are not relevant to
2fdde8f8 656 the new type. */
47663de5
MS
657 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
658 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 659
2fdde8f8
DJ
660 /* Chain the new qualified type to the old type. */
661 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
662 TYPE_CHAIN (type) = ntype;
663
664 /* Now set the instance flags and return the new type. */
314ad88d 665 ntype->set_instance_flags (new_flags);
47663de5 666
ab5d3da6
KB
667 /* Set length of new type to that of the original type. */
668 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
669
47663de5
MS
670 return ntype;
671}
672
2fdde8f8
DJ
673/* Make an address-space-delimited variant of a type -- a type that
674 is identical to the one supplied except that it has an address
675 space attribute attached to it (such as "code" or "data").
676
7ba81444
MS
677 The space attributes "code" and "data" are for Harvard
678 architectures. The address space attributes are for architectures
679 which have alternately sized pointers or pointers with alternate
680 representations. */
2fdde8f8
DJ
681
682struct type *
314ad88d
PA
683make_type_with_address_space (struct type *type,
684 type_instance_flags space_flag)
2fdde8f8 685{
314ad88d
PA
686 type_instance_flags new_flags = ((type->instance_flags ()
687 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
688 | TYPE_INSTANCE_FLAG_DATA_SPACE
689 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
690 | space_flag);
2fdde8f8
DJ
691
692 return make_qualified_type (type, new_flags, NULL);
693}
c906108c
SS
694
695/* Make a "c-v" variant of a type -- a type that is identical to the
696 one supplied except that it may have const or volatile attributes
697 CNST is a flag for setting the const attribute
698 VOLTL is a flag for setting the volatile attribute
699 TYPE is the base type whose variant we are creating.
c906108c 700
ad766c0a
JB
701 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
702 storage to hold the new qualified type; *TYPEPTR and TYPE must be
703 in the same objfile. Otherwise, allocate fresh memory for the new
704 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
705 new type we construct. */
5212577a 706
c906108c 707struct type *
7ba81444
MS
708make_cv_type (int cnst, int voltl,
709 struct type *type,
710 struct type **typeptr)
c906108c 711{
52f0bd74 712 struct type *ntype; /* New type */
c906108c 713
314ad88d
PA
714 type_instance_flags new_flags = (type->instance_flags ()
715 & ~(TYPE_INSTANCE_FLAG_CONST
716 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 717
c906108c 718 if (cnst)
876cecd0 719 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
720
721 if (voltl)
876cecd0 722 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 723
2fdde8f8 724 if (typeptr && *typeptr != NULL)
a02fd225 725 {
ad766c0a
JB
726 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
727 a C-V variant chain that threads across objfiles: if one
728 objfile gets freed, then the other has a broken C-V chain.
729
730 This code used to try to copy over the main type from TYPE to
731 *TYPEPTR if they were in different objfiles, but that's
732 wrong, too: TYPE may have a field list or member function
733 lists, which refer to types of their own, etc. etc. The
734 whole shebang would need to be copied over recursively; you
735 can't have inter-objfile pointers. The only thing to do is
736 to leave stub types as stub types, and look them up afresh by
737 name each time you encounter them. */
738 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
739 }
740
7ba81444
MS
741 ntype = make_qualified_type (type, new_flags,
742 typeptr ? *typeptr : NULL);
c906108c 743
2fdde8f8
DJ
744 if (typeptr != NULL)
745 *typeptr = ntype;
a02fd225 746
2fdde8f8 747 return ntype;
a02fd225 748}
c906108c 749
06d66ee9
TT
750/* Make a 'restrict'-qualified version of TYPE. */
751
752struct type *
753make_restrict_type (struct type *type)
754{
755 return make_qualified_type (type,
10242f36 756 (type->instance_flags ()
06d66ee9
TT
757 | TYPE_INSTANCE_FLAG_RESTRICT),
758 NULL);
759}
760
f1660027
TT
761/* Make a type without const, volatile, or restrict. */
762
763struct type *
764make_unqualified_type (struct type *type)
765{
766 return make_qualified_type (type,
10242f36 767 (type->instance_flags ()
f1660027
TT
768 & ~(TYPE_INSTANCE_FLAG_CONST
769 | TYPE_INSTANCE_FLAG_VOLATILE
770 | TYPE_INSTANCE_FLAG_RESTRICT)),
771 NULL);
772}
773
a2c2acaf
MW
774/* Make a '_Atomic'-qualified version of TYPE. */
775
776struct type *
777make_atomic_type (struct type *type)
778{
779 return make_qualified_type (type,
10242f36 780 (type->instance_flags ()
a2c2acaf
MW
781 | TYPE_INSTANCE_FLAG_ATOMIC),
782 NULL);
783}
784
2fdde8f8
DJ
785/* Replace the contents of ntype with the type *type. This changes the
786 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
787 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 788
cda6c68a
JB
789 In order to build recursive types, it's inevitable that we'll need
790 to update types in place --- but this sort of indiscriminate
791 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
792 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
793 clear if more steps are needed. */
5212577a 794
dd6bda65
DJ
795void
796replace_type (struct type *ntype, struct type *type)
797{
ab5d3da6 798 struct type *chain;
dd6bda65 799
ad766c0a
JB
800 /* These two types had better be in the same objfile. Otherwise,
801 the assignment of one type's main type structure to the other
802 will produce a type with references to objects (names; field
803 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 804 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 805
2fdde8f8 806 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 807
7ba81444
MS
808 /* The type length is not a part of the main type. Update it for
809 each type on the variant chain. */
ab5d3da6 810 chain = ntype;
5f61c20e
JK
811 do
812 {
813 /* Assert that this element of the chain has no address-class bits
814 set in its flags. Such type variants might have type lengths
815 which are supposed to be different from the non-address-class
816 variants. This assertion shouldn't ever be triggered because
817 symbol readers which do construct address-class variants don't
818 call replace_type(). */
819 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
820
821 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
822 chain = TYPE_CHAIN (chain);
823 }
824 while (ntype != chain);
ab5d3da6 825
2fdde8f8
DJ
826 /* Assert that the two types have equivalent instance qualifiers.
827 This should be true for at least all of our debug readers. */
10242f36 828 gdb_assert (ntype->instance_flags () == type->instance_flags ());
dd6bda65
DJ
829}
830
c906108c
SS
831/* Implement direct support for MEMBER_TYPE in GNU C++.
832 May need to construct such a type if this is the first use.
833 The TYPE is the type of the member. The DOMAIN is the type
834 of the aggregate that the member belongs to. */
835
836struct type *
0d5de010 837lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 838{
52f0bd74 839 struct type *mtype;
c906108c 840
e9bb382b 841 mtype = alloc_type_copy (type);
0d5de010 842 smash_to_memberptr_type (mtype, domain, type);
c16abbde 843 return mtype;
c906108c
SS
844}
845
0d5de010
DJ
846/* Return a pointer-to-method type, for a method of type TO_TYPE. */
847
848struct type *
849lookup_methodptr_type (struct type *to_type)
850{
851 struct type *mtype;
852
e9bb382b 853 mtype = alloc_type_copy (to_type);
0b92b5bb 854 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
855 return mtype;
856}
857
7ba81444
MS
858/* Allocate a stub method whose return type is TYPE. This apparently
859 happens for speed of symbol reading, since parsing out the
860 arguments to the method is cpu-intensive, the way we are doing it.
861 So, we will fill in arguments later. This always returns a fresh
862 type. */
c906108c
SS
863
864struct type *
fba45db2 865allocate_stub_method (struct type *type)
c906108c
SS
866{
867 struct type *mtype;
868
e9bb382b 869 mtype = alloc_type_copy (type);
67607e24 870 mtype->set_code (TYPE_CODE_METHOD);
e9bb382b 871 TYPE_LENGTH (mtype) = 1;
b4b73759 872 mtype->set_is_stub (true);
c906108c 873 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 874 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 875 return mtype;
c906108c
SS
876}
877
0f59d5fc
PA
878/* See gdbtypes.h. */
879
880bool
881operator== (const dynamic_prop &l, const dynamic_prop &r)
882{
8c2e4e06 883 if (l.kind () != r.kind ())
0f59d5fc
PA
884 return false;
885
8c2e4e06 886 switch (l.kind ())
0f59d5fc
PA
887 {
888 case PROP_UNDEFINED:
889 return true;
890 case PROP_CONST:
8c2e4e06 891 return l.const_val () == r.const_val ();
0f59d5fc
PA
892 case PROP_ADDR_OFFSET:
893 case PROP_LOCEXPR:
894 case PROP_LOCLIST:
8c2e4e06 895 return l.baton () == r.baton ();
ef83a141 896 case PROP_VARIANT_PARTS:
8c2e4e06 897 return l.variant_parts () == r.variant_parts ();
ef83a141 898 case PROP_TYPE:
8c2e4e06 899 return l.original_type () == r.original_type ();
0f59d5fc
PA
900 }
901
902 gdb_assert_not_reached ("unhandled dynamic_prop kind");
903}
904
905/* See gdbtypes.h. */
906
907bool
908operator== (const range_bounds &l, const range_bounds &r)
909{
910#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
911
912 return (FIELD_EQ (low)
913 && FIELD_EQ (high)
914 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
915 && FIELD_EQ (flag_bound_evaluated)
916 && FIELD_EQ (bias));
0f59d5fc
PA
917
918#undef FIELD_EQ
919}
920
729efb13
SA
921/* Create a range type with a dynamic range from LOW_BOUND to
922 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
923
924struct type *
729efb13
SA
925create_range_type (struct type *result_type, struct type *index_type,
926 const struct dynamic_prop *low_bound,
4e962e74
TT
927 const struct dynamic_prop *high_bound,
928 LONGEST bias)
c906108c 929{
b86352cf
AB
930 /* The INDEX_TYPE should be a type capable of holding the upper and lower
931 bounds, as such a zero sized, or void type makes no sense. */
78134374 932 gdb_assert (index_type->code () != TYPE_CODE_VOID);
b86352cf
AB
933 gdb_assert (TYPE_LENGTH (index_type) > 0);
934
c906108c 935 if (result_type == NULL)
e9bb382b 936 result_type = alloc_type_copy (index_type);
67607e24 937 result_type->set_code (TYPE_CODE_RANGE);
c906108c 938 TYPE_TARGET_TYPE (result_type) = index_type;
e46d3488 939 if (index_type->is_stub ())
8f53807e 940 result_type->set_target_is_stub (true);
c906108c
SS
941 else
942 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 943
c4dfcb36
SM
944 range_bounds *bounds
945 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
946 bounds->low = *low_bound;
947 bounds->high = *high_bound;
948 bounds->bias = bias;
8c2e4e06 949 bounds->stride.set_const_val (0);
c4dfcb36
SM
950
951 result_type->set_bounds (bounds);
5bbd8269 952
8c2e4e06 953 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
653223d3 954 result_type->set_is_unsigned (true);
c906108c 955
45e44d27
JB
956 /* Ada allows the declaration of range types whose upper bound is
957 less than the lower bound, so checking the lower bound is not
958 enough. Make sure we do not mark a range type whose upper bound
959 is negative as unsigned. */
8c2e4e06 960 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
653223d3 961 result_type->set_is_unsigned (false);
45e44d27 962
db558e34
SM
963 result_type->set_endianity_is_not_default
964 (index_type->endianity_is_not_default ());
a05cf17a 965
262452ec 966 return result_type;
c906108c
SS
967}
968
5bbd8269
AB
969/* See gdbtypes.h. */
970
971struct type *
972create_range_type_with_stride (struct type *result_type,
973 struct type *index_type,
974 const struct dynamic_prop *low_bound,
975 const struct dynamic_prop *high_bound,
976 LONGEST bias,
977 const struct dynamic_prop *stride,
978 bool byte_stride_p)
979{
980 result_type = create_range_type (result_type, index_type, low_bound,
981 high_bound, bias);
982
983 gdb_assert (stride != nullptr);
599088e3
SM
984 result_type->bounds ()->stride = *stride;
985 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
5bbd8269
AB
986
987 return result_type;
988}
989
990
991
729efb13
SA
992/* Create a range type using either a blank type supplied in
993 RESULT_TYPE, or creating a new type, inheriting the objfile from
994 INDEX_TYPE.
995
996 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
997 to HIGH_BOUND, inclusive.
998
999 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1000 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1001
1002struct type *
1003create_static_range_type (struct type *result_type, struct type *index_type,
1004 LONGEST low_bound, LONGEST high_bound)
1005{
1006 struct dynamic_prop low, high;
1007
8c2e4e06
SM
1008 low.set_const_val (low_bound);
1009 high.set_const_val (high_bound);
729efb13 1010
4e962e74 1011 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1012
1013 return result_type;
1014}
1015
80180f79
SA
1016/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1017 are static, otherwise returns 0. */
1018
5bbd8269 1019static bool
80180f79
SA
1020has_static_range (const struct range_bounds *bounds)
1021{
5bbd8269
AB
1022 /* If the range doesn't have a defined stride then its stride field will
1023 be initialized to the constant 0. */
8c2e4e06
SM
1024 return (bounds->low.kind () == PROP_CONST
1025 && bounds->high.kind () == PROP_CONST
1026 && bounds->stride.kind () == PROP_CONST);
80180f79
SA
1027}
1028
1029
7ba81444 1030/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
7c6f2712
SM
1031 TYPE.
1032
1033 Return 1 if type is a range type with two defined, constant bounds.
1034 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1035 Else, return -1. */
c906108c
SS
1036
1037int
fba45db2 1038get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1039{
f168693b 1040 type = check_typedef (type);
78134374 1041 switch (type->code ())
c906108c
SS
1042 {
1043 case TYPE_CODE_RANGE:
7c6f2712
SM
1044 /* This function currently only works for ranges with two defined,
1045 constant bounds. */
1046 if (type->bounds ()->low.kind () != PROP_CONST
1047 || type->bounds ()->high.kind () != PROP_CONST)
1048 return -1;
1049
5537ddd0
SM
1050 *lowp = type->bounds ()->low.const_val ();
1051 *highp = type->bounds ()->high.const_val ();
7c6f2712 1052
53a47a3e
TT
1053 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1054 {
1055 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1056 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1057 return 0;
1058 }
c906108c
SS
1059 return 1;
1060 case TYPE_CODE_ENUM:
1f704f76 1061 if (type->num_fields () > 0)
c906108c
SS
1062 {
1063 /* The enums may not be sorted by value, so search all
0963b4bd 1064 entries. */
c906108c
SS
1065 int i;
1066
14e75d8e 1067 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1f704f76 1068 for (i = 0; i < type->num_fields (); i++)
c906108c 1069 {
14e75d8e
JK
1070 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1071 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1072 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1073 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1074 }
1075
7ba81444 1076 /* Set unsigned indicator if warranted. */
c5aa993b 1077 if (*lowp >= 0)
653223d3 1078 type->set_is_unsigned (true);
c906108c
SS
1079 }
1080 else
1081 {
1082 *lowp = 0;
1083 *highp = -1;
1084 }
1085 return 0;
1086 case TYPE_CODE_BOOL:
1087 *lowp = 0;
1088 *highp = 1;
1089 return 0;
1090 case TYPE_CODE_INT:
c5aa993b 1091 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c 1092 return -1;
c6d940a9 1093 if (!type->is_unsigned ())
c906108c 1094 {
c5aa993b 1095 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1096 *highp = -*lowp - 1;
1097 return 0;
1098 }
86a73007 1099 /* fall through */
c906108c
SS
1100 case TYPE_CODE_CHAR:
1101 *lowp = 0;
1102 /* This round-about calculation is to avoid shifting by
7b83ea04 1103 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1104 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1105 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1106 *highp = (*highp - 1) | *highp;
1107 return 0;
1108 default:
1109 return -1;
1110 }
1111}
1112
dbc98a8b
KW
1113/* Assuming TYPE is a simple, non-empty array type, compute its upper
1114 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1115 Save the high bound into HIGH_BOUND if not NULL.
1116
0963b4bd 1117 Return 1 if the operation was successful. Return zero otherwise,
7c6f2712 1118 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
dbc98a8b
KW
1119
1120int
1121get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1122{
3d967001 1123 struct type *index = type->index_type ();
dbc98a8b
KW
1124 LONGEST low = 0;
1125 LONGEST high = 0;
1126 int res;
1127
1128 if (index == NULL)
1129 return 0;
1130
1131 res = get_discrete_bounds (index, &low, &high);
1132 if (res == -1)
1133 return 0;
1134
dbc98a8b
KW
1135 if (low_bound)
1136 *low_bound = low;
1137
1138 if (high_bound)
1139 *high_bound = high;
1140
1141 return 1;
1142}
1143
aa715135
JG
1144/* Assuming that TYPE is a discrete type and VAL is a valid integer
1145 representation of a value of this type, save the corresponding
1146 position number in POS.
1147
1148 Its differs from VAL only in the case of enumeration types. In
1149 this case, the position number of the value of the first listed
1150 enumeration literal is zero; the position number of the value of
1151 each subsequent enumeration literal is one more than that of its
1152 predecessor in the list.
1153
1154 Return 1 if the operation was successful. Return zero otherwise,
1155 in which case the value of POS is unmodified.
1156*/
1157
1158int
1159discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1160{
0bc2354b
TT
1161 if (type->code () == TYPE_CODE_RANGE)
1162 type = TYPE_TARGET_TYPE (type);
1163
78134374 1164 if (type->code () == TYPE_CODE_ENUM)
aa715135
JG
1165 {
1166 int i;
1167
1f704f76 1168 for (i = 0; i < type->num_fields (); i += 1)
aa715135
JG
1169 {
1170 if (val == TYPE_FIELD_ENUMVAL (type, i))
1171 {
1172 *pos = i;
1173 return 1;
1174 }
1175 }
1176 /* Invalid enumeration value. */
1177 return 0;
1178 }
1179 else
1180 {
1181 *pos = val;
1182 return 1;
1183 }
1184}
1185
8dbb1375
HD
1186/* If the array TYPE has static bounds calculate and update its
1187 size, then return true. Otherwise return false and leave TYPE
1188 unchanged. */
1189
1190static bool
1191update_static_array_size (struct type *type)
1192{
78134374 1193 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8dbb1375 1194
3d967001 1195 struct type *range_type = type->index_type ();
8dbb1375 1196
24e99c6c 1197 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
599088e3 1198 && has_static_range (range_type->bounds ())
8dbb1375
HD
1199 && (!type_not_associated (type)
1200 && !type_not_allocated (type)))
1201 {
1202 LONGEST low_bound, high_bound;
1203 int stride;
1204 struct type *element_type;
1205
1206 /* If the array itself doesn't provide a stride value then take
1207 whatever stride the range provides. Don't update BIT_STRIDE as
1208 we don't want to place the stride value from the range into this
1209 arrays bit size field. */
1210 stride = TYPE_FIELD_BITSIZE (type, 0);
1211 if (stride == 0)
107406b7 1212 stride = range_type->bit_stride ();
8dbb1375
HD
1213
1214 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1215 low_bound = high_bound = 0;
1216 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1217 /* Be careful when setting the array length. Ada arrays can be
1218 empty arrays with the high_bound being smaller than the low_bound.
1219 In such cases, the array length should be zero. */
1220 if (high_bound < low_bound)
1221 TYPE_LENGTH (type) = 0;
1222 else if (stride != 0)
1223 {
1224 /* Ensure that the type length is always positive, even in the
1225 case where (for example in Fortran) we have a negative
1226 stride. It is possible to have a single element array with a
1227 negative stride in Fortran (this doesn't mean anything
1228 special, it's still just a single element array) so do
1229 consider that case when touching this code. */
1230 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1231 TYPE_LENGTH (type)
1232 = ((std::abs (stride) * element_count) + 7) / 8;
1233 }
1234 else
1235 TYPE_LENGTH (type) =
1236 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1237
1238 return true;
1239 }
1240
1241 return false;
1242}
1243
7ba81444
MS
1244/* Create an array type using either a blank type supplied in
1245 RESULT_TYPE, or creating a new type, inheriting the objfile from
1246 RANGE_TYPE.
c906108c
SS
1247
1248 Elements will be of type ELEMENT_TYPE, the indices will be of type
1249 RANGE_TYPE.
1250
a405673c
JB
1251 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1252 This byte stride property is added to the resulting array type
1253 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1254 argument can only be used to create types that are objfile-owned
1255 (see add_dyn_prop), meaning that either this function must be called
1256 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1257
1258 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1259 If BIT_STRIDE is not zero, build a packed array type whose element
1260 size is BIT_STRIDE. Otherwise, ignore this parameter.
1261
7ba81444
MS
1262 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1263 sure it is TYPE_CODE_UNDEF before we bash it into an array
1264 type? */
c906108c
SS
1265
1266struct type *
dc53a7ad
JB
1267create_array_type_with_stride (struct type *result_type,
1268 struct type *element_type,
1269 struct type *range_type,
a405673c 1270 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1271 unsigned int bit_stride)
c906108c 1272{
a405673c 1273 if (byte_stride_prop != NULL
8c2e4e06 1274 && byte_stride_prop->kind () == PROP_CONST)
a405673c
JB
1275 {
1276 /* The byte stride is actually not dynamic. Pretend we were
1277 called with bit_stride set instead of byte_stride_prop.
1278 This will give us the same result type, while avoiding
1279 the need to handle this as a special case. */
8c2e4e06 1280 bit_stride = byte_stride_prop->const_val () * 8;
a405673c
JB
1281 byte_stride_prop = NULL;
1282 }
1283
c906108c 1284 if (result_type == NULL)
e9bb382b
UW
1285 result_type = alloc_type_copy (range_type);
1286
67607e24 1287 result_type->set_code (TYPE_CODE_ARRAY);
c906108c 1288 TYPE_TARGET_TYPE (result_type) = element_type;
5bbd8269 1289
5e33d5f4 1290 result_type->set_num_fields (1);
3cabb6b0
SM
1291 result_type->set_fields
1292 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
262abc0d 1293 result_type->set_index_type (range_type);
8dbb1375 1294 if (byte_stride_prop != NULL)
5c54719c 1295 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
8dbb1375
HD
1296 else if (bit_stride > 0)
1297 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
80180f79 1298
8dbb1375 1299 if (!update_static_array_size (result_type))
80180f79
SA
1300 {
1301 /* This type is dynamic and its length needs to be computed
1302 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1303 undefined by setting it to zero. Although we are not expected
1304 to trust TYPE_LENGTH in this case, setting the size to zero
1305 allows us to avoid allocating objects of random sizes in case
1306 we accidently do. */
1307 TYPE_LENGTH (result_type) = 0;
1308 }
1309
a9ff5f12 1310 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1311 if (TYPE_LENGTH (result_type) == 0)
8f53807e 1312 result_type->set_target_is_stub (true);
c906108c 1313
c16abbde 1314 return result_type;
c906108c
SS
1315}
1316
dc53a7ad
JB
1317/* Same as create_array_type_with_stride but with no bit_stride
1318 (BIT_STRIDE = 0), thus building an unpacked array. */
1319
1320struct type *
1321create_array_type (struct type *result_type,
1322 struct type *element_type,
1323 struct type *range_type)
1324{
1325 return create_array_type_with_stride (result_type, element_type,
a405673c 1326 range_type, NULL, 0);
dc53a7ad
JB
1327}
1328
e3506a9f
UW
1329struct type *
1330lookup_array_range_type (struct type *element_type,
63375b74 1331 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1332{
929b5ad4
JB
1333 struct type *index_type;
1334 struct type *range_type;
1335
1336 if (TYPE_OBJFILE_OWNED (element_type))
1337 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1338 else
1339 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1340 range_type = create_static_range_type (NULL, index_type,
1341 low_bound, high_bound);
d8734c88 1342
e3506a9f
UW
1343 return create_array_type (NULL, element_type, range_type);
1344}
1345
7ba81444
MS
1346/* Create a string type using either a blank type supplied in
1347 RESULT_TYPE, or creating a new type. String types are similar
1348 enough to array of char types that we can use create_array_type to
1349 build the basic type and then bash it into a string type.
c906108c
SS
1350
1351 For fixed length strings, the range type contains 0 as the lower
1352 bound and the length of the string minus one as the upper bound.
1353
7ba81444
MS
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into a string
1356 type? */
c906108c
SS
1357
1358struct type *
3b7538c0
UW
1359create_string_type (struct type *result_type,
1360 struct type *string_char_type,
7ba81444 1361 struct type *range_type)
c906108c
SS
1362{
1363 result_type = create_array_type (result_type,
f290d38e 1364 string_char_type,
c906108c 1365 range_type);
67607e24 1366 result_type->set_code (TYPE_CODE_STRING);
c16abbde 1367 return result_type;
c906108c
SS
1368}
1369
e3506a9f
UW
1370struct type *
1371lookup_string_range_type (struct type *string_char_type,
63375b74 1372 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1373{
1374 struct type *result_type;
d8734c88 1375
e3506a9f
UW
1376 result_type = lookup_array_range_type (string_char_type,
1377 low_bound, high_bound);
67607e24 1378 result_type->set_code (TYPE_CODE_STRING);
e3506a9f
UW
1379 return result_type;
1380}
1381
c906108c 1382struct type *
fba45db2 1383create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1384{
c906108c 1385 if (result_type == NULL)
e9bb382b
UW
1386 result_type = alloc_type_copy (domain_type);
1387
67607e24 1388 result_type->set_code (TYPE_CODE_SET);
5e33d5f4 1389 result_type->set_num_fields (1);
3cabb6b0
SM
1390 result_type->set_fields
1391 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
c906108c 1392
e46d3488 1393 if (!domain_type->is_stub ())
c906108c 1394 {
f9780d5b 1395 LONGEST low_bound, high_bound, bit_length;
d8734c88 1396
c906108c
SS
1397 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1398 low_bound = high_bound = 0;
1399 bit_length = high_bound - low_bound + 1;
1400 TYPE_LENGTH (result_type)
1401 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1402 if (low_bound >= 0)
653223d3 1403 result_type->set_is_unsigned (true);
c906108c 1404 }
5d14b6e5 1405 result_type->field (0).set_type (domain_type);
c906108c 1406
c16abbde 1407 return result_type;
c906108c
SS
1408}
1409
ea37ba09
DJ
1410/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1411 and any array types nested inside it. */
1412
1413void
1414make_vector_type (struct type *array_type)
1415{
1416 struct type *inner_array, *elt_type;
ea37ba09
DJ
1417
1418 /* Find the innermost array type, in case the array is
1419 multi-dimensional. */
1420 inner_array = array_type;
78134374 1421 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
ea37ba09
DJ
1422 inner_array = TYPE_TARGET_TYPE (inner_array);
1423
1424 elt_type = TYPE_TARGET_TYPE (inner_array);
78134374 1425 if (elt_type->code () == TYPE_CODE_INT)
ea37ba09 1426 {
314ad88d
PA
1427 type_instance_flags flags
1428 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1429 elt_type = make_qualified_type (elt_type, flags, NULL);
1430 TYPE_TARGET_TYPE (inner_array) = elt_type;
1431 }
1432
2062087b 1433 array_type->set_is_vector (true);
ea37ba09
DJ
1434}
1435
794ac428 1436struct type *
ac3aafc7
EZ
1437init_vector_type (struct type *elt_type, int n)
1438{
1439 struct type *array_type;
d8734c88 1440
e3506a9f 1441 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1442 make_vector_type (array_type);
ac3aafc7
EZ
1443 return array_type;
1444}
1445
09e2d7c7
DE
1446/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1447 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1448 confusing. "self" is a common enough replacement for "this".
1449 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1450 TYPE_CODE_METHOD. */
1451
1452struct type *
1453internal_type_self_type (struct type *type)
1454{
78134374 1455 switch (type->code ())
09e2d7c7
DE
1456 {
1457 case TYPE_CODE_METHODPTR:
1458 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1459 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1460 return NULL;
09e2d7c7
DE
1461 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1462 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1463 case TYPE_CODE_METHOD:
eaaf76ab
DE
1464 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1465 return NULL;
09e2d7c7
DE
1466 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1467 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1468 default:
1469 gdb_assert_not_reached ("bad type");
1470 }
1471}
1472
1473/* Set the type of the class that TYPE belongs to.
1474 In c++ this is the class of "this".
1475 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1476 TYPE_CODE_METHOD. */
1477
1478void
1479set_type_self_type (struct type *type, struct type *self_type)
1480{
78134374 1481 switch (type->code ())
09e2d7c7
DE
1482 {
1483 case TYPE_CODE_METHODPTR:
1484 case TYPE_CODE_MEMBERPTR:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1488 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1489 break;
1490 case TYPE_CODE_METHOD:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 INIT_FUNC_SPECIFIC (type);
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1494 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1495 break;
1496 default:
1497 gdb_assert_not_reached ("bad type");
1498 }
1499}
1500
1501/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1502 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1503 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1504 TYPE doesn't include the offset (that's the value of the MEMBER
1505 itself), but does include the structure type into which it points
1506 (for some reason).
c906108c 1507
7ba81444
MS
1508 When "smashing" the type, we preserve the objfile that the old type
1509 pointed to, since we aren't changing where the type is actually
c906108c
SS
1510 allocated. */
1511
1512void
09e2d7c7 1513smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1514 struct type *to_type)
c906108c 1515{
2fdde8f8 1516 smash_type (type);
67607e24 1517 type->set_code (TYPE_CODE_MEMBERPTR);
c906108c 1518 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1519 set_type_self_type (type, self_type);
0d5de010
DJ
1520 /* Assume that a data member pointer is the same size as a normal
1521 pointer. */
50810684
UW
1522 TYPE_LENGTH (type)
1523 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1524}
1525
0b92b5bb
TT
1526/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1527
1528 When "smashing" the type, we preserve the objfile that the old type
1529 pointed to, since we aren't changing where the type is actually
1530 allocated. */
1531
1532void
1533smash_to_methodptr_type (struct type *type, struct type *to_type)
1534{
1535 smash_type (type);
67607e24 1536 type->set_code (TYPE_CODE_METHODPTR);
0b92b5bb 1537 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1538 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1539 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1540}
1541
09e2d7c7 1542/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1543 METHOD just means `function that gets an extra "this" argument'.
1544
7ba81444
MS
1545 When "smashing" the type, we preserve the objfile that the old type
1546 pointed to, since we aren't changing where the type is actually
c906108c
SS
1547 allocated. */
1548
1549void
09e2d7c7 1550smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1551 struct type *to_type, struct field *args,
1552 int nargs, int varargs)
c906108c 1553{
2fdde8f8 1554 smash_type (type);
67607e24 1555 type->set_code (TYPE_CODE_METHOD);
c906108c 1556 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1557 set_type_self_type (type, self_type);
3cabb6b0 1558 type->set_fields (args);
5e33d5f4 1559 type->set_num_fields (nargs);
ad2f7632 1560 if (varargs)
1d6286ed 1561 type->set_has_varargs (true);
c906108c 1562 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1563}
1564
a737d952 1565/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1566 Since GCC PR debug/47510 DWARF provides associated information to detect the
1567 anonymous class linkage name from its typedef.
1568
1569 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1570 apply it itself. */
1571
1572const char *
a737d952 1573type_name_or_error (struct type *type)
d8228535
JK
1574{
1575 struct type *saved_type = type;
1576 const char *name;
1577 struct objfile *objfile;
1578
f168693b 1579 type = check_typedef (type);
d8228535 1580
7d93a1e0 1581 name = type->name ();
d8228535
JK
1582 if (name != NULL)
1583 return name;
1584
7d93a1e0 1585 name = saved_type->name ();
d8228535
JK
1586 objfile = TYPE_OBJFILE (saved_type);
1587 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1588 name ? name : "<anonymous>",
1589 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1590}
1591
7ba81444
MS
1592/* Lookup a typedef or primitive type named NAME, visible in lexical
1593 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1594 suitably defined. */
c906108c
SS
1595
1596struct type *
e6c014f2 1597lookup_typename (const struct language_defn *language,
b858499d 1598 const char *name,
34eaf542 1599 const struct block *block, int noerr)
c906108c 1600{
52f0bd74 1601 struct symbol *sym;
c906108c 1602
1994afbf 1603 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1604 language->la_language, NULL).symbol;
c51fe631
DE
1605 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1606 return SYMBOL_TYPE (sym);
1607
c51fe631
DE
1608 if (noerr)
1609 return NULL;
1610 error (_("No type named %s."), name);
c906108c
SS
1611}
1612
1613struct type *
e6c014f2 1614lookup_unsigned_typename (const struct language_defn *language,
b858499d 1615 const char *name)
c906108c 1616{
224c3ddb 1617 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1618
1619 strcpy (uns, "unsigned ");
1620 strcpy (uns + 9, name);
b858499d 1621 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1622}
1623
1624struct type *
b858499d 1625lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1626{
1627 struct type *t;
224c3ddb 1628 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1629
1630 strcpy (uns, "signed ");
1631 strcpy (uns + 7, name);
b858499d 1632 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1633 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1634 if (t != NULL)
1635 return t;
b858499d 1636 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1637}
1638
1639/* Lookup a structure type named "struct NAME",
1640 visible in lexical block BLOCK. */
1641
1642struct type *
270140bd 1643lookup_struct (const char *name, const struct block *block)
c906108c 1644{
52f0bd74 1645 struct symbol *sym;
c906108c 1646
d12307c1 1647 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1648
1649 if (sym == NULL)
1650 {
8a3fe4f8 1651 error (_("No struct type named %s."), name);
c906108c 1652 }
78134374 1653 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1654 {
7ba81444
MS
1655 error (_("This context has class, union or enum %s, not a struct."),
1656 name);
c906108c
SS
1657 }
1658 return (SYMBOL_TYPE (sym));
1659}
1660
1661/* Lookup a union type named "union NAME",
1662 visible in lexical block BLOCK. */
1663
1664struct type *
270140bd 1665lookup_union (const char *name, const struct block *block)
c906108c 1666{
52f0bd74 1667 struct symbol *sym;
c5aa993b 1668 struct type *t;
c906108c 1669
d12307c1 1670 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1671
1672 if (sym == NULL)
8a3fe4f8 1673 error (_("No union type named %s."), name);
c906108c 1674
c5aa993b 1675 t = SYMBOL_TYPE (sym);
c906108c 1676
78134374 1677 if (t->code () == TYPE_CODE_UNION)
c16abbde 1678 return t;
c906108c 1679
7ba81444
MS
1680 /* If we get here, it's not a union. */
1681 error (_("This context has class, struct or enum %s, not a union."),
1682 name);
c906108c
SS
1683}
1684
c906108c
SS
1685/* Lookup an enum type named "enum NAME",
1686 visible in lexical block BLOCK. */
1687
1688struct type *
270140bd 1689lookup_enum (const char *name, const struct block *block)
c906108c 1690{
52f0bd74 1691 struct symbol *sym;
c906108c 1692
d12307c1 1693 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1694 if (sym == NULL)
1695 {
8a3fe4f8 1696 error (_("No enum type named %s."), name);
c906108c 1697 }
78134374 1698 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
c906108c 1699 {
7ba81444
MS
1700 error (_("This context has class, struct or union %s, not an enum."),
1701 name);
c906108c
SS
1702 }
1703 return (SYMBOL_TYPE (sym));
1704}
1705
1706/* Lookup a template type named "template NAME<TYPE>",
1707 visible in lexical block BLOCK. */
1708
1709struct type *
61f4b350 1710lookup_template_type (const char *name, struct type *type,
270140bd 1711 const struct block *block)
c906108c
SS
1712{
1713 struct symbol *sym;
7ba81444 1714 char *nam = (char *)
7d93a1e0 1715 alloca (strlen (name) + strlen (type->name ()) + 4);
d8734c88 1716
c906108c
SS
1717 strcpy (nam, name);
1718 strcat (nam, "<");
7d93a1e0 1719 strcat (nam, type->name ());
0963b4bd 1720 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1721
d12307c1 1722 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1723
1724 if (sym == NULL)
1725 {
8a3fe4f8 1726 error (_("No template type named %s."), name);
c906108c 1727 }
78134374 1728 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1729 {
7ba81444
MS
1730 error (_("This context has class, union or enum %s, not a struct."),
1731 name);
c906108c
SS
1732 }
1733 return (SYMBOL_TYPE (sym));
1734}
1735
ef0bd204 1736/* See gdbtypes.h. */
c906108c 1737
ef0bd204
JB
1738struct_elt
1739lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1740{
1741 int i;
1742
1743 for (;;)
1744 {
f168693b 1745 type = check_typedef (type);
78134374
SM
1746 if (type->code () != TYPE_CODE_PTR
1747 && type->code () != TYPE_CODE_REF)
c906108c
SS
1748 break;
1749 type = TYPE_TARGET_TYPE (type);
1750 }
1751
78134374
SM
1752 if (type->code () != TYPE_CODE_STRUCT
1753 && type->code () != TYPE_CODE_UNION)
c906108c 1754 {
2f408ecb
PA
1755 std::string type_name = type_to_string (type);
1756 error (_("Type %s is not a structure or union type."),
1757 type_name.c_str ());
c906108c
SS
1758 }
1759
1f704f76 1760 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
c906108c 1761 {
0d5cff50 1762 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1763
db577aea 1764 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1765 {
ceacbf6e 1766 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1767 }
f5a010c0
PM
1768 else if (!t_field_name || *t_field_name == '\0')
1769 {
ef0bd204 1770 struct_elt elt
940da03e 1771 = lookup_struct_elt (type->field (i).type (), name, 1);
ef0bd204
JB
1772 if (elt.field != NULL)
1773 {
1774 elt.offset += TYPE_FIELD_BITPOS (type, i);
1775 return elt;
1776 }
f5a010c0 1777 }
c906108c
SS
1778 }
1779
1780 /* OK, it's not in this class. Recursively check the baseclasses. */
1781 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1782 {
ef0bd204
JB
1783 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1784 if (elt.field != NULL)
1785 return elt;
c906108c
SS
1786 }
1787
1788 if (noerr)
ef0bd204 1789 return {nullptr, 0};
c5aa993b 1790
2f408ecb
PA
1791 std::string type_name = type_to_string (type);
1792 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1793}
1794
ef0bd204
JB
1795/* See gdbtypes.h. */
1796
1797struct type *
1798lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1799{
1800 struct_elt elt = lookup_struct_elt (type, name, noerr);
1801 if (elt.field != NULL)
b6cdac4b 1802 return elt.field->type ();
ef0bd204
JB
1803 else
1804 return NULL;
1805}
1806
ed3ef339
DE
1807/* Store in *MAX the largest number representable by unsigned integer type
1808 TYPE. */
1809
1810void
1811get_unsigned_type_max (struct type *type, ULONGEST *max)
1812{
1813 unsigned int n;
1814
f168693b 1815 type = check_typedef (type);
c6d940a9 1816 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
ed3ef339
DE
1817 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1818
1819 /* Written this way to avoid overflow. */
1820 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1821 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1822}
1823
1824/* Store in *MIN, *MAX the smallest and largest numbers representable by
1825 signed integer type TYPE. */
1826
1827void
1828get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1829{
1830 unsigned int n;
1831
f168693b 1832 type = check_typedef (type);
c6d940a9 1833 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
ed3ef339
DE
1834 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1835
1836 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1837 *min = -((ULONGEST) 1 << (n - 1));
1838 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1839}
1840
ae6ae975
DE
1841/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1842 cplus_stuff.vptr_fieldno.
1843
1844 cplus_stuff is initialized to cplus_struct_default which does not
1845 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1846 designated initializers). We cope with that here. */
1847
1848int
1849internal_type_vptr_fieldno (struct type *type)
1850{
f168693b 1851 type = check_typedef (type);
78134374
SM
1852 gdb_assert (type->code () == TYPE_CODE_STRUCT
1853 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 return -1;
1856 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1857}
1858
1859/* Set the value of cplus_stuff.vptr_fieldno. */
1860
1861void
1862set_type_vptr_fieldno (struct type *type, int fieldno)
1863{
f168693b 1864 type = check_typedef (type);
78134374
SM
1865 gdb_assert (type->code () == TYPE_CODE_STRUCT
1866 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1867 if (!HAVE_CPLUS_STRUCT (type))
1868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1869 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1870}
1871
1872/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1873 cplus_stuff.vptr_basetype. */
1874
1875struct type *
1876internal_type_vptr_basetype (struct type *type)
1877{
f168693b 1878 type = check_typedef (type);
78134374
SM
1879 gdb_assert (type->code () == TYPE_CODE_STRUCT
1880 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1882 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1883}
1884
1885/* Set the value of cplus_stuff.vptr_basetype. */
1886
1887void
1888set_type_vptr_basetype (struct type *type, struct type *basetype)
1889{
f168693b 1890 type = check_typedef (type);
78134374
SM
1891 gdb_assert (type->code () == TYPE_CODE_STRUCT
1892 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1893 if (!HAVE_CPLUS_STRUCT (type))
1894 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1895 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1896}
1897
81fe8080
DE
1898/* Lookup the vptr basetype/fieldno values for TYPE.
1899 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1900 vptr_fieldno. Also, if found and basetype is from the same objfile,
1901 cache the results.
1902 If not found, return -1 and ignore BASETYPEP.
1903 Callers should be aware that in some cases (for example,
c906108c 1904 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1905 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1906 this function will not be able to find the
7ba81444 1907 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1908 vptr_basetype will remain NULL or incomplete. */
c906108c 1909
81fe8080
DE
1910int
1911get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1912{
f168693b 1913 type = check_typedef (type);
c906108c
SS
1914
1915 if (TYPE_VPTR_FIELDNO (type) < 0)
1916 {
1917 int i;
1918
7ba81444
MS
1919 /* We must start at zero in case the first (and only) baseclass
1920 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1921 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1922 {
81fe8080
DE
1923 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1924 int fieldno;
1925 struct type *basetype;
1926
1927 fieldno = get_vptr_fieldno (baseclass, &basetype);
1928 if (fieldno >= 0)
c906108c 1929 {
81fe8080 1930 /* If the type comes from a different objfile we can't cache
0963b4bd 1931 it, it may have a different lifetime. PR 2384 */
5ef73790 1932 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1933 {
ae6ae975
DE
1934 set_type_vptr_fieldno (type, fieldno);
1935 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1936 }
1937 if (basetypep)
1938 *basetypep = basetype;
1939 return fieldno;
c906108c
SS
1940 }
1941 }
81fe8080
DE
1942
1943 /* Not found. */
1944 return -1;
1945 }
1946 else
1947 {
1948 if (basetypep)
1949 *basetypep = TYPE_VPTR_BASETYPE (type);
1950 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1951 }
1952}
1953
44e1a9eb
DJ
1954static void
1955stub_noname_complaint (void)
1956{
b98664d3 1957 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1958}
1959
a405673c
JB
1960/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1961 attached to it, and that property has a non-constant value. */
1962
1963static int
1964array_type_has_dynamic_stride (struct type *type)
1965{
24e99c6c 1966 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c 1967
8c2e4e06 1968 return (prop != NULL && prop->kind () != PROP_CONST);
a405673c
JB
1969}
1970
d98b7a16 1971/* Worker for is_dynamic_type. */
80180f79 1972
d98b7a16 1973static int
ee715b5a 1974is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1975{
1976 type = check_typedef (type);
1977
e771e4be 1978 /* We only want to recognize references at the outermost level. */
78134374 1979 if (top_level && type->code () == TYPE_CODE_REF)
e771e4be
PMR
1980 type = check_typedef (TYPE_TARGET_TYPE (type));
1981
3cdcd0ce
JB
1982 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1983 dynamic, even if the type itself is statically defined.
1984 From a user's point of view, this may appear counter-intuitive;
1985 but it makes sense in this context, because the point is to determine
1986 whether any part of the type needs to be resolved before it can
1987 be exploited. */
1988 if (TYPE_DATA_LOCATION (type) != NULL
1989 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1990 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1991 return 1;
1992
3f2f83dd
KB
1993 if (TYPE_ASSOCIATED_PROP (type))
1994 return 1;
1995
1996 if (TYPE_ALLOCATED_PROP (type))
1997 return 1;
1998
24e99c6c 1999 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
8c2e4e06 2000 if (prop != nullptr && prop->kind () != PROP_TYPE)
ef83a141
TT
2001 return 1;
2002
f8e89861
TT
2003 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2004 return 1;
2005
78134374 2006 switch (type->code ())
80180f79 2007 {
6f8a3220 2008 case TYPE_CODE_RANGE:
ddb87a81
JB
2009 {
2010 /* A range type is obviously dynamic if it has at least one
2011 dynamic bound. But also consider the range type to be
2012 dynamic when its subtype is dynamic, even if the bounds
2013 of the range type are static. It allows us to assume that
2014 the subtype of a static range type is also static. */
599088e3 2015 return (!has_static_range (type->bounds ())
ee715b5a 2016 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 2017 }
6f8a3220 2018
216a7e6b
AB
2019 case TYPE_CODE_STRING:
2020 /* Strings are very much like an array of characters, and can be
2021 treated as one here. */
80180f79
SA
2022 case TYPE_CODE_ARRAY:
2023 {
1f704f76 2024 gdb_assert (type->num_fields () == 1);
6f8a3220 2025
a405673c 2026 /* The array is dynamic if either the bounds are dynamic... */
3d967001 2027 if (is_dynamic_type_internal (type->index_type (), 0))
80180f79 2028 return 1;
a405673c
JB
2029 /* ... or the elements it contains have a dynamic contents... */
2030 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2031 return 1;
2032 /* ... or if it has a dynamic stride... */
2033 if (array_type_has_dynamic_stride (type))
2034 return 1;
2035 return 0;
80180f79 2036 }
012370f6
TT
2037
2038 case TYPE_CODE_STRUCT:
2039 case TYPE_CODE_UNION:
2040 {
2041 int i;
2042
7d79de9a
TT
2043 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2044
1f704f76 2045 for (i = 0; i < type->num_fields (); ++i)
7d79de9a
TT
2046 {
2047 /* Static fields can be ignored here. */
ceacbf6e 2048 if (field_is_static (&type->field (i)))
7d79de9a
TT
2049 continue;
2050 /* If the field has dynamic type, then so does TYPE. */
940da03e 2051 if (is_dynamic_type_internal (type->field (i).type (), 0))
7d79de9a
TT
2052 return 1;
2053 /* If the field is at a fixed offset, then it is not
2054 dynamic. */
2055 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2056 continue;
2057 /* Do not consider C++ virtual base types to be dynamic
2058 due to the field's offset being dynamic; these are
2059 handled via other means. */
2060 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2061 continue;
012370f6 2062 return 1;
7d79de9a 2063 }
012370f6
TT
2064 }
2065 break;
80180f79 2066 }
92e2a17f
TT
2067
2068 return 0;
80180f79
SA
2069}
2070
d98b7a16
TT
2071/* See gdbtypes.h. */
2072
2073int
2074is_dynamic_type (struct type *type)
2075{
ee715b5a 2076 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2077}
2078
df25ebbd 2079static struct type *resolve_dynamic_type_internal
ee715b5a 2080 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2081
df25ebbd
JB
2082/* Given a dynamic range type (dyn_range_type) and a stack of
2083 struct property_addr_info elements, return a static version
2084 of that type. */
d190df30 2085
80180f79 2086static struct type *
df25ebbd
JB
2087resolve_dynamic_range (struct type *dyn_range_type,
2088 struct property_addr_info *addr_stack)
80180f79
SA
2089{
2090 CORE_ADDR value;
ddb87a81 2091 struct type *static_range_type, *static_target_type;
5bbd8269 2092 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2093
78134374 2094 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
80180f79 2095
599088e3 2096 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
63e43d3a 2097 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2098 low_bound.set_const_val (value);
80180f79 2099 else
8c2e4e06 2100 low_bound.set_undefined ();
80180f79 2101
599088e3 2102 prop = &dyn_range_type->bounds ()->high;
63e43d3a 2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79 2104 {
8c2e4e06 2105 high_bound.set_const_val (value);
c451ebe5 2106
599088e3 2107 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
8c2e4e06
SM
2108 high_bound.set_const_val
2109 (low_bound.const_val () + high_bound.const_val () - 1);
80180f79
SA
2110 }
2111 else
8c2e4e06 2112 high_bound.set_undefined ();
80180f79 2113
599088e3
SM
2114 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2115 prop = &dyn_range_type->bounds ()->stride;
5bbd8269
AB
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 {
8c2e4e06 2118 stride.set_const_val (value);
5bbd8269
AB
2119
2120 /* If we have a bit stride that is not an exact number of bytes then
2121 I really don't think this is going to work with current GDB, the
2122 array indexing code in GDB seems to be pretty heavily tied to byte
2123 offsets right now. Assuming 8 bits in a byte. */
2124 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2125 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2126 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2127 error (_("bit strides that are not a multiple of the byte size "
2128 "are currently not supported"));
2129 }
2130 else
2131 {
8c2e4e06 2132 stride.set_undefined ();
5bbd8269
AB
2133 byte_stride_p = true;
2134 }
2135
ddb87a81
JB
2136 static_target_type
2137 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2138 addr_stack, 0);
599088e3 2139 LONGEST bias = dyn_range_type->bounds ()->bias;
5bbd8269
AB
2140 static_range_type = create_range_type_with_stride
2141 (copy_type (dyn_range_type), static_target_type,
2142 &low_bound, &high_bound, bias, &stride, byte_stride_p);
599088e3 2143 static_range_type->bounds ()->flag_bound_evaluated = 1;
6f8a3220
JB
2144 return static_range_type;
2145}
2146
216a7e6b
AB
2147/* Resolves dynamic bound values of an array or string type TYPE to static
2148 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2149 needed during the dynamic resolution. */
6f8a3220
JB
2150
2151static struct type *
216a7e6b
AB
2152resolve_dynamic_array_or_string (struct type *type,
2153 struct property_addr_info *addr_stack)
6f8a3220
JB
2154{
2155 CORE_ADDR value;
2156 struct type *elt_type;
2157 struct type *range_type;
2158 struct type *ary_dim;
3f2f83dd 2159 struct dynamic_prop *prop;
a405673c 2160 unsigned int bit_stride = 0;
6f8a3220 2161
216a7e6b
AB
2162 /* For dynamic type resolution strings can be treated like arrays of
2163 characters. */
78134374
SM
2164 gdb_assert (type->code () == TYPE_CODE_ARRAY
2165 || type->code () == TYPE_CODE_STRING);
6f8a3220 2166
3f2f83dd
KB
2167 type = copy_type (type);
2168
6f8a3220 2169 elt_type = type;
3d967001 2170 range_type = check_typedef (elt_type->index_type ());
df25ebbd 2171 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2172
3f2f83dd
KB
2173 /* Resolve allocated/associated here before creating a new array type, which
2174 will update the length of the array accordingly. */
2175 prop = TYPE_ALLOCATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06
SM
2177 prop->set_const_val (value);
2178
3f2f83dd
KB
2179 prop = TYPE_ASSOCIATED_PROP (type);
2180 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2181 prop->set_const_val (value);
3f2f83dd 2182
80180f79
SA
2183 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2184
78134374 2185 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
216a7e6b 2186 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2187 else
2188 elt_type = TYPE_TARGET_TYPE (type);
2189
24e99c6c 2190 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2191 if (prop != NULL)
2192 {
603490bf 2193 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c 2194 {
7aa91313 2195 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2196 bit_stride = (unsigned int) (value * 8);
2197 }
2198 else
2199 {
2200 /* Could be a bug in our code, but it could also happen
2201 if the DWARF info is not correct. Issue a warning,
2202 and assume no byte/bit stride (leave bit_stride = 0). */
2203 warning (_("cannot determine array stride for type %s"),
7d93a1e0 2204 type->name () ? type->name () : "<no name>");
a405673c
JB
2205 }
2206 }
2207 else
2208 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2209
2210 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2211 bit_stride);
80180f79
SA
2212}
2213
012370f6 2214/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2215 bounds. ADDR_STACK is a stack of struct property_addr_info
2216 to be used if needed during the dynamic resolution. */
012370f6
TT
2217
2218static struct type *
df25ebbd
JB
2219resolve_dynamic_union (struct type *type,
2220 struct property_addr_info *addr_stack)
012370f6
TT
2221{
2222 struct type *resolved_type;
2223 int i;
2224 unsigned int max_len = 0;
2225
78134374 2226 gdb_assert (type->code () == TYPE_CODE_UNION);
012370f6
TT
2227
2228 resolved_type = copy_type (type);
3cabb6b0
SM
2229 resolved_type->set_fields
2230 ((struct field *)
2231 TYPE_ALLOC (resolved_type,
2232 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2233 memcpy (resolved_type->fields (),
2234 type->fields (),
1f704f76
SM
2235 resolved_type->num_fields () * sizeof (struct field));
2236 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6
TT
2237 {
2238 struct type *t;
2239
ceacbf6e 2240 if (field_is_static (&type->field (i)))
012370f6
TT
2241 continue;
2242
940da03e 2243 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
ee715b5a 2244 addr_stack, 0);
5d14b6e5 2245 resolved_type->field (i).set_type (t);
2f33032a
KS
2246
2247 struct type *real_type = check_typedef (t);
2248 if (TYPE_LENGTH (real_type) > max_len)
2249 max_len = TYPE_LENGTH (real_type);
012370f6
TT
2250 }
2251
2252 TYPE_LENGTH (resolved_type) = max_len;
2253 return resolved_type;
2254}
2255
ef83a141
TT
2256/* See gdbtypes.h. */
2257
2258bool
2259variant::matches (ULONGEST value, bool is_unsigned) const
2260{
2261 for (const discriminant_range &range : discriminants)
2262 if (range.contains (value, is_unsigned))
2263 return true;
2264 return false;
2265}
2266
2267static void
2268compute_variant_fields_inner (struct type *type,
2269 struct property_addr_info *addr_stack,
2270 const variant_part &part,
2271 std::vector<bool> &flags);
2272
2273/* A helper function to determine which variant fields will be active.
2274 This handles both the variant's direct fields, and any variant
2275 parts embedded in this variant. TYPE is the type we're examining.
2276 ADDR_STACK holds information about the concrete object. VARIANT is
2277 the current variant to be handled. FLAGS is where the results are
2278 stored -- this function sets the Nth element in FLAGS if the
2279 corresponding field is enabled. ENABLED is whether this variant is
2280 enabled or not. */
2281
2282static void
2283compute_variant_fields_recurse (struct type *type,
2284 struct property_addr_info *addr_stack,
2285 const variant &variant,
2286 std::vector<bool> &flags,
2287 bool enabled)
2288{
2289 for (int field = variant.first_field; field < variant.last_field; ++field)
2290 flags[field] = enabled;
2291
2292 for (const variant_part &new_part : variant.parts)
2293 {
2294 if (enabled)
2295 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2296 else
2297 {
2298 for (const auto &sub_variant : new_part.variants)
2299 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2300 flags, enabled);
2301 }
2302 }
2303}
2304
2305/* A helper function to determine which variant fields will be active.
2306 This evaluates the discriminant, decides which variant (if any) is
2307 active, and then updates FLAGS to reflect which fields should be
2308 available. TYPE is the type we're examining. ADDR_STACK holds
2309 information about the concrete object. VARIANT is the current
2310 variant to be handled. FLAGS is where the results are stored --
2311 this function sets the Nth element in FLAGS if the corresponding
2312 field is enabled. */
2313
2314static void
2315compute_variant_fields_inner (struct type *type,
2316 struct property_addr_info *addr_stack,
2317 const variant_part &part,
2318 std::vector<bool> &flags)
2319{
2320 /* Evaluate the discriminant. */
2321 gdb::optional<ULONGEST> discr_value;
2322 if (part.discriminant_index != -1)
2323 {
2324 int idx = part.discriminant_index;
2325
2326 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2327 error (_("Cannot determine struct field location"
2328 " (invalid location kind)"));
2329
b249d2c2
TT
2330 if (addr_stack->valaddr.data () != NULL)
2331 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2332 idx);
ef83a141
TT
2333 else
2334 {
2335 CORE_ADDR addr = (addr_stack->addr
2336 + (TYPE_FIELD_BITPOS (type, idx)
2337 / TARGET_CHAR_BIT));
2338
2339 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2340 LONGEST size = bitsize / 8;
2341 if (size == 0)
940da03e 2342 size = TYPE_LENGTH (type->field (idx).type ());
ef83a141
TT
2343
2344 gdb_byte bits[sizeof (ULONGEST)];
2345 read_memory (addr, bits, size);
2346
2347 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2348 % TARGET_CHAR_BIT);
2349
940da03e 2350 discr_value = unpack_bits_as_long (type->field (idx).type (),
ef83a141
TT
2351 bits, bitpos, bitsize);
2352 }
2353 }
2354
2355 /* Go through each variant and see which applies. */
2356 const variant *default_variant = nullptr;
2357 const variant *applied_variant = nullptr;
2358 for (const auto &variant : part.variants)
2359 {
2360 if (variant.is_default ())
2361 default_variant = &variant;
2362 else if (discr_value.has_value ()
2363 && variant.matches (*discr_value, part.is_unsigned))
2364 {
2365 applied_variant = &variant;
2366 break;
2367 }
2368 }
2369 if (applied_variant == nullptr)
2370 applied_variant = default_variant;
2371
2372 for (const auto &variant : part.variants)
2373 compute_variant_fields_recurse (type, addr_stack, variant,
2374 flags, applied_variant == &variant);
2375}
2376
2377/* Determine which variant fields are available in TYPE. The enabled
2378 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2379 about the concrete object. PARTS describes the top-level variant
2380 parts for this type. */
2381
2382static void
2383compute_variant_fields (struct type *type,
2384 struct type *resolved_type,
2385 struct property_addr_info *addr_stack,
2386 const gdb::array_view<variant_part> &parts)
2387{
2388 /* Assume all fields are included by default. */
1f704f76 2389 std::vector<bool> flags (resolved_type->num_fields (), true);
ef83a141
TT
2390
2391 /* Now disable fields based on the variants that control them. */
2392 for (const auto &part : parts)
2393 compute_variant_fields_inner (type, addr_stack, part, flags);
2394
5e33d5f4
SM
2395 resolved_type->set_num_fields
2396 (std::count (flags.begin (), flags.end (), true));
3cabb6b0
SM
2397 resolved_type->set_fields
2398 ((struct field *)
2399 TYPE_ALLOC (resolved_type,
2400 resolved_type->num_fields () * sizeof (struct field)));
2401
ef83a141 2402 int out = 0;
1f704f76 2403 for (int i = 0; i < type->num_fields (); ++i)
ef83a141
TT
2404 {
2405 if (!flags[i])
2406 continue;
2407
ceacbf6e 2408 resolved_type->field (out) = type->field (i);
ef83a141
TT
2409 ++out;
2410 }
2411}
2412
012370f6 2413/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2414 bounds. ADDR_STACK is a stack of struct property_addr_info to
2415 be used if needed during the dynamic resolution. */
012370f6
TT
2416
2417static struct type *
df25ebbd
JB
2418resolve_dynamic_struct (struct type *type,
2419 struct property_addr_info *addr_stack)
012370f6
TT
2420{
2421 struct type *resolved_type;
2422 int i;
6908c509 2423 unsigned resolved_type_bit_length = 0;
012370f6 2424
78134374 2425 gdb_assert (type->code () == TYPE_CODE_STRUCT);
1f704f76 2426 gdb_assert (type->num_fields () > 0);
012370f6
TT
2427
2428 resolved_type = copy_type (type);
ef83a141 2429
24e99c6c 2430 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
8c2e4e06 2431 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
ef83a141
TT
2432 {
2433 compute_variant_fields (type, resolved_type, addr_stack,
8c2e4e06 2434 *variant_prop->variant_parts ());
ef83a141
TT
2435 /* We want to leave the property attached, so that the Rust code
2436 can tell whether the type was originally an enum. */
8c2e4e06 2437 variant_prop->set_original_type (type);
ef83a141
TT
2438 }
2439 else
2440 {
3cabb6b0
SM
2441 resolved_type->set_fields
2442 ((struct field *)
2443 TYPE_ALLOC (resolved_type,
2444 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2445 memcpy (resolved_type->fields (),
2446 type->fields (),
1f704f76 2447 resolved_type->num_fields () * sizeof (struct field));
ef83a141
TT
2448 }
2449
1f704f76 2450 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6 2451 {
6908c509 2452 unsigned new_bit_length;
df25ebbd 2453 struct property_addr_info pinfo;
012370f6 2454
ceacbf6e 2455 if (field_is_static (&resolved_type->field (i)))
012370f6
TT
2456 continue;
2457
7d79de9a
TT
2458 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2459 {
2460 struct dwarf2_property_baton baton;
2461 baton.property_type
940da03e 2462 = lookup_pointer_type (resolved_type->field (i).type ());
7d79de9a
TT
2463 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2464
2465 struct dynamic_prop prop;
8c2e4e06 2466 prop.set_locexpr (&baton);
7d79de9a
TT
2467
2468 CORE_ADDR addr;
2469 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2470 true))
ceacbf6e 2471 SET_FIELD_BITPOS (resolved_type->field (i),
7d79de9a
TT
2472 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2473 }
2474
6908c509
JB
2475 /* As we know this field is not a static field, the field's
2476 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2477 this is the case, but only trigger a simple error rather
2478 than an internal error if that fails. While failing
2479 that verification indicates a bug in our code, the error
2480 is not severe enough to suggest to the user he stops
2481 his debugging session because of it. */
ef83a141 2482 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2483 error (_("Cannot determine struct field location"
2484 " (invalid location kind)"));
df25ebbd 2485
940da03e 2486 pinfo.type = check_typedef (resolved_type->field (i).type ());
c3345124 2487 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2488 pinfo.addr
2489 = (addr_stack->addr
2490 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2491 pinfo.next = addr_stack;
2492
5d14b6e5 2493 resolved_type->field (i).set_type
940da03e 2494 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
5d14b6e5 2495 &pinfo, 0));
df25ebbd
JB
2496 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2497 == FIELD_LOC_KIND_BITPOS);
2498
6908c509
JB
2499 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2500 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2501 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2502 else
2f33032a
KS
2503 {
2504 struct type *real_type
2505 = check_typedef (resolved_type->field (i).type ());
2506
2507 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2508 }
6908c509
JB
2509
2510 /* Normally, we would use the position and size of the last field
2511 to determine the size of the enclosing structure. But GCC seems
2512 to be encoding the position of some fields incorrectly when
2513 the struct contains a dynamic field that is not placed last.
2514 So we compute the struct size based on the field that has
2515 the highest position + size - probably the best we can do. */
2516 if (new_bit_length > resolved_type_bit_length)
2517 resolved_type_bit_length = new_bit_length;
012370f6
TT
2518 }
2519
9920b434
BH
2520 /* The length of a type won't change for fortran, but it does for C and Ada.
2521 For fortran the size of dynamic fields might change over time but not the
2522 type length of the structure. If we adapt it, we run into problems
2523 when calculating the element offset for arrays of structs. */
2524 if (current_language->la_language != language_fortran)
2525 TYPE_LENGTH (resolved_type)
2526 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2527
9e195661
PMR
2528 /* The Ada language uses this field as a cache for static fixed types: reset
2529 it as RESOLVED_TYPE must have its own static fixed type. */
2530 TYPE_TARGET_TYPE (resolved_type) = NULL;
2531
012370f6
TT
2532 return resolved_type;
2533}
2534
d98b7a16 2535/* Worker for resolved_dynamic_type. */
80180f79 2536
d98b7a16 2537static struct type *
df25ebbd 2538resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2539 struct property_addr_info *addr_stack,
2540 int top_level)
80180f79
SA
2541{
2542 struct type *real_type = check_typedef (type);
f8e89861 2543 struct type *resolved_type = nullptr;
d9823cbb 2544 struct dynamic_prop *prop;
3cdcd0ce 2545 CORE_ADDR value;
80180f79 2546
ee715b5a 2547 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2548 return type;
2549
f8e89861
TT
2550 gdb::optional<CORE_ADDR> type_length;
2551 prop = TYPE_DYNAMIC_LENGTH (type);
2552 if (prop != NULL
2553 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2554 type_length = value;
2555
78134374 2556 if (type->code () == TYPE_CODE_TYPEDEF)
6f8a3220 2557 {
cac9b138
JK
2558 resolved_type = copy_type (type);
2559 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2560 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2561 top_level);
5537b577
JK
2562 }
2563 else
2564 {
2565 /* Before trying to resolve TYPE, make sure it is not a stub. */
2566 type = real_type;
012370f6 2567
78134374 2568 switch (type->code ())
5537b577 2569 {
e771e4be
PMR
2570 case TYPE_CODE_REF:
2571 {
2572 struct property_addr_info pinfo;
2573
2574 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
b249d2c2
TT
2575 pinfo.valaddr = {};
2576 if (addr_stack->valaddr.data () != NULL)
2577 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2578 type);
c3345124
JB
2579 else
2580 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2581 pinfo.next = addr_stack;
2582
2583 resolved_type = copy_type (type);
2584 TYPE_TARGET_TYPE (resolved_type)
2585 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2586 &pinfo, top_level);
2587 break;
2588 }
2589
216a7e6b
AB
2590 case TYPE_CODE_STRING:
2591 /* Strings are very much like an array of characters, and can be
2592 treated as one here. */
5537b577 2593 case TYPE_CODE_ARRAY:
216a7e6b 2594 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2595 break;
2596
2597 case TYPE_CODE_RANGE:
df25ebbd 2598 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2599 break;
2600
2601 case TYPE_CODE_UNION:
df25ebbd 2602 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2603 break;
2604
2605 case TYPE_CODE_STRUCT:
df25ebbd 2606 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2607 break;
2608 }
6f8a3220 2609 }
80180f79 2610
f8e89861
TT
2611 if (resolved_type == nullptr)
2612 return type;
2613
2614 if (type_length.has_value ())
2615 {
2616 TYPE_LENGTH (resolved_type) = *type_length;
7aa91313 2617 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
f8e89861
TT
2618 }
2619
3cdcd0ce
JB
2620 /* Resolve data_location attribute. */
2621 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2622 if (prop != NULL
2623 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2624 prop->set_const_val (value);
3cdcd0ce 2625
80180f79
SA
2626 return resolved_type;
2627}
2628
d98b7a16
TT
2629/* See gdbtypes.h */
2630
2631struct type *
b249d2c2
TT
2632resolve_dynamic_type (struct type *type,
2633 gdb::array_view<const gdb_byte> valaddr,
c3345124 2634 CORE_ADDR addr)
d98b7a16 2635{
c3345124
JB
2636 struct property_addr_info pinfo
2637 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2638
ee715b5a 2639 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2640}
2641
d9823cbb
KB
2642/* See gdbtypes.h */
2643
24e99c6c
SM
2644dynamic_prop *
2645type::dyn_prop (dynamic_prop_node_kind prop_kind) const
d9823cbb 2646{
98d48915 2647 dynamic_prop_list *node = this->main_type->dyn_prop_list;
d9823cbb
KB
2648
2649 while (node != NULL)
2650 {
2651 if (node->prop_kind == prop_kind)
283a9958 2652 return &node->prop;
d9823cbb
KB
2653 node = node->next;
2654 }
2655 return NULL;
2656}
2657
2658/* See gdbtypes.h */
2659
2660void
5c54719c 2661type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
d9823cbb
KB
2662{
2663 struct dynamic_prop_list *temp;
2664
5c54719c 2665 gdb_assert (TYPE_OBJFILE_OWNED (this));
d9823cbb 2666
5c54719c 2667 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
50a82047 2668 struct dynamic_prop_list);
d9823cbb 2669 temp->prop_kind = prop_kind;
283a9958 2670 temp->prop = prop;
98d48915 2671 temp->next = this->main_type->dyn_prop_list;
d9823cbb 2672
98d48915 2673 this->main_type->dyn_prop_list = temp;
d9823cbb
KB
2674}
2675
7aa91313 2676/* See gdbtypes.h. */
9920b434
BH
2677
2678void
7aa91313 2679type::remove_dyn_prop (dynamic_prop_node_kind kind)
9920b434
BH
2680{
2681 struct dynamic_prop_list *prev_node, *curr_node;
2682
98d48915 2683 curr_node = this->main_type->dyn_prop_list;
9920b434
BH
2684 prev_node = NULL;
2685
2686 while (NULL != curr_node)
2687 {
7aa91313 2688 if (curr_node->prop_kind == kind)
9920b434
BH
2689 {
2690 /* Update the linked list but don't free anything.
2691 The property was allocated on objstack and it is not known
2692 if we are on top of it. Nevertheless, everything is released
2693 when the complete objstack is freed. */
2694 if (NULL == prev_node)
98d48915 2695 this->main_type->dyn_prop_list = curr_node->next;
9920b434
BH
2696 else
2697 prev_node->next = curr_node->next;
2698
2699 return;
2700 }
2701
2702 prev_node = curr_node;
2703 curr_node = curr_node->next;
2704 }
2705}
d9823cbb 2706
92163a10
JK
2707/* Find the real type of TYPE. This function returns the real type,
2708 after removing all layers of typedefs, and completing opaque or stub
2709 types. Completion changes the TYPE argument, but stripping of
2710 typedefs does not.
2711
2712 Instance flags (e.g. const/volatile) are preserved as typedefs are
2713 stripped. If necessary a new qualified form of the underlying type
2714 is created.
2715
2716 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2717 not been computed and we're either in the middle of reading symbols, or
2718 there was no name for the typedef in the debug info.
2719
9bc118a5
DE
2720 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2721 QUITs in the symbol reading code can also throw.
2722 Thus this function can throw an exception.
2723
92163a10
JK
2724 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2725 the target type.
c906108c
SS
2726
2727 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2728 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2729 definition, so we can use it in future. There used to be a comment
2730 (but not any code) that if we don't find a full definition, we'd
2731 set a flag so we don't spend time in the future checking the same
2732 type. That would be a mistake, though--we might load in more
92163a10 2733 symbols which contain a full definition for the type. */
c906108c
SS
2734
2735struct type *
a02fd225 2736check_typedef (struct type *type)
c906108c
SS
2737{
2738 struct type *orig_type = type;
a02fd225 2739
423c0af8
MS
2740 gdb_assert (type);
2741
314ad88d
PA
2742 /* While we're removing typedefs, we don't want to lose qualifiers.
2743 E.g., const/volatile. */
2744 type_instance_flags instance_flags = type->instance_flags ();
2745
78134374 2746 while (type->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
2747 {
2748 if (!TYPE_TARGET_TYPE (type))
2749 {
0d5cff50 2750 const char *name;
c906108c
SS
2751 struct symbol *sym;
2752
2753 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2754 reading a symtab. Infinite recursion is one danger. */
c906108c 2755 if (currently_reading_symtab)
92163a10 2756 return make_qualified_type (type, instance_flags, NULL);
c906108c 2757
7d93a1e0 2758 name = type->name ();
e86ca25f
TT
2759 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2760 VAR_DOMAIN as appropriate? */
c906108c
SS
2761 if (name == NULL)
2762 {
23136709 2763 stub_noname_complaint ();
92163a10 2764 return make_qualified_type (type, instance_flags, NULL);
c906108c 2765 }
d12307c1 2766 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2767 if (sym)
2768 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2769 else /* TYPE_CODE_UNDEF */
e9bb382b 2770 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2771 }
2772 type = TYPE_TARGET_TYPE (type);
c906108c 2773
92163a10
JK
2774 /* Preserve the instance flags as we traverse down the typedef chain.
2775
2776 Handling address spaces/classes is nasty, what do we do if there's a
2777 conflict?
2778 E.g., what if an outer typedef marks the type as class_1 and an inner
2779 typedef marks the type as class_2?
2780 This is the wrong place to do such error checking. We leave it to
2781 the code that created the typedef in the first place to flag the
2782 error. We just pick the outer address space (akin to letting the
2783 outer cast in a chain of casting win), instead of assuming
2784 "it can't happen". */
2785 {
314ad88d
PA
2786 const type_instance_flags ALL_SPACES
2787 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2788 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2789 const type_instance_flags ALL_CLASSES
2790 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2791
2792 type_instance_flags new_instance_flags = type->instance_flags ();
92163a10
JK
2793
2794 /* Treat code vs data spaces and address classes separately. */
2795 if ((instance_flags & ALL_SPACES) != 0)
2796 new_instance_flags &= ~ALL_SPACES;
2797 if ((instance_flags & ALL_CLASSES) != 0)
2798 new_instance_flags &= ~ALL_CLASSES;
2799
2800 instance_flags |= new_instance_flags;
2801 }
2802 }
a02fd225 2803
7ba81444
MS
2804 /* If this is a struct/class/union with no fields, then check
2805 whether a full definition exists somewhere else. This is for
2806 systems where a type definition with no fields is issued for such
2807 types, instead of identifying them as stub types in the first
2808 place. */
c5aa993b 2809
7ba81444
MS
2810 if (TYPE_IS_OPAQUE (type)
2811 && opaque_type_resolution
2812 && !currently_reading_symtab)
c906108c 2813 {
7d93a1e0 2814 const char *name = type->name ();
c5aa993b 2815 struct type *newtype;
d8734c88 2816
c906108c
SS
2817 if (name == NULL)
2818 {
23136709 2819 stub_noname_complaint ();
92163a10 2820 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2821 }
2822 newtype = lookup_transparent_type (name);
ad766c0a 2823
c906108c 2824 if (newtype)
ad766c0a 2825 {
7ba81444
MS
2826 /* If the resolved type and the stub are in the same
2827 objfile, then replace the stub type with the real deal.
2828 But if they're in separate objfiles, leave the stub
2829 alone; we'll just look up the transparent type every time
2830 we call check_typedef. We can't create pointers between
2831 types allocated to different objfiles, since they may
2832 have different lifetimes. Trying to copy NEWTYPE over to
2833 TYPE's objfile is pointless, too, since you'll have to
2834 move over any other types NEWTYPE refers to, which could
2835 be an unbounded amount of stuff. */
ad766c0a 2836 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
10242f36 2837 type = make_qualified_type (newtype, type->instance_flags (), type);
ad766c0a
JB
2838 else
2839 type = newtype;
2840 }
c906108c 2841 }
7ba81444
MS
2842 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2843 types. */
e46d3488 2844 else if (type->is_stub () && !currently_reading_symtab)
c906108c 2845 {
7d93a1e0 2846 const char *name = type->name ();
e86ca25f
TT
2847 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2848 as appropriate? */
c906108c 2849 struct symbol *sym;
d8734c88 2850
c906108c
SS
2851 if (name == NULL)
2852 {
23136709 2853 stub_noname_complaint ();
92163a10 2854 return make_qualified_type (type, instance_flags, NULL);
c906108c 2855 }
d12307c1 2856 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2857 if (sym)
c26f2453
JB
2858 {
2859 /* Same as above for opaque types, we can replace the stub
92163a10 2860 with the complete type only if they are in the same
c26f2453 2861 objfile. */
78134374 2862 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
10242f36
SM
2863 type = make_qualified_type (SYMBOL_TYPE (sym),
2864 type->instance_flags (), type);
c26f2453
JB
2865 else
2866 type = SYMBOL_TYPE (sym);
2867 }
c906108c
SS
2868 }
2869
d2183968 2870 if (type->target_is_stub ())
c906108c 2871 {
c906108c
SS
2872 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2873
d2183968 2874 if (target_type->is_stub () || target_type->target_is_stub ())
c5aa993b 2875 {
73e2eb35 2876 /* Nothing we can do. */
c5aa993b 2877 }
78134374 2878 else if (type->code () == TYPE_CODE_RANGE)
c906108c
SS
2879 {
2880 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
8f53807e 2881 type->set_target_is_stub (false);
c906108c 2882 }
78134374 2883 else if (type->code () == TYPE_CODE_ARRAY
8dbb1375 2884 && update_static_array_size (type))
8f53807e 2885 type->set_target_is_stub (false);
c906108c 2886 }
92163a10
JK
2887
2888 type = make_qualified_type (type, instance_flags, NULL);
2889
7ba81444 2890 /* Cache TYPE_LENGTH for future use. */
c906108c 2891 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2892
c906108c
SS
2893 return type;
2894}
2895
7ba81444 2896/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2897 occurs, silently return a void type. */
c91ecb25 2898
b9362cc7 2899static struct type *
48319d1f 2900safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2901{
2902 struct ui_file *saved_gdb_stderr;
34365054 2903 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2904
7ba81444 2905 /* Suppress error messages. */
c91ecb25 2906 saved_gdb_stderr = gdb_stderr;
d7e74731 2907 gdb_stderr = &null_stream;
c91ecb25 2908
7ba81444 2909 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2910 try
8e7b59a5
KS
2911 {
2912 type = parse_and_eval_type (p, length);
2913 }
230d2906 2914 catch (const gdb_exception_error &except)
492d29ea
PA
2915 {
2916 type = builtin_type (gdbarch)->builtin_void;
2917 }
c91ecb25 2918
7ba81444 2919 /* Stop suppressing error messages. */
c91ecb25
ND
2920 gdb_stderr = saved_gdb_stderr;
2921
2922 return type;
2923}
2924
c906108c
SS
2925/* Ugly hack to convert method stubs into method types.
2926
7ba81444
MS
2927 He ain't kiddin'. This demangles the name of the method into a
2928 string including argument types, parses out each argument type,
2929 generates a string casting a zero to that type, evaluates the
2930 string, and stuffs the resulting type into an argtype vector!!!
2931 Then it knows the type of the whole function (including argument
2932 types for overloading), which info used to be in the stab's but was
2933 removed to hack back the space required for them. */
c906108c 2934
de17c821 2935static void
fba45db2 2936check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2937{
50810684 2938 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2939 struct fn_field *f;
2940 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2941 char *demangled_name = gdb_demangle (mangled_name,
2942 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2943 char *argtypetext, *p;
2944 int depth = 0, argcount = 1;
ad2f7632 2945 struct field *argtypes;
c906108c
SS
2946 struct type *mtype;
2947
2948 /* Make sure we got back a function string that we can use. */
2949 if (demangled_name)
2950 p = strchr (demangled_name, '(');
502dcf4e
AC
2951 else
2952 p = NULL;
c906108c
SS
2953
2954 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2955 error (_("Internal: Cannot demangle mangled name `%s'."),
2956 mangled_name);
c906108c
SS
2957
2958 /* Now, read in the parameters that define this type. */
2959 p += 1;
2960 argtypetext = p;
2961 while (*p)
2962 {
070ad9f0 2963 if (*p == '(' || *p == '<')
c906108c
SS
2964 {
2965 depth += 1;
2966 }
070ad9f0 2967 else if (*p == ')' || *p == '>')
c906108c
SS
2968 {
2969 depth -= 1;
2970 }
2971 else if (*p == ',' && depth == 0)
2972 {
2973 argcount += 1;
2974 }
2975
2976 p += 1;
2977 }
2978
ad2f7632 2979 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2980 if (startswith (argtypetext, "(void)"))
ad2f7632 2981 argcount -= 1;
c906108c 2982
ad2f7632
DJ
2983 /* We need one extra slot, for the THIS pointer. */
2984
2985 argtypes = (struct field *)
2986 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2987 p = argtypetext;
4a1970e4
DJ
2988
2989 /* Add THIS pointer for non-static methods. */
2990 f = TYPE_FN_FIELDLIST1 (type, method_id);
2991 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2992 argcount = 0;
2993 else
2994 {
5d14b6e5 2995 argtypes[0].set_type (lookup_pointer_type (type));
4a1970e4
DJ
2996 argcount = 1;
2997 }
c906108c 2998
0963b4bd 2999 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
3000 {
3001 depth = 0;
3002 while (*p)
3003 {
3004 if (depth <= 0 && (*p == ',' || *p == ')'))
3005 {
ad2f7632
DJ
3006 /* Avoid parsing of ellipsis, they will be handled below.
3007 Also avoid ``void'' as above. */
3008 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3009 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 3010 {
5d14b6e5
SM
3011 argtypes[argcount].set_type
3012 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
c906108c
SS
3013 argcount += 1;
3014 }
3015 argtypetext = p + 1;
3016 }
3017
070ad9f0 3018 if (*p == '(' || *p == '<')
c906108c
SS
3019 {
3020 depth += 1;
3021 }
070ad9f0 3022 else if (*p == ')' || *p == '>')
c906108c
SS
3023 {
3024 depth -= 1;
3025 }
3026
3027 p += 1;
3028 }
3029 }
3030
c906108c
SS
3031 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3032
3033 /* Now update the old "stub" type into a real type. */
3034 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
3035 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3036 We want a method (TYPE_CODE_METHOD). */
3037 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3038 argtypes, argcount, p[-2] == '.');
b4b73759 3039 mtype->set_is_stub (false);
c906108c 3040 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
3041
3042 xfree (demangled_name);
c906108c
SS
3043}
3044
7ba81444
MS
3045/* This is the external interface to check_stub_method, above. This
3046 function unstubs all of the signatures for TYPE's METHOD_ID method
3047 name. After calling this function TYPE_FN_FIELD_STUB will be
3048 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3049 correct.
de17c821
DJ
3050
3051 This function unfortunately can not die until stabs do. */
3052
3053void
3054check_stub_method_group (struct type *type, int method_id)
3055{
3056 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3057 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 3058
041be526
SM
3059 for (int j = 0; j < len; j++)
3060 {
3061 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 3062 check_stub_method (type, method_id, j);
de17c821
DJ
3063 }
3064}
3065
405feb71 3066/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 3067const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
3068
3069void
fba45db2 3070allocate_cplus_struct_type (struct type *type)
c906108c 3071{
b4ba55a1
JB
3072 if (HAVE_CPLUS_STRUCT (type))
3073 /* Structure was already allocated. Nothing more to do. */
3074 return;
3075
3076 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3077 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3078 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3079 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 3080 set_type_vptr_fieldno (type, -1);
c906108c
SS
3081}
3082
b4ba55a1
JB
3083const struct gnat_aux_type gnat_aux_default =
3084 { NULL };
3085
3086/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3087 and allocate the associated gnat-specific data. The gnat-specific
3088 data is also initialized to gnat_aux_default. */
5212577a 3089
b4ba55a1
JB
3090void
3091allocate_gnat_aux_type (struct type *type)
3092{
3093 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3094 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3095 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3096 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3097}
3098
ae438bc5
UW
3099/* Helper function to initialize a newly allocated type. Set type code
3100 to CODE and initialize the type-specific fields accordingly. */
3101
3102static void
3103set_type_code (struct type *type, enum type_code code)
3104{
67607e24 3105 type->set_code (code);
ae438bc5
UW
3106
3107 switch (code)
3108 {
3109 case TYPE_CODE_STRUCT:
3110 case TYPE_CODE_UNION:
3111 case TYPE_CODE_NAMESPACE:
3112 INIT_CPLUS_SPECIFIC (type);
3113 break;
3114 case TYPE_CODE_FLT:
3115 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3116 break;
3117 case TYPE_CODE_FUNC:
3118 INIT_FUNC_SPECIFIC (type);
3119 break;
3120 }
3121}
3122
19f392bc
UW
3123/* Helper function to verify floating-point format and size.
3124 BIT is the type size in bits; if BIT equals -1, the size is
3125 determined by the floatformat. Returns size to be used. */
3126
3127static int
0db7851f 3128verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 3129{
0db7851f 3130 gdb_assert (floatformat != NULL);
9b790ce7 3131
19f392bc 3132 if (bit == -1)
0db7851f 3133 bit = floatformat->totalsize;
19f392bc 3134
0db7851f
UW
3135 gdb_assert (bit >= 0);
3136 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
3137
3138 return bit;
3139}
3140
0db7851f
UW
3141/* Return the floating-point format for a floating-point variable of
3142 type TYPE. */
3143
3144const struct floatformat *
3145floatformat_from_type (const struct type *type)
3146{
78134374 3147 gdb_assert (type->code () == TYPE_CODE_FLT);
0db7851f
UW
3148 gdb_assert (TYPE_FLOATFORMAT (type));
3149 return TYPE_FLOATFORMAT (type);
3150}
3151
c906108c
SS
3152/* Helper function to initialize the standard scalar types.
3153
86f62fd7
TT
3154 If NAME is non-NULL, then it is used to initialize the type name.
3155 Note that NAME is not copied; it is required to have a lifetime at
3156 least as long as OBJFILE. */
c906108c
SS
3157
3158struct type *
77b7c781 3159init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 3160 const char *name)
c906108c 3161{
52f0bd74 3162 struct type *type;
c906108c
SS
3163
3164 type = alloc_type (objfile);
ae438bc5 3165 set_type_code (type, code);
77b7c781
UW
3166 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3167 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
d0e39ea2 3168 type->set_name (name);
c906108c 3169
c16abbde 3170 return type;
c906108c 3171}
19f392bc 3172
46a4882b
PA
3173/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3174 to use with variables that have no debug info. NAME is the type
3175 name. */
3176
3177static struct type *
3178init_nodebug_var_type (struct objfile *objfile, const char *name)
3179{
3180 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3181}
3182
19f392bc
UW
3183/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3184 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3185 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3186
3187struct type *
3188init_integer_type (struct objfile *objfile,
3189 int bit, int unsigned_p, const char *name)
3190{
3191 struct type *t;
3192
77b7c781 3193 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc 3194 if (unsigned_p)
653223d3 3195 t->set_is_unsigned (true);
19f392bc 3196
20a5fcbd
TT
3197 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3198 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3199 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3200
19f392bc
UW
3201 return t;
3202}
3203
3204/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3205 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3206 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3207
3208struct type *
3209init_character_type (struct objfile *objfile,
3210 int bit, int unsigned_p, const char *name)
3211{
3212 struct type *t;
3213
77b7c781 3214 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc 3215 if (unsigned_p)
653223d3 3216 t->set_is_unsigned (true);
19f392bc
UW
3217
3218 return t;
3219}
3220
3221/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3222 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3223 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3224
3225struct type *
3226init_boolean_type (struct objfile *objfile,
3227 int bit, int unsigned_p, const char *name)
3228{
3229 struct type *t;
3230
77b7c781 3231 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc 3232 if (unsigned_p)
653223d3 3233 t->set_is_unsigned (true);
19f392bc 3234
20a5fcbd
TT
3235 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3236 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3237 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3238
19f392bc
UW
3239 return t;
3240}
3241
3242/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3243 BIT is the type size in bits; if BIT equals -1, the size is
3244 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
3245 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3246 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3247 order of the objfile's architecture is used. */
19f392bc
UW
3248
3249struct type *
3250init_float_type (struct objfile *objfile,
3251 int bit, const char *name,
103a685e
TT
3252 const struct floatformat **floatformats,
3253 enum bfd_endian byte_order)
19f392bc 3254{
103a685e
TT
3255 if (byte_order == BFD_ENDIAN_UNKNOWN)
3256 {
08feed99 3257 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3258 byte_order = gdbarch_byte_order (gdbarch);
3259 }
3260 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3261 struct type *t;
3262
0db7851f 3263 bit = verify_floatformat (bit, fmt);
77b7c781 3264 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3265 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3266
3267 return t;
3268}
3269
3270/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3271 BIT is the type size in bits. NAME is the type name. */
3272
3273struct type *
3274init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3275{
3276 struct type *t;
3277
77b7c781 3278 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3279 return t;
3280}
3281
5b930b45
TT
3282/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3283 name. TARGET_TYPE is the component type. */
19f392bc
UW
3284
3285struct type *
5b930b45 3286init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3287{
3288 struct type *t;
3289
78134374
SM
3290 gdb_assert (target_type->code () == TYPE_CODE_INT
3291 || target_type->code () == TYPE_CODE_FLT);
5b930b45
TT
3292
3293 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3294 {
3295 if (name == nullptr)
3296 {
3297 char *new_name
3298 = (char *) TYPE_ALLOC (target_type,
7d93a1e0 3299 strlen (target_type->name ())
5b930b45
TT
3300 + strlen ("_Complex ") + 1);
3301 strcpy (new_name, "_Complex ");
7d93a1e0 3302 strcat (new_name, target_type->name ());
5b930b45
TT
3303 name = new_name;
3304 }
3305
3306 t = alloc_type_copy (target_type);
3307 set_type_code (t, TYPE_CODE_COMPLEX);
3308 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
d0e39ea2 3309 t->set_name (name);
5b930b45
TT
3310
3311 TYPE_TARGET_TYPE (t) = target_type;
3312 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3313 }
3314
3315 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3316}
3317
3318/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3319 BIT is the pointer type size in bits. NAME is the type name.
3320 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3321 TYPE_UNSIGNED flag. */
3322
3323struct type *
3324init_pointer_type (struct objfile *objfile,
3325 int bit, const char *name, struct type *target_type)
3326{
3327 struct type *t;
3328
77b7c781 3329 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc 3330 TYPE_TARGET_TYPE (t) = target_type;
653223d3 3331 t->set_is_unsigned (true);
19f392bc
UW
3332 return t;
3333}
3334
2b4424c3
TT
3335/* See gdbtypes.h. */
3336
3337unsigned
3338type_raw_align (struct type *type)
3339{
3340 if (type->align_log2 != 0)
3341 return 1 << (type->align_log2 - 1);
3342 return 0;
3343}
3344
3345/* See gdbtypes.h. */
3346
3347unsigned
3348type_align (struct type *type)
3349{
5561fc30 3350 /* Check alignment provided in the debug information. */
2b4424c3
TT
3351 unsigned raw_align = type_raw_align (type);
3352 if (raw_align != 0)
3353 return raw_align;
3354
5561fc30
AB
3355 /* Allow the architecture to provide an alignment. */
3356 struct gdbarch *arch = get_type_arch (type);
3357 ULONGEST align = gdbarch_type_align (arch, type);
3358 if (align != 0)
3359 return align;
3360
78134374 3361 switch (type->code ())
2b4424c3
TT
3362 {
3363 case TYPE_CODE_PTR:
3364 case TYPE_CODE_FUNC:
3365 case TYPE_CODE_FLAGS:
3366 case TYPE_CODE_INT:
75ba10dc 3367 case TYPE_CODE_RANGE:
2b4424c3
TT
3368 case TYPE_CODE_FLT:
3369 case TYPE_CODE_ENUM:
3370 case TYPE_CODE_REF:
3371 case TYPE_CODE_RVALUE_REF:
3372 case TYPE_CODE_CHAR:
3373 case TYPE_CODE_BOOL:
3374 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3375 case TYPE_CODE_METHODPTR:
3376 case TYPE_CODE_MEMBERPTR:
5561fc30 3377 align = type_length_units (check_typedef (type));
2b4424c3
TT
3378 break;
3379
3380 case TYPE_CODE_ARRAY:
3381 case TYPE_CODE_COMPLEX:
3382 case TYPE_CODE_TYPEDEF:
3383 align = type_align (TYPE_TARGET_TYPE (type));
3384 break;
3385
3386 case TYPE_CODE_STRUCT:
3387 case TYPE_CODE_UNION:
3388 {
41077b66 3389 int number_of_non_static_fields = 0;
1f704f76 3390 for (unsigned i = 0; i < type->num_fields (); ++i)
2b4424c3 3391 {
ceacbf6e 3392 if (!field_is_static (&type->field (i)))
2b4424c3 3393 {
41077b66 3394 number_of_non_static_fields++;
940da03e 3395 ULONGEST f_align = type_align (type->field (i).type ());
bf9a735e
AB
3396 if (f_align == 0)
3397 {
3398 /* Don't pretend we know something we don't. */
3399 align = 0;
3400 break;
3401 }
3402 if (f_align > align)
3403 align = f_align;
2b4424c3 3404 }
2b4424c3 3405 }
41077b66
AB
3406 /* A struct with no fields, or with only static fields has an
3407 alignment of 1. */
3408 if (number_of_non_static_fields == 0)
3409 align = 1;
2b4424c3
TT
3410 }
3411 break;
3412
3413 case TYPE_CODE_SET:
2b4424c3
TT
3414 case TYPE_CODE_STRING:
3415 /* Not sure what to do here, and these can't appear in C or C++
3416 anyway. */
3417 break;
3418
2b4424c3
TT
3419 case TYPE_CODE_VOID:
3420 align = 1;
3421 break;
3422
3423 case TYPE_CODE_ERROR:
3424 case TYPE_CODE_METHOD:
3425 default:
3426 break;
3427 }
3428
3429 if ((align & (align - 1)) != 0)
3430 {
3431 /* Not a power of 2, so pass. */
3432 align = 0;
3433 }
3434
3435 return align;
3436}
3437
3438/* See gdbtypes.h. */
3439
3440bool
3441set_type_align (struct type *type, ULONGEST align)
3442{
3443 /* Must be a power of 2. Zero is ok. */
3444 gdb_assert ((align & (align - 1)) == 0);
3445
3446 unsigned result = 0;
3447 while (align != 0)
3448 {
3449 ++result;
3450 align >>= 1;
3451 }
3452
3453 if (result >= (1 << TYPE_ALIGN_BITS))
3454 return false;
3455
3456 type->align_log2 = result;
3457 return true;
3458}
3459
5212577a
DE
3460\f
3461/* Queries on types. */
c906108c 3462
c906108c 3463int
fba45db2 3464can_dereference (struct type *t)
c906108c 3465{
7ba81444
MS
3466 /* FIXME: Should we return true for references as well as
3467 pointers? */
f168693b 3468 t = check_typedef (t);
c906108c
SS
3469 return
3470 (t != NULL
78134374
SM
3471 && t->code () == TYPE_CODE_PTR
3472 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
c906108c
SS
3473}
3474
adf40b2e 3475int
fba45db2 3476is_integral_type (struct type *t)
adf40b2e 3477{
f168693b 3478 t = check_typedef (t);
adf40b2e
JM
3479 return
3480 ((t != NULL)
78134374
SM
3481 && ((t->code () == TYPE_CODE_INT)
3482 || (t->code () == TYPE_CODE_ENUM)
3483 || (t->code () == TYPE_CODE_FLAGS)
3484 || (t->code () == TYPE_CODE_CHAR)
3485 || (t->code () == TYPE_CODE_RANGE)
3486 || (t->code () == TYPE_CODE_BOOL)));
adf40b2e
JM
3487}
3488
70100014
UW
3489int
3490is_floating_type (struct type *t)
3491{
3492 t = check_typedef (t);
3493 return
3494 ((t != NULL)
78134374
SM
3495 && ((t->code () == TYPE_CODE_FLT)
3496 || (t->code () == TYPE_CODE_DECFLOAT)));
70100014
UW
3497}
3498
e09342b5
TJB
3499/* Return true if TYPE is scalar. */
3500
220475ed 3501int
e09342b5
TJB
3502is_scalar_type (struct type *type)
3503{
f168693b 3504 type = check_typedef (type);
e09342b5 3505
78134374 3506 switch (type->code ())
e09342b5
TJB
3507 {
3508 case TYPE_CODE_ARRAY:
3509 case TYPE_CODE_STRUCT:
3510 case TYPE_CODE_UNION:
3511 case TYPE_CODE_SET:
3512 case TYPE_CODE_STRING:
e09342b5
TJB
3513 return 0;
3514 default:
3515 return 1;
3516 }
3517}
3518
3519/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3520 the memory layout of a scalar type. E.g., an array or struct with only
3521 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3522
3523int
3524is_scalar_type_recursive (struct type *t)
3525{
f168693b 3526 t = check_typedef (t);
e09342b5
TJB
3527
3528 if (is_scalar_type (t))
3529 return 1;
3530 /* Are we dealing with an array or string of known dimensions? */
78134374 3531 else if ((t->code () == TYPE_CODE_ARRAY
1f704f76 3532 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3d967001 3533 && t->index_type ()->code () == TYPE_CODE_RANGE)
e09342b5
TJB
3534 {
3535 LONGEST low_bound, high_bound;
3536 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3537
3d967001 3538 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
e09342b5
TJB
3539
3540 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3541 }
3542 /* Are we dealing with a struct with one element? */
1f704f76 3543 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
940da03e 3544 return is_scalar_type_recursive (t->field (0).type ());
78134374 3545 else if (t->code () == TYPE_CODE_UNION)
e09342b5 3546 {
1f704f76 3547 int i, n = t->num_fields ();
e09342b5
TJB
3548
3549 /* If all elements of the union are scalar, then the union is scalar. */
3550 for (i = 0; i < n; i++)
940da03e 3551 if (!is_scalar_type_recursive (t->field (i).type ()))
e09342b5
TJB
3552 return 0;
3553
3554 return 1;
3555 }
3556
3557 return 0;
3558}
3559
6c659fc2
SC
3560/* Return true is T is a class or a union. False otherwise. */
3561
3562int
3563class_or_union_p (const struct type *t)
3564{
78134374
SM
3565 return (t->code () == TYPE_CODE_STRUCT
3566 || t->code () == TYPE_CODE_UNION);
6c659fc2
SC
3567}
3568
4e8f195d
TT
3569/* A helper function which returns true if types A and B represent the
3570 "same" class type. This is true if the types have the same main
3571 type, or the same name. */
3572
3573int
3574class_types_same_p (const struct type *a, const struct type *b)
3575{
3576 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
7d93a1e0
SM
3577 || (a->name () && b->name ()
3578 && !strcmp (a->name (), b->name ())));
4e8f195d
TT
3579}
3580
a9d5ef47
SW
3581/* If BASE is an ancestor of DCLASS return the distance between them.
3582 otherwise return -1;
3583 eg:
3584
3585 class A {};
3586 class B: public A {};
3587 class C: public B {};
3588 class D: C {};
3589
3590 distance_to_ancestor (A, A, 0) = 0
3591 distance_to_ancestor (A, B, 0) = 1
3592 distance_to_ancestor (A, C, 0) = 2
3593 distance_to_ancestor (A, D, 0) = 3
3594
3595 If PUBLIC is 1 then only public ancestors are considered,
3596 and the function returns the distance only if BASE is a public ancestor
3597 of DCLASS.
3598 Eg:
3599
0963b4bd 3600 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3601
0526b37a 3602static int
fe978cb0 3603distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3604{
3605 int i;
a9d5ef47 3606 int d;
c5aa993b 3607
f168693b
SM
3608 base = check_typedef (base);
3609 dclass = check_typedef (dclass);
c906108c 3610
4e8f195d 3611 if (class_types_same_p (base, dclass))
a9d5ef47 3612 return 0;
c906108c
SS
3613
3614 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3615 {
fe978cb0 3616 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3617 continue;
3618
fe978cb0 3619 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3620 if (d >= 0)
3621 return 1 + d;
4e8f195d 3622 }
c906108c 3623
a9d5ef47 3624 return -1;
c906108c 3625}
4e8f195d 3626
0526b37a
SW
3627/* Check whether BASE is an ancestor or base class or DCLASS
3628 Return 1 if so, and 0 if not.
3629 Note: If BASE and DCLASS are of the same type, this function
3630 will return 1. So for some class A, is_ancestor (A, A) will
3631 return 1. */
3632
3633int
3634is_ancestor (struct type *base, struct type *dclass)
3635{
a9d5ef47 3636 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3637}
3638
4e8f195d
TT
3639/* Like is_ancestor, but only returns true when BASE is a public
3640 ancestor of DCLASS. */
3641
3642int
3643is_public_ancestor (struct type *base, struct type *dclass)
3644{
a9d5ef47 3645 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3646}
3647
3648/* A helper function for is_unique_ancestor. */
3649
3650static int
3651is_unique_ancestor_worker (struct type *base, struct type *dclass,
3652 int *offset,
8af8e3bc
PA
3653 const gdb_byte *valaddr, int embedded_offset,
3654 CORE_ADDR address, struct value *val)
4e8f195d
TT
3655{
3656 int i, count = 0;
3657
f168693b
SM
3658 base = check_typedef (base);
3659 dclass = check_typedef (dclass);
4e8f195d
TT
3660
3661 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3662 {
8af8e3bc
PA
3663 struct type *iter;
3664 int this_offset;
4e8f195d 3665
8af8e3bc
PA
3666 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3667
3668 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3669 address, val);
4e8f195d
TT
3670
3671 if (class_types_same_p (base, iter))
3672 {
3673 /* If this is the first subclass, set *OFFSET and set count
3674 to 1. Otherwise, if this is at the same offset as
3675 previous instances, do nothing. Otherwise, increment
3676 count. */
3677 if (*offset == -1)
3678 {
3679 *offset = this_offset;
3680 count = 1;
3681 }
3682 else if (this_offset == *offset)
3683 {
3684 /* Nothing. */
3685 }
3686 else
3687 ++count;
3688 }
3689 else
3690 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3691 valaddr,
3692 embedded_offset + this_offset,
3693 address, val);
4e8f195d
TT
3694 }
3695
3696 return count;
3697}
3698
3699/* Like is_ancestor, but only returns true if BASE is a unique base
3700 class of the type of VAL. */
3701
3702int
3703is_unique_ancestor (struct type *base, struct value *val)
3704{
3705 int offset = -1;
3706
3707 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3708 value_contents_for_printing (val),
3709 value_embedded_offset (val),
3710 value_address (val), val) == 1;
4e8f195d
TT
3711}
3712
7ab4a236
TT
3713/* See gdbtypes.h. */
3714
3715enum bfd_endian
3716type_byte_order (const struct type *type)
3717{
3718 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
04f5bab2 3719 if (type->endianity_is_not_default ())
7ab4a236
TT
3720 {
3721 if (byteorder == BFD_ENDIAN_BIG)
3722 return BFD_ENDIAN_LITTLE;
3723 else
3724 {
3725 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3726 return BFD_ENDIAN_BIG;
3727 }
3728 }
3729
3730 return byteorder;
3731}
3732
c906108c 3733\f
5212577a 3734/* Overload resolution. */
c906108c 3735
6403aeea
SW
3736/* Return the sum of the rank of A with the rank of B. */
3737
3738struct rank
3739sum_ranks (struct rank a, struct rank b)
3740{
3741 struct rank c;
3742 c.rank = a.rank + b.rank;
a9d5ef47 3743 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3744 return c;
3745}
3746
3747/* Compare rank A and B and return:
3748 0 if a = b
3749 1 if a is better than b
3750 -1 if b is better than a. */
3751
3752int
3753compare_ranks (struct rank a, struct rank b)
3754{
3755 if (a.rank == b.rank)
a9d5ef47
SW
3756 {
3757 if (a.subrank == b.subrank)
3758 return 0;
3759 if (a.subrank < b.subrank)
3760 return 1;
3761 if (a.subrank > b.subrank)
3762 return -1;
3763 }
6403aeea
SW
3764
3765 if (a.rank < b.rank)
3766 return 1;
3767
0963b4bd 3768 /* a.rank > b.rank */
6403aeea
SW
3769 return -1;
3770}
c5aa993b 3771
0963b4bd 3772/* Functions for overload resolution begin here. */
c906108c
SS
3773
3774/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3775 0 => A and B are identical
3776 1 => A and B are incomparable
3777 2 => A is better than B
3778 3 => A is worse than B */
c906108c
SS
3779
3780int
82ceee50 3781compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3782{
3783 int i;
3784 int tmp;
c5aa993b
JM
3785 short found_pos = 0; /* any positives in c? */
3786 short found_neg = 0; /* any negatives in c? */
3787
82ceee50
PA
3788 /* differing sizes => incomparable */
3789 if (a.size () != b.size ())
c906108c
SS
3790 return 1;
3791
c5aa993b 3792 /* Subtract b from a */
82ceee50 3793 for (i = 0; i < a.size (); i++)
c906108c 3794 {
82ceee50 3795 tmp = compare_ranks (b[i], a[i]);
c906108c 3796 if (tmp > 0)
c5aa993b 3797 found_pos = 1;
c906108c 3798 else if (tmp < 0)
c5aa993b 3799 found_neg = 1;
c906108c
SS
3800 }
3801
3802 if (found_pos)
3803 {
3804 if (found_neg)
c5aa993b 3805 return 1; /* incomparable */
c906108c 3806 else
c5aa993b 3807 return 3; /* A > B */
c906108c 3808 }
c5aa993b
JM
3809 else
3810 /* no positives */
c906108c
SS
3811 {
3812 if (found_neg)
c5aa993b 3813 return 2; /* A < B */
c906108c 3814 else
c5aa993b 3815 return 0; /* A == B */
c906108c
SS
3816 }
3817}
3818
6b1747cd 3819/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3820 types of an argument list (ARGS). Return the badness vector. This
3821 has ARGS.size() + 1 entries. */
c906108c 3822
82ceee50 3823badness_vector
6b1747cd
PA
3824rank_function (gdb::array_view<type *> parms,
3825 gdb::array_view<value *> args)
c906108c 3826{
82ceee50
PA
3827 /* add 1 for the length-match rank. */
3828 badness_vector bv;
3829 bv.reserve (1 + args.size ());
c906108c
SS
3830
3831 /* First compare the lengths of the supplied lists.
7ba81444 3832 If there is a mismatch, set it to a high value. */
c5aa993b 3833
c906108c 3834 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3835 arguments and ellipsis parameter lists, we should consider those
3836 and rank the length-match more finely. */
c906108c 3837
82ceee50
PA
3838 bv.push_back ((args.size () != parms.size ())
3839 ? LENGTH_MISMATCH_BADNESS
3840 : EXACT_MATCH_BADNESS);
c906108c 3841
0963b4bd 3842 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3843 size_t min_len = std::min (parms.size (), args.size ());
3844
3845 for (size_t i = 0; i < min_len; i++)
3846 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3847 args[i]));
c906108c 3848
0963b4bd 3849 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3850 for (size_t i = min_len; i < args.size (); i++)
3851 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3852
3853 return bv;
3854}
3855
973ccf8b
DJ
3856/* Compare the names of two integer types, assuming that any sign
3857 qualifiers have been checked already. We do it this way because
3858 there may be an "int" in the name of one of the types. */
3859
3860static int
3861integer_types_same_name_p (const char *first, const char *second)
3862{
3863 int first_p, second_p;
3864
7ba81444
MS
3865 /* If both are shorts, return 1; if neither is a short, keep
3866 checking. */
973ccf8b
DJ
3867 first_p = (strstr (first, "short") != NULL);
3868 second_p = (strstr (second, "short") != NULL);
3869 if (first_p && second_p)
3870 return 1;
3871 if (first_p || second_p)
3872 return 0;
3873
3874 /* Likewise for long. */
3875 first_p = (strstr (first, "long") != NULL);
3876 second_p = (strstr (second, "long") != NULL);
3877 if (first_p && second_p)
3878 return 1;
3879 if (first_p || second_p)
3880 return 0;
3881
3882 /* Likewise for char. */
3883 first_p = (strstr (first, "char") != NULL);
3884 second_p = (strstr (second, "char") != NULL);
3885 if (first_p && second_p)
3886 return 1;
3887 if (first_p || second_p)
3888 return 0;
3889
3890 /* They must both be ints. */
3891 return 1;
3892}
3893
894882e3
TT
3894/* Compares type A to type B. Returns true if they represent the same
3895 type, false otherwise. */
7062b0a0 3896
894882e3 3897bool
7062b0a0
SW
3898types_equal (struct type *a, struct type *b)
3899{
3900 /* Identical type pointers. */
3901 /* However, this still doesn't catch all cases of same type for b
3902 and a. The reason is that builtin types are different from
3903 the same ones constructed from the object. */
3904 if (a == b)
894882e3 3905 return true;
7062b0a0
SW
3906
3907 /* Resolve typedefs */
78134374 3908 if (a->code () == TYPE_CODE_TYPEDEF)
7062b0a0 3909 a = check_typedef (a);
78134374 3910 if (b->code () == TYPE_CODE_TYPEDEF)
7062b0a0
SW
3911 b = check_typedef (b);
3912
3913 /* If after resolving typedefs a and b are not of the same type
3914 code then they are not equal. */
78134374 3915 if (a->code () != b->code ())
894882e3 3916 return false;
7062b0a0
SW
3917
3918 /* If a and b are both pointers types or both reference types then
3919 they are equal of the same type iff the objects they refer to are
3920 of the same type. */
78134374
SM
3921 if (a->code () == TYPE_CODE_PTR
3922 || a->code () == TYPE_CODE_REF)
7062b0a0
SW
3923 return types_equal (TYPE_TARGET_TYPE (a),
3924 TYPE_TARGET_TYPE (b));
3925
0963b4bd 3926 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3927 are exactly the same. This happens when we generate method
3928 stubs. The types won't point to the same address, but they
0963b4bd 3929 really are the same. */
7062b0a0 3930
7d93a1e0
SM
3931 if (a->name () && b->name ()
3932 && strcmp (a->name (), b->name ()) == 0)
894882e3 3933 return true;
7062b0a0
SW
3934
3935 /* Check if identical after resolving typedefs. */
3936 if (a == b)
894882e3 3937 return true;
7062b0a0 3938
9ce98649
TT
3939 /* Two function types are equal if their argument and return types
3940 are equal. */
78134374 3941 if (a->code () == TYPE_CODE_FUNC)
9ce98649
TT
3942 {
3943 int i;
3944
1f704f76 3945 if (a->num_fields () != b->num_fields ())
894882e3 3946 return false;
9ce98649
TT
3947
3948 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3949 return false;
9ce98649 3950
1f704f76 3951 for (i = 0; i < a->num_fields (); ++i)
940da03e 3952 if (!types_equal (a->field (i).type (), b->field (i).type ()))
894882e3 3953 return false;
9ce98649 3954
894882e3 3955 return true;
9ce98649
TT
3956 }
3957
894882e3 3958 return false;
7062b0a0 3959}
ca092b61
DE
3960\f
3961/* Deep comparison of types. */
3962
3963/* An entry in the type-equality bcache. */
3964
894882e3 3965struct type_equality_entry
ca092b61 3966{
894882e3
TT
3967 type_equality_entry (struct type *t1, struct type *t2)
3968 : type1 (t1),
3969 type2 (t2)
3970 {
3971 }
ca092b61 3972
894882e3
TT
3973 struct type *type1, *type2;
3974};
ca092b61 3975
894882e3
TT
3976/* A helper function to compare two strings. Returns true if they are
3977 the same, false otherwise. Handles NULLs properly. */
ca092b61 3978
894882e3 3979static bool
ca092b61
DE
3980compare_maybe_null_strings (const char *s, const char *t)
3981{
894882e3
TT
3982 if (s == NULL || t == NULL)
3983 return s == t;
ca092b61
DE
3984 return strcmp (s, t) == 0;
3985}
3986
3987/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3988 "deep" equality. Returns true if the types are considered the
3989 same, false otherwise. */
ca092b61 3990
894882e3 3991static bool
ca092b61 3992check_types_equal (struct type *type1, struct type *type2,
894882e3 3993 std::vector<type_equality_entry> *worklist)
ca092b61 3994{
f168693b
SM
3995 type1 = check_typedef (type1);
3996 type2 = check_typedef (type2);
ca092b61
DE
3997
3998 if (type1 == type2)
894882e3 3999 return true;
ca092b61 4000
78134374 4001 if (type1->code () != type2->code ()
ca092b61 4002 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
c6d940a9 4003 || type1->is_unsigned () != type2->is_unsigned ()
20ce4123 4004 || type1->has_no_signedness () != type2->has_no_signedness ()
04f5bab2 4005 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
a409645d 4006 || type1->has_varargs () != type2->has_varargs ()
bd63c870 4007 || type1->is_vector () != type2->is_vector ()
ca092b61 4008 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
10242f36 4009 || type1->instance_flags () != type2->instance_flags ()
1f704f76 4010 || type1->num_fields () != type2->num_fields ())
894882e3 4011 return false;
ca092b61 4012
7d93a1e0 4013 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4014 return false;
7d93a1e0 4015 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4016 return false;
ca092b61 4017
78134374 4018 if (type1->code () == TYPE_CODE_RANGE)
ca092b61 4019 {
599088e3 4020 if (*type1->bounds () != *type2->bounds ())
894882e3 4021 return false;
ca092b61
DE
4022 }
4023 else
4024 {
4025 int i;
4026
1f704f76 4027 for (i = 0; i < type1->num_fields (); ++i)
ca092b61 4028 {
ceacbf6e
SM
4029 const struct field *field1 = &type1->field (i);
4030 const struct field *field2 = &type2->field (i);
ca092b61
DE
4031
4032 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4033 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4034 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 4035 return false;
ca092b61
DE
4036 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4037 FIELD_NAME (*field2)))
894882e3 4038 return false;
ca092b61
DE
4039 switch (FIELD_LOC_KIND (*field1))
4040 {
4041 case FIELD_LOC_KIND_BITPOS:
4042 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 4043 return false;
ca092b61
DE
4044 break;
4045 case FIELD_LOC_KIND_ENUMVAL:
4046 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 4047 return false;
ca092b61
DE
4048 break;
4049 case FIELD_LOC_KIND_PHYSADDR:
4050 if (FIELD_STATIC_PHYSADDR (*field1)
4051 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 4052 return false;
ca092b61
DE
4053 break;
4054 case FIELD_LOC_KIND_PHYSNAME:
4055 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4056 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 4057 return false;
ca092b61
DE
4058 break;
4059 case FIELD_LOC_KIND_DWARF_BLOCK:
4060 {
4061 struct dwarf2_locexpr_baton *block1, *block2;
4062
4063 block1 = FIELD_DWARF_BLOCK (*field1);
4064 block2 = FIELD_DWARF_BLOCK (*field2);
4065 if (block1->per_cu != block2->per_cu
4066 || block1->size != block2->size
4067 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 4068 return false;
ca092b61
DE
4069 }
4070 break;
4071 default:
4072 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4073 "%d by check_types_equal"),
4074 FIELD_LOC_KIND (*field1));
4075 }
4076
b6cdac4b 4077 worklist->emplace_back (field1->type (), field2->type ());
ca092b61
DE
4078 }
4079 }
4080
4081 if (TYPE_TARGET_TYPE (type1) != NULL)
4082 {
ca092b61 4083 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 4084 return false;
ca092b61 4085
894882e3
TT
4086 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4087 TYPE_TARGET_TYPE (type2));
ca092b61
DE
4088 }
4089 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 4090 return false;
ca092b61 4091
894882e3 4092 return true;
ca092b61
DE
4093}
4094
894882e3
TT
4095/* Check types on a worklist for equality. Returns false if any pair
4096 is not equal, true if they are all considered equal. */
ca092b61 4097
894882e3
TT
4098static bool
4099check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 4100 gdb::bcache *cache)
ca092b61 4101{
894882e3 4102 while (!worklist->empty ())
ca092b61 4103 {
ef5e5b0b 4104 bool added;
ca092b61 4105
894882e3
TT
4106 struct type_equality_entry entry = std::move (worklist->back ());
4107 worklist->pop_back ();
ca092b61
DE
4108
4109 /* If the type pair has already been visited, we know it is
4110 ok. */
25629dfd 4111 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
4112 if (!added)
4113 continue;
4114
894882e3
TT
4115 if (!check_types_equal (entry.type1, entry.type2, worklist))
4116 return false;
ca092b61 4117 }
7062b0a0 4118
894882e3 4119 return true;
ca092b61
DE
4120}
4121
894882e3
TT
4122/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4123 "deep comparison". Otherwise return false. */
ca092b61 4124
894882e3 4125bool
ca092b61
DE
4126types_deeply_equal (struct type *type1, struct type *type2)
4127{
894882e3 4128 std::vector<type_equality_entry> worklist;
ca092b61
DE
4129
4130 gdb_assert (type1 != NULL && type2 != NULL);
4131
4132 /* Early exit for the simple case. */
4133 if (type1 == type2)
894882e3 4134 return true;
ca092b61 4135
89806626 4136 gdb::bcache cache;
894882e3 4137 worklist.emplace_back (type1, type2);
25629dfd 4138 return check_types_worklist (&worklist, &cache);
ca092b61 4139}
3f2f83dd
KB
4140
4141/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4142 Otherwise return one. */
4143
4144int
4145type_not_allocated (const struct type *type)
4146{
4147 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4148
8a6d5e35 4149 return (prop != nullptr && prop->kind () == PROP_CONST
5555c86d 4150 && prop->const_val () == 0);
3f2f83dd
KB
4151}
4152
4153/* Associated status of type TYPE. Return zero if type TYPE is associated.
4154 Otherwise return one. */
4155
4156int
4157type_not_associated (const struct type *type)
4158{
4159 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4160
8a6d5e35 4161 return (prop != nullptr && prop->kind () == PROP_CONST
5555c86d 4162 && prop->const_val () == 0);
3f2f83dd 4163}
9293fc63
SM
4164
4165/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4166
4167static struct rank
4168rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4169{
4170 struct rank rank = {0,0};
4171
78134374 4172 switch (arg->code ())
9293fc63
SM
4173 {
4174 case TYPE_CODE_PTR:
4175
4176 /* Allowed pointer conversions are:
4177 (a) pointer to void-pointer conversion. */
78134374 4178 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
9293fc63
SM
4179 return VOID_PTR_CONVERSION_BADNESS;
4180
4181 /* (b) pointer to ancestor-pointer conversion. */
4182 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4183 TYPE_TARGET_TYPE (arg),
4184 0);
4185 if (rank.subrank >= 0)
4186 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4187
4188 return INCOMPATIBLE_TYPE_BADNESS;
4189 case TYPE_CODE_ARRAY:
4190 {
4191 struct type *t1 = TYPE_TARGET_TYPE (parm);
4192 struct type *t2 = TYPE_TARGET_TYPE (arg);
4193
4194 if (types_equal (t1, t2))
4195 {
4196 /* Make sure they are CV equal. */
4197 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4198 rank.subrank |= CV_CONVERSION_CONST;
4199 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4200 rank.subrank |= CV_CONVERSION_VOLATILE;
4201 if (rank.subrank != 0)
4202 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4203 return EXACT_MATCH_BADNESS;
4204 }
4205 return INCOMPATIBLE_TYPE_BADNESS;
4206 }
4207 case TYPE_CODE_FUNC:
4208 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4209 case TYPE_CODE_INT:
78134374 4210 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
9293fc63
SM
4211 {
4212 if (value_as_long (value) == 0)
4213 {
4214 /* Null pointer conversion: allow it to be cast to a pointer.
4215 [4.10.1 of C++ standard draft n3290] */
4216 return NULL_POINTER_CONVERSION_BADNESS;
4217 }
4218 else
4219 {
4220 /* If type checking is disabled, allow the conversion. */
4221 if (!strict_type_checking)
4222 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4223 }
4224 }
4225 /* fall through */
4226 case TYPE_CODE_ENUM:
4227 case TYPE_CODE_FLAGS:
4228 case TYPE_CODE_CHAR:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_BOOL:
4231 default:
4232 return INCOMPATIBLE_TYPE_BADNESS;
4233 }
4234}
4235
b9f4512f
SM
4236/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4237
4238static struct rank
4239rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4240{
78134374 4241 switch (arg->code ())
b9f4512f
SM
4242 {
4243 case TYPE_CODE_PTR:
4244 case TYPE_CODE_ARRAY:
4245 return rank_one_type (TYPE_TARGET_TYPE (parm),
4246 TYPE_TARGET_TYPE (arg), NULL);
4247 default:
4248 return INCOMPATIBLE_TYPE_BADNESS;
4249 }
4250}
4251
f1f832d6
SM
4252/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4253
4254static struct rank
4255rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4256{
78134374 4257 switch (arg->code ())
f1f832d6
SM
4258 {
4259 case TYPE_CODE_PTR: /* funcptr -> func */
4260 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4261 default:
4262 return INCOMPATIBLE_TYPE_BADNESS;
4263 }
4264}
4265
34910087
SM
4266/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4267
4268static struct rank
4269rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4270{
78134374 4271 switch (arg->code ())
34910087
SM
4272 {
4273 case TYPE_CODE_INT:
4274 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4275 {
4276 /* Deal with signed, unsigned, and plain chars and
4277 signed and unsigned ints. */
20ce4123 4278 if (parm->has_no_signedness ())
34910087
SM
4279 {
4280 /* This case only for character types. */
20ce4123 4281 if (arg->has_no_signedness ())
34910087
SM
4282 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4283 else /* signed/unsigned char -> plain char */
4284 return INTEGER_CONVERSION_BADNESS;
4285 }
c6d940a9 4286 else if (parm->is_unsigned ())
34910087 4287 {
c6d940a9 4288 if (arg->is_unsigned ())
34910087
SM
4289 {
4290 /* unsigned int -> unsigned int, or
4291 unsigned long -> unsigned long */
7d93a1e0
SM
4292 if (integer_types_same_name_p (parm->name (),
4293 arg->name ()))
34910087 4294 return EXACT_MATCH_BADNESS;
7d93a1e0 4295 else if (integer_types_same_name_p (arg->name (),
34910087 4296 "int")
7d93a1e0 4297 && integer_types_same_name_p (parm->name (),
34910087
SM
4298 "long"))
4299 /* unsigned int -> unsigned long */
4300 return INTEGER_PROMOTION_BADNESS;
4301 else
4302 /* unsigned long -> unsigned int */
4303 return INTEGER_CONVERSION_BADNESS;
4304 }
4305 else
4306 {
7d93a1e0 4307 if (integer_types_same_name_p (arg->name (),
34910087 4308 "long")
7d93a1e0 4309 && integer_types_same_name_p (parm->name (),
34910087
SM
4310 "int"))
4311 /* signed long -> unsigned int */
4312 return INTEGER_CONVERSION_BADNESS;
4313 else
4314 /* signed int/long -> unsigned int/long */
4315 return INTEGER_CONVERSION_BADNESS;
4316 }
4317 }
20ce4123 4318 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
34910087 4319 {
7d93a1e0
SM
4320 if (integer_types_same_name_p (parm->name (),
4321 arg->name ()))
34910087 4322 return EXACT_MATCH_BADNESS;
7d93a1e0 4323 else if (integer_types_same_name_p (arg->name (),
34910087 4324 "int")
7d93a1e0 4325 && integer_types_same_name_p (parm->name (),
34910087
SM
4326 "long"))
4327 return INTEGER_PROMOTION_BADNESS;
4328 else
4329 return INTEGER_CONVERSION_BADNESS;
4330 }
4331 else
4332 return INTEGER_CONVERSION_BADNESS;
4333 }
4334 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4335 return INTEGER_PROMOTION_BADNESS;
4336 else
4337 return INTEGER_CONVERSION_BADNESS;
4338 case TYPE_CODE_ENUM:
4339 case TYPE_CODE_FLAGS:
4340 case TYPE_CODE_CHAR:
4341 case TYPE_CODE_RANGE:
4342 case TYPE_CODE_BOOL:
4343 if (TYPE_DECLARED_CLASS (arg))
4344 return INCOMPATIBLE_TYPE_BADNESS;
4345 return INTEGER_PROMOTION_BADNESS;
4346 case TYPE_CODE_FLT:
4347 return INT_FLOAT_CONVERSION_BADNESS;
4348 case TYPE_CODE_PTR:
4349 return NS_POINTER_CONVERSION_BADNESS;
4350 default:
4351 return INCOMPATIBLE_TYPE_BADNESS;
4352 }
4353}
4354
793cd1d2
SM
4355/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4356
4357static struct rank
4358rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4359{
78134374 4360 switch (arg->code ())
793cd1d2
SM
4361 {
4362 case TYPE_CODE_INT:
4363 case TYPE_CODE_CHAR:
4364 case TYPE_CODE_RANGE:
4365 case TYPE_CODE_BOOL:
4366 case TYPE_CODE_ENUM:
4367 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4368 return INCOMPATIBLE_TYPE_BADNESS;
4369 return INTEGER_CONVERSION_BADNESS;
4370 case TYPE_CODE_FLT:
4371 return INT_FLOAT_CONVERSION_BADNESS;
4372 default:
4373 return INCOMPATIBLE_TYPE_BADNESS;
4374 }
4375}
4376
41ea4728
SM
4377/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4378
4379static struct rank
4380rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4381{
78134374 4382 switch (arg->code ())
41ea4728
SM
4383 {
4384 case TYPE_CODE_RANGE:
4385 case TYPE_CODE_BOOL:
4386 case TYPE_CODE_ENUM:
4387 if (TYPE_DECLARED_CLASS (arg))
4388 return INCOMPATIBLE_TYPE_BADNESS;
4389 return INTEGER_CONVERSION_BADNESS;
4390 case TYPE_CODE_FLT:
4391 return INT_FLOAT_CONVERSION_BADNESS;
4392 case TYPE_CODE_INT:
4393 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4394 return INTEGER_CONVERSION_BADNESS;
4395 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4396 return INTEGER_PROMOTION_BADNESS;
4397 /* fall through */
4398 case TYPE_CODE_CHAR:
4399 /* Deal with signed, unsigned, and plain chars for C++ and
4400 with int cases falling through from previous case. */
20ce4123 4401 if (parm->has_no_signedness ())
41ea4728 4402 {
20ce4123 4403 if (arg->has_no_signedness ())
41ea4728
SM
4404 return EXACT_MATCH_BADNESS;
4405 else
4406 return INTEGER_CONVERSION_BADNESS;
4407 }
c6d940a9 4408 else if (parm->is_unsigned ())
41ea4728 4409 {
c6d940a9 4410 if (arg->is_unsigned ())
41ea4728
SM
4411 return EXACT_MATCH_BADNESS;
4412 else
4413 return INTEGER_PROMOTION_BADNESS;
4414 }
20ce4123 4415 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
41ea4728
SM
4416 return EXACT_MATCH_BADNESS;
4417 else
4418 return INTEGER_CONVERSION_BADNESS;
4419 default:
4420 return INCOMPATIBLE_TYPE_BADNESS;
4421 }
4422}
4423
0dd322dc
SM
4424/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4425
4426static struct rank
4427rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4428{
78134374 4429 switch (arg->code ())
0dd322dc
SM
4430 {
4431 case TYPE_CODE_INT:
4432 case TYPE_CODE_CHAR:
4433 case TYPE_CODE_RANGE:
4434 case TYPE_CODE_BOOL:
4435 case TYPE_CODE_ENUM:
4436 return INTEGER_CONVERSION_BADNESS;
4437 case TYPE_CODE_FLT:
4438 return INT_FLOAT_CONVERSION_BADNESS;
4439 default:
4440 return INCOMPATIBLE_TYPE_BADNESS;
4441 }
4442}
4443
2c509035
SM
4444/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4445
4446static struct rank
4447rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4448{
78134374 4449 switch (arg->code ())
2c509035
SM
4450 {
4451 /* n3290 draft, section 4.12.1 (conv.bool):
4452
4453 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4454 pointer to member type can be converted to a prvalue of type
4455 bool. A zero value, null pointer value, or null member pointer
4456 value is converted to false; any other value is converted to
4457 true. A prvalue of type std::nullptr_t can be converted to a
4458 prvalue of type bool; the resulting value is false." */
4459 case TYPE_CODE_INT:
4460 case TYPE_CODE_CHAR:
4461 case TYPE_CODE_ENUM:
4462 case TYPE_CODE_FLT:
4463 case TYPE_CODE_MEMBERPTR:
4464 case TYPE_CODE_PTR:
4465 return BOOL_CONVERSION_BADNESS;
4466 case TYPE_CODE_RANGE:
4467 return INCOMPATIBLE_TYPE_BADNESS;
4468 case TYPE_CODE_BOOL:
4469 return EXACT_MATCH_BADNESS;
4470 default:
4471 return INCOMPATIBLE_TYPE_BADNESS;
4472 }
4473}
4474
7f17b20d
SM
4475/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4476
4477static struct rank
4478rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4479{
78134374 4480 switch (arg->code ())
7f17b20d
SM
4481 {
4482 case TYPE_CODE_FLT:
4483 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4484 return FLOAT_PROMOTION_BADNESS;
4485 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4486 return EXACT_MATCH_BADNESS;
4487 else
4488 return FLOAT_CONVERSION_BADNESS;
4489 case TYPE_CODE_INT:
4490 case TYPE_CODE_BOOL:
4491 case TYPE_CODE_ENUM:
4492 case TYPE_CODE_RANGE:
4493 case TYPE_CODE_CHAR:
4494 return INT_FLOAT_CONVERSION_BADNESS;
4495 default:
4496 return INCOMPATIBLE_TYPE_BADNESS;
4497 }
4498}
4499
2598a94b
SM
4500/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4501
4502static struct rank
4503rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4504{
78134374 4505 switch (arg->code ())
2598a94b
SM
4506 { /* Strictly not needed for C++, but... */
4507 case TYPE_CODE_FLT:
4508 return FLOAT_PROMOTION_BADNESS;
4509 case TYPE_CODE_COMPLEX:
4510 return EXACT_MATCH_BADNESS;
4511 default:
4512 return INCOMPATIBLE_TYPE_BADNESS;
4513 }
4514}
4515
595f96a9
SM
4516/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4517
4518static struct rank
4519rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4520{
4521 struct rank rank = {0, 0};
4522
78134374 4523 switch (arg->code ())
595f96a9
SM
4524 {
4525 case TYPE_CODE_STRUCT:
4526 /* Check for derivation */
4527 rank.subrank = distance_to_ancestor (parm, arg, 0);
4528 if (rank.subrank >= 0)
4529 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4530 /* fall through */
4531 default:
4532 return INCOMPATIBLE_TYPE_BADNESS;
4533 }
4534}
4535
f09ce22d
SM
4536/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4537
4538static struct rank
4539rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4540{
78134374 4541 switch (arg->code ())
f09ce22d
SM
4542 {
4543 /* Not in C++ */
4544 case TYPE_CODE_SET:
940da03e
SM
4545 return rank_one_type (parm->field (0).type (),
4546 arg->field (0).type (), NULL);
f09ce22d
SM
4547 default:
4548 return INCOMPATIBLE_TYPE_BADNESS;
4549 }
4550}
4551
c906108c
SS
4552/* Compare one type (PARM) for compatibility with another (ARG).
4553 * PARM is intended to be the parameter type of a function; and
4554 * ARG is the supplied argument's type. This function tests if
4555 * the latter can be converted to the former.
da096638 4556 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4557 *
4558 * Return 0 if they are identical types;
4559 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4560 * PARM is to ARG. The higher the return value, the worse the match.
4561 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4562
6403aeea 4563struct rank
da096638 4564rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4565{
a9d5ef47 4566 struct rank rank = {0,0};
7062b0a0 4567
c906108c 4568 /* Resolve typedefs */
78134374 4569 if (parm->code () == TYPE_CODE_TYPEDEF)
c906108c 4570 parm = check_typedef (parm);
78134374 4571 if (arg->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
4572 arg = check_typedef (arg);
4573
e15c3eb4 4574 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4575 {
e15c3eb4
KS
4576 if (VALUE_LVAL (value) == not_lval)
4577 {
4578 /* Rvalues should preferably bind to rvalue references or const
4579 lvalue references. */
78134374 4580 if (parm->code () == TYPE_CODE_RVALUE_REF)
e15c3eb4
KS
4581 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4582 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4583 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4584 else
4585 return INCOMPATIBLE_TYPE_BADNESS;
4586 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4587 }
4588 else
4589 {
330f1d38 4590 /* It's illegal to pass an lvalue as an rvalue. */
78134374 4591 if (parm->code () == TYPE_CODE_RVALUE_REF)
330f1d38 4592 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4593 }
15c0a2a9
AV
4594 }
4595
4596 if (types_equal (parm, arg))
15c0a2a9 4597 {
e15c3eb4
KS
4598 struct type *t1 = parm;
4599 struct type *t2 = arg;
15c0a2a9 4600
e15c3eb4 4601 /* For pointers and references, compare target type. */
78134374 4602 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
e15c3eb4
KS
4603 {
4604 t1 = TYPE_TARGET_TYPE (parm);
4605 t2 = TYPE_TARGET_TYPE (arg);
4606 }
15c0a2a9 4607
e15c3eb4
KS
4608 /* Make sure they are CV equal, too. */
4609 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4610 rank.subrank |= CV_CONVERSION_CONST;
4611 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4612 rank.subrank |= CV_CONVERSION_VOLATILE;
4613 if (rank.subrank != 0)
4614 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4615 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4616 }
4617
db577aea 4618 /* See through references, since we can almost make non-references
7ba81444 4619 references. */
aa006118
AV
4620
4621 if (TYPE_IS_REFERENCE (arg))
da096638 4622 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4623 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4624 if (TYPE_IS_REFERENCE (parm))
da096638 4625 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4626 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4627 if (overload_debug)
7ba81444 4628 /* Debugging only. */
78134374 4629 fprintf_filtered (gdb_stderr,
7ba81444 4630 "------ Arg is %s [%d], parm is %s [%d]\n",
7d93a1e0
SM
4631 arg->name (), arg->code (),
4632 parm->name (), parm->code ());
c906108c 4633
0963b4bd 4634 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c 4635
78134374 4636 switch (parm->code ())
c906108c 4637 {
c5aa993b 4638 case TYPE_CODE_PTR:
9293fc63 4639 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4640 case TYPE_CODE_ARRAY:
b9f4512f 4641 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4642 case TYPE_CODE_FUNC:
f1f832d6 4643 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4644 case TYPE_CODE_INT:
34910087 4645 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4646 case TYPE_CODE_ENUM:
793cd1d2 4647 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4648 case TYPE_CODE_CHAR:
41ea4728 4649 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4650 case TYPE_CODE_RANGE:
0dd322dc 4651 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4652 case TYPE_CODE_BOOL:
2c509035 4653 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4654 case TYPE_CODE_FLT:
7f17b20d 4655 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4656 case TYPE_CODE_COMPLEX:
2598a94b 4657 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4658 case TYPE_CODE_STRUCT:
595f96a9 4659 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4660 case TYPE_CODE_SET:
f09ce22d 4661 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4662 default:
4663 return INCOMPATIBLE_TYPE_BADNESS;
78134374 4664 } /* switch (arg->code ()) */
c906108c
SS
4665}
4666
0963b4bd 4667/* End of functions for overload resolution. */
5212577a
DE
4668\f
4669/* Routines to pretty-print types. */
c906108c 4670
c906108c 4671static void
fba45db2 4672print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4673{
4674 int bitno;
4675
4676 for (bitno = 0; bitno < nbits; bitno++)
4677 {
4678 if ((bitno % 8) == 0)
4679 {
4680 puts_filtered (" ");
4681 }
4682 if (B_TST (bits, bitno))
a3f17187 4683 printf_filtered (("1"));
c906108c 4684 else
a3f17187 4685 printf_filtered (("0"));
c906108c
SS
4686 }
4687}
4688
ad2f7632 4689/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4690 include it since we may get into a infinitely recursive
4691 situation. */
c906108c
SS
4692
4693static void
4c9e8482 4694print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4695{
4696 if (args != NULL)
4697 {
ad2f7632
DJ
4698 int i;
4699
4700 for (i = 0; i < nargs; i++)
4c9e8482
DE
4701 {
4702 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4703 args[i].name != NULL ? args[i].name : "<NULL>");
5d14b6e5 4704 recursive_dump_type (args[i].type (), spaces + 2);
4c9e8482 4705 }
c906108c
SS
4706 }
4707}
4708
d6a843b5
JK
4709int
4710field_is_static (struct field *f)
4711{
4712 /* "static" fields are the fields whose location is not relative
4713 to the address of the enclosing struct. It would be nice to
4714 have a dedicated flag that would be set for static fields when
4715 the type is being created. But in practice, checking the field
254e6b9e 4716 loc_kind should give us an accurate answer. */
d6a843b5
JK
4717 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4718 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4719}
4720
c906108c 4721static void
fba45db2 4722dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4723{
4724 int method_idx;
4725 int overload_idx;
4726 struct fn_field *f;
4727
4728 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4729 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4730 printf_filtered ("\n");
4731 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4732 {
4733 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4734 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4735 method_idx,
4736 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4737 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4738 gdb_stdout);
a3f17187 4739 printf_filtered (_(") length %d\n"),
c906108c
SS
4740 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4741 for (overload_idx = 0;
4742 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4743 overload_idx++)
4744 {
4745 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4746 overload_idx,
4747 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4748 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4749 gdb_stdout);
c906108c
SS
4750 printf_filtered (")\n");
4751 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4752 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4753 gdb_stdout);
c906108c
SS
4754 printf_filtered ("\n");
4755
4756 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4757 spaces + 8 + 2);
4758
4759 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4760 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4761 gdb_stdout);
c906108c 4762 printf_filtered ("\n");
4c9e8482 4763 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
1f704f76 4764 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4c9e8482 4765 spaces + 8 + 2);
c906108c 4766 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4767 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4768 gdb_stdout);
c906108c
SS
4769 printf_filtered ("\n");
4770
4771 printfi_filtered (spaces + 8, "is_const %d\n",
4772 TYPE_FN_FIELD_CONST (f, overload_idx));
4773 printfi_filtered (spaces + 8, "is_volatile %d\n",
4774 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4775 printfi_filtered (spaces + 8, "is_private %d\n",
4776 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4777 printfi_filtered (spaces + 8, "is_protected %d\n",
4778 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4779 printfi_filtered (spaces + 8, "is_stub %d\n",
4780 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4781 printfi_filtered (spaces + 8, "defaulted %d\n",
4782 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4783 printfi_filtered (spaces + 8, "is_deleted %d\n",
4784 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4785 printfi_filtered (spaces + 8, "voffset %u\n",
4786 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4787 }
4788 }
4789}
4790
4791static void
fba45db2 4792print_cplus_stuff (struct type *type, int spaces)
c906108c 4793{
ae6ae975
DE
4794 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4795 printfi_filtered (spaces, "vptr_basetype ");
4796 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4797 puts_filtered ("\n");
4798 if (TYPE_VPTR_BASETYPE (type) != NULL)
4799 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4800
c906108c
SS
4801 printfi_filtered (spaces, "n_baseclasses %d\n",
4802 TYPE_N_BASECLASSES (type));
4803 printfi_filtered (spaces, "nfn_fields %d\n",
4804 TYPE_NFN_FIELDS (type));
c906108c
SS
4805 if (TYPE_N_BASECLASSES (type) > 0)
4806 {
4807 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4808 TYPE_N_BASECLASSES (type));
7ba81444
MS
4809 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4810 gdb_stdout);
c906108c
SS
4811 printf_filtered (")");
4812
4813 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4814 TYPE_N_BASECLASSES (type));
4815 puts_filtered ("\n");
4816 }
1f704f76 4817 if (type->num_fields () > 0)
c906108c
SS
4818 {
4819 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4820 {
7ba81444
MS
4821 printfi_filtered (spaces,
4822 "private_field_bits (%d bits at *",
1f704f76 4823 type->num_fields ());
7ba81444
MS
4824 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4825 gdb_stdout);
c906108c
SS
4826 printf_filtered (")");
4827 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
1f704f76 4828 type->num_fields ());
c906108c
SS
4829 puts_filtered ("\n");
4830 }
4831 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4832 {
7ba81444
MS
4833 printfi_filtered (spaces,
4834 "protected_field_bits (%d bits at *",
1f704f76 4835 type->num_fields ());
7ba81444
MS
4836 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4837 gdb_stdout);
c906108c
SS
4838 printf_filtered (")");
4839 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
1f704f76 4840 type->num_fields ());
c906108c
SS
4841 puts_filtered ("\n");
4842 }
4843 }
4844 if (TYPE_NFN_FIELDS (type) > 0)
4845 {
4846 dump_fn_fieldlists (type, spaces);
4847 }
e35000a7
TBA
4848
4849 printfi_filtered (spaces, "calling_convention %d\n",
4850 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4851}
4852
b4ba55a1
JB
4853/* Print the contents of the TYPE's type_specific union, assuming that
4854 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4855
4856static void
4857print_gnat_stuff (struct type *type, int spaces)
4858{
4859 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4860
8cd00c59
PMR
4861 if (descriptive_type == NULL)
4862 printfi_filtered (spaces + 2, "no descriptive type\n");
4863 else
4864 {
4865 printfi_filtered (spaces + 2, "descriptive type\n");
4866 recursive_dump_type (descriptive_type, spaces + 4);
4867 }
b4ba55a1
JB
4868}
4869
c906108c
SS
4870static struct obstack dont_print_type_obstack;
4871
53d5a2a5
TV
4872/* Print the dynamic_prop PROP. */
4873
4874static void
4875dump_dynamic_prop (dynamic_prop const& prop)
4876{
4877 switch (prop.kind ())
4878 {
4879 case PROP_CONST:
4880 printf_filtered ("%s", plongest (prop.const_val ()));
4881 break;
4882 case PROP_UNDEFINED:
4883 printf_filtered ("(undefined)");
4884 break;
4885 case PROP_LOCEXPR:
4886 case PROP_LOCLIST:
4887 printf_filtered ("(dynamic)");
4888 break;
4889 default:
4890 gdb_assert_not_reached ("unhandled prop kind");
4891 break;
4892 }
4893}
4894
c906108c 4895void
fba45db2 4896recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4897{
4898 int idx;
4899
4900 if (spaces == 0)
4901 obstack_begin (&dont_print_type_obstack, 0);
4902
1f704f76 4903 if (type->num_fields () > 0
b4ba55a1 4904 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4905 {
4906 struct type **first_dont_print
7ba81444 4907 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4908
7ba81444
MS
4909 int i = (struct type **)
4910 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4911
4912 while (--i >= 0)
4913 {
4914 if (type == first_dont_print[i])
4915 {
4916 printfi_filtered (spaces, "type node ");
d4f3574e 4917 gdb_print_host_address (type, gdb_stdout);
a3f17187 4918 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4919 return;
4920 }
4921 }
4922
4923 obstack_ptr_grow (&dont_print_type_obstack, type);
4924 }
4925
4926 printfi_filtered (spaces, "type node ");
d4f3574e 4927 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4928 printf_filtered ("\n");
4929 printfi_filtered (spaces, "name '%s' (",
7d93a1e0
SM
4930 type->name () ? type->name () : "<NULL>");
4931 gdb_print_host_address (type->name (), gdb_stdout);
c906108c 4932 printf_filtered (")\n");
78134374
SM
4933 printfi_filtered (spaces, "code 0x%x ", type->code ());
4934 switch (type->code ())
c906108c 4935 {
c5aa993b
JM
4936 case TYPE_CODE_UNDEF:
4937 printf_filtered ("(TYPE_CODE_UNDEF)");
4938 break;
4939 case TYPE_CODE_PTR:
4940 printf_filtered ("(TYPE_CODE_PTR)");
4941 break;
4942 case TYPE_CODE_ARRAY:
4943 printf_filtered ("(TYPE_CODE_ARRAY)");
4944 break;
4945 case TYPE_CODE_STRUCT:
4946 printf_filtered ("(TYPE_CODE_STRUCT)");
4947 break;
4948 case TYPE_CODE_UNION:
4949 printf_filtered ("(TYPE_CODE_UNION)");
4950 break;
4951 case TYPE_CODE_ENUM:
4952 printf_filtered ("(TYPE_CODE_ENUM)");
4953 break;
4f2aea11
MK
4954 case TYPE_CODE_FLAGS:
4955 printf_filtered ("(TYPE_CODE_FLAGS)");
4956 break;
c5aa993b
JM
4957 case TYPE_CODE_FUNC:
4958 printf_filtered ("(TYPE_CODE_FUNC)");
4959 break;
4960 case TYPE_CODE_INT:
4961 printf_filtered ("(TYPE_CODE_INT)");
4962 break;
4963 case TYPE_CODE_FLT:
4964 printf_filtered ("(TYPE_CODE_FLT)");
4965 break;
4966 case TYPE_CODE_VOID:
4967 printf_filtered ("(TYPE_CODE_VOID)");
4968 break;
4969 case TYPE_CODE_SET:
4970 printf_filtered ("(TYPE_CODE_SET)");
4971 break;
4972 case TYPE_CODE_RANGE:
4973 printf_filtered ("(TYPE_CODE_RANGE)");
4974 break;
4975 case TYPE_CODE_STRING:
4976 printf_filtered ("(TYPE_CODE_STRING)");
4977 break;
4978 case TYPE_CODE_ERROR:
4979 printf_filtered ("(TYPE_CODE_ERROR)");
4980 break;
0d5de010
DJ
4981 case TYPE_CODE_MEMBERPTR:
4982 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4983 break;
4984 case TYPE_CODE_METHODPTR:
4985 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4986 break;
4987 case TYPE_CODE_METHOD:
4988 printf_filtered ("(TYPE_CODE_METHOD)");
4989 break;
4990 case TYPE_CODE_REF:
4991 printf_filtered ("(TYPE_CODE_REF)");
4992 break;
4993 case TYPE_CODE_CHAR:
4994 printf_filtered ("(TYPE_CODE_CHAR)");
4995 break;
4996 case TYPE_CODE_BOOL:
4997 printf_filtered ("(TYPE_CODE_BOOL)");
4998 break;
e9e79dd9
FF
4999 case TYPE_CODE_COMPLEX:
5000 printf_filtered ("(TYPE_CODE_COMPLEX)");
5001 break;
c5aa993b
JM
5002 case TYPE_CODE_TYPEDEF:
5003 printf_filtered ("(TYPE_CODE_TYPEDEF)");
5004 break;
5c4e30ca
DC
5005 case TYPE_CODE_NAMESPACE:
5006 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5007 break;
c5aa993b
JM
5008 default:
5009 printf_filtered ("(UNKNOWN TYPE CODE)");
5010 break;
c906108c
SS
5011 }
5012 puts_filtered ("\n");
cc1defb1 5013 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
5014 if (TYPE_OBJFILE_OWNED (type))
5015 {
5016 printfi_filtered (spaces, "objfile ");
5017 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5018 }
5019 else
5020 {
5021 printfi_filtered (spaces, "gdbarch ");
5022 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5023 }
c906108c
SS
5024 printf_filtered ("\n");
5025 printfi_filtered (spaces, "target_type ");
d4f3574e 5026 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
5027 printf_filtered ("\n");
5028 if (TYPE_TARGET_TYPE (type) != NULL)
5029 {
5030 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5031 }
5032 printfi_filtered (spaces, "pointer_type ");
d4f3574e 5033 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
5034 printf_filtered ("\n");
5035 printfi_filtered (spaces, "reference_type ");
d4f3574e 5036 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 5037 printf_filtered ("\n");
2fdde8f8
DJ
5038 printfi_filtered (spaces, "type_chain ");
5039 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 5040 printf_filtered ("\n");
7ba81444 5041 printfi_filtered (spaces, "instance_flags 0x%x",
314ad88d 5042 (unsigned) type->instance_flags ());
2fdde8f8
DJ
5043 if (TYPE_CONST (type))
5044 {
a9ff5f12 5045 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
5046 }
5047 if (TYPE_VOLATILE (type))
5048 {
a9ff5f12 5049 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
5050 }
5051 if (TYPE_CODE_SPACE (type))
5052 {
a9ff5f12 5053 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
5054 }
5055 if (TYPE_DATA_SPACE (type))
5056 {
a9ff5f12 5057 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 5058 }
8b2dbe47
KB
5059 if (TYPE_ADDRESS_CLASS_1 (type))
5060 {
a9ff5f12 5061 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
5062 }
5063 if (TYPE_ADDRESS_CLASS_2 (type))
5064 {
a9ff5f12 5065 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 5066 }
06d66ee9
TT
5067 if (TYPE_RESTRICT (type))
5068 {
a9ff5f12 5069 puts_filtered (" TYPE_RESTRICT");
06d66ee9 5070 }
a2c2acaf
MW
5071 if (TYPE_ATOMIC (type))
5072 {
a9ff5f12 5073 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 5074 }
2fdde8f8 5075 puts_filtered ("\n");
876cecd0
TT
5076
5077 printfi_filtered (spaces, "flags");
c6d940a9 5078 if (type->is_unsigned ())
c906108c 5079 {
a9ff5f12 5080 puts_filtered (" TYPE_UNSIGNED");
c906108c 5081 }
20ce4123 5082 if (type->has_no_signedness ())
762a036f 5083 {
a9ff5f12 5084 puts_filtered (" TYPE_NOSIGN");
762a036f 5085 }
04f5bab2 5086 if (type->endianity_is_not_default ())
34877895
PJ
5087 {
5088 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5089 }
e46d3488 5090 if (type->is_stub ())
c906108c 5091 {
a9ff5f12 5092 puts_filtered (" TYPE_STUB");
c906108c 5093 }
d2183968 5094 if (type->target_is_stub ())
762a036f 5095 {
a9ff5f12 5096 puts_filtered (" TYPE_TARGET_STUB");
762a036f 5097 }
7f9f399b 5098 if (type->is_prototyped ())
762a036f 5099 {
a9ff5f12 5100 puts_filtered (" TYPE_PROTOTYPED");
762a036f 5101 }
a409645d 5102 if (type->has_varargs ())
762a036f 5103 {
a9ff5f12 5104 puts_filtered (" TYPE_VARARGS");
762a036f 5105 }
f5f8a009
EZ
5106 /* This is used for things like AltiVec registers on ppc. Gcc emits
5107 an attribute for the array type, which tells whether or not we
5108 have a vector, instead of a regular array. */
bd63c870 5109 if (type->is_vector ())
f5f8a009 5110 {
a9ff5f12 5111 puts_filtered (" TYPE_VECTOR");
f5f8a009 5112 }
22c4c60c 5113 if (type->is_fixed_instance ())
876cecd0
TT
5114 {
5115 puts_filtered (" TYPE_FIXED_INSTANCE");
5116 }
3f46044c 5117 if (type->stub_is_supported ())
876cecd0
TT
5118 {
5119 puts_filtered (" TYPE_STUB_SUPPORTED");
5120 }
5121 if (TYPE_NOTTEXT (type))
5122 {
5123 puts_filtered (" TYPE_NOTTEXT");
5124 }
c906108c 5125 puts_filtered ("\n");
1f704f76 5126 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
80fc5e77 5127 gdb_print_host_address (type->fields (), gdb_stdout);
c906108c 5128 puts_filtered ("\n");
1f704f76 5129 for (idx = 0; idx < type->num_fields (); idx++)
c906108c 5130 {
78134374 5131 if (type->code () == TYPE_CODE_ENUM)
14e75d8e
JK
5132 printfi_filtered (spaces + 2,
5133 "[%d] enumval %s type ",
5134 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5135 else
5136 printfi_filtered (spaces + 2,
6b850546
DT
5137 "[%d] bitpos %s bitsize %d type ",
5138 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 5139 TYPE_FIELD_BITSIZE (type, idx));
940da03e 5140 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
c906108c
SS
5141 printf_filtered (" name '%s' (",
5142 TYPE_FIELD_NAME (type, idx) != NULL
5143 ? TYPE_FIELD_NAME (type, idx)
5144 : "<NULL>");
d4f3574e 5145 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c 5146 printf_filtered (")\n");
940da03e 5147 if (type->field (idx).type () != NULL)
c906108c 5148 {
940da03e 5149 recursive_dump_type (type->field (idx).type (), spaces + 4);
c906108c
SS
5150 }
5151 }
78134374 5152 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2 5153 {
53d5a2a5
TV
5154 printfi_filtered (spaces, "low ");
5155 dump_dynamic_prop (type->bounds ()->low);
5156 printf_filtered (" high ");
5157 dump_dynamic_prop (type->bounds ()->high);
5158 printf_filtered ("\n");
43bbcdc2 5159 }
c906108c 5160
b4ba55a1
JB
5161 switch (TYPE_SPECIFIC_FIELD (type))
5162 {
5163 case TYPE_SPECIFIC_CPLUS_STUFF:
5164 printfi_filtered (spaces, "cplus_stuff ");
5165 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5166 gdb_stdout);
5167 puts_filtered ("\n");
5168 print_cplus_stuff (type, spaces);
5169 break;
8da61cc4 5170
b4ba55a1
JB
5171 case TYPE_SPECIFIC_GNAT_STUFF:
5172 printfi_filtered (spaces, "gnat_stuff ");
5173 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5174 puts_filtered ("\n");
5175 print_gnat_stuff (type, spaces);
5176 break;
701c159d 5177
b4ba55a1
JB
5178 case TYPE_SPECIFIC_FLOATFORMAT:
5179 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
5180 if (TYPE_FLOATFORMAT (type) == NULL
5181 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
5182 puts_filtered ("(null)");
5183 else
0db7851f 5184 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
5185 puts_filtered ("\n");
5186 break;
c906108c 5187
b6cdc2c1 5188 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
5189 printfi_filtered (spaces, "calling_convention %d\n",
5190 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 5191 /* tail_call_list is not printed. */
b4ba55a1 5192 break;
09e2d7c7
DE
5193
5194 case TYPE_SPECIFIC_SELF_TYPE:
5195 printfi_filtered (spaces, "self_type ");
5196 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5197 puts_filtered ("\n");
5198 break;
20a5fcbd
TT
5199
5200 case TYPE_SPECIFIC_INT:
5201 if (type->bit_size_differs_p ())
5202 {
5203 unsigned bit_size = type->bit_size ();
5204 unsigned bit_off = type->bit_offset ();
5205 printfi_filtered (spaces, " bit size = %u, bit offset = %u\n",
5206 bit_size, bit_off);
5207 }
5208 break;
c906108c 5209 }
b4ba55a1 5210
c906108c
SS
5211 if (spaces == 0)
5212 obstack_free (&dont_print_type_obstack, NULL);
5213}
5212577a 5214\f
ae5a43e0
DJ
5215/* Trivial helpers for the libiberty hash table, for mapping one
5216 type to another. */
5217
fd90ace4 5218struct type_pair : public allocate_on_obstack
ae5a43e0 5219{
fd90ace4
YQ
5220 type_pair (struct type *old_, struct type *newobj_)
5221 : old (old_), newobj (newobj_)
5222 {}
5223
5224 struct type * const old, * const newobj;
ae5a43e0
DJ
5225};
5226
5227static hashval_t
5228type_pair_hash (const void *item)
5229{
9a3c8263 5230 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 5231
ae5a43e0
DJ
5232 return htab_hash_pointer (pair->old);
5233}
5234
5235static int
5236type_pair_eq (const void *item_lhs, const void *item_rhs)
5237{
9a3c8263
SM
5238 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5239 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 5240
ae5a43e0
DJ
5241 return lhs->old == rhs->old;
5242}
5243
5244/* Allocate the hash table used by copy_type_recursive to walk
5245 types without duplicates. We use OBJFILE's obstack, because
5246 OBJFILE is about to be deleted. */
5247
6108fd18 5248htab_up
ae5a43e0
DJ
5249create_copied_types_hash (struct objfile *objfile)
5250{
6108fd18
TT
5251 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5252 NULL, &objfile->objfile_obstack,
5253 hashtab_obstack_allocate,
5254 dummy_obstack_deallocate));
ae5a43e0
DJ
5255}
5256
d9823cbb
KB
5257/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5258
5259static struct dynamic_prop_list *
5260copy_dynamic_prop_list (struct obstack *objfile_obstack,
5261 struct dynamic_prop_list *list)
5262{
5263 struct dynamic_prop_list *copy = list;
5264 struct dynamic_prop_list **node_ptr = &copy;
5265
5266 while (*node_ptr != NULL)
5267 {
5268 struct dynamic_prop_list *node_copy;
5269
224c3ddb
SM
5270 node_copy = ((struct dynamic_prop_list *)
5271 obstack_copy (objfile_obstack, *node_ptr,
5272 sizeof (struct dynamic_prop_list)));
283a9958 5273 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
5274 *node_ptr = node_copy;
5275
5276 node_ptr = &node_copy->next;
5277 }
5278
5279 return copy;
5280}
5281
7ba81444 5282/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5283 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5284 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5285 it is not associated with OBJFILE. */
ae5a43e0
DJ
5286
5287struct type *
7ba81444
MS
5288copy_type_recursive (struct objfile *objfile,
5289 struct type *type,
ae5a43e0
DJ
5290 htab_t copied_types)
5291{
ae5a43e0
DJ
5292 void **slot;
5293 struct type *new_type;
5294
e9bb382b 5295 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5296 return type;
5297
7ba81444
MS
5298 /* This type shouldn't be pointing to any types in other objfiles;
5299 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5300 gdb_assert (TYPE_OBJFILE (type) == objfile);
5301
fd90ace4
YQ
5302 struct type_pair pair (type, nullptr);
5303
ae5a43e0
DJ
5304 slot = htab_find_slot (copied_types, &pair, INSERT);
5305 if (*slot != NULL)
fe978cb0 5306 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5307
e9bb382b 5308 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5309
5310 /* We must add the new type to the hash table immediately, in case
5311 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5312 struct type_pair *stored
5313 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5314
ae5a43e0
DJ
5315 *slot = stored;
5316
876cecd0
TT
5317 /* Copy the common fields of types. For the main type, we simply
5318 copy the entire thing and then update specific fields as needed. */
5319 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5320 TYPE_OBJFILE_OWNED (new_type) = 0;
5321 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5322
7d93a1e0
SM
5323 if (type->name ())
5324 new_type->set_name (xstrdup (type->name ()));
ae5a43e0 5325
314ad88d 5326 new_type->set_instance_flags (type->instance_flags ());
ae5a43e0
DJ
5327 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5328
5329 /* Copy the fields. */
1f704f76 5330 if (type->num_fields ())
ae5a43e0
DJ
5331 {
5332 int i, nfields;
5333
1f704f76 5334 nfields = type->num_fields ();
3cabb6b0
SM
5335 new_type->set_fields
5336 ((struct field *)
5337 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5338
ae5a43e0
DJ
5339 for (i = 0; i < nfields; i++)
5340 {
7ba81444
MS
5341 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5342 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0 5343 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
940da03e 5344 if (type->field (i).type ())
5d14b6e5 5345 new_type->field (i).set_type
940da03e 5346 (copy_type_recursive (objfile, type->field (i).type (),
5d14b6e5 5347 copied_types));
ae5a43e0 5348 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5349 TYPE_FIELD_NAME (new_type, i) =
5350 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5351 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5352 {
d6a843b5 5353 case FIELD_LOC_KIND_BITPOS:
ceacbf6e 5354 SET_FIELD_BITPOS (new_type->field (i),
d6a843b5
JK
5355 TYPE_FIELD_BITPOS (type, i));
5356 break;
14e75d8e 5357 case FIELD_LOC_KIND_ENUMVAL:
ceacbf6e 5358 SET_FIELD_ENUMVAL (new_type->field (i),
14e75d8e
JK
5359 TYPE_FIELD_ENUMVAL (type, i));
5360 break;
d6a843b5 5361 case FIELD_LOC_KIND_PHYSADDR:
ceacbf6e 5362 SET_FIELD_PHYSADDR (new_type->field (i),
d6a843b5
JK
5363 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5364 break;
5365 case FIELD_LOC_KIND_PHYSNAME:
ceacbf6e 5366 SET_FIELD_PHYSNAME (new_type->field (i),
d6a843b5
JK
5367 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5368 i)));
5369 break;
5370 default:
5371 internal_error (__FILE__, __LINE__,
5372 _("Unexpected type field location kind: %d"),
5373 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5374 }
5375 }
5376 }
5377
0963b4bd 5378 /* For range types, copy the bounds information. */
78134374 5379 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2 5380 {
c4dfcb36
SM
5381 range_bounds *bounds
5382 = ((struct range_bounds *) TYPE_ALLOC
5383 (new_type, sizeof (struct range_bounds)));
5384
5385 *bounds = *type->bounds ();
5386 new_type->set_bounds (bounds);
43bbcdc2
PH
5387 }
5388
98d48915
SM
5389 if (type->main_type->dyn_prop_list != NULL)
5390 new_type->main_type->dyn_prop_list
d9823cbb 5391 = copy_dynamic_prop_list (&objfile->objfile_obstack,
98d48915 5392 type->main_type->dyn_prop_list);
d9823cbb 5393
3cdcd0ce 5394
ae5a43e0
DJ
5395 /* Copy pointers to other types. */
5396 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5397 TYPE_TARGET_TYPE (new_type) =
5398 copy_type_recursive (objfile,
5399 TYPE_TARGET_TYPE (type),
5400 copied_types);
f6b3afbf 5401
ae5a43e0
DJ
5402 /* Maybe copy the type_specific bits.
5403
5404 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5405 base classes and methods. There's no fundamental reason why we
5406 can't, but at the moment it is not needed. */
5407
f6b3afbf
DE
5408 switch (TYPE_SPECIFIC_FIELD (type))
5409 {
5410 case TYPE_SPECIFIC_NONE:
5411 break;
5412 case TYPE_SPECIFIC_FUNC:
5413 INIT_FUNC_SPECIFIC (new_type);
5414 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5415 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5416 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5417 break;
5418 case TYPE_SPECIFIC_FLOATFORMAT:
5419 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5420 break;
5421 case TYPE_SPECIFIC_CPLUS_STUFF:
5422 INIT_CPLUS_SPECIFIC (new_type);
5423 break;
5424 case TYPE_SPECIFIC_GNAT_STUFF:
5425 INIT_GNAT_SPECIFIC (new_type);
5426 break;
09e2d7c7
DE
5427 case TYPE_SPECIFIC_SELF_TYPE:
5428 set_type_self_type (new_type,
5429 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5430 copied_types));
5431 break;
20a5fcbd
TT
5432 case TYPE_SPECIFIC_INT:
5433 TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
5434 TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
5435 = TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
5436 break;
5437
f6b3afbf
DE
5438 default:
5439 gdb_assert_not_reached ("bad type_specific_kind");
5440 }
ae5a43e0
DJ
5441
5442 return new_type;
5443}
5444
4af88198
JB
5445/* Make a copy of the given TYPE, except that the pointer & reference
5446 types are not preserved.
5447
5448 This function assumes that the given type has an associated objfile.
5449 This objfile is used to allocate the new type. */
5450
5451struct type *
5452copy_type (const struct type *type)
5453{
5454 struct type *new_type;
5455
e9bb382b 5456 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5457
e9bb382b 5458 new_type = alloc_type_copy (type);
314ad88d 5459 new_type->set_instance_flags (type->instance_flags ());
4af88198
JB
5460 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5461 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5462 sizeof (struct main_type));
98d48915
SM
5463 if (type->main_type->dyn_prop_list != NULL)
5464 new_type->main_type->dyn_prop_list
d9823cbb 5465 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
98d48915 5466 type->main_type->dyn_prop_list);
4af88198
JB
5467
5468 return new_type;
5469}
5212577a 5470\f
e9bb382b
UW
5471/* Helper functions to initialize architecture-specific types. */
5472
5473/* Allocate a type structure associated with GDBARCH and set its
5474 CODE, LENGTH, and NAME fields. */
5212577a 5475
e9bb382b
UW
5476struct type *
5477arch_type (struct gdbarch *gdbarch,
77b7c781 5478 enum type_code code, int bit, const char *name)
e9bb382b
UW
5479{
5480 struct type *type;
5481
5482 type = alloc_type_arch (gdbarch);
ae438bc5 5483 set_type_code (type, code);
77b7c781
UW
5484 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5485 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5486
5487 if (name)
d0e39ea2 5488 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
e9bb382b
UW
5489
5490 return type;
5491}
5492
5493/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5494 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5495 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5496
e9bb382b
UW
5497struct type *
5498arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5499 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5500{
5501 struct type *t;
5502
77b7c781 5503 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b 5504 if (unsigned_p)
653223d3 5505 t->set_is_unsigned (true);
e9bb382b
UW
5506
5507 return t;
5508}
5509
5510/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5511 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5512 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5513
e9bb382b
UW
5514struct type *
5515arch_character_type (struct gdbarch *gdbarch,
695bfa52 5516 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5517{
5518 struct type *t;
5519
77b7c781 5520 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b 5521 if (unsigned_p)
653223d3 5522 t->set_is_unsigned (true);
e9bb382b
UW
5523
5524 return t;
5525}
5526
5527/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5528 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5529 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5530
e9bb382b
UW
5531struct type *
5532arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5533 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5534{
5535 struct type *t;
5536
77b7c781 5537 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b 5538 if (unsigned_p)
653223d3 5539 t->set_is_unsigned (true);
e9bb382b
UW
5540
5541 return t;
5542}
5543
5544/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5545 BIT is the type size in bits; if BIT equals -1, the size is
5546 determined by the floatformat. NAME is the type name. Set the
5547 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5548
27067745 5549struct type *
e9bb382b 5550arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5551 int bit, const char *name,
5552 const struct floatformat **floatformats)
8da61cc4 5553{
0db7851f 5554 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5555 struct type *t;
5556
0db7851f 5557 bit = verify_floatformat (bit, fmt);
77b7c781 5558 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5559 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5560
8da61cc4
DJ
5561 return t;
5562}
5563
88dfca6c
UW
5564/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5565 BIT is the type size in bits. NAME is the type name. */
5566
5567struct type *
5568arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5569{
5570 struct type *t;
5571
77b7c781 5572 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5573 return t;
5574}
5575
88dfca6c
UW
5576/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5577 BIT is the pointer type size in bits. NAME is the type name.
5578 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5579 TYPE_UNSIGNED flag. */
5580
5581struct type *
5582arch_pointer_type (struct gdbarch *gdbarch,
5583 int bit, const char *name, struct type *target_type)
5584{
5585 struct type *t;
5586
77b7c781 5587 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c 5588 TYPE_TARGET_TYPE (t) = target_type;
653223d3 5589 t->set_is_unsigned (true);
88dfca6c
UW
5590 return t;
5591}
5592
e9bb382b 5593/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5594 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5595
e9bb382b 5596struct type *
77b7c781 5597arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5598{
e9bb382b
UW
5599 struct type *type;
5600
77b7c781 5601 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
653223d3 5602 type->set_is_unsigned (true);
5e33d5f4 5603 type->set_num_fields (0);
81516450 5604 /* Pre-allocate enough space assuming every field is one bit. */
3cabb6b0
SM
5605 type->set_fields
5606 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
e9bb382b
UW
5607
5608 return type;
5609}
5610
5611/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5612 position BITPOS is called NAME. Pass NAME as "" for fields that
5613 should not be printed. */
5614
5615void
5616append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5617 struct type *field_type, const char *name)
81516450
DE
5618{
5619 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1f704f76 5620 int field_nr = type->num_fields ();
81516450 5621
78134374 5622 gdb_assert (type->code () == TYPE_CODE_FLAGS);
1f704f76 5623 gdb_assert (type->num_fields () + 1 <= type_bitsize);
81516450
DE
5624 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5625 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5626 gdb_assert (name != NULL);
5627
5628 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5d14b6e5 5629 type->field (field_nr).set_type (field_type);
ceacbf6e 5630 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
81516450 5631 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5e33d5f4 5632 type->set_num_fields (type->num_fields () + 1);
81516450
DE
5633}
5634
5635/* Special version of append_flags_type_field to add a flag field.
5636 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5637 position BITPOS is called NAME. */
5212577a 5638
e9bb382b 5639void
695bfa52 5640append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5641{
81516450 5642 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5643
81516450
DE
5644 append_flags_type_field (type, bitpos, 1,
5645 builtin_type (gdbarch)->builtin_bool,
5646 name);
e9bb382b
UW
5647}
5648
5649/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5650 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5651
e9bb382b 5652struct type *
695bfa52
TT
5653arch_composite_type (struct gdbarch *gdbarch, const char *name,
5654 enum type_code code)
e9bb382b
UW
5655{
5656 struct type *t;
d8734c88 5657
e9bb382b
UW
5658 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5659 t = arch_type (gdbarch, code, 0, NULL);
d0e39ea2 5660 t->set_name (name);
e9bb382b
UW
5661 INIT_CPLUS_SPECIFIC (t);
5662 return t;
5663}
5664
5665/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5666 Do not set the field's position or adjust the type's length;
5667 the caller should do so. Return the new field. */
5212577a 5668
f5dff777 5669struct field *
695bfa52 5670append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5671 struct type *field)
e9bb382b
UW
5672{
5673 struct field *f;
d8734c88 5674
1f704f76 5675 t->set_num_fields (t->num_fields () + 1);
80fc5e77 5676 t->set_fields (XRESIZEVEC (struct field, t->fields (),
3cabb6b0 5677 t->num_fields ()));
80fc5e77 5678 f = &t->field (t->num_fields () - 1);
e9bb382b 5679 memset (f, 0, sizeof f[0]);
5d14b6e5 5680 f[0].set_type (field);
e9bb382b 5681 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5682 return f;
5683}
5684
5685/* Add new field with name NAME and type FIELD to composite type T.
5686 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5687
f5dff777 5688void
695bfa52 5689append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5690 struct type *field, int alignment)
5691{
5692 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5693
78134374 5694 if (t->code () == TYPE_CODE_UNION)
e9bb382b
UW
5695 {
5696 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5697 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5698 }
78134374 5699 else if (t->code () == TYPE_CODE_STRUCT)
e9bb382b
UW
5700 {
5701 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1f704f76 5702 if (t->num_fields () > 1)
e9bb382b 5703 {
f41f5e61
PA
5704 SET_FIELD_BITPOS (f[0],
5705 (FIELD_BITPOS (f[-1])
b6cdac4b 5706 + (TYPE_LENGTH (f[-1].type ())
f41f5e61 5707 * TARGET_CHAR_BIT)));
e9bb382b
UW
5708
5709 if (alignment)
5710 {
86c3c1fc
AB
5711 int left;
5712
5713 alignment *= TARGET_CHAR_BIT;
5714 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5715
e9bb382b
UW
5716 if (left)
5717 {
f41f5e61 5718 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5719 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5720 }
5721 }
5722 }
5723 }
5724}
5725
5726/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5727
e9bb382b 5728void
695bfa52 5729append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5730 struct type *field)
5731{
5732 append_composite_type_field_aligned (t, name, field, 0);
5733}
5734
000177f0
AC
5735static struct gdbarch_data *gdbtypes_data;
5736
5737const struct builtin_type *
5738builtin_type (struct gdbarch *gdbarch)
5739{
9a3c8263 5740 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5741}
5742
5743static void *
5744gdbtypes_post_init (struct gdbarch *gdbarch)
5745{
5746 struct builtin_type *builtin_type
5747 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5748
46bf5051 5749 /* Basic types. */
e9bb382b 5750 builtin_type->builtin_void
77b7c781 5751 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5752 builtin_type->builtin_char
5753 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5754 !gdbarch_char_signed (gdbarch), "char");
15152a54 5755 builtin_type->builtin_char->set_has_no_signedness (true);
e9bb382b
UW
5756 builtin_type->builtin_signed_char
5757 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5758 0, "signed char");
5759 builtin_type->builtin_unsigned_char
5760 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5761 1, "unsigned char");
5762 builtin_type->builtin_short
5763 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5764 0, "short");
5765 builtin_type->builtin_unsigned_short
5766 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5767 1, "unsigned short");
5768 builtin_type->builtin_int
5769 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5770 0, "int");
5771 builtin_type->builtin_unsigned_int
5772 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5773 1, "unsigned int");
5774 builtin_type->builtin_long
5775 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5776 0, "long");
5777 builtin_type->builtin_unsigned_long
5778 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5779 1, "unsigned long");
5780 builtin_type->builtin_long_long
5781 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5782 0, "long long");
5783 builtin_type->builtin_unsigned_long_long
5784 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5785 1, "unsigned long long");
a6d0f249
AH
5786 builtin_type->builtin_half
5787 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5788 "half", gdbarch_half_format (gdbarch));
70bd8e24 5789 builtin_type->builtin_float
e9bb382b 5790 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5791 "float", gdbarch_float_format (gdbarch));
2a67f09d
FW
5792 builtin_type->builtin_bfloat16
5793 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5794 "bfloat16", gdbarch_bfloat16_format (gdbarch));
70bd8e24 5795 builtin_type->builtin_double
e9bb382b 5796 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5797 "double", gdbarch_double_format (gdbarch));
70bd8e24 5798 builtin_type->builtin_long_double
e9bb382b 5799 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5800 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5801 builtin_type->builtin_complex
5b930b45 5802 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5803 builtin_type->builtin_double_complex
5b930b45 5804 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5805 builtin_type->builtin_string
77b7c781 5806 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5807 builtin_type->builtin_bool
77b7c781 5808 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5809
7678ef8f
TJB
5810 /* The following three are about decimal floating point types, which
5811 are 32-bits, 64-bits and 128-bits respectively. */
5812 builtin_type->builtin_decfloat
88dfca6c 5813 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5814 builtin_type->builtin_decdouble
88dfca6c 5815 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5816 builtin_type->builtin_declong
88dfca6c 5817 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5818
69feb676 5819 /* "True" character types. */
e9bb382b
UW
5820 builtin_type->builtin_true_char
5821 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5822 builtin_type->builtin_true_unsigned_char
5823 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5824
df4df182 5825 /* Fixed-size integer types. */
e9bb382b
UW
5826 builtin_type->builtin_int0
5827 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5828 builtin_type->builtin_int8
5829 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5830 builtin_type->builtin_uint8
5831 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5832 builtin_type->builtin_int16
5833 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5834 builtin_type->builtin_uint16
5835 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5836 builtin_type->builtin_int24
5837 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5838 builtin_type->builtin_uint24
5839 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5840 builtin_type->builtin_int32
5841 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5842 builtin_type->builtin_uint32
5843 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5844 builtin_type->builtin_int64
5845 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5846 builtin_type->builtin_uint64
5847 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5848 builtin_type->builtin_int128
5849 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5850 builtin_type->builtin_uint128
5851 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
314ad88d
PA
5852
5853 builtin_type->builtin_int8->set_instance_flags
5854 (builtin_type->builtin_int8->instance_flags ()
5855 | TYPE_INSTANCE_FLAG_NOTTEXT);
5856
5857 builtin_type->builtin_uint8->set_instance_flags
5858 (builtin_type->builtin_uint8->instance_flags ()
5859 | TYPE_INSTANCE_FLAG_NOTTEXT);
df4df182 5860
9a22f0d0
PM
5861 /* Wide character types. */
5862 builtin_type->builtin_char16
53e710ac 5863 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5864 builtin_type->builtin_char32
53e710ac 5865 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5866 builtin_type->builtin_wchar
5867 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5868 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5869
46bf5051 5870 /* Default data/code pointer types. */
e9bb382b
UW
5871 builtin_type->builtin_data_ptr
5872 = lookup_pointer_type (builtin_type->builtin_void);
5873 builtin_type->builtin_func_ptr
5874 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5875 builtin_type->builtin_func_func
5876 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5877
78267919 5878 /* This type represents a GDB internal function. */
e9bb382b
UW
5879 builtin_type->internal_fn
5880 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5881 "<internal function>");
78267919 5882
e81e7f5e
SC
5883 /* This type represents an xmethod. */
5884 builtin_type->xmethod
5885 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5886
46bf5051
UW
5887 return builtin_type;
5888}
5889
46bf5051
UW
5890/* This set of objfile-based types is intended to be used by symbol
5891 readers as basic types. */
5892
7a102139
TT
5893static const struct objfile_key<struct objfile_type,
5894 gdb::noop_deleter<struct objfile_type>>
5895 objfile_type_data;
46bf5051
UW
5896
5897const struct objfile_type *
5898objfile_type (struct objfile *objfile)
5899{
5900 struct gdbarch *gdbarch;
7a102139 5901 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5902
5903 if (objfile_type)
5904 return objfile_type;
5905
5906 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5907 1, struct objfile_type);
5908
5909 /* Use the objfile architecture to determine basic type properties. */
08feed99 5910 gdbarch = objfile->arch ();
46bf5051
UW
5911
5912 /* Basic types. */
5913 objfile_type->builtin_void
77b7c781 5914 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5915 objfile_type->builtin_char
19f392bc
UW
5916 = init_integer_type (objfile, TARGET_CHAR_BIT,
5917 !gdbarch_char_signed (gdbarch), "char");
15152a54 5918 objfile_type->builtin_char->set_has_no_signedness (true);
46bf5051 5919 objfile_type->builtin_signed_char
19f392bc
UW
5920 = init_integer_type (objfile, TARGET_CHAR_BIT,
5921 0, "signed char");
46bf5051 5922 objfile_type->builtin_unsigned_char
19f392bc
UW
5923 = init_integer_type (objfile, TARGET_CHAR_BIT,
5924 1, "unsigned char");
46bf5051 5925 objfile_type->builtin_short
19f392bc
UW
5926 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5927 0, "short");
46bf5051 5928 objfile_type->builtin_unsigned_short
19f392bc
UW
5929 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5930 1, "unsigned short");
46bf5051 5931 objfile_type->builtin_int
19f392bc
UW
5932 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5933 0, "int");
46bf5051 5934 objfile_type->builtin_unsigned_int
19f392bc
UW
5935 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5936 1, "unsigned int");
46bf5051 5937 objfile_type->builtin_long
19f392bc
UW
5938 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5939 0, "long");
46bf5051 5940 objfile_type->builtin_unsigned_long
19f392bc
UW
5941 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5942 1, "unsigned long");
46bf5051 5943 objfile_type->builtin_long_long
19f392bc
UW
5944 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5945 0, "long long");
46bf5051 5946 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5947 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5948 1, "unsigned long long");
46bf5051 5949 objfile_type->builtin_float
19f392bc
UW
5950 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5951 "float", gdbarch_float_format (gdbarch));
46bf5051 5952 objfile_type->builtin_double
19f392bc
UW
5953 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5954 "double", gdbarch_double_format (gdbarch));
46bf5051 5955 objfile_type->builtin_long_double
19f392bc
UW
5956 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5957 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5958
5959 /* This type represents a type that was unrecognized in symbol read-in. */
5960 objfile_type->builtin_error
19f392bc 5961 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5962
5963 /* The following set of types is used for symbols with no
5964 debug information. */
5965 objfile_type->nodebug_text_symbol
77b7c781 5966 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5967 "<text variable, no debug info>");
03cc7249 5968
0875794a 5969 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5970 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5971 "<text gnu-indirect-function variable, no debug info>");
03cc7249
SM
5972 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
5973
0875794a 5974 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5975 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5976 "<text from jump slot in .got.plt, no debug info>",
5977 objfile_type->nodebug_text_symbol);
46bf5051 5978 objfile_type->nodebug_data_symbol
46a4882b 5979 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5980 objfile_type->nodebug_unknown_symbol
46a4882b 5981 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5982 objfile_type->nodebug_tls_symbol
46a4882b 5983 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5984
5985 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5986 the same.
000177f0
AC
5987
5988 The upshot is:
5989 - gdb's `struct type' always describes the target's
5990 representation.
5991 - gdb's `struct value' objects should always hold values in
5992 target form.
5993 - gdb's CORE_ADDR values are addresses in the unified virtual
5994 address space that the assembler and linker work with. Thus,
5995 since target_read_memory takes a CORE_ADDR as an argument, it
5996 can access any memory on the target, even if the processor has
5997 separate code and data address spaces.
5998
46bf5051
UW
5999 In this context, objfile_type->builtin_core_addr is a bit odd:
6000 it's a target type for a value the target will never see. It's
6001 only used to hold the values of (typeless) linker symbols, which
6002 are indeed in the unified virtual address space. */
000177f0 6003
46bf5051 6004 objfile_type->builtin_core_addr
19f392bc
UW
6005 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
6006 "__CORE_ADDR");
64c50499 6007
7a102139 6008 objfile_type_data.set (objfile, objfile_type);
46bf5051 6009 return objfile_type;
000177f0
AC
6010}
6011
6c265988 6012void _initialize_gdbtypes ();
c906108c 6013void
6c265988 6014_initialize_gdbtypes ()
c906108c 6015{
5674de60
UW
6016 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
6017
ccce17b0
YQ
6018 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
6019 _("Set debugging of C++ overloading."),
6020 _("Show debugging of C++ overloading."),
6021 _("When enabled, ranking of the "
6022 "functions is displayed."),
6023 NULL,
6024 show_overload_debug,
6025 &setdebuglist, &showdebuglist);
5674de60 6026
7ba81444 6027 /* Add user knob for controlling resolution of opaque types. */
5674de60 6028 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
6029 &opaque_type_resolution,
6030 _("Set resolution of opaque struct/class/union"
6031 " types (if set before loading symbols)."),
6032 _("Show resolution of opaque struct/class/union"
6033 " types (if set before loading symbols)."),
6034 NULL, NULL,
5674de60
UW
6035 show_opaque_type_resolution,
6036 &setlist, &showlist);
a451cb65
KS
6037
6038 /* Add an option to permit non-strict type checking. */
6039 add_setshow_boolean_cmd ("type", class_support,
6040 &strict_type_checking,
6041 _("Set strict type checking."),
6042 _("Show strict type checking."),
6043 NULL, NULL,
6044 show_strict_type_checking,
6045 &setchecklist, &showchecklist);
c906108c 6046}
This page took 2.258606 seconds and 4 git commands to generate.