* breakpoint.c (watch_command_1): When the watchpoint isn't local
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
7ba81444
MS
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4f2aea11 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "bfd.h"
26#include "symtab.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "expression.h"
31#include "language.h"
32#include "target.h"
33#include "value.h"
34#include "demangle.h"
35#include "complaints.h"
36#include "gdbcmd.h"
c91ecb25 37#include "wrapper.h"
015a42b4 38#include "cp-abi.h"
a02fd225 39#include "gdb_assert.h"
ae5a43e0 40#include "hashtab.h"
c906108c
SS
41
42/* These variables point to the objects
43 representing the predefined C data types. */
44
449a5da4 45struct type *builtin_type_int0;
c906108c
SS
46struct type *builtin_type_int8;
47struct type *builtin_type_uint8;
48struct type *builtin_type_int16;
49struct type *builtin_type_uint16;
50struct type *builtin_type_int32;
51struct type *builtin_type_uint32;
52struct type *builtin_type_int64;
53struct type *builtin_type_uint64;
8b982acf
EZ
54struct type *builtin_type_int128;
55struct type *builtin_type_uint128;
ac3aafc7 56
8da61cc4
DJ
57/* Floatformat pairs. */
58const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61};
62const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65};
66const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69};
70const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73};
74const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77};
78const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81};
82const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85};
86const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89};
90const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93};
94const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97};
b14d30e1
JM
98const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ibm_long_double,
100 &floatformat_ibm_long_double
101};
8da61cc4
DJ
102
103struct type *builtin_type_ieee_single;
104struct type *builtin_type_ieee_double;
598f52df
AC
105struct type *builtin_type_i387_ext;
106struct type *builtin_type_m68881_ext;
8da61cc4
DJ
107struct type *builtin_type_arm_ext;
108struct type *builtin_type_ia64_spill;
109struct type *builtin_type_ia64_quad;
110
c906108c
SS
111
112int opaque_type_resolution = 1;
920d2a44
AC
113static void
114show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
115 struct cmd_list_element *c,
116 const char *value)
920d2a44
AC
117{
118 fprintf_filtered (file, _("\
119Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
120 value);
121}
122
5d161b24 123int overload_debug = 0;
920d2a44
AC
124static void
125show_overload_debug (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c, const char *value)
127{
7ba81444
MS
128 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
129 value);
920d2a44 130}
c906108c 131
c5aa993b
JM
132struct extra
133 {
134 char str[128];
135 int len;
7ba81444 136 }; /* Maximum extension is 128! FIXME */
c906108c 137
a14ed312 138static void print_bit_vector (B_TYPE *, int);
ad2f7632 139static void print_arg_types (struct field *, int, int);
a14ed312
KB
140static void dump_fn_fieldlists (struct type *, int);
141static void print_cplus_stuff (struct type *, int);
7a292a7a 142
c906108c
SS
143
144/* Alloc a new type structure and fill it with some defaults. If
145 OBJFILE is non-NULL, then allocate the space for the type structure
7ba81444
MS
146 in that objfile's objfile_obstack. Otherwise allocate the new type
147 structure by xmalloc () (for permanent types). */
c906108c
SS
148
149struct type *
fba45db2 150alloc_type (struct objfile *objfile)
c906108c 151{
52f0bd74 152 struct type *type;
c906108c 153
7ba81444 154 /* Alloc the structure and start off with all fields zeroed. */
c906108c
SS
155
156 if (objfile == NULL)
157 {
2fdde8f8
DJ
158 type = xmalloc (sizeof (struct type));
159 memset (type, 0, sizeof (struct type));
160 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
c906108c
SS
161 }
162 else
163 {
b99607ea 164 type = obstack_alloc (&objfile->objfile_obstack,
2fdde8f8
DJ
165 sizeof (struct type));
166 memset (type, 0, sizeof (struct type));
b99607ea 167 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
2fdde8f8 168 sizeof (struct main_type));
c906108c
SS
169 OBJSTAT (objfile, n_types++);
170 }
2fdde8f8 171 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
c906108c 172
7ba81444 173 /* Initialize the fields that might not be zero. */
c906108c
SS
174
175 TYPE_CODE (type) = TYPE_CODE_UNDEF;
176 TYPE_OBJFILE (type) = objfile;
177 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 178 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c
SS
179
180 return (type);
181}
182
2fdde8f8
DJ
183/* Alloc a new type instance structure, fill it with some defaults,
184 and point it at OLDTYPE. Allocate the new type instance from the
185 same place as OLDTYPE. */
186
187static struct type *
188alloc_type_instance (struct type *oldtype)
189{
190 struct type *type;
191
192 /* Allocate the structure. */
193
194 if (TYPE_OBJFILE (oldtype) == NULL)
195 {
196 type = xmalloc (sizeof (struct type));
197 memset (type, 0, sizeof (struct type));
198 }
199 else
200 {
b99607ea 201 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
2fdde8f8
DJ
202 sizeof (struct type));
203 memset (type, 0, sizeof (struct type));
204 }
205 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
206
207 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
208
209 return (type);
210}
211
212/* Clear all remnants of the previous type at TYPE, in preparation for
213 replacing it with something else. */
214static void
215smash_type (struct type *type)
216{
217 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
218
219 /* For now, delete the rings. */
220 TYPE_CHAIN (type) = type;
221
222 /* For now, leave the pointer/reference types alone. */
223}
224
c906108c
SS
225/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
226 to a pointer to memory where the pointer type should be stored.
227 If *TYPEPTR is zero, update it to point to the pointer type we return.
228 We allocate new memory if needed. */
229
230struct type *
fba45db2 231make_pointer_type (struct type *type, struct type **typeptr)
c906108c 232{
52f0bd74 233 struct type *ntype; /* New type */
c906108c 234 struct objfile *objfile;
053cb41b 235 struct type *chain;
c906108c
SS
236
237 ntype = TYPE_POINTER_TYPE (type);
238
c5aa993b 239 if (ntype)
c906108c 240 {
c5aa993b 241 if (typeptr == 0)
7ba81444
MS
242 return ntype; /* Don't care about alloc,
243 and have new type. */
c906108c 244 else if (*typeptr == 0)
c5aa993b 245 {
7ba81444 246 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 247 return ntype;
c5aa993b 248 }
c906108c
SS
249 }
250
251 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
252 {
253 ntype = alloc_type (TYPE_OBJFILE (type));
254 if (typeptr)
255 *typeptr = ntype;
256 }
7ba81444 257 else /* We have storage, but need to reset it. */
c906108c
SS
258 {
259 ntype = *typeptr;
260 objfile = TYPE_OBJFILE (ntype);
053cb41b 261 chain = TYPE_CHAIN (ntype);
2fdde8f8 262 smash_type (ntype);
053cb41b 263 TYPE_CHAIN (ntype) = chain;
c906108c
SS
264 TYPE_OBJFILE (ntype) = objfile;
265 }
266
267 TYPE_TARGET_TYPE (ntype) = type;
268 TYPE_POINTER_TYPE (type) = ntype;
269
7ba81444
MS
270 /* FIXME! Assume the machine has only one representation for
271 pointers! */
c906108c 272
7ba81444
MS
273 TYPE_LENGTH (ntype) =
274 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
c906108c
SS
275 TYPE_CODE (ntype) = TYPE_CODE_PTR;
276
67b2adb2 277 /* Mark pointers as unsigned. The target converts between pointers
76e71323 278 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 279 gdbarch_address_to_pointer. */
c906108c 280 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
c5aa993b 281
c906108c
SS
282 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
283 TYPE_POINTER_TYPE (type) = ntype;
284
053cb41b
JB
285 /* Update the length of all the other variants of this type. */
286 chain = TYPE_CHAIN (ntype);
287 while (chain != ntype)
288 {
289 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
290 chain = TYPE_CHAIN (chain);
291 }
292
c906108c
SS
293 return ntype;
294}
295
296/* Given a type TYPE, return a type of pointers to that type.
297 May need to construct such a type if this is the first use. */
298
299struct type *
fba45db2 300lookup_pointer_type (struct type *type)
c906108c 301{
c5aa993b 302 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
303}
304
7ba81444
MS
305/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
306 points to a pointer to memory where the reference type should be
307 stored. If *TYPEPTR is zero, update it to point to the reference
308 type we return. We allocate new memory if needed. */
c906108c
SS
309
310struct type *
fba45db2 311make_reference_type (struct type *type, struct type **typeptr)
c906108c 312{
52f0bd74 313 struct type *ntype; /* New type */
c906108c 314 struct objfile *objfile;
1e98b326 315 struct type *chain;
c906108c
SS
316
317 ntype = TYPE_REFERENCE_TYPE (type);
318
c5aa993b 319 if (ntype)
c906108c 320 {
c5aa993b 321 if (typeptr == 0)
7ba81444
MS
322 return ntype; /* Don't care about alloc,
323 and have new type. */
c906108c 324 else if (*typeptr == 0)
c5aa993b 325 {
7ba81444 326 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 327 return ntype;
c5aa993b 328 }
c906108c
SS
329 }
330
331 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
332 {
333 ntype = alloc_type (TYPE_OBJFILE (type));
334 if (typeptr)
335 *typeptr = ntype;
336 }
7ba81444 337 else /* We have storage, but need to reset it. */
c906108c
SS
338 {
339 ntype = *typeptr;
340 objfile = TYPE_OBJFILE (ntype);
1e98b326 341 chain = TYPE_CHAIN (ntype);
2fdde8f8 342 smash_type (ntype);
1e98b326 343 TYPE_CHAIN (ntype) = chain;
c906108c
SS
344 TYPE_OBJFILE (ntype) = objfile;
345 }
346
347 TYPE_TARGET_TYPE (ntype) = type;
348 TYPE_REFERENCE_TYPE (type) = ntype;
349
7ba81444
MS
350 /* FIXME! Assume the machine has only one representation for
351 references, and that it matches the (only) representation for
352 pointers! */
c906108c 353
819844ad 354 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
c906108c 355 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 356
c906108c
SS
357 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
358 TYPE_REFERENCE_TYPE (type) = ntype;
359
1e98b326
JB
360 /* Update the length of all the other variants of this type. */
361 chain = TYPE_CHAIN (ntype);
362 while (chain != ntype)
363 {
364 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
365 chain = TYPE_CHAIN (chain);
366 }
367
c906108c
SS
368 return ntype;
369}
370
7ba81444
MS
371/* Same as above, but caller doesn't care about memory allocation
372 details. */
c906108c
SS
373
374struct type *
fba45db2 375lookup_reference_type (struct type *type)
c906108c 376{
c5aa993b 377 return make_reference_type (type, (struct type **) 0);
c906108c
SS
378}
379
7ba81444
MS
380/* Lookup a function type that returns type TYPE. TYPEPTR, if
381 nonzero, points to a pointer to memory where the function type
382 should be stored. If *TYPEPTR is zero, update it to point to the
383 function type we return. We allocate new memory if needed. */
c906108c
SS
384
385struct type *
fba45db2 386make_function_type (struct type *type, struct type **typeptr)
c906108c 387{
52f0bd74 388 struct type *ntype; /* New type */
c906108c
SS
389 struct objfile *objfile;
390
391 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
392 {
393 ntype = alloc_type (TYPE_OBJFILE (type));
394 if (typeptr)
395 *typeptr = ntype;
396 }
7ba81444 397 else /* We have storage, but need to reset it. */
c906108c
SS
398 {
399 ntype = *typeptr;
400 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 401 smash_type (ntype);
c906108c
SS
402 TYPE_OBJFILE (ntype) = objfile;
403 }
404
405 TYPE_TARGET_TYPE (ntype) = type;
406
407 TYPE_LENGTH (ntype) = 1;
408 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 409
c906108c
SS
410 return ntype;
411}
412
413
414/* Given a type TYPE, return a type of functions that return that type.
415 May need to construct such a type if this is the first use. */
416
417struct type *
fba45db2 418lookup_function_type (struct type *type)
c906108c 419{
c5aa993b 420 return make_function_type (type, (struct type **) 0);
c906108c
SS
421}
422
47663de5
MS
423/* Identify address space identifier by name --
424 return the integer flag defined in gdbtypes.h. */
425extern int
426address_space_name_to_int (char *space_identifier)
427{
5f11f355 428 struct gdbarch *gdbarch = current_gdbarch;
8b2dbe47 429 int type_flags;
7ba81444 430 /* Check for known address space delimiters. */
47663de5
MS
431 if (!strcmp (space_identifier, "code"))
432 return TYPE_FLAG_CODE_SPACE;
433 else if (!strcmp (space_identifier, "data"))
434 return TYPE_FLAG_DATA_SPACE;
5f11f355
AC
435 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
436 && gdbarch_address_class_name_to_type_flags (gdbarch,
437 space_identifier,
438 &type_flags))
8b2dbe47 439 return type_flags;
47663de5 440 else
8a3fe4f8 441 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
442}
443
444/* Identify address space identifier by integer flag as defined in
7ba81444 445 gdbtypes.h -- return the string version of the adress space name. */
47663de5 446
321432c0 447const char *
47663de5
MS
448address_space_int_to_name (int space_flag)
449{
5f11f355 450 struct gdbarch *gdbarch = current_gdbarch;
47663de5
MS
451 if (space_flag & TYPE_FLAG_CODE_SPACE)
452 return "code";
453 else if (space_flag & TYPE_FLAG_DATA_SPACE)
454 return "data";
8b2dbe47 455 else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
456 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
457 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
458 else
459 return NULL;
460}
461
2fdde8f8 462/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
463
464 If STORAGE is non-NULL, create the new type instance there.
465 STORAGE must be in the same obstack as TYPE. */
47663de5 466
b9362cc7 467static struct type *
2fdde8f8
DJ
468make_qualified_type (struct type *type, int new_flags,
469 struct type *storage)
47663de5
MS
470{
471 struct type *ntype;
472
473 ntype = type;
474 do {
2fdde8f8 475 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
47663de5 476 return ntype;
2fdde8f8 477 ntype = TYPE_CHAIN (ntype);
47663de5
MS
478 } while (ntype != type);
479
2fdde8f8
DJ
480 /* Create a new type instance. */
481 if (storage == NULL)
482 ntype = alloc_type_instance (type);
483 else
484 {
7ba81444
MS
485 /* If STORAGE was provided, it had better be in the same objfile
486 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
487 if one objfile is freed and the other kept, we'd have
488 dangling pointers. */
ad766c0a
JB
489 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
490
2fdde8f8
DJ
491 ntype = storage;
492 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
493 TYPE_CHAIN (ntype) = ntype;
494 }
47663de5
MS
495
496 /* Pointers or references to the original type are not relevant to
2fdde8f8 497 the new type. */
47663de5
MS
498 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
499 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 500
2fdde8f8
DJ
501 /* Chain the new qualified type to the old type. */
502 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
503 TYPE_CHAIN (type) = ntype;
504
505 /* Now set the instance flags and return the new type. */
506 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 507
ab5d3da6
KB
508 /* Set length of new type to that of the original type. */
509 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
510
47663de5
MS
511 return ntype;
512}
513
2fdde8f8
DJ
514/* Make an address-space-delimited variant of a type -- a type that
515 is identical to the one supplied except that it has an address
516 space attribute attached to it (such as "code" or "data").
517
7ba81444
MS
518 The space attributes "code" and "data" are for Harvard
519 architectures. The address space attributes are for architectures
520 which have alternately sized pointers or pointers with alternate
521 representations. */
2fdde8f8
DJ
522
523struct type *
524make_type_with_address_space (struct type *type, int space_flag)
525{
526 struct type *ntype;
527 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
8b2dbe47
KB
528 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
529 | TYPE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
530 | space_flag);
531
532 return make_qualified_type (type, new_flags, NULL);
533}
c906108c
SS
534
535/* Make a "c-v" variant of a type -- a type that is identical to the
536 one supplied except that it may have const or volatile attributes
537 CNST is a flag for setting the const attribute
538 VOLTL is a flag for setting the volatile attribute
539 TYPE is the base type whose variant we are creating.
c906108c 540
ad766c0a
JB
541 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
542 storage to hold the new qualified type; *TYPEPTR and TYPE must be
543 in the same objfile. Otherwise, allocate fresh memory for the new
544 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
545 new type we construct. */
c906108c 546struct type *
7ba81444
MS
547make_cv_type (int cnst, int voltl,
548 struct type *type,
549 struct type **typeptr)
c906108c 550{
52f0bd74
AC
551 struct type *ntype; /* New type */
552 struct type *tmp_type = type; /* tmp type */
c906108c
SS
553 struct objfile *objfile;
554
2fdde8f8
DJ
555 int new_flags = (TYPE_INSTANCE_FLAGS (type)
556 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
c906108c 557
c906108c 558 if (cnst)
2fdde8f8 559 new_flags |= TYPE_FLAG_CONST;
c906108c
SS
560
561 if (voltl)
2fdde8f8 562 new_flags |= TYPE_FLAG_VOLATILE;
a02fd225 563
2fdde8f8 564 if (typeptr && *typeptr != NULL)
a02fd225 565 {
ad766c0a
JB
566 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
567 a C-V variant chain that threads across objfiles: if one
568 objfile gets freed, then the other has a broken C-V chain.
569
570 This code used to try to copy over the main type from TYPE to
571 *TYPEPTR if they were in different objfiles, but that's
572 wrong, too: TYPE may have a field list or member function
573 lists, which refer to types of their own, etc. etc. The
574 whole shebang would need to be copied over recursively; you
575 can't have inter-objfile pointers. The only thing to do is
576 to leave stub types as stub types, and look them up afresh by
577 name each time you encounter them. */
578 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
579 }
580
7ba81444
MS
581 ntype = make_qualified_type (type, new_flags,
582 typeptr ? *typeptr : NULL);
c906108c 583
2fdde8f8
DJ
584 if (typeptr != NULL)
585 *typeptr = ntype;
a02fd225 586
2fdde8f8 587 return ntype;
a02fd225 588}
c906108c 589
2fdde8f8
DJ
590/* Replace the contents of ntype with the type *type. This changes the
591 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
592 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 593
cda6c68a
JB
594 In order to build recursive types, it's inevitable that we'll need
595 to update types in place --- but this sort of indiscriminate
596 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
597 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
598 clear if more steps are needed. */
dd6bda65
DJ
599void
600replace_type (struct type *ntype, struct type *type)
601{
ab5d3da6 602 struct type *chain;
dd6bda65 603
ad766c0a
JB
604 /* These two types had better be in the same objfile. Otherwise,
605 the assignment of one type's main type structure to the other
606 will produce a type with references to objects (names; field
607 lists; etc.) allocated on an objfile other than its own. */
608 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
609
2fdde8f8 610 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 611
7ba81444
MS
612 /* The type length is not a part of the main type. Update it for
613 each type on the variant chain. */
ab5d3da6
KB
614 chain = ntype;
615 do {
616 /* Assert that this element of the chain has no address-class bits
617 set in its flags. Such type variants might have type lengths
618 which are supposed to be different from the non-address-class
619 variants. This assertion shouldn't ever be triggered because
620 symbol readers which do construct address-class variants don't
621 call replace_type(). */
622 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
623
787cbe14 624 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
ab5d3da6
KB
625 chain = TYPE_CHAIN (chain);
626 } while (ntype != chain);
627
2fdde8f8
DJ
628 /* Assert that the two types have equivalent instance qualifiers.
629 This should be true for at least all of our debug readers. */
630 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
631}
632
c906108c
SS
633/* Implement direct support for MEMBER_TYPE in GNU C++.
634 May need to construct such a type if this is the first use.
635 The TYPE is the type of the member. The DOMAIN is the type
636 of the aggregate that the member belongs to. */
637
638struct type *
0d5de010 639lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 640{
52f0bd74 641 struct type *mtype;
c906108c
SS
642
643 mtype = alloc_type (TYPE_OBJFILE (type));
0d5de010 644 smash_to_memberptr_type (mtype, domain, type);
c906108c
SS
645 return (mtype);
646}
647
0d5de010
DJ
648/* Return a pointer-to-method type, for a method of type TO_TYPE. */
649
650struct type *
651lookup_methodptr_type (struct type *to_type)
652{
653 struct type *mtype;
654
655 mtype = alloc_type (TYPE_OBJFILE (to_type));
656 TYPE_TARGET_TYPE (mtype) = to_type;
657 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
658 TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
659 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
660 return mtype;
661}
662
7ba81444
MS
663/* Allocate a stub method whose return type is TYPE. This apparently
664 happens for speed of symbol reading, since parsing out the
665 arguments to the method is cpu-intensive, the way we are doing it.
666 So, we will fill in arguments later. This always returns a fresh
667 type. */
c906108c
SS
668
669struct type *
fba45db2 670allocate_stub_method (struct type *type)
c906108c
SS
671{
672 struct type *mtype;
673
7e956337
FF
674 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
675 TYPE_OBJFILE (type));
c906108c
SS
676 TYPE_TARGET_TYPE (mtype) = type;
677 /* _DOMAIN_TYPE (mtype) = unknown yet */
c906108c
SS
678 return (mtype);
679}
680
7ba81444
MS
681/* Create a range type using either a blank type supplied in
682 RESULT_TYPE, or creating a new type, inheriting the objfile from
683 INDEX_TYPE.
c906108c 684
7ba81444
MS
685 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
686 to HIGH_BOUND, inclusive.
c906108c 687
7ba81444
MS
688 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
689 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
690
691struct type *
fba45db2
KB
692create_range_type (struct type *result_type, struct type *index_type,
693 int low_bound, int high_bound)
c906108c
SS
694{
695 if (result_type == NULL)
696 {
697 result_type = alloc_type (TYPE_OBJFILE (index_type));
698 }
699 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
700 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 701 if (TYPE_STUB (index_type))
c906108c
SS
702 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
703 else
704 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
705 TYPE_NFIELDS (result_type) = 2;
706 TYPE_FIELDS (result_type) = (struct field *)
707 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
708 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
709 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
710 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
c906108c 711
c5aa993b 712 if (low_bound >= 0)
c906108c
SS
713 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
714
715 return (result_type);
716}
717
7ba81444
MS
718/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
719 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
720 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
721
722int
fba45db2 723get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
724{
725 CHECK_TYPEDEF (type);
726 switch (TYPE_CODE (type))
727 {
728 case TYPE_CODE_RANGE:
729 *lowp = TYPE_LOW_BOUND (type);
730 *highp = TYPE_HIGH_BOUND (type);
731 return 1;
732 case TYPE_CODE_ENUM:
733 if (TYPE_NFIELDS (type) > 0)
734 {
735 /* The enums may not be sorted by value, so search all
736 entries */
737 int i;
738
739 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
740 for (i = 0; i < TYPE_NFIELDS (type); i++)
741 {
742 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
743 *lowp = TYPE_FIELD_BITPOS (type, i);
744 if (TYPE_FIELD_BITPOS (type, i) > *highp)
745 *highp = TYPE_FIELD_BITPOS (type, i);
746 }
747
7ba81444 748 /* Set unsigned indicator if warranted. */
c5aa993b 749 if (*lowp >= 0)
c906108c
SS
750 {
751 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
752 }
753 }
754 else
755 {
756 *lowp = 0;
757 *highp = -1;
758 }
759 return 0;
760 case TYPE_CODE_BOOL:
761 *lowp = 0;
762 *highp = 1;
763 return 0;
764 case TYPE_CODE_INT:
c5aa993b 765 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
766 return -1;
767 if (!TYPE_UNSIGNED (type))
768 {
c5aa993b 769 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
770 *highp = -*lowp - 1;
771 return 0;
772 }
7ba81444 773 /* ... fall through for unsigned ints ... */
c906108c
SS
774 case TYPE_CODE_CHAR:
775 *lowp = 0;
776 /* This round-about calculation is to avoid shifting by
7b83ea04 777 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 778 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
779 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
780 *highp = (*highp - 1) | *highp;
781 return 0;
782 default:
783 return -1;
784 }
785}
786
7ba81444
MS
787/* Create an array type using either a blank type supplied in
788 RESULT_TYPE, or creating a new type, inheriting the objfile from
789 RANGE_TYPE.
c906108c
SS
790
791 Elements will be of type ELEMENT_TYPE, the indices will be of type
792 RANGE_TYPE.
793
7ba81444
MS
794 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
795 sure it is TYPE_CODE_UNDEF before we bash it into an array
796 type? */
c906108c
SS
797
798struct type *
7ba81444
MS
799create_array_type (struct type *result_type,
800 struct type *element_type,
fba45db2 801 struct type *range_type)
c906108c
SS
802{
803 LONGEST low_bound, high_bound;
804
805 if (result_type == NULL)
806 {
807 result_type = alloc_type (TYPE_OBJFILE (range_type));
808 }
809 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
810 TYPE_TARGET_TYPE (result_type) = element_type;
811 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
812 low_bound = high_bound = 0;
813 CHECK_TYPEDEF (element_type);
814 TYPE_LENGTH (result_type) =
815 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
816 TYPE_NFIELDS (result_type) = 1;
817 TYPE_FIELDS (result_type) =
818 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
819 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
820 TYPE_FIELD_TYPE (result_type, 0) = range_type;
821 TYPE_VPTR_FIELDNO (result_type) = -1;
822
823 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
824 if (TYPE_LENGTH (result_type) == 0)
825 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
826
827 return (result_type);
828}
829
7ba81444
MS
830/* Create a string type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type. String types are similar
832 enough to array of char types that we can use create_array_type to
833 build the basic type and then bash it into a string type.
c906108c
SS
834
835 For fixed length strings, the range type contains 0 as the lower
836 bound and the length of the string minus one as the upper bound.
837
7ba81444
MS
838 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
839 sure it is TYPE_CODE_UNDEF before we bash it into a string
840 type? */
c906108c
SS
841
842struct type *
7ba81444
MS
843create_string_type (struct type *result_type,
844 struct type *range_type)
c906108c 845{
f290d38e
AC
846 struct type *string_char_type;
847
848 string_char_type = language_string_char_type (current_language,
849 current_gdbarch);
c906108c 850 result_type = create_array_type (result_type,
f290d38e 851 string_char_type,
c906108c
SS
852 range_type);
853 TYPE_CODE (result_type) = TYPE_CODE_STRING;
854 return (result_type);
855}
856
857struct type *
fba45db2 858create_set_type (struct type *result_type, struct type *domain_type)
c906108c 859{
c906108c
SS
860 if (result_type == NULL)
861 {
862 result_type = alloc_type (TYPE_OBJFILE (domain_type));
863 }
864 TYPE_CODE (result_type) = TYPE_CODE_SET;
865 TYPE_NFIELDS (result_type) = 1;
866 TYPE_FIELDS (result_type) = (struct field *)
867 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
868 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
869
74a9bb82 870 if (!TYPE_STUB (domain_type))
c906108c 871 {
f9780d5b 872 LONGEST low_bound, high_bound, bit_length;
c906108c
SS
873 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
874 low_bound = high_bound = 0;
875 bit_length = high_bound - low_bound + 1;
876 TYPE_LENGTH (result_type)
877 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b
MS
878 if (low_bound >= 0)
879 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
c906108c
SS
880 }
881 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
882
c906108c
SS
883 return (result_type);
884}
885
4f2aea11
MK
886void
887append_flags_type_flag (struct type *type, int bitpos, char *name)
888{
889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
890 gdb_assert (bitpos < TYPE_NFIELDS (type));
891 gdb_assert (bitpos >= 0);
892
893 if (name)
894 {
895 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
896 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
897 }
898 else
899 {
900 /* Don't show this field to the user. */
901 TYPE_FIELD_BITPOS (type, bitpos) = -1;
902 }
903}
904
905struct type *
906init_flags_type (char *name, int length)
907{
908 int nfields = length * TARGET_CHAR_BIT;
909 struct type *type;
910
7ba81444
MS
911 type = init_type (TYPE_CODE_FLAGS, length,
912 TYPE_FLAG_UNSIGNED, name, NULL);
4f2aea11 913 TYPE_NFIELDS (type) = nfields;
7ba81444
MS
914 TYPE_FIELDS (type) = TYPE_ALLOC (type,
915 nfields * sizeof (struct field));
76b7178d 916 memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
4f2aea11
MK
917
918 return type;
919}
920
ea37ba09
DJ
921/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
922 and any array types nested inside it. */
923
924void
925make_vector_type (struct type *array_type)
926{
927 struct type *inner_array, *elt_type;
928 int flags;
929
930 /* Find the innermost array type, in case the array is
931 multi-dimensional. */
932 inner_array = array_type;
933 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
934 inner_array = TYPE_TARGET_TYPE (inner_array);
935
936 elt_type = TYPE_TARGET_TYPE (inner_array);
937 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
938 {
939 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
940 elt_type = make_qualified_type (elt_type, flags, NULL);
941 TYPE_TARGET_TYPE (inner_array) = elt_type;
942 }
943
944 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
945}
946
794ac428 947struct type *
ac3aafc7
EZ
948init_vector_type (struct type *elt_type, int n)
949{
950 struct type *array_type;
951
952 array_type = create_array_type (0, elt_type,
7ba81444 953 create_range_type (0,
1969d2ed 954 builtin_type_int32,
ac3aafc7 955 0, n-1));
ea37ba09 956 make_vector_type (array_type);
ac3aafc7
EZ
957 return array_type;
958}
959
0d5de010
DJ
960/* Smash TYPE to be a type of pointers to members of DOMAIN with type
961 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
962 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
963 TYPE doesn't include the offset (that's the value of the MEMBER
964 itself), but does include the structure type into which it points
965 (for some reason).
c906108c 966
7ba81444
MS
967 When "smashing" the type, we preserve the objfile that the old type
968 pointed to, since we aren't changing where the type is actually
c906108c
SS
969 allocated. */
970
971void
0d5de010
DJ
972smash_to_memberptr_type (struct type *type, struct type *domain,
973 struct type *to_type)
c906108c
SS
974{
975 struct objfile *objfile;
976
977 objfile = TYPE_OBJFILE (type);
978
2fdde8f8 979 smash_type (type);
c906108c
SS
980 TYPE_OBJFILE (type) = objfile;
981 TYPE_TARGET_TYPE (type) = to_type;
982 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
983 /* Assume that a data member pointer is the same size as a normal
984 pointer. */
819844ad 985 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
0d5de010 986 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
987}
988
989/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
990 METHOD just means `function that gets an extra "this" argument'.
991
7ba81444
MS
992 When "smashing" the type, we preserve the objfile that the old type
993 pointed to, since we aren't changing where the type is actually
c906108c
SS
994 allocated. */
995
996void
fba45db2 997smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
998 struct type *to_type, struct field *args,
999 int nargs, int varargs)
c906108c
SS
1000{
1001 struct objfile *objfile;
1002
1003 objfile = TYPE_OBJFILE (type);
1004
2fdde8f8 1005 smash_type (type);
c906108c
SS
1006 TYPE_OBJFILE (type) = objfile;
1007 TYPE_TARGET_TYPE (type) = to_type;
1008 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1009 TYPE_FIELDS (type) = args;
1010 TYPE_NFIELDS (type) = nargs;
1011 if (varargs)
1012 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
c906108c
SS
1013 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1014 TYPE_CODE (type) = TYPE_CODE_METHOD;
1015}
1016
1017/* Return a typename for a struct/union/enum type without "struct ",
1018 "union ", or "enum ". If the type has a NULL name, return NULL. */
1019
1020char *
aa1ee363 1021type_name_no_tag (const struct type *type)
c906108c
SS
1022{
1023 if (TYPE_TAG_NAME (type) != NULL)
1024 return TYPE_TAG_NAME (type);
1025
7ba81444
MS
1026 /* Is there code which expects this to return the name if there is
1027 no tag name? My guess is that this is mainly used for C++ in
1028 cases where the two will always be the same. */
c906108c
SS
1029 return TYPE_NAME (type);
1030}
1031
7ba81444
MS
1032/* Lookup a typedef or primitive type named NAME, visible in lexical
1033 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1034 suitably defined. */
c906108c
SS
1035
1036struct type *
fba45db2 1037lookup_typename (char *name, struct block *block, int noerr)
c906108c 1038{
52f0bd74
AC
1039 struct symbol *sym;
1040 struct type *tmp;
c906108c 1041
7ba81444
MS
1042 sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
1043 (struct symtab **) NULL);
c906108c
SS
1044 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1045 {
54a5b07d
AC
1046 tmp = language_lookup_primitive_type_by_name (current_language,
1047 current_gdbarch,
1048 name);
c906108c
SS
1049 if (tmp)
1050 {
1051 return (tmp);
1052 }
1053 else if (!tmp && noerr)
1054 {
1055 return (NULL);
1056 }
1057 else
1058 {
8a3fe4f8 1059 error (_("No type named %s."), name);
c906108c
SS
1060 }
1061 }
1062 return (SYMBOL_TYPE (sym));
1063}
1064
1065struct type *
fba45db2 1066lookup_unsigned_typename (char *name)
c906108c
SS
1067{
1068 char *uns = alloca (strlen (name) + 10);
1069
1070 strcpy (uns, "unsigned ");
1071 strcpy (uns + 9, name);
1072 return (lookup_typename (uns, (struct block *) NULL, 0));
1073}
1074
1075struct type *
fba45db2 1076lookup_signed_typename (char *name)
c906108c
SS
1077{
1078 struct type *t;
1079 char *uns = alloca (strlen (name) + 8);
1080
1081 strcpy (uns, "signed ");
1082 strcpy (uns + 7, name);
1083 t = lookup_typename (uns, (struct block *) NULL, 1);
7ba81444 1084 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1085 if (t != NULL)
1086 return t;
1087 return lookup_typename (name, (struct block *) NULL, 0);
1088}
1089
1090/* Lookup a structure type named "struct NAME",
1091 visible in lexical block BLOCK. */
1092
1093struct type *
fba45db2 1094lookup_struct (char *name, struct block *block)
c906108c 1095{
52f0bd74 1096 struct symbol *sym;
c906108c 1097
176620f1 1098 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1099 (struct symtab **) NULL);
1100
1101 if (sym == NULL)
1102 {
8a3fe4f8 1103 error (_("No struct type named %s."), name);
c906108c
SS
1104 }
1105 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1106 {
7ba81444
MS
1107 error (_("This context has class, union or enum %s, not a struct."),
1108 name);
c906108c
SS
1109 }
1110 return (SYMBOL_TYPE (sym));
1111}
1112
1113/* Lookup a union type named "union NAME",
1114 visible in lexical block BLOCK. */
1115
1116struct type *
fba45db2 1117lookup_union (char *name, struct block *block)
c906108c 1118{
52f0bd74 1119 struct symbol *sym;
c5aa993b 1120 struct type *t;
c906108c 1121
176620f1 1122 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1123 (struct symtab **) NULL);
1124
1125 if (sym == NULL)
8a3fe4f8 1126 error (_("No union type named %s."), name);
c906108c 1127
c5aa993b 1128 t = SYMBOL_TYPE (sym);
c906108c
SS
1129
1130 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1131 return (t);
1132
1133 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1134 * a further "declared_type" field to discover it is really a union.
1135 */
c5aa993b
JM
1136 if (HAVE_CPLUS_STRUCT (t))
1137 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c906108c
SS
1138 return (t);
1139
7ba81444
MS
1140 /* If we get here, it's not a union. */
1141 error (_("This context has class, struct or enum %s, not a union."),
1142 name);
c906108c
SS
1143}
1144
1145
1146/* Lookup an enum type named "enum NAME",
1147 visible in lexical block BLOCK. */
1148
1149struct type *
fba45db2 1150lookup_enum (char *name, struct block *block)
c906108c 1151{
52f0bd74 1152 struct symbol *sym;
c906108c 1153
176620f1 1154 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1155 (struct symtab **) NULL);
1156 if (sym == NULL)
1157 {
8a3fe4f8 1158 error (_("No enum type named %s."), name);
c906108c
SS
1159 }
1160 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1161 {
7ba81444
MS
1162 error (_("This context has class, struct or union %s, not an enum."),
1163 name);
c906108c
SS
1164 }
1165 return (SYMBOL_TYPE (sym));
1166}
1167
1168/* Lookup a template type named "template NAME<TYPE>",
1169 visible in lexical block BLOCK. */
1170
1171struct type *
7ba81444
MS
1172lookup_template_type (char *name, struct type *type,
1173 struct block *block)
c906108c
SS
1174{
1175 struct symbol *sym;
7ba81444
MS
1176 char *nam = (char *)
1177 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1178 strcpy (nam, name);
1179 strcat (nam, "<");
0004e5a2 1180 strcat (nam, TYPE_NAME (type));
7ba81444 1181 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1182
7ba81444
MS
1183 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
1184 (struct symtab **) NULL);
c906108c
SS
1185
1186 if (sym == NULL)
1187 {
8a3fe4f8 1188 error (_("No template type named %s."), name);
c906108c
SS
1189 }
1190 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1191 {
7ba81444
MS
1192 error (_("This context has class, union or enum %s, not a struct."),
1193 name);
c906108c
SS
1194 }
1195 return (SYMBOL_TYPE (sym));
1196}
1197
7ba81444
MS
1198/* Given a type TYPE, lookup the type of the component of type named
1199 NAME.
c906108c 1200
7ba81444
MS
1201 TYPE can be either a struct or union, or a pointer or reference to
1202 a struct or union. If it is a pointer or reference, its target
1203 type is automatically used. Thus '.' and '->' are interchangable,
1204 as specified for the definitions of the expression element types
1205 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1206
1207 If NOERR is nonzero, return zero if NAME is not suitably defined.
1208 If NAME is the name of a baseclass type, return that type. */
1209
1210struct type *
fba45db2 1211lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1212{
1213 int i;
1214
1215 for (;;)
1216 {
1217 CHECK_TYPEDEF (type);
1218 if (TYPE_CODE (type) != TYPE_CODE_PTR
1219 && TYPE_CODE (type) != TYPE_CODE_REF)
1220 break;
1221 type = TYPE_TARGET_TYPE (type);
1222 }
1223
687d6395
MS
1224 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1225 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c
SS
1226 {
1227 target_terminal_ours ();
1228 gdb_flush (gdb_stdout);
1229 fprintf_unfiltered (gdb_stderr, "Type ");
1230 type_print (type, "", gdb_stderr, -1);
8a3fe4f8 1231 error (_(" is not a structure or union type."));
c906108c
SS
1232 }
1233
1234#if 0
7ba81444
MS
1235 /* FIXME: This change put in by Michael seems incorrect for the case
1236 where the structure tag name is the same as the member name.
1237 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1238 foo; } bell;" Disabled by fnf. */
c906108c
SS
1239 {
1240 char *typename;
1241
1242 typename = type_name_no_tag (type);
762f08a3 1243 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1244 return type;
1245 }
1246#endif
1247
1248 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1249 {
1250 char *t_field_name = TYPE_FIELD_NAME (type, i);
1251
db577aea 1252 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1253 {
1254 return TYPE_FIELD_TYPE (type, i);
1255 }
1256 }
1257
1258 /* OK, it's not in this class. Recursively check the baseclasses. */
1259 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1260 {
1261 struct type *t;
1262
9733fc94 1263 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1264 if (t != NULL)
1265 {
1266 return t;
1267 }
1268 }
1269
1270 if (noerr)
1271 {
1272 return NULL;
1273 }
c5aa993b 1274
c906108c
SS
1275 target_terminal_ours ();
1276 gdb_flush (gdb_stdout);
1277 fprintf_unfiltered (gdb_stderr, "Type ");
1278 type_print (type, "", gdb_stderr, -1);
1279 fprintf_unfiltered (gdb_stderr, " has no component named ");
1280 fputs_filtered (name, gdb_stderr);
8a3fe4f8 1281 error (("."));
c5aa993b 1282 return (struct type *) -1; /* For lint */
c906108c
SS
1283}
1284
1285/* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1286 valid. Callers should be aware that in some cases (for example,
1287 the type or one of its baseclasses is a stub type and we are
7ba81444
MS
1288 debugging a .o file), this function will not be able to find the
1289 virtual function table pointer, and vptr_fieldno will remain -1 and
1290 vptr_basetype will remain NULL. */
c906108c
SS
1291
1292void
fba45db2 1293fill_in_vptr_fieldno (struct type *type)
c906108c
SS
1294{
1295 CHECK_TYPEDEF (type);
1296
1297 if (TYPE_VPTR_FIELDNO (type) < 0)
1298 {
1299 int i;
1300
7ba81444
MS
1301 /* We must start at zero in case the first (and only) baseclass
1302 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1303 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1304 {
7ba81444
MS
1305 struct type *baseclass = check_typedef (TYPE_BASECLASS (type,
1306 i));
cef4f5dd
DJ
1307 fill_in_vptr_fieldno (baseclass);
1308 if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
c906108c 1309 {
cef4f5dd
DJ
1310 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
1311 TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
c906108c
SS
1312 break;
1313 }
1314 }
1315 }
1316}
1317
1318/* Find the method and field indices for the destructor in class type T.
1319 Return 1 if the destructor was found, otherwise, return 0. */
1320
1321int
7ba81444
MS
1322get_destructor_fn_field (struct type *t,
1323 int *method_indexp,
1324 int *field_indexp)
c906108c
SS
1325{
1326 int i;
1327
1328 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1329 {
1330 int j;
1331 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1332
1333 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1334 {
015a42b4 1335 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
c906108c
SS
1336 {
1337 *method_indexp = i;
1338 *field_indexp = j;
1339 return 1;
1340 }
1341 }
1342 }
1343 return 0;
1344}
1345
44e1a9eb
DJ
1346static void
1347stub_noname_complaint (void)
1348{
e2e0b3e5 1349 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1350}
1351
c906108c
SS
1352/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1353
1354 If this is a stubbed struct (i.e. declared as struct foo *), see if
1355 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1356 definition, so we can use it in future. There used to be a comment
1357 (but not any code) that if we don't find a full definition, we'd
1358 set a flag so we don't spend time in the future checking the same
1359 type. That would be a mistake, though--we might load in more
1360 symbols which contain a full definition for the type.
c906108c 1361
7b83ea04 1362 This used to be coded as a macro, but I don't think it is called
c906108c
SS
1363 often enough to merit such treatment. */
1364
7ba81444
MS
1365/* Find the real type of TYPE. This function returns the real type,
1366 after removing all layers of typedefs and completing opaque or stub
1367 types. Completion changes the TYPE argument, but stripping of
1368 typedefs does not. */
c906108c
SS
1369
1370struct type *
a02fd225 1371check_typedef (struct type *type)
c906108c
SS
1372{
1373 struct type *orig_type = type;
a02fd225
DJ
1374 int is_const, is_volatile;
1375
423c0af8
MS
1376 gdb_assert (type);
1377
c906108c
SS
1378 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1379 {
1380 if (!TYPE_TARGET_TYPE (type))
1381 {
c5aa993b 1382 char *name;
c906108c
SS
1383 struct symbol *sym;
1384
1385 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1386 reading a symtab. Infinite recursion is one danger. */
c906108c
SS
1387 if (currently_reading_symtab)
1388 return type;
1389
1390 name = type_name_no_tag (type);
7ba81444
MS
1391 /* FIXME: shouldn't we separately check the TYPE_NAME and
1392 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1393 VAR_DOMAIN as appropriate? (this code was written before
1394 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1395 if (name == NULL)
1396 {
23136709 1397 stub_noname_complaint ();
c906108c
SS
1398 return type;
1399 }
176620f1 1400 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
c906108c
SS
1401 (struct symtab **) NULL);
1402 if (sym)
1403 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444
MS
1404 else /* TYPE_CODE_UNDEF */
1405 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
c906108c
SS
1406 }
1407 type = TYPE_TARGET_TYPE (type);
1408 }
1409
a02fd225
DJ
1410 is_const = TYPE_CONST (type);
1411 is_volatile = TYPE_VOLATILE (type);
1412
7ba81444
MS
1413 /* If this is a struct/class/union with no fields, then check
1414 whether a full definition exists somewhere else. This is for
1415 systems where a type definition with no fields is issued for such
1416 types, instead of identifying them as stub types in the first
1417 place. */
c5aa993b 1418
7ba81444
MS
1419 if (TYPE_IS_OPAQUE (type)
1420 && opaque_type_resolution
1421 && !currently_reading_symtab)
c906108c 1422 {
c5aa993b
JM
1423 char *name = type_name_no_tag (type);
1424 struct type *newtype;
c906108c
SS
1425 if (name == NULL)
1426 {
23136709 1427 stub_noname_complaint ();
c906108c
SS
1428 return type;
1429 }
1430 newtype = lookup_transparent_type (name);
ad766c0a 1431
c906108c 1432 if (newtype)
ad766c0a 1433 {
7ba81444
MS
1434 /* If the resolved type and the stub are in the same
1435 objfile, then replace the stub type with the real deal.
1436 But if they're in separate objfiles, leave the stub
1437 alone; we'll just look up the transparent type every time
1438 we call check_typedef. We can't create pointers between
1439 types allocated to different objfiles, since they may
1440 have different lifetimes. Trying to copy NEWTYPE over to
1441 TYPE's objfile is pointless, too, since you'll have to
1442 move over any other types NEWTYPE refers to, which could
1443 be an unbounded amount of stuff. */
ad766c0a
JB
1444 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1445 make_cv_type (is_const, is_volatile, newtype, &type);
1446 else
1447 type = newtype;
1448 }
c906108c 1449 }
7ba81444
MS
1450 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1451 types. */
74a9bb82 1452 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1453 {
c5aa993b 1454 char *name = type_name_no_tag (type);
c906108c 1455 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1456 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1457 as appropriate? (this code was written before TYPE_NAME and
1458 TYPE_TAG_NAME were separate). */
c906108c
SS
1459 struct symbol *sym;
1460 if (name == NULL)
1461 {
23136709 1462 stub_noname_complaint ();
c906108c
SS
1463 return type;
1464 }
7ba81444
MS
1465 sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
1466 0, (struct symtab **) NULL);
c906108c 1467 if (sym)
c26f2453
JB
1468 {
1469 /* Same as above for opaque types, we can replace the stub
1470 with the complete type only if they are int the same
1471 objfile. */
1472 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
7ba81444
MS
1473 make_cv_type (is_const, is_volatile,
1474 SYMBOL_TYPE (sym), &type);
c26f2453
JB
1475 else
1476 type = SYMBOL_TYPE (sym);
1477 }
c906108c
SS
1478 }
1479
74a9bb82 1480 if (TYPE_TARGET_STUB (type))
c906108c
SS
1481 {
1482 struct type *range_type;
1483 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1484
74a9bb82 1485 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1486 {
7ba81444 1487 /* Empty. */
c5aa993b 1488 }
c906108c
SS
1489 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1490 && TYPE_NFIELDS (type) == 1
1491 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1492 == TYPE_CODE_RANGE))
1493 {
1494 /* Now recompute the length of the array type, based on its
1495 number of elements and the target type's length. */
1496 TYPE_LENGTH (type) =
1497 ((TYPE_FIELD_BITPOS (range_type, 1)
7ba81444 1498 - TYPE_FIELD_BITPOS (range_type, 0) + 1)
c906108c
SS
1499 * TYPE_LENGTH (target_type));
1500 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1501 }
1502 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1503 {
1504 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1505 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1506 }
1507 }
7ba81444 1508 /* Cache TYPE_LENGTH for future use. */
c906108c
SS
1509 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1510 return type;
1511}
1512
7ba81444
MS
1513/* Parse a type expression in the string [P..P+LENGTH). If an error
1514 occurs, silently return builtin_type_void. */
c91ecb25 1515
b9362cc7 1516static struct type *
c91ecb25
ND
1517safe_parse_type (char *p, int length)
1518{
1519 struct ui_file *saved_gdb_stderr;
1520 struct type *type;
1521
7ba81444 1522 /* Suppress error messages. */
c91ecb25
ND
1523 saved_gdb_stderr = gdb_stderr;
1524 gdb_stderr = ui_file_new ();
1525
7ba81444 1526 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25
ND
1527 if (!gdb_parse_and_eval_type (p, length, &type))
1528 type = builtin_type_void;
1529
7ba81444 1530 /* Stop suppressing error messages. */
c91ecb25
ND
1531 ui_file_delete (gdb_stderr);
1532 gdb_stderr = saved_gdb_stderr;
1533
1534 return type;
1535}
1536
c906108c
SS
1537/* Ugly hack to convert method stubs into method types.
1538
7ba81444
MS
1539 He ain't kiddin'. This demangles the name of the method into a
1540 string including argument types, parses out each argument type,
1541 generates a string casting a zero to that type, evaluates the
1542 string, and stuffs the resulting type into an argtype vector!!!
1543 Then it knows the type of the whole function (including argument
1544 types for overloading), which info used to be in the stab's but was
1545 removed to hack back the space required for them. */
c906108c 1546
de17c821 1547static void
fba45db2 1548check_stub_method (struct type *type, int method_id, int signature_id)
c906108c
SS
1549{
1550 struct fn_field *f;
1551 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1552 char *demangled_name = cplus_demangle (mangled_name,
1553 DMGL_PARAMS | DMGL_ANSI);
1554 char *argtypetext, *p;
1555 int depth = 0, argcount = 1;
ad2f7632 1556 struct field *argtypes;
c906108c
SS
1557 struct type *mtype;
1558
1559 /* Make sure we got back a function string that we can use. */
1560 if (demangled_name)
1561 p = strchr (demangled_name, '(');
502dcf4e
AC
1562 else
1563 p = NULL;
c906108c
SS
1564
1565 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1566 error (_("Internal: Cannot demangle mangled name `%s'."),
1567 mangled_name);
c906108c
SS
1568
1569 /* Now, read in the parameters that define this type. */
1570 p += 1;
1571 argtypetext = p;
1572 while (*p)
1573 {
070ad9f0 1574 if (*p == '(' || *p == '<')
c906108c
SS
1575 {
1576 depth += 1;
1577 }
070ad9f0 1578 else if (*p == ')' || *p == '>')
c906108c
SS
1579 {
1580 depth -= 1;
1581 }
1582 else if (*p == ',' && depth == 0)
1583 {
1584 argcount += 1;
1585 }
1586
1587 p += 1;
1588 }
1589
ad2f7632
DJ
1590 /* If we read one argument and it was ``void'', don't count it. */
1591 if (strncmp (argtypetext, "(void)", 6) == 0)
1592 argcount -= 1;
c906108c 1593
ad2f7632
DJ
1594 /* We need one extra slot, for the THIS pointer. */
1595
1596 argtypes = (struct field *)
1597 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1598 p = argtypetext;
4a1970e4
DJ
1599
1600 /* Add THIS pointer for non-static methods. */
1601 f = TYPE_FN_FIELDLIST1 (type, method_id);
1602 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1603 argcount = 0;
1604 else
1605 {
ad2f7632 1606 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1607 argcount = 1;
1608 }
c906108c 1609
c5aa993b 1610 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1611 {
1612 depth = 0;
1613 while (*p)
1614 {
1615 if (depth <= 0 && (*p == ',' || *p == ')'))
1616 {
ad2f7632
DJ
1617 /* Avoid parsing of ellipsis, they will be handled below.
1618 Also avoid ``void'' as above. */
1619 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1620 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1621 {
ad2f7632 1622 argtypes[argcount].type =
c91ecb25 1623 safe_parse_type (argtypetext, p - argtypetext);
c906108c
SS
1624 argcount += 1;
1625 }
1626 argtypetext = p + 1;
1627 }
1628
070ad9f0 1629 if (*p == '(' || *p == '<')
c906108c
SS
1630 {
1631 depth += 1;
1632 }
070ad9f0 1633 else if (*p == ')' || *p == '>')
c906108c
SS
1634 {
1635 depth -= 1;
1636 }
1637
1638 p += 1;
1639 }
1640 }
1641
c906108c
SS
1642 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1643
1644 /* Now update the old "stub" type into a real type. */
1645 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1646 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1647 TYPE_FIELDS (mtype) = argtypes;
1648 TYPE_NFIELDS (mtype) = argcount;
c906108c
SS
1649 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1650 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
1651 if (p[-2] == '.')
1652 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1653
1654 xfree (demangled_name);
c906108c
SS
1655}
1656
7ba81444
MS
1657/* This is the external interface to check_stub_method, above. This
1658 function unstubs all of the signatures for TYPE's METHOD_ID method
1659 name. After calling this function TYPE_FN_FIELD_STUB will be
1660 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1661 correct.
de17c821
DJ
1662
1663 This function unfortunately can not die until stabs do. */
1664
1665void
1666check_stub_method_group (struct type *type, int method_id)
1667{
1668 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1669 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1670 int j, found_stub = 0;
de17c821
DJ
1671
1672 for (j = 0; j < len; j++)
1673 if (TYPE_FN_FIELD_STUB (f, j))
1674 {
1675 found_stub = 1;
1676 check_stub_method (type, method_id, j);
1677 }
1678
7ba81444
MS
1679 /* GNU v3 methods with incorrect names were corrected when we read
1680 in type information, because it was cheaper to do it then. The
1681 only GNU v2 methods with incorrect method names are operators and
1682 destructors; destructors were also corrected when we read in type
1683 information.
de17c821
DJ
1684
1685 Therefore the only thing we need to handle here are v2 operator
1686 names. */
1687 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1688 {
1689 int ret;
1690 char dem_opname[256];
1691
7ba81444
MS
1692 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1693 method_id),
de17c821
DJ
1694 dem_opname, DMGL_ANSI);
1695 if (!ret)
7ba81444
MS
1696 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1697 method_id),
de17c821
DJ
1698 dem_opname, 0);
1699 if (ret)
1700 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1701 }
1702}
1703
c906108c
SS
1704const struct cplus_struct_type cplus_struct_default;
1705
1706void
fba45db2 1707allocate_cplus_struct_type (struct type *type)
c906108c
SS
1708{
1709 if (!HAVE_CPLUS_STRUCT (type))
1710 {
1711 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1712 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
c5aa993b 1713 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1714 }
1715}
1716
1717/* Helper function to initialize the standard scalar types.
1718
7ba81444
MS
1719 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1720 the string pointed to by name in the objfile_obstack for that
1721 objfile, and initialize the type name to that copy. There are
1722 places (mipsread.c in particular, where init_type is called with a
1723 NULL value for NAME). */
c906108c
SS
1724
1725struct type *
7ba81444
MS
1726init_type (enum type_code code, int length, int flags,
1727 char *name, struct objfile *objfile)
c906108c 1728{
52f0bd74 1729 struct type *type;
c906108c
SS
1730
1731 type = alloc_type (objfile);
1732 TYPE_CODE (type) = code;
1733 TYPE_LENGTH (type) = length;
1734 TYPE_FLAGS (type) |= flags;
1735 if ((name != NULL) && (objfile != NULL))
1736 {
7ba81444
MS
1737 TYPE_NAME (type) = obsavestring (name, strlen (name),
1738 &objfile->objfile_obstack);
c906108c
SS
1739 }
1740 else
1741 {
1742 TYPE_NAME (type) = name;
1743 }
1744
1745 /* C++ fancies. */
1746
973ccf8b
DJ
1747 if (name && strcmp (name, "char") == 0)
1748 TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1749
5c4e30ca
DC
1750 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1751 || code == TYPE_CODE_NAMESPACE)
c906108c
SS
1752 {
1753 INIT_CPLUS_SPECIFIC (type);
1754 }
1755 return (type);
1756}
1757
0e101458
AC
1758/* Helper function. Create an empty composite type. */
1759
1760struct type *
1761init_composite_type (char *name, enum type_code code)
1762{
1763 struct type *t;
1764 gdb_assert (code == TYPE_CODE_STRUCT
1765 || code == TYPE_CODE_UNION);
1766 t = init_type (code, 0, 0, NULL, NULL);
1767 TYPE_TAG_NAME (t) = name;
1768 return t;
1769}
1770
1771/* Helper function. Append a field to a composite type. */
1772
1773void
7ba81444
MS
1774append_composite_type_field (struct type *t, char *name,
1775 struct type *field)
0e101458
AC
1776{
1777 struct field *f;
1778 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1779 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1780 sizeof (struct field) * TYPE_NFIELDS (t));
1781 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1782 memset (f, 0, sizeof f[0]);
1783 FIELD_TYPE (f[0]) = field;
1784 FIELD_NAME (f[0]) = name;
1785 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1786 {
73d322b1 1787 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
0e101458
AC
1788 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1789 }
1790 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1791 {
1792 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1793 if (TYPE_NFIELDS (t) > 1)
1794 {
1795 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1796 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1797 }
1798 }
1799}
1800
c906108c
SS
1801/* Look up a fundamental type for the specified objfile.
1802 May need to construct such a type if this is the first use.
1803
1804 Some object file formats (ELF, COFF, etc) do not define fundamental
1805 types such as "int" or "double". Others (stabs for example), do
1806 define fundamental types.
1807
7ba81444
MS
1808 For the formats which don't provide fundamental types, gdb can
1809 create such types, using defaults reasonable for the current
1810 language and the current target machine.
c906108c 1811
7ba81444 1812 NOTE: This routine is obsolescent. Each debugging format reader
c906108c
SS
1813 should manage it's own fundamental types, either creating them from
1814 suitable defaults or reading them from the debugging information,
7ba81444
MS
1815 whichever is appropriate. The DWARF reader has already been fixed
1816 to do this. Once the other readers are fixed, this routine will go
1817 away. Also note that fundamental types should be managed on a
1818 compilation unit basis in a multi-language environment, not on a
1819 linkage unit basis as is done here. */
c906108c
SS
1820
1821
1822struct type *
fba45db2 1823lookup_fundamental_type (struct objfile *objfile, int typeid)
c906108c 1824{
52f0bd74
AC
1825 struct type **typep;
1826 int nbytes;
c906108c
SS
1827
1828 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1829 {
7ba81444
MS
1830 error (_("internal error - invalid fundamental type id %d"),
1831 typeid);
c906108c
SS
1832 }
1833
7ba81444
MS
1834 /* If this is the first time we need a fundamental type for this
1835 objfile then we need to initialize the vector of type
1836 pointers. */
c5aa993b
JM
1837
1838 if (objfile->fundamental_types == NULL)
c906108c
SS
1839 {
1840 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
c5aa993b 1841 objfile->fundamental_types = (struct type **)
b99607ea 1842 obstack_alloc (&objfile->objfile_obstack, nbytes);
c5aa993b 1843 memset ((char *) objfile->fundamental_types, 0, nbytes);
c906108c
SS
1844 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1845 }
1846
7ba81444
MS
1847 /* Look for this particular type in the fundamental type vector. If
1848 one is not found, create and install one appropriate for the
1849 current language. */
c906108c 1850
c5aa993b 1851 typep = objfile->fundamental_types + typeid;
c906108c
SS
1852 if (*typep == NULL)
1853 {
1854 *typep = create_fundamental_type (objfile, typeid);
1855 }
1856
1857 return (*typep);
1858}
1859
1860int
fba45db2 1861can_dereference (struct type *t)
c906108c 1862{
7ba81444
MS
1863 /* FIXME: Should we return true for references as well as
1864 pointers? */
c906108c
SS
1865 CHECK_TYPEDEF (t);
1866 return
1867 (t != NULL
1868 && TYPE_CODE (t) == TYPE_CODE_PTR
1869 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1870}
1871
adf40b2e 1872int
fba45db2 1873is_integral_type (struct type *t)
adf40b2e
JM
1874{
1875 CHECK_TYPEDEF (t);
1876 return
1877 ((t != NULL)
d4f3574e
SS
1878 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1879 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1880 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1881 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1882 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1883 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1884}
1885
7b83ea04 1886/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1887 Return 1 if so, and 0 if not.
1888 Note: callers may want to check for identity of the types before
1889 calling this function -- identical types are considered to satisfy
7ba81444 1890 the ancestor relationship even if they're identical. */
c906108c
SS
1891
1892int
fba45db2 1893is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1894{
1895 int i;
c5aa993b 1896
c906108c
SS
1897 CHECK_TYPEDEF (base);
1898 CHECK_TYPEDEF (dclass);
1899
1900 if (base == dclass)
1901 return 1;
687d6395
MS
1902 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1903 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
6b1ba9a0 1904 return 1;
c906108c
SS
1905
1906 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1907 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1908 return 1;
1909
1910 return 0;
1911}
c906108c
SS
1912\f
1913
c5aa993b 1914
c906108c
SS
1915/* Functions for overload resolution begin here */
1916
1917/* Compare two badness vectors A and B and return the result.
7ba81444
MS
1918 0 => A and B are identical
1919 1 => A and B are incomparable
1920 2 => A is better than B
1921 3 => A is worse than B */
c906108c
SS
1922
1923int
fba45db2 1924compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
1925{
1926 int i;
1927 int tmp;
c5aa993b
JM
1928 short found_pos = 0; /* any positives in c? */
1929 short found_neg = 0; /* any negatives in c? */
1930
1931 /* differing lengths => incomparable */
c906108c
SS
1932 if (a->length != b->length)
1933 return 1;
1934
c5aa993b
JM
1935 /* Subtract b from a */
1936 for (i = 0; i < a->length; i++)
c906108c
SS
1937 {
1938 tmp = a->rank[i] - b->rank[i];
1939 if (tmp > 0)
c5aa993b 1940 found_pos = 1;
c906108c 1941 else if (tmp < 0)
c5aa993b 1942 found_neg = 1;
c906108c
SS
1943 }
1944
1945 if (found_pos)
1946 {
1947 if (found_neg)
c5aa993b 1948 return 1; /* incomparable */
c906108c 1949 else
c5aa993b 1950 return 3; /* A > B */
c906108c 1951 }
c5aa993b
JM
1952 else
1953 /* no positives */
c906108c
SS
1954 {
1955 if (found_neg)
c5aa993b 1956 return 2; /* A < B */
c906108c 1957 else
c5aa993b 1958 return 0; /* A == B */
c906108c
SS
1959 }
1960}
1961
7ba81444
MS
1962/* Rank a function by comparing its parameter types (PARMS, length
1963 NPARMS), to the types of an argument list (ARGS, length NARGS).
1964 Return a pointer to a badness vector. This has NARGS + 1
1965 entries. */
c906108c
SS
1966
1967struct badness_vector *
7ba81444
MS
1968rank_function (struct type **parms, int nparms,
1969 struct type **args, int nargs)
c906108c
SS
1970{
1971 int i;
c5aa993b 1972 struct badness_vector *bv;
c906108c
SS
1973 int min_len = nparms < nargs ? nparms : nargs;
1974
1975 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 1976 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
1977 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1978
1979 /* First compare the lengths of the supplied lists.
7ba81444 1980 If there is a mismatch, set it to a high value. */
c5aa993b 1981
c906108c 1982 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
1983 arguments and ellipsis parameter lists, we should consider those
1984 and rank the length-match more finely. */
c906108c
SS
1985
1986 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1987
1988 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
1989 for (i = 1; i <= min_len; i++)
1990 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 1991
c5aa993b
JM
1992 /* If more arguments than parameters, add dummy entries */
1993 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
1994 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1995
1996 return bv;
1997}
1998
973ccf8b
DJ
1999/* Compare the names of two integer types, assuming that any sign
2000 qualifiers have been checked already. We do it this way because
2001 there may be an "int" in the name of one of the types. */
2002
2003static int
2004integer_types_same_name_p (const char *first, const char *second)
2005{
2006 int first_p, second_p;
2007
7ba81444
MS
2008 /* If both are shorts, return 1; if neither is a short, keep
2009 checking. */
973ccf8b
DJ
2010 first_p = (strstr (first, "short") != NULL);
2011 second_p = (strstr (second, "short") != NULL);
2012 if (first_p && second_p)
2013 return 1;
2014 if (first_p || second_p)
2015 return 0;
2016
2017 /* Likewise for long. */
2018 first_p = (strstr (first, "long") != NULL);
2019 second_p = (strstr (second, "long") != NULL);
2020 if (first_p && second_p)
2021 return 1;
2022 if (first_p || second_p)
2023 return 0;
2024
2025 /* Likewise for char. */
2026 first_p = (strstr (first, "char") != NULL);
2027 second_p = (strstr (second, "char") != NULL);
2028 if (first_p && second_p)
2029 return 1;
2030 if (first_p || second_p)
2031 return 0;
2032
2033 /* They must both be ints. */
2034 return 1;
2035}
2036
c906108c
SS
2037/* Compare one type (PARM) for compatibility with another (ARG).
2038 * PARM is intended to be the parameter type of a function; and
2039 * ARG is the supplied argument's type. This function tests if
2040 * the latter can be converted to the former.
2041 *
2042 * Return 0 if they are identical types;
2043 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2044 * PARM is to ARG. The higher the return value, the worse the match.
2045 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c
SS
2046
2047int
fba45db2 2048rank_one_type (struct type *parm, struct type *arg)
c906108c 2049{
7ba81444 2050 /* Identical type pointers. */
c906108c 2051 /* However, this still doesn't catch all cases of same type for arg
7ba81444
MS
2052 and param. The reason is that builtin types are different from
2053 the same ones constructed from the object. */
c906108c
SS
2054 if (parm == arg)
2055 return 0;
2056
2057 /* Resolve typedefs */
2058 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2059 parm = check_typedef (parm);
2060 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2061 arg = check_typedef (arg);
2062
070ad9f0 2063 /*
7ba81444
MS
2064 Well, damnit, if the names are exactly the same, I'll say they
2065 are exactly the same. This happens when we generate method
2066 stubs. The types won't point to the same address, but they
070ad9f0
DB
2067 really are the same.
2068 */
2069
687d6395
MS
2070 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2071 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
7ba81444 2072 return 0;
070ad9f0 2073
7ba81444 2074 /* Check if identical after resolving typedefs. */
c906108c
SS
2075 if (parm == arg)
2076 return 0;
2077
db577aea 2078 /* See through references, since we can almost make non-references
7ba81444 2079 references. */
db577aea 2080 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2081 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2082 + REFERENCE_CONVERSION_BADNESS);
2083 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2084 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2085 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2086 if (overload_debug)
7ba81444
MS
2087 /* Debugging only. */
2088 fprintf_filtered (gdb_stderr,
2089 "------ Arg is %s [%d], parm is %s [%d]\n",
2090 TYPE_NAME (arg), TYPE_CODE (arg),
2091 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2092
2093 /* x -> y means arg of type x being supplied for parameter of type y */
2094
2095 switch (TYPE_CODE (parm))
2096 {
c5aa993b
JM
2097 case TYPE_CODE_PTR:
2098 switch (TYPE_CODE (arg))
2099 {
2100 case TYPE_CODE_PTR:
2101 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2102 return VOID_PTR_CONVERSION_BADNESS;
2103 else
7ba81444
MS
2104 return rank_one_type (TYPE_TARGET_TYPE (parm),
2105 TYPE_TARGET_TYPE (arg));
c5aa993b 2106 case TYPE_CODE_ARRAY:
7ba81444
MS
2107 return rank_one_type (TYPE_TARGET_TYPE (parm),
2108 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2109 case TYPE_CODE_FUNC:
2110 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2111 case TYPE_CODE_INT:
2112 case TYPE_CODE_ENUM:
4f2aea11 2113 case TYPE_CODE_FLAGS:
c5aa993b
JM
2114 case TYPE_CODE_CHAR:
2115 case TYPE_CODE_RANGE:
2116 case TYPE_CODE_BOOL:
2117 return POINTER_CONVERSION_BADNESS;
2118 default:
2119 return INCOMPATIBLE_TYPE_BADNESS;
2120 }
2121 case TYPE_CODE_ARRAY:
2122 switch (TYPE_CODE (arg))
2123 {
2124 case TYPE_CODE_PTR:
2125 case TYPE_CODE_ARRAY:
7ba81444
MS
2126 return rank_one_type (TYPE_TARGET_TYPE (parm),
2127 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2128 default:
2129 return INCOMPATIBLE_TYPE_BADNESS;
2130 }
2131 case TYPE_CODE_FUNC:
2132 switch (TYPE_CODE (arg))
2133 {
2134 case TYPE_CODE_PTR: /* funcptr -> func */
2135 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2136 default:
2137 return INCOMPATIBLE_TYPE_BADNESS;
2138 }
2139 case TYPE_CODE_INT:
2140 switch (TYPE_CODE (arg))
2141 {
2142 case TYPE_CODE_INT:
2143 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2144 {
2145 /* Deal with signed, unsigned, and plain chars and
7ba81444 2146 signed and unsigned ints. */
c5aa993b
JM
2147 if (TYPE_NOSIGN (parm))
2148 {
2149 /* This case only for character types */
7ba81444
MS
2150 if (TYPE_NOSIGN (arg))
2151 return 0; /* plain char -> plain char */
2152 else /* signed/unsigned char -> plain char */
2153 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2154 }
2155 else if (TYPE_UNSIGNED (parm))
2156 {
2157 if (TYPE_UNSIGNED (arg))
2158 {
7ba81444
MS
2159 /* unsigned int -> unsigned int, or
2160 unsigned long -> unsigned long */
2161 if (integer_types_same_name_p (TYPE_NAME (parm),
2162 TYPE_NAME (arg)))
973ccf8b 2163 return 0;
7ba81444
MS
2164 else if (integer_types_same_name_p (TYPE_NAME (arg),
2165 "int")
2166 && integer_types_same_name_p (TYPE_NAME (parm),
2167 "long"))
c5aa993b
JM
2168 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2169 else
1c5cb38e 2170 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2171 }
2172 else
2173 {
7ba81444
MS
2174 if (integer_types_same_name_p (TYPE_NAME (arg),
2175 "long")
2176 && integer_types_same_name_p (TYPE_NAME (parm),
2177 "int"))
1c5cb38e 2178 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2179 else
2180 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2181 }
2182 }
2183 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2184 {
7ba81444
MS
2185 if (integer_types_same_name_p (TYPE_NAME (parm),
2186 TYPE_NAME (arg)))
c5aa993b 2187 return 0;
7ba81444
MS
2188 else if (integer_types_same_name_p (TYPE_NAME (arg),
2189 "int")
2190 && integer_types_same_name_p (TYPE_NAME (parm),
2191 "long"))
c5aa993b
JM
2192 return INTEGER_PROMOTION_BADNESS;
2193 else
1c5cb38e 2194 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2195 }
2196 else
1c5cb38e 2197 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2198 }
2199 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2200 return INTEGER_PROMOTION_BADNESS;
2201 else
1c5cb38e 2202 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2203 case TYPE_CODE_ENUM:
4f2aea11 2204 case TYPE_CODE_FLAGS:
c5aa993b
JM
2205 case TYPE_CODE_CHAR:
2206 case TYPE_CODE_RANGE:
2207 case TYPE_CODE_BOOL:
2208 return INTEGER_PROMOTION_BADNESS;
2209 case TYPE_CODE_FLT:
2210 return INT_FLOAT_CONVERSION_BADNESS;
2211 case TYPE_CODE_PTR:
2212 return NS_POINTER_CONVERSION_BADNESS;
2213 default:
2214 return INCOMPATIBLE_TYPE_BADNESS;
2215 }
2216 break;
2217 case TYPE_CODE_ENUM:
2218 switch (TYPE_CODE (arg))
2219 {
2220 case TYPE_CODE_INT:
2221 case TYPE_CODE_CHAR:
2222 case TYPE_CODE_RANGE:
2223 case TYPE_CODE_BOOL:
2224 case TYPE_CODE_ENUM:
1c5cb38e 2225 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2226 case TYPE_CODE_FLT:
2227 return INT_FLOAT_CONVERSION_BADNESS;
2228 default:
2229 return INCOMPATIBLE_TYPE_BADNESS;
2230 }
2231 break;
2232 case TYPE_CODE_CHAR:
2233 switch (TYPE_CODE (arg))
2234 {
2235 case TYPE_CODE_RANGE:
2236 case TYPE_CODE_BOOL:
2237 case TYPE_CODE_ENUM:
1c5cb38e 2238 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2239 case TYPE_CODE_FLT:
2240 return INT_FLOAT_CONVERSION_BADNESS;
2241 case TYPE_CODE_INT:
2242 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2243 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2244 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2245 return INTEGER_PROMOTION_BADNESS;
2246 /* >>> !! else fall through !! <<< */
2247 case TYPE_CODE_CHAR:
7ba81444
MS
2248 /* Deal with signed, unsigned, and plain chars for C++ and
2249 with int cases falling through from previous case. */
c5aa993b
JM
2250 if (TYPE_NOSIGN (parm))
2251 {
2252 if (TYPE_NOSIGN (arg))
2253 return 0;
2254 else
1c5cb38e 2255 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2256 }
2257 else if (TYPE_UNSIGNED (parm))
2258 {
2259 if (TYPE_UNSIGNED (arg))
2260 return 0;
2261 else
2262 return INTEGER_PROMOTION_BADNESS;
2263 }
2264 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2265 return 0;
2266 else
1c5cb38e 2267 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2268 default:
2269 return INCOMPATIBLE_TYPE_BADNESS;
2270 }
2271 break;
2272 case TYPE_CODE_RANGE:
2273 switch (TYPE_CODE (arg))
2274 {
2275 case TYPE_CODE_INT:
2276 case TYPE_CODE_CHAR:
2277 case TYPE_CODE_RANGE:
2278 case TYPE_CODE_BOOL:
2279 case TYPE_CODE_ENUM:
1c5cb38e 2280 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2281 case TYPE_CODE_FLT:
2282 return INT_FLOAT_CONVERSION_BADNESS;
2283 default:
2284 return INCOMPATIBLE_TYPE_BADNESS;
2285 }
2286 break;
2287 case TYPE_CODE_BOOL:
2288 switch (TYPE_CODE (arg))
2289 {
2290 case TYPE_CODE_INT:
2291 case TYPE_CODE_CHAR:
2292 case TYPE_CODE_RANGE:
2293 case TYPE_CODE_ENUM:
2294 case TYPE_CODE_FLT:
2295 case TYPE_CODE_PTR:
2296 return BOOLEAN_CONVERSION_BADNESS;
2297 case TYPE_CODE_BOOL:
2298 return 0;
2299 default:
2300 return INCOMPATIBLE_TYPE_BADNESS;
2301 }
2302 break;
2303 case TYPE_CODE_FLT:
2304 switch (TYPE_CODE (arg))
2305 {
2306 case TYPE_CODE_FLT:
2307 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2308 return FLOAT_PROMOTION_BADNESS;
2309 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2310 return 0;
2311 else
2312 return FLOAT_CONVERSION_BADNESS;
2313 case TYPE_CODE_INT:
2314 case TYPE_CODE_BOOL:
2315 case TYPE_CODE_ENUM:
2316 case TYPE_CODE_RANGE:
2317 case TYPE_CODE_CHAR:
2318 return INT_FLOAT_CONVERSION_BADNESS;
2319 default:
2320 return INCOMPATIBLE_TYPE_BADNESS;
2321 }
2322 break;
2323 case TYPE_CODE_COMPLEX:
2324 switch (TYPE_CODE (arg))
7ba81444 2325 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2326 case TYPE_CODE_FLT:
2327 return FLOAT_PROMOTION_BADNESS;
2328 case TYPE_CODE_COMPLEX:
2329 return 0;
2330 default:
2331 return INCOMPATIBLE_TYPE_BADNESS;
2332 }
2333 break;
2334 case TYPE_CODE_STRUCT:
c906108c 2335 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2336 switch (TYPE_CODE (arg))
2337 {
2338 case TYPE_CODE_STRUCT:
2339 /* Check for derivation */
2340 if (is_ancestor (parm, arg))
2341 return BASE_CONVERSION_BADNESS;
2342 /* else fall through */
2343 default:
2344 return INCOMPATIBLE_TYPE_BADNESS;
2345 }
2346 break;
2347 case TYPE_CODE_UNION:
2348 switch (TYPE_CODE (arg))
2349 {
2350 case TYPE_CODE_UNION:
2351 default:
2352 return INCOMPATIBLE_TYPE_BADNESS;
2353 }
2354 break;
0d5de010 2355 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2356 switch (TYPE_CODE (arg))
2357 {
2358 default:
2359 return INCOMPATIBLE_TYPE_BADNESS;
2360 }
2361 break;
2362 case TYPE_CODE_METHOD:
2363 switch (TYPE_CODE (arg))
2364 {
2365
2366 default:
2367 return INCOMPATIBLE_TYPE_BADNESS;
2368 }
2369 break;
2370 case TYPE_CODE_REF:
2371 switch (TYPE_CODE (arg))
2372 {
2373
2374 default:
2375 return INCOMPATIBLE_TYPE_BADNESS;
2376 }
2377
2378 break;
2379 case TYPE_CODE_SET:
2380 switch (TYPE_CODE (arg))
2381 {
2382 /* Not in C++ */
2383 case TYPE_CODE_SET:
7ba81444
MS
2384 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2385 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2386 default:
2387 return INCOMPATIBLE_TYPE_BADNESS;
2388 }
2389 break;
2390 case TYPE_CODE_VOID:
2391 default:
2392 return INCOMPATIBLE_TYPE_BADNESS;
2393 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2394}
2395
c5aa993b
JM
2396
2397/* End of functions for overload resolution */
c906108c 2398
c906108c 2399static void
fba45db2 2400print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2401{
2402 int bitno;
2403
2404 for (bitno = 0; bitno < nbits; bitno++)
2405 {
2406 if ((bitno % 8) == 0)
2407 {
2408 puts_filtered (" ");
2409 }
2410 if (B_TST (bits, bitno))
a3f17187 2411 printf_filtered (("1"));
c906108c 2412 else
a3f17187 2413 printf_filtered (("0"));
c906108c
SS
2414 }
2415}
2416
ad2f7632 2417/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2418 include it since we may get into a infinitely recursive
2419 situation. */
c906108c
SS
2420
2421static void
ad2f7632 2422print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2423{
2424 if (args != NULL)
2425 {
ad2f7632
DJ
2426 int i;
2427
2428 for (i = 0; i < nargs; i++)
2429 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2430 }
2431}
2432
2433static void
fba45db2 2434dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2435{
2436 int method_idx;
2437 int overload_idx;
2438 struct fn_field *f;
2439
2440 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2441 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2442 printf_filtered ("\n");
2443 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2444 {
2445 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2446 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2447 method_idx,
2448 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2449 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2450 gdb_stdout);
a3f17187 2451 printf_filtered (_(") length %d\n"),
c906108c
SS
2452 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2453 for (overload_idx = 0;
2454 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2455 overload_idx++)
2456 {
2457 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2458 overload_idx,
2459 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2460 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2461 gdb_stdout);
c906108c
SS
2462 printf_filtered (")\n");
2463 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2464 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2465 gdb_stdout);
c906108c
SS
2466 printf_filtered ("\n");
2467
2468 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2469 spaces + 8 + 2);
2470
2471 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2472 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2473 gdb_stdout);
c906108c
SS
2474 printf_filtered ("\n");
2475
ad2f7632 2476 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2477 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2478 overload_idx)),
ad2f7632 2479 spaces);
c906108c 2480 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2481 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2482 gdb_stdout);
c906108c
SS
2483 printf_filtered ("\n");
2484
2485 printfi_filtered (spaces + 8, "is_const %d\n",
2486 TYPE_FN_FIELD_CONST (f, overload_idx));
2487 printfi_filtered (spaces + 8, "is_volatile %d\n",
2488 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2489 printfi_filtered (spaces + 8, "is_private %d\n",
2490 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2491 printfi_filtered (spaces + 8, "is_protected %d\n",
2492 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2493 printfi_filtered (spaces + 8, "is_stub %d\n",
2494 TYPE_FN_FIELD_STUB (f, overload_idx));
2495 printfi_filtered (spaces + 8, "voffset %u\n",
2496 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2497 }
2498 }
2499}
2500
2501static void
fba45db2 2502print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2503{
2504 printfi_filtered (spaces, "n_baseclasses %d\n",
2505 TYPE_N_BASECLASSES (type));
2506 printfi_filtered (spaces, "nfn_fields %d\n",
2507 TYPE_NFN_FIELDS (type));
2508 printfi_filtered (spaces, "nfn_fields_total %d\n",
2509 TYPE_NFN_FIELDS_TOTAL (type));
2510 if (TYPE_N_BASECLASSES (type) > 0)
2511 {
2512 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2513 TYPE_N_BASECLASSES (type));
7ba81444
MS
2514 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2515 gdb_stdout);
c906108c
SS
2516 printf_filtered (")");
2517
2518 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2519 TYPE_N_BASECLASSES (type));
2520 puts_filtered ("\n");
2521 }
2522 if (TYPE_NFIELDS (type) > 0)
2523 {
2524 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2525 {
7ba81444
MS
2526 printfi_filtered (spaces,
2527 "private_field_bits (%d bits at *",
c906108c 2528 TYPE_NFIELDS (type));
7ba81444
MS
2529 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2530 gdb_stdout);
c906108c
SS
2531 printf_filtered (")");
2532 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2533 TYPE_NFIELDS (type));
2534 puts_filtered ("\n");
2535 }
2536 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2537 {
7ba81444
MS
2538 printfi_filtered (spaces,
2539 "protected_field_bits (%d bits at *",
c906108c 2540 TYPE_NFIELDS (type));
7ba81444
MS
2541 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2542 gdb_stdout);
c906108c
SS
2543 printf_filtered (")");
2544 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2545 TYPE_NFIELDS (type));
2546 puts_filtered ("\n");
2547 }
2548 }
2549 if (TYPE_NFN_FIELDS (type) > 0)
2550 {
2551 dump_fn_fieldlists (type, spaces);
2552 }
2553}
2554
e9e79dd9
FF
2555static void
2556print_bound_type (int bt)
2557{
2558 switch (bt)
2559 {
2560 case BOUND_CANNOT_BE_DETERMINED:
2561 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2562 break;
2563 case BOUND_BY_REF_ON_STACK:
2564 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2565 break;
2566 case BOUND_BY_VALUE_ON_STACK:
2567 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2568 break;
2569 case BOUND_BY_REF_IN_REG:
2570 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2571 break;
2572 case BOUND_BY_VALUE_IN_REG:
2573 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2574 break;
2575 case BOUND_SIMPLE:
2576 printf_filtered ("(BOUND_SIMPLE)");
2577 break;
2578 default:
a3f17187 2579 printf_filtered (_("(unknown bound type)"));
e9e79dd9
FF
2580 break;
2581 }
2582}
2583
c906108c
SS
2584static struct obstack dont_print_type_obstack;
2585
2586void
fba45db2 2587recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2588{
2589 int idx;
2590
2591 if (spaces == 0)
2592 obstack_begin (&dont_print_type_obstack, 0);
2593
2594 if (TYPE_NFIELDS (type) > 0
2595 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2596 {
2597 struct type **first_dont_print
7ba81444 2598 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2599
7ba81444
MS
2600 int i = (struct type **)
2601 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2602
2603 while (--i >= 0)
2604 {
2605 if (type == first_dont_print[i])
2606 {
2607 printfi_filtered (spaces, "type node ");
d4f3574e 2608 gdb_print_host_address (type, gdb_stdout);
a3f17187 2609 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2610 return;
2611 }
2612 }
2613
2614 obstack_ptr_grow (&dont_print_type_obstack, type);
2615 }
2616
2617 printfi_filtered (spaces, "type node ");
d4f3574e 2618 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2619 printf_filtered ("\n");
2620 printfi_filtered (spaces, "name '%s' (",
2621 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2622 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2623 printf_filtered (")\n");
e9e79dd9
FF
2624 printfi_filtered (spaces, "tagname '%s' (",
2625 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2626 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2627 printf_filtered (")\n");
c906108c
SS
2628 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2629 switch (TYPE_CODE (type))
2630 {
c5aa993b
JM
2631 case TYPE_CODE_UNDEF:
2632 printf_filtered ("(TYPE_CODE_UNDEF)");
2633 break;
2634 case TYPE_CODE_PTR:
2635 printf_filtered ("(TYPE_CODE_PTR)");
2636 break;
2637 case TYPE_CODE_ARRAY:
2638 printf_filtered ("(TYPE_CODE_ARRAY)");
2639 break;
2640 case TYPE_CODE_STRUCT:
2641 printf_filtered ("(TYPE_CODE_STRUCT)");
2642 break;
2643 case TYPE_CODE_UNION:
2644 printf_filtered ("(TYPE_CODE_UNION)");
2645 break;
2646 case TYPE_CODE_ENUM:
2647 printf_filtered ("(TYPE_CODE_ENUM)");
2648 break;
4f2aea11
MK
2649 case TYPE_CODE_FLAGS:
2650 printf_filtered ("(TYPE_CODE_FLAGS)");
2651 break;
c5aa993b
JM
2652 case TYPE_CODE_FUNC:
2653 printf_filtered ("(TYPE_CODE_FUNC)");
2654 break;
2655 case TYPE_CODE_INT:
2656 printf_filtered ("(TYPE_CODE_INT)");
2657 break;
2658 case TYPE_CODE_FLT:
2659 printf_filtered ("(TYPE_CODE_FLT)");
2660 break;
2661 case TYPE_CODE_VOID:
2662 printf_filtered ("(TYPE_CODE_VOID)");
2663 break;
2664 case TYPE_CODE_SET:
2665 printf_filtered ("(TYPE_CODE_SET)");
2666 break;
2667 case TYPE_CODE_RANGE:
2668 printf_filtered ("(TYPE_CODE_RANGE)");
2669 break;
2670 case TYPE_CODE_STRING:
2671 printf_filtered ("(TYPE_CODE_STRING)");
2672 break;
e9e79dd9
FF
2673 case TYPE_CODE_BITSTRING:
2674 printf_filtered ("(TYPE_CODE_BITSTRING)");
2675 break;
c5aa993b
JM
2676 case TYPE_CODE_ERROR:
2677 printf_filtered ("(TYPE_CODE_ERROR)");
2678 break;
0d5de010
DJ
2679 case TYPE_CODE_MEMBERPTR:
2680 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2681 break;
2682 case TYPE_CODE_METHODPTR:
2683 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2684 break;
2685 case TYPE_CODE_METHOD:
2686 printf_filtered ("(TYPE_CODE_METHOD)");
2687 break;
2688 case TYPE_CODE_REF:
2689 printf_filtered ("(TYPE_CODE_REF)");
2690 break;
2691 case TYPE_CODE_CHAR:
2692 printf_filtered ("(TYPE_CODE_CHAR)");
2693 break;
2694 case TYPE_CODE_BOOL:
2695 printf_filtered ("(TYPE_CODE_BOOL)");
2696 break;
e9e79dd9
FF
2697 case TYPE_CODE_COMPLEX:
2698 printf_filtered ("(TYPE_CODE_COMPLEX)");
2699 break;
c5aa993b
JM
2700 case TYPE_CODE_TYPEDEF:
2701 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2702 break;
e9e79dd9
FF
2703 case TYPE_CODE_TEMPLATE:
2704 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2705 break;
2706 case TYPE_CODE_TEMPLATE_ARG:
2707 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2708 break;
5c4e30ca
DC
2709 case TYPE_CODE_NAMESPACE:
2710 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2711 break;
c5aa993b
JM
2712 default:
2713 printf_filtered ("(UNKNOWN TYPE CODE)");
2714 break;
c906108c
SS
2715 }
2716 puts_filtered ("\n");
2717 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9e79dd9
FF
2718 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2719 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2720 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2721 puts_filtered ("\n");
2722 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2723 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2724 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2725 puts_filtered ("\n");
c906108c 2726 printfi_filtered (spaces, "objfile ");
d4f3574e 2727 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
c906108c
SS
2728 printf_filtered ("\n");
2729 printfi_filtered (spaces, "target_type ");
d4f3574e 2730 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2731 printf_filtered ("\n");
2732 if (TYPE_TARGET_TYPE (type) != NULL)
2733 {
2734 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2735 }
2736 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2737 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2738 printf_filtered ("\n");
2739 printfi_filtered (spaces, "reference_type ");
d4f3574e 2740 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2741 printf_filtered ("\n");
2fdde8f8
DJ
2742 printfi_filtered (spaces, "type_chain ");
2743 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2744 printf_filtered ("\n");
7ba81444
MS
2745 printfi_filtered (spaces, "instance_flags 0x%x",
2746 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2747 if (TYPE_CONST (type))
2748 {
2749 puts_filtered (" TYPE_FLAG_CONST");
2750 }
2751 if (TYPE_VOLATILE (type))
2752 {
2753 puts_filtered (" TYPE_FLAG_VOLATILE");
2754 }
2755 if (TYPE_CODE_SPACE (type))
2756 {
2757 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2758 }
2759 if (TYPE_DATA_SPACE (type))
2760 {
2761 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2762 }
8b2dbe47
KB
2763 if (TYPE_ADDRESS_CLASS_1 (type))
2764 {
2765 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2766 }
2767 if (TYPE_ADDRESS_CLASS_2 (type))
2768 {
2769 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2770 }
2fdde8f8 2771 puts_filtered ("\n");
c906108c 2772 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
762a036f 2773 if (TYPE_UNSIGNED (type))
c906108c
SS
2774 {
2775 puts_filtered (" TYPE_FLAG_UNSIGNED");
2776 }
762a036f
FF
2777 if (TYPE_NOSIGN (type))
2778 {
2779 puts_filtered (" TYPE_FLAG_NOSIGN");
2780 }
2781 if (TYPE_STUB (type))
c906108c
SS
2782 {
2783 puts_filtered (" TYPE_FLAG_STUB");
2784 }
762a036f
FF
2785 if (TYPE_TARGET_STUB (type))
2786 {
2787 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2788 }
2789 if (TYPE_STATIC (type))
2790 {
2791 puts_filtered (" TYPE_FLAG_STATIC");
2792 }
762a036f
FF
2793 if (TYPE_PROTOTYPED (type))
2794 {
2795 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2796 }
2797 if (TYPE_INCOMPLETE (type))
2798 {
2799 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2800 }
762a036f
FF
2801 if (TYPE_VARARGS (type))
2802 {
2803 puts_filtered (" TYPE_FLAG_VARARGS");
2804 }
f5f8a009
EZ
2805 /* This is used for things like AltiVec registers on ppc. Gcc emits
2806 an attribute for the array type, which tells whether or not we
2807 have a vector, instead of a regular array. */
2808 if (TYPE_VECTOR (type))
2809 {
2810 puts_filtered (" TYPE_FLAG_VECTOR");
2811 }
c906108c
SS
2812 puts_filtered ("\n");
2813 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 2814 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
2815 puts_filtered ("\n");
2816 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2817 {
2818 printfi_filtered (spaces + 2,
2819 "[%d] bitpos %d bitsize %d type ",
2820 idx, TYPE_FIELD_BITPOS (type, idx),
2821 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 2822 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
2823 printf_filtered (" name '%s' (",
2824 TYPE_FIELD_NAME (type, idx) != NULL
2825 ? TYPE_FIELD_NAME (type, idx)
2826 : "<NULL>");
d4f3574e 2827 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
2828 printf_filtered (")\n");
2829 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2830 {
2831 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2832 }
2833 }
2834 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 2835 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
2836 puts_filtered ("\n");
2837 if (TYPE_VPTR_BASETYPE (type) != NULL)
2838 {
2839 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2840 }
7ba81444
MS
2841 printfi_filtered (spaces, "vptr_fieldno %d\n",
2842 TYPE_VPTR_FIELDNO (type));
c906108c
SS
2843 switch (TYPE_CODE (type))
2844 {
c5aa993b
JM
2845 case TYPE_CODE_STRUCT:
2846 printfi_filtered (spaces, "cplus_stuff ");
7ba81444
MS
2847 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2848 gdb_stdout);
c5aa993b
JM
2849 puts_filtered ("\n");
2850 print_cplus_stuff (type, spaces);
2851 break;
c906108c 2852
701c159d
AC
2853 case TYPE_CODE_FLT:
2854 printfi_filtered (spaces, "floatformat ");
8da61cc4 2855 if (TYPE_FLOATFORMAT (type) == NULL)
701c159d
AC
2856 puts_filtered ("(null)");
2857 else
8da61cc4
DJ
2858 {
2859 puts_filtered ("{ ");
2860 if (TYPE_FLOATFORMAT (type)[0] == NULL
2861 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2862 puts_filtered ("(null)");
2863 else
2864 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2865
2866 puts_filtered (", ");
2867 if (TYPE_FLOATFORMAT (type)[1] == NULL
2868 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2869 puts_filtered ("(null)");
2870 else
2871 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2872
2873 puts_filtered (" }");
2874 }
701c159d
AC
2875 puts_filtered ("\n");
2876 break;
2877
c5aa993b 2878 default:
7ba81444
MS
2879 /* We have to pick one of the union types to be able print and
2880 test the value. Pick cplus_struct_type, even though we know
2881 it isn't any particular one. */
c5aa993b 2882 printfi_filtered (spaces, "type_specific ");
d4f3574e 2883 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
2884 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2885 {
a3f17187 2886 printf_filtered (_(" (unknown data form)"));
c5aa993b
JM
2887 }
2888 printf_filtered ("\n");
2889 break;
c906108c
SS
2890
2891 }
2892 if (spaces == 0)
2893 obstack_free (&dont_print_type_obstack, NULL);
2894}
2895
ae5a43e0
DJ
2896/* Trivial helpers for the libiberty hash table, for mapping one
2897 type to another. */
2898
2899struct type_pair
2900{
2901 struct type *old, *new;
2902};
2903
2904static hashval_t
2905type_pair_hash (const void *item)
2906{
2907 const struct type_pair *pair = item;
2908 return htab_hash_pointer (pair->old);
2909}
2910
2911static int
2912type_pair_eq (const void *item_lhs, const void *item_rhs)
2913{
2914 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2915 return lhs->old == rhs->old;
2916}
2917
2918/* Allocate the hash table used by copy_type_recursive to walk
2919 types without duplicates. We use OBJFILE's obstack, because
2920 OBJFILE is about to be deleted. */
2921
2922htab_t
2923create_copied_types_hash (struct objfile *objfile)
2924{
2925 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2926 NULL, &objfile->objfile_obstack,
2927 hashtab_obstack_allocate,
2928 dummy_obstack_deallocate);
2929}
2930
7ba81444
MS
2931/* Recursively copy (deep copy) TYPE, if it is associated with
2932 OBJFILE. Return a new type allocated using malloc, a saved type if
2933 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2934 not associated with OBJFILE. */
ae5a43e0
DJ
2935
2936struct type *
7ba81444
MS
2937copy_type_recursive (struct objfile *objfile,
2938 struct type *type,
ae5a43e0
DJ
2939 htab_t copied_types)
2940{
2941 struct type_pair *stored, pair;
2942 void **slot;
2943 struct type *new_type;
2944
2945 if (TYPE_OBJFILE (type) == NULL)
2946 return type;
2947
7ba81444
MS
2948 /* This type shouldn't be pointing to any types in other objfiles;
2949 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
2950 gdb_assert (TYPE_OBJFILE (type) == objfile);
2951
2952 pair.old = type;
2953 slot = htab_find_slot (copied_types, &pair, INSERT);
2954 if (*slot != NULL)
2955 return ((struct type_pair *) *slot)->new;
2956
2957 new_type = alloc_type (NULL);
2958
2959 /* We must add the new type to the hash table immediately, in case
2960 we encounter this type again during a recursive call below. */
2961 stored = xmalloc (sizeof (struct type_pair));
2962 stored->old = type;
2963 stored->new = new_type;
2964 *slot = stored;
2965
2966 /* Copy the common fields of types. */
2967 TYPE_CODE (new_type) = TYPE_CODE (type);
7ba81444
MS
2968 TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
2969 TYPE_ARRAY_UPPER_BOUND_TYPE (type);
2970 TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
2971 TYPE_ARRAY_LOWER_BOUND_TYPE (type);
ae5a43e0
DJ
2972 if (TYPE_NAME (type))
2973 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2974 if (TYPE_TAG_NAME (type))
2975 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2976 TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
2977 TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
2978
2979 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2980 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2981
2982 /* Copy the fields. */
2983 TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
2984 if (TYPE_NFIELDS (type))
2985 {
2986 int i, nfields;
2987
2988 nfields = TYPE_NFIELDS (type);
2989 TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
2990 for (i = 0; i < nfields; i++)
2991 {
7ba81444
MS
2992 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2993 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
2994 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2995 if (TYPE_FIELD_TYPE (type, i))
2996 TYPE_FIELD_TYPE (new_type, i)
2997 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2998 copied_types);
2999 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3000 TYPE_FIELD_NAME (new_type, i) =
3001 xstrdup (TYPE_FIELD_NAME (type, i));
ae5a43e0
DJ
3002 if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
3003 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3004 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3005 else if (TYPE_FIELD_STATIC (type, i))
3006 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
7ba81444
MS
3007 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3008 i)));
ae5a43e0
DJ
3009 else
3010 {
7ba81444
MS
3011 TYPE_FIELD_BITPOS (new_type, i) =
3012 TYPE_FIELD_BITPOS (type, i);
ae5a43e0
DJ
3013 TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
3014 }
3015 }
3016 }
3017
3018 /* Copy pointers to other types. */
3019 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3020 TYPE_TARGET_TYPE (new_type) =
3021 copy_type_recursive (objfile,
3022 TYPE_TARGET_TYPE (type),
3023 copied_types);
ae5a43e0 3024 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3025 TYPE_VPTR_BASETYPE (new_type) =
3026 copy_type_recursive (objfile,
3027 TYPE_VPTR_BASETYPE (type),
3028 copied_types);
ae5a43e0
DJ
3029 /* Maybe copy the type_specific bits.
3030
3031 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3032 base classes and methods. There's no fundamental reason why we
3033 can't, but at the moment it is not needed. */
3034
3035 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3036 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3037 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3038 || TYPE_CODE (type) == TYPE_CODE_UNION
3039 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3040 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3041 INIT_CPLUS_SPECIFIC (new_type);
3042
3043 return new_type;
3044}
3045
8da61cc4
DJ
3046static struct type *
3047build_flt (int bit, char *name, const struct floatformat **floatformats)
3048{
3049 struct type *t;
3050
3051 if (bit == -1)
3052 {
3053 gdb_assert (floatformats != NULL);
3054 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3055 bit = floatformats[0]->totalsize;
3056 }
3057 gdb_assert (bit >= 0);
3058
3059 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3060 TYPE_FLOATFORMAT (t) = floatformats;
3061 return t;
3062}
3063
000177f0
AC
3064static struct gdbarch_data *gdbtypes_data;
3065
3066const struct builtin_type *
3067builtin_type (struct gdbarch *gdbarch)
3068{
3069 return gdbarch_data (gdbarch, gdbtypes_data);
3070}
3071
70bd8e24 3072
70bd8e24
AC
3073static struct type *
3074build_complex (int bit, char *name, struct type *target_type)
3075{
3076 struct type *t;
3077 if (bit <= 0 || target_type == builtin_type_error)
3078 {
3079 gdb_assert (builtin_type_error != NULL);
3080 return builtin_type_error;
3081 }
3082 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3083 0, name, (struct objfile *) NULL);
3084 TYPE_TARGET_TYPE (t) = target_type;
3085 return t;
3086}
3087
000177f0
AC
3088static void *
3089gdbtypes_post_init (struct gdbarch *gdbarch)
3090{
3091 struct builtin_type *builtin_type
3092 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3093
3094 builtin_type->builtin_void =
3095 init_type (TYPE_CODE_VOID, 1,
3096 0,
3097 "void", (struct objfile *) NULL);
3098 builtin_type->builtin_char =
3099 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3100 (TYPE_FLAG_NOSIGN
8a7e34d8 3101 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
000177f0 3102 "char", (struct objfile *) NULL);
685419e2 3103 builtin_type->builtin_true_char =
000177f0
AC
3104 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3105 0,
3106 "true character", (struct objfile *) NULL);
ea37ba09
DJ
3107 builtin_type->builtin_true_unsigned_char =
3108 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3109 TYPE_FLAG_UNSIGNED,
3110 "true character", (struct objfile *) NULL);
000177f0
AC
3111 builtin_type->builtin_signed_char =
3112 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3113 0,
3114 "signed char", (struct objfile *) NULL);
3115 builtin_type->builtin_unsigned_char =
3116 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3117 TYPE_FLAG_UNSIGNED,
3118 "unsigned char", (struct objfile *) NULL);
3119 builtin_type->builtin_short =
7ba81444 3120 init_type (TYPE_CODE_INT,
8a7e34d8 3121 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3122 0, "short", (struct objfile *) NULL);
000177f0 3123 builtin_type->builtin_unsigned_short =
7ba81444 3124 init_type (TYPE_CODE_INT,
8a7e34d8 3125 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3126 TYPE_FLAG_UNSIGNED, "unsigned short",
3127 (struct objfile *) NULL);
000177f0 3128 builtin_type->builtin_int =
7ba81444 3129 init_type (TYPE_CODE_INT,
8a7e34d8 3130 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3131 0, "int", (struct objfile *) NULL);
000177f0 3132 builtin_type->builtin_unsigned_int =
7ba81444 3133 init_type (TYPE_CODE_INT,
8a7e34d8 3134 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3135 TYPE_FLAG_UNSIGNED, "unsigned int",
3136 (struct objfile *) NULL);
000177f0 3137 builtin_type->builtin_long =
7ba81444 3138 init_type (TYPE_CODE_INT,
8a7e34d8 3139 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3140 0, "long", (struct objfile *) NULL);
000177f0 3141 builtin_type->builtin_unsigned_long =
7ba81444 3142 init_type (TYPE_CODE_INT,
8a7e34d8 3143 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3144 TYPE_FLAG_UNSIGNED, "unsigned long",
3145 (struct objfile *) NULL);
000177f0 3146 builtin_type->builtin_long_long =
9a76efb6 3147 init_type (TYPE_CODE_INT,
8a7e34d8 3148 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 3149 0, "long long", (struct objfile *) NULL);
000177f0 3150 builtin_type->builtin_unsigned_long_long =
9a76efb6 3151 init_type (TYPE_CODE_INT,
8a7e34d8 3152 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6
UW
3153 TYPE_FLAG_UNSIGNED, "unsigned long long",
3154 (struct objfile *) NULL);
70bd8e24
AC
3155 builtin_type->builtin_float
3156 = build_flt (gdbarch_float_bit (gdbarch), "float",
3157 gdbarch_float_format (gdbarch));
3158 builtin_type->builtin_double
3159 = build_flt (gdbarch_double_bit (gdbarch), "double",
3160 gdbarch_double_format (gdbarch));
3161 builtin_type->builtin_long_double
3162 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3163 gdbarch_long_double_format (gdbarch));
3164 builtin_type->builtin_complex
3165 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3166 builtin_type->builtin_float);
3167 builtin_type->builtin_double_complex
3168 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3169 builtin_type->builtin_double);
000177f0
AC
3170 builtin_type->builtin_string =
3171 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3172 0,
3173 "string", (struct objfile *) NULL);
000177f0
AC
3174 builtin_type->builtin_bool =
3175 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3176 0,
3177 "bool", (struct objfile *) NULL);
3178
7678ef8f
TJB
3179 /* The following three are about decimal floating point types, which
3180 are 32-bits, 64-bits and 128-bits respectively. */
3181 builtin_type->builtin_decfloat
3182 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3183 0,
3184 "decimal float", (struct objfile *) NULL);
3185 builtin_type->builtin_decdouble
3186 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3187 0,
3188 "decimal double", (struct objfile *) NULL);
3189 builtin_type->builtin_declong
3190 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3191 0,
3192 "decimal long double", (struct objfile *) NULL);
3193
7ba81444 3194 /* Pointer/Address types. */
000177f0
AC
3195
3196 /* NOTE: on some targets, addresses and pointers are not necessarily
3197 the same --- for example, on the D10V, pointers are 16 bits long,
3198 but addresses are 32 bits long. See doc/gdbint.texinfo,
3199 ``Pointers Are Not Always Addresses''.
3200
3201 The upshot is:
3202 - gdb's `struct type' always describes the target's
3203 representation.
3204 - gdb's `struct value' objects should always hold values in
3205 target form.
3206 - gdb's CORE_ADDR values are addresses in the unified virtual
3207 address space that the assembler and linker work with. Thus,
3208 since target_read_memory takes a CORE_ADDR as an argument, it
3209 can access any memory on the target, even if the processor has
3210 separate code and data address spaces.
3211
3212 So, for example:
3213 - If v is a value holding a D10V code pointer, its contents are
3214 in target form: a big-endian address left-shifted two bits.
3215 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3216 sizeof (void *) == 2 on the target.
3217
3218 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3219 target type for a value the target will never see. It's only
3220 used to hold the values of (typeless) linker symbols, which are
3221 indeed in the unified virtual address space. */
7ba81444
MS
3222
3223 builtin_type->builtin_data_ptr =
3224 make_pointer_type (builtin_type->builtin_void, NULL);
3225 builtin_type->builtin_func_ptr =
3226 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
000177f0 3227 builtin_type->builtin_core_addr =
7ba81444 3228 init_type (TYPE_CODE_INT,
8a7e34d8 3229 gdbarch_addr_bit (gdbarch) / 8,
000177f0
AC
3230 TYPE_FLAG_UNSIGNED,
3231 "__CORE_ADDR", (struct objfile *) NULL);
3232
64c50499
UW
3233
3234 /* The following set of types is used for symbols with no
3235 debug information. */
7ba81444
MS
3236 builtin_type->nodebug_text_symbol =
3237 init_type (TYPE_CODE_FUNC, 1, 0,
3238 "<text variable, no debug info>", NULL);
3239 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3240 builtin_type->builtin_int;
3241 builtin_type->nodebug_data_symbol =
3242 init_type (TYPE_CODE_INT,
3243 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3244 "<data variable, no debug info>", NULL);
3245 builtin_type->nodebug_unknown_symbol =
3246 init_type (TYPE_CODE_INT, 1, 0,
3247 "<variable (not text or data), no debug info>", NULL);
3248 builtin_type->nodebug_tls_symbol =
3249 init_type (TYPE_CODE_INT,
3250 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3251 "<thread local variable, no debug info>", NULL);
64c50499 3252
000177f0
AC
3253 return builtin_type;
3254}
3255
a14ed312 3256extern void _initialize_gdbtypes (void);
c906108c 3257void
fba45db2 3258_initialize_gdbtypes (void)
c906108c 3259{
5674de60
UW
3260 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3261
7ba81444
MS
3262 /* FIXME: The following types are architecture-neutral. However,
3263 they contain pointer_type and reference_type fields potentially
3264 caching pointer or reference types that *are* architecture
3265 dependent. */
7ad6570d
AC
3266
3267 builtin_type_int0 =
3268 init_type (TYPE_CODE_INT, 0 / 8,
3269 0,
3270 "int0_t", (struct objfile *) NULL);
3271 builtin_type_int8 =
3272 init_type (TYPE_CODE_INT, 8 / 8,
ea37ba09 3273 TYPE_FLAG_NOTTEXT,
7ad6570d
AC
3274 "int8_t", (struct objfile *) NULL);
3275 builtin_type_uint8 =
3276 init_type (TYPE_CODE_INT, 8 / 8,
ea37ba09 3277 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
7ad6570d
AC
3278 "uint8_t", (struct objfile *) NULL);
3279 builtin_type_int16 =
3280 init_type (TYPE_CODE_INT, 16 / 8,
3281 0,
3282 "int16_t", (struct objfile *) NULL);
3283 builtin_type_uint16 =
3284 init_type (TYPE_CODE_INT, 16 / 8,
3285 TYPE_FLAG_UNSIGNED,
3286 "uint16_t", (struct objfile *) NULL);
3287 builtin_type_int32 =
3288 init_type (TYPE_CODE_INT, 32 / 8,
3289 0,
3290 "int32_t", (struct objfile *) NULL);
3291 builtin_type_uint32 =
3292 init_type (TYPE_CODE_INT, 32 / 8,
3293 TYPE_FLAG_UNSIGNED,
3294 "uint32_t", (struct objfile *) NULL);
3295 builtin_type_int64 =
3296 init_type (TYPE_CODE_INT, 64 / 8,
3297 0,
3298 "int64_t", (struct objfile *) NULL);
3299 builtin_type_uint64 =
3300 init_type (TYPE_CODE_INT, 64 / 8,
3301 TYPE_FLAG_UNSIGNED,
3302 "uint64_t", (struct objfile *) NULL);
3303 builtin_type_int128 =
3304 init_type (TYPE_CODE_INT, 128 / 8,
3305 0,
3306 "int128_t", (struct objfile *) NULL);
3307 builtin_type_uint128 =
3308 init_type (TYPE_CODE_INT, 128 / 8,
3309 TYPE_FLAG_UNSIGNED,
3310 "uint128_t", (struct objfile *) NULL);
3311
7ba81444
MS
3312 builtin_type_ieee_single =
3313 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3314 builtin_type_ieee_double =
3315 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3316 builtin_type_i387_ext =
3317 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3318 builtin_type_m68881_ext =
3319 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3320 builtin_type_arm_ext =
3321 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3322 builtin_type_ia64_spill =
3323 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3324 builtin_type_ia64_quad =
3325 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
598f52df 3326
85c07804
AC
3327 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3328Set debugging of C++ overloading."), _("\
3329Show debugging of C++ overloading."), _("\
3330When enabled, ranking of the functions is displayed."),
3331 NULL,
920d2a44 3332 show_overload_debug,
85c07804 3333 &setdebuglist, &showdebuglist);
5674de60 3334
7ba81444 3335 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3336 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3337 &opaque_type_resolution, _("\
3338Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3339Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3340 NULL,
3341 show_opaque_type_resolution,
3342 &setlist, &showlist);
c906108c 3343}
This page took 0.773989 seconds and 4 git commands to generate.