Use htab_up in type copying
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ef83a141 42#include <algorithm>
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 56const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 68
8da61cc4 69/* Floatformat pairs. */
f9e9243a
UW
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
8da61cc4
DJ
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
b14d30e1 114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
b14d30e1 117};
2a67f09d
FW
118const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
121};
8da61cc4 122
2873700e
KS
123/* Should opaque types be resolved? */
124
491144b5 125static bool opaque_type_resolution = true;
2873700e 126
79bb1944 127/* See gdbtypes.h. */
2873700e
KS
128
129unsigned int overload_debug = 0;
130
a451cb65
KS
131/* A flag to enable strict type checking. */
132
491144b5 133static bool strict_type_checking = true;
a451cb65 134
2873700e 135/* A function to show whether opaque types are resolved. */
5212577a 136
920d2a44
AC
137static void
138show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
139 struct cmd_list_element *c,
140 const char *value)
920d2a44 141{
3e43a32a
MS
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
144 value);
145}
146
2873700e 147/* A function to show whether C++ overload debugging is enabled. */
5212577a 148
920d2a44
AC
149static void
150show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152{
7ba81444
MS
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
154 value);
920d2a44 155}
c906108c 156
a451cb65
KS
157/* A function to show the status of strict type checking. */
158
159static void
160show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
164}
165
5212577a 166\f
e9bb382b
UW
167/* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
c906108c
SS
170
171struct type *
fba45db2 172alloc_type (struct objfile *objfile)
c906108c 173{
52f0bd74 174 struct type *type;
c906108c 175
e9bb382b
UW
176 gdb_assert (objfile != NULL);
177
7ba81444 178 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
181 struct main_type);
182 OBJSTAT (objfile, n_types++);
c906108c 183
e9bb382b
UW
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
c906108c 186
7ba81444 187 /* Initialize the fields that might not be zero. */
c906108c 188
67607e24 189 type->set_code (TYPE_CODE_UNDEF);
2fdde8f8 190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 191
c16abbde 192 return type;
c906108c
SS
193}
194
e9bb382b
UW
195/* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
8f57eec2 197 on the obstack associated with GDBARCH. */
e9bb382b
UW
198
199struct type *
200alloc_type_arch (struct gdbarch *gdbarch)
201{
202 struct type *type;
203
204 gdb_assert (gdbarch != NULL);
205
206 /* Alloc the structure and start off with all fields zeroed. */
207
8f57eec2
PP
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
210
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
213
214 /* Initialize the fields that might not be zero. */
215
67607e24 216 type->set_code (TYPE_CODE_UNDEF);
e9bb382b
UW
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220}
221
222/* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226struct type *
227alloc_type_copy (const struct type *type)
228{
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
231 else
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233}
234
235/* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
237
238struct gdbarch *
239get_type_arch (const struct type *type)
240{
2fabdf33
AB
241 struct gdbarch *arch;
242
e9bb382b 243 if (TYPE_OBJFILE_OWNED (type))
08feed99 244 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 245 else
2fabdf33
AB
246 arch = TYPE_OWNER (type).gdbarch;
247
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
251 returned. */
252 gdb_assert (arch != NULL);
253 return arch;
e9bb382b
UW
254}
255
99ad9427
YQ
256/* See gdbtypes.h. */
257
258struct type *
259get_target_type (struct type *type)
260{
261 if (type != NULL)
262 {
263 type = TYPE_TARGET_TYPE (type);
264 if (type != NULL)
265 type = check_typedef (type);
266 }
267
268 return type;
269}
270
2e056931
SM
271/* See gdbtypes.h. */
272
273unsigned int
274type_length_units (struct type *type)
275{
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
278
279 return TYPE_LENGTH (type) / unit_size;
280}
281
2fdde8f8
DJ
282/* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
285
286static struct type *
287alloc_type_instance (struct type *oldtype)
288{
289 struct type *type;
290
291 /* Allocate the structure. */
292
e9bb382b 293 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 295 else
1deafd4e
PA
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
297 struct type);
298
2fdde8f8
DJ
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
300
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
302
c16abbde 303 return type;
2fdde8f8
DJ
304}
305
306/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 307 replacing it with something else. Preserve owner information. */
5212577a 308
2fdde8f8
DJ
309static void
310smash_type (struct type *type)
311{
e9bb382b
UW
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
314
2fdde8f8
DJ
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316
e9bb382b
UW
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
320
2fdde8f8
DJ
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
323
324 /* For now, leave the pointer/reference types alone. */
325}
326
c906108c
SS
327/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
331
332struct type *
fba45db2 333make_pointer_type (struct type *type, struct type **typeptr)
c906108c 334{
52f0bd74 335 struct type *ntype; /* New type */
053cb41b 336 struct type *chain;
c906108c
SS
337
338 ntype = TYPE_POINTER_TYPE (type);
339
c5aa993b 340 if (ntype)
c906108c 341 {
c5aa993b 342 if (typeptr == 0)
7ba81444
MS
343 return ntype; /* Don't care about alloc,
344 and have new type. */
c906108c 345 else if (*typeptr == 0)
c5aa993b 346 {
7ba81444 347 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 348 return ntype;
c5aa993b 349 }
c906108c
SS
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
e9bb382b 354 ntype = alloc_type_copy (type);
c906108c
SS
355 if (typeptr)
356 *typeptr = ntype;
357 }
7ba81444 358 else /* We have storage, but need to reset it. */
c906108c
SS
359 {
360 ntype = *typeptr;
053cb41b 361 chain = TYPE_CHAIN (ntype);
2fdde8f8 362 smash_type (ntype);
053cb41b 363 TYPE_CHAIN (ntype) = chain;
c906108c
SS
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
368
5212577a 369 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 370
50810684
UW
371 TYPE_LENGTH (ntype)
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 373 ntype->set_code (TYPE_CODE_PTR);
c906108c 374
67b2adb2 375 /* Mark pointers as unsigned. The target converts between pointers
76e71323 376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 377 gdbarch_address_to_pointer. */
653223d3 378 ntype->set_is_unsigned (true);
c5aa993b 379
053cb41b
JB
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
c906108c
SS
388 return ntype;
389}
390
391/* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394struct type *
fba45db2 395lookup_pointer_type (struct type *type)
c906108c 396{
c5aa993b 397 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
398}
399
7ba81444
MS
400/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
405
406struct type *
3b224330
AV
407make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
c906108c 409{
52f0bd74 410 struct type *ntype; /* New type */
3b224330 411 struct type **reftype;
1e98b326 412 struct type *chain;
c906108c 413
3b224330
AV
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 418
c5aa993b 419 if (ntype)
c906108c 420 {
c5aa993b 421 if (typeptr == 0)
7ba81444
MS
422 return ntype; /* Don't care about alloc,
423 and have new type. */
c906108c 424 else if (*typeptr == 0)
c5aa993b 425 {
7ba81444 426 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 427 return ntype;
c5aa993b 428 }
c906108c
SS
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
e9bb382b 433 ntype = alloc_type_copy (type);
c906108c
SS
434 if (typeptr)
435 *typeptr = ntype;
436 }
7ba81444 437 else /* We have storage, but need to reset it. */
c906108c
SS
438 {
439 ntype = *typeptr;
1e98b326 440 chain = TYPE_CHAIN (ntype);
2fdde8f8 441 smash_type (ntype);
1e98b326 442 TYPE_CHAIN (ntype) = chain;
c906108c
SS
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
c906108c 450
7ba81444
MS
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
c906108c 454
50810684
UW
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 457 ntype->set_code (refcode);
c5aa993b 458
3b224330 459 *reftype = ntype;
c906108c 460
1e98b326
JB
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
464 {
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
467 }
468
c906108c
SS
469 return ntype;
470}
471
7ba81444
MS
472/* Same as above, but caller doesn't care about memory allocation
473 details. */
c906108c
SS
474
475struct type *
3b224330
AV
476lookup_reference_type (struct type *type, enum type_code refcode)
477{
478 return make_reference_type (type, (struct type **) 0, refcode);
479}
480
481/* Lookup the lvalue reference type for the type TYPE. */
482
483struct type *
484lookup_lvalue_reference_type (struct type *type)
485{
486 return lookup_reference_type (type, TYPE_CODE_REF);
487}
488
489/* Lookup the rvalue reference type for the type TYPE. */
490
491struct type *
492lookup_rvalue_reference_type (struct type *type)
c906108c 493{
3b224330 494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
495}
496
7ba81444
MS
497/* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 500 function type we return. We allocate new memory if needed. */
c906108c
SS
501
502struct type *
0c8b41f1 503make_function_type (struct type *type, struct type **typeptr)
c906108c 504{
52f0bd74 505 struct type *ntype; /* New type */
c906108c
SS
506
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 {
e9bb382b 509 ntype = alloc_type_copy (type);
c906108c
SS
510 if (typeptr)
511 *typeptr = ntype;
512 }
7ba81444 513 else /* We have storage, but need to reset it. */
c906108c
SS
514 {
515 ntype = *typeptr;
2fdde8f8 516 smash_type (ntype);
c906108c
SS
517 }
518
519 TYPE_TARGET_TYPE (ntype) = type;
520
521 TYPE_LENGTH (ntype) = 1;
67607e24 522 ntype->set_code (TYPE_CODE_FUNC);
c5aa993b 523
b6cdc2c1
JK
524 INIT_FUNC_SPECIFIC (ntype);
525
c906108c
SS
526 return ntype;
527}
528
c906108c
SS
529/* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
531
532struct type *
fba45db2 533lookup_function_type (struct type *type)
c906108c 534{
0c8b41f1 535 return make_function_type (type, (struct type **) 0);
c906108c
SS
536}
537
71918a86 538/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
539 function type. If the final type in PARAM_TYPES is NULL, make a
540 varargs function. */
71918a86
TT
541
542struct type *
543lookup_function_type_with_arguments (struct type *type,
544 int nparams,
545 struct type **param_types)
546{
547 struct type *fn = make_function_type (type, (struct type **) 0);
548 int i;
549
e314d629 550 if (nparams > 0)
a6fb9c08 551 {
e314d629
TT
552 if (param_types[nparams - 1] == NULL)
553 {
554 --nparams;
1d6286ed 555 fn->set_has_varargs (true);
e314d629 556 }
78134374 557 else if (check_typedef (param_types[nparams - 1])->code ()
e314d629
TT
558 == TYPE_CODE_VOID)
559 {
560 --nparams;
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
27e69b7a 563 fn->set_is_prototyped (true);
e314d629 564 }
54990598 565 else
27e69b7a 566 fn->set_is_prototyped (true);
a6fb9c08
TT
567 }
568
5e33d5f4 569 fn->set_num_fields (nparams);
3cabb6b0
SM
570 fn->set_fields
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
71918a86 572 for (i = 0; i < nparams; ++i)
5d14b6e5 573 fn->field (i).set_type (param_types[i]);
71918a86
TT
574
575 return fn;
576}
577
69896a2c
PA
578/* Identify address space identifier by name -- return a
579 type_instance_flags. */
5212577a 580
314ad88d 581type_instance_flags
69896a2c
PA
582address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
583 const char *space_identifier)
47663de5 584{
314ad88d 585 type_instance_flags type_flags;
d8734c88 586
7ba81444 587 /* Check for known address space delimiters. */
47663de5 588 if (!strcmp (space_identifier, "code"))
876cecd0 589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 590 else if (!strcmp (space_identifier, "data"))
876cecd0 591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
594 space_identifier,
595 &type_flags))
8b2dbe47 596 return type_flags;
47663de5 597 else
8a3fe4f8 598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
599}
600
69896a2c
PA
601/* Identify address space identifier by type_instance_flags and return
602 the string version of the adress space name. */
47663de5 603
321432c0 604const char *
69896a2c
PA
605address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
606 type_instance_flags space_flag)
47663de5 607{
876cecd0 608 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 609 return "code";
876cecd0 610 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 611 return "data";
876cecd0 612 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
613 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
614 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
615 else
616 return NULL;
617}
618
2fdde8f8 619/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
620
621 If STORAGE is non-NULL, create the new type instance there.
622 STORAGE must be in the same obstack as TYPE. */
47663de5 623
b9362cc7 624static struct type *
314ad88d 625make_qualified_type (struct type *type, type_instance_flags new_flags,
2fdde8f8 626 struct type *storage)
47663de5
MS
627{
628 struct type *ntype;
629
630 ntype = type;
5f61c20e
JK
631 do
632 {
10242f36 633 if (ntype->instance_flags () == new_flags)
5f61c20e
JK
634 return ntype;
635 ntype = TYPE_CHAIN (ntype);
636 }
637 while (ntype != type);
47663de5 638
2fdde8f8
DJ
639 /* Create a new type instance. */
640 if (storage == NULL)
641 ntype = alloc_type_instance (type);
642 else
643 {
7ba81444
MS
644 /* If STORAGE was provided, it had better be in the same objfile
645 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
646 if one objfile is freed and the other kept, we'd have
647 dangling pointers. */
ad766c0a
JB
648 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
649
2fdde8f8
DJ
650 ntype = storage;
651 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
652 TYPE_CHAIN (ntype) = ntype;
653 }
47663de5
MS
654
655 /* Pointers or references to the original type are not relevant to
2fdde8f8 656 the new type. */
47663de5
MS
657 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
658 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 659
2fdde8f8
DJ
660 /* Chain the new qualified type to the old type. */
661 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
662 TYPE_CHAIN (type) = ntype;
663
664 /* Now set the instance flags and return the new type. */
314ad88d 665 ntype->set_instance_flags (new_flags);
47663de5 666
ab5d3da6
KB
667 /* Set length of new type to that of the original type. */
668 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
669
47663de5
MS
670 return ntype;
671}
672
2fdde8f8
DJ
673/* Make an address-space-delimited variant of a type -- a type that
674 is identical to the one supplied except that it has an address
675 space attribute attached to it (such as "code" or "data").
676
7ba81444
MS
677 The space attributes "code" and "data" are for Harvard
678 architectures. The address space attributes are for architectures
679 which have alternately sized pointers or pointers with alternate
680 representations. */
2fdde8f8
DJ
681
682struct type *
314ad88d
PA
683make_type_with_address_space (struct type *type,
684 type_instance_flags space_flag)
2fdde8f8 685{
314ad88d
PA
686 type_instance_flags new_flags = ((type->instance_flags ()
687 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
688 | TYPE_INSTANCE_FLAG_DATA_SPACE
689 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
690 | space_flag);
2fdde8f8
DJ
691
692 return make_qualified_type (type, new_flags, NULL);
693}
c906108c
SS
694
695/* Make a "c-v" variant of a type -- a type that is identical to the
696 one supplied except that it may have const or volatile attributes
697 CNST is a flag for setting the const attribute
698 VOLTL is a flag for setting the volatile attribute
699 TYPE is the base type whose variant we are creating.
c906108c 700
ad766c0a
JB
701 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
702 storage to hold the new qualified type; *TYPEPTR and TYPE must be
703 in the same objfile. Otherwise, allocate fresh memory for the new
704 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
705 new type we construct. */
5212577a 706
c906108c 707struct type *
7ba81444
MS
708make_cv_type (int cnst, int voltl,
709 struct type *type,
710 struct type **typeptr)
c906108c 711{
52f0bd74 712 struct type *ntype; /* New type */
c906108c 713
314ad88d
PA
714 type_instance_flags new_flags = (type->instance_flags ()
715 & ~(TYPE_INSTANCE_FLAG_CONST
716 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 717
c906108c 718 if (cnst)
876cecd0 719 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
720
721 if (voltl)
876cecd0 722 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 723
2fdde8f8 724 if (typeptr && *typeptr != NULL)
a02fd225 725 {
ad766c0a
JB
726 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
727 a C-V variant chain that threads across objfiles: if one
728 objfile gets freed, then the other has a broken C-V chain.
729
730 This code used to try to copy over the main type from TYPE to
731 *TYPEPTR if they were in different objfiles, but that's
732 wrong, too: TYPE may have a field list or member function
733 lists, which refer to types of their own, etc. etc. The
734 whole shebang would need to be copied over recursively; you
735 can't have inter-objfile pointers. The only thing to do is
736 to leave stub types as stub types, and look them up afresh by
737 name each time you encounter them. */
738 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
739 }
740
7ba81444
MS
741 ntype = make_qualified_type (type, new_flags,
742 typeptr ? *typeptr : NULL);
c906108c 743
2fdde8f8
DJ
744 if (typeptr != NULL)
745 *typeptr = ntype;
a02fd225 746
2fdde8f8 747 return ntype;
a02fd225 748}
c906108c 749
06d66ee9
TT
750/* Make a 'restrict'-qualified version of TYPE. */
751
752struct type *
753make_restrict_type (struct type *type)
754{
755 return make_qualified_type (type,
10242f36 756 (type->instance_flags ()
06d66ee9
TT
757 | TYPE_INSTANCE_FLAG_RESTRICT),
758 NULL);
759}
760
f1660027
TT
761/* Make a type without const, volatile, or restrict. */
762
763struct type *
764make_unqualified_type (struct type *type)
765{
766 return make_qualified_type (type,
10242f36 767 (type->instance_flags ()
f1660027
TT
768 & ~(TYPE_INSTANCE_FLAG_CONST
769 | TYPE_INSTANCE_FLAG_VOLATILE
770 | TYPE_INSTANCE_FLAG_RESTRICT)),
771 NULL);
772}
773
a2c2acaf
MW
774/* Make a '_Atomic'-qualified version of TYPE. */
775
776struct type *
777make_atomic_type (struct type *type)
778{
779 return make_qualified_type (type,
10242f36 780 (type->instance_flags ()
a2c2acaf
MW
781 | TYPE_INSTANCE_FLAG_ATOMIC),
782 NULL);
783}
784
2fdde8f8
DJ
785/* Replace the contents of ntype with the type *type. This changes the
786 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
787 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 788
cda6c68a
JB
789 In order to build recursive types, it's inevitable that we'll need
790 to update types in place --- but this sort of indiscriminate
791 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
792 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
793 clear if more steps are needed. */
5212577a 794
dd6bda65
DJ
795void
796replace_type (struct type *ntype, struct type *type)
797{
ab5d3da6 798 struct type *chain;
dd6bda65 799
ad766c0a
JB
800 /* These two types had better be in the same objfile. Otherwise,
801 the assignment of one type's main type structure to the other
802 will produce a type with references to objects (names; field
803 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 804 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 805
2fdde8f8 806 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 807
7ba81444
MS
808 /* The type length is not a part of the main type. Update it for
809 each type on the variant chain. */
ab5d3da6 810 chain = ntype;
5f61c20e
JK
811 do
812 {
813 /* Assert that this element of the chain has no address-class bits
814 set in its flags. Such type variants might have type lengths
815 which are supposed to be different from the non-address-class
816 variants. This assertion shouldn't ever be triggered because
817 symbol readers which do construct address-class variants don't
818 call replace_type(). */
819 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
820
821 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
822 chain = TYPE_CHAIN (chain);
823 }
824 while (ntype != chain);
ab5d3da6 825
2fdde8f8
DJ
826 /* Assert that the two types have equivalent instance qualifiers.
827 This should be true for at least all of our debug readers. */
10242f36 828 gdb_assert (ntype->instance_flags () == type->instance_flags ());
dd6bda65
DJ
829}
830
c906108c
SS
831/* Implement direct support for MEMBER_TYPE in GNU C++.
832 May need to construct such a type if this is the first use.
833 The TYPE is the type of the member. The DOMAIN is the type
834 of the aggregate that the member belongs to. */
835
836struct type *
0d5de010 837lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 838{
52f0bd74 839 struct type *mtype;
c906108c 840
e9bb382b 841 mtype = alloc_type_copy (type);
0d5de010 842 smash_to_memberptr_type (mtype, domain, type);
c16abbde 843 return mtype;
c906108c
SS
844}
845
0d5de010
DJ
846/* Return a pointer-to-method type, for a method of type TO_TYPE. */
847
848struct type *
849lookup_methodptr_type (struct type *to_type)
850{
851 struct type *mtype;
852
e9bb382b 853 mtype = alloc_type_copy (to_type);
0b92b5bb 854 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
855 return mtype;
856}
857
7ba81444
MS
858/* Allocate a stub method whose return type is TYPE. This apparently
859 happens for speed of symbol reading, since parsing out the
860 arguments to the method is cpu-intensive, the way we are doing it.
861 So, we will fill in arguments later. This always returns a fresh
862 type. */
c906108c
SS
863
864struct type *
fba45db2 865allocate_stub_method (struct type *type)
c906108c
SS
866{
867 struct type *mtype;
868
e9bb382b 869 mtype = alloc_type_copy (type);
67607e24 870 mtype->set_code (TYPE_CODE_METHOD);
e9bb382b 871 TYPE_LENGTH (mtype) = 1;
b4b73759 872 mtype->set_is_stub (true);
c906108c 873 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 874 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 875 return mtype;
c906108c
SS
876}
877
0f59d5fc
PA
878/* See gdbtypes.h. */
879
880bool
881operator== (const dynamic_prop &l, const dynamic_prop &r)
882{
8c2e4e06 883 if (l.kind () != r.kind ())
0f59d5fc
PA
884 return false;
885
8c2e4e06 886 switch (l.kind ())
0f59d5fc
PA
887 {
888 case PROP_UNDEFINED:
889 return true;
890 case PROP_CONST:
8c2e4e06 891 return l.const_val () == r.const_val ();
0f59d5fc
PA
892 case PROP_ADDR_OFFSET:
893 case PROP_LOCEXPR:
894 case PROP_LOCLIST:
8c2e4e06 895 return l.baton () == r.baton ();
ef83a141 896 case PROP_VARIANT_PARTS:
8c2e4e06 897 return l.variant_parts () == r.variant_parts ();
ef83a141 898 case PROP_TYPE:
8c2e4e06 899 return l.original_type () == r.original_type ();
0f59d5fc
PA
900 }
901
902 gdb_assert_not_reached ("unhandled dynamic_prop kind");
903}
904
905/* See gdbtypes.h. */
906
907bool
908operator== (const range_bounds &l, const range_bounds &r)
909{
910#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
911
912 return (FIELD_EQ (low)
913 && FIELD_EQ (high)
914 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
915 && FIELD_EQ (flag_bound_evaluated)
916 && FIELD_EQ (bias));
0f59d5fc
PA
917
918#undef FIELD_EQ
919}
920
729efb13
SA
921/* Create a range type with a dynamic range from LOW_BOUND to
922 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
923
924struct type *
729efb13
SA
925create_range_type (struct type *result_type, struct type *index_type,
926 const struct dynamic_prop *low_bound,
4e962e74
TT
927 const struct dynamic_prop *high_bound,
928 LONGEST bias)
c906108c 929{
b86352cf
AB
930 /* The INDEX_TYPE should be a type capable of holding the upper and lower
931 bounds, as such a zero sized, or void type makes no sense. */
78134374 932 gdb_assert (index_type->code () != TYPE_CODE_VOID);
b86352cf
AB
933 gdb_assert (TYPE_LENGTH (index_type) > 0);
934
c906108c 935 if (result_type == NULL)
e9bb382b 936 result_type = alloc_type_copy (index_type);
67607e24 937 result_type->set_code (TYPE_CODE_RANGE);
c906108c 938 TYPE_TARGET_TYPE (result_type) = index_type;
e46d3488 939 if (index_type->is_stub ())
8f53807e 940 result_type->set_target_is_stub (true);
c906108c
SS
941 else
942 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 943
c4dfcb36
SM
944 range_bounds *bounds
945 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
946 bounds->low = *low_bound;
947 bounds->high = *high_bound;
948 bounds->bias = bias;
8c2e4e06 949 bounds->stride.set_const_val (0);
c4dfcb36
SM
950
951 result_type->set_bounds (bounds);
5bbd8269 952
8c2e4e06 953 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
653223d3 954 result_type->set_is_unsigned (true);
c906108c 955
45e44d27
JB
956 /* Ada allows the declaration of range types whose upper bound is
957 less than the lower bound, so checking the lower bound is not
958 enough. Make sure we do not mark a range type whose upper bound
959 is negative as unsigned. */
8c2e4e06 960 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
653223d3 961 result_type->set_is_unsigned (false);
45e44d27 962
db558e34
SM
963 result_type->set_endianity_is_not_default
964 (index_type->endianity_is_not_default ());
a05cf17a 965
262452ec 966 return result_type;
c906108c
SS
967}
968
5bbd8269
AB
969/* See gdbtypes.h. */
970
971struct type *
972create_range_type_with_stride (struct type *result_type,
973 struct type *index_type,
974 const struct dynamic_prop *low_bound,
975 const struct dynamic_prop *high_bound,
976 LONGEST bias,
977 const struct dynamic_prop *stride,
978 bool byte_stride_p)
979{
980 result_type = create_range_type (result_type, index_type, low_bound,
981 high_bound, bias);
982
983 gdb_assert (stride != nullptr);
599088e3
SM
984 result_type->bounds ()->stride = *stride;
985 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
5bbd8269
AB
986
987 return result_type;
988}
989
990
991
729efb13
SA
992/* Create a range type using either a blank type supplied in
993 RESULT_TYPE, or creating a new type, inheriting the objfile from
994 INDEX_TYPE.
995
996 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
997 to HIGH_BOUND, inclusive.
998
999 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1000 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1001
1002struct type *
1003create_static_range_type (struct type *result_type, struct type *index_type,
1004 LONGEST low_bound, LONGEST high_bound)
1005{
1006 struct dynamic_prop low, high;
1007
8c2e4e06
SM
1008 low.set_const_val (low_bound);
1009 high.set_const_val (high_bound);
729efb13 1010
4e962e74 1011 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1012
1013 return result_type;
1014}
1015
80180f79
SA
1016/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1017 are static, otherwise returns 0. */
1018
5bbd8269 1019static bool
80180f79
SA
1020has_static_range (const struct range_bounds *bounds)
1021{
5bbd8269
AB
1022 /* If the range doesn't have a defined stride then its stride field will
1023 be initialized to the constant 0. */
8c2e4e06
SM
1024 return (bounds->low.kind () == PROP_CONST
1025 && bounds->high.kind () == PROP_CONST
1026 && bounds->stride.kind () == PROP_CONST);
80180f79
SA
1027}
1028
1029
7ba81444 1030/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
7c6f2712
SM
1031 TYPE.
1032
1033 Return 1 if type is a range type with two defined, constant bounds.
1034 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1035 Else, return -1. */
c906108c
SS
1036
1037int
fba45db2 1038get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1039{
f168693b 1040 type = check_typedef (type);
78134374 1041 switch (type->code ())
c906108c
SS
1042 {
1043 case TYPE_CODE_RANGE:
7c6f2712
SM
1044 /* This function currently only works for ranges with two defined,
1045 constant bounds. */
1046 if (type->bounds ()->low.kind () != PROP_CONST
1047 || type->bounds ()->high.kind () != PROP_CONST)
1048 return -1;
1049
5537ddd0
SM
1050 *lowp = type->bounds ()->low.const_val ();
1051 *highp = type->bounds ()->high.const_val ();
7c6f2712 1052
53a47a3e
TT
1053 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1054 {
1055 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1056 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1057 return 0;
1058 }
c906108c
SS
1059 return 1;
1060 case TYPE_CODE_ENUM:
1f704f76 1061 if (type->num_fields () > 0)
c906108c
SS
1062 {
1063 /* The enums may not be sorted by value, so search all
0963b4bd 1064 entries. */
c906108c
SS
1065 int i;
1066
14e75d8e 1067 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1f704f76 1068 for (i = 0; i < type->num_fields (); i++)
c906108c 1069 {
14e75d8e
JK
1070 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1071 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1072 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1073 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1074 }
1075
7ba81444 1076 /* Set unsigned indicator if warranted. */
c5aa993b 1077 if (*lowp >= 0)
653223d3 1078 type->set_is_unsigned (true);
c906108c
SS
1079 }
1080 else
1081 {
1082 *lowp = 0;
1083 *highp = -1;
1084 }
1085 return 0;
1086 case TYPE_CODE_BOOL:
1087 *lowp = 0;
1088 *highp = 1;
1089 return 0;
1090 case TYPE_CODE_INT:
c5aa993b 1091 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c 1092 return -1;
c6d940a9 1093 if (!type->is_unsigned ())
c906108c 1094 {
c5aa993b 1095 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1096 *highp = -*lowp - 1;
1097 return 0;
1098 }
86a73007 1099 /* fall through */
c906108c
SS
1100 case TYPE_CODE_CHAR:
1101 *lowp = 0;
1102 /* This round-about calculation is to avoid shifting by
7b83ea04 1103 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1104 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1105 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1106 *highp = (*highp - 1) | *highp;
1107 return 0;
1108 default:
1109 return -1;
1110 }
1111}
1112
dbc98a8b
KW
1113/* Assuming TYPE is a simple, non-empty array type, compute its upper
1114 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1115 Save the high bound into HIGH_BOUND if not NULL.
1116
0963b4bd 1117 Return 1 if the operation was successful. Return zero otherwise,
7c6f2712 1118 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
dbc98a8b
KW
1119
1120int
1121get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1122{
3d967001 1123 struct type *index = type->index_type ();
dbc98a8b
KW
1124 LONGEST low = 0;
1125 LONGEST high = 0;
1126 int res;
1127
1128 if (index == NULL)
1129 return 0;
1130
1131 res = get_discrete_bounds (index, &low, &high);
1132 if (res == -1)
1133 return 0;
1134
dbc98a8b
KW
1135 if (low_bound)
1136 *low_bound = low;
1137
1138 if (high_bound)
1139 *high_bound = high;
1140
1141 return 1;
1142}
1143
aa715135
JG
1144/* Assuming that TYPE is a discrete type and VAL is a valid integer
1145 representation of a value of this type, save the corresponding
1146 position number in POS.
1147
1148 Its differs from VAL only in the case of enumeration types. In
1149 this case, the position number of the value of the first listed
1150 enumeration literal is zero; the position number of the value of
1151 each subsequent enumeration literal is one more than that of its
1152 predecessor in the list.
1153
1154 Return 1 if the operation was successful. Return zero otherwise,
1155 in which case the value of POS is unmodified.
1156*/
1157
1158int
1159discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1160{
0bc2354b
TT
1161 if (type->code () == TYPE_CODE_RANGE)
1162 type = TYPE_TARGET_TYPE (type);
1163
78134374 1164 if (type->code () == TYPE_CODE_ENUM)
aa715135
JG
1165 {
1166 int i;
1167
1f704f76 1168 for (i = 0; i < type->num_fields (); i += 1)
aa715135
JG
1169 {
1170 if (val == TYPE_FIELD_ENUMVAL (type, i))
1171 {
1172 *pos = i;
1173 return 1;
1174 }
1175 }
1176 /* Invalid enumeration value. */
1177 return 0;
1178 }
1179 else
1180 {
1181 *pos = val;
1182 return 1;
1183 }
1184}
1185
8dbb1375
HD
1186/* If the array TYPE has static bounds calculate and update its
1187 size, then return true. Otherwise return false and leave TYPE
1188 unchanged. */
1189
1190static bool
1191update_static_array_size (struct type *type)
1192{
78134374 1193 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8dbb1375 1194
3d967001 1195 struct type *range_type = type->index_type ();
8dbb1375 1196
24e99c6c 1197 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
599088e3 1198 && has_static_range (range_type->bounds ())
8dbb1375
HD
1199 && (!type_not_associated (type)
1200 && !type_not_allocated (type)))
1201 {
1202 LONGEST low_bound, high_bound;
1203 int stride;
1204 struct type *element_type;
1205
1206 /* If the array itself doesn't provide a stride value then take
1207 whatever stride the range provides. Don't update BIT_STRIDE as
1208 we don't want to place the stride value from the range into this
1209 arrays bit size field. */
1210 stride = TYPE_FIELD_BITSIZE (type, 0);
1211 if (stride == 0)
107406b7 1212 stride = range_type->bit_stride ();
8dbb1375
HD
1213
1214 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1215 low_bound = high_bound = 0;
1216 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1217 /* Be careful when setting the array length. Ada arrays can be
1218 empty arrays with the high_bound being smaller than the low_bound.
1219 In such cases, the array length should be zero. */
1220 if (high_bound < low_bound)
1221 TYPE_LENGTH (type) = 0;
1222 else if (stride != 0)
1223 {
1224 /* Ensure that the type length is always positive, even in the
1225 case where (for example in Fortran) we have a negative
1226 stride. It is possible to have a single element array with a
1227 negative stride in Fortran (this doesn't mean anything
1228 special, it's still just a single element array) so do
1229 consider that case when touching this code. */
1230 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1231 TYPE_LENGTH (type)
1232 = ((std::abs (stride) * element_count) + 7) / 8;
1233 }
1234 else
1235 TYPE_LENGTH (type) =
1236 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1237
1238 return true;
1239 }
1240
1241 return false;
1242}
1243
7ba81444
MS
1244/* Create an array type using either a blank type supplied in
1245 RESULT_TYPE, or creating a new type, inheriting the objfile from
1246 RANGE_TYPE.
c906108c
SS
1247
1248 Elements will be of type ELEMENT_TYPE, the indices will be of type
1249 RANGE_TYPE.
1250
a405673c
JB
1251 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1252 This byte stride property is added to the resulting array type
1253 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1254 argument can only be used to create types that are objfile-owned
1255 (see add_dyn_prop), meaning that either this function must be called
1256 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1257
1258 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1259 If BIT_STRIDE is not zero, build a packed array type whose element
1260 size is BIT_STRIDE. Otherwise, ignore this parameter.
1261
7ba81444
MS
1262 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1263 sure it is TYPE_CODE_UNDEF before we bash it into an array
1264 type? */
c906108c
SS
1265
1266struct type *
dc53a7ad
JB
1267create_array_type_with_stride (struct type *result_type,
1268 struct type *element_type,
1269 struct type *range_type,
a405673c 1270 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1271 unsigned int bit_stride)
c906108c 1272{
a405673c 1273 if (byte_stride_prop != NULL
8c2e4e06 1274 && byte_stride_prop->kind () == PROP_CONST)
a405673c
JB
1275 {
1276 /* The byte stride is actually not dynamic. Pretend we were
1277 called with bit_stride set instead of byte_stride_prop.
1278 This will give us the same result type, while avoiding
1279 the need to handle this as a special case. */
8c2e4e06 1280 bit_stride = byte_stride_prop->const_val () * 8;
a405673c
JB
1281 byte_stride_prop = NULL;
1282 }
1283
c906108c 1284 if (result_type == NULL)
e9bb382b
UW
1285 result_type = alloc_type_copy (range_type);
1286
67607e24 1287 result_type->set_code (TYPE_CODE_ARRAY);
c906108c 1288 TYPE_TARGET_TYPE (result_type) = element_type;
5bbd8269 1289
5e33d5f4 1290 result_type->set_num_fields (1);
3cabb6b0
SM
1291 result_type->set_fields
1292 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
262abc0d 1293 result_type->set_index_type (range_type);
8dbb1375 1294 if (byte_stride_prop != NULL)
5c54719c 1295 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
8dbb1375
HD
1296 else if (bit_stride > 0)
1297 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
80180f79 1298
8dbb1375 1299 if (!update_static_array_size (result_type))
80180f79
SA
1300 {
1301 /* This type is dynamic and its length needs to be computed
1302 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1303 undefined by setting it to zero. Although we are not expected
1304 to trust TYPE_LENGTH in this case, setting the size to zero
1305 allows us to avoid allocating objects of random sizes in case
1306 we accidently do. */
1307 TYPE_LENGTH (result_type) = 0;
1308 }
1309
a9ff5f12 1310 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1311 if (TYPE_LENGTH (result_type) == 0)
8f53807e 1312 result_type->set_target_is_stub (true);
c906108c 1313
c16abbde 1314 return result_type;
c906108c
SS
1315}
1316
dc53a7ad
JB
1317/* Same as create_array_type_with_stride but with no bit_stride
1318 (BIT_STRIDE = 0), thus building an unpacked array. */
1319
1320struct type *
1321create_array_type (struct type *result_type,
1322 struct type *element_type,
1323 struct type *range_type)
1324{
1325 return create_array_type_with_stride (result_type, element_type,
a405673c 1326 range_type, NULL, 0);
dc53a7ad
JB
1327}
1328
e3506a9f
UW
1329struct type *
1330lookup_array_range_type (struct type *element_type,
63375b74 1331 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1332{
929b5ad4
JB
1333 struct type *index_type;
1334 struct type *range_type;
1335
1336 if (TYPE_OBJFILE_OWNED (element_type))
1337 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1338 else
1339 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1340 range_type = create_static_range_type (NULL, index_type,
1341 low_bound, high_bound);
d8734c88 1342
e3506a9f
UW
1343 return create_array_type (NULL, element_type, range_type);
1344}
1345
7ba81444
MS
1346/* Create a string type using either a blank type supplied in
1347 RESULT_TYPE, or creating a new type. String types are similar
1348 enough to array of char types that we can use create_array_type to
1349 build the basic type and then bash it into a string type.
c906108c
SS
1350
1351 For fixed length strings, the range type contains 0 as the lower
1352 bound and the length of the string minus one as the upper bound.
1353
7ba81444
MS
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into a string
1356 type? */
c906108c
SS
1357
1358struct type *
3b7538c0
UW
1359create_string_type (struct type *result_type,
1360 struct type *string_char_type,
7ba81444 1361 struct type *range_type)
c906108c
SS
1362{
1363 result_type = create_array_type (result_type,
f290d38e 1364 string_char_type,
c906108c 1365 range_type);
67607e24 1366 result_type->set_code (TYPE_CODE_STRING);
c16abbde 1367 return result_type;
c906108c
SS
1368}
1369
e3506a9f
UW
1370struct type *
1371lookup_string_range_type (struct type *string_char_type,
63375b74 1372 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1373{
1374 struct type *result_type;
d8734c88 1375
e3506a9f
UW
1376 result_type = lookup_array_range_type (string_char_type,
1377 low_bound, high_bound);
67607e24 1378 result_type->set_code (TYPE_CODE_STRING);
e3506a9f
UW
1379 return result_type;
1380}
1381
c906108c 1382struct type *
fba45db2 1383create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1384{
c906108c 1385 if (result_type == NULL)
e9bb382b
UW
1386 result_type = alloc_type_copy (domain_type);
1387
67607e24 1388 result_type->set_code (TYPE_CODE_SET);
5e33d5f4 1389 result_type->set_num_fields (1);
3cabb6b0
SM
1390 result_type->set_fields
1391 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
c906108c 1392
e46d3488 1393 if (!domain_type->is_stub ())
c906108c 1394 {
f9780d5b 1395 LONGEST low_bound, high_bound, bit_length;
d8734c88 1396
c906108c
SS
1397 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1398 low_bound = high_bound = 0;
1399 bit_length = high_bound - low_bound + 1;
1400 TYPE_LENGTH (result_type)
1401 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1402 if (low_bound >= 0)
653223d3 1403 result_type->set_is_unsigned (true);
c906108c 1404 }
5d14b6e5 1405 result_type->field (0).set_type (domain_type);
c906108c 1406
c16abbde 1407 return result_type;
c906108c
SS
1408}
1409
ea37ba09
DJ
1410/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1411 and any array types nested inside it. */
1412
1413void
1414make_vector_type (struct type *array_type)
1415{
1416 struct type *inner_array, *elt_type;
ea37ba09
DJ
1417
1418 /* Find the innermost array type, in case the array is
1419 multi-dimensional. */
1420 inner_array = array_type;
78134374 1421 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
ea37ba09
DJ
1422 inner_array = TYPE_TARGET_TYPE (inner_array);
1423
1424 elt_type = TYPE_TARGET_TYPE (inner_array);
78134374 1425 if (elt_type->code () == TYPE_CODE_INT)
ea37ba09 1426 {
314ad88d
PA
1427 type_instance_flags flags
1428 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1429 elt_type = make_qualified_type (elt_type, flags, NULL);
1430 TYPE_TARGET_TYPE (inner_array) = elt_type;
1431 }
1432
2062087b 1433 array_type->set_is_vector (true);
ea37ba09
DJ
1434}
1435
794ac428 1436struct type *
ac3aafc7
EZ
1437init_vector_type (struct type *elt_type, int n)
1438{
1439 struct type *array_type;
d8734c88 1440
e3506a9f 1441 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1442 make_vector_type (array_type);
ac3aafc7
EZ
1443 return array_type;
1444}
1445
09e2d7c7
DE
1446/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1447 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1448 confusing. "self" is a common enough replacement for "this".
1449 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1450 TYPE_CODE_METHOD. */
1451
1452struct type *
1453internal_type_self_type (struct type *type)
1454{
78134374 1455 switch (type->code ())
09e2d7c7
DE
1456 {
1457 case TYPE_CODE_METHODPTR:
1458 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1459 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1460 return NULL;
09e2d7c7
DE
1461 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1462 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1463 case TYPE_CODE_METHOD:
eaaf76ab
DE
1464 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1465 return NULL;
09e2d7c7
DE
1466 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1467 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1468 default:
1469 gdb_assert_not_reached ("bad type");
1470 }
1471}
1472
1473/* Set the type of the class that TYPE belongs to.
1474 In c++ this is the class of "this".
1475 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1476 TYPE_CODE_METHOD. */
1477
1478void
1479set_type_self_type (struct type *type, struct type *self_type)
1480{
78134374 1481 switch (type->code ())
09e2d7c7
DE
1482 {
1483 case TYPE_CODE_METHODPTR:
1484 case TYPE_CODE_MEMBERPTR:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1488 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1489 break;
1490 case TYPE_CODE_METHOD:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 INIT_FUNC_SPECIFIC (type);
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1494 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1495 break;
1496 default:
1497 gdb_assert_not_reached ("bad type");
1498 }
1499}
1500
1501/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1502 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1503 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1504 TYPE doesn't include the offset (that's the value of the MEMBER
1505 itself), but does include the structure type into which it points
1506 (for some reason).
c906108c 1507
7ba81444
MS
1508 When "smashing" the type, we preserve the objfile that the old type
1509 pointed to, since we aren't changing where the type is actually
c906108c
SS
1510 allocated. */
1511
1512void
09e2d7c7 1513smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1514 struct type *to_type)
c906108c 1515{
2fdde8f8 1516 smash_type (type);
67607e24 1517 type->set_code (TYPE_CODE_MEMBERPTR);
c906108c 1518 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1519 set_type_self_type (type, self_type);
0d5de010
DJ
1520 /* Assume that a data member pointer is the same size as a normal
1521 pointer. */
50810684
UW
1522 TYPE_LENGTH (type)
1523 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1524}
1525
0b92b5bb
TT
1526/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1527
1528 When "smashing" the type, we preserve the objfile that the old type
1529 pointed to, since we aren't changing where the type is actually
1530 allocated. */
1531
1532void
1533smash_to_methodptr_type (struct type *type, struct type *to_type)
1534{
1535 smash_type (type);
67607e24 1536 type->set_code (TYPE_CODE_METHODPTR);
0b92b5bb 1537 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1538 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1539 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1540}
1541
09e2d7c7 1542/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1543 METHOD just means `function that gets an extra "this" argument'.
1544
7ba81444
MS
1545 When "smashing" the type, we preserve the objfile that the old type
1546 pointed to, since we aren't changing where the type is actually
c906108c
SS
1547 allocated. */
1548
1549void
09e2d7c7 1550smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1551 struct type *to_type, struct field *args,
1552 int nargs, int varargs)
c906108c 1553{
2fdde8f8 1554 smash_type (type);
67607e24 1555 type->set_code (TYPE_CODE_METHOD);
c906108c 1556 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1557 set_type_self_type (type, self_type);
3cabb6b0 1558 type->set_fields (args);
5e33d5f4 1559 type->set_num_fields (nargs);
ad2f7632 1560 if (varargs)
1d6286ed 1561 type->set_has_varargs (true);
c906108c 1562 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1563}
1564
a737d952 1565/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1566 Since GCC PR debug/47510 DWARF provides associated information to detect the
1567 anonymous class linkage name from its typedef.
1568
1569 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1570 apply it itself. */
1571
1572const char *
a737d952 1573type_name_or_error (struct type *type)
d8228535
JK
1574{
1575 struct type *saved_type = type;
1576 const char *name;
1577 struct objfile *objfile;
1578
f168693b 1579 type = check_typedef (type);
d8228535 1580
7d93a1e0 1581 name = type->name ();
d8228535
JK
1582 if (name != NULL)
1583 return name;
1584
7d93a1e0 1585 name = saved_type->name ();
d8228535
JK
1586 objfile = TYPE_OBJFILE (saved_type);
1587 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1588 name ? name : "<anonymous>",
1589 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1590}
1591
7ba81444
MS
1592/* Lookup a typedef or primitive type named NAME, visible in lexical
1593 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1594 suitably defined. */
c906108c
SS
1595
1596struct type *
e6c014f2 1597lookup_typename (const struct language_defn *language,
b858499d 1598 const char *name,
34eaf542 1599 const struct block *block, int noerr)
c906108c 1600{
52f0bd74 1601 struct symbol *sym;
c906108c 1602
1994afbf 1603 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1604 language->la_language, NULL).symbol;
c51fe631
DE
1605 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1606 return SYMBOL_TYPE (sym);
1607
c51fe631
DE
1608 if (noerr)
1609 return NULL;
1610 error (_("No type named %s."), name);
c906108c
SS
1611}
1612
1613struct type *
e6c014f2 1614lookup_unsigned_typename (const struct language_defn *language,
b858499d 1615 const char *name)
c906108c 1616{
224c3ddb 1617 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1618
1619 strcpy (uns, "unsigned ");
1620 strcpy (uns + 9, name);
b858499d 1621 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1622}
1623
1624struct type *
b858499d 1625lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1626{
1627 struct type *t;
224c3ddb 1628 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1629
1630 strcpy (uns, "signed ");
1631 strcpy (uns + 7, name);
b858499d 1632 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1633 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1634 if (t != NULL)
1635 return t;
b858499d 1636 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1637}
1638
1639/* Lookup a structure type named "struct NAME",
1640 visible in lexical block BLOCK. */
1641
1642struct type *
270140bd 1643lookup_struct (const char *name, const struct block *block)
c906108c 1644{
52f0bd74 1645 struct symbol *sym;
c906108c 1646
d12307c1 1647 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1648
1649 if (sym == NULL)
1650 {
8a3fe4f8 1651 error (_("No struct type named %s."), name);
c906108c 1652 }
78134374 1653 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1654 {
7ba81444
MS
1655 error (_("This context has class, union or enum %s, not a struct."),
1656 name);
c906108c
SS
1657 }
1658 return (SYMBOL_TYPE (sym));
1659}
1660
1661/* Lookup a union type named "union NAME",
1662 visible in lexical block BLOCK. */
1663
1664struct type *
270140bd 1665lookup_union (const char *name, const struct block *block)
c906108c 1666{
52f0bd74 1667 struct symbol *sym;
c5aa993b 1668 struct type *t;
c906108c 1669
d12307c1 1670 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1671
1672 if (sym == NULL)
8a3fe4f8 1673 error (_("No union type named %s."), name);
c906108c 1674
c5aa993b 1675 t = SYMBOL_TYPE (sym);
c906108c 1676
78134374 1677 if (t->code () == TYPE_CODE_UNION)
c16abbde 1678 return t;
c906108c 1679
7ba81444
MS
1680 /* If we get here, it's not a union. */
1681 error (_("This context has class, struct or enum %s, not a union."),
1682 name);
c906108c
SS
1683}
1684
c906108c
SS
1685/* Lookup an enum type named "enum NAME",
1686 visible in lexical block BLOCK. */
1687
1688struct type *
270140bd 1689lookup_enum (const char *name, const struct block *block)
c906108c 1690{
52f0bd74 1691 struct symbol *sym;
c906108c 1692
d12307c1 1693 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1694 if (sym == NULL)
1695 {
8a3fe4f8 1696 error (_("No enum type named %s."), name);
c906108c 1697 }
78134374 1698 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
c906108c 1699 {
7ba81444
MS
1700 error (_("This context has class, struct or union %s, not an enum."),
1701 name);
c906108c
SS
1702 }
1703 return (SYMBOL_TYPE (sym));
1704}
1705
1706/* Lookup a template type named "template NAME<TYPE>",
1707 visible in lexical block BLOCK. */
1708
1709struct type *
61f4b350 1710lookup_template_type (const char *name, struct type *type,
270140bd 1711 const struct block *block)
c906108c
SS
1712{
1713 struct symbol *sym;
7ba81444 1714 char *nam = (char *)
7d93a1e0 1715 alloca (strlen (name) + strlen (type->name ()) + 4);
d8734c88 1716
c906108c
SS
1717 strcpy (nam, name);
1718 strcat (nam, "<");
7d93a1e0 1719 strcat (nam, type->name ());
0963b4bd 1720 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1721
d12307c1 1722 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1723
1724 if (sym == NULL)
1725 {
8a3fe4f8 1726 error (_("No template type named %s."), name);
c906108c 1727 }
78134374 1728 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1729 {
7ba81444
MS
1730 error (_("This context has class, union or enum %s, not a struct."),
1731 name);
c906108c
SS
1732 }
1733 return (SYMBOL_TYPE (sym));
1734}
1735
ef0bd204 1736/* See gdbtypes.h. */
c906108c 1737
ef0bd204
JB
1738struct_elt
1739lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1740{
1741 int i;
1742
1743 for (;;)
1744 {
f168693b 1745 type = check_typedef (type);
78134374
SM
1746 if (type->code () != TYPE_CODE_PTR
1747 && type->code () != TYPE_CODE_REF)
c906108c
SS
1748 break;
1749 type = TYPE_TARGET_TYPE (type);
1750 }
1751
78134374
SM
1752 if (type->code () != TYPE_CODE_STRUCT
1753 && type->code () != TYPE_CODE_UNION)
c906108c 1754 {
2f408ecb
PA
1755 std::string type_name = type_to_string (type);
1756 error (_("Type %s is not a structure or union type."),
1757 type_name.c_str ());
c906108c
SS
1758 }
1759
1f704f76 1760 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
c906108c 1761 {
0d5cff50 1762 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1763
db577aea 1764 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1765 {
ceacbf6e 1766 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1767 }
f5a010c0
PM
1768 else if (!t_field_name || *t_field_name == '\0')
1769 {
ef0bd204 1770 struct_elt elt
940da03e 1771 = lookup_struct_elt (type->field (i).type (), name, 1);
ef0bd204
JB
1772 if (elt.field != NULL)
1773 {
1774 elt.offset += TYPE_FIELD_BITPOS (type, i);
1775 return elt;
1776 }
f5a010c0 1777 }
c906108c
SS
1778 }
1779
1780 /* OK, it's not in this class. Recursively check the baseclasses. */
1781 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1782 {
ef0bd204
JB
1783 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1784 if (elt.field != NULL)
1785 return elt;
c906108c
SS
1786 }
1787
1788 if (noerr)
ef0bd204 1789 return {nullptr, 0};
c5aa993b 1790
2f408ecb
PA
1791 std::string type_name = type_to_string (type);
1792 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1793}
1794
ef0bd204
JB
1795/* See gdbtypes.h. */
1796
1797struct type *
1798lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1799{
1800 struct_elt elt = lookup_struct_elt (type, name, noerr);
1801 if (elt.field != NULL)
b6cdac4b 1802 return elt.field->type ();
ef0bd204
JB
1803 else
1804 return NULL;
1805}
1806
ed3ef339
DE
1807/* Store in *MAX the largest number representable by unsigned integer type
1808 TYPE. */
1809
1810void
1811get_unsigned_type_max (struct type *type, ULONGEST *max)
1812{
1813 unsigned int n;
1814
f168693b 1815 type = check_typedef (type);
c6d940a9 1816 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
ed3ef339
DE
1817 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1818
1819 /* Written this way to avoid overflow. */
1820 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1821 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1822}
1823
1824/* Store in *MIN, *MAX the smallest and largest numbers representable by
1825 signed integer type TYPE. */
1826
1827void
1828get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1829{
1830 unsigned int n;
1831
f168693b 1832 type = check_typedef (type);
c6d940a9 1833 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
ed3ef339
DE
1834 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1835
1836 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1837 *min = -((ULONGEST) 1 << (n - 1));
1838 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1839}
1840
ae6ae975
DE
1841/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1842 cplus_stuff.vptr_fieldno.
1843
1844 cplus_stuff is initialized to cplus_struct_default which does not
1845 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1846 designated initializers). We cope with that here. */
1847
1848int
1849internal_type_vptr_fieldno (struct type *type)
1850{
f168693b 1851 type = check_typedef (type);
78134374
SM
1852 gdb_assert (type->code () == TYPE_CODE_STRUCT
1853 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 return -1;
1856 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1857}
1858
1859/* Set the value of cplus_stuff.vptr_fieldno. */
1860
1861void
1862set_type_vptr_fieldno (struct type *type, int fieldno)
1863{
f168693b 1864 type = check_typedef (type);
78134374
SM
1865 gdb_assert (type->code () == TYPE_CODE_STRUCT
1866 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1867 if (!HAVE_CPLUS_STRUCT (type))
1868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1869 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1870}
1871
1872/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1873 cplus_stuff.vptr_basetype. */
1874
1875struct type *
1876internal_type_vptr_basetype (struct type *type)
1877{
f168693b 1878 type = check_typedef (type);
78134374
SM
1879 gdb_assert (type->code () == TYPE_CODE_STRUCT
1880 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1882 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1883}
1884
1885/* Set the value of cplus_stuff.vptr_basetype. */
1886
1887void
1888set_type_vptr_basetype (struct type *type, struct type *basetype)
1889{
f168693b 1890 type = check_typedef (type);
78134374
SM
1891 gdb_assert (type->code () == TYPE_CODE_STRUCT
1892 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1893 if (!HAVE_CPLUS_STRUCT (type))
1894 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1895 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1896}
1897
81fe8080
DE
1898/* Lookup the vptr basetype/fieldno values for TYPE.
1899 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1900 vptr_fieldno. Also, if found and basetype is from the same objfile,
1901 cache the results.
1902 If not found, return -1 and ignore BASETYPEP.
1903 Callers should be aware that in some cases (for example,
c906108c 1904 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1905 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1906 this function will not be able to find the
7ba81444 1907 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1908 vptr_basetype will remain NULL or incomplete. */
c906108c 1909
81fe8080
DE
1910int
1911get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1912{
f168693b 1913 type = check_typedef (type);
c906108c
SS
1914
1915 if (TYPE_VPTR_FIELDNO (type) < 0)
1916 {
1917 int i;
1918
7ba81444
MS
1919 /* We must start at zero in case the first (and only) baseclass
1920 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1921 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1922 {
81fe8080
DE
1923 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1924 int fieldno;
1925 struct type *basetype;
1926
1927 fieldno = get_vptr_fieldno (baseclass, &basetype);
1928 if (fieldno >= 0)
c906108c 1929 {
81fe8080 1930 /* If the type comes from a different objfile we can't cache
0963b4bd 1931 it, it may have a different lifetime. PR 2384 */
5ef73790 1932 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1933 {
ae6ae975
DE
1934 set_type_vptr_fieldno (type, fieldno);
1935 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1936 }
1937 if (basetypep)
1938 *basetypep = basetype;
1939 return fieldno;
c906108c
SS
1940 }
1941 }
81fe8080
DE
1942
1943 /* Not found. */
1944 return -1;
1945 }
1946 else
1947 {
1948 if (basetypep)
1949 *basetypep = TYPE_VPTR_BASETYPE (type);
1950 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1951 }
1952}
1953
44e1a9eb
DJ
1954static void
1955stub_noname_complaint (void)
1956{
b98664d3 1957 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1958}
1959
a405673c
JB
1960/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1961 attached to it, and that property has a non-constant value. */
1962
1963static int
1964array_type_has_dynamic_stride (struct type *type)
1965{
24e99c6c 1966 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c 1967
8c2e4e06 1968 return (prop != NULL && prop->kind () != PROP_CONST);
a405673c
JB
1969}
1970
d98b7a16 1971/* Worker for is_dynamic_type. */
80180f79 1972
d98b7a16 1973static int
ee715b5a 1974is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1975{
1976 type = check_typedef (type);
1977
e771e4be 1978 /* We only want to recognize references at the outermost level. */
78134374 1979 if (top_level && type->code () == TYPE_CODE_REF)
e771e4be
PMR
1980 type = check_typedef (TYPE_TARGET_TYPE (type));
1981
3cdcd0ce
JB
1982 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1983 dynamic, even if the type itself is statically defined.
1984 From a user's point of view, this may appear counter-intuitive;
1985 but it makes sense in this context, because the point is to determine
1986 whether any part of the type needs to be resolved before it can
1987 be exploited. */
1988 if (TYPE_DATA_LOCATION (type) != NULL
1989 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1990 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1991 return 1;
1992
3f2f83dd
KB
1993 if (TYPE_ASSOCIATED_PROP (type))
1994 return 1;
1995
1996 if (TYPE_ALLOCATED_PROP (type))
1997 return 1;
1998
24e99c6c 1999 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
8c2e4e06 2000 if (prop != nullptr && prop->kind () != PROP_TYPE)
ef83a141
TT
2001 return 1;
2002
f8e89861
TT
2003 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2004 return 1;
2005
78134374 2006 switch (type->code ())
80180f79 2007 {
6f8a3220 2008 case TYPE_CODE_RANGE:
ddb87a81
JB
2009 {
2010 /* A range type is obviously dynamic if it has at least one
2011 dynamic bound. But also consider the range type to be
2012 dynamic when its subtype is dynamic, even if the bounds
2013 of the range type are static. It allows us to assume that
2014 the subtype of a static range type is also static. */
599088e3 2015 return (!has_static_range (type->bounds ())
ee715b5a 2016 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 2017 }
6f8a3220 2018
216a7e6b
AB
2019 case TYPE_CODE_STRING:
2020 /* Strings are very much like an array of characters, and can be
2021 treated as one here. */
80180f79
SA
2022 case TYPE_CODE_ARRAY:
2023 {
1f704f76 2024 gdb_assert (type->num_fields () == 1);
6f8a3220 2025
a405673c 2026 /* The array is dynamic if either the bounds are dynamic... */
3d967001 2027 if (is_dynamic_type_internal (type->index_type (), 0))
80180f79 2028 return 1;
a405673c
JB
2029 /* ... or the elements it contains have a dynamic contents... */
2030 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2031 return 1;
2032 /* ... or if it has a dynamic stride... */
2033 if (array_type_has_dynamic_stride (type))
2034 return 1;
2035 return 0;
80180f79 2036 }
012370f6
TT
2037
2038 case TYPE_CODE_STRUCT:
2039 case TYPE_CODE_UNION:
2040 {
2041 int i;
2042
7d79de9a
TT
2043 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2044
1f704f76 2045 for (i = 0; i < type->num_fields (); ++i)
7d79de9a
TT
2046 {
2047 /* Static fields can be ignored here. */
ceacbf6e 2048 if (field_is_static (&type->field (i)))
7d79de9a
TT
2049 continue;
2050 /* If the field has dynamic type, then so does TYPE. */
940da03e 2051 if (is_dynamic_type_internal (type->field (i).type (), 0))
7d79de9a
TT
2052 return 1;
2053 /* If the field is at a fixed offset, then it is not
2054 dynamic. */
2055 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2056 continue;
2057 /* Do not consider C++ virtual base types to be dynamic
2058 due to the field's offset being dynamic; these are
2059 handled via other means. */
2060 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2061 continue;
012370f6 2062 return 1;
7d79de9a 2063 }
012370f6
TT
2064 }
2065 break;
80180f79 2066 }
92e2a17f
TT
2067
2068 return 0;
80180f79
SA
2069}
2070
d98b7a16
TT
2071/* See gdbtypes.h. */
2072
2073int
2074is_dynamic_type (struct type *type)
2075{
ee715b5a 2076 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2077}
2078
df25ebbd 2079static struct type *resolve_dynamic_type_internal
ee715b5a 2080 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2081
df25ebbd
JB
2082/* Given a dynamic range type (dyn_range_type) and a stack of
2083 struct property_addr_info elements, return a static version
2084 of that type. */
d190df30 2085
80180f79 2086static struct type *
df25ebbd
JB
2087resolve_dynamic_range (struct type *dyn_range_type,
2088 struct property_addr_info *addr_stack)
80180f79
SA
2089{
2090 CORE_ADDR value;
ddb87a81 2091 struct type *static_range_type, *static_target_type;
5bbd8269 2092 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2093
78134374 2094 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
80180f79 2095
599088e3 2096 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
63e43d3a 2097 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2098 low_bound.set_const_val (value);
80180f79 2099 else
8c2e4e06 2100 low_bound.set_undefined ();
80180f79 2101
599088e3 2102 prop = &dyn_range_type->bounds ()->high;
63e43d3a 2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79 2104 {
8c2e4e06 2105 high_bound.set_const_val (value);
c451ebe5 2106
599088e3 2107 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
8c2e4e06
SM
2108 high_bound.set_const_val
2109 (low_bound.const_val () + high_bound.const_val () - 1);
80180f79
SA
2110 }
2111 else
8c2e4e06 2112 high_bound.set_undefined ();
80180f79 2113
599088e3
SM
2114 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2115 prop = &dyn_range_type->bounds ()->stride;
5bbd8269
AB
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 {
8c2e4e06 2118 stride.set_const_val (value);
5bbd8269
AB
2119
2120 /* If we have a bit stride that is not an exact number of bytes then
2121 I really don't think this is going to work with current GDB, the
2122 array indexing code in GDB seems to be pretty heavily tied to byte
2123 offsets right now. Assuming 8 bits in a byte. */
2124 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2125 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2126 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2127 error (_("bit strides that are not a multiple of the byte size "
2128 "are currently not supported"));
2129 }
2130 else
2131 {
8c2e4e06 2132 stride.set_undefined ();
5bbd8269
AB
2133 byte_stride_p = true;
2134 }
2135
ddb87a81
JB
2136 static_target_type
2137 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2138 addr_stack, 0);
599088e3 2139 LONGEST bias = dyn_range_type->bounds ()->bias;
5bbd8269
AB
2140 static_range_type = create_range_type_with_stride
2141 (copy_type (dyn_range_type), static_target_type,
2142 &low_bound, &high_bound, bias, &stride, byte_stride_p);
599088e3 2143 static_range_type->bounds ()->flag_bound_evaluated = 1;
6f8a3220
JB
2144 return static_range_type;
2145}
2146
216a7e6b
AB
2147/* Resolves dynamic bound values of an array or string type TYPE to static
2148 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2149 needed during the dynamic resolution. */
6f8a3220
JB
2150
2151static struct type *
216a7e6b
AB
2152resolve_dynamic_array_or_string (struct type *type,
2153 struct property_addr_info *addr_stack)
6f8a3220
JB
2154{
2155 CORE_ADDR value;
2156 struct type *elt_type;
2157 struct type *range_type;
2158 struct type *ary_dim;
3f2f83dd 2159 struct dynamic_prop *prop;
a405673c 2160 unsigned int bit_stride = 0;
6f8a3220 2161
216a7e6b
AB
2162 /* For dynamic type resolution strings can be treated like arrays of
2163 characters. */
78134374
SM
2164 gdb_assert (type->code () == TYPE_CODE_ARRAY
2165 || type->code () == TYPE_CODE_STRING);
6f8a3220 2166
3f2f83dd
KB
2167 type = copy_type (type);
2168
6f8a3220 2169 elt_type = type;
3d967001 2170 range_type = check_typedef (elt_type->index_type ());
df25ebbd 2171 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2172
3f2f83dd
KB
2173 /* Resolve allocated/associated here before creating a new array type, which
2174 will update the length of the array accordingly. */
2175 prop = TYPE_ALLOCATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06
SM
2177 prop->set_const_val (value);
2178
3f2f83dd
KB
2179 prop = TYPE_ASSOCIATED_PROP (type);
2180 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2181 prop->set_const_val (value);
3f2f83dd 2182
80180f79
SA
2183 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2184
78134374 2185 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
216a7e6b 2186 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2187 else
2188 elt_type = TYPE_TARGET_TYPE (type);
2189
24e99c6c 2190 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2191 if (prop != NULL)
2192 {
603490bf 2193 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c 2194 {
7aa91313 2195 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2196 bit_stride = (unsigned int) (value * 8);
2197 }
2198 else
2199 {
2200 /* Could be a bug in our code, but it could also happen
2201 if the DWARF info is not correct. Issue a warning,
2202 and assume no byte/bit stride (leave bit_stride = 0). */
2203 warning (_("cannot determine array stride for type %s"),
7d93a1e0 2204 type->name () ? type->name () : "<no name>");
a405673c
JB
2205 }
2206 }
2207 else
2208 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2209
2210 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2211 bit_stride);
80180f79
SA
2212}
2213
012370f6 2214/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2215 bounds. ADDR_STACK is a stack of struct property_addr_info
2216 to be used if needed during the dynamic resolution. */
012370f6
TT
2217
2218static struct type *
df25ebbd
JB
2219resolve_dynamic_union (struct type *type,
2220 struct property_addr_info *addr_stack)
012370f6
TT
2221{
2222 struct type *resolved_type;
2223 int i;
2224 unsigned int max_len = 0;
2225
78134374 2226 gdb_assert (type->code () == TYPE_CODE_UNION);
012370f6
TT
2227
2228 resolved_type = copy_type (type);
3cabb6b0
SM
2229 resolved_type->set_fields
2230 ((struct field *)
2231 TYPE_ALLOC (resolved_type,
2232 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2233 memcpy (resolved_type->fields (),
2234 type->fields (),
1f704f76
SM
2235 resolved_type->num_fields () * sizeof (struct field));
2236 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6
TT
2237 {
2238 struct type *t;
2239
ceacbf6e 2240 if (field_is_static (&type->field (i)))
012370f6
TT
2241 continue;
2242
940da03e 2243 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
ee715b5a 2244 addr_stack, 0);
5d14b6e5 2245 resolved_type->field (i).set_type (t);
2f33032a
KS
2246
2247 struct type *real_type = check_typedef (t);
2248 if (TYPE_LENGTH (real_type) > max_len)
2249 max_len = TYPE_LENGTH (real_type);
012370f6
TT
2250 }
2251
2252 TYPE_LENGTH (resolved_type) = max_len;
2253 return resolved_type;
2254}
2255
ef83a141
TT
2256/* See gdbtypes.h. */
2257
2258bool
2259variant::matches (ULONGEST value, bool is_unsigned) const
2260{
2261 for (const discriminant_range &range : discriminants)
2262 if (range.contains (value, is_unsigned))
2263 return true;
2264 return false;
2265}
2266
2267static void
2268compute_variant_fields_inner (struct type *type,
2269 struct property_addr_info *addr_stack,
2270 const variant_part &part,
2271 std::vector<bool> &flags);
2272
2273/* A helper function to determine which variant fields will be active.
2274 This handles both the variant's direct fields, and any variant
2275 parts embedded in this variant. TYPE is the type we're examining.
2276 ADDR_STACK holds information about the concrete object. VARIANT is
2277 the current variant to be handled. FLAGS is where the results are
2278 stored -- this function sets the Nth element in FLAGS if the
2279 corresponding field is enabled. ENABLED is whether this variant is
2280 enabled or not. */
2281
2282static void
2283compute_variant_fields_recurse (struct type *type,
2284 struct property_addr_info *addr_stack,
2285 const variant &variant,
2286 std::vector<bool> &flags,
2287 bool enabled)
2288{
2289 for (int field = variant.first_field; field < variant.last_field; ++field)
2290 flags[field] = enabled;
2291
2292 for (const variant_part &new_part : variant.parts)
2293 {
2294 if (enabled)
2295 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2296 else
2297 {
2298 for (const auto &sub_variant : new_part.variants)
2299 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2300 flags, enabled);
2301 }
2302 }
2303}
2304
2305/* A helper function to determine which variant fields will be active.
2306 This evaluates the discriminant, decides which variant (if any) is
2307 active, and then updates FLAGS to reflect which fields should be
2308 available. TYPE is the type we're examining. ADDR_STACK holds
2309 information about the concrete object. VARIANT is the current
2310 variant to be handled. FLAGS is where the results are stored --
2311 this function sets the Nth element in FLAGS if the corresponding
2312 field is enabled. */
2313
2314static void
2315compute_variant_fields_inner (struct type *type,
2316 struct property_addr_info *addr_stack,
2317 const variant_part &part,
2318 std::vector<bool> &flags)
2319{
2320 /* Evaluate the discriminant. */
2321 gdb::optional<ULONGEST> discr_value;
2322 if (part.discriminant_index != -1)
2323 {
2324 int idx = part.discriminant_index;
2325
2326 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2327 error (_("Cannot determine struct field location"
2328 " (invalid location kind)"));
2329
b249d2c2
TT
2330 if (addr_stack->valaddr.data () != NULL)
2331 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2332 idx);
ef83a141
TT
2333 else
2334 {
2335 CORE_ADDR addr = (addr_stack->addr
2336 + (TYPE_FIELD_BITPOS (type, idx)
2337 / TARGET_CHAR_BIT));
2338
2339 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2340 LONGEST size = bitsize / 8;
2341 if (size == 0)
940da03e 2342 size = TYPE_LENGTH (type->field (idx).type ());
ef83a141
TT
2343
2344 gdb_byte bits[sizeof (ULONGEST)];
2345 read_memory (addr, bits, size);
2346
2347 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2348 % TARGET_CHAR_BIT);
2349
940da03e 2350 discr_value = unpack_bits_as_long (type->field (idx).type (),
ef83a141
TT
2351 bits, bitpos, bitsize);
2352 }
2353 }
2354
2355 /* Go through each variant and see which applies. */
2356 const variant *default_variant = nullptr;
2357 const variant *applied_variant = nullptr;
2358 for (const auto &variant : part.variants)
2359 {
2360 if (variant.is_default ())
2361 default_variant = &variant;
2362 else if (discr_value.has_value ()
2363 && variant.matches (*discr_value, part.is_unsigned))
2364 {
2365 applied_variant = &variant;
2366 break;
2367 }
2368 }
2369 if (applied_variant == nullptr)
2370 applied_variant = default_variant;
2371
2372 for (const auto &variant : part.variants)
2373 compute_variant_fields_recurse (type, addr_stack, variant,
2374 flags, applied_variant == &variant);
2375}
2376
2377/* Determine which variant fields are available in TYPE. The enabled
2378 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2379 about the concrete object. PARTS describes the top-level variant
2380 parts for this type. */
2381
2382static void
2383compute_variant_fields (struct type *type,
2384 struct type *resolved_type,
2385 struct property_addr_info *addr_stack,
2386 const gdb::array_view<variant_part> &parts)
2387{
2388 /* Assume all fields are included by default. */
1f704f76 2389 std::vector<bool> flags (resolved_type->num_fields (), true);
ef83a141
TT
2390
2391 /* Now disable fields based on the variants that control them. */
2392 for (const auto &part : parts)
2393 compute_variant_fields_inner (type, addr_stack, part, flags);
2394
5e33d5f4
SM
2395 resolved_type->set_num_fields
2396 (std::count (flags.begin (), flags.end (), true));
3cabb6b0
SM
2397 resolved_type->set_fields
2398 ((struct field *)
2399 TYPE_ALLOC (resolved_type,
2400 resolved_type->num_fields () * sizeof (struct field)));
2401
ef83a141 2402 int out = 0;
1f704f76 2403 for (int i = 0; i < type->num_fields (); ++i)
ef83a141
TT
2404 {
2405 if (!flags[i])
2406 continue;
2407
ceacbf6e 2408 resolved_type->field (out) = type->field (i);
ef83a141
TT
2409 ++out;
2410 }
2411}
2412
012370f6 2413/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2414 bounds. ADDR_STACK is a stack of struct property_addr_info to
2415 be used if needed during the dynamic resolution. */
012370f6
TT
2416
2417static struct type *
df25ebbd
JB
2418resolve_dynamic_struct (struct type *type,
2419 struct property_addr_info *addr_stack)
012370f6
TT
2420{
2421 struct type *resolved_type;
2422 int i;
6908c509 2423 unsigned resolved_type_bit_length = 0;
012370f6 2424
78134374 2425 gdb_assert (type->code () == TYPE_CODE_STRUCT);
1f704f76 2426 gdb_assert (type->num_fields () > 0);
012370f6
TT
2427
2428 resolved_type = copy_type (type);
ef83a141 2429
24e99c6c 2430 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
8c2e4e06 2431 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
ef83a141
TT
2432 {
2433 compute_variant_fields (type, resolved_type, addr_stack,
8c2e4e06 2434 *variant_prop->variant_parts ());
ef83a141
TT
2435 /* We want to leave the property attached, so that the Rust code
2436 can tell whether the type was originally an enum. */
8c2e4e06 2437 variant_prop->set_original_type (type);
ef83a141
TT
2438 }
2439 else
2440 {
3cabb6b0
SM
2441 resolved_type->set_fields
2442 ((struct field *)
2443 TYPE_ALLOC (resolved_type,
2444 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2445 memcpy (resolved_type->fields (),
2446 type->fields (),
1f704f76 2447 resolved_type->num_fields () * sizeof (struct field));
ef83a141
TT
2448 }
2449
1f704f76 2450 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6 2451 {
6908c509 2452 unsigned new_bit_length;
df25ebbd 2453 struct property_addr_info pinfo;
012370f6 2454
ceacbf6e 2455 if (field_is_static (&resolved_type->field (i)))
012370f6
TT
2456 continue;
2457
7d79de9a
TT
2458 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2459 {
2460 struct dwarf2_property_baton baton;
2461 baton.property_type
940da03e 2462 = lookup_pointer_type (resolved_type->field (i).type ());
7d79de9a
TT
2463 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2464
2465 struct dynamic_prop prop;
8c2e4e06 2466 prop.set_locexpr (&baton);
7d79de9a
TT
2467
2468 CORE_ADDR addr;
2469 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2470 true))
ceacbf6e 2471 SET_FIELD_BITPOS (resolved_type->field (i),
7d79de9a
TT
2472 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2473 }
2474
6908c509
JB
2475 /* As we know this field is not a static field, the field's
2476 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2477 this is the case, but only trigger a simple error rather
2478 than an internal error if that fails. While failing
2479 that verification indicates a bug in our code, the error
2480 is not severe enough to suggest to the user he stops
2481 his debugging session because of it. */
ef83a141 2482 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2483 error (_("Cannot determine struct field location"
2484 " (invalid location kind)"));
df25ebbd 2485
940da03e 2486 pinfo.type = check_typedef (resolved_type->field (i).type ());
c3345124 2487 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2488 pinfo.addr
2489 = (addr_stack->addr
2490 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2491 pinfo.next = addr_stack;
2492
5d14b6e5 2493 resolved_type->field (i).set_type
940da03e 2494 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
5d14b6e5 2495 &pinfo, 0));
df25ebbd
JB
2496 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2497 == FIELD_LOC_KIND_BITPOS);
2498
6908c509
JB
2499 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2500 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2501 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2502 else
2f33032a
KS
2503 {
2504 struct type *real_type
2505 = check_typedef (resolved_type->field (i).type ());
2506
2507 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2508 }
6908c509
JB
2509
2510 /* Normally, we would use the position and size of the last field
2511 to determine the size of the enclosing structure. But GCC seems
2512 to be encoding the position of some fields incorrectly when
2513 the struct contains a dynamic field that is not placed last.
2514 So we compute the struct size based on the field that has
2515 the highest position + size - probably the best we can do. */
2516 if (new_bit_length > resolved_type_bit_length)
2517 resolved_type_bit_length = new_bit_length;
012370f6
TT
2518 }
2519
9920b434
BH
2520 /* The length of a type won't change for fortran, but it does for C and Ada.
2521 For fortran the size of dynamic fields might change over time but not the
2522 type length of the structure. If we adapt it, we run into problems
2523 when calculating the element offset for arrays of structs. */
2524 if (current_language->la_language != language_fortran)
2525 TYPE_LENGTH (resolved_type)
2526 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2527
9e195661
PMR
2528 /* The Ada language uses this field as a cache for static fixed types: reset
2529 it as RESOLVED_TYPE must have its own static fixed type. */
2530 TYPE_TARGET_TYPE (resolved_type) = NULL;
2531
012370f6
TT
2532 return resolved_type;
2533}
2534
d98b7a16 2535/* Worker for resolved_dynamic_type. */
80180f79 2536
d98b7a16 2537static struct type *
df25ebbd 2538resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2539 struct property_addr_info *addr_stack,
2540 int top_level)
80180f79
SA
2541{
2542 struct type *real_type = check_typedef (type);
f8e89861 2543 struct type *resolved_type = nullptr;
d9823cbb 2544 struct dynamic_prop *prop;
3cdcd0ce 2545 CORE_ADDR value;
80180f79 2546
ee715b5a 2547 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2548 return type;
2549
f8e89861
TT
2550 gdb::optional<CORE_ADDR> type_length;
2551 prop = TYPE_DYNAMIC_LENGTH (type);
2552 if (prop != NULL
2553 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2554 type_length = value;
2555
78134374 2556 if (type->code () == TYPE_CODE_TYPEDEF)
6f8a3220 2557 {
cac9b138
JK
2558 resolved_type = copy_type (type);
2559 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2560 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2561 top_level);
5537b577
JK
2562 }
2563 else
2564 {
2565 /* Before trying to resolve TYPE, make sure it is not a stub. */
2566 type = real_type;
012370f6 2567
78134374 2568 switch (type->code ())
5537b577 2569 {
e771e4be
PMR
2570 case TYPE_CODE_REF:
2571 {
2572 struct property_addr_info pinfo;
2573
2574 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
b249d2c2
TT
2575 pinfo.valaddr = {};
2576 if (addr_stack->valaddr.data () != NULL)
2577 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2578 type);
c3345124
JB
2579 else
2580 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2581 pinfo.next = addr_stack;
2582
2583 resolved_type = copy_type (type);
2584 TYPE_TARGET_TYPE (resolved_type)
2585 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2586 &pinfo, top_level);
2587 break;
2588 }
2589
216a7e6b
AB
2590 case TYPE_CODE_STRING:
2591 /* Strings are very much like an array of characters, and can be
2592 treated as one here. */
5537b577 2593 case TYPE_CODE_ARRAY:
216a7e6b 2594 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2595 break;
2596
2597 case TYPE_CODE_RANGE:
df25ebbd 2598 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2599 break;
2600
2601 case TYPE_CODE_UNION:
df25ebbd 2602 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2603 break;
2604
2605 case TYPE_CODE_STRUCT:
df25ebbd 2606 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2607 break;
2608 }
6f8a3220 2609 }
80180f79 2610
f8e89861
TT
2611 if (resolved_type == nullptr)
2612 return type;
2613
2614 if (type_length.has_value ())
2615 {
2616 TYPE_LENGTH (resolved_type) = *type_length;
7aa91313 2617 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
f8e89861
TT
2618 }
2619
3cdcd0ce
JB
2620 /* Resolve data_location attribute. */
2621 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2622 if (prop != NULL
2623 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2624 prop->set_const_val (value);
3cdcd0ce 2625
80180f79
SA
2626 return resolved_type;
2627}
2628
d98b7a16
TT
2629/* See gdbtypes.h */
2630
2631struct type *
b249d2c2
TT
2632resolve_dynamic_type (struct type *type,
2633 gdb::array_view<const gdb_byte> valaddr,
c3345124 2634 CORE_ADDR addr)
d98b7a16 2635{
c3345124
JB
2636 struct property_addr_info pinfo
2637 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2638
ee715b5a 2639 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2640}
2641
d9823cbb
KB
2642/* See gdbtypes.h */
2643
24e99c6c
SM
2644dynamic_prop *
2645type::dyn_prop (dynamic_prop_node_kind prop_kind) const
d9823cbb 2646{
98d48915 2647 dynamic_prop_list *node = this->main_type->dyn_prop_list;
d9823cbb
KB
2648
2649 while (node != NULL)
2650 {
2651 if (node->prop_kind == prop_kind)
283a9958 2652 return &node->prop;
d9823cbb
KB
2653 node = node->next;
2654 }
2655 return NULL;
2656}
2657
2658/* See gdbtypes.h */
2659
2660void
5c54719c 2661type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
d9823cbb
KB
2662{
2663 struct dynamic_prop_list *temp;
2664
5c54719c 2665 gdb_assert (TYPE_OBJFILE_OWNED (this));
d9823cbb 2666
5c54719c 2667 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
50a82047 2668 struct dynamic_prop_list);
d9823cbb 2669 temp->prop_kind = prop_kind;
283a9958 2670 temp->prop = prop;
98d48915 2671 temp->next = this->main_type->dyn_prop_list;
d9823cbb 2672
98d48915 2673 this->main_type->dyn_prop_list = temp;
d9823cbb
KB
2674}
2675
7aa91313 2676/* See gdbtypes.h. */
9920b434
BH
2677
2678void
7aa91313 2679type::remove_dyn_prop (dynamic_prop_node_kind kind)
9920b434
BH
2680{
2681 struct dynamic_prop_list *prev_node, *curr_node;
2682
98d48915 2683 curr_node = this->main_type->dyn_prop_list;
9920b434
BH
2684 prev_node = NULL;
2685
2686 while (NULL != curr_node)
2687 {
7aa91313 2688 if (curr_node->prop_kind == kind)
9920b434
BH
2689 {
2690 /* Update the linked list but don't free anything.
2691 The property was allocated on objstack and it is not known
2692 if we are on top of it. Nevertheless, everything is released
2693 when the complete objstack is freed. */
2694 if (NULL == prev_node)
98d48915 2695 this->main_type->dyn_prop_list = curr_node->next;
9920b434
BH
2696 else
2697 prev_node->next = curr_node->next;
2698
2699 return;
2700 }
2701
2702 prev_node = curr_node;
2703 curr_node = curr_node->next;
2704 }
2705}
d9823cbb 2706
92163a10
JK
2707/* Find the real type of TYPE. This function returns the real type,
2708 after removing all layers of typedefs, and completing opaque or stub
2709 types. Completion changes the TYPE argument, but stripping of
2710 typedefs does not.
2711
2712 Instance flags (e.g. const/volatile) are preserved as typedefs are
2713 stripped. If necessary a new qualified form of the underlying type
2714 is created.
2715
2716 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2717 not been computed and we're either in the middle of reading symbols, or
2718 there was no name for the typedef in the debug info.
2719
9bc118a5
DE
2720 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2721 QUITs in the symbol reading code can also throw.
2722 Thus this function can throw an exception.
2723
92163a10
JK
2724 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2725 the target type.
c906108c
SS
2726
2727 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2728 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2729 definition, so we can use it in future. There used to be a comment
2730 (but not any code) that if we don't find a full definition, we'd
2731 set a flag so we don't spend time in the future checking the same
2732 type. That would be a mistake, though--we might load in more
92163a10 2733 symbols which contain a full definition for the type. */
c906108c
SS
2734
2735struct type *
a02fd225 2736check_typedef (struct type *type)
c906108c
SS
2737{
2738 struct type *orig_type = type;
a02fd225 2739
423c0af8
MS
2740 gdb_assert (type);
2741
314ad88d
PA
2742 /* While we're removing typedefs, we don't want to lose qualifiers.
2743 E.g., const/volatile. */
2744 type_instance_flags instance_flags = type->instance_flags ();
2745
78134374 2746 while (type->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
2747 {
2748 if (!TYPE_TARGET_TYPE (type))
2749 {
0d5cff50 2750 const char *name;
c906108c
SS
2751 struct symbol *sym;
2752
2753 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2754 reading a symtab. Infinite recursion is one danger. */
c906108c 2755 if (currently_reading_symtab)
92163a10 2756 return make_qualified_type (type, instance_flags, NULL);
c906108c 2757
7d93a1e0 2758 name = type->name ();
e86ca25f
TT
2759 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2760 VAR_DOMAIN as appropriate? */
c906108c
SS
2761 if (name == NULL)
2762 {
23136709 2763 stub_noname_complaint ();
92163a10 2764 return make_qualified_type (type, instance_flags, NULL);
c906108c 2765 }
d12307c1 2766 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2767 if (sym)
2768 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2769 else /* TYPE_CODE_UNDEF */
e9bb382b 2770 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2771 }
2772 type = TYPE_TARGET_TYPE (type);
c906108c 2773
92163a10
JK
2774 /* Preserve the instance flags as we traverse down the typedef chain.
2775
2776 Handling address spaces/classes is nasty, what do we do if there's a
2777 conflict?
2778 E.g., what if an outer typedef marks the type as class_1 and an inner
2779 typedef marks the type as class_2?
2780 This is the wrong place to do such error checking. We leave it to
2781 the code that created the typedef in the first place to flag the
2782 error. We just pick the outer address space (akin to letting the
2783 outer cast in a chain of casting win), instead of assuming
2784 "it can't happen". */
2785 {
314ad88d
PA
2786 const type_instance_flags ALL_SPACES
2787 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2788 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2789 const type_instance_flags ALL_CLASSES
2790 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2791
2792 type_instance_flags new_instance_flags = type->instance_flags ();
92163a10
JK
2793
2794 /* Treat code vs data spaces and address classes separately. */
2795 if ((instance_flags & ALL_SPACES) != 0)
2796 new_instance_flags &= ~ALL_SPACES;
2797 if ((instance_flags & ALL_CLASSES) != 0)
2798 new_instance_flags &= ~ALL_CLASSES;
2799
2800 instance_flags |= new_instance_flags;
2801 }
2802 }
a02fd225 2803
7ba81444
MS
2804 /* If this is a struct/class/union with no fields, then check
2805 whether a full definition exists somewhere else. This is for
2806 systems where a type definition with no fields is issued for such
2807 types, instead of identifying them as stub types in the first
2808 place. */
c5aa993b 2809
7ba81444
MS
2810 if (TYPE_IS_OPAQUE (type)
2811 && opaque_type_resolution
2812 && !currently_reading_symtab)
c906108c 2813 {
7d93a1e0 2814 const char *name = type->name ();
c5aa993b 2815 struct type *newtype;
d8734c88 2816
c906108c
SS
2817 if (name == NULL)
2818 {
23136709 2819 stub_noname_complaint ();
92163a10 2820 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2821 }
2822 newtype = lookup_transparent_type (name);
ad766c0a 2823
c906108c 2824 if (newtype)
ad766c0a 2825 {
7ba81444
MS
2826 /* If the resolved type and the stub are in the same
2827 objfile, then replace the stub type with the real deal.
2828 But if they're in separate objfiles, leave the stub
2829 alone; we'll just look up the transparent type every time
2830 we call check_typedef. We can't create pointers between
2831 types allocated to different objfiles, since they may
2832 have different lifetimes. Trying to copy NEWTYPE over to
2833 TYPE's objfile is pointless, too, since you'll have to
2834 move over any other types NEWTYPE refers to, which could
2835 be an unbounded amount of stuff. */
ad766c0a 2836 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
10242f36 2837 type = make_qualified_type (newtype, type->instance_flags (), type);
ad766c0a
JB
2838 else
2839 type = newtype;
2840 }
c906108c 2841 }
7ba81444
MS
2842 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2843 types. */
e46d3488 2844 else if (type->is_stub () && !currently_reading_symtab)
c906108c 2845 {
7d93a1e0 2846 const char *name = type->name ();
e86ca25f
TT
2847 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2848 as appropriate? */
c906108c 2849 struct symbol *sym;
d8734c88 2850
c906108c
SS
2851 if (name == NULL)
2852 {
23136709 2853 stub_noname_complaint ();
92163a10 2854 return make_qualified_type (type, instance_flags, NULL);
c906108c 2855 }
d12307c1 2856 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2857 if (sym)
c26f2453
JB
2858 {
2859 /* Same as above for opaque types, we can replace the stub
92163a10 2860 with the complete type only if they are in the same
c26f2453 2861 objfile. */
78134374 2862 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
10242f36
SM
2863 type = make_qualified_type (SYMBOL_TYPE (sym),
2864 type->instance_flags (), type);
c26f2453
JB
2865 else
2866 type = SYMBOL_TYPE (sym);
2867 }
c906108c
SS
2868 }
2869
d2183968 2870 if (type->target_is_stub ())
c906108c 2871 {
c906108c
SS
2872 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2873
d2183968 2874 if (target_type->is_stub () || target_type->target_is_stub ())
c5aa993b 2875 {
73e2eb35 2876 /* Nothing we can do. */
c5aa993b 2877 }
78134374 2878 else if (type->code () == TYPE_CODE_RANGE)
c906108c
SS
2879 {
2880 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
8f53807e 2881 type->set_target_is_stub (false);
c906108c 2882 }
78134374 2883 else if (type->code () == TYPE_CODE_ARRAY
8dbb1375 2884 && update_static_array_size (type))
8f53807e 2885 type->set_target_is_stub (false);
c906108c 2886 }
92163a10
JK
2887
2888 type = make_qualified_type (type, instance_flags, NULL);
2889
7ba81444 2890 /* Cache TYPE_LENGTH for future use. */
c906108c 2891 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2892
c906108c
SS
2893 return type;
2894}
2895
7ba81444 2896/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2897 occurs, silently return a void type. */
c91ecb25 2898
b9362cc7 2899static struct type *
48319d1f 2900safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2901{
2902 struct ui_file *saved_gdb_stderr;
34365054 2903 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2904
7ba81444 2905 /* Suppress error messages. */
c91ecb25 2906 saved_gdb_stderr = gdb_stderr;
d7e74731 2907 gdb_stderr = &null_stream;
c91ecb25 2908
7ba81444 2909 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2910 try
8e7b59a5
KS
2911 {
2912 type = parse_and_eval_type (p, length);
2913 }
230d2906 2914 catch (const gdb_exception_error &except)
492d29ea
PA
2915 {
2916 type = builtin_type (gdbarch)->builtin_void;
2917 }
c91ecb25 2918
7ba81444 2919 /* Stop suppressing error messages. */
c91ecb25
ND
2920 gdb_stderr = saved_gdb_stderr;
2921
2922 return type;
2923}
2924
c906108c
SS
2925/* Ugly hack to convert method stubs into method types.
2926
7ba81444
MS
2927 He ain't kiddin'. This demangles the name of the method into a
2928 string including argument types, parses out each argument type,
2929 generates a string casting a zero to that type, evaluates the
2930 string, and stuffs the resulting type into an argtype vector!!!
2931 Then it knows the type of the whole function (including argument
2932 types for overloading), which info used to be in the stab's but was
2933 removed to hack back the space required for them. */
c906108c 2934
de17c821 2935static void
fba45db2 2936check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2937{
50810684 2938 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2939 struct fn_field *f;
2940 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2941 char *demangled_name = gdb_demangle (mangled_name,
2942 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2943 char *argtypetext, *p;
2944 int depth = 0, argcount = 1;
ad2f7632 2945 struct field *argtypes;
c906108c
SS
2946 struct type *mtype;
2947
2948 /* Make sure we got back a function string that we can use. */
2949 if (demangled_name)
2950 p = strchr (demangled_name, '(');
502dcf4e
AC
2951 else
2952 p = NULL;
c906108c
SS
2953
2954 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2955 error (_("Internal: Cannot demangle mangled name `%s'."),
2956 mangled_name);
c906108c
SS
2957
2958 /* Now, read in the parameters that define this type. */
2959 p += 1;
2960 argtypetext = p;
2961 while (*p)
2962 {
070ad9f0 2963 if (*p == '(' || *p == '<')
c906108c
SS
2964 {
2965 depth += 1;
2966 }
070ad9f0 2967 else if (*p == ')' || *p == '>')
c906108c
SS
2968 {
2969 depth -= 1;
2970 }
2971 else if (*p == ',' && depth == 0)
2972 {
2973 argcount += 1;
2974 }
2975
2976 p += 1;
2977 }
2978
ad2f7632 2979 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2980 if (startswith (argtypetext, "(void)"))
ad2f7632 2981 argcount -= 1;
c906108c 2982
ad2f7632
DJ
2983 /* We need one extra slot, for the THIS pointer. */
2984
2985 argtypes = (struct field *)
2986 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2987 p = argtypetext;
4a1970e4
DJ
2988
2989 /* Add THIS pointer for non-static methods. */
2990 f = TYPE_FN_FIELDLIST1 (type, method_id);
2991 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2992 argcount = 0;
2993 else
2994 {
5d14b6e5 2995 argtypes[0].set_type (lookup_pointer_type (type));
4a1970e4
DJ
2996 argcount = 1;
2997 }
c906108c 2998
0963b4bd 2999 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
3000 {
3001 depth = 0;
3002 while (*p)
3003 {
3004 if (depth <= 0 && (*p == ',' || *p == ')'))
3005 {
ad2f7632
DJ
3006 /* Avoid parsing of ellipsis, they will be handled below.
3007 Also avoid ``void'' as above. */
3008 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3009 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 3010 {
5d14b6e5
SM
3011 argtypes[argcount].set_type
3012 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
c906108c
SS
3013 argcount += 1;
3014 }
3015 argtypetext = p + 1;
3016 }
3017
070ad9f0 3018 if (*p == '(' || *p == '<')
c906108c
SS
3019 {
3020 depth += 1;
3021 }
070ad9f0 3022 else if (*p == ')' || *p == '>')
c906108c
SS
3023 {
3024 depth -= 1;
3025 }
3026
3027 p += 1;
3028 }
3029 }
3030
c906108c
SS
3031 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3032
3033 /* Now update the old "stub" type into a real type. */
3034 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
3035 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3036 We want a method (TYPE_CODE_METHOD). */
3037 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3038 argtypes, argcount, p[-2] == '.');
b4b73759 3039 mtype->set_is_stub (false);
c906108c 3040 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
3041
3042 xfree (demangled_name);
c906108c
SS
3043}
3044
7ba81444
MS
3045/* This is the external interface to check_stub_method, above. This
3046 function unstubs all of the signatures for TYPE's METHOD_ID method
3047 name. After calling this function TYPE_FN_FIELD_STUB will be
3048 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3049 correct.
de17c821
DJ
3050
3051 This function unfortunately can not die until stabs do. */
3052
3053void
3054check_stub_method_group (struct type *type, int method_id)
3055{
3056 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3057 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 3058
041be526
SM
3059 for (int j = 0; j < len; j++)
3060 {
3061 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 3062 check_stub_method (type, method_id, j);
de17c821
DJ
3063 }
3064}
3065
405feb71 3066/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 3067const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
3068
3069void
fba45db2 3070allocate_cplus_struct_type (struct type *type)
c906108c 3071{
b4ba55a1
JB
3072 if (HAVE_CPLUS_STRUCT (type))
3073 /* Structure was already allocated. Nothing more to do. */
3074 return;
3075
3076 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3077 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3078 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3079 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 3080 set_type_vptr_fieldno (type, -1);
c906108c
SS
3081}
3082
b4ba55a1
JB
3083const struct gnat_aux_type gnat_aux_default =
3084 { NULL };
3085
3086/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3087 and allocate the associated gnat-specific data. The gnat-specific
3088 data is also initialized to gnat_aux_default. */
5212577a 3089
b4ba55a1
JB
3090void
3091allocate_gnat_aux_type (struct type *type)
3092{
3093 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3094 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3095 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3096 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3097}
3098
ae438bc5
UW
3099/* Helper function to initialize a newly allocated type. Set type code
3100 to CODE and initialize the type-specific fields accordingly. */
3101
3102static void
3103set_type_code (struct type *type, enum type_code code)
3104{
67607e24 3105 type->set_code (code);
ae438bc5
UW
3106
3107 switch (code)
3108 {
3109 case TYPE_CODE_STRUCT:
3110 case TYPE_CODE_UNION:
3111 case TYPE_CODE_NAMESPACE:
3112 INIT_CPLUS_SPECIFIC (type);
3113 break;
3114 case TYPE_CODE_FLT:
3115 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3116 break;
3117 case TYPE_CODE_FUNC:
3118 INIT_FUNC_SPECIFIC (type);
3119 break;
3120 }
3121}
3122
19f392bc
UW
3123/* Helper function to verify floating-point format and size.
3124 BIT is the type size in bits; if BIT equals -1, the size is
3125 determined by the floatformat. Returns size to be used. */
3126
3127static int
0db7851f 3128verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 3129{
0db7851f 3130 gdb_assert (floatformat != NULL);
9b790ce7 3131
19f392bc 3132 if (bit == -1)
0db7851f 3133 bit = floatformat->totalsize;
19f392bc 3134
0db7851f
UW
3135 gdb_assert (bit >= 0);
3136 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
3137
3138 return bit;
3139}
3140
0db7851f
UW
3141/* Return the floating-point format for a floating-point variable of
3142 type TYPE. */
3143
3144const struct floatformat *
3145floatformat_from_type (const struct type *type)
3146{
78134374 3147 gdb_assert (type->code () == TYPE_CODE_FLT);
0db7851f
UW
3148 gdb_assert (TYPE_FLOATFORMAT (type));
3149 return TYPE_FLOATFORMAT (type);
3150}
3151
c906108c
SS
3152/* Helper function to initialize the standard scalar types.
3153
86f62fd7
TT
3154 If NAME is non-NULL, then it is used to initialize the type name.
3155 Note that NAME is not copied; it is required to have a lifetime at
3156 least as long as OBJFILE. */
c906108c
SS
3157
3158struct type *
77b7c781 3159init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 3160 const char *name)
c906108c 3161{
52f0bd74 3162 struct type *type;
c906108c
SS
3163
3164 type = alloc_type (objfile);
ae438bc5 3165 set_type_code (type, code);
77b7c781
UW
3166 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3167 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
d0e39ea2 3168 type->set_name (name);
c906108c 3169
c16abbde 3170 return type;
c906108c 3171}
19f392bc 3172
46a4882b
PA
3173/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3174 to use with variables that have no debug info. NAME is the type
3175 name. */
3176
3177static struct type *
3178init_nodebug_var_type (struct objfile *objfile, const char *name)
3179{
3180 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3181}
3182
19f392bc
UW
3183/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3184 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3185 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3186
3187struct type *
3188init_integer_type (struct objfile *objfile,
3189 int bit, int unsigned_p, const char *name)
3190{
3191 struct type *t;
3192
77b7c781 3193 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc 3194 if (unsigned_p)
653223d3 3195 t->set_is_unsigned (true);
19f392bc
UW
3196
3197 return t;
3198}
3199
3200/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3201 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3202 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3203
3204struct type *
3205init_character_type (struct objfile *objfile,
3206 int bit, int unsigned_p, const char *name)
3207{
3208 struct type *t;
3209
77b7c781 3210 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc 3211 if (unsigned_p)
653223d3 3212 t->set_is_unsigned (true);
19f392bc
UW
3213
3214 return t;
3215}
3216
3217/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3218 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3219 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3220
3221struct type *
3222init_boolean_type (struct objfile *objfile,
3223 int bit, int unsigned_p, const char *name)
3224{
3225 struct type *t;
3226
77b7c781 3227 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc 3228 if (unsigned_p)
653223d3 3229 t->set_is_unsigned (true);
19f392bc
UW
3230
3231 return t;
3232}
3233
3234/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3235 BIT is the type size in bits; if BIT equals -1, the size is
3236 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
3237 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3238 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3239 order of the objfile's architecture is used. */
19f392bc
UW
3240
3241struct type *
3242init_float_type (struct objfile *objfile,
3243 int bit, const char *name,
103a685e
TT
3244 const struct floatformat **floatformats,
3245 enum bfd_endian byte_order)
19f392bc 3246{
103a685e
TT
3247 if (byte_order == BFD_ENDIAN_UNKNOWN)
3248 {
08feed99 3249 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3250 byte_order = gdbarch_byte_order (gdbarch);
3251 }
3252 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3253 struct type *t;
3254
0db7851f 3255 bit = verify_floatformat (bit, fmt);
77b7c781 3256 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3257 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3258
3259 return t;
3260}
3261
3262/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3263 BIT is the type size in bits. NAME is the type name. */
3264
3265struct type *
3266init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3267{
3268 struct type *t;
3269
77b7c781 3270 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3271 return t;
3272}
3273
5b930b45
TT
3274/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3275 name. TARGET_TYPE is the component type. */
19f392bc
UW
3276
3277struct type *
5b930b45 3278init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3279{
3280 struct type *t;
3281
78134374
SM
3282 gdb_assert (target_type->code () == TYPE_CODE_INT
3283 || target_type->code () == TYPE_CODE_FLT);
5b930b45
TT
3284
3285 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3286 {
3287 if (name == nullptr)
3288 {
3289 char *new_name
3290 = (char *) TYPE_ALLOC (target_type,
7d93a1e0 3291 strlen (target_type->name ())
5b930b45
TT
3292 + strlen ("_Complex ") + 1);
3293 strcpy (new_name, "_Complex ");
7d93a1e0 3294 strcat (new_name, target_type->name ());
5b930b45
TT
3295 name = new_name;
3296 }
3297
3298 t = alloc_type_copy (target_type);
3299 set_type_code (t, TYPE_CODE_COMPLEX);
3300 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
d0e39ea2 3301 t->set_name (name);
5b930b45
TT
3302
3303 TYPE_TARGET_TYPE (t) = target_type;
3304 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3305 }
3306
3307 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3308}
3309
3310/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3311 BIT is the pointer type size in bits. NAME is the type name.
3312 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3313 TYPE_UNSIGNED flag. */
3314
3315struct type *
3316init_pointer_type (struct objfile *objfile,
3317 int bit, const char *name, struct type *target_type)
3318{
3319 struct type *t;
3320
77b7c781 3321 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc 3322 TYPE_TARGET_TYPE (t) = target_type;
653223d3 3323 t->set_is_unsigned (true);
19f392bc
UW
3324 return t;
3325}
3326
2b4424c3
TT
3327/* See gdbtypes.h. */
3328
3329unsigned
3330type_raw_align (struct type *type)
3331{
3332 if (type->align_log2 != 0)
3333 return 1 << (type->align_log2 - 1);
3334 return 0;
3335}
3336
3337/* See gdbtypes.h. */
3338
3339unsigned
3340type_align (struct type *type)
3341{
5561fc30 3342 /* Check alignment provided in the debug information. */
2b4424c3
TT
3343 unsigned raw_align = type_raw_align (type);
3344 if (raw_align != 0)
3345 return raw_align;
3346
5561fc30
AB
3347 /* Allow the architecture to provide an alignment. */
3348 struct gdbarch *arch = get_type_arch (type);
3349 ULONGEST align = gdbarch_type_align (arch, type);
3350 if (align != 0)
3351 return align;
3352
78134374 3353 switch (type->code ())
2b4424c3
TT
3354 {
3355 case TYPE_CODE_PTR:
3356 case TYPE_CODE_FUNC:
3357 case TYPE_CODE_FLAGS:
3358 case TYPE_CODE_INT:
75ba10dc 3359 case TYPE_CODE_RANGE:
2b4424c3
TT
3360 case TYPE_CODE_FLT:
3361 case TYPE_CODE_ENUM:
3362 case TYPE_CODE_REF:
3363 case TYPE_CODE_RVALUE_REF:
3364 case TYPE_CODE_CHAR:
3365 case TYPE_CODE_BOOL:
3366 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3367 case TYPE_CODE_METHODPTR:
3368 case TYPE_CODE_MEMBERPTR:
5561fc30 3369 align = type_length_units (check_typedef (type));
2b4424c3
TT
3370 break;
3371
3372 case TYPE_CODE_ARRAY:
3373 case TYPE_CODE_COMPLEX:
3374 case TYPE_CODE_TYPEDEF:
3375 align = type_align (TYPE_TARGET_TYPE (type));
3376 break;
3377
3378 case TYPE_CODE_STRUCT:
3379 case TYPE_CODE_UNION:
3380 {
41077b66 3381 int number_of_non_static_fields = 0;
1f704f76 3382 for (unsigned i = 0; i < type->num_fields (); ++i)
2b4424c3 3383 {
ceacbf6e 3384 if (!field_is_static (&type->field (i)))
2b4424c3 3385 {
41077b66 3386 number_of_non_static_fields++;
940da03e 3387 ULONGEST f_align = type_align (type->field (i).type ());
bf9a735e
AB
3388 if (f_align == 0)
3389 {
3390 /* Don't pretend we know something we don't. */
3391 align = 0;
3392 break;
3393 }
3394 if (f_align > align)
3395 align = f_align;
2b4424c3 3396 }
2b4424c3 3397 }
41077b66
AB
3398 /* A struct with no fields, or with only static fields has an
3399 alignment of 1. */
3400 if (number_of_non_static_fields == 0)
3401 align = 1;
2b4424c3
TT
3402 }
3403 break;
3404
3405 case TYPE_CODE_SET:
2b4424c3
TT
3406 case TYPE_CODE_STRING:
3407 /* Not sure what to do here, and these can't appear in C or C++
3408 anyway. */
3409 break;
3410
2b4424c3
TT
3411 case TYPE_CODE_VOID:
3412 align = 1;
3413 break;
3414
3415 case TYPE_CODE_ERROR:
3416 case TYPE_CODE_METHOD:
3417 default:
3418 break;
3419 }
3420
3421 if ((align & (align - 1)) != 0)
3422 {
3423 /* Not a power of 2, so pass. */
3424 align = 0;
3425 }
3426
3427 return align;
3428}
3429
3430/* See gdbtypes.h. */
3431
3432bool
3433set_type_align (struct type *type, ULONGEST align)
3434{
3435 /* Must be a power of 2. Zero is ok. */
3436 gdb_assert ((align & (align - 1)) == 0);
3437
3438 unsigned result = 0;
3439 while (align != 0)
3440 {
3441 ++result;
3442 align >>= 1;
3443 }
3444
3445 if (result >= (1 << TYPE_ALIGN_BITS))
3446 return false;
3447
3448 type->align_log2 = result;
3449 return true;
3450}
3451
5212577a
DE
3452\f
3453/* Queries on types. */
c906108c 3454
c906108c 3455int
fba45db2 3456can_dereference (struct type *t)
c906108c 3457{
7ba81444
MS
3458 /* FIXME: Should we return true for references as well as
3459 pointers? */
f168693b 3460 t = check_typedef (t);
c906108c
SS
3461 return
3462 (t != NULL
78134374
SM
3463 && t->code () == TYPE_CODE_PTR
3464 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
c906108c
SS
3465}
3466
adf40b2e 3467int
fba45db2 3468is_integral_type (struct type *t)
adf40b2e 3469{
f168693b 3470 t = check_typedef (t);
adf40b2e
JM
3471 return
3472 ((t != NULL)
78134374
SM
3473 && ((t->code () == TYPE_CODE_INT)
3474 || (t->code () == TYPE_CODE_ENUM)
3475 || (t->code () == TYPE_CODE_FLAGS)
3476 || (t->code () == TYPE_CODE_CHAR)
3477 || (t->code () == TYPE_CODE_RANGE)
3478 || (t->code () == TYPE_CODE_BOOL)));
adf40b2e
JM
3479}
3480
70100014
UW
3481int
3482is_floating_type (struct type *t)
3483{
3484 t = check_typedef (t);
3485 return
3486 ((t != NULL)
78134374
SM
3487 && ((t->code () == TYPE_CODE_FLT)
3488 || (t->code () == TYPE_CODE_DECFLOAT)));
70100014
UW
3489}
3490
e09342b5
TJB
3491/* Return true if TYPE is scalar. */
3492
220475ed 3493int
e09342b5
TJB
3494is_scalar_type (struct type *type)
3495{
f168693b 3496 type = check_typedef (type);
e09342b5 3497
78134374 3498 switch (type->code ())
e09342b5
TJB
3499 {
3500 case TYPE_CODE_ARRAY:
3501 case TYPE_CODE_STRUCT:
3502 case TYPE_CODE_UNION:
3503 case TYPE_CODE_SET:
3504 case TYPE_CODE_STRING:
e09342b5
TJB
3505 return 0;
3506 default:
3507 return 1;
3508 }
3509}
3510
3511/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3512 the memory layout of a scalar type. E.g., an array or struct with only
3513 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3514
3515int
3516is_scalar_type_recursive (struct type *t)
3517{
f168693b 3518 t = check_typedef (t);
e09342b5
TJB
3519
3520 if (is_scalar_type (t))
3521 return 1;
3522 /* Are we dealing with an array or string of known dimensions? */
78134374 3523 else if ((t->code () == TYPE_CODE_ARRAY
1f704f76 3524 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3d967001 3525 && t->index_type ()->code () == TYPE_CODE_RANGE)
e09342b5
TJB
3526 {
3527 LONGEST low_bound, high_bound;
3528 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3529
3d967001 3530 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
e09342b5
TJB
3531
3532 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3533 }
3534 /* Are we dealing with a struct with one element? */
1f704f76 3535 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
940da03e 3536 return is_scalar_type_recursive (t->field (0).type ());
78134374 3537 else if (t->code () == TYPE_CODE_UNION)
e09342b5 3538 {
1f704f76 3539 int i, n = t->num_fields ();
e09342b5
TJB
3540
3541 /* If all elements of the union are scalar, then the union is scalar. */
3542 for (i = 0; i < n; i++)
940da03e 3543 if (!is_scalar_type_recursive (t->field (i).type ()))
e09342b5
TJB
3544 return 0;
3545
3546 return 1;
3547 }
3548
3549 return 0;
3550}
3551
6c659fc2
SC
3552/* Return true is T is a class or a union. False otherwise. */
3553
3554int
3555class_or_union_p (const struct type *t)
3556{
78134374
SM
3557 return (t->code () == TYPE_CODE_STRUCT
3558 || t->code () == TYPE_CODE_UNION);
6c659fc2
SC
3559}
3560
4e8f195d
TT
3561/* A helper function which returns true if types A and B represent the
3562 "same" class type. This is true if the types have the same main
3563 type, or the same name. */
3564
3565int
3566class_types_same_p (const struct type *a, const struct type *b)
3567{
3568 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
7d93a1e0
SM
3569 || (a->name () && b->name ()
3570 && !strcmp (a->name (), b->name ())));
4e8f195d
TT
3571}
3572
a9d5ef47
SW
3573/* If BASE is an ancestor of DCLASS return the distance between them.
3574 otherwise return -1;
3575 eg:
3576
3577 class A {};
3578 class B: public A {};
3579 class C: public B {};
3580 class D: C {};
3581
3582 distance_to_ancestor (A, A, 0) = 0
3583 distance_to_ancestor (A, B, 0) = 1
3584 distance_to_ancestor (A, C, 0) = 2
3585 distance_to_ancestor (A, D, 0) = 3
3586
3587 If PUBLIC is 1 then only public ancestors are considered,
3588 and the function returns the distance only if BASE is a public ancestor
3589 of DCLASS.
3590 Eg:
3591
0963b4bd 3592 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3593
0526b37a 3594static int
fe978cb0 3595distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3596{
3597 int i;
a9d5ef47 3598 int d;
c5aa993b 3599
f168693b
SM
3600 base = check_typedef (base);
3601 dclass = check_typedef (dclass);
c906108c 3602
4e8f195d 3603 if (class_types_same_p (base, dclass))
a9d5ef47 3604 return 0;
c906108c
SS
3605
3606 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3607 {
fe978cb0 3608 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3609 continue;
3610
fe978cb0 3611 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3612 if (d >= 0)
3613 return 1 + d;
4e8f195d 3614 }
c906108c 3615
a9d5ef47 3616 return -1;
c906108c 3617}
4e8f195d 3618
0526b37a
SW
3619/* Check whether BASE is an ancestor or base class or DCLASS
3620 Return 1 if so, and 0 if not.
3621 Note: If BASE and DCLASS are of the same type, this function
3622 will return 1. So for some class A, is_ancestor (A, A) will
3623 return 1. */
3624
3625int
3626is_ancestor (struct type *base, struct type *dclass)
3627{
a9d5ef47 3628 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3629}
3630
4e8f195d
TT
3631/* Like is_ancestor, but only returns true when BASE is a public
3632 ancestor of DCLASS. */
3633
3634int
3635is_public_ancestor (struct type *base, struct type *dclass)
3636{
a9d5ef47 3637 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3638}
3639
3640/* A helper function for is_unique_ancestor. */
3641
3642static int
3643is_unique_ancestor_worker (struct type *base, struct type *dclass,
3644 int *offset,
8af8e3bc
PA
3645 const gdb_byte *valaddr, int embedded_offset,
3646 CORE_ADDR address, struct value *val)
4e8f195d
TT
3647{
3648 int i, count = 0;
3649
f168693b
SM
3650 base = check_typedef (base);
3651 dclass = check_typedef (dclass);
4e8f195d
TT
3652
3653 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3654 {
8af8e3bc
PA
3655 struct type *iter;
3656 int this_offset;
4e8f195d 3657
8af8e3bc
PA
3658 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3659
3660 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3661 address, val);
4e8f195d
TT
3662
3663 if (class_types_same_p (base, iter))
3664 {
3665 /* If this is the first subclass, set *OFFSET and set count
3666 to 1. Otherwise, if this is at the same offset as
3667 previous instances, do nothing. Otherwise, increment
3668 count. */
3669 if (*offset == -1)
3670 {
3671 *offset = this_offset;
3672 count = 1;
3673 }
3674 else if (this_offset == *offset)
3675 {
3676 /* Nothing. */
3677 }
3678 else
3679 ++count;
3680 }
3681 else
3682 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3683 valaddr,
3684 embedded_offset + this_offset,
3685 address, val);
4e8f195d
TT
3686 }
3687
3688 return count;
3689}
3690
3691/* Like is_ancestor, but only returns true if BASE is a unique base
3692 class of the type of VAL. */
3693
3694int
3695is_unique_ancestor (struct type *base, struct value *val)
3696{
3697 int offset = -1;
3698
3699 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3700 value_contents_for_printing (val),
3701 value_embedded_offset (val),
3702 value_address (val), val) == 1;
4e8f195d
TT
3703}
3704
7ab4a236
TT
3705/* See gdbtypes.h. */
3706
3707enum bfd_endian
3708type_byte_order (const struct type *type)
3709{
3710 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
04f5bab2 3711 if (type->endianity_is_not_default ())
7ab4a236
TT
3712 {
3713 if (byteorder == BFD_ENDIAN_BIG)
3714 return BFD_ENDIAN_LITTLE;
3715 else
3716 {
3717 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3718 return BFD_ENDIAN_BIG;
3719 }
3720 }
3721
3722 return byteorder;
3723}
3724
c906108c 3725\f
5212577a 3726/* Overload resolution. */
c906108c 3727
6403aeea
SW
3728/* Return the sum of the rank of A with the rank of B. */
3729
3730struct rank
3731sum_ranks (struct rank a, struct rank b)
3732{
3733 struct rank c;
3734 c.rank = a.rank + b.rank;
a9d5ef47 3735 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3736 return c;
3737}
3738
3739/* Compare rank A and B and return:
3740 0 if a = b
3741 1 if a is better than b
3742 -1 if b is better than a. */
3743
3744int
3745compare_ranks (struct rank a, struct rank b)
3746{
3747 if (a.rank == b.rank)
a9d5ef47
SW
3748 {
3749 if (a.subrank == b.subrank)
3750 return 0;
3751 if (a.subrank < b.subrank)
3752 return 1;
3753 if (a.subrank > b.subrank)
3754 return -1;
3755 }
6403aeea
SW
3756
3757 if (a.rank < b.rank)
3758 return 1;
3759
0963b4bd 3760 /* a.rank > b.rank */
6403aeea
SW
3761 return -1;
3762}
c5aa993b 3763
0963b4bd 3764/* Functions for overload resolution begin here. */
c906108c
SS
3765
3766/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3767 0 => A and B are identical
3768 1 => A and B are incomparable
3769 2 => A is better than B
3770 3 => A is worse than B */
c906108c
SS
3771
3772int
82ceee50 3773compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3774{
3775 int i;
3776 int tmp;
c5aa993b
JM
3777 short found_pos = 0; /* any positives in c? */
3778 short found_neg = 0; /* any negatives in c? */
3779
82ceee50
PA
3780 /* differing sizes => incomparable */
3781 if (a.size () != b.size ())
c906108c
SS
3782 return 1;
3783
c5aa993b 3784 /* Subtract b from a */
82ceee50 3785 for (i = 0; i < a.size (); i++)
c906108c 3786 {
82ceee50 3787 tmp = compare_ranks (b[i], a[i]);
c906108c 3788 if (tmp > 0)
c5aa993b 3789 found_pos = 1;
c906108c 3790 else if (tmp < 0)
c5aa993b 3791 found_neg = 1;
c906108c
SS
3792 }
3793
3794 if (found_pos)
3795 {
3796 if (found_neg)
c5aa993b 3797 return 1; /* incomparable */
c906108c 3798 else
c5aa993b 3799 return 3; /* A > B */
c906108c 3800 }
c5aa993b
JM
3801 else
3802 /* no positives */
c906108c
SS
3803 {
3804 if (found_neg)
c5aa993b 3805 return 2; /* A < B */
c906108c 3806 else
c5aa993b 3807 return 0; /* A == B */
c906108c
SS
3808 }
3809}
3810
6b1747cd 3811/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3812 types of an argument list (ARGS). Return the badness vector. This
3813 has ARGS.size() + 1 entries. */
c906108c 3814
82ceee50 3815badness_vector
6b1747cd
PA
3816rank_function (gdb::array_view<type *> parms,
3817 gdb::array_view<value *> args)
c906108c 3818{
82ceee50
PA
3819 /* add 1 for the length-match rank. */
3820 badness_vector bv;
3821 bv.reserve (1 + args.size ());
c906108c
SS
3822
3823 /* First compare the lengths of the supplied lists.
7ba81444 3824 If there is a mismatch, set it to a high value. */
c5aa993b 3825
c906108c 3826 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3827 arguments and ellipsis parameter lists, we should consider those
3828 and rank the length-match more finely. */
c906108c 3829
82ceee50
PA
3830 bv.push_back ((args.size () != parms.size ())
3831 ? LENGTH_MISMATCH_BADNESS
3832 : EXACT_MATCH_BADNESS);
c906108c 3833
0963b4bd 3834 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3835 size_t min_len = std::min (parms.size (), args.size ());
3836
3837 for (size_t i = 0; i < min_len; i++)
3838 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3839 args[i]));
c906108c 3840
0963b4bd 3841 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3842 for (size_t i = min_len; i < args.size (); i++)
3843 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3844
3845 return bv;
3846}
3847
973ccf8b
DJ
3848/* Compare the names of two integer types, assuming that any sign
3849 qualifiers have been checked already. We do it this way because
3850 there may be an "int" in the name of one of the types. */
3851
3852static int
3853integer_types_same_name_p (const char *first, const char *second)
3854{
3855 int first_p, second_p;
3856
7ba81444
MS
3857 /* If both are shorts, return 1; if neither is a short, keep
3858 checking. */
973ccf8b
DJ
3859 first_p = (strstr (first, "short") != NULL);
3860 second_p = (strstr (second, "short") != NULL);
3861 if (first_p && second_p)
3862 return 1;
3863 if (first_p || second_p)
3864 return 0;
3865
3866 /* Likewise for long. */
3867 first_p = (strstr (first, "long") != NULL);
3868 second_p = (strstr (second, "long") != NULL);
3869 if (first_p && second_p)
3870 return 1;
3871 if (first_p || second_p)
3872 return 0;
3873
3874 /* Likewise for char. */
3875 first_p = (strstr (first, "char") != NULL);
3876 second_p = (strstr (second, "char") != NULL);
3877 if (first_p && second_p)
3878 return 1;
3879 if (first_p || second_p)
3880 return 0;
3881
3882 /* They must both be ints. */
3883 return 1;
3884}
3885
894882e3
TT
3886/* Compares type A to type B. Returns true if they represent the same
3887 type, false otherwise. */
7062b0a0 3888
894882e3 3889bool
7062b0a0
SW
3890types_equal (struct type *a, struct type *b)
3891{
3892 /* Identical type pointers. */
3893 /* However, this still doesn't catch all cases of same type for b
3894 and a. The reason is that builtin types are different from
3895 the same ones constructed from the object. */
3896 if (a == b)
894882e3 3897 return true;
7062b0a0
SW
3898
3899 /* Resolve typedefs */
78134374 3900 if (a->code () == TYPE_CODE_TYPEDEF)
7062b0a0 3901 a = check_typedef (a);
78134374 3902 if (b->code () == TYPE_CODE_TYPEDEF)
7062b0a0
SW
3903 b = check_typedef (b);
3904
3905 /* If after resolving typedefs a and b are not of the same type
3906 code then they are not equal. */
78134374 3907 if (a->code () != b->code ())
894882e3 3908 return false;
7062b0a0
SW
3909
3910 /* If a and b are both pointers types or both reference types then
3911 they are equal of the same type iff the objects they refer to are
3912 of the same type. */
78134374
SM
3913 if (a->code () == TYPE_CODE_PTR
3914 || a->code () == TYPE_CODE_REF)
7062b0a0
SW
3915 return types_equal (TYPE_TARGET_TYPE (a),
3916 TYPE_TARGET_TYPE (b));
3917
0963b4bd 3918 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3919 are exactly the same. This happens when we generate method
3920 stubs. The types won't point to the same address, but they
0963b4bd 3921 really are the same. */
7062b0a0 3922
7d93a1e0
SM
3923 if (a->name () && b->name ()
3924 && strcmp (a->name (), b->name ()) == 0)
894882e3 3925 return true;
7062b0a0
SW
3926
3927 /* Check if identical after resolving typedefs. */
3928 if (a == b)
894882e3 3929 return true;
7062b0a0 3930
9ce98649
TT
3931 /* Two function types are equal if their argument and return types
3932 are equal. */
78134374 3933 if (a->code () == TYPE_CODE_FUNC)
9ce98649
TT
3934 {
3935 int i;
3936
1f704f76 3937 if (a->num_fields () != b->num_fields ())
894882e3 3938 return false;
9ce98649
TT
3939
3940 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3941 return false;
9ce98649 3942
1f704f76 3943 for (i = 0; i < a->num_fields (); ++i)
940da03e 3944 if (!types_equal (a->field (i).type (), b->field (i).type ()))
894882e3 3945 return false;
9ce98649 3946
894882e3 3947 return true;
9ce98649
TT
3948 }
3949
894882e3 3950 return false;
7062b0a0 3951}
ca092b61
DE
3952\f
3953/* Deep comparison of types. */
3954
3955/* An entry in the type-equality bcache. */
3956
894882e3 3957struct type_equality_entry
ca092b61 3958{
894882e3
TT
3959 type_equality_entry (struct type *t1, struct type *t2)
3960 : type1 (t1),
3961 type2 (t2)
3962 {
3963 }
ca092b61 3964
894882e3
TT
3965 struct type *type1, *type2;
3966};
ca092b61 3967
894882e3
TT
3968/* A helper function to compare two strings. Returns true if they are
3969 the same, false otherwise. Handles NULLs properly. */
ca092b61 3970
894882e3 3971static bool
ca092b61
DE
3972compare_maybe_null_strings (const char *s, const char *t)
3973{
894882e3
TT
3974 if (s == NULL || t == NULL)
3975 return s == t;
ca092b61
DE
3976 return strcmp (s, t) == 0;
3977}
3978
3979/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3980 "deep" equality. Returns true if the types are considered the
3981 same, false otherwise. */
ca092b61 3982
894882e3 3983static bool
ca092b61 3984check_types_equal (struct type *type1, struct type *type2,
894882e3 3985 std::vector<type_equality_entry> *worklist)
ca092b61 3986{
f168693b
SM
3987 type1 = check_typedef (type1);
3988 type2 = check_typedef (type2);
ca092b61
DE
3989
3990 if (type1 == type2)
894882e3 3991 return true;
ca092b61 3992
78134374 3993 if (type1->code () != type2->code ()
ca092b61 3994 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
c6d940a9 3995 || type1->is_unsigned () != type2->is_unsigned ()
20ce4123 3996 || type1->has_no_signedness () != type2->has_no_signedness ()
04f5bab2 3997 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
a409645d 3998 || type1->has_varargs () != type2->has_varargs ()
bd63c870 3999 || type1->is_vector () != type2->is_vector ()
ca092b61 4000 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
10242f36 4001 || type1->instance_flags () != type2->instance_flags ()
1f704f76 4002 || type1->num_fields () != type2->num_fields ())
894882e3 4003 return false;
ca092b61 4004
7d93a1e0 4005 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4006 return false;
7d93a1e0 4007 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4008 return false;
ca092b61 4009
78134374 4010 if (type1->code () == TYPE_CODE_RANGE)
ca092b61 4011 {
599088e3 4012 if (*type1->bounds () != *type2->bounds ())
894882e3 4013 return false;
ca092b61
DE
4014 }
4015 else
4016 {
4017 int i;
4018
1f704f76 4019 for (i = 0; i < type1->num_fields (); ++i)
ca092b61 4020 {
ceacbf6e
SM
4021 const struct field *field1 = &type1->field (i);
4022 const struct field *field2 = &type2->field (i);
ca092b61
DE
4023
4024 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4025 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4026 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 4027 return false;
ca092b61
DE
4028 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4029 FIELD_NAME (*field2)))
894882e3 4030 return false;
ca092b61
DE
4031 switch (FIELD_LOC_KIND (*field1))
4032 {
4033 case FIELD_LOC_KIND_BITPOS:
4034 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 4035 return false;
ca092b61
DE
4036 break;
4037 case FIELD_LOC_KIND_ENUMVAL:
4038 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 4039 return false;
ca092b61
DE
4040 break;
4041 case FIELD_LOC_KIND_PHYSADDR:
4042 if (FIELD_STATIC_PHYSADDR (*field1)
4043 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 4044 return false;
ca092b61
DE
4045 break;
4046 case FIELD_LOC_KIND_PHYSNAME:
4047 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4048 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 4049 return false;
ca092b61
DE
4050 break;
4051 case FIELD_LOC_KIND_DWARF_BLOCK:
4052 {
4053 struct dwarf2_locexpr_baton *block1, *block2;
4054
4055 block1 = FIELD_DWARF_BLOCK (*field1);
4056 block2 = FIELD_DWARF_BLOCK (*field2);
4057 if (block1->per_cu != block2->per_cu
4058 || block1->size != block2->size
4059 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 4060 return false;
ca092b61
DE
4061 }
4062 break;
4063 default:
4064 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4065 "%d by check_types_equal"),
4066 FIELD_LOC_KIND (*field1));
4067 }
4068
b6cdac4b 4069 worklist->emplace_back (field1->type (), field2->type ());
ca092b61
DE
4070 }
4071 }
4072
4073 if (TYPE_TARGET_TYPE (type1) != NULL)
4074 {
ca092b61 4075 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 4076 return false;
ca092b61 4077
894882e3
TT
4078 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4079 TYPE_TARGET_TYPE (type2));
ca092b61
DE
4080 }
4081 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 4082 return false;
ca092b61 4083
894882e3 4084 return true;
ca092b61
DE
4085}
4086
894882e3
TT
4087/* Check types on a worklist for equality. Returns false if any pair
4088 is not equal, true if they are all considered equal. */
ca092b61 4089
894882e3
TT
4090static bool
4091check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 4092 gdb::bcache *cache)
ca092b61 4093{
894882e3 4094 while (!worklist->empty ())
ca092b61 4095 {
ef5e5b0b 4096 bool added;
ca092b61 4097
894882e3
TT
4098 struct type_equality_entry entry = std::move (worklist->back ());
4099 worklist->pop_back ();
ca092b61
DE
4100
4101 /* If the type pair has already been visited, we know it is
4102 ok. */
25629dfd 4103 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
4104 if (!added)
4105 continue;
4106
894882e3
TT
4107 if (!check_types_equal (entry.type1, entry.type2, worklist))
4108 return false;
ca092b61 4109 }
7062b0a0 4110
894882e3 4111 return true;
ca092b61
DE
4112}
4113
894882e3
TT
4114/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4115 "deep comparison". Otherwise return false. */
ca092b61 4116
894882e3 4117bool
ca092b61
DE
4118types_deeply_equal (struct type *type1, struct type *type2)
4119{
894882e3 4120 std::vector<type_equality_entry> worklist;
ca092b61
DE
4121
4122 gdb_assert (type1 != NULL && type2 != NULL);
4123
4124 /* Early exit for the simple case. */
4125 if (type1 == type2)
894882e3 4126 return true;
ca092b61 4127
89806626 4128 gdb::bcache cache;
894882e3 4129 worklist.emplace_back (type1, type2);
25629dfd 4130 return check_types_worklist (&worklist, &cache);
ca092b61 4131}
3f2f83dd
KB
4132
4133/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4134 Otherwise return one. */
4135
4136int
4137type_not_allocated (const struct type *type)
4138{
4139 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4140
8a6d5e35 4141 return (prop != nullptr && prop->kind () == PROP_CONST
5555c86d 4142 && prop->const_val () == 0);
3f2f83dd
KB
4143}
4144
4145/* Associated status of type TYPE. Return zero if type TYPE is associated.
4146 Otherwise return one. */
4147
4148int
4149type_not_associated (const struct type *type)
4150{
4151 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4152
8a6d5e35 4153 return (prop != nullptr && prop->kind () == PROP_CONST
5555c86d 4154 && prop->const_val () == 0);
3f2f83dd 4155}
9293fc63
SM
4156
4157/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4158
4159static struct rank
4160rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4161{
4162 struct rank rank = {0,0};
4163
78134374 4164 switch (arg->code ())
9293fc63
SM
4165 {
4166 case TYPE_CODE_PTR:
4167
4168 /* Allowed pointer conversions are:
4169 (a) pointer to void-pointer conversion. */
78134374 4170 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
9293fc63
SM
4171 return VOID_PTR_CONVERSION_BADNESS;
4172
4173 /* (b) pointer to ancestor-pointer conversion. */
4174 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4175 TYPE_TARGET_TYPE (arg),
4176 0);
4177 if (rank.subrank >= 0)
4178 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4179
4180 return INCOMPATIBLE_TYPE_BADNESS;
4181 case TYPE_CODE_ARRAY:
4182 {
4183 struct type *t1 = TYPE_TARGET_TYPE (parm);
4184 struct type *t2 = TYPE_TARGET_TYPE (arg);
4185
4186 if (types_equal (t1, t2))
4187 {
4188 /* Make sure they are CV equal. */
4189 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4190 rank.subrank |= CV_CONVERSION_CONST;
4191 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4192 rank.subrank |= CV_CONVERSION_VOLATILE;
4193 if (rank.subrank != 0)
4194 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4195 return EXACT_MATCH_BADNESS;
4196 }
4197 return INCOMPATIBLE_TYPE_BADNESS;
4198 }
4199 case TYPE_CODE_FUNC:
4200 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4201 case TYPE_CODE_INT:
78134374 4202 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
9293fc63
SM
4203 {
4204 if (value_as_long (value) == 0)
4205 {
4206 /* Null pointer conversion: allow it to be cast to a pointer.
4207 [4.10.1 of C++ standard draft n3290] */
4208 return NULL_POINTER_CONVERSION_BADNESS;
4209 }
4210 else
4211 {
4212 /* If type checking is disabled, allow the conversion. */
4213 if (!strict_type_checking)
4214 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4215 }
4216 }
4217 /* fall through */
4218 case TYPE_CODE_ENUM:
4219 case TYPE_CODE_FLAGS:
4220 case TYPE_CODE_CHAR:
4221 case TYPE_CODE_RANGE:
4222 case TYPE_CODE_BOOL:
4223 default:
4224 return INCOMPATIBLE_TYPE_BADNESS;
4225 }
4226}
4227
b9f4512f
SM
4228/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4229
4230static struct rank
4231rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4232{
78134374 4233 switch (arg->code ())
b9f4512f
SM
4234 {
4235 case TYPE_CODE_PTR:
4236 case TYPE_CODE_ARRAY:
4237 return rank_one_type (TYPE_TARGET_TYPE (parm),
4238 TYPE_TARGET_TYPE (arg), NULL);
4239 default:
4240 return INCOMPATIBLE_TYPE_BADNESS;
4241 }
4242}
4243
f1f832d6
SM
4244/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4245
4246static struct rank
4247rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4248{
78134374 4249 switch (arg->code ())
f1f832d6
SM
4250 {
4251 case TYPE_CODE_PTR: /* funcptr -> func */
4252 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4253 default:
4254 return INCOMPATIBLE_TYPE_BADNESS;
4255 }
4256}
4257
34910087
SM
4258/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4259
4260static struct rank
4261rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4262{
78134374 4263 switch (arg->code ())
34910087
SM
4264 {
4265 case TYPE_CODE_INT:
4266 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4267 {
4268 /* Deal with signed, unsigned, and plain chars and
4269 signed and unsigned ints. */
20ce4123 4270 if (parm->has_no_signedness ())
34910087
SM
4271 {
4272 /* This case only for character types. */
20ce4123 4273 if (arg->has_no_signedness ())
34910087
SM
4274 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4275 else /* signed/unsigned char -> plain char */
4276 return INTEGER_CONVERSION_BADNESS;
4277 }
c6d940a9 4278 else if (parm->is_unsigned ())
34910087 4279 {
c6d940a9 4280 if (arg->is_unsigned ())
34910087
SM
4281 {
4282 /* unsigned int -> unsigned int, or
4283 unsigned long -> unsigned long */
7d93a1e0
SM
4284 if (integer_types_same_name_p (parm->name (),
4285 arg->name ()))
34910087 4286 return EXACT_MATCH_BADNESS;
7d93a1e0 4287 else if (integer_types_same_name_p (arg->name (),
34910087 4288 "int")
7d93a1e0 4289 && integer_types_same_name_p (parm->name (),
34910087
SM
4290 "long"))
4291 /* unsigned int -> unsigned long */
4292 return INTEGER_PROMOTION_BADNESS;
4293 else
4294 /* unsigned long -> unsigned int */
4295 return INTEGER_CONVERSION_BADNESS;
4296 }
4297 else
4298 {
7d93a1e0 4299 if (integer_types_same_name_p (arg->name (),
34910087 4300 "long")
7d93a1e0 4301 && integer_types_same_name_p (parm->name (),
34910087
SM
4302 "int"))
4303 /* signed long -> unsigned int */
4304 return INTEGER_CONVERSION_BADNESS;
4305 else
4306 /* signed int/long -> unsigned int/long */
4307 return INTEGER_CONVERSION_BADNESS;
4308 }
4309 }
20ce4123 4310 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
34910087 4311 {
7d93a1e0
SM
4312 if (integer_types_same_name_p (parm->name (),
4313 arg->name ()))
34910087 4314 return EXACT_MATCH_BADNESS;
7d93a1e0 4315 else if (integer_types_same_name_p (arg->name (),
34910087 4316 "int")
7d93a1e0 4317 && integer_types_same_name_p (parm->name (),
34910087
SM
4318 "long"))
4319 return INTEGER_PROMOTION_BADNESS;
4320 else
4321 return INTEGER_CONVERSION_BADNESS;
4322 }
4323 else
4324 return INTEGER_CONVERSION_BADNESS;
4325 }
4326 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4327 return INTEGER_PROMOTION_BADNESS;
4328 else
4329 return INTEGER_CONVERSION_BADNESS;
4330 case TYPE_CODE_ENUM:
4331 case TYPE_CODE_FLAGS:
4332 case TYPE_CODE_CHAR:
4333 case TYPE_CODE_RANGE:
4334 case TYPE_CODE_BOOL:
4335 if (TYPE_DECLARED_CLASS (arg))
4336 return INCOMPATIBLE_TYPE_BADNESS;
4337 return INTEGER_PROMOTION_BADNESS;
4338 case TYPE_CODE_FLT:
4339 return INT_FLOAT_CONVERSION_BADNESS;
4340 case TYPE_CODE_PTR:
4341 return NS_POINTER_CONVERSION_BADNESS;
4342 default:
4343 return INCOMPATIBLE_TYPE_BADNESS;
4344 }
4345}
4346
793cd1d2
SM
4347/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4348
4349static struct rank
4350rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4351{
78134374 4352 switch (arg->code ())
793cd1d2
SM
4353 {
4354 case TYPE_CODE_INT:
4355 case TYPE_CODE_CHAR:
4356 case TYPE_CODE_RANGE:
4357 case TYPE_CODE_BOOL:
4358 case TYPE_CODE_ENUM:
4359 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4360 return INCOMPATIBLE_TYPE_BADNESS;
4361 return INTEGER_CONVERSION_BADNESS;
4362 case TYPE_CODE_FLT:
4363 return INT_FLOAT_CONVERSION_BADNESS;
4364 default:
4365 return INCOMPATIBLE_TYPE_BADNESS;
4366 }
4367}
4368
41ea4728
SM
4369/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4370
4371static struct rank
4372rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4373{
78134374 4374 switch (arg->code ())
41ea4728
SM
4375 {
4376 case TYPE_CODE_RANGE:
4377 case TYPE_CODE_BOOL:
4378 case TYPE_CODE_ENUM:
4379 if (TYPE_DECLARED_CLASS (arg))
4380 return INCOMPATIBLE_TYPE_BADNESS;
4381 return INTEGER_CONVERSION_BADNESS;
4382 case TYPE_CODE_FLT:
4383 return INT_FLOAT_CONVERSION_BADNESS;
4384 case TYPE_CODE_INT:
4385 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4386 return INTEGER_CONVERSION_BADNESS;
4387 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4388 return INTEGER_PROMOTION_BADNESS;
4389 /* fall through */
4390 case TYPE_CODE_CHAR:
4391 /* Deal with signed, unsigned, and plain chars for C++ and
4392 with int cases falling through from previous case. */
20ce4123 4393 if (parm->has_no_signedness ())
41ea4728 4394 {
20ce4123 4395 if (arg->has_no_signedness ())
41ea4728
SM
4396 return EXACT_MATCH_BADNESS;
4397 else
4398 return INTEGER_CONVERSION_BADNESS;
4399 }
c6d940a9 4400 else if (parm->is_unsigned ())
41ea4728 4401 {
c6d940a9 4402 if (arg->is_unsigned ())
41ea4728
SM
4403 return EXACT_MATCH_BADNESS;
4404 else
4405 return INTEGER_PROMOTION_BADNESS;
4406 }
20ce4123 4407 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
41ea4728
SM
4408 return EXACT_MATCH_BADNESS;
4409 else
4410 return INTEGER_CONVERSION_BADNESS;
4411 default:
4412 return INCOMPATIBLE_TYPE_BADNESS;
4413 }
4414}
4415
0dd322dc
SM
4416/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4417
4418static struct rank
4419rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4420{
78134374 4421 switch (arg->code ())
0dd322dc
SM
4422 {
4423 case TYPE_CODE_INT:
4424 case TYPE_CODE_CHAR:
4425 case TYPE_CODE_RANGE:
4426 case TYPE_CODE_BOOL:
4427 case TYPE_CODE_ENUM:
4428 return INTEGER_CONVERSION_BADNESS;
4429 case TYPE_CODE_FLT:
4430 return INT_FLOAT_CONVERSION_BADNESS;
4431 default:
4432 return INCOMPATIBLE_TYPE_BADNESS;
4433 }
4434}
4435
2c509035
SM
4436/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4437
4438static struct rank
4439rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4440{
78134374 4441 switch (arg->code ())
2c509035
SM
4442 {
4443 /* n3290 draft, section 4.12.1 (conv.bool):
4444
4445 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4446 pointer to member type can be converted to a prvalue of type
4447 bool. A zero value, null pointer value, or null member pointer
4448 value is converted to false; any other value is converted to
4449 true. A prvalue of type std::nullptr_t can be converted to a
4450 prvalue of type bool; the resulting value is false." */
4451 case TYPE_CODE_INT:
4452 case TYPE_CODE_CHAR:
4453 case TYPE_CODE_ENUM:
4454 case TYPE_CODE_FLT:
4455 case TYPE_CODE_MEMBERPTR:
4456 case TYPE_CODE_PTR:
4457 return BOOL_CONVERSION_BADNESS;
4458 case TYPE_CODE_RANGE:
4459 return INCOMPATIBLE_TYPE_BADNESS;
4460 case TYPE_CODE_BOOL:
4461 return EXACT_MATCH_BADNESS;
4462 default:
4463 return INCOMPATIBLE_TYPE_BADNESS;
4464 }
4465}
4466
7f17b20d
SM
4467/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4468
4469static struct rank
4470rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4471{
78134374 4472 switch (arg->code ())
7f17b20d
SM
4473 {
4474 case TYPE_CODE_FLT:
4475 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4476 return FLOAT_PROMOTION_BADNESS;
4477 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4478 return EXACT_MATCH_BADNESS;
4479 else
4480 return FLOAT_CONVERSION_BADNESS;
4481 case TYPE_CODE_INT:
4482 case TYPE_CODE_BOOL:
4483 case TYPE_CODE_ENUM:
4484 case TYPE_CODE_RANGE:
4485 case TYPE_CODE_CHAR:
4486 return INT_FLOAT_CONVERSION_BADNESS;
4487 default:
4488 return INCOMPATIBLE_TYPE_BADNESS;
4489 }
4490}
4491
2598a94b
SM
4492/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4493
4494static struct rank
4495rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4496{
78134374 4497 switch (arg->code ())
2598a94b
SM
4498 { /* Strictly not needed for C++, but... */
4499 case TYPE_CODE_FLT:
4500 return FLOAT_PROMOTION_BADNESS;
4501 case TYPE_CODE_COMPLEX:
4502 return EXACT_MATCH_BADNESS;
4503 default:
4504 return INCOMPATIBLE_TYPE_BADNESS;
4505 }
4506}
4507
595f96a9
SM
4508/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4509
4510static struct rank
4511rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4512{
4513 struct rank rank = {0, 0};
4514
78134374 4515 switch (arg->code ())
595f96a9
SM
4516 {
4517 case TYPE_CODE_STRUCT:
4518 /* Check for derivation */
4519 rank.subrank = distance_to_ancestor (parm, arg, 0);
4520 if (rank.subrank >= 0)
4521 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4522 /* fall through */
4523 default:
4524 return INCOMPATIBLE_TYPE_BADNESS;
4525 }
4526}
4527
f09ce22d
SM
4528/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4529
4530static struct rank
4531rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4532{
78134374 4533 switch (arg->code ())
f09ce22d
SM
4534 {
4535 /* Not in C++ */
4536 case TYPE_CODE_SET:
940da03e
SM
4537 return rank_one_type (parm->field (0).type (),
4538 arg->field (0).type (), NULL);
f09ce22d
SM
4539 default:
4540 return INCOMPATIBLE_TYPE_BADNESS;
4541 }
4542}
4543
c906108c
SS
4544/* Compare one type (PARM) for compatibility with another (ARG).
4545 * PARM is intended to be the parameter type of a function; and
4546 * ARG is the supplied argument's type. This function tests if
4547 * the latter can be converted to the former.
da096638 4548 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4549 *
4550 * Return 0 if they are identical types;
4551 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4552 * PARM is to ARG. The higher the return value, the worse the match.
4553 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4554
6403aeea 4555struct rank
da096638 4556rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4557{
a9d5ef47 4558 struct rank rank = {0,0};
7062b0a0 4559
c906108c 4560 /* Resolve typedefs */
78134374 4561 if (parm->code () == TYPE_CODE_TYPEDEF)
c906108c 4562 parm = check_typedef (parm);
78134374 4563 if (arg->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
4564 arg = check_typedef (arg);
4565
e15c3eb4 4566 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4567 {
e15c3eb4
KS
4568 if (VALUE_LVAL (value) == not_lval)
4569 {
4570 /* Rvalues should preferably bind to rvalue references or const
4571 lvalue references. */
78134374 4572 if (parm->code () == TYPE_CODE_RVALUE_REF)
e15c3eb4
KS
4573 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4574 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4575 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4576 else
4577 return INCOMPATIBLE_TYPE_BADNESS;
4578 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4579 }
4580 else
4581 {
330f1d38 4582 /* It's illegal to pass an lvalue as an rvalue. */
78134374 4583 if (parm->code () == TYPE_CODE_RVALUE_REF)
330f1d38 4584 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4585 }
15c0a2a9
AV
4586 }
4587
4588 if (types_equal (parm, arg))
15c0a2a9 4589 {
e15c3eb4
KS
4590 struct type *t1 = parm;
4591 struct type *t2 = arg;
15c0a2a9 4592
e15c3eb4 4593 /* For pointers and references, compare target type. */
78134374 4594 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
e15c3eb4
KS
4595 {
4596 t1 = TYPE_TARGET_TYPE (parm);
4597 t2 = TYPE_TARGET_TYPE (arg);
4598 }
15c0a2a9 4599
e15c3eb4
KS
4600 /* Make sure they are CV equal, too. */
4601 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4602 rank.subrank |= CV_CONVERSION_CONST;
4603 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4604 rank.subrank |= CV_CONVERSION_VOLATILE;
4605 if (rank.subrank != 0)
4606 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4607 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4608 }
4609
db577aea 4610 /* See through references, since we can almost make non-references
7ba81444 4611 references. */
aa006118
AV
4612
4613 if (TYPE_IS_REFERENCE (arg))
da096638 4614 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4615 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4616 if (TYPE_IS_REFERENCE (parm))
da096638 4617 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4618 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4619 if (overload_debug)
7ba81444 4620 /* Debugging only. */
78134374 4621 fprintf_filtered (gdb_stderr,
7ba81444 4622 "------ Arg is %s [%d], parm is %s [%d]\n",
7d93a1e0
SM
4623 arg->name (), arg->code (),
4624 parm->name (), parm->code ());
c906108c 4625
0963b4bd 4626 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c 4627
78134374 4628 switch (parm->code ())
c906108c 4629 {
c5aa993b 4630 case TYPE_CODE_PTR:
9293fc63 4631 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4632 case TYPE_CODE_ARRAY:
b9f4512f 4633 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4634 case TYPE_CODE_FUNC:
f1f832d6 4635 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4636 case TYPE_CODE_INT:
34910087 4637 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4638 case TYPE_CODE_ENUM:
793cd1d2 4639 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4640 case TYPE_CODE_CHAR:
41ea4728 4641 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4642 case TYPE_CODE_RANGE:
0dd322dc 4643 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4644 case TYPE_CODE_BOOL:
2c509035 4645 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4646 case TYPE_CODE_FLT:
7f17b20d 4647 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4648 case TYPE_CODE_COMPLEX:
2598a94b 4649 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4650 case TYPE_CODE_STRUCT:
595f96a9 4651 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4652 case TYPE_CODE_SET:
f09ce22d 4653 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4654 default:
4655 return INCOMPATIBLE_TYPE_BADNESS;
78134374 4656 } /* switch (arg->code ()) */
c906108c
SS
4657}
4658
0963b4bd 4659/* End of functions for overload resolution. */
5212577a
DE
4660\f
4661/* Routines to pretty-print types. */
c906108c 4662
c906108c 4663static void
fba45db2 4664print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4665{
4666 int bitno;
4667
4668 for (bitno = 0; bitno < nbits; bitno++)
4669 {
4670 if ((bitno % 8) == 0)
4671 {
4672 puts_filtered (" ");
4673 }
4674 if (B_TST (bits, bitno))
a3f17187 4675 printf_filtered (("1"));
c906108c 4676 else
a3f17187 4677 printf_filtered (("0"));
c906108c
SS
4678 }
4679}
4680
ad2f7632 4681/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4682 include it since we may get into a infinitely recursive
4683 situation. */
c906108c
SS
4684
4685static void
4c9e8482 4686print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4687{
4688 if (args != NULL)
4689 {
ad2f7632
DJ
4690 int i;
4691
4692 for (i = 0; i < nargs; i++)
4c9e8482
DE
4693 {
4694 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4695 args[i].name != NULL ? args[i].name : "<NULL>");
5d14b6e5 4696 recursive_dump_type (args[i].type (), spaces + 2);
4c9e8482 4697 }
c906108c
SS
4698 }
4699}
4700
d6a843b5
JK
4701int
4702field_is_static (struct field *f)
4703{
4704 /* "static" fields are the fields whose location is not relative
4705 to the address of the enclosing struct. It would be nice to
4706 have a dedicated flag that would be set for static fields when
4707 the type is being created. But in practice, checking the field
254e6b9e 4708 loc_kind should give us an accurate answer. */
d6a843b5
JK
4709 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4710 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4711}
4712
c906108c 4713static void
fba45db2 4714dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4715{
4716 int method_idx;
4717 int overload_idx;
4718 struct fn_field *f;
4719
4720 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4721 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4722 printf_filtered ("\n");
4723 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4724 {
4725 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4726 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4727 method_idx,
4728 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4729 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4730 gdb_stdout);
a3f17187 4731 printf_filtered (_(") length %d\n"),
c906108c
SS
4732 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4733 for (overload_idx = 0;
4734 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4735 overload_idx++)
4736 {
4737 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4738 overload_idx,
4739 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4740 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4741 gdb_stdout);
c906108c
SS
4742 printf_filtered (")\n");
4743 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4744 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4745 gdb_stdout);
c906108c
SS
4746 printf_filtered ("\n");
4747
4748 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4749 spaces + 8 + 2);
4750
4751 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4752 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4753 gdb_stdout);
c906108c 4754 printf_filtered ("\n");
4c9e8482 4755 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
1f704f76 4756 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4c9e8482 4757 spaces + 8 + 2);
c906108c 4758 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4759 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4760 gdb_stdout);
c906108c
SS
4761 printf_filtered ("\n");
4762
4763 printfi_filtered (spaces + 8, "is_const %d\n",
4764 TYPE_FN_FIELD_CONST (f, overload_idx));
4765 printfi_filtered (spaces + 8, "is_volatile %d\n",
4766 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4767 printfi_filtered (spaces + 8, "is_private %d\n",
4768 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4769 printfi_filtered (spaces + 8, "is_protected %d\n",
4770 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4771 printfi_filtered (spaces + 8, "is_stub %d\n",
4772 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4773 printfi_filtered (spaces + 8, "defaulted %d\n",
4774 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4775 printfi_filtered (spaces + 8, "is_deleted %d\n",
4776 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4777 printfi_filtered (spaces + 8, "voffset %u\n",
4778 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4779 }
4780 }
4781}
4782
4783static void
fba45db2 4784print_cplus_stuff (struct type *type, int spaces)
c906108c 4785{
ae6ae975
DE
4786 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4787 printfi_filtered (spaces, "vptr_basetype ");
4788 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4789 puts_filtered ("\n");
4790 if (TYPE_VPTR_BASETYPE (type) != NULL)
4791 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4792
c906108c
SS
4793 printfi_filtered (spaces, "n_baseclasses %d\n",
4794 TYPE_N_BASECLASSES (type));
4795 printfi_filtered (spaces, "nfn_fields %d\n",
4796 TYPE_NFN_FIELDS (type));
c906108c
SS
4797 if (TYPE_N_BASECLASSES (type) > 0)
4798 {
4799 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4800 TYPE_N_BASECLASSES (type));
7ba81444
MS
4801 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4802 gdb_stdout);
c906108c
SS
4803 printf_filtered (")");
4804
4805 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4806 TYPE_N_BASECLASSES (type));
4807 puts_filtered ("\n");
4808 }
1f704f76 4809 if (type->num_fields () > 0)
c906108c
SS
4810 {
4811 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4812 {
7ba81444
MS
4813 printfi_filtered (spaces,
4814 "private_field_bits (%d bits at *",
1f704f76 4815 type->num_fields ());
7ba81444
MS
4816 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4817 gdb_stdout);
c906108c
SS
4818 printf_filtered (")");
4819 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
1f704f76 4820 type->num_fields ());
c906108c
SS
4821 puts_filtered ("\n");
4822 }
4823 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4824 {
7ba81444
MS
4825 printfi_filtered (spaces,
4826 "protected_field_bits (%d bits at *",
1f704f76 4827 type->num_fields ());
7ba81444
MS
4828 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4829 gdb_stdout);
c906108c
SS
4830 printf_filtered (")");
4831 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
1f704f76 4832 type->num_fields ());
c906108c
SS
4833 puts_filtered ("\n");
4834 }
4835 }
4836 if (TYPE_NFN_FIELDS (type) > 0)
4837 {
4838 dump_fn_fieldlists (type, spaces);
4839 }
e35000a7
TBA
4840
4841 printfi_filtered (spaces, "calling_convention %d\n",
4842 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4843}
4844
b4ba55a1
JB
4845/* Print the contents of the TYPE's type_specific union, assuming that
4846 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4847
4848static void
4849print_gnat_stuff (struct type *type, int spaces)
4850{
4851 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4852
8cd00c59
PMR
4853 if (descriptive_type == NULL)
4854 printfi_filtered (spaces + 2, "no descriptive type\n");
4855 else
4856 {
4857 printfi_filtered (spaces + 2, "descriptive type\n");
4858 recursive_dump_type (descriptive_type, spaces + 4);
4859 }
b4ba55a1
JB
4860}
4861
c906108c
SS
4862static struct obstack dont_print_type_obstack;
4863
53d5a2a5
TV
4864/* Print the dynamic_prop PROP. */
4865
4866static void
4867dump_dynamic_prop (dynamic_prop const& prop)
4868{
4869 switch (prop.kind ())
4870 {
4871 case PROP_CONST:
4872 printf_filtered ("%s", plongest (prop.const_val ()));
4873 break;
4874 case PROP_UNDEFINED:
4875 printf_filtered ("(undefined)");
4876 break;
4877 case PROP_LOCEXPR:
4878 case PROP_LOCLIST:
4879 printf_filtered ("(dynamic)");
4880 break;
4881 default:
4882 gdb_assert_not_reached ("unhandled prop kind");
4883 break;
4884 }
4885}
4886
c906108c 4887void
fba45db2 4888recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4889{
4890 int idx;
4891
4892 if (spaces == 0)
4893 obstack_begin (&dont_print_type_obstack, 0);
4894
1f704f76 4895 if (type->num_fields () > 0
b4ba55a1 4896 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4897 {
4898 struct type **first_dont_print
7ba81444 4899 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4900
7ba81444
MS
4901 int i = (struct type **)
4902 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4903
4904 while (--i >= 0)
4905 {
4906 if (type == first_dont_print[i])
4907 {
4908 printfi_filtered (spaces, "type node ");
d4f3574e 4909 gdb_print_host_address (type, gdb_stdout);
a3f17187 4910 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4911 return;
4912 }
4913 }
4914
4915 obstack_ptr_grow (&dont_print_type_obstack, type);
4916 }
4917
4918 printfi_filtered (spaces, "type node ");
d4f3574e 4919 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4920 printf_filtered ("\n");
4921 printfi_filtered (spaces, "name '%s' (",
7d93a1e0
SM
4922 type->name () ? type->name () : "<NULL>");
4923 gdb_print_host_address (type->name (), gdb_stdout);
c906108c 4924 printf_filtered (")\n");
78134374
SM
4925 printfi_filtered (spaces, "code 0x%x ", type->code ());
4926 switch (type->code ())
c906108c 4927 {
c5aa993b
JM
4928 case TYPE_CODE_UNDEF:
4929 printf_filtered ("(TYPE_CODE_UNDEF)");
4930 break;
4931 case TYPE_CODE_PTR:
4932 printf_filtered ("(TYPE_CODE_PTR)");
4933 break;
4934 case TYPE_CODE_ARRAY:
4935 printf_filtered ("(TYPE_CODE_ARRAY)");
4936 break;
4937 case TYPE_CODE_STRUCT:
4938 printf_filtered ("(TYPE_CODE_STRUCT)");
4939 break;
4940 case TYPE_CODE_UNION:
4941 printf_filtered ("(TYPE_CODE_UNION)");
4942 break;
4943 case TYPE_CODE_ENUM:
4944 printf_filtered ("(TYPE_CODE_ENUM)");
4945 break;
4f2aea11
MK
4946 case TYPE_CODE_FLAGS:
4947 printf_filtered ("(TYPE_CODE_FLAGS)");
4948 break;
c5aa993b
JM
4949 case TYPE_CODE_FUNC:
4950 printf_filtered ("(TYPE_CODE_FUNC)");
4951 break;
4952 case TYPE_CODE_INT:
4953 printf_filtered ("(TYPE_CODE_INT)");
4954 break;
4955 case TYPE_CODE_FLT:
4956 printf_filtered ("(TYPE_CODE_FLT)");
4957 break;
4958 case TYPE_CODE_VOID:
4959 printf_filtered ("(TYPE_CODE_VOID)");
4960 break;
4961 case TYPE_CODE_SET:
4962 printf_filtered ("(TYPE_CODE_SET)");
4963 break;
4964 case TYPE_CODE_RANGE:
4965 printf_filtered ("(TYPE_CODE_RANGE)");
4966 break;
4967 case TYPE_CODE_STRING:
4968 printf_filtered ("(TYPE_CODE_STRING)");
4969 break;
4970 case TYPE_CODE_ERROR:
4971 printf_filtered ("(TYPE_CODE_ERROR)");
4972 break;
0d5de010
DJ
4973 case TYPE_CODE_MEMBERPTR:
4974 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4975 break;
4976 case TYPE_CODE_METHODPTR:
4977 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4978 break;
4979 case TYPE_CODE_METHOD:
4980 printf_filtered ("(TYPE_CODE_METHOD)");
4981 break;
4982 case TYPE_CODE_REF:
4983 printf_filtered ("(TYPE_CODE_REF)");
4984 break;
4985 case TYPE_CODE_CHAR:
4986 printf_filtered ("(TYPE_CODE_CHAR)");
4987 break;
4988 case TYPE_CODE_BOOL:
4989 printf_filtered ("(TYPE_CODE_BOOL)");
4990 break;
e9e79dd9
FF
4991 case TYPE_CODE_COMPLEX:
4992 printf_filtered ("(TYPE_CODE_COMPLEX)");
4993 break;
c5aa993b
JM
4994 case TYPE_CODE_TYPEDEF:
4995 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4996 break;
5c4e30ca
DC
4997 case TYPE_CODE_NAMESPACE:
4998 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4999 break;
c5aa993b
JM
5000 default:
5001 printf_filtered ("(UNKNOWN TYPE CODE)");
5002 break;
c906108c
SS
5003 }
5004 puts_filtered ("\n");
cc1defb1 5005 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
5006 if (TYPE_OBJFILE_OWNED (type))
5007 {
5008 printfi_filtered (spaces, "objfile ");
5009 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5010 }
5011 else
5012 {
5013 printfi_filtered (spaces, "gdbarch ");
5014 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5015 }
c906108c
SS
5016 printf_filtered ("\n");
5017 printfi_filtered (spaces, "target_type ");
d4f3574e 5018 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
5019 printf_filtered ("\n");
5020 if (TYPE_TARGET_TYPE (type) != NULL)
5021 {
5022 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5023 }
5024 printfi_filtered (spaces, "pointer_type ");
d4f3574e 5025 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
5026 printf_filtered ("\n");
5027 printfi_filtered (spaces, "reference_type ");
d4f3574e 5028 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 5029 printf_filtered ("\n");
2fdde8f8
DJ
5030 printfi_filtered (spaces, "type_chain ");
5031 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 5032 printf_filtered ("\n");
7ba81444 5033 printfi_filtered (spaces, "instance_flags 0x%x",
314ad88d 5034 (unsigned) type->instance_flags ());
2fdde8f8
DJ
5035 if (TYPE_CONST (type))
5036 {
a9ff5f12 5037 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
5038 }
5039 if (TYPE_VOLATILE (type))
5040 {
a9ff5f12 5041 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
5042 }
5043 if (TYPE_CODE_SPACE (type))
5044 {
a9ff5f12 5045 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
5046 }
5047 if (TYPE_DATA_SPACE (type))
5048 {
a9ff5f12 5049 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 5050 }
8b2dbe47
KB
5051 if (TYPE_ADDRESS_CLASS_1 (type))
5052 {
a9ff5f12 5053 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
5054 }
5055 if (TYPE_ADDRESS_CLASS_2 (type))
5056 {
a9ff5f12 5057 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 5058 }
06d66ee9
TT
5059 if (TYPE_RESTRICT (type))
5060 {
a9ff5f12 5061 puts_filtered (" TYPE_RESTRICT");
06d66ee9 5062 }
a2c2acaf
MW
5063 if (TYPE_ATOMIC (type))
5064 {
a9ff5f12 5065 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 5066 }
2fdde8f8 5067 puts_filtered ("\n");
876cecd0
TT
5068
5069 printfi_filtered (spaces, "flags");
c6d940a9 5070 if (type->is_unsigned ())
c906108c 5071 {
a9ff5f12 5072 puts_filtered (" TYPE_UNSIGNED");
c906108c 5073 }
20ce4123 5074 if (type->has_no_signedness ())
762a036f 5075 {
a9ff5f12 5076 puts_filtered (" TYPE_NOSIGN");
762a036f 5077 }
04f5bab2 5078 if (type->endianity_is_not_default ())
34877895
PJ
5079 {
5080 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5081 }
e46d3488 5082 if (type->is_stub ())
c906108c 5083 {
a9ff5f12 5084 puts_filtered (" TYPE_STUB");
c906108c 5085 }
d2183968 5086 if (type->target_is_stub ())
762a036f 5087 {
a9ff5f12 5088 puts_filtered (" TYPE_TARGET_STUB");
762a036f 5089 }
7f9f399b 5090 if (type->is_prototyped ())
762a036f 5091 {
a9ff5f12 5092 puts_filtered (" TYPE_PROTOTYPED");
762a036f 5093 }
a409645d 5094 if (type->has_varargs ())
762a036f 5095 {
a9ff5f12 5096 puts_filtered (" TYPE_VARARGS");
762a036f 5097 }
f5f8a009
EZ
5098 /* This is used for things like AltiVec registers on ppc. Gcc emits
5099 an attribute for the array type, which tells whether or not we
5100 have a vector, instead of a regular array. */
bd63c870 5101 if (type->is_vector ())
f5f8a009 5102 {
a9ff5f12 5103 puts_filtered (" TYPE_VECTOR");
f5f8a009 5104 }
22c4c60c 5105 if (type->is_fixed_instance ())
876cecd0
TT
5106 {
5107 puts_filtered (" TYPE_FIXED_INSTANCE");
5108 }
3f46044c 5109 if (type->stub_is_supported ())
876cecd0
TT
5110 {
5111 puts_filtered (" TYPE_STUB_SUPPORTED");
5112 }
5113 if (TYPE_NOTTEXT (type))
5114 {
5115 puts_filtered (" TYPE_NOTTEXT");
5116 }
c906108c 5117 puts_filtered ("\n");
1f704f76 5118 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
80fc5e77 5119 gdb_print_host_address (type->fields (), gdb_stdout);
c906108c 5120 puts_filtered ("\n");
1f704f76 5121 for (idx = 0; idx < type->num_fields (); idx++)
c906108c 5122 {
78134374 5123 if (type->code () == TYPE_CODE_ENUM)
14e75d8e
JK
5124 printfi_filtered (spaces + 2,
5125 "[%d] enumval %s type ",
5126 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5127 else
5128 printfi_filtered (spaces + 2,
6b850546
DT
5129 "[%d] bitpos %s bitsize %d type ",
5130 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 5131 TYPE_FIELD_BITSIZE (type, idx));
940da03e 5132 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
c906108c
SS
5133 printf_filtered (" name '%s' (",
5134 TYPE_FIELD_NAME (type, idx) != NULL
5135 ? TYPE_FIELD_NAME (type, idx)
5136 : "<NULL>");
d4f3574e 5137 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c 5138 printf_filtered (")\n");
940da03e 5139 if (type->field (idx).type () != NULL)
c906108c 5140 {
940da03e 5141 recursive_dump_type (type->field (idx).type (), spaces + 4);
c906108c
SS
5142 }
5143 }
78134374 5144 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2 5145 {
53d5a2a5
TV
5146 printfi_filtered (spaces, "low ");
5147 dump_dynamic_prop (type->bounds ()->low);
5148 printf_filtered (" high ");
5149 dump_dynamic_prop (type->bounds ()->high);
5150 printf_filtered ("\n");
43bbcdc2 5151 }
c906108c 5152
b4ba55a1
JB
5153 switch (TYPE_SPECIFIC_FIELD (type))
5154 {
5155 case TYPE_SPECIFIC_CPLUS_STUFF:
5156 printfi_filtered (spaces, "cplus_stuff ");
5157 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5158 gdb_stdout);
5159 puts_filtered ("\n");
5160 print_cplus_stuff (type, spaces);
5161 break;
8da61cc4 5162
b4ba55a1
JB
5163 case TYPE_SPECIFIC_GNAT_STUFF:
5164 printfi_filtered (spaces, "gnat_stuff ");
5165 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5166 puts_filtered ("\n");
5167 print_gnat_stuff (type, spaces);
5168 break;
701c159d 5169
b4ba55a1
JB
5170 case TYPE_SPECIFIC_FLOATFORMAT:
5171 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
5172 if (TYPE_FLOATFORMAT (type) == NULL
5173 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
5174 puts_filtered ("(null)");
5175 else
0db7851f 5176 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
5177 puts_filtered ("\n");
5178 break;
c906108c 5179
b6cdc2c1 5180 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
5181 printfi_filtered (spaces, "calling_convention %d\n",
5182 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 5183 /* tail_call_list is not printed. */
b4ba55a1 5184 break;
09e2d7c7
DE
5185
5186 case TYPE_SPECIFIC_SELF_TYPE:
5187 printfi_filtered (spaces, "self_type ");
5188 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5189 puts_filtered ("\n");
5190 break;
c906108c 5191 }
b4ba55a1 5192
c906108c
SS
5193 if (spaces == 0)
5194 obstack_free (&dont_print_type_obstack, NULL);
5195}
5212577a 5196\f
ae5a43e0
DJ
5197/* Trivial helpers for the libiberty hash table, for mapping one
5198 type to another. */
5199
fd90ace4 5200struct type_pair : public allocate_on_obstack
ae5a43e0 5201{
fd90ace4
YQ
5202 type_pair (struct type *old_, struct type *newobj_)
5203 : old (old_), newobj (newobj_)
5204 {}
5205
5206 struct type * const old, * const newobj;
ae5a43e0
DJ
5207};
5208
5209static hashval_t
5210type_pair_hash (const void *item)
5211{
9a3c8263 5212 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 5213
ae5a43e0
DJ
5214 return htab_hash_pointer (pair->old);
5215}
5216
5217static int
5218type_pair_eq (const void *item_lhs, const void *item_rhs)
5219{
9a3c8263
SM
5220 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5221 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 5222
ae5a43e0
DJ
5223 return lhs->old == rhs->old;
5224}
5225
5226/* Allocate the hash table used by copy_type_recursive to walk
5227 types without duplicates. We use OBJFILE's obstack, because
5228 OBJFILE is about to be deleted. */
5229
6108fd18 5230htab_up
ae5a43e0
DJ
5231create_copied_types_hash (struct objfile *objfile)
5232{
6108fd18
TT
5233 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5234 NULL, &objfile->objfile_obstack,
5235 hashtab_obstack_allocate,
5236 dummy_obstack_deallocate));
ae5a43e0
DJ
5237}
5238
d9823cbb
KB
5239/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5240
5241static struct dynamic_prop_list *
5242copy_dynamic_prop_list (struct obstack *objfile_obstack,
5243 struct dynamic_prop_list *list)
5244{
5245 struct dynamic_prop_list *copy = list;
5246 struct dynamic_prop_list **node_ptr = &copy;
5247
5248 while (*node_ptr != NULL)
5249 {
5250 struct dynamic_prop_list *node_copy;
5251
224c3ddb
SM
5252 node_copy = ((struct dynamic_prop_list *)
5253 obstack_copy (objfile_obstack, *node_ptr,
5254 sizeof (struct dynamic_prop_list)));
283a9958 5255 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
5256 *node_ptr = node_copy;
5257
5258 node_ptr = &node_copy->next;
5259 }
5260
5261 return copy;
5262}
5263
7ba81444 5264/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5265 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5266 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5267 it is not associated with OBJFILE. */
ae5a43e0
DJ
5268
5269struct type *
7ba81444
MS
5270copy_type_recursive (struct objfile *objfile,
5271 struct type *type,
ae5a43e0
DJ
5272 htab_t copied_types)
5273{
ae5a43e0
DJ
5274 void **slot;
5275 struct type *new_type;
5276
e9bb382b 5277 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5278 return type;
5279
7ba81444
MS
5280 /* This type shouldn't be pointing to any types in other objfiles;
5281 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5282 gdb_assert (TYPE_OBJFILE (type) == objfile);
5283
fd90ace4
YQ
5284 struct type_pair pair (type, nullptr);
5285
ae5a43e0
DJ
5286 slot = htab_find_slot (copied_types, &pair, INSERT);
5287 if (*slot != NULL)
fe978cb0 5288 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5289
e9bb382b 5290 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5291
5292 /* We must add the new type to the hash table immediately, in case
5293 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5294 struct type_pair *stored
5295 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5296
ae5a43e0
DJ
5297 *slot = stored;
5298
876cecd0
TT
5299 /* Copy the common fields of types. For the main type, we simply
5300 copy the entire thing and then update specific fields as needed. */
5301 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5302 TYPE_OBJFILE_OWNED (new_type) = 0;
5303 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5304
7d93a1e0
SM
5305 if (type->name ())
5306 new_type->set_name (xstrdup (type->name ()));
ae5a43e0 5307
314ad88d 5308 new_type->set_instance_flags (type->instance_flags ());
ae5a43e0
DJ
5309 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5310
5311 /* Copy the fields. */
1f704f76 5312 if (type->num_fields ())
ae5a43e0
DJ
5313 {
5314 int i, nfields;
5315
1f704f76 5316 nfields = type->num_fields ();
3cabb6b0
SM
5317 new_type->set_fields
5318 ((struct field *)
5319 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5320
ae5a43e0
DJ
5321 for (i = 0; i < nfields; i++)
5322 {
7ba81444
MS
5323 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5324 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0 5325 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
940da03e 5326 if (type->field (i).type ())
5d14b6e5 5327 new_type->field (i).set_type
940da03e 5328 (copy_type_recursive (objfile, type->field (i).type (),
5d14b6e5 5329 copied_types));
ae5a43e0 5330 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5331 TYPE_FIELD_NAME (new_type, i) =
5332 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5333 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5334 {
d6a843b5 5335 case FIELD_LOC_KIND_BITPOS:
ceacbf6e 5336 SET_FIELD_BITPOS (new_type->field (i),
d6a843b5
JK
5337 TYPE_FIELD_BITPOS (type, i));
5338 break;
14e75d8e 5339 case FIELD_LOC_KIND_ENUMVAL:
ceacbf6e 5340 SET_FIELD_ENUMVAL (new_type->field (i),
14e75d8e
JK
5341 TYPE_FIELD_ENUMVAL (type, i));
5342 break;
d6a843b5 5343 case FIELD_LOC_KIND_PHYSADDR:
ceacbf6e 5344 SET_FIELD_PHYSADDR (new_type->field (i),
d6a843b5
JK
5345 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5346 break;
5347 case FIELD_LOC_KIND_PHYSNAME:
ceacbf6e 5348 SET_FIELD_PHYSNAME (new_type->field (i),
d6a843b5
JK
5349 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5350 i)));
5351 break;
5352 default:
5353 internal_error (__FILE__, __LINE__,
5354 _("Unexpected type field location kind: %d"),
5355 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5356 }
5357 }
5358 }
5359
0963b4bd 5360 /* For range types, copy the bounds information. */
78134374 5361 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2 5362 {
c4dfcb36
SM
5363 range_bounds *bounds
5364 = ((struct range_bounds *) TYPE_ALLOC
5365 (new_type, sizeof (struct range_bounds)));
5366
5367 *bounds = *type->bounds ();
5368 new_type->set_bounds (bounds);
43bbcdc2
PH
5369 }
5370
98d48915
SM
5371 if (type->main_type->dyn_prop_list != NULL)
5372 new_type->main_type->dyn_prop_list
d9823cbb 5373 = copy_dynamic_prop_list (&objfile->objfile_obstack,
98d48915 5374 type->main_type->dyn_prop_list);
d9823cbb 5375
3cdcd0ce 5376
ae5a43e0
DJ
5377 /* Copy pointers to other types. */
5378 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5379 TYPE_TARGET_TYPE (new_type) =
5380 copy_type_recursive (objfile,
5381 TYPE_TARGET_TYPE (type),
5382 copied_types);
f6b3afbf 5383
ae5a43e0
DJ
5384 /* Maybe copy the type_specific bits.
5385
5386 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5387 base classes and methods. There's no fundamental reason why we
5388 can't, but at the moment it is not needed. */
5389
f6b3afbf
DE
5390 switch (TYPE_SPECIFIC_FIELD (type))
5391 {
5392 case TYPE_SPECIFIC_NONE:
5393 break;
5394 case TYPE_SPECIFIC_FUNC:
5395 INIT_FUNC_SPECIFIC (new_type);
5396 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5397 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5398 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5399 break;
5400 case TYPE_SPECIFIC_FLOATFORMAT:
5401 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5402 break;
5403 case TYPE_SPECIFIC_CPLUS_STUFF:
5404 INIT_CPLUS_SPECIFIC (new_type);
5405 break;
5406 case TYPE_SPECIFIC_GNAT_STUFF:
5407 INIT_GNAT_SPECIFIC (new_type);
5408 break;
09e2d7c7
DE
5409 case TYPE_SPECIFIC_SELF_TYPE:
5410 set_type_self_type (new_type,
5411 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5412 copied_types));
5413 break;
f6b3afbf
DE
5414 default:
5415 gdb_assert_not_reached ("bad type_specific_kind");
5416 }
ae5a43e0
DJ
5417
5418 return new_type;
5419}
5420
4af88198
JB
5421/* Make a copy of the given TYPE, except that the pointer & reference
5422 types are not preserved.
5423
5424 This function assumes that the given type has an associated objfile.
5425 This objfile is used to allocate the new type. */
5426
5427struct type *
5428copy_type (const struct type *type)
5429{
5430 struct type *new_type;
5431
e9bb382b 5432 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5433
e9bb382b 5434 new_type = alloc_type_copy (type);
314ad88d 5435 new_type->set_instance_flags (type->instance_flags ());
4af88198
JB
5436 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5437 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5438 sizeof (struct main_type));
98d48915
SM
5439 if (type->main_type->dyn_prop_list != NULL)
5440 new_type->main_type->dyn_prop_list
d9823cbb 5441 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
98d48915 5442 type->main_type->dyn_prop_list);
4af88198
JB
5443
5444 return new_type;
5445}
5212577a 5446\f
e9bb382b
UW
5447/* Helper functions to initialize architecture-specific types. */
5448
5449/* Allocate a type structure associated with GDBARCH and set its
5450 CODE, LENGTH, and NAME fields. */
5212577a 5451
e9bb382b
UW
5452struct type *
5453arch_type (struct gdbarch *gdbarch,
77b7c781 5454 enum type_code code, int bit, const char *name)
e9bb382b
UW
5455{
5456 struct type *type;
5457
5458 type = alloc_type_arch (gdbarch);
ae438bc5 5459 set_type_code (type, code);
77b7c781
UW
5460 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5461 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5462
5463 if (name)
d0e39ea2 5464 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
e9bb382b
UW
5465
5466 return type;
5467}
5468
5469/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5470 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5471 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5472
e9bb382b
UW
5473struct type *
5474arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5475 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5476{
5477 struct type *t;
5478
77b7c781 5479 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b 5480 if (unsigned_p)
653223d3 5481 t->set_is_unsigned (true);
e9bb382b
UW
5482
5483 return t;
5484}
5485
5486/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5487 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5488 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5489
e9bb382b
UW
5490struct type *
5491arch_character_type (struct gdbarch *gdbarch,
695bfa52 5492 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5493{
5494 struct type *t;
5495
77b7c781 5496 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b 5497 if (unsigned_p)
653223d3 5498 t->set_is_unsigned (true);
e9bb382b
UW
5499
5500 return t;
5501}
5502
5503/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5504 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5505 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5506
e9bb382b
UW
5507struct type *
5508arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5509 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5510{
5511 struct type *t;
5512
77b7c781 5513 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b 5514 if (unsigned_p)
653223d3 5515 t->set_is_unsigned (true);
e9bb382b
UW
5516
5517 return t;
5518}
5519
5520/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5521 BIT is the type size in bits; if BIT equals -1, the size is
5522 determined by the floatformat. NAME is the type name. Set the
5523 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5524
27067745 5525struct type *
e9bb382b 5526arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5527 int bit, const char *name,
5528 const struct floatformat **floatformats)
8da61cc4 5529{
0db7851f 5530 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5531 struct type *t;
5532
0db7851f 5533 bit = verify_floatformat (bit, fmt);
77b7c781 5534 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5535 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5536
8da61cc4
DJ
5537 return t;
5538}
5539
88dfca6c
UW
5540/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5541 BIT is the type size in bits. NAME is the type name. */
5542
5543struct type *
5544arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5545{
5546 struct type *t;
5547
77b7c781 5548 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5549 return t;
5550}
5551
88dfca6c
UW
5552/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5553 BIT is the pointer type size in bits. NAME is the type name.
5554 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5555 TYPE_UNSIGNED flag. */
5556
5557struct type *
5558arch_pointer_type (struct gdbarch *gdbarch,
5559 int bit, const char *name, struct type *target_type)
5560{
5561 struct type *t;
5562
77b7c781 5563 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c 5564 TYPE_TARGET_TYPE (t) = target_type;
653223d3 5565 t->set_is_unsigned (true);
88dfca6c
UW
5566 return t;
5567}
5568
e9bb382b 5569/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5570 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5571
e9bb382b 5572struct type *
77b7c781 5573arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5574{
e9bb382b
UW
5575 struct type *type;
5576
77b7c781 5577 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
653223d3 5578 type->set_is_unsigned (true);
5e33d5f4 5579 type->set_num_fields (0);
81516450 5580 /* Pre-allocate enough space assuming every field is one bit. */
3cabb6b0
SM
5581 type->set_fields
5582 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
e9bb382b
UW
5583
5584 return type;
5585}
5586
5587/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5588 position BITPOS is called NAME. Pass NAME as "" for fields that
5589 should not be printed. */
5590
5591void
5592append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5593 struct type *field_type, const char *name)
81516450
DE
5594{
5595 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1f704f76 5596 int field_nr = type->num_fields ();
81516450 5597
78134374 5598 gdb_assert (type->code () == TYPE_CODE_FLAGS);
1f704f76 5599 gdb_assert (type->num_fields () + 1 <= type_bitsize);
81516450
DE
5600 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5601 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5602 gdb_assert (name != NULL);
5603
5604 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5d14b6e5 5605 type->field (field_nr).set_type (field_type);
ceacbf6e 5606 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
81516450 5607 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5e33d5f4 5608 type->set_num_fields (type->num_fields () + 1);
81516450
DE
5609}
5610
5611/* Special version of append_flags_type_field to add a flag field.
5612 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5613 position BITPOS is called NAME. */
5212577a 5614
e9bb382b 5615void
695bfa52 5616append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5617{
81516450 5618 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5619
81516450
DE
5620 append_flags_type_field (type, bitpos, 1,
5621 builtin_type (gdbarch)->builtin_bool,
5622 name);
e9bb382b
UW
5623}
5624
5625/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5626 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5627
e9bb382b 5628struct type *
695bfa52
TT
5629arch_composite_type (struct gdbarch *gdbarch, const char *name,
5630 enum type_code code)
e9bb382b
UW
5631{
5632 struct type *t;
d8734c88 5633
e9bb382b
UW
5634 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5635 t = arch_type (gdbarch, code, 0, NULL);
d0e39ea2 5636 t->set_name (name);
e9bb382b
UW
5637 INIT_CPLUS_SPECIFIC (t);
5638 return t;
5639}
5640
5641/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5642 Do not set the field's position or adjust the type's length;
5643 the caller should do so. Return the new field. */
5212577a 5644
f5dff777 5645struct field *
695bfa52 5646append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5647 struct type *field)
e9bb382b
UW
5648{
5649 struct field *f;
d8734c88 5650
1f704f76 5651 t->set_num_fields (t->num_fields () + 1);
80fc5e77 5652 t->set_fields (XRESIZEVEC (struct field, t->fields (),
3cabb6b0 5653 t->num_fields ()));
80fc5e77 5654 f = &t->field (t->num_fields () - 1);
e9bb382b 5655 memset (f, 0, sizeof f[0]);
5d14b6e5 5656 f[0].set_type (field);
e9bb382b 5657 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5658 return f;
5659}
5660
5661/* Add new field with name NAME and type FIELD to composite type T.
5662 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5663
f5dff777 5664void
695bfa52 5665append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5666 struct type *field, int alignment)
5667{
5668 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5669
78134374 5670 if (t->code () == TYPE_CODE_UNION)
e9bb382b
UW
5671 {
5672 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5673 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5674 }
78134374 5675 else if (t->code () == TYPE_CODE_STRUCT)
e9bb382b
UW
5676 {
5677 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1f704f76 5678 if (t->num_fields () > 1)
e9bb382b 5679 {
f41f5e61
PA
5680 SET_FIELD_BITPOS (f[0],
5681 (FIELD_BITPOS (f[-1])
b6cdac4b 5682 + (TYPE_LENGTH (f[-1].type ())
f41f5e61 5683 * TARGET_CHAR_BIT)));
e9bb382b
UW
5684
5685 if (alignment)
5686 {
86c3c1fc
AB
5687 int left;
5688
5689 alignment *= TARGET_CHAR_BIT;
5690 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5691
e9bb382b
UW
5692 if (left)
5693 {
f41f5e61 5694 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5695 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5696 }
5697 }
5698 }
5699 }
5700}
5701
5702/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5703
e9bb382b 5704void
695bfa52 5705append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5706 struct type *field)
5707{
5708 append_composite_type_field_aligned (t, name, field, 0);
5709}
5710
000177f0
AC
5711static struct gdbarch_data *gdbtypes_data;
5712
5713const struct builtin_type *
5714builtin_type (struct gdbarch *gdbarch)
5715{
9a3c8263 5716 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5717}
5718
5719static void *
5720gdbtypes_post_init (struct gdbarch *gdbarch)
5721{
5722 struct builtin_type *builtin_type
5723 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5724
46bf5051 5725 /* Basic types. */
e9bb382b 5726 builtin_type->builtin_void
77b7c781 5727 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5728 builtin_type->builtin_char
5729 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5730 !gdbarch_char_signed (gdbarch), "char");
15152a54 5731 builtin_type->builtin_char->set_has_no_signedness (true);
e9bb382b
UW
5732 builtin_type->builtin_signed_char
5733 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5734 0, "signed char");
5735 builtin_type->builtin_unsigned_char
5736 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5737 1, "unsigned char");
5738 builtin_type->builtin_short
5739 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5740 0, "short");
5741 builtin_type->builtin_unsigned_short
5742 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5743 1, "unsigned short");
5744 builtin_type->builtin_int
5745 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5746 0, "int");
5747 builtin_type->builtin_unsigned_int
5748 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5749 1, "unsigned int");
5750 builtin_type->builtin_long
5751 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5752 0, "long");
5753 builtin_type->builtin_unsigned_long
5754 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5755 1, "unsigned long");
5756 builtin_type->builtin_long_long
5757 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5758 0, "long long");
5759 builtin_type->builtin_unsigned_long_long
5760 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5761 1, "unsigned long long");
a6d0f249
AH
5762 builtin_type->builtin_half
5763 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5764 "half", gdbarch_half_format (gdbarch));
70bd8e24 5765 builtin_type->builtin_float
e9bb382b 5766 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5767 "float", gdbarch_float_format (gdbarch));
2a67f09d
FW
5768 builtin_type->builtin_bfloat16
5769 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5770 "bfloat16", gdbarch_bfloat16_format (gdbarch));
70bd8e24 5771 builtin_type->builtin_double
e9bb382b 5772 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5773 "double", gdbarch_double_format (gdbarch));
70bd8e24 5774 builtin_type->builtin_long_double
e9bb382b 5775 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5776 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5777 builtin_type->builtin_complex
5b930b45 5778 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5779 builtin_type->builtin_double_complex
5b930b45 5780 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5781 builtin_type->builtin_string
77b7c781 5782 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5783 builtin_type->builtin_bool
77b7c781 5784 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5785
7678ef8f
TJB
5786 /* The following three are about decimal floating point types, which
5787 are 32-bits, 64-bits and 128-bits respectively. */
5788 builtin_type->builtin_decfloat
88dfca6c 5789 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5790 builtin_type->builtin_decdouble
88dfca6c 5791 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5792 builtin_type->builtin_declong
88dfca6c 5793 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5794
69feb676 5795 /* "True" character types. */
e9bb382b
UW
5796 builtin_type->builtin_true_char
5797 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5798 builtin_type->builtin_true_unsigned_char
5799 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5800
df4df182 5801 /* Fixed-size integer types. */
e9bb382b
UW
5802 builtin_type->builtin_int0
5803 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5804 builtin_type->builtin_int8
5805 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5806 builtin_type->builtin_uint8
5807 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5808 builtin_type->builtin_int16
5809 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5810 builtin_type->builtin_uint16
5811 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5812 builtin_type->builtin_int24
5813 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5814 builtin_type->builtin_uint24
5815 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5816 builtin_type->builtin_int32
5817 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5818 builtin_type->builtin_uint32
5819 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5820 builtin_type->builtin_int64
5821 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5822 builtin_type->builtin_uint64
5823 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5824 builtin_type->builtin_int128
5825 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5826 builtin_type->builtin_uint128
5827 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
314ad88d
PA
5828
5829 builtin_type->builtin_int8->set_instance_flags
5830 (builtin_type->builtin_int8->instance_flags ()
5831 | TYPE_INSTANCE_FLAG_NOTTEXT);
5832
5833 builtin_type->builtin_uint8->set_instance_flags
5834 (builtin_type->builtin_uint8->instance_flags ()
5835 | TYPE_INSTANCE_FLAG_NOTTEXT);
df4df182 5836
9a22f0d0
PM
5837 /* Wide character types. */
5838 builtin_type->builtin_char16
53e710ac 5839 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5840 builtin_type->builtin_char32
53e710ac 5841 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5842 builtin_type->builtin_wchar
5843 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5844 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5845
46bf5051 5846 /* Default data/code pointer types. */
e9bb382b
UW
5847 builtin_type->builtin_data_ptr
5848 = lookup_pointer_type (builtin_type->builtin_void);
5849 builtin_type->builtin_func_ptr
5850 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5851 builtin_type->builtin_func_func
5852 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5853
78267919 5854 /* This type represents a GDB internal function. */
e9bb382b
UW
5855 builtin_type->internal_fn
5856 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5857 "<internal function>");
78267919 5858
e81e7f5e
SC
5859 /* This type represents an xmethod. */
5860 builtin_type->xmethod
5861 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5862
46bf5051
UW
5863 return builtin_type;
5864}
5865
46bf5051
UW
5866/* This set of objfile-based types is intended to be used by symbol
5867 readers as basic types. */
5868
7a102139
TT
5869static const struct objfile_key<struct objfile_type,
5870 gdb::noop_deleter<struct objfile_type>>
5871 objfile_type_data;
46bf5051
UW
5872
5873const struct objfile_type *
5874objfile_type (struct objfile *objfile)
5875{
5876 struct gdbarch *gdbarch;
7a102139 5877 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5878
5879 if (objfile_type)
5880 return objfile_type;
5881
5882 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5883 1, struct objfile_type);
5884
5885 /* Use the objfile architecture to determine basic type properties. */
08feed99 5886 gdbarch = objfile->arch ();
46bf5051
UW
5887
5888 /* Basic types. */
5889 objfile_type->builtin_void
77b7c781 5890 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5891 objfile_type->builtin_char
19f392bc
UW
5892 = init_integer_type (objfile, TARGET_CHAR_BIT,
5893 !gdbarch_char_signed (gdbarch), "char");
15152a54 5894 objfile_type->builtin_char->set_has_no_signedness (true);
46bf5051 5895 objfile_type->builtin_signed_char
19f392bc
UW
5896 = init_integer_type (objfile, TARGET_CHAR_BIT,
5897 0, "signed char");
46bf5051 5898 objfile_type->builtin_unsigned_char
19f392bc
UW
5899 = init_integer_type (objfile, TARGET_CHAR_BIT,
5900 1, "unsigned char");
46bf5051 5901 objfile_type->builtin_short
19f392bc
UW
5902 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5903 0, "short");
46bf5051 5904 objfile_type->builtin_unsigned_short
19f392bc
UW
5905 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5906 1, "unsigned short");
46bf5051 5907 objfile_type->builtin_int
19f392bc
UW
5908 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5909 0, "int");
46bf5051 5910 objfile_type->builtin_unsigned_int
19f392bc
UW
5911 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5912 1, "unsigned int");
46bf5051 5913 objfile_type->builtin_long
19f392bc
UW
5914 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5915 0, "long");
46bf5051 5916 objfile_type->builtin_unsigned_long
19f392bc
UW
5917 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5918 1, "unsigned long");
46bf5051 5919 objfile_type->builtin_long_long
19f392bc
UW
5920 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5921 0, "long long");
46bf5051 5922 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5923 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5924 1, "unsigned long long");
46bf5051 5925 objfile_type->builtin_float
19f392bc
UW
5926 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5927 "float", gdbarch_float_format (gdbarch));
46bf5051 5928 objfile_type->builtin_double
19f392bc
UW
5929 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5930 "double", gdbarch_double_format (gdbarch));
46bf5051 5931 objfile_type->builtin_long_double
19f392bc
UW
5932 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5933 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5934
5935 /* This type represents a type that was unrecognized in symbol read-in. */
5936 objfile_type->builtin_error
19f392bc 5937 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5938
5939 /* The following set of types is used for symbols with no
5940 debug information. */
5941 objfile_type->nodebug_text_symbol
77b7c781 5942 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5943 "<text variable, no debug info>");
03cc7249 5944
0875794a 5945 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5946 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5947 "<text gnu-indirect-function variable, no debug info>");
03cc7249
SM
5948 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
5949
0875794a 5950 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5951 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5952 "<text from jump slot in .got.plt, no debug info>",
5953 objfile_type->nodebug_text_symbol);
46bf5051 5954 objfile_type->nodebug_data_symbol
46a4882b 5955 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5956 objfile_type->nodebug_unknown_symbol
46a4882b 5957 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5958 objfile_type->nodebug_tls_symbol
46a4882b 5959 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5960
5961 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5962 the same.
000177f0
AC
5963
5964 The upshot is:
5965 - gdb's `struct type' always describes the target's
5966 representation.
5967 - gdb's `struct value' objects should always hold values in
5968 target form.
5969 - gdb's CORE_ADDR values are addresses in the unified virtual
5970 address space that the assembler and linker work with. Thus,
5971 since target_read_memory takes a CORE_ADDR as an argument, it
5972 can access any memory on the target, even if the processor has
5973 separate code and data address spaces.
5974
46bf5051
UW
5975 In this context, objfile_type->builtin_core_addr is a bit odd:
5976 it's a target type for a value the target will never see. It's
5977 only used to hold the values of (typeless) linker symbols, which
5978 are indeed in the unified virtual address space. */
000177f0 5979
46bf5051 5980 objfile_type->builtin_core_addr
19f392bc
UW
5981 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5982 "__CORE_ADDR");
64c50499 5983
7a102139 5984 objfile_type_data.set (objfile, objfile_type);
46bf5051 5985 return objfile_type;
000177f0
AC
5986}
5987
6c265988 5988void _initialize_gdbtypes ();
c906108c 5989void
6c265988 5990_initialize_gdbtypes ()
c906108c 5991{
5674de60
UW
5992 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5993
ccce17b0
YQ
5994 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5995 _("Set debugging of C++ overloading."),
5996 _("Show debugging of C++ overloading."),
5997 _("When enabled, ranking of the "
5998 "functions is displayed."),
5999 NULL,
6000 show_overload_debug,
6001 &setdebuglist, &showdebuglist);
5674de60 6002
7ba81444 6003 /* Add user knob for controlling resolution of opaque types. */
5674de60 6004 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
6005 &opaque_type_resolution,
6006 _("Set resolution of opaque struct/class/union"
6007 " types (if set before loading symbols)."),
6008 _("Show resolution of opaque struct/class/union"
6009 " types (if set before loading symbols)."),
6010 NULL, NULL,
5674de60
UW
6011 show_opaque_type_resolution,
6012 &setlist, &showlist);
a451cb65
KS
6013
6014 /* Add an option to permit non-strict type checking. */
6015 add_setshow_boolean_cmd ("type", class_support,
6016 &strict_type_checking,
6017 _("Set strict type checking."),
6018 _("Show strict type checking."),
6019 NULL, NULL,
6020 show_strict_type_checking,
6021 &setchecklist, &showchecklist);
c906108c 6022}
This page took 2.254025 seconds and 4 git commands to generate.