ChangeLog:
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
0fb0cc75 4 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4f2aea11 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "bfd.h"
26#include "symtab.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "expression.h"
31#include "language.h"
32#include "target.h"
33#include "value.h"
34#include "demangle.h"
35#include "complaints.h"
36#include "gdbcmd.h"
c91ecb25 37#include "wrapper.h"
015a42b4 38#include "cp-abi.h"
a02fd225 39#include "gdb_assert.h"
ae5a43e0 40#include "hashtab.h"
c906108c
SS
41
42/* These variables point to the objects
43 representing the predefined C data types. */
44
449a5da4 45struct type *builtin_type_int0;
c906108c
SS
46struct type *builtin_type_int8;
47struct type *builtin_type_uint8;
48struct type *builtin_type_int16;
49struct type *builtin_type_uint16;
50struct type *builtin_type_int32;
51struct type *builtin_type_uint32;
52struct type *builtin_type_int64;
53struct type *builtin_type_uint64;
8b982acf
EZ
54struct type *builtin_type_int128;
55struct type *builtin_type_uint128;
ac3aafc7 56
8da61cc4
DJ
57/* Floatformat pairs. */
58const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61};
62const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65};
66const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69};
70const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73};
74const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77};
78const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81};
82const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85};
86const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89};
90const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93};
94const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97};
b14d30e1
JM
98const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ibm_long_double,
100 &floatformat_ibm_long_double
101};
8da61cc4
DJ
102
103struct type *builtin_type_ieee_single;
104struct type *builtin_type_ieee_double;
598f52df
AC
105struct type *builtin_type_i387_ext;
106struct type *builtin_type_m68881_ext;
8da61cc4
DJ
107struct type *builtin_type_arm_ext;
108struct type *builtin_type_ia64_spill;
109struct type *builtin_type_ia64_quad;
110
fde6c819
UW
111/* Platform-neutral void type. */
112struct type *builtin_type_void;
113
b769d911
UW
114/* Platform-neutral character types. */
115struct type *builtin_type_true_char;
116struct type *builtin_type_true_unsigned_char;
117
c906108c
SS
118
119int opaque_type_resolution = 1;
920d2a44
AC
120static void
121show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
122 struct cmd_list_element *c,
123 const char *value)
920d2a44
AC
124{
125 fprintf_filtered (file, _("\
126Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
127 value);
128}
129
5d161b24 130int overload_debug = 0;
920d2a44
AC
131static void
132show_overload_debug (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c, const char *value)
134{
7ba81444
MS
135 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
136 value);
920d2a44 137}
c906108c 138
c5aa993b
JM
139struct extra
140 {
141 char str[128];
142 int len;
7ba81444 143 }; /* Maximum extension is 128! FIXME */
c906108c 144
a14ed312 145static void print_bit_vector (B_TYPE *, int);
ad2f7632 146static void print_arg_types (struct field *, int, int);
a14ed312
KB
147static void dump_fn_fieldlists (struct type *, int);
148static void print_cplus_stuff (struct type *, int);
7a292a7a 149
c906108c
SS
150
151/* Alloc a new type structure and fill it with some defaults. If
152 OBJFILE is non-NULL, then allocate the space for the type structure
7ba81444
MS
153 in that objfile's objfile_obstack. Otherwise allocate the new type
154 structure by xmalloc () (for permanent types). */
c906108c
SS
155
156struct type *
fba45db2 157alloc_type (struct objfile *objfile)
c906108c 158{
52f0bd74 159 struct type *type;
c906108c 160
7ba81444 161 /* Alloc the structure and start off with all fields zeroed. */
c906108c
SS
162
163 if (objfile == NULL)
164 {
1deafd4e
PA
165 type = XZALLOC (struct type);
166 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
c906108c
SS
167 }
168 else
169 {
1deafd4e
PA
170 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
171 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
172 struct main_type);
c906108c
SS
173 OBJSTAT (objfile, n_types++);
174 }
c906108c 175
7ba81444 176 /* Initialize the fields that might not be zero. */
c906108c
SS
177
178 TYPE_CODE (type) = TYPE_CODE_UNDEF;
179 TYPE_OBJFILE (type) = objfile;
180 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 181 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 182
c16abbde 183 return type;
c906108c
SS
184}
185
2fdde8f8
DJ
186/* Alloc a new type instance structure, fill it with some defaults,
187 and point it at OLDTYPE. Allocate the new type instance from the
188 same place as OLDTYPE. */
189
190static struct type *
191alloc_type_instance (struct type *oldtype)
192{
193 struct type *type;
194
195 /* Allocate the structure. */
196
197 if (TYPE_OBJFILE (oldtype) == NULL)
1deafd4e 198 type = XZALLOC (struct type);
2fdde8f8 199 else
1deafd4e
PA
200 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
201 struct type);
202
2fdde8f8
DJ
203 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
204
205 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
206
c16abbde 207 return type;
2fdde8f8
DJ
208}
209
210/* Clear all remnants of the previous type at TYPE, in preparation for
211 replacing it with something else. */
212static void
213smash_type (struct type *type)
214{
215 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
216
217 /* For now, delete the rings. */
218 TYPE_CHAIN (type) = type;
219
220 /* For now, leave the pointer/reference types alone. */
221}
222
c906108c
SS
223/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
224 to a pointer to memory where the pointer type should be stored.
225 If *TYPEPTR is zero, update it to point to the pointer type we return.
226 We allocate new memory if needed. */
227
228struct type *
fba45db2 229make_pointer_type (struct type *type, struct type **typeptr)
c906108c 230{
52f0bd74 231 struct type *ntype; /* New type */
c906108c 232 struct objfile *objfile;
053cb41b 233 struct type *chain;
c906108c
SS
234
235 ntype = TYPE_POINTER_TYPE (type);
236
c5aa993b 237 if (ntype)
c906108c 238 {
c5aa993b 239 if (typeptr == 0)
7ba81444
MS
240 return ntype; /* Don't care about alloc,
241 and have new type. */
c906108c 242 else if (*typeptr == 0)
c5aa993b 243 {
7ba81444 244 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 245 return ntype;
c5aa993b 246 }
c906108c
SS
247 }
248
249 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
250 {
251 ntype = alloc_type (TYPE_OBJFILE (type));
252 if (typeptr)
253 *typeptr = ntype;
254 }
7ba81444 255 else /* We have storage, but need to reset it. */
c906108c
SS
256 {
257 ntype = *typeptr;
258 objfile = TYPE_OBJFILE (ntype);
053cb41b 259 chain = TYPE_CHAIN (ntype);
2fdde8f8 260 smash_type (ntype);
053cb41b 261 TYPE_CHAIN (ntype) = chain;
c906108c
SS
262 TYPE_OBJFILE (ntype) = objfile;
263 }
264
265 TYPE_TARGET_TYPE (ntype) = type;
266 TYPE_POINTER_TYPE (type) = ntype;
267
7ba81444
MS
268 /* FIXME! Assume the machine has only one representation for
269 pointers! */
c906108c 270
7ba81444
MS
271 TYPE_LENGTH (ntype) =
272 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
c906108c
SS
273 TYPE_CODE (ntype) = TYPE_CODE_PTR;
274
67b2adb2 275 /* Mark pointers as unsigned. The target converts between pointers
76e71323 276 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 277 gdbarch_address_to_pointer. */
876cecd0 278 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 279
c906108c
SS
280 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
281 TYPE_POINTER_TYPE (type) = ntype;
282
053cb41b
JB
283 /* Update the length of all the other variants of this type. */
284 chain = TYPE_CHAIN (ntype);
285 while (chain != ntype)
286 {
287 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
288 chain = TYPE_CHAIN (chain);
289 }
290
c906108c
SS
291 return ntype;
292}
293
294/* Given a type TYPE, return a type of pointers to that type.
295 May need to construct such a type if this is the first use. */
296
297struct type *
fba45db2 298lookup_pointer_type (struct type *type)
c906108c 299{
c5aa993b 300 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
301}
302
7ba81444
MS
303/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
304 points to a pointer to memory where the reference type should be
305 stored. If *TYPEPTR is zero, update it to point to the reference
306 type we return. We allocate new memory if needed. */
c906108c
SS
307
308struct type *
fba45db2 309make_reference_type (struct type *type, struct type **typeptr)
c906108c 310{
52f0bd74 311 struct type *ntype; /* New type */
c906108c 312 struct objfile *objfile;
1e98b326 313 struct type *chain;
c906108c
SS
314
315 ntype = TYPE_REFERENCE_TYPE (type);
316
c5aa993b 317 if (ntype)
c906108c 318 {
c5aa993b 319 if (typeptr == 0)
7ba81444
MS
320 return ntype; /* Don't care about alloc,
321 and have new type. */
c906108c 322 else if (*typeptr == 0)
c5aa993b 323 {
7ba81444 324 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 325 return ntype;
c5aa993b 326 }
c906108c
SS
327 }
328
329 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
330 {
331 ntype = alloc_type (TYPE_OBJFILE (type));
332 if (typeptr)
333 *typeptr = ntype;
334 }
7ba81444 335 else /* We have storage, but need to reset it. */
c906108c
SS
336 {
337 ntype = *typeptr;
338 objfile = TYPE_OBJFILE (ntype);
1e98b326 339 chain = TYPE_CHAIN (ntype);
2fdde8f8 340 smash_type (ntype);
1e98b326 341 TYPE_CHAIN (ntype) = chain;
c906108c
SS
342 TYPE_OBJFILE (ntype) = objfile;
343 }
344
345 TYPE_TARGET_TYPE (ntype) = type;
346 TYPE_REFERENCE_TYPE (type) = ntype;
347
7ba81444
MS
348 /* FIXME! Assume the machine has only one representation for
349 references, and that it matches the (only) representation for
350 pointers! */
c906108c 351
819844ad 352 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
c906108c 353 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 354
c906108c
SS
355 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
356 TYPE_REFERENCE_TYPE (type) = ntype;
357
1e98b326
JB
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
c906108c
SS
366 return ntype;
367}
368
7ba81444
MS
369/* Same as above, but caller doesn't care about memory allocation
370 details. */
c906108c
SS
371
372struct type *
fba45db2 373lookup_reference_type (struct type *type)
c906108c 374{
c5aa993b 375 return make_reference_type (type, (struct type **) 0);
c906108c
SS
376}
377
7ba81444
MS
378/* Lookup a function type that returns type TYPE. TYPEPTR, if
379 nonzero, points to a pointer to memory where the function type
380 should be stored. If *TYPEPTR is zero, update it to point to the
323427d1
JK
381 function type we return. We allocate new memory from OBJFILE if needed; use
382 NULL for permanent types. */
c906108c
SS
383
384struct type *
323427d1
JK
385make_function_type (struct type *type, struct type **typeptr,
386 struct objfile *objfile)
c906108c 387{
52f0bd74 388 struct type *ntype; /* New type */
c906108c
SS
389
390 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
391 {
323427d1 392 ntype = alloc_type (objfile);
c906108c
SS
393 if (typeptr)
394 *typeptr = ntype;
395 }
7ba81444 396 else /* We have storage, but need to reset it. */
c906108c
SS
397 {
398 ntype = *typeptr;
2fdde8f8 399 smash_type (ntype);
c906108c
SS
400 TYPE_OBJFILE (ntype) = objfile;
401 }
402
403 TYPE_TARGET_TYPE (ntype) = type;
404
405 TYPE_LENGTH (ntype) = 1;
406 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 407
c906108c
SS
408 return ntype;
409}
410
411
412/* Given a type TYPE, return a type of functions that return that type.
413 May need to construct such a type if this is the first use. */
414
415struct type *
fba45db2 416lookup_function_type (struct type *type)
c906108c 417{
323427d1 418 return make_function_type (type, (struct type **) 0, TYPE_OBJFILE (type));
c906108c
SS
419}
420
47663de5
MS
421/* Identify address space identifier by name --
422 return the integer flag defined in gdbtypes.h. */
423extern int
424address_space_name_to_int (char *space_identifier)
425{
5f11f355 426 struct gdbarch *gdbarch = current_gdbarch;
8b2dbe47 427 int type_flags;
7ba81444 428 /* Check for known address space delimiters. */
47663de5 429 if (!strcmp (space_identifier, "code"))
876cecd0 430 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 431 else if (!strcmp (space_identifier, "data"))
876cecd0 432 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
433 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
434 && gdbarch_address_class_name_to_type_flags (gdbarch,
435 space_identifier,
436 &type_flags))
8b2dbe47 437 return type_flags;
47663de5 438 else
8a3fe4f8 439 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
440}
441
442/* Identify address space identifier by integer flag as defined in
7ba81444 443 gdbtypes.h -- return the string version of the adress space name. */
47663de5 444
321432c0 445const char *
47663de5
MS
446address_space_int_to_name (int space_flag)
447{
5f11f355 448 struct gdbarch *gdbarch = current_gdbarch;
876cecd0 449 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 450 return "code";
876cecd0 451 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 452 return "data";
876cecd0 453 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
454 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
455 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
456 else
457 return NULL;
458}
459
2fdde8f8 460/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
461
462 If STORAGE is non-NULL, create the new type instance there.
463 STORAGE must be in the same obstack as TYPE. */
47663de5 464
b9362cc7 465static struct type *
2fdde8f8
DJ
466make_qualified_type (struct type *type, int new_flags,
467 struct type *storage)
47663de5
MS
468{
469 struct type *ntype;
470
471 ntype = type;
5f61c20e
JK
472 do
473 {
474 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
475 return ntype;
476 ntype = TYPE_CHAIN (ntype);
477 }
478 while (ntype != type);
47663de5 479
2fdde8f8
DJ
480 /* Create a new type instance. */
481 if (storage == NULL)
482 ntype = alloc_type_instance (type);
483 else
484 {
7ba81444
MS
485 /* If STORAGE was provided, it had better be in the same objfile
486 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
487 if one objfile is freed and the other kept, we'd have
488 dangling pointers. */
ad766c0a
JB
489 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
490
2fdde8f8
DJ
491 ntype = storage;
492 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
493 TYPE_CHAIN (ntype) = ntype;
494 }
47663de5
MS
495
496 /* Pointers or references to the original type are not relevant to
2fdde8f8 497 the new type. */
47663de5
MS
498 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
499 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 500
2fdde8f8
DJ
501 /* Chain the new qualified type to the old type. */
502 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
503 TYPE_CHAIN (type) = ntype;
504
505 /* Now set the instance flags and return the new type. */
506 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 507
ab5d3da6
KB
508 /* Set length of new type to that of the original type. */
509 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
510
47663de5
MS
511 return ntype;
512}
513
2fdde8f8
DJ
514/* Make an address-space-delimited variant of a type -- a type that
515 is identical to the one supplied except that it has an address
516 space attribute attached to it (such as "code" or "data").
517
7ba81444
MS
518 The space attributes "code" and "data" are for Harvard
519 architectures. The address space attributes are for architectures
520 which have alternately sized pointers or pointers with alternate
521 representations. */
2fdde8f8
DJ
522
523struct type *
524make_type_with_address_space (struct type *type, int space_flag)
525{
526 struct type *ntype;
527 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
528 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
529 | TYPE_INSTANCE_FLAG_DATA_SPACE
530 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
531 | space_flag);
532
533 return make_qualified_type (type, new_flags, NULL);
534}
c906108c
SS
535
536/* Make a "c-v" variant of a type -- a type that is identical to the
537 one supplied except that it may have const or volatile attributes
538 CNST is a flag for setting the const attribute
539 VOLTL is a flag for setting the volatile attribute
540 TYPE is the base type whose variant we are creating.
c906108c 541
ad766c0a
JB
542 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
543 storage to hold the new qualified type; *TYPEPTR and TYPE must be
544 in the same objfile. Otherwise, allocate fresh memory for the new
545 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
546 new type we construct. */
c906108c 547struct type *
7ba81444
MS
548make_cv_type (int cnst, int voltl,
549 struct type *type,
550 struct type **typeptr)
c906108c 551{
52f0bd74
AC
552 struct type *ntype; /* New type */
553 struct type *tmp_type = type; /* tmp type */
c906108c
SS
554 struct objfile *objfile;
555
2fdde8f8 556 int new_flags = (TYPE_INSTANCE_FLAGS (type)
876cecd0 557 & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 558
c906108c 559 if (cnst)
876cecd0 560 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
561
562 if (voltl)
876cecd0 563 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 564
2fdde8f8 565 if (typeptr && *typeptr != NULL)
a02fd225 566 {
ad766c0a
JB
567 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
568 a C-V variant chain that threads across objfiles: if one
569 objfile gets freed, then the other has a broken C-V chain.
570
571 This code used to try to copy over the main type from TYPE to
572 *TYPEPTR if they were in different objfiles, but that's
573 wrong, too: TYPE may have a field list or member function
574 lists, which refer to types of their own, etc. etc. The
575 whole shebang would need to be copied over recursively; you
576 can't have inter-objfile pointers. The only thing to do is
577 to leave stub types as stub types, and look them up afresh by
578 name each time you encounter them. */
579 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
580 }
581
7ba81444
MS
582 ntype = make_qualified_type (type, new_flags,
583 typeptr ? *typeptr : NULL);
c906108c 584
2fdde8f8
DJ
585 if (typeptr != NULL)
586 *typeptr = ntype;
a02fd225 587
2fdde8f8 588 return ntype;
a02fd225 589}
c906108c 590
2fdde8f8
DJ
591/* Replace the contents of ntype with the type *type. This changes the
592 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
593 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 594
cda6c68a
JB
595 In order to build recursive types, it's inevitable that we'll need
596 to update types in place --- but this sort of indiscriminate
597 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
598 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
599 clear if more steps are needed. */
dd6bda65
DJ
600void
601replace_type (struct type *ntype, struct type *type)
602{
ab5d3da6 603 struct type *chain;
dd6bda65 604
ad766c0a
JB
605 /* These two types had better be in the same objfile. Otherwise,
606 the assignment of one type's main type structure to the other
607 will produce a type with references to objects (names; field
608 lists; etc.) allocated on an objfile other than its own. */
609 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
610
2fdde8f8 611 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 612
7ba81444
MS
613 /* The type length is not a part of the main type. Update it for
614 each type on the variant chain. */
ab5d3da6 615 chain = ntype;
5f61c20e
JK
616 do
617 {
618 /* Assert that this element of the chain has no address-class bits
619 set in its flags. Such type variants might have type lengths
620 which are supposed to be different from the non-address-class
621 variants. This assertion shouldn't ever be triggered because
622 symbol readers which do construct address-class variants don't
623 call replace_type(). */
624 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
625
626 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
627 chain = TYPE_CHAIN (chain);
628 }
629 while (ntype != chain);
ab5d3da6 630
2fdde8f8
DJ
631 /* Assert that the two types have equivalent instance qualifiers.
632 This should be true for at least all of our debug readers. */
633 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
634}
635
c906108c
SS
636/* Implement direct support for MEMBER_TYPE in GNU C++.
637 May need to construct such a type if this is the first use.
638 The TYPE is the type of the member. The DOMAIN is the type
639 of the aggregate that the member belongs to. */
640
641struct type *
0d5de010 642lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 643{
52f0bd74 644 struct type *mtype;
c906108c
SS
645
646 mtype = alloc_type (TYPE_OBJFILE (type));
0d5de010 647 smash_to_memberptr_type (mtype, domain, type);
c16abbde 648 return mtype;
c906108c
SS
649}
650
0d5de010
DJ
651/* Return a pointer-to-method type, for a method of type TO_TYPE. */
652
653struct type *
654lookup_methodptr_type (struct type *to_type)
655{
656 struct type *mtype;
657
658 mtype = alloc_type (TYPE_OBJFILE (to_type));
659 TYPE_TARGET_TYPE (mtype) = to_type;
660 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
ad4820ab 661 TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
0d5de010
DJ
662 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
663 return mtype;
664}
665
7ba81444
MS
666/* Allocate a stub method whose return type is TYPE. This apparently
667 happens for speed of symbol reading, since parsing out the
668 arguments to the method is cpu-intensive, the way we are doing it.
669 So, we will fill in arguments later. This always returns a fresh
670 type. */
c906108c
SS
671
672struct type *
fba45db2 673allocate_stub_method (struct type *type)
c906108c
SS
674{
675 struct type *mtype;
676
7e956337
FF
677 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
678 TYPE_OBJFILE (type));
c906108c
SS
679 TYPE_TARGET_TYPE (mtype) = type;
680 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 681 return mtype;
c906108c
SS
682}
683
7ba81444
MS
684/* Create a range type using either a blank type supplied in
685 RESULT_TYPE, or creating a new type, inheriting the objfile from
686 INDEX_TYPE.
c906108c 687
7ba81444
MS
688 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
689 to HIGH_BOUND, inclusive.
c906108c 690
7ba81444
MS
691 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
692 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
693
694struct type *
fba45db2
KB
695create_range_type (struct type *result_type, struct type *index_type,
696 int low_bound, int high_bound)
c906108c
SS
697{
698 if (result_type == NULL)
1deafd4e 699 result_type = alloc_type (TYPE_OBJFILE (index_type));
c906108c
SS
700 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
701 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 702 if (TYPE_STUB (index_type))
876cecd0 703 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
704 else
705 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
706 TYPE_NFIELDS (result_type) = 2;
1deafd4e
PA
707 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type,
708 TYPE_NFIELDS (result_type)
709 * sizeof (struct field));
262452ec
JK
710 TYPE_LOW_BOUND (result_type) = low_bound;
711 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 712
c5aa993b 713 if (low_bound >= 0)
876cecd0 714 TYPE_UNSIGNED (result_type) = 1;
c906108c 715
262452ec 716 return result_type;
c906108c
SS
717}
718
7ba81444
MS
719/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
720 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
721 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
722
723int
fba45db2 724get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
725{
726 CHECK_TYPEDEF (type);
727 switch (TYPE_CODE (type))
728 {
729 case TYPE_CODE_RANGE:
730 *lowp = TYPE_LOW_BOUND (type);
731 *highp = TYPE_HIGH_BOUND (type);
732 return 1;
733 case TYPE_CODE_ENUM:
734 if (TYPE_NFIELDS (type) > 0)
735 {
736 /* The enums may not be sorted by value, so search all
737 entries */
738 int i;
739
740 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
741 for (i = 0; i < TYPE_NFIELDS (type); i++)
742 {
743 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
744 *lowp = TYPE_FIELD_BITPOS (type, i);
745 if (TYPE_FIELD_BITPOS (type, i) > *highp)
746 *highp = TYPE_FIELD_BITPOS (type, i);
747 }
748
7ba81444 749 /* Set unsigned indicator if warranted. */
c5aa993b 750 if (*lowp >= 0)
c906108c 751 {
876cecd0 752 TYPE_UNSIGNED (type) = 1;
c906108c
SS
753 }
754 }
755 else
756 {
757 *lowp = 0;
758 *highp = -1;
759 }
760 return 0;
761 case TYPE_CODE_BOOL:
762 *lowp = 0;
763 *highp = 1;
764 return 0;
765 case TYPE_CODE_INT:
c5aa993b 766 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
767 return -1;
768 if (!TYPE_UNSIGNED (type))
769 {
c5aa993b 770 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
771 *highp = -*lowp - 1;
772 return 0;
773 }
7ba81444 774 /* ... fall through for unsigned ints ... */
c906108c
SS
775 case TYPE_CODE_CHAR:
776 *lowp = 0;
777 /* This round-about calculation is to avoid shifting by
7b83ea04 778 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 779 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
780 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
781 *highp = (*highp - 1) | *highp;
782 return 0;
783 default:
784 return -1;
785 }
786}
787
7ba81444
MS
788/* Create an array type using either a blank type supplied in
789 RESULT_TYPE, or creating a new type, inheriting the objfile from
790 RANGE_TYPE.
c906108c
SS
791
792 Elements will be of type ELEMENT_TYPE, the indices will be of type
793 RANGE_TYPE.
794
7ba81444
MS
795 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
796 sure it is TYPE_CODE_UNDEF before we bash it into an array
797 type? */
c906108c
SS
798
799struct type *
7ba81444
MS
800create_array_type (struct type *result_type,
801 struct type *element_type,
fba45db2 802 struct type *range_type)
c906108c
SS
803{
804 LONGEST low_bound, high_bound;
805
806 if (result_type == NULL)
807 {
808 result_type = alloc_type (TYPE_OBJFILE (range_type));
809 }
810 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
811 TYPE_TARGET_TYPE (result_type) = element_type;
812 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
813 low_bound = high_bound = 0;
814 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
815 /* Be careful when setting the array length. Ada arrays can be
816 empty arrays with the high_bound being smaller than the low_bound.
817 In such cases, the array length should be zero. */
818 if (high_bound < low_bound)
819 TYPE_LENGTH (result_type) = 0;
820 else
821 TYPE_LENGTH (result_type) =
822 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
823 TYPE_NFIELDS (result_type) = 1;
824 TYPE_FIELDS (result_type) =
1deafd4e 825 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 826 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
827 TYPE_VPTR_FIELDNO (result_type) = -1;
828
829 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
830 if (TYPE_LENGTH (result_type) == 0)
876cecd0 831 TYPE_TARGET_STUB (result_type) = 1;
c906108c 832
c16abbde 833 return result_type;
c906108c
SS
834}
835
7ba81444
MS
836/* Create a string type using either a blank type supplied in
837 RESULT_TYPE, or creating a new type. String types are similar
838 enough to array of char types that we can use create_array_type to
839 build the basic type and then bash it into a string type.
c906108c
SS
840
841 For fixed length strings, the range type contains 0 as the lower
842 bound and the length of the string minus one as the upper bound.
843
7ba81444
MS
844 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
845 sure it is TYPE_CODE_UNDEF before we bash it into a string
846 type? */
c906108c
SS
847
848struct type *
7ba81444
MS
849create_string_type (struct type *result_type,
850 struct type *range_type)
c906108c 851{
f290d38e
AC
852 struct type *string_char_type;
853
854 string_char_type = language_string_char_type (current_language,
855 current_gdbarch);
c906108c 856 result_type = create_array_type (result_type,
f290d38e 857 string_char_type,
c906108c
SS
858 range_type);
859 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 860 return result_type;
c906108c
SS
861}
862
863struct type *
fba45db2 864create_set_type (struct type *result_type, struct type *domain_type)
c906108c 865{
c906108c
SS
866 if (result_type == NULL)
867 {
868 result_type = alloc_type (TYPE_OBJFILE (domain_type));
869 }
870 TYPE_CODE (result_type) = TYPE_CODE_SET;
871 TYPE_NFIELDS (result_type) = 1;
1deafd4e 872 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 873
74a9bb82 874 if (!TYPE_STUB (domain_type))
c906108c 875 {
f9780d5b 876 LONGEST low_bound, high_bound, bit_length;
c906108c
SS
877 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
878 low_bound = high_bound = 0;
879 bit_length = high_bound - low_bound + 1;
880 TYPE_LENGTH (result_type)
881 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 882 if (low_bound >= 0)
876cecd0 883 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
884 }
885 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
886
c16abbde 887 return result_type;
c906108c
SS
888}
889
4f2aea11
MK
890void
891append_flags_type_flag (struct type *type, int bitpos, char *name)
892{
893 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
894 gdb_assert (bitpos < TYPE_NFIELDS (type));
895 gdb_assert (bitpos >= 0);
896
897 if (name)
898 {
899 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
900 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
901 }
902 else
903 {
904 /* Don't show this field to the user. */
905 TYPE_FIELD_BITPOS (type, bitpos) = -1;
906 }
907}
908
909struct type *
910init_flags_type (char *name, int length)
911{
912 int nfields = length * TARGET_CHAR_BIT;
913 struct type *type;
914
7ba81444
MS
915 type = init_type (TYPE_CODE_FLAGS, length,
916 TYPE_FLAG_UNSIGNED, name, NULL);
4f2aea11 917 TYPE_NFIELDS (type) = nfields;
1deafd4e 918 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4f2aea11
MK
919
920 return type;
921}
922
ea37ba09
DJ
923/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
924 and any array types nested inside it. */
925
926void
927make_vector_type (struct type *array_type)
928{
929 struct type *inner_array, *elt_type;
930 int flags;
931
932 /* Find the innermost array type, in case the array is
933 multi-dimensional. */
934 inner_array = array_type;
935 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
936 inner_array = TYPE_TARGET_TYPE (inner_array);
937
938 elt_type = TYPE_TARGET_TYPE (inner_array);
939 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
940 {
941 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
942 elt_type = make_qualified_type (elt_type, flags, NULL);
943 TYPE_TARGET_TYPE (inner_array) = elt_type;
944 }
945
876cecd0 946 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
947}
948
794ac428 949struct type *
ac3aafc7
EZ
950init_vector_type (struct type *elt_type, int n)
951{
952 struct type *array_type;
953
954 array_type = create_array_type (0, elt_type,
7ba81444 955 create_range_type (0,
1969d2ed 956 builtin_type_int32,
ac3aafc7 957 0, n-1));
ea37ba09 958 make_vector_type (array_type);
ac3aafc7
EZ
959 return array_type;
960}
961
0d5de010
DJ
962/* Smash TYPE to be a type of pointers to members of DOMAIN with type
963 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
964 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
965 TYPE doesn't include the offset (that's the value of the MEMBER
966 itself), but does include the structure type into which it points
967 (for some reason).
c906108c 968
7ba81444
MS
969 When "smashing" the type, we preserve the objfile that the old type
970 pointed to, since we aren't changing where the type is actually
c906108c
SS
971 allocated. */
972
973void
0d5de010
DJ
974smash_to_memberptr_type (struct type *type, struct type *domain,
975 struct type *to_type)
c906108c
SS
976{
977 struct objfile *objfile;
978
979 objfile = TYPE_OBJFILE (type);
980
2fdde8f8 981 smash_type (type);
c906108c
SS
982 TYPE_OBJFILE (type) = objfile;
983 TYPE_TARGET_TYPE (type) = to_type;
984 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
985 /* Assume that a data member pointer is the same size as a normal
986 pointer. */
819844ad 987 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
0d5de010 988 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
989}
990
991/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
992 METHOD just means `function that gets an extra "this" argument'.
993
7ba81444
MS
994 When "smashing" the type, we preserve the objfile that the old type
995 pointed to, since we aren't changing where the type is actually
c906108c
SS
996 allocated. */
997
998void
fba45db2 999smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1000 struct type *to_type, struct field *args,
1001 int nargs, int varargs)
c906108c
SS
1002{
1003 struct objfile *objfile;
1004
1005 objfile = TYPE_OBJFILE (type);
1006
2fdde8f8 1007 smash_type (type);
c906108c
SS
1008 TYPE_OBJFILE (type) = objfile;
1009 TYPE_TARGET_TYPE (type) = to_type;
1010 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1011 TYPE_FIELDS (type) = args;
1012 TYPE_NFIELDS (type) = nargs;
1013 if (varargs)
876cecd0 1014 TYPE_VARARGS (type) = 1;
c906108c
SS
1015 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1016 TYPE_CODE (type) = TYPE_CODE_METHOD;
1017}
1018
1019/* Return a typename for a struct/union/enum type without "struct ",
1020 "union ", or "enum ". If the type has a NULL name, return NULL. */
1021
1022char *
aa1ee363 1023type_name_no_tag (const struct type *type)
c906108c
SS
1024{
1025 if (TYPE_TAG_NAME (type) != NULL)
1026 return TYPE_TAG_NAME (type);
1027
7ba81444
MS
1028 /* Is there code which expects this to return the name if there is
1029 no tag name? My guess is that this is mainly used for C++ in
1030 cases where the two will always be the same. */
c906108c
SS
1031 return TYPE_NAME (type);
1032}
1033
7ba81444
MS
1034/* Lookup a typedef or primitive type named NAME, visible in lexical
1035 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1036 suitably defined. */
c906108c
SS
1037
1038struct type *
fba45db2 1039lookup_typename (char *name, struct block *block, int noerr)
c906108c 1040{
52f0bd74
AC
1041 struct symbol *sym;
1042 struct type *tmp;
c906108c 1043
2570f2b7 1044 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1045 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1046 {
54a5b07d
AC
1047 tmp = language_lookup_primitive_type_by_name (current_language,
1048 current_gdbarch,
1049 name);
c906108c
SS
1050 if (tmp)
1051 {
c16abbde 1052 return tmp;
c906108c
SS
1053 }
1054 else if (!tmp && noerr)
1055 {
c16abbde 1056 return NULL;
c906108c
SS
1057 }
1058 else
1059 {
8a3fe4f8 1060 error (_("No type named %s."), name);
c906108c
SS
1061 }
1062 }
1063 return (SYMBOL_TYPE (sym));
1064}
1065
1066struct type *
fba45db2 1067lookup_unsigned_typename (char *name)
c906108c
SS
1068{
1069 char *uns = alloca (strlen (name) + 10);
1070
1071 strcpy (uns, "unsigned ");
1072 strcpy (uns + 9, name);
1073 return (lookup_typename (uns, (struct block *) NULL, 0));
1074}
1075
1076struct type *
fba45db2 1077lookup_signed_typename (char *name)
c906108c
SS
1078{
1079 struct type *t;
1080 char *uns = alloca (strlen (name) + 8);
1081
1082 strcpy (uns, "signed ");
1083 strcpy (uns + 7, name);
1084 t = lookup_typename (uns, (struct block *) NULL, 1);
7ba81444 1085 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1086 if (t != NULL)
1087 return t;
1088 return lookup_typename (name, (struct block *) NULL, 0);
1089}
1090
1091/* Lookup a structure type named "struct NAME",
1092 visible in lexical block BLOCK. */
1093
1094struct type *
fba45db2 1095lookup_struct (char *name, struct block *block)
c906108c 1096{
52f0bd74 1097 struct symbol *sym;
c906108c 1098
2570f2b7 1099 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1100
1101 if (sym == NULL)
1102 {
8a3fe4f8 1103 error (_("No struct type named %s."), name);
c906108c
SS
1104 }
1105 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1106 {
7ba81444
MS
1107 error (_("This context has class, union or enum %s, not a struct."),
1108 name);
c906108c
SS
1109 }
1110 return (SYMBOL_TYPE (sym));
1111}
1112
1113/* Lookup a union type named "union NAME",
1114 visible in lexical block BLOCK. */
1115
1116struct type *
fba45db2 1117lookup_union (char *name, struct block *block)
c906108c 1118{
52f0bd74 1119 struct symbol *sym;
c5aa993b 1120 struct type *t;
c906108c 1121
2570f2b7 1122 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1123
1124 if (sym == NULL)
8a3fe4f8 1125 error (_("No union type named %s."), name);
c906108c 1126
c5aa993b 1127 t = SYMBOL_TYPE (sym);
c906108c
SS
1128
1129 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1130 return t;
c906108c
SS
1131
1132 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1133 * a further "declared_type" field to discover it is really a union.
1134 */
c5aa993b
JM
1135 if (HAVE_CPLUS_STRUCT (t))
1136 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c16abbde 1137 return t;
c906108c 1138
7ba81444
MS
1139 /* If we get here, it's not a union. */
1140 error (_("This context has class, struct or enum %s, not a union."),
1141 name);
c906108c
SS
1142}
1143
1144
1145/* Lookup an enum type named "enum NAME",
1146 visible in lexical block BLOCK. */
1147
1148struct type *
fba45db2 1149lookup_enum (char *name, struct block *block)
c906108c 1150{
52f0bd74 1151 struct symbol *sym;
c906108c 1152
2570f2b7 1153 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1154 if (sym == NULL)
1155 {
8a3fe4f8 1156 error (_("No enum type named %s."), name);
c906108c
SS
1157 }
1158 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1159 {
7ba81444
MS
1160 error (_("This context has class, struct or union %s, not an enum."),
1161 name);
c906108c
SS
1162 }
1163 return (SYMBOL_TYPE (sym));
1164}
1165
1166/* Lookup a template type named "template NAME<TYPE>",
1167 visible in lexical block BLOCK. */
1168
1169struct type *
7ba81444
MS
1170lookup_template_type (char *name, struct type *type,
1171 struct block *block)
c906108c
SS
1172{
1173 struct symbol *sym;
7ba81444
MS
1174 char *nam = (char *)
1175 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1176 strcpy (nam, name);
1177 strcat (nam, "<");
0004e5a2 1178 strcat (nam, TYPE_NAME (type));
7ba81444 1179 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1180
2570f2b7 1181 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1182
1183 if (sym == NULL)
1184 {
8a3fe4f8 1185 error (_("No template type named %s."), name);
c906108c
SS
1186 }
1187 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1188 {
7ba81444
MS
1189 error (_("This context has class, union or enum %s, not a struct."),
1190 name);
c906108c
SS
1191 }
1192 return (SYMBOL_TYPE (sym));
1193}
1194
7ba81444
MS
1195/* Given a type TYPE, lookup the type of the component of type named
1196 NAME.
c906108c 1197
7ba81444
MS
1198 TYPE can be either a struct or union, or a pointer or reference to
1199 a struct or union. If it is a pointer or reference, its target
1200 type is automatically used. Thus '.' and '->' are interchangable,
1201 as specified for the definitions of the expression element types
1202 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1203
1204 If NOERR is nonzero, return zero if NAME is not suitably defined.
1205 If NAME is the name of a baseclass type, return that type. */
1206
1207struct type *
fba45db2 1208lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1209{
1210 int i;
1211
1212 for (;;)
1213 {
1214 CHECK_TYPEDEF (type);
1215 if (TYPE_CODE (type) != TYPE_CODE_PTR
1216 && TYPE_CODE (type) != TYPE_CODE_REF)
1217 break;
1218 type = TYPE_TARGET_TYPE (type);
1219 }
1220
687d6395
MS
1221 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1222 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c
SS
1223 {
1224 target_terminal_ours ();
1225 gdb_flush (gdb_stdout);
1226 fprintf_unfiltered (gdb_stderr, "Type ");
1227 type_print (type, "", gdb_stderr, -1);
8a3fe4f8 1228 error (_(" is not a structure or union type."));
c906108c
SS
1229 }
1230
1231#if 0
7ba81444
MS
1232 /* FIXME: This change put in by Michael seems incorrect for the case
1233 where the structure tag name is the same as the member name.
1234 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1235 foo; } bell;" Disabled by fnf. */
c906108c
SS
1236 {
1237 char *typename;
1238
1239 typename = type_name_no_tag (type);
762f08a3 1240 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1241 return type;
1242 }
1243#endif
1244
1245 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1246 {
1247 char *t_field_name = TYPE_FIELD_NAME (type, i);
1248
db577aea 1249 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1250 {
1251 return TYPE_FIELD_TYPE (type, i);
1252 }
1253 }
1254
1255 /* OK, it's not in this class. Recursively check the baseclasses. */
1256 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1257 {
1258 struct type *t;
1259
9733fc94 1260 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1261 if (t != NULL)
1262 {
1263 return t;
1264 }
1265 }
1266
1267 if (noerr)
1268 {
1269 return NULL;
1270 }
c5aa993b 1271
c906108c
SS
1272 target_terminal_ours ();
1273 gdb_flush (gdb_stdout);
1274 fprintf_unfiltered (gdb_stderr, "Type ");
1275 type_print (type, "", gdb_stderr, -1);
1276 fprintf_unfiltered (gdb_stderr, " has no component named ");
1277 fputs_filtered (name, gdb_stderr);
8a3fe4f8 1278 error (("."));
c5aa993b 1279 return (struct type *) -1; /* For lint */
c906108c
SS
1280}
1281
81fe8080
DE
1282/* Lookup the vptr basetype/fieldno values for TYPE.
1283 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1284 vptr_fieldno. Also, if found and basetype is from the same objfile,
1285 cache the results.
1286 If not found, return -1 and ignore BASETYPEP.
1287 Callers should be aware that in some cases (for example,
c906108c 1288 the type or one of its baseclasses is a stub type and we are
7ba81444
MS
1289 debugging a .o file), this function will not be able to find the
1290 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1291 vptr_basetype will remain NULL or incomplete. */
c906108c 1292
81fe8080
DE
1293int
1294get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1295{
1296 CHECK_TYPEDEF (type);
1297
1298 if (TYPE_VPTR_FIELDNO (type) < 0)
1299 {
1300 int i;
1301
7ba81444
MS
1302 /* We must start at zero in case the first (and only) baseclass
1303 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1304 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1305 {
81fe8080
DE
1306 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1307 int fieldno;
1308 struct type *basetype;
1309
1310 fieldno = get_vptr_fieldno (baseclass, &basetype);
1311 if (fieldno >= 0)
c906108c 1312 {
81fe8080
DE
1313 /* If the type comes from a different objfile we can't cache
1314 it, it may have a different lifetime. PR 2384 */
5ef73790 1315 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1316 {
1317 TYPE_VPTR_FIELDNO (type) = fieldno;
1318 TYPE_VPTR_BASETYPE (type) = basetype;
1319 }
1320 if (basetypep)
1321 *basetypep = basetype;
1322 return fieldno;
c906108c
SS
1323 }
1324 }
81fe8080
DE
1325
1326 /* Not found. */
1327 return -1;
1328 }
1329 else
1330 {
1331 if (basetypep)
1332 *basetypep = TYPE_VPTR_BASETYPE (type);
1333 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1334 }
1335}
1336
44e1a9eb
DJ
1337static void
1338stub_noname_complaint (void)
1339{
e2e0b3e5 1340 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1341}
1342
c906108c
SS
1343/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1344
1345 If this is a stubbed struct (i.e. declared as struct foo *), see if
1346 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1347 definition, so we can use it in future. There used to be a comment
1348 (but not any code) that if we don't find a full definition, we'd
1349 set a flag so we don't spend time in the future checking the same
1350 type. That would be a mistake, though--we might load in more
1351 symbols which contain a full definition for the type.
c906108c 1352
7b83ea04 1353 This used to be coded as a macro, but I don't think it is called
c906108c
SS
1354 often enough to merit such treatment. */
1355
7ba81444
MS
1356/* Find the real type of TYPE. This function returns the real type,
1357 after removing all layers of typedefs and completing opaque or stub
1358 types. Completion changes the TYPE argument, but stripping of
1359 typedefs does not. */
c906108c
SS
1360
1361struct type *
a02fd225 1362check_typedef (struct type *type)
c906108c
SS
1363{
1364 struct type *orig_type = type;
a02fd225
DJ
1365 int is_const, is_volatile;
1366
423c0af8
MS
1367 gdb_assert (type);
1368
c906108c
SS
1369 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1370 {
1371 if (!TYPE_TARGET_TYPE (type))
1372 {
c5aa993b 1373 char *name;
c906108c
SS
1374 struct symbol *sym;
1375
1376 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1377 reading a symtab. Infinite recursion is one danger. */
c906108c
SS
1378 if (currently_reading_symtab)
1379 return type;
1380
1381 name = type_name_no_tag (type);
7ba81444
MS
1382 /* FIXME: shouldn't we separately check the TYPE_NAME and
1383 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1384 VAR_DOMAIN as appropriate? (this code was written before
1385 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1386 if (name == NULL)
1387 {
23136709 1388 stub_noname_complaint ();
c906108c
SS
1389 return type;
1390 }
2570f2b7 1391 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1392 if (sym)
1393 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444
MS
1394 else /* TYPE_CODE_UNDEF */
1395 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
c906108c
SS
1396 }
1397 type = TYPE_TARGET_TYPE (type);
1398 }
1399
a02fd225
DJ
1400 is_const = TYPE_CONST (type);
1401 is_volatile = TYPE_VOLATILE (type);
1402
7ba81444
MS
1403 /* If this is a struct/class/union with no fields, then check
1404 whether a full definition exists somewhere else. This is for
1405 systems where a type definition with no fields is issued for such
1406 types, instead of identifying them as stub types in the first
1407 place. */
c5aa993b 1408
7ba81444
MS
1409 if (TYPE_IS_OPAQUE (type)
1410 && opaque_type_resolution
1411 && !currently_reading_symtab)
c906108c 1412 {
c5aa993b
JM
1413 char *name = type_name_no_tag (type);
1414 struct type *newtype;
c906108c
SS
1415 if (name == NULL)
1416 {
23136709 1417 stub_noname_complaint ();
c906108c
SS
1418 return type;
1419 }
1420 newtype = lookup_transparent_type (name);
ad766c0a 1421
c906108c 1422 if (newtype)
ad766c0a 1423 {
7ba81444
MS
1424 /* If the resolved type and the stub are in the same
1425 objfile, then replace the stub type with the real deal.
1426 But if they're in separate objfiles, leave the stub
1427 alone; we'll just look up the transparent type every time
1428 we call check_typedef. We can't create pointers between
1429 types allocated to different objfiles, since they may
1430 have different lifetimes. Trying to copy NEWTYPE over to
1431 TYPE's objfile is pointless, too, since you'll have to
1432 move over any other types NEWTYPE refers to, which could
1433 be an unbounded amount of stuff. */
ad766c0a
JB
1434 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1435 make_cv_type (is_const, is_volatile, newtype, &type);
1436 else
1437 type = newtype;
1438 }
c906108c 1439 }
7ba81444
MS
1440 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1441 types. */
74a9bb82 1442 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1443 {
c5aa993b 1444 char *name = type_name_no_tag (type);
c906108c 1445 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1446 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1447 as appropriate? (this code was written before TYPE_NAME and
1448 TYPE_TAG_NAME were separate). */
c906108c
SS
1449 struct symbol *sym;
1450 if (name == NULL)
1451 {
23136709 1452 stub_noname_complaint ();
c906108c
SS
1453 return type;
1454 }
2570f2b7 1455 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1456 if (sym)
c26f2453
JB
1457 {
1458 /* Same as above for opaque types, we can replace the stub
1459 with the complete type only if they are int the same
1460 objfile. */
1461 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
7ba81444
MS
1462 make_cv_type (is_const, is_volatile,
1463 SYMBOL_TYPE (sym), &type);
c26f2453
JB
1464 else
1465 type = SYMBOL_TYPE (sym);
1466 }
c906108c
SS
1467 }
1468
74a9bb82 1469 if (TYPE_TARGET_STUB (type))
c906108c
SS
1470 {
1471 struct type *range_type;
1472 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1473
74a9bb82 1474 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1475 {
7ba81444 1476 /* Empty. */
c5aa993b 1477 }
c906108c
SS
1478 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1479 && TYPE_NFIELDS (type) == 1
262452ec 1480 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1481 == TYPE_CODE_RANGE))
1482 {
1483 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1484 number of elements and the target type's length.
1485 Watch out for Ada null Ada arrays where the high bound
1486 is smaller than the low bound. */
262452ec
JK
1487 const int low_bound = TYPE_LOW_BOUND (range_type);
1488 const int high_bound = TYPE_HIGH_BOUND (range_type);
ab0d6e0d
JB
1489 int nb_elements;
1490
1491 if (high_bound < low_bound)
1492 nb_elements = 0;
1493 else
1494 nb_elements = high_bound - low_bound + 1;
1495
1496 TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
876cecd0 1497 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1498 }
1499 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1500 {
1501 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1502 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1503 }
1504 }
7ba81444 1505 /* Cache TYPE_LENGTH for future use. */
c906108c
SS
1506 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1507 return type;
1508}
1509
7ba81444
MS
1510/* Parse a type expression in the string [P..P+LENGTH). If an error
1511 occurs, silently return builtin_type_void. */
c91ecb25 1512
b9362cc7 1513static struct type *
c91ecb25
ND
1514safe_parse_type (char *p, int length)
1515{
1516 struct ui_file *saved_gdb_stderr;
1517 struct type *type;
1518
7ba81444 1519 /* Suppress error messages. */
c91ecb25
ND
1520 saved_gdb_stderr = gdb_stderr;
1521 gdb_stderr = ui_file_new ();
1522
7ba81444 1523 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25
ND
1524 if (!gdb_parse_and_eval_type (p, length, &type))
1525 type = builtin_type_void;
1526
7ba81444 1527 /* Stop suppressing error messages. */
c91ecb25
ND
1528 ui_file_delete (gdb_stderr);
1529 gdb_stderr = saved_gdb_stderr;
1530
1531 return type;
1532}
1533
c906108c
SS
1534/* Ugly hack to convert method stubs into method types.
1535
7ba81444
MS
1536 He ain't kiddin'. This demangles the name of the method into a
1537 string including argument types, parses out each argument type,
1538 generates a string casting a zero to that type, evaluates the
1539 string, and stuffs the resulting type into an argtype vector!!!
1540 Then it knows the type of the whole function (including argument
1541 types for overloading), which info used to be in the stab's but was
1542 removed to hack back the space required for them. */
c906108c 1543
de17c821 1544static void
fba45db2 1545check_stub_method (struct type *type, int method_id, int signature_id)
c906108c
SS
1546{
1547 struct fn_field *f;
1548 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1549 char *demangled_name = cplus_demangle (mangled_name,
1550 DMGL_PARAMS | DMGL_ANSI);
1551 char *argtypetext, *p;
1552 int depth = 0, argcount = 1;
ad2f7632 1553 struct field *argtypes;
c906108c
SS
1554 struct type *mtype;
1555
1556 /* Make sure we got back a function string that we can use. */
1557 if (demangled_name)
1558 p = strchr (demangled_name, '(');
502dcf4e
AC
1559 else
1560 p = NULL;
c906108c
SS
1561
1562 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1563 error (_("Internal: Cannot demangle mangled name `%s'."),
1564 mangled_name);
c906108c
SS
1565
1566 /* Now, read in the parameters that define this type. */
1567 p += 1;
1568 argtypetext = p;
1569 while (*p)
1570 {
070ad9f0 1571 if (*p == '(' || *p == '<')
c906108c
SS
1572 {
1573 depth += 1;
1574 }
070ad9f0 1575 else if (*p == ')' || *p == '>')
c906108c
SS
1576 {
1577 depth -= 1;
1578 }
1579 else if (*p == ',' && depth == 0)
1580 {
1581 argcount += 1;
1582 }
1583
1584 p += 1;
1585 }
1586
ad2f7632
DJ
1587 /* If we read one argument and it was ``void'', don't count it. */
1588 if (strncmp (argtypetext, "(void)", 6) == 0)
1589 argcount -= 1;
c906108c 1590
ad2f7632
DJ
1591 /* We need one extra slot, for the THIS pointer. */
1592
1593 argtypes = (struct field *)
1594 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1595 p = argtypetext;
4a1970e4
DJ
1596
1597 /* Add THIS pointer for non-static methods. */
1598 f = TYPE_FN_FIELDLIST1 (type, method_id);
1599 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1600 argcount = 0;
1601 else
1602 {
ad2f7632 1603 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1604 argcount = 1;
1605 }
c906108c 1606
c5aa993b 1607 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1608 {
1609 depth = 0;
1610 while (*p)
1611 {
1612 if (depth <= 0 && (*p == ',' || *p == ')'))
1613 {
ad2f7632
DJ
1614 /* Avoid parsing of ellipsis, they will be handled below.
1615 Also avoid ``void'' as above. */
1616 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1617 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1618 {
ad2f7632 1619 argtypes[argcount].type =
c91ecb25 1620 safe_parse_type (argtypetext, p - argtypetext);
c906108c
SS
1621 argcount += 1;
1622 }
1623 argtypetext = p + 1;
1624 }
1625
070ad9f0 1626 if (*p == '(' || *p == '<')
c906108c
SS
1627 {
1628 depth += 1;
1629 }
070ad9f0 1630 else if (*p == ')' || *p == '>')
c906108c
SS
1631 {
1632 depth -= 1;
1633 }
1634
1635 p += 1;
1636 }
1637 }
1638
c906108c
SS
1639 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1640
1641 /* Now update the old "stub" type into a real type. */
1642 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1643 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1644 TYPE_FIELDS (mtype) = argtypes;
1645 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1646 TYPE_STUB (mtype) = 0;
c906108c 1647 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1648 if (p[-2] == '.')
876cecd0 1649 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1650
1651 xfree (demangled_name);
c906108c
SS
1652}
1653
7ba81444
MS
1654/* This is the external interface to check_stub_method, above. This
1655 function unstubs all of the signatures for TYPE's METHOD_ID method
1656 name. After calling this function TYPE_FN_FIELD_STUB will be
1657 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1658 correct.
de17c821
DJ
1659
1660 This function unfortunately can not die until stabs do. */
1661
1662void
1663check_stub_method_group (struct type *type, int method_id)
1664{
1665 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1666 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1667 int j, found_stub = 0;
de17c821
DJ
1668
1669 for (j = 0; j < len; j++)
1670 if (TYPE_FN_FIELD_STUB (f, j))
1671 {
1672 found_stub = 1;
1673 check_stub_method (type, method_id, j);
1674 }
1675
7ba81444
MS
1676 /* GNU v3 methods with incorrect names were corrected when we read
1677 in type information, because it was cheaper to do it then. The
1678 only GNU v2 methods with incorrect method names are operators and
1679 destructors; destructors were also corrected when we read in type
1680 information.
de17c821
DJ
1681
1682 Therefore the only thing we need to handle here are v2 operator
1683 names. */
1684 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1685 {
1686 int ret;
1687 char dem_opname[256];
1688
7ba81444
MS
1689 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1690 method_id),
de17c821
DJ
1691 dem_opname, DMGL_ANSI);
1692 if (!ret)
7ba81444
MS
1693 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1694 method_id),
de17c821
DJ
1695 dem_opname, 0);
1696 if (ret)
1697 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1698 }
1699}
1700
c906108c
SS
1701const struct cplus_struct_type cplus_struct_default;
1702
1703void
fba45db2 1704allocate_cplus_struct_type (struct type *type)
c906108c
SS
1705{
1706 if (!HAVE_CPLUS_STRUCT (type))
1707 {
1708 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1709 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
c5aa993b 1710 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1711 }
1712}
1713
1714/* Helper function to initialize the standard scalar types.
1715
7ba81444
MS
1716 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1717 the string pointed to by name in the objfile_obstack for that
1718 objfile, and initialize the type name to that copy. There are
1719 places (mipsread.c in particular, where init_type is called with a
1720 NULL value for NAME). */
c906108c
SS
1721
1722struct type *
7ba81444
MS
1723init_type (enum type_code code, int length, int flags,
1724 char *name, struct objfile *objfile)
c906108c 1725{
52f0bd74 1726 struct type *type;
c906108c
SS
1727
1728 type = alloc_type (objfile);
1729 TYPE_CODE (type) = code;
1730 TYPE_LENGTH (type) = length;
876cecd0
TT
1731
1732 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1733 if (flags & TYPE_FLAG_UNSIGNED)
1734 TYPE_UNSIGNED (type) = 1;
1735 if (flags & TYPE_FLAG_NOSIGN)
1736 TYPE_NOSIGN (type) = 1;
1737 if (flags & TYPE_FLAG_STUB)
1738 TYPE_STUB (type) = 1;
1739 if (flags & TYPE_FLAG_TARGET_STUB)
1740 TYPE_TARGET_STUB (type) = 1;
1741 if (flags & TYPE_FLAG_STATIC)
1742 TYPE_STATIC (type) = 1;
1743 if (flags & TYPE_FLAG_PROTOTYPED)
1744 TYPE_PROTOTYPED (type) = 1;
1745 if (flags & TYPE_FLAG_INCOMPLETE)
1746 TYPE_INCOMPLETE (type) = 1;
1747 if (flags & TYPE_FLAG_VARARGS)
1748 TYPE_VARARGS (type) = 1;
1749 if (flags & TYPE_FLAG_VECTOR)
1750 TYPE_VECTOR (type) = 1;
1751 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1752 TYPE_STUB_SUPPORTED (type) = 1;
1753 if (flags & TYPE_FLAG_NOTTEXT)
1754 TYPE_NOTTEXT (type) = 1;
1755 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1756 TYPE_FIXED_INSTANCE (type) = 1;
1757
c906108c
SS
1758 if ((name != NULL) && (objfile != NULL))
1759 {
7ba81444
MS
1760 TYPE_NAME (type) = obsavestring (name, strlen (name),
1761 &objfile->objfile_obstack);
c906108c
SS
1762 }
1763 else
1764 {
1765 TYPE_NAME (type) = name;
1766 }
1767
1768 /* C++ fancies. */
1769
973ccf8b 1770 if (name && strcmp (name, "char") == 0)
876cecd0 1771 TYPE_NOSIGN (type) = 1;
973ccf8b 1772
5c4e30ca
DC
1773 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1774 || code == TYPE_CODE_NAMESPACE)
c906108c
SS
1775 {
1776 INIT_CPLUS_SPECIFIC (type);
1777 }
c16abbde 1778 return type;
c906108c
SS
1779}
1780
0e101458
AC
1781/* Helper function. Create an empty composite type. */
1782
1783struct type *
1784init_composite_type (char *name, enum type_code code)
1785{
1786 struct type *t;
1787 gdb_assert (code == TYPE_CODE_STRUCT
1788 || code == TYPE_CODE_UNION);
1789 t = init_type (code, 0, 0, NULL, NULL);
1790 TYPE_TAG_NAME (t) = name;
1791 return t;
1792}
1793
1794/* Helper function. Append a field to a composite type. */
1795
1796void
4aa995e1
PA
1797append_composite_type_field_aligned (struct type *t, char *name,
1798 struct type *field, int alignment)
0e101458
AC
1799{
1800 struct field *f;
1801 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1802 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1803 sizeof (struct field) * TYPE_NFIELDS (t));
1804 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1805 memset (f, 0, sizeof f[0]);
1806 FIELD_TYPE (f[0]) = field;
1807 FIELD_NAME (f[0]) = name;
1808 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1809 {
73d322b1 1810 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
0e101458
AC
1811 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1812 }
1813 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1814 {
1815 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1816 if (TYPE_NFIELDS (t) > 1)
4aa995e1
PA
1817 {
1818 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1819 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
1820 * TARGET_CHAR_BIT));
1821
1822 if (alignment)
1823 {
1824 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
1825 if (left)
1826 {
1827 FIELD_BITPOS (f[0]) += left;
1828 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
1829 }
1830 }
1831 }
0e101458
AC
1832 }
1833}
1834
4aa995e1
PA
1835void
1836append_composite_type_field (struct type *t, char *name,
1837 struct type *field)
1838{
1839 append_composite_type_field_aligned (t, name, field, 0);
1840}
1841
c906108c 1842int
fba45db2 1843can_dereference (struct type *t)
c906108c 1844{
7ba81444
MS
1845 /* FIXME: Should we return true for references as well as
1846 pointers? */
c906108c
SS
1847 CHECK_TYPEDEF (t);
1848 return
1849 (t != NULL
1850 && TYPE_CODE (t) == TYPE_CODE_PTR
1851 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1852}
1853
adf40b2e 1854int
fba45db2 1855is_integral_type (struct type *t)
adf40b2e
JM
1856{
1857 CHECK_TYPEDEF (t);
1858 return
1859 ((t != NULL)
d4f3574e
SS
1860 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1861 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1862 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1863 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1864 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1865 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1866}
1867
7b83ea04 1868/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1869 Return 1 if so, and 0 if not.
1870 Note: callers may want to check for identity of the types before
1871 calling this function -- identical types are considered to satisfy
7ba81444 1872 the ancestor relationship even if they're identical. */
c906108c
SS
1873
1874int
fba45db2 1875is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1876{
1877 int i;
c5aa993b 1878
c906108c
SS
1879 CHECK_TYPEDEF (base);
1880 CHECK_TYPEDEF (dclass);
1881
1882 if (base == dclass)
1883 return 1;
687d6395
MS
1884 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1885 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
6b1ba9a0 1886 return 1;
c906108c
SS
1887
1888 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1889 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1890 return 1;
1891
1892 return 0;
1893}
c906108c
SS
1894\f
1895
c5aa993b 1896
c906108c
SS
1897/* Functions for overload resolution begin here */
1898
1899/* Compare two badness vectors A and B and return the result.
7ba81444
MS
1900 0 => A and B are identical
1901 1 => A and B are incomparable
1902 2 => A is better than B
1903 3 => A is worse than B */
c906108c
SS
1904
1905int
fba45db2 1906compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
1907{
1908 int i;
1909 int tmp;
c5aa993b
JM
1910 short found_pos = 0; /* any positives in c? */
1911 short found_neg = 0; /* any negatives in c? */
1912
1913 /* differing lengths => incomparable */
c906108c
SS
1914 if (a->length != b->length)
1915 return 1;
1916
c5aa993b
JM
1917 /* Subtract b from a */
1918 for (i = 0; i < a->length; i++)
c906108c
SS
1919 {
1920 tmp = a->rank[i] - b->rank[i];
1921 if (tmp > 0)
c5aa993b 1922 found_pos = 1;
c906108c 1923 else if (tmp < 0)
c5aa993b 1924 found_neg = 1;
c906108c
SS
1925 }
1926
1927 if (found_pos)
1928 {
1929 if (found_neg)
c5aa993b 1930 return 1; /* incomparable */
c906108c 1931 else
c5aa993b 1932 return 3; /* A > B */
c906108c 1933 }
c5aa993b
JM
1934 else
1935 /* no positives */
c906108c
SS
1936 {
1937 if (found_neg)
c5aa993b 1938 return 2; /* A < B */
c906108c 1939 else
c5aa993b 1940 return 0; /* A == B */
c906108c
SS
1941 }
1942}
1943
7ba81444
MS
1944/* Rank a function by comparing its parameter types (PARMS, length
1945 NPARMS), to the types of an argument list (ARGS, length NARGS).
1946 Return a pointer to a badness vector. This has NARGS + 1
1947 entries. */
c906108c
SS
1948
1949struct badness_vector *
7ba81444
MS
1950rank_function (struct type **parms, int nparms,
1951 struct type **args, int nargs)
c906108c
SS
1952{
1953 int i;
c5aa993b 1954 struct badness_vector *bv;
c906108c
SS
1955 int min_len = nparms < nargs ? nparms : nargs;
1956
1957 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 1958 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
1959 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1960
1961 /* First compare the lengths of the supplied lists.
7ba81444 1962 If there is a mismatch, set it to a high value. */
c5aa993b 1963
c906108c 1964 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
1965 arguments and ellipsis parameter lists, we should consider those
1966 and rank the length-match more finely. */
c906108c
SS
1967
1968 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1969
1970 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
1971 for (i = 1; i <= min_len; i++)
1972 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 1973
c5aa993b
JM
1974 /* If more arguments than parameters, add dummy entries */
1975 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
1976 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1977
1978 return bv;
1979}
1980
973ccf8b
DJ
1981/* Compare the names of two integer types, assuming that any sign
1982 qualifiers have been checked already. We do it this way because
1983 there may be an "int" in the name of one of the types. */
1984
1985static int
1986integer_types_same_name_p (const char *first, const char *second)
1987{
1988 int first_p, second_p;
1989
7ba81444
MS
1990 /* If both are shorts, return 1; if neither is a short, keep
1991 checking. */
973ccf8b
DJ
1992 first_p = (strstr (first, "short") != NULL);
1993 second_p = (strstr (second, "short") != NULL);
1994 if (first_p && second_p)
1995 return 1;
1996 if (first_p || second_p)
1997 return 0;
1998
1999 /* Likewise for long. */
2000 first_p = (strstr (first, "long") != NULL);
2001 second_p = (strstr (second, "long") != NULL);
2002 if (first_p && second_p)
2003 return 1;
2004 if (first_p || second_p)
2005 return 0;
2006
2007 /* Likewise for char. */
2008 first_p = (strstr (first, "char") != NULL);
2009 second_p = (strstr (second, "char") != NULL);
2010 if (first_p && second_p)
2011 return 1;
2012 if (first_p || second_p)
2013 return 0;
2014
2015 /* They must both be ints. */
2016 return 1;
2017}
2018
c906108c
SS
2019/* Compare one type (PARM) for compatibility with another (ARG).
2020 * PARM is intended to be the parameter type of a function; and
2021 * ARG is the supplied argument's type. This function tests if
2022 * the latter can be converted to the former.
2023 *
2024 * Return 0 if they are identical types;
2025 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2026 * PARM is to ARG. The higher the return value, the worse the match.
2027 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c
SS
2028
2029int
fba45db2 2030rank_one_type (struct type *parm, struct type *arg)
c906108c 2031{
7ba81444 2032 /* Identical type pointers. */
c906108c 2033 /* However, this still doesn't catch all cases of same type for arg
7ba81444
MS
2034 and param. The reason is that builtin types are different from
2035 the same ones constructed from the object. */
c906108c
SS
2036 if (parm == arg)
2037 return 0;
2038
2039 /* Resolve typedefs */
2040 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2041 parm = check_typedef (parm);
2042 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2043 arg = check_typedef (arg);
2044
070ad9f0 2045 /*
7ba81444
MS
2046 Well, damnit, if the names are exactly the same, I'll say they
2047 are exactly the same. This happens when we generate method
2048 stubs. The types won't point to the same address, but they
070ad9f0
DB
2049 really are the same.
2050 */
2051
687d6395
MS
2052 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2053 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
7ba81444 2054 return 0;
070ad9f0 2055
7ba81444 2056 /* Check if identical after resolving typedefs. */
c906108c
SS
2057 if (parm == arg)
2058 return 0;
2059
db577aea 2060 /* See through references, since we can almost make non-references
7ba81444 2061 references. */
db577aea 2062 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2063 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2064 + REFERENCE_CONVERSION_BADNESS);
2065 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2066 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2067 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2068 if (overload_debug)
7ba81444
MS
2069 /* Debugging only. */
2070 fprintf_filtered (gdb_stderr,
2071 "------ Arg is %s [%d], parm is %s [%d]\n",
2072 TYPE_NAME (arg), TYPE_CODE (arg),
2073 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2074
2075 /* x -> y means arg of type x being supplied for parameter of type y */
2076
2077 switch (TYPE_CODE (parm))
2078 {
c5aa993b
JM
2079 case TYPE_CODE_PTR:
2080 switch (TYPE_CODE (arg))
2081 {
2082 case TYPE_CODE_PTR:
2083 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2084 return VOID_PTR_CONVERSION_BADNESS;
2085 else
7ba81444
MS
2086 return rank_one_type (TYPE_TARGET_TYPE (parm),
2087 TYPE_TARGET_TYPE (arg));
c5aa993b 2088 case TYPE_CODE_ARRAY:
7ba81444
MS
2089 return rank_one_type (TYPE_TARGET_TYPE (parm),
2090 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2091 case TYPE_CODE_FUNC:
2092 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2093 case TYPE_CODE_INT:
2094 case TYPE_CODE_ENUM:
4f2aea11 2095 case TYPE_CODE_FLAGS:
c5aa993b
JM
2096 case TYPE_CODE_CHAR:
2097 case TYPE_CODE_RANGE:
2098 case TYPE_CODE_BOOL:
2099 return POINTER_CONVERSION_BADNESS;
2100 default:
2101 return INCOMPATIBLE_TYPE_BADNESS;
2102 }
2103 case TYPE_CODE_ARRAY:
2104 switch (TYPE_CODE (arg))
2105 {
2106 case TYPE_CODE_PTR:
2107 case TYPE_CODE_ARRAY:
7ba81444
MS
2108 return rank_one_type (TYPE_TARGET_TYPE (parm),
2109 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2110 default:
2111 return INCOMPATIBLE_TYPE_BADNESS;
2112 }
2113 case TYPE_CODE_FUNC:
2114 switch (TYPE_CODE (arg))
2115 {
2116 case TYPE_CODE_PTR: /* funcptr -> func */
2117 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2118 default:
2119 return INCOMPATIBLE_TYPE_BADNESS;
2120 }
2121 case TYPE_CODE_INT:
2122 switch (TYPE_CODE (arg))
2123 {
2124 case TYPE_CODE_INT:
2125 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2126 {
2127 /* Deal with signed, unsigned, and plain chars and
7ba81444 2128 signed and unsigned ints. */
c5aa993b
JM
2129 if (TYPE_NOSIGN (parm))
2130 {
2131 /* This case only for character types */
7ba81444
MS
2132 if (TYPE_NOSIGN (arg))
2133 return 0; /* plain char -> plain char */
2134 else /* signed/unsigned char -> plain char */
2135 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2136 }
2137 else if (TYPE_UNSIGNED (parm))
2138 {
2139 if (TYPE_UNSIGNED (arg))
2140 {
7ba81444
MS
2141 /* unsigned int -> unsigned int, or
2142 unsigned long -> unsigned long */
2143 if (integer_types_same_name_p (TYPE_NAME (parm),
2144 TYPE_NAME (arg)))
973ccf8b 2145 return 0;
7ba81444
MS
2146 else if (integer_types_same_name_p (TYPE_NAME (arg),
2147 "int")
2148 && integer_types_same_name_p (TYPE_NAME (parm),
2149 "long"))
c5aa993b
JM
2150 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2151 else
1c5cb38e 2152 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2153 }
2154 else
2155 {
7ba81444
MS
2156 if (integer_types_same_name_p (TYPE_NAME (arg),
2157 "long")
2158 && integer_types_same_name_p (TYPE_NAME (parm),
2159 "int"))
1c5cb38e 2160 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2161 else
2162 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2163 }
2164 }
2165 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2166 {
7ba81444
MS
2167 if (integer_types_same_name_p (TYPE_NAME (parm),
2168 TYPE_NAME (arg)))
c5aa993b 2169 return 0;
7ba81444
MS
2170 else if (integer_types_same_name_p (TYPE_NAME (arg),
2171 "int")
2172 && integer_types_same_name_p (TYPE_NAME (parm),
2173 "long"))
c5aa993b
JM
2174 return INTEGER_PROMOTION_BADNESS;
2175 else
1c5cb38e 2176 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2177 }
2178 else
1c5cb38e 2179 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2180 }
2181 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2182 return INTEGER_PROMOTION_BADNESS;
2183 else
1c5cb38e 2184 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2185 case TYPE_CODE_ENUM:
4f2aea11 2186 case TYPE_CODE_FLAGS:
c5aa993b
JM
2187 case TYPE_CODE_CHAR:
2188 case TYPE_CODE_RANGE:
2189 case TYPE_CODE_BOOL:
2190 return INTEGER_PROMOTION_BADNESS;
2191 case TYPE_CODE_FLT:
2192 return INT_FLOAT_CONVERSION_BADNESS;
2193 case TYPE_CODE_PTR:
2194 return NS_POINTER_CONVERSION_BADNESS;
2195 default:
2196 return INCOMPATIBLE_TYPE_BADNESS;
2197 }
2198 break;
2199 case TYPE_CODE_ENUM:
2200 switch (TYPE_CODE (arg))
2201 {
2202 case TYPE_CODE_INT:
2203 case TYPE_CODE_CHAR:
2204 case TYPE_CODE_RANGE:
2205 case TYPE_CODE_BOOL:
2206 case TYPE_CODE_ENUM:
1c5cb38e 2207 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2208 case TYPE_CODE_FLT:
2209 return INT_FLOAT_CONVERSION_BADNESS;
2210 default:
2211 return INCOMPATIBLE_TYPE_BADNESS;
2212 }
2213 break;
2214 case TYPE_CODE_CHAR:
2215 switch (TYPE_CODE (arg))
2216 {
2217 case TYPE_CODE_RANGE:
2218 case TYPE_CODE_BOOL:
2219 case TYPE_CODE_ENUM:
1c5cb38e 2220 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2221 case TYPE_CODE_FLT:
2222 return INT_FLOAT_CONVERSION_BADNESS;
2223 case TYPE_CODE_INT:
2224 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2225 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2226 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2227 return INTEGER_PROMOTION_BADNESS;
2228 /* >>> !! else fall through !! <<< */
2229 case TYPE_CODE_CHAR:
7ba81444
MS
2230 /* Deal with signed, unsigned, and plain chars for C++ and
2231 with int cases falling through from previous case. */
c5aa993b
JM
2232 if (TYPE_NOSIGN (parm))
2233 {
2234 if (TYPE_NOSIGN (arg))
2235 return 0;
2236 else
1c5cb38e 2237 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2238 }
2239 else if (TYPE_UNSIGNED (parm))
2240 {
2241 if (TYPE_UNSIGNED (arg))
2242 return 0;
2243 else
2244 return INTEGER_PROMOTION_BADNESS;
2245 }
2246 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2247 return 0;
2248 else
1c5cb38e 2249 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2250 default:
2251 return INCOMPATIBLE_TYPE_BADNESS;
2252 }
2253 break;
2254 case TYPE_CODE_RANGE:
2255 switch (TYPE_CODE (arg))
2256 {
2257 case TYPE_CODE_INT:
2258 case TYPE_CODE_CHAR:
2259 case TYPE_CODE_RANGE:
2260 case TYPE_CODE_BOOL:
2261 case TYPE_CODE_ENUM:
1c5cb38e 2262 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2263 case TYPE_CODE_FLT:
2264 return INT_FLOAT_CONVERSION_BADNESS;
2265 default:
2266 return INCOMPATIBLE_TYPE_BADNESS;
2267 }
2268 break;
2269 case TYPE_CODE_BOOL:
2270 switch (TYPE_CODE (arg))
2271 {
2272 case TYPE_CODE_INT:
2273 case TYPE_CODE_CHAR:
2274 case TYPE_CODE_RANGE:
2275 case TYPE_CODE_ENUM:
2276 case TYPE_CODE_FLT:
2277 case TYPE_CODE_PTR:
2278 return BOOLEAN_CONVERSION_BADNESS;
2279 case TYPE_CODE_BOOL:
2280 return 0;
2281 default:
2282 return INCOMPATIBLE_TYPE_BADNESS;
2283 }
2284 break;
2285 case TYPE_CODE_FLT:
2286 switch (TYPE_CODE (arg))
2287 {
2288 case TYPE_CODE_FLT:
2289 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2290 return FLOAT_PROMOTION_BADNESS;
2291 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2292 return 0;
2293 else
2294 return FLOAT_CONVERSION_BADNESS;
2295 case TYPE_CODE_INT:
2296 case TYPE_CODE_BOOL:
2297 case TYPE_CODE_ENUM:
2298 case TYPE_CODE_RANGE:
2299 case TYPE_CODE_CHAR:
2300 return INT_FLOAT_CONVERSION_BADNESS;
2301 default:
2302 return INCOMPATIBLE_TYPE_BADNESS;
2303 }
2304 break;
2305 case TYPE_CODE_COMPLEX:
2306 switch (TYPE_CODE (arg))
7ba81444 2307 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2308 case TYPE_CODE_FLT:
2309 return FLOAT_PROMOTION_BADNESS;
2310 case TYPE_CODE_COMPLEX:
2311 return 0;
2312 default:
2313 return INCOMPATIBLE_TYPE_BADNESS;
2314 }
2315 break;
2316 case TYPE_CODE_STRUCT:
c906108c 2317 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2318 switch (TYPE_CODE (arg))
2319 {
2320 case TYPE_CODE_STRUCT:
2321 /* Check for derivation */
2322 if (is_ancestor (parm, arg))
2323 return BASE_CONVERSION_BADNESS;
2324 /* else fall through */
2325 default:
2326 return INCOMPATIBLE_TYPE_BADNESS;
2327 }
2328 break;
2329 case TYPE_CODE_UNION:
2330 switch (TYPE_CODE (arg))
2331 {
2332 case TYPE_CODE_UNION:
2333 default:
2334 return INCOMPATIBLE_TYPE_BADNESS;
2335 }
2336 break;
0d5de010 2337 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2338 switch (TYPE_CODE (arg))
2339 {
2340 default:
2341 return INCOMPATIBLE_TYPE_BADNESS;
2342 }
2343 break;
2344 case TYPE_CODE_METHOD:
2345 switch (TYPE_CODE (arg))
2346 {
2347
2348 default:
2349 return INCOMPATIBLE_TYPE_BADNESS;
2350 }
2351 break;
2352 case TYPE_CODE_REF:
2353 switch (TYPE_CODE (arg))
2354 {
2355
2356 default:
2357 return INCOMPATIBLE_TYPE_BADNESS;
2358 }
2359
2360 break;
2361 case TYPE_CODE_SET:
2362 switch (TYPE_CODE (arg))
2363 {
2364 /* Not in C++ */
2365 case TYPE_CODE_SET:
7ba81444
MS
2366 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2367 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2368 default:
2369 return INCOMPATIBLE_TYPE_BADNESS;
2370 }
2371 break;
2372 case TYPE_CODE_VOID:
2373 default:
2374 return INCOMPATIBLE_TYPE_BADNESS;
2375 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2376}
2377
c5aa993b
JM
2378
2379/* End of functions for overload resolution */
c906108c 2380
c906108c 2381static void
fba45db2 2382print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2383{
2384 int bitno;
2385
2386 for (bitno = 0; bitno < nbits; bitno++)
2387 {
2388 if ((bitno % 8) == 0)
2389 {
2390 puts_filtered (" ");
2391 }
2392 if (B_TST (bits, bitno))
a3f17187 2393 printf_filtered (("1"));
c906108c 2394 else
a3f17187 2395 printf_filtered (("0"));
c906108c
SS
2396 }
2397}
2398
ad2f7632 2399/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2400 include it since we may get into a infinitely recursive
2401 situation. */
c906108c
SS
2402
2403static void
ad2f7632 2404print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2405{
2406 if (args != NULL)
2407 {
ad2f7632
DJ
2408 int i;
2409
2410 for (i = 0; i < nargs; i++)
2411 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2412 }
2413}
2414
d6a843b5
JK
2415int
2416field_is_static (struct field *f)
2417{
2418 /* "static" fields are the fields whose location is not relative
2419 to the address of the enclosing struct. It would be nice to
2420 have a dedicated flag that would be set for static fields when
2421 the type is being created. But in practice, checking the field
2422 loc_kind should give us an accurate answer (at least as long as
2423 we assume that DWARF block locations are not going to be used
2424 for static fields). FIXME? */
2425 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2426 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2427}
2428
c906108c 2429static void
fba45db2 2430dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2431{
2432 int method_idx;
2433 int overload_idx;
2434 struct fn_field *f;
2435
2436 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2437 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2438 printf_filtered ("\n");
2439 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2440 {
2441 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2442 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2443 method_idx,
2444 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2445 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2446 gdb_stdout);
a3f17187 2447 printf_filtered (_(") length %d\n"),
c906108c
SS
2448 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2449 for (overload_idx = 0;
2450 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2451 overload_idx++)
2452 {
2453 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2454 overload_idx,
2455 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2456 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2457 gdb_stdout);
c906108c
SS
2458 printf_filtered (")\n");
2459 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2460 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2461 gdb_stdout);
c906108c
SS
2462 printf_filtered ("\n");
2463
2464 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2465 spaces + 8 + 2);
2466
2467 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2468 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2469 gdb_stdout);
c906108c
SS
2470 printf_filtered ("\n");
2471
ad2f7632 2472 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2473 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2474 overload_idx)),
ad2f7632 2475 spaces);
c906108c 2476 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2477 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2478 gdb_stdout);
c906108c
SS
2479 printf_filtered ("\n");
2480
2481 printfi_filtered (spaces + 8, "is_const %d\n",
2482 TYPE_FN_FIELD_CONST (f, overload_idx));
2483 printfi_filtered (spaces + 8, "is_volatile %d\n",
2484 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2485 printfi_filtered (spaces + 8, "is_private %d\n",
2486 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2487 printfi_filtered (spaces + 8, "is_protected %d\n",
2488 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2489 printfi_filtered (spaces + 8, "is_stub %d\n",
2490 TYPE_FN_FIELD_STUB (f, overload_idx));
2491 printfi_filtered (spaces + 8, "voffset %u\n",
2492 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2493 }
2494 }
2495}
2496
2497static void
fba45db2 2498print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2499{
2500 printfi_filtered (spaces, "n_baseclasses %d\n",
2501 TYPE_N_BASECLASSES (type));
2502 printfi_filtered (spaces, "nfn_fields %d\n",
2503 TYPE_NFN_FIELDS (type));
2504 printfi_filtered (spaces, "nfn_fields_total %d\n",
2505 TYPE_NFN_FIELDS_TOTAL (type));
2506 if (TYPE_N_BASECLASSES (type) > 0)
2507 {
2508 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2509 TYPE_N_BASECLASSES (type));
7ba81444
MS
2510 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2511 gdb_stdout);
c906108c
SS
2512 printf_filtered (")");
2513
2514 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2515 TYPE_N_BASECLASSES (type));
2516 puts_filtered ("\n");
2517 }
2518 if (TYPE_NFIELDS (type) > 0)
2519 {
2520 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2521 {
7ba81444
MS
2522 printfi_filtered (spaces,
2523 "private_field_bits (%d bits at *",
c906108c 2524 TYPE_NFIELDS (type));
7ba81444
MS
2525 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2526 gdb_stdout);
c906108c
SS
2527 printf_filtered (")");
2528 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2529 TYPE_NFIELDS (type));
2530 puts_filtered ("\n");
2531 }
2532 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2533 {
7ba81444
MS
2534 printfi_filtered (spaces,
2535 "protected_field_bits (%d bits at *",
c906108c 2536 TYPE_NFIELDS (type));
7ba81444
MS
2537 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2538 gdb_stdout);
c906108c
SS
2539 printf_filtered (")");
2540 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2541 TYPE_NFIELDS (type));
2542 puts_filtered ("\n");
2543 }
2544 }
2545 if (TYPE_NFN_FIELDS (type) > 0)
2546 {
2547 dump_fn_fieldlists (type, spaces);
2548 }
2549}
2550
2551static struct obstack dont_print_type_obstack;
2552
2553void
fba45db2 2554recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2555{
2556 int idx;
2557
2558 if (spaces == 0)
2559 obstack_begin (&dont_print_type_obstack, 0);
2560
2561 if (TYPE_NFIELDS (type) > 0
2562 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2563 {
2564 struct type **first_dont_print
7ba81444 2565 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2566
7ba81444
MS
2567 int i = (struct type **)
2568 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2569
2570 while (--i >= 0)
2571 {
2572 if (type == first_dont_print[i])
2573 {
2574 printfi_filtered (spaces, "type node ");
d4f3574e 2575 gdb_print_host_address (type, gdb_stdout);
a3f17187 2576 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2577 return;
2578 }
2579 }
2580
2581 obstack_ptr_grow (&dont_print_type_obstack, type);
2582 }
2583
2584 printfi_filtered (spaces, "type node ");
d4f3574e 2585 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2586 printf_filtered ("\n");
2587 printfi_filtered (spaces, "name '%s' (",
2588 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2589 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2590 printf_filtered (")\n");
e9e79dd9
FF
2591 printfi_filtered (spaces, "tagname '%s' (",
2592 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2593 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2594 printf_filtered (")\n");
c906108c
SS
2595 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2596 switch (TYPE_CODE (type))
2597 {
c5aa993b
JM
2598 case TYPE_CODE_UNDEF:
2599 printf_filtered ("(TYPE_CODE_UNDEF)");
2600 break;
2601 case TYPE_CODE_PTR:
2602 printf_filtered ("(TYPE_CODE_PTR)");
2603 break;
2604 case TYPE_CODE_ARRAY:
2605 printf_filtered ("(TYPE_CODE_ARRAY)");
2606 break;
2607 case TYPE_CODE_STRUCT:
2608 printf_filtered ("(TYPE_CODE_STRUCT)");
2609 break;
2610 case TYPE_CODE_UNION:
2611 printf_filtered ("(TYPE_CODE_UNION)");
2612 break;
2613 case TYPE_CODE_ENUM:
2614 printf_filtered ("(TYPE_CODE_ENUM)");
2615 break;
4f2aea11
MK
2616 case TYPE_CODE_FLAGS:
2617 printf_filtered ("(TYPE_CODE_FLAGS)");
2618 break;
c5aa993b
JM
2619 case TYPE_CODE_FUNC:
2620 printf_filtered ("(TYPE_CODE_FUNC)");
2621 break;
2622 case TYPE_CODE_INT:
2623 printf_filtered ("(TYPE_CODE_INT)");
2624 break;
2625 case TYPE_CODE_FLT:
2626 printf_filtered ("(TYPE_CODE_FLT)");
2627 break;
2628 case TYPE_CODE_VOID:
2629 printf_filtered ("(TYPE_CODE_VOID)");
2630 break;
2631 case TYPE_CODE_SET:
2632 printf_filtered ("(TYPE_CODE_SET)");
2633 break;
2634 case TYPE_CODE_RANGE:
2635 printf_filtered ("(TYPE_CODE_RANGE)");
2636 break;
2637 case TYPE_CODE_STRING:
2638 printf_filtered ("(TYPE_CODE_STRING)");
2639 break;
e9e79dd9
FF
2640 case TYPE_CODE_BITSTRING:
2641 printf_filtered ("(TYPE_CODE_BITSTRING)");
2642 break;
c5aa993b
JM
2643 case TYPE_CODE_ERROR:
2644 printf_filtered ("(TYPE_CODE_ERROR)");
2645 break;
0d5de010
DJ
2646 case TYPE_CODE_MEMBERPTR:
2647 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2648 break;
2649 case TYPE_CODE_METHODPTR:
2650 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2651 break;
2652 case TYPE_CODE_METHOD:
2653 printf_filtered ("(TYPE_CODE_METHOD)");
2654 break;
2655 case TYPE_CODE_REF:
2656 printf_filtered ("(TYPE_CODE_REF)");
2657 break;
2658 case TYPE_CODE_CHAR:
2659 printf_filtered ("(TYPE_CODE_CHAR)");
2660 break;
2661 case TYPE_CODE_BOOL:
2662 printf_filtered ("(TYPE_CODE_BOOL)");
2663 break;
e9e79dd9
FF
2664 case TYPE_CODE_COMPLEX:
2665 printf_filtered ("(TYPE_CODE_COMPLEX)");
2666 break;
c5aa993b
JM
2667 case TYPE_CODE_TYPEDEF:
2668 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2669 break;
e9e79dd9
FF
2670 case TYPE_CODE_TEMPLATE:
2671 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2672 break;
2673 case TYPE_CODE_TEMPLATE_ARG:
2674 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2675 break;
5c4e30ca
DC
2676 case TYPE_CODE_NAMESPACE:
2677 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2678 break;
c5aa993b
JM
2679 default:
2680 printf_filtered ("(UNKNOWN TYPE CODE)");
2681 break;
c906108c
SS
2682 }
2683 puts_filtered ("\n");
2684 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2685 printfi_filtered (spaces, "objfile ");
d4f3574e 2686 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
c906108c
SS
2687 printf_filtered ("\n");
2688 printfi_filtered (spaces, "target_type ");
d4f3574e 2689 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2690 printf_filtered ("\n");
2691 if (TYPE_TARGET_TYPE (type) != NULL)
2692 {
2693 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2694 }
2695 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2696 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2697 printf_filtered ("\n");
2698 printfi_filtered (spaces, "reference_type ");
d4f3574e 2699 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2700 printf_filtered ("\n");
2fdde8f8
DJ
2701 printfi_filtered (spaces, "type_chain ");
2702 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2703 printf_filtered ("\n");
7ba81444
MS
2704 printfi_filtered (spaces, "instance_flags 0x%x",
2705 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2706 if (TYPE_CONST (type))
2707 {
2708 puts_filtered (" TYPE_FLAG_CONST");
2709 }
2710 if (TYPE_VOLATILE (type))
2711 {
2712 puts_filtered (" TYPE_FLAG_VOLATILE");
2713 }
2714 if (TYPE_CODE_SPACE (type))
2715 {
2716 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2717 }
2718 if (TYPE_DATA_SPACE (type))
2719 {
2720 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2721 }
8b2dbe47
KB
2722 if (TYPE_ADDRESS_CLASS_1 (type))
2723 {
2724 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2725 }
2726 if (TYPE_ADDRESS_CLASS_2 (type))
2727 {
2728 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2729 }
2fdde8f8 2730 puts_filtered ("\n");
876cecd0
TT
2731
2732 printfi_filtered (spaces, "flags");
762a036f 2733 if (TYPE_UNSIGNED (type))
c906108c
SS
2734 {
2735 puts_filtered (" TYPE_FLAG_UNSIGNED");
2736 }
762a036f
FF
2737 if (TYPE_NOSIGN (type))
2738 {
2739 puts_filtered (" TYPE_FLAG_NOSIGN");
2740 }
2741 if (TYPE_STUB (type))
c906108c
SS
2742 {
2743 puts_filtered (" TYPE_FLAG_STUB");
2744 }
762a036f
FF
2745 if (TYPE_TARGET_STUB (type))
2746 {
2747 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2748 }
2749 if (TYPE_STATIC (type))
2750 {
2751 puts_filtered (" TYPE_FLAG_STATIC");
2752 }
762a036f
FF
2753 if (TYPE_PROTOTYPED (type))
2754 {
2755 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2756 }
2757 if (TYPE_INCOMPLETE (type))
2758 {
2759 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2760 }
762a036f
FF
2761 if (TYPE_VARARGS (type))
2762 {
2763 puts_filtered (" TYPE_FLAG_VARARGS");
2764 }
f5f8a009
EZ
2765 /* This is used for things like AltiVec registers on ppc. Gcc emits
2766 an attribute for the array type, which tells whether or not we
2767 have a vector, instead of a regular array. */
2768 if (TYPE_VECTOR (type))
2769 {
2770 puts_filtered (" TYPE_FLAG_VECTOR");
2771 }
876cecd0
TT
2772 if (TYPE_FIXED_INSTANCE (type))
2773 {
2774 puts_filtered (" TYPE_FIXED_INSTANCE");
2775 }
2776 if (TYPE_STUB_SUPPORTED (type))
2777 {
2778 puts_filtered (" TYPE_STUB_SUPPORTED");
2779 }
2780 if (TYPE_NOTTEXT (type))
2781 {
2782 puts_filtered (" TYPE_NOTTEXT");
2783 }
c906108c
SS
2784 puts_filtered ("\n");
2785 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 2786 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
2787 puts_filtered ("\n");
2788 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2789 {
2790 printfi_filtered (spaces + 2,
2791 "[%d] bitpos %d bitsize %d type ",
2792 idx, TYPE_FIELD_BITPOS (type, idx),
2793 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 2794 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
2795 printf_filtered (" name '%s' (",
2796 TYPE_FIELD_NAME (type, idx) != NULL
2797 ? TYPE_FIELD_NAME (type, idx)
2798 : "<NULL>");
d4f3574e 2799 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
2800 printf_filtered (")\n");
2801 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2802 {
2803 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2804 }
2805 }
2806 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 2807 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
2808 puts_filtered ("\n");
2809 if (TYPE_VPTR_BASETYPE (type) != NULL)
2810 {
2811 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2812 }
7ba81444
MS
2813 printfi_filtered (spaces, "vptr_fieldno %d\n",
2814 TYPE_VPTR_FIELDNO (type));
c906108c
SS
2815 switch (TYPE_CODE (type))
2816 {
c5aa993b
JM
2817 case TYPE_CODE_STRUCT:
2818 printfi_filtered (spaces, "cplus_stuff ");
7ba81444
MS
2819 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2820 gdb_stdout);
c5aa993b
JM
2821 puts_filtered ("\n");
2822 print_cplus_stuff (type, spaces);
2823 break;
c906108c 2824
701c159d
AC
2825 case TYPE_CODE_FLT:
2826 printfi_filtered (spaces, "floatformat ");
8da61cc4 2827 if (TYPE_FLOATFORMAT (type) == NULL)
701c159d
AC
2828 puts_filtered ("(null)");
2829 else
8da61cc4
DJ
2830 {
2831 puts_filtered ("{ ");
2832 if (TYPE_FLOATFORMAT (type)[0] == NULL
2833 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2834 puts_filtered ("(null)");
2835 else
2836 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2837
2838 puts_filtered (", ");
2839 if (TYPE_FLOATFORMAT (type)[1] == NULL
2840 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2841 puts_filtered ("(null)");
2842 else
2843 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2844
2845 puts_filtered (" }");
2846 }
701c159d
AC
2847 puts_filtered ("\n");
2848 break;
2849
c5aa993b 2850 default:
7ba81444
MS
2851 /* We have to pick one of the union types to be able print and
2852 test the value. Pick cplus_struct_type, even though we know
2853 it isn't any particular one. */
c5aa993b 2854 printfi_filtered (spaces, "type_specific ");
d4f3574e 2855 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
2856 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2857 {
a3f17187 2858 printf_filtered (_(" (unknown data form)"));
c5aa993b
JM
2859 }
2860 printf_filtered ("\n");
2861 break;
c906108c
SS
2862
2863 }
2864 if (spaces == 0)
2865 obstack_free (&dont_print_type_obstack, NULL);
2866}
2867
ae5a43e0
DJ
2868/* Trivial helpers for the libiberty hash table, for mapping one
2869 type to another. */
2870
2871struct type_pair
2872{
2873 struct type *old, *new;
2874};
2875
2876static hashval_t
2877type_pair_hash (const void *item)
2878{
2879 const struct type_pair *pair = item;
2880 return htab_hash_pointer (pair->old);
2881}
2882
2883static int
2884type_pair_eq (const void *item_lhs, const void *item_rhs)
2885{
2886 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2887 return lhs->old == rhs->old;
2888}
2889
2890/* Allocate the hash table used by copy_type_recursive to walk
2891 types without duplicates. We use OBJFILE's obstack, because
2892 OBJFILE is about to be deleted. */
2893
2894htab_t
2895create_copied_types_hash (struct objfile *objfile)
2896{
2897 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2898 NULL, &objfile->objfile_obstack,
2899 hashtab_obstack_allocate,
2900 dummy_obstack_deallocate);
2901}
2902
7ba81444
MS
2903/* Recursively copy (deep copy) TYPE, if it is associated with
2904 OBJFILE. Return a new type allocated using malloc, a saved type if
2905 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2906 not associated with OBJFILE. */
ae5a43e0
DJ
2907
2908struct type *
7ba81444
MS
2909copy_type_recursive (struct objfile *objfile,
2910 struct type *type,
ae5a43e0
DJ
2911 htab_t copied_types)
2912{
2913 struct type_pair *stored, pair;
2914 void **slot;
2915 struct type *new_type;
2916
2917 if (TYPE_OBJFILE (type) == NULL)
2918 return type;
2919
7ba81444
MS
2920 /* This type shouldn't be pointing to any types in other objfiles;
2921 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
2922 gdb_assert (TYPE_OBJFILE (type) == objfile);
2923
2924 pair.old = type;
2925 slot = htab_find_slot (copied_types, &pair, INSERT);
2926 if (*slot != NULL)
2927 return ((struct type_pair *) *slot)->new;
2928
2929 new_type = alloc_type (NULL);
2930
2931 /* We must add the new type to the hash table immediately, in case
2932 we encounter this type again during a recursive call below. */
d87ecdfb 2933 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
2934 stored->old = type;
2935 stored->new = new_type;
2936 *slot = stored;
2937
876cecd0
TT
2938 /* Copy the common fields of types. For the main type, we simply
2939 copy the entire thing and then update specific fields as needed. */
2940 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
2941 TYPE_OBJFILE (new_type) = NULL;
2942
ae5a43e0
DJ
2943 if (TYPE_NAME (type))
2944 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2945 if (TYPE_TAG_NAME (type))
2946 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
2947
2948 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2949 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2950
2951 /* Copy the fields. */
ae5a43e0
DJ
2952 if (TYPE_NFIELDS (type))
2953 {
2954 int i, nfields;
2955
2956 nfields = TYPE_NFIELDS (type);
1deafd4e 2957 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
2958 for (i = 0; i < nfields; i++)
2959 {
7ba81444
MS
2960 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2961 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
2962 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2963 if (TYPE_FIELD_TYPE (type, i))
2964 TYPE_FIELD_TYPE (new_type, i)
2965 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2966 copied_types);
2967 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
2968 TYPE_FIELD_NAME (new_type, i) =
2969 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 2970 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 2971 {
d6a843b5
JK
2972 case FIELD_LOC_KIND_BITPOS:
2973 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
2974 TYPE_FIELD_BITPOS (type, i));
2975 break;
2976 case FIELD_LOC_KIND_PHYSADDR:
2977 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
2978 TYPE_FIELD_STATIC_PHYSADDR (type, i));
2979 break;
2980 case FIELD_LOC_KIND_PHYSNAME:
2981 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
2982 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
2983 i)));
2984 break;
2985 default:
2986 internal_error (__FILE__, __LINE__,
2987 _("Unexpected type field location kind: %d"),
2988 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
2989 }
2990 }
2991 }
2992
2993 /* Copy pointers to other types. */
2994 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
2995 TYPE_TARGET_TYPE (new_type) =
2996 copy_type_recursive (objfile,
2997 TYPE_TARGET_TYPE (type),
2998 copied_types);
ae5a43e0 2999 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3000 TYPE_VPTR_BASETYPE (new_type) =
3001 copy_type_recursive (objfile,
3002 TYPE_VPTR_BASETYPE (type),
3003 copied_types);
ae5a43e0
DJ
3004 /* Maybe copy the type_specific bits.
3005
3006 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3007 base classes and methods. There's no fundamental reason why we
3008 can't, but at the moment it is not needed. */
3009
3010 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3011 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3012 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3013 || TYPE_CODE (type) == TYPE_CODE_UNION
3014 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3015 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3016 INIT_CPLUS_SPECIFIC (new_type);
3017
3018 return new_type;
3019}
3020
4af88198
JB
3021/* Make a copy of the given TYPE, except that the pointer & reference
3022 types are not preserved.
3023
3024 This function assumes that the given type has an associated objfile.
3025 This objfile is used to allocate the new type. */
3026
3027struct type *
3028copy_type (const struct type *type)
3029{
3030 struct type *new_type;
3031
3032 gdb_assert (TYPE_OBJFILE (type) != NULL);
3033
3034 new_type = alloc_type (TYPE_OBJFILE (type));
3035 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3036 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3037 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3038 sizeof (struct main_type));
3039
3040 return new_type;
3041}
3042
8da61cc4
DJ
3043static struct type *
3044build_flt (int bit, char *name, const struct floatformat **floatformats)
3045{
3046 struct type *t;
3047
3048 if (bit == -1)
3049 {
3050 gdb_assert (floatformats != NULL);
3051 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3052 bit = floatformats[0]->totalsize;
3053 }
3054 gdb_assert (bit >= 0);
3055
3056 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3057 TYPE_FLOATFORMAT (t) = floatformats;
3058 return t;
3059}
3060
000177f0
AC
3061static struct gdbarch_data *gdbtypes_data;
3062
3063const struct builtin_type *
3064builtin_type (struct gdbarch *gdbarch)
3065{
3066 return gdbarch_data (gdbarch, gdbtypes_data);
3067}
3068
70bd8e24 3069
70bd8e24
AC
3070static struct type *
3071build_complex (int bit, char *name, struct type *target_type)
3072{
3073 struct type *t;
3074 if (bit <= 0 || target_type == builtin_type_error)
3075 {
3076 gdb_assert (builtin_type_error != NULL);
3077 return builtin_type_error;
3078 }
3079 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3080 0, name, (struct objfile *) NULL);
3081 TYPE_TARGET_TYPE (t) = target_type;
3082 return t;
3083}
3084
000177f0
AC
3085static void *
3086gdbtypes_post_init (struct gdbarch *gdbarch)
3087{
3088 struct builtin_type *builtin_type
3089 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3090
3091 builtin_type->builtin_void =
3092 init_type (TYPE_CODE_VOID, 1,
3093 0,
3094 "void", (struct objfile *) NULL);
3095 builtin_type->builtin_char =
3096 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3097 (TYPE_FLAG_NOSIGN
8a7e34d8 3098 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
000177f0 3099 "char", (struct objfile *) NULL);
000177f0
AC
3100 builtin_type->builtin_signed_char =
3101 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3102 0,
3103 "signed char", (struct objfile *) NULL);
3104 builtin_type->builtin_unsigned_char =
3105 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3106 TYPE_FLAG_UNSIGNED,
3107 "unsigned char", (struct objfile *) NULL);
3108 builtin_type->builtin_short =
7ba81444 3109 init_type (TYPE_CODE_INT,
8a7e34d8 3110 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3111 0, "short", (struct objfile *) NULL);
000177f0 3112 builtin_type->builtin_unsigned_short =
7ba81444 3113 init_type (TYPE_CODE_INT,
8a7e34d8 3114 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3115 TYPE_FLAG_UNSIGNED, "unsigned short",
3116 (struct objfile *) NULL);
000177f0 3117 builtin_type->builtin_int =
7ba81444 3118 init_type (TYPE_CODE_INT,
8a7e34d8 3119 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3120 0, "int", (struct objfile *) NULL);
000177f0 3121 builtin_type->builtin_unsigned_int =
7ba81444 3122 init_type (TYPE_CODE_INT,
8a7e34d8 3123 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3124 TYPE_FLAG_UNSIGNED, "unsigned int",
3125 (struct objfile *) NULL);
000177f0 3126 builtin_type->builtin_long =
7ba81444 3127 init_type (TYPE_CODE_INT,
8a7e34d8 3128 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3129 0, "long", (struct objfile *) NULL);
000177f0 3130 builtin_type->builtin_unsigned_long =
7ba81444 3131 init_type (TYPE_CODE_INT,
8a7e34d8 3132 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3133 TYPE_FLAG_UNSIGNED, "unsigned long",
3134 (struct objfile *) NULL);
000177f0 3135 builtin_type->builtin_long_long =
9a76efb6 3136 init_type (TYPE_CODE_INT,
8a7e34d8 3137 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 3138 0, "long long", (struct objfile *) NULL);
000177f0 3139 builtin_type->builtin_unsigned_long_long =
9a76efb6 3140 init_type (TYPE_CODE_INT,
8a7e34d8 3141 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6
UW
3142 TYPE_FLAG_UNSIGNED, "unsigned long long",
3143 (struct objfile *) NULL);
70bd8e24
AC
3144 builtin_type->builtin_float
3145 = build_flt (gdbarch_float_bit (gdbarch), "float",
3146 gdbarch_float_format (gdbarch));
3147 builtin_type->builtin_double
3148 = build_flt (gdbarch_double_bit (gdbarch), "double",
3149 gdbarch_double_format (gdbarch));
3150 builtin_type->builtin_long_double
3151 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3152 gdbarch_long_double_format (gdbarch));
3153 builtin_type->builtin_complex
3154 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3155 builtin_type->builtin_float);
3156 builtin_type->builtin_double_complex
3157 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3158 builtin_type->builtin_double);
000177f0
AC
3159 builtin_type->builtin_string =
3160 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3161 0,
3162 "string", (struct objfile *) NULL);
000177f0
AC
3163 builtin_type->builtin_bool =
3164 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3165 0,
3166 "bool", (struct objfile *) NULL);
3167
7678ef8f
TJB
3168 /* The following three are about decimal floating point types, which
3169 are 32-bits, 64-bits and 128-bits respectively. */
3170 builtin_type->builtin_decfloat
3171 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3172 0,
213e4dc2 3173 "_Decimal32", (struct objfile *) NULL);
7678ef8f
TJB
3174 builtin_type->builtin_decdouble
3175 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3176 0,
213e4dc2 3177 "_Decimal64", (struct objfile *) NULL);
7678ef8f
TJB
3178 builtin_type->builtin_declong
3179 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3180 0,
213e4dc2 3181 "_Decimal128", (struct objfile *) NULL);
7678ef8f 3182
7ba81444 3183 /* Pointer/Address types. */
000177f0
AC
3184
3185 /* NOTE: on some targets, addresses and pointers are not necessarily
3186 the same --- for example, on the D10V, pointers are 16 bits long,
3187 but addresses are 32 bits long. See doc/gdbint.texinfo,
3188 ``Pointers Are Not Always Addresses''.
3189
3190 The upshot is:
3191 - gdb's `struct type' always describes the target's
3192 representation.
3193 - gdb's `struct value' objects should always hold values in
3194 target form.
3195 - gdb's CORE_ADDR values are addresses in the unified virtual
3196 address space that the assembler and linker work with. Thus,
3197 since target_read_memory takes a CORE_ADDR as an argument, it
3198 can access any memory on the target, even if the processor has
3199 separate code and data address spaces.
3200
3201 So, for example:
3202 - If v is a value holding a D10V code pointer, its contents are
3203 in target form: a big-endian address left-shifted two bits.
3204 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3205 sizeof (void *) == 2 on the target.
3206
3207 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3208 target type for a value the target will never see. It's only
3209 used to hold the values of (typeless) linker symbols, which are
3210 indeed in the unified virtual address space. */
7ba81444
MS
3211
3212 builtin_type->builtin_data_ptr =
3213 make_pointer_type (builtin_type->builtin_void, NULL);
3214 builtin_type->builtin_func_ptr =
3215 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
000177f0 3216 builtin_type->builtin_core_addr =
7ba81444 3217 init_type (TYPE_CODE_INT,
8a7e34d8 3218 gdbarch_addr_bit (gdbarch) / 8,
000177f0
AC
3219 TYPE_FLAG_UNSIGNED,
3220 "__CORE_ADDR", (struct objfile *) NULL);
3221
64c50499
UW
3222
3223 /* The following set of types is used for symbols with no
3224 debug information. */
7ba81444
MS
3225 builtin_type->nodebug_text_symbol =
3226 init_type (TYPE_CODE_FUNC, 1, 0,
3227 "<text variable, no debug info>", NULL);
3228 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3229 builtin_type->builtin_int;
3230 builtin_type->nodebug_data_symbol =
3231 init_type (TYPE_CODE_INT,
3232 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3233 "<data variable, no debug info>", NULL);
3234 builtin_type->nodebug_unknown_symbol =
3235 init_type (TYPE_CODE_INT, 1, 0,
3236 "<variable (not text or data), no debug info>", NULL);
3237 builtin_type->nodebug_tls_symbol =
3238 init_type (TYPE_CODE_INT,
3239 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3240 "<thread local variable, no debug info>", NULL);
64c50499 3241
000177f0
AC
3242 return builtin_type;
3243}
3244
a14ed312 3245extern void _initialize_gdbtypes (void);
c906108c 3246void
fba45db2 3247_initialize_gdbtypes (void)
c906108c 3248{
5674de60
UW
3249 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3250
7ba81444
MS
3251 /* FIXME: The following types are architecture-neutral. However,
3252 they contain pointer_type and reference_type fields potentially
3253 caching pointer or reference types that *are* architecture
3254 dependent. */
7ad6570d
AC
3255
3256 builtin_type_int0 =
3257 init_type (TYPE_CODE_INT, 0 / 8,
3258 0,
3259 "int0_t", (struct objfile *) NULL);
3260 builtin_type_int8 =
3261 init_type (TYPE_CODE_INT, 8 / 8,
ea37ba09 3262 TYPE_FLAG_NOTTEXT,
7ad6570d
AC
3263 "int8_t", (struct objfile *) NULL);
3264 builtin_type_uint8 =
3265 init_type (TYPE_CODE_INT, 8 / 8,
ea37ba09 3266 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
7ad6570d
AC
3267 "uint8_t", (struct objfile *) NULL);
3268 builtin_type_int16 =
3269 init_type (TYPE_CODE_INT, 16 / 8,
3270 0,
3271 "int16_t", (struct objfile *) NULL);
3272 builtin_type_uint16 =
3273 init_type (TYPE_CODE_INT, 16 / 8,
3274 TYPE_FLAG_UNSIGNED,
3275 "uint16_t", (struct objfile *) NULL);
3276 builtin_type_int32 =
3277 init_type (TYPE_CODE_INT, 32 / 8,
3278 0,
3279 "int32_t", (struct objfile *) NULL);
3280 builtin_type_uint32 =
3281 init_type (TYPE_CODE_INT, 32 / 8,
3282 TYPE_FLAG_UNSIGNED,
3283 "uint32_t", (struct objfile *) NULL);
3284 builtin_type_int64 =
3285 init_type (TYPE_CODE_INT, 64 / 8,
3286 0,
3287 "int64_t", (struct objfile *) NULL);
3288 builtin_type_uint64 =
3289 init_type (TYPE_CODE_INT, 64 / 8,
3290 TYPE_FLAG_UNSIGNED,
3291 "uint64_t", (struct objfile *) NULL);
3292 builtin_type_int128 =
3293 init_type (TYPE_CODE_INT, 128 / 8,
3294 0,
3295 "int128_t", (struct objfile *) NULL);
3296 builtin_type_uint128 =
3297 init_type (TYPE_CODE_INT, 128 / 8,
3298 TYPE_FLAG_UNSIGNED,
3299 "uint128_t", (struct objfile *) NULL);
3300
7ba81444
MS
3301 builtin_type_ieee_single =
3302 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3303 builtin_type_ieee_double =
3304 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3305 builtin_type_i387_ext =
3306 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3307 builtin_type_m68881_ext =
3308 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3309 builtin_type_arm_ext =
3310 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3311 builtin_type_ia64_spill =
3312 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3313 builtin_type_ia64_quad =
3314 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
598f52df 3315
fde6c819
UW
3316 builtin_type_void =
3317 init_type (TYPE_CODE_VOID, 1,
3318 0,
3319 "void", (struct objfile *) NULL);
b769d911
UW
3320 builtin_type_true_char =
3321 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3322 0,
3323 "true character", (struct objfile *) NULL);
3324 builtin_type_true_unsigned_char =
3325 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3326 TYPE_FLAG_UNSIGNED,
3327 "true character", (struct objfile *) NULL);
fde6c819 3328
85c07804
AC
3329 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3330Set debugging of C++ overloading."), _("\
3331Show debugging of C++ overloading."), _("\
3332When enabled, ranking of the functions is displayed."),
3333 NULL,
920d2a44 3334 show_overload_debug,
85c07804 3335 &setdebuglist, &showdebuglist);
5674de60 3336
7ba81444 3337 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3338 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3339 &opaque_type_resolution, _("\
3340Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3341Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3342 NULL,
3343 show_opaque_type_resolution,
3344 &setlist, &showlist);
c906108c 3345}
This page took 0.973643 seconds and 4 git commands to generate.